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Summary

Structural Health Monitoring (SHM) is an increasingly important field due
to the rising number and complexity of structures such as bridges, buildings,
and viaducts. The need to improve user safety and ensure the optimal func-
tionality of the structures has motivated the improvement of SHM systems
from sporadic human evaluations to continuous monitoring through various
types of sensors capable of streaming high-frequency data

The increasing amount of SHM data has encouraged the development
of algorithms and methodologies that support structural monitoring and
decision-making processes in order to extend the structure’s lifespan, reduce
maintenance costs, and ensure the user’s safety.

Anomaly detection and Traffic Load Estimation (TLE) are two key activ-
ities in the field of SHM. Anomaly detection strategies are used to identify
when a structure is not functioning as expected, indicating damage in the
early stages, optimizing maintenance activities, and increasing the reliability
of the structures. TLE is useful to estimate the usage level of a structure at
a given time. An effective TLE pipeline helps to understand patterns over
time about the load of the structure, which can be useful to identify possible
overload situations or to improve maintenance activities schedules.

The aim of this thesis is to study the use of Self-Supervised Transformer-
Based Masked Autoencoders on data generated by SHM systems to address
the tasks of anomaly detection and TLE. Additionally, we aim to demonstrate
that a fine-tuning phase on a pre-trained model leads to better performance
on supervised tasks than training the supervised models from scratch.

Our methodology is divided into two steps for each task. First, a general
pre-training phase is common for both applications, in which the signal gen-
erated by SHM accelerometers is transformed into PSD spectrograms, The
masked autoencoder is then used in a self-supervised reconstruction task to
learn latent representations and patterns from the spectrograms. In the sec-
ond step, the pre-trained autoencoder is used on the specific applications.
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For anomaly detection, we propose a methodology based on the reconstruc-
tion error to identify anomalies. For TLE, we propose a fine-tuning phase in
which the pre-trained autoencoder is further trained using a smaller labeled
dataset to predict the number of vehicles crossing the viaduct at a given time
based on the signal disturbances.

The results of our experiments demonstrate that we achieve an accuracy of
98.8% in the anomaly detection tasks with a 1-minute delay in detecting the
anomalies. This result is comparable to the state-of-art techniques based on
the PCA algorithm trained on the same dataset, which achieves an accuracy
of 98.8%, but with a 1-hour delay in detecting anomalies. For TLE, we
achieve a Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) of 0.4/26%. We also demonstrate that a pre-training phase improves
the model’s performance by 20%.

Keywords: Structural Health Monitoring, Masked Autoencoders, Trans-
formers, Traffic Load Estimation, Anomaly Detection
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Chapter 1

Introduction

Structural Health Monitoring (SHM) is the implementation of damage identi-
fication strategies for aerospace, civil, and mechanical engineering infrastruc-
tures. According to [13], SHM activities aim to detect damage in structures
early, monitor their condition continuously, prevent catastrophic events, ex-
tend their lifespan, save maintenance costs, and ensure user safety.

For many years, SHM activities relied on human observation and eval-
uation. However, these methods have several drawbacks, including human
subjectivity, human inability to detect small changes, high cost, and risk to
human safety when the evaluated structures are deteriorated by the lack of
maintenance or after extraordinary situations such as natural disasters. To
overcome these issues, it is crucial to develop automatic SHM methodologies
that can continuously and efficiently monitor the state of the structures.

During the past few years, Internet of Things (IoT) systems have been im-
plemented to support Structural Health Monitoring (SHM) activities. IoT
devices are primarily utilized to gather and transmit real-time data related to
various properties of the structure, such as vibration, temperature, and hu-
midity. These systems enable real-time monitoring of the structures and offer
other advantages, including high accuracy in detecting even small changes in
the structure’s behavior, minimized monitoring costs, and scalability, which
allows monitoring of different structures from a single location.

To develop efficient methodologies that support SHM activities using data
from IoT sensors, it is necessary to create algorithms capable of transforming
the generated data into useful information to facilitate the decision-making
process. The most common SHM applications using data from IoT systems
include anomaly detection algorithms, damage classifications, usage level es-
timations, or time series analyses on usage patterns. Through our research,
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1 – Introduction

we have found that most of the automatic SHM applications rely on clas-
sical machine learning algorithms, such as Principal Component Analysis
(PCA) [29], support vector machines [6], and random forests [6], among oth-
ers. However, methodologies based on deep learning architectures have not
been significantly studied for SHM applications.

Deep learning is a subfield of Machine Learning that takes inspiration from
the structure and functioning of the human brain. These models rely on
neural networks composed of multiple layers of interconnected nodes, where
input data flows hierarchically to extract abstract features beneficial for solv-
ing diverse kinds of problems like classifications or regression. Deep learning
models offer several advantages over classical ML models. For example, DL
models can learn more efficiently on large amounts of data, extracting more
complex patterns and generating better performances. They can also handle
data in its raw form, while ML models require a manual feature extraction
process to perform well. Additionally, Deep learning models are more flexible
and adaptable to various tasks and data types. For instance, architectures
like transformers have been utilized in computer vision and natural language
processing (NLP) fields, achieving state-of-the-art results.

This work is focused on the application of deep learning algorithms for
SHM tasks. We propose a methodology based on self-supervised learning to
handle anomaly detection and TLE tasks on two distinct viaducts located
in Italy. These viaducts have been continuously monitored by a vibrational-
based SHM sensor network that uses vibration-based measurements to detect
damages and track the viaducts’ health condition.

The acceleration data obtained from the sensor networks is segmented
into overlapping windows, filtered, and transformed into Power Spectral Den-
sity (PSD) spectrograms. These spectrograms are employed to pre-train a
Masked Autoencoder (MAE) through a self-supervised reconstruction task.
During this pre-training phase, the model learns the general dependencies
and patterns present in the data, which can later be applied to specific SHM
applications.

In the anomaly detection task, the dataset contains both normal and
anomaly data. The model is pre-trained on the reconstruction task exclu-
sively on normal data, and a statistical threshold is used on the reconstruction
error to identify anomaly data. In the case of TLE, the dataset comprises a
vast collection of vibration data without any labels and a smaller set of vibra-
tion data coupled with the corresponding vehicle information generated by a
scale as they pass over the viaduct. The model is pre-trained with the non-
labeled data to perform reconstruction tasks. Then, the pre-trained model’s
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1 – Introduction

architecture is altered, and it is further trained with the labeled dataset to
estimate the number of vehicles crossing the viaduct based on the vibration
data.

The proposed methodologies are compared with the state-of-the-art appli-
cations presented on [29] and [6]. As result, the proposed anomaly detection
pipeline reaches an accuracy of 99.4%, with a sensitivity and specificity of
99.8% and 98.65% respectively, this result is evidence of the capability of the
proposed methodology to accurately detect anomalies, outperforming the
state-of-the-art application and

To evaluate our proposed methodologies, we compared our results with
state-of-the-art applications. On anomaly detection, The state-of-the-art
methodology presented in [29] reports an accuracy of 98.8%, with a sensitivity
and specificity of 97.33% and 100%, respectively, for detecting an anomaly
with a detection delay of 60 minutes. In contrast, our anomaly detection
pipeline achieves an accuracy of 99.4%, with a sensitivity and specificity of
99.8% and 98.65%, respectively, on aggregation windows of 100 vehicles. We
also explored aggregations on the time domain and achieved an accuracy of
98.8%, with a sensitivity and specificity of 99.7% and 97.4%, respectively,
with a detection delay of 1 minute in the detection of the anomaly. These
results demonstrate that our proposed methodology can accurately detect
anomalies, outperforming the state-of-the-art method not only in detection
rates but also in detection times.

To ensure a fair comparison with the state-of-the-art methodology [6] on
TLE, we replicated their methodology using our data to generate a baseline
representing the performance of their method on our application. The best
state-of-the-art algorithm on our data was based on Random Forest (RF),
which achieved an MSE and MAPE of 0.661 and 49.47%, respectively. In
contrast, our proposed methodology achieved an MSE and MAPE of 0.343
and 25.58%, respectively, demonstrating a significant improvement over the
state-of-the-art baseline. Additionally, we demonstrated that pre-training the
regression model using self-supervised learning can improve its performance
by 20% compared to a model trained directly on labeled data.
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Chapter 2

Background

In this section, all the Machine Learning (ML) algorithms and techniques
used during the thesis development will be introduced, as well as an intro-
duction to the thesis application field, Structural Health Monitoring (SHM).

2.1 Machine learning and Deep learning
According to [34], Machine learning (ML) refers to the computational process
through which a computer system acquires the ability to perform a specific
task without being explicitly programmed. This is achieved by utilizing a
learning algorithm that is fed with input data representing prior experiences.
The goal of this process is to produce a computer program able to success-
fully perform a given task by leveraging the knowledge acquired through
the input data. ML has been applied in various fields generating state-of-
the-art results on tasks that are too complex for conventional algorithms
or require adaptation to dynamic changes in the environment. The most
common ML algorithms are for example Decision Trees, Random Forests,
Support Vector Machines, regressions, K-Nearest Neighbors, and Neural Net-
works, among others. ML algorithms generally perform better in scenarios
where the datasets are small and the features are well defined, or the compu-
tational resources are limited. However, when it comes to handling complex
tasks that require higher levels of abstraction, conventional algorithms may
fall short. In this case, Deep Learning algorithms normally perform better.

Deep learning is a subset of machine learning that uses artificial neural
networks to model and solve complex problems. Typical deep learning algo-
rithms are more effective than machine learning ones on unstructured data,
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large datasets, and complex and nonlinear problems. Deep learning has im-
portant applications in areas such as object detection, text classification, and
anomaly detection. For example, YOLOv4 [4] introduces an object detec-
tion model that achieves state-of-the-art accuracy results on different object
detection benchmarks while being able to operate sufficiently fast for being
used in real-time applications with a low amount of computational resources.
BERT [9] introduces a pre-trained model based on Transformers that is able
to capture contextual information in different texts thanks to two main fea-
tures during training: the use of a bidirectional pre-training which allows the
model to learn from both left and right context of a text, and the "Masked
Language Model (MLM)" pre-training objective, where random tokens from
an input text are masked and the model’s objective is to predict the original
masked tokens. This pre-training strategy allows BERT to be fine-tuned on
different Natural Language Processing (NLP) tasks, resulting in state-of-the-
art results on eleven of them.

2.1.1 Types of learning

ML can be divided into different learning paradigms that aim to describe the
relationship between the learner algorithm and the environment, one of the
most important distinctions is made by dividing the ML task into Supervised
learning and Unsupervised learning.

Supervised learning

Supervised learning [34] is a method based on the idea of learning from
examples represented by training data where the outputs are already known,
The goal of the algorithm is to learn the relationships between the inputs
and outputs and then make predictions on a separate, unseen dataset where
the outputs are unknown called test data.

Formally the train data is composed of a set of n ordered pairs (x1, y1),
(x2, y2), . . . , (xn, yn) where xi represents a set of measurements for a single
example, and yi is the corresponding label. The test data is composed of m
examples without labels (xn+1, xn+2, . . . , xn+m), and the goal of the algorithm
is to predict their corresponding labels (yn+1, yn+2, . . . , yn+m).

More detailed information about Supervised learning, its applications, and
algorithms can be found in [34].
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Unsupervised learning

Unsupervised learning [14] is a learning paradigm where the model receives
input data in the form of (x1, x2, . . . , xn) without any supervised target out-
put. In this case, the goal is to find hidden patterns or representations of
the data, rather than to make predictions based on labeled examples. Some
of the most common applications of unsupervised learning are clustering,
dimensionality reduction, and anomaly detection.

More detailed information about unsupervised learning, its applications
and algorithms can be found in [14].

Self-supervised learning

Self-supervised learning is a type of unsupervised learning where the model
obtains its supervisory signals from the input data itself. The model’s ob-
jective is to learn useful representations of the data by identifying patterns,
structures, or relationships within it.

One common self-supervised learning technique is to mask some proper-
ties or parts of the input sequence and aims to predict the masked part or
property. For example, in the NLP field, BERT [9] uses a Masked Language
Model (MLM) where the model takes as input data a text sequence with
some masked tokens, and the self-supervised model aims to predict the origi-
nal tokens in the sequence. Another example is given in the computer vision
field [19] where an autoencoder is pre-trained with masked images with the
objective of reconstructing the non-visible part of the images, thus allowing
the model to learn common patterns and shapes in images.

2.1.2 Perceptron
The perceptron is the basic unit of any artificial neural network, it is a linear
model that makes a weighted sum of the input data (x1, x2, . . . xn), a set of
weights (w1, w2, . . . , wn) and a bias term b, then it passes the result throws
an activation function which generates the final output as shown in equation
2.1.

y = f(
Ø

i

xi · wi + b) (2.1)

The most common activation functions for the perceptron are the sigmoid
function and the rectified linear unit (ReLU), these functions map any real

17



2 – Background

input number to a binary output as shown in equations 2.2 and 2.3 respec-
tively, which makes this algorithm suitable for binary classification models

S(x) = 1
1 + e−x

(2.2)

R(x) = max(0, z) (2.3)

The learning process of the perceptron is based on the random initializa-
tion of the weights and bias, feeding the data into the perceptron, evaluating
the output, backpropagate the error to update the weights and bias using
the gradient descent algorithm, and finally repeating the process until con-
vergence or the maximum number of iterations is reached.

Even though the perceptron algorithm has advantages such as its simplic-
ity and computational efficiency, it also has several limitations, such as its
linearity and its limitation to binary classification. In order to solve more
complex problems the Multi-layer perceptron was introduced.

Multi-layer perceptron

This algorithm is born from the idea that many perceptrons can be joined
to address more complex problems and computations, a Multi-layer percep-
tron (MLP) can be represented as a directed graph G = (V, E) where the
perceptrons represent the nodes in (V ), and each directed edge in (E) is a
communication link between the output of one neuron to the input of another
one. The Multi-layer perceptron is composed of T disjoint subsets of percep-
trons called layers (V0, V1. . . , VT ) where V = ∪T

t=0(Vt), each layer is followed
by an activation function and is classified into three types, as follows:

• Input layer (V0): this layer is responsible for processing the input data
and feeding the following layers, it consists of a set of neurons x1, x2, . . . , xn

where n is the dimensionality of the input data.

• Hidden layer(s) (V1, . . . VT −1): These are the computational engine of
the neural network, these layers are responsible for extracting features
from the input data and using it to generate predictions, each neuron
in the layer applies a weighted sum followed by a non-linear activation
function, as shown in equation 2.1.

• Output layer (VT ): It receives the processed data from the hidden layers
and generates the final output of the neural network.
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The training process of an MLP is composed of two main steps forward and
backward propagation, these two processes are complementary and depend
on each other during training an MLP, The forward propagation calculates
and saves the intermediate variables, outputs, and loss from the input layer
to the output layer. Then, the backward propagation is made in the reverse
order, where the algorithm calculates and saves the gradients of all the MLP
parameters. Finally, these parameters are updated in order to minimize a
given loss function.

The MLP is the core of deep learning algorithms, and it has been used
to develop more complex algorithms, including Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Mem-
ory (LSTM), Autoencoders, and Generative Adversarial Networks (GANs).
In this work, we will focus on the use of autoencoders, more specifically
on Masked Autoencoders, which are algorithms that can be trained in a
self-supervised way to then be fine-tuned on more specific supervised appli-
cations.

2.1.3 Autoencoders
The Autoencoder is a type of neural network architecture introduced by
[22] with the objective of learning compact representations from higher-
dimensional input data in an unsupervised way. The autoencoder’s archi-
tecture consists of two main parts: the encoder which compresses the input
data generating a latent representation, and the decoder which is useful for
reconstructing the latent representation into the target data representation.

Depending on the input data and the task at hand, certain characteristics
of the autoencoder need to be determined. Firstly, the type of layer to use
needs to be considered. The most commonly used types of layers are:

• Convolutional layers: These are commonly used to deal with tasks in-
volving images, such as image denoising, compression, and generation.

• LSTM layers: These are typically used to deal with sequential data,
particularly time series, due to their ability to capture long-term rela-
tionships in the data.

• Transformer layers: These are particularly useful for capturing long-
range dependencies in sequential data and are commonly used in NLP
tasks such as language modeling and machine translation.
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2 – Background

• Dense layers: These are primarily used for non-sequential data as they
are limited in their ability to create long-range dependencies in sequential
inputs.

To achieve optimal performance, a combination of the above layer types
can be used. For example, dense layers are often added on top of the decoder
to map the output of convolutional, transformer, and LSTM layers to the
desired output data shape.

After determining the type of autoencoder to use, the main hyperparam-
eters to decide its size are as follows:

• Latent representation size: This determines the number of neurons in
the bottleneck and how much the data will be compressed.

• Number of layers: The complexity of the model is determined by the
number of layers, which also affects the speed of processing. In most
cases, the encoder and decoder have the same depth, but some specific
applications work better with non-symmetrical architectures.

• This hyperparameter determines the number of neurons in each layer.
Typically, the number of nodes in the encoder decreases layer by layer
until it reaches the bottleneck, while the opposite occurs in the decoder.

Even though the autoencoder is not a new architecture, in the last years it
has been quite popular given the variety and complexity of its applications,
the most common ones are dimensionality reduction [37], image denoising
[26], image generation [17], and anomaly detection [39].

A more detailed description about autoencoders can be found in [22].

2.1.4 Transformers

The transformer [36] is a deep learning architecture based on an attention
mechanism to learn the dependencies between input and output sequences.
Originally proposed for sequence data in language modeling and machine
translation, it outperforms the state of the art techniques such as Recurrent
Neural Networks (RNNs), Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU).
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2.1.5 Model Architecture
The transformer is composed of two main components: the encoder and
the decoder. The encoder maps an input sequence (x1, x2, . . . , xn) to a la-
tent representation z = (z1, z2. . . , zn) known as encoding which captures the
contextual information from the input. Then the decoder uses the latent
representation z to generate an output sequence (y1, y2, . . . , yn). Figure 2.1
illustrates the transformer architecture.

Figure 2.1. Transformer - model architecture.

Source: [36]

Encoder and Decoder

The encoder is a stack of layers, where each layer is composed of two sub-
layers: a Multihead Self-Attention (MSA) mechanism that produces a set of
encodings from the input, and a position-wise fully connected feed-forward
network (FFN) that produces an embed of each encoding. In addition, a
residual connection is used around each of the two sub-layers, followed by
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layer normalization. The decoder is similar to the encoder, it consists of a
stack of layers where each one is composed of a Multihead Self-Attention and
fully connected feed-forward network sub-layers. The decoder also includes
a third layer that performs multi-head attention on the encoder output.

Multi-head Attention

The attention mechanism was introduced for the first time in [3]. It allows
the transformer to focus on the most important parts of an input sequence
by weighting each part of the sequence according to its relative importance
creating an attention-weighted sum. More precisely, the attention mecha-
nism helps the transformer to effectively capture long-range dependencies at
each step on the sequence. This is an improvement with respect to other
architectures like RNNs where the predictions are made attending to the
immediate surrounding parts of the current step. The multi-head attention
is a variant of the original attention mechanism where the model attends to
different parts of the sequence simultaneously by using multiple attention
heads. Each head produces its own attention-weighted sum, allowing the
model to learn different relationships between elements in the sequence and
form a final attention output.

Positional encoding

The positional encoding allows the transformer to distinguish the order of
each element in the sequence. This is important because it helps to avoid
problems like permutation invariance, and improves other mechanisms of the
transformer like the attention. There are several options for the positional
encodings, in [36] it is used the sine and cosine functions computed as shown
in 2.4.

PE(pos,2i) = sin(pos/100002i/dmodel)
PE(pos,2i+1) = cos(pos/100002i/dmodel)

(2.4)

Where dmodel is the dimension of the positional encodings which is the
same as the embedding dimension, pos is the position of the element in the
sequence and i is the dimension.

22



2.1 – Machine learning and Deep learning

2.1.6 Visual transformers (ViT)
Presented by [11], this is an introduction to the use of transformers [36]
in the computer vision field. This work was inspired by the success of the
transformers in the NLP field and its objective is to apply transformers to
images following the architecture of the original transformer [36] as closely
as possible.

Originally the standard transformer receives as input a 1D sequence of
tokens, but the images are presented in 2D and it is not straightforward how
to tokenize them. The images have to be reshaped from X ∈ RH×W ×C into
a sequence of flattened 2D patches Xp ∈ R(N×(P 2·C)), as illustrated in figure
2.2.

Figure 2.2. Example of patch creation and flattening process.

where (H, W ) is the resolution of the original image, C is the number of
channels, (P, P ) is the resolution of each image patch, and N = HW/P 2 is
the total number of patches, which corresponds to the effective input sequence
length for the transformer.

The Transformer takes as input a latent vector of size D, which is why each
image patch of resolution (P, P ) is flattened and mapped to D dimensions
through a trainable linear projection. The result of this step is added to the
positional embedding to obtain the patch embedding, which is then processed
by the transformer as described in [36].

This methodology achieves excellent results when pre-trained on large
datasets such as ImageNet-21K. However, when trained on mid-size datasets
like ImageNet-1K, the model’s performance falls some percent point below
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the state-of-the-art models of comparable size like ResNet. This drawback is
explained by the lack of inductive biases of the transformers in comparison
to the standard methodology in the computer vision field the Convolutional
Neural Networks (CNNs).

The ViT demonstrates to reach or exceeds state-of-the-art performance on
several image classification datasets, including ImageNet and CIFAR-100.

2.1.7 Masked autoencoders

A masked autoencoder (MAE) is an unsupervised learning architecture first
introduced by [38], this work introduces a modification to the original au-
toencoder framework to integrate robustness to partially destroyed inputs.
The main objective is to learn latent representations from the dependen-
cies and regularities in the observed input. This methodology proposes an
autoencoder trained on a randomly corrupted version of the input data to
generate repaired version as output. As described, the input features are
corrupted by randomly choosing a fixed number of components and forcing
their value to 0, hiding all the information about these components to the
autoencoder. The objective of the autoencoder is to recover this missing
information. Figure 2.3 provides a graphical representation of the training
process.

Figure 2.3. Graphical representation of the training process for a
masked autoencoder.

x represents the original input, x̂ represents the corrupted version of the input, y
represents the latent representation of x̂ generated by the encoder, the decoder

attempts to reconstruct x generating z as output, LH(x, z) represents the
reconstruction error. Source: [38]

The masked autoencoder has been successfully applied mainly in the field
of NLP with the introduction of models like BERT [9]. In this thesis project,
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we inspired our work in the applications of Masked autoencoders in the com-
puter vision field and sound recognition, more precisely in the methodologies
introduced by [19][20].

2.1.8 Masked autoencoders are scalable vision learners
ImageMAE [19] is an application of the Masked Autoencoders in the com-
puter vision field, inspired by the success of the masked autoencoders in NLP
with BERT [9], The goal of this work is to replicate the methodology used in
NLP and demonstrate that masked autoencoders are scalable self-supervised
learners models for computer vision.

In order to apply masked autoencoders to computer vision, it is crucial to
understand the difference between text and images. Text is usually human-
generated and is highly semantic and information-dense, whereas images are
visual objects containing more redundant information that can be easily pre-
dicted based on context. It is important to consider this difference as it
affects the amount of information that can be masked without affecting the
model’s performance. For example, BERT [9] has demonstrated to achieve
its best results by masking only the 15% of the tokens in text, while Im-
ageMAE [19] has been demonstrated to achieve its best results by masking
a high rate (75%) of tokens, thereby reducing the redundant information in
images.

In general, the proposed methodology divides images into patches, masks
a high rate of them, uses the encoder to create a latent representation from
only the visible patches, and finally uses the decoder to reconstruct the input
image. Figure 2.4 illustrates the main idea of this work.

The main components of ImageMAE are:

• Masking strategy: The images are divided into regular, non-overlapping
patches. Then a random subset of patches is masked according to a
uniform distribution. As described, a high ratio of patches is masked to
reduce redundancy and create tasks not easy to solve by extrapolation
from visible neighbor patches.

• Encoder: Composed by a set of ViT [11], the encoder embeds patches
through a linear projection with added positional embeddings. It then
processes the resulting embeddings with a set of transformers to obtain
the latent representation of the input. Notice that the encoder only
works on the visible patches (25%), decreasing the usage of computa-
tional resources.
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Figure 2.4. ImageMAE architecture.

The input is divided into patches and 75% of those are masked, Then the visible
patches are flattened and passed through the encoder, which generates a latent

representation (represented by sky-blue squares). The patches are reorganized and
the mask tokens are included (represented by gray squares), the complete set of

tokens is passed through the decoder, which generates patch embeddings
(represented by pink squares). Finally, these embeddings are passed through a

linear layer to reconstruct the original patches. source: [19]

• Decoder: The decoder is used to reconstruct the input image from the
latent representation generated by the encoder. It receives as input the
complete set of tokens composed of mask tokens representing missing
patches to be predicted, and tokens containing the latent representation
of the visible patches.

The training process of this model consists of two steps: self-supervised
pre-training to learn the contextual information of the input images by recon-
structing masked patches to obtain the original input. Supervised fine-tuning
where the latent representations generated by the encoder are used for tasks
such as object detection, semantic segmentation, and classification. In con-
clusion, this work demonstrates the scalability of masked autoencoders for
computer vision tasks.
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2.1.9 Masked Autoencoders that Listen
AudioMAE [20] is a simple extension of Masked Autoencoders ImageMAE
[19] for sound recognition. It proposes a scalable framework for learning self-
supervised audio representations following the encoder-decoder architecture
of ImageMAE. the paper also introduces a new attention mechanism in the
decoder called local attention windows, which improves the results of the
autoencoder by taking advantage of the correlations in local windows of time
and frequency bands in the audio spectrograms.

Figure 2.5. AudioMAE’s masking strategies.

Source: [20]

The main components of AudioMAE are:

• Spectrogram patch embeddings: To use ViT [11], the audios are trans-
formed into Mel-spectrograms and divided into non-overlapped regular
grid patches. Similar to ImageMAE [19] the patches are flattened and
embedded by a linear projection. Then the positional embedding is
added to obtain the patch embed.

• Masking strategies: Based on the nature of the audio spectrograms, this
work proposes two different types of masking strategies: Unstructured,
random masking as made in ImageMAE [19], and Structured, where
portions of time, frequency, or both are masked randomly, figure 2.5
illustrates the proposed types of masking.
Similar to ImageMAE [19], audio spectrograms are highly redundant,
then a high masking rate (80%) must be used to obtain the best results.

• Encoder: Similar to MAE [19], the encoder is composed of a stack of
ViT [11], which process only the non-masked patches to create a latent
representation of the audio spectrogram.

• Decoder: Composed by a stack of ViT [11]. It processes the complete
set of tokens, including mask tokens that represent missing patches to be
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predicted, and the latent representation of the visible patches generated
by the encoder. A linear head is introduced to predict and reconstruct
the input spectrogram.
Due to the nature of the audio spectrograms and their differences from
the visual objects, the global self-attention in the decoder proposed in
ImageMAE [19] may produce sub-optimal results. That is why they
introduce a Local Attention mechanism which groups patches into local
windows for self-attention, Two types of this method were proposed:

1. Shifted windows location: The attention window is shifted by 50%
between consecutive transformer layers. As shown in Figure 2.6.

2. Hybrid window attention: combines global attention and local at-
tention in order to obtain better cross-window connections.

Figure 2.6. Example shifted windows location.

Source: [20]

Similar to MAE [19], the training process of AudioMAE is divided the
two steps: pre-train and fine-tuning. During pre-training, the masked au-
toencoder learns the contextual information of the input spectrograms by
reconstructing the masked patches. During fine-tuning, the encoder’s knowl-
edge is used in different tasks like audio classification, speech classification,
and speech commands recognition. Unlike ImageMAE [19], AudioMAE in-
troduces the use of mask tokens in the encoder during fine-tuning.

AudioMAE achieves three main goals. First, it achieves state-of-art per-
formance on six audio and speech classification tasks. Second, it introduces
local self-attention in the decoder, resulting in stronger representations of
the input spectrograms. Third, it demonstrates that the use of masking in
fine-tuning improves accuracy and reduces computational time.

In conclusion, deep learning algorithms have been widely used in differ-
ent tasks, generating new state-of-the-art results. For example, in [19] and
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[20], it has been demonstrated how the same autoencoder architecture has
reached state-of-the-art results in tasks from different fields, such as image
classification and speech recognition. These results show us the capability of
masked autoencoders to achieve high performance on different types of data
and applications. Therefore, in this thesis, we investigate the use of masked
autoencoders in the SHM field.

2.2 Structural Health Monitoring
Structural Health Monitoring (SHM) is defined by [13] as the implementa-
tion of damage identification strategies for aerospace, civil and mechanical
engineering infrastructure. This process involves the observation over time
of a structure by the collection of data throws sensors or data acquisition
systems that together with statistical analysis help to determine the current
state of a structure.

The objective of SHM is to detect changes in the structure behavior that
can be considered as damage. The damage does not mean the complete
loss of the system functionality, but it evidences that the structure is not
working in an optimal manner, this can grow until the point of failure where
the structure operation is not acceptable to the user.

The main advantages of applying SHM methods to detect changes and
damages in early times are as follows:

• Improves structural reliability and life cycle management, Helps the
decision-making process about maintenance and repair, ensures the safety
of the structure, and prolongs its life cycle.

• Minimize intervention and maintenance costs. It avoids large and dis-
ruptive maintenance.

• Improves understanding of the structure: By collecting and analyzing
SHM data, it is possible to understand the structural behavior and how
it varies in different weather or load conditions.
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Chapter 3

Related work

Structural health monitoring (SHM) has been an area of growing interest
during the last few years because of the increasing demand for reliable meth-
ods for evaluating the state of complex structures, such as bridges, viaducts,
or buildings. This interest is motivated by the need to improve the safety of
the users and also for the economic impact these technologies can have by
improving the maintenance activities or avoiding the complete loss of the sys-
tem functionality [13]. In the past, the SHM activities were mainly sporadic
human assessment of the structures, however, currently, the application of
IoT systems equipped with low-cost and self-powered sensors able to stream
high-frequency data allows the continuous observation of the structures and
the application of machine learning algorithms to the SHM activities, this
new monitoring paradigm is known as the SHM 4.0 revolution [28].

The application of IoT systems and machine learning algorithms have been
used for SHM only in the last few years, some common applications are in
tasks such as image processing and vibration-based damage detection. For
example, [15] proposed a methodology for autonomous post-disaster recon-
naissance based on the use of low-cost unmanned aerial vehicles to capture vi-
sual data on structures affected by natural disasters, to then be analyzed with
region-based convolutional neural networks to detect four different damage
types. in [21] a network of distributed acceleration sensors is used to capture
the floor movement, to then feed classical machine learning algorithms such
as support vector machine, K-nearest neighbor, and convolutional neural net-
works, with the objective of identifying the status of buildings post-disaster
events.

This thesis work is focused on the use of data generated by a network
of SHM sensors in two applications, anomaly detection, and Traffic Load
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Estimation (TLE). These applications of SHM data have been explored in
previous works, as described above.

In [12] an Autoregressive Moving Average (ARMA) is used for feature
extraction from high dimensional SHM vibration data coming from a cable-
stayed bridge to then identify unnormal measures with a divergence analysis,
this pipeline reaches a misclassification error of 1.56% demonstrating its ef-
fectiveness to detect damage.

In [2] is proposed a one-dimensional convolutional neural network that
runs directly on the raw vibration data, this approach demonstrates to be
efficient to identify structural damages on a benchmark dataset.

The work on [5] proposes a framework to monitor vehicles passing on a
viaduct, this methodology works with three axial data captured by SHM
accelerometers. Anomaly detection algorithms were used to detect vehicles
passing the viaduct, while a linear regression was used to estimate the speed
of the passing vehicles.

Finally, in [40] is proposed a methodology to obtain traffic information
from pavement vibrations captured by a vibration-based in-field pavement
monitoring system, the data was used to feed a three-layer artificial neural
network and a k-means++ cluster analysis with the objective of monitoring
the vehicles speed, axle spacing, driving direction, location of the vehicles,
and traffic volume.

The following part of this section will focus on the analysis of two applica-
tions developed on vibration-based SHM data, we put particular interest in
these studies because they use a data source similar to the one we use in our
experiments allowing us to use the results of these applications as baselines
for our research.

3.1 Anomaly detection in Structural Health
Monitoring

This section is based on the work presented in [29], this work introduces
a pipeline for anomaly detection based on vibration data collected by SHM
sensor nodes, its main objective is to develop an automatic anomaly detection
pipeline that does not require communication, processing and storing raw
sensor data in the cloud.

We put particular interest in this paper because it addresses the anomaly
detection problem on the same dataset as our application. This is impor-
tant because it gives us a direct baseline to evaluate the performance of our
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proposed methodology.
Currently, the majority of works about anomaly detection on SHM are

based on simulated data as for example [24][30], this work [29] based its anal-
ysis on real vibration data collected from a viaduct located in Italy. The an-
alyzed viaduct underwent technical intervention to strengthen its structure,
which generated two different sets of data from the SHM sensors: vibra-
tion data before and after the intervention. The data after the intervention
represents the viaduct functioning optimally, while the data before the inter-
vention represents a change in the viaduct structure caused by events such
as earthquakes or lack of maintenance. This data was labeled as "anomalies"
due to the degradation of the viaduct in comparison to the optimal scenario.

The data collection process in [29] was based on a vibration-based SHM
system that consisted of five sensors to detect damages and monitor the
health condition of the viaduct.

The methodology proposed in [29] is composed of three steps: Anomaly
detection pipeline, algorithm phases, and deployment. In this thesis, we will
focus our analysis on the first two steps, which are relevant to our scope.

3.1.1 Anomaly detection pipeline
The proposed anomaly detection pipeline consists of three sequential steps:
data pre-processing, signal reconstruction, and anomaly detection. In the
data pre-processing phase, the vibration data in the z-axis is divided into
non-overlapping windows. An energy-based filter is then applied to discard
all windows containing only sensor white noise. The energy of each window
is calculated using the equation 3.1. A threshold is defined based on the
observed windows energy of the training data, and windows with energy
lower than the threshold are discarded to only provide informative data for
the anomaly detection algorithms. This work demonstrates that using this
energy filtering improves the accuracy of the algorithms.

E =
WdØ
i=1

X2
i (3.1)

In the signal reconstruction phase, three well-known compression-decompression
algorithms are compared: Principal Component Analysis (PCA), a fully con-
nected autoencoder, and a convolutional autoencoder. The objective of these
algorithms is to compress the raw vibration data into a latent representation,
and then decompress the representation to reconstruct the input signal.
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After training each algorithm solely with normal data, the anomaly detec-
tion criterion is based on the assumption that the algorithms should be able
to reconstruct normal data with a low reconstruction error, while anomalies
should generate larger reconstruction errors. To detect anomalies, a statisti-
cal threshold is established to achieve only 0.01% of statistical false positive
errors.

3.1.2 Algorithm Phases: Train, Detect, Re-Train
This work proposes an innovative methodology for implementing an anomaly
detection algorithm and updating it over time. The first step is the training
phase, where the algorithm is selected, parameters and hyper-parameters are
tuned, and the final model is trained. Next, in the detection phase, the
trained model is used for online detection. Finally, the re-training phase
updates the model over time to adapt to changes in the signal dynamics

3.1.3 Results
The proposed methodology in [29] has shown that the PCA-based anomaly
detection algorithm is the best performing, achieving an accuracy of 98.8%.
This algorithm was compared to other state-of-the-art algorithms by applying
those methodologies to the data in this application and was found that the
proposed methodology based on the PCA algorithm outperforms all of them.

In conclusion, [29] proposes a methodology for anomaly detection based
on PCA able to achieve an accuracy of 98.8% to identify anomalies, it pro-
posed an energy-based threshold of the raw accelerometer data which proves
to increase the accuracy and decrease the consumption of computational re-
sources. The methodology is also flexible and can be updated over time to
accommodate changes in the signal’s dynamics

3.2 Traffic Load Estimation from Structural
Health Monitoring sensors

This section describes the work presented on [6], which introduces a method-
ology for the TLE problem using supervised learning based on SHM-sensor
data. Similar to the data collection process described in [29], this study uti-
lizes as its data source an SHM sensor network installed on a viaduct in Italy,
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the novelty in this application is the introduction of a set of labels describing
the count of vehicles traversing a specific lane on the viaduct.

The labels were generated by recording a video of a section of the viaduct
and then using this information to generate the labels for the acceleration
data captured by the SHM sensors. The main objective of this study is to
estimate the count of vehicles passing through the viaduct in a given time
interval. However, in this study was decided to employ separate estimators
to count light vehicles and heavy vehicles.

In [6], the SHM network was composed of 7 sensors measuring the vibra-
tions in the acceleration axis x, y, z. The methodology begins with dividing
the vibration data into windows of length Twin and assigning the correspond-
ing labels. A feature extraction procedure is applied to each one of the win-
dows, which involves calculating a set of 12 basic statistical features reported
in Table 3.1 for each acceleration axes of each sensor. Finally, a correlation-
based filtering technique was applied to select only the most relevant features
and decrease the complexity of the regression models.

Name Description
mean Mean acceleration
std Acceleration standard deviation
min Minimum acceleration sample
max Maximum acceleration sample
med Acceleration median
kurt Kurtosis coefficient
skew Skewness index
rms Root Mean Square value
sabs Sum of the absolute values
eom Count of elements larger than the mean
ener Acceleration energy
mad Median Absolute Deviation

Table 3.1. Acceleration features extracted for each axis.

Source: [6].

Six different regression algorithms were trained to predict the count of
vehicles on each window, As mentioned, this process was divided for the light
and heavy vehicles resulting in the development of two separate regressors.
The trained algorithms are reported in Table 3.2 together with the best-
performing hyperparameters.
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Model Hyperparameters
Linear Regression -
Random Forest Max Depth = 200, Trees = 30
K-Nearest Neighbors k = 7
Support Vector Regressor Layers = 3, Neurons = 100
Multi-Layer Perceptron Kernel = RBF, C = 10.0
LeNet5 Default of [23]

Table 3.2. Regression algorithms used on [6].

In this application, the Support Vector Regressor achieves the best per-
formance in both categories reaching an MAE of 0.47 for light vehicles and
0.21 for heavy vehicles.

According to [6] this is the first time that the TLE problem is addressed
in a supervised way with SHM vibration data. The study demonstrates how
adding labels to the vibration data results in a significant improvement in the
performance of the models in comparison with unsupervised applications.

We are particularly interested in this paper because it applies to a dataset
that comes from a similar data source as our application. This is impor-
tant because it enables us to replicate these models on our data and have
a direct point of comparison to evaluate the performance of our proposed
methodology.
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Masked Autoencoders on
Structural Health
Monitoring

The objective of this thesis is to apply the methodologies proposed by MAE
[19] and AudioMAE [20] to SHM vibration data for two applications: anomaly
detection and TLE. For anomaly detection, the aim is to detect damages in
the viaduct structure. For TLE, the goal is to estimate the load of the
structure at a given time. Our methodology follows the two-stage approach
outlined in [19][20]. The first stage is a pre-training phase, where the autoen-
coder learns latent representations from the dependencies and regularities of
the SHM data by training the autoencoder to reconstruct the input data in a
self-supervised way. The second stage is a fine-tuning phase, where the pre-
trained autoencoder is modified and further trained for a specific application,
such as TLE.

This chapter focuses on describing in detail the pre-training phase of our
masked autoencoder. The chapter is structured as follows: In section 4.1,
we describe the data source and how the data is preprocessed to feed the
autoencoder. In section 4.2, we describe the base autoencoder architecture
including the main components such as the encoder, decoder, and masking
strategy. Finally, in section 4.3, we provide details on the pre-training pro-
cess, including weight initialization, optimizer selection, and learning rate
determination.

Figure 4.1 depicts the complete architecture of our masked autoencoder
described in the following sections.
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Figure 4.1. Complete Masked Autoencoder architecture.

The illustration depicts an architecture consisting of four parts. 1) the Input
masked spectrogram is shown, in this a large subset of patches is masked to reduce

redundancy. 2) the encoder receives only the remaining visible patches and
generates a latent representation for them. 3) The mask tokens are introduced
before the decoder, and the full set of patches is ordered with the positional

encoding to give the decoder information about the position of each patch. 4) the
decoder reconstructs the original spectrogram by predicting all the pixels. This
architecture is used during the pre-training phase, and during fine-tuning, the

decoder is discarded while the encoder is used for specific tasks.

4.1 Data

4.1.1 Data source
The data analyzed in this thesis was collected by an SHM network composed
of 3-axial Micro Electro-Mechanical System (MEMS) analog accelerometers
installed on a viaduct in Italy. The viaduct is divided into 18 spans of length
ranging from 32 to 35 meters. Each span is monitored by 6 sensors installed
on prestressed tendons used to strengthen the structure giving a total of
108 sensors monitoring continuously the viaduct. Figure 4.2 represents the
installation of the sensors on spans 2 and 3 of the viaduct, and the distance
between them.

The main objective of the SHM sensor network is to monitor the viaduct
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Figure 4.2. Graphical representation of the viaduct’s spans 2 and 3.

The position of the sensors is represented with red squares with their
corresponding identification, all the distances are reported in meters.

structure by measuring continuously the vibration dynamics. Each of the
sensors in the network captures the linear acceleration in three directions
(x, y, z) at a sampling frequency of 100Hz. It is important to note that our
methodology involves utilizing data from pre-existing sensors, which enables
us to repurpose them for our purposes without incurring additional instal-
lation or modification costs. However, it should be noted that the position
and installation of these sensors may not be optimal for detecting anomalies
or performing TLE tasks.

4.1.2 Data preprocessing

For the aim of this analysis, we only use the acceleration in the z-direction as
it is perpendicular to the ground surface. The signal is divided into overlap-
ping windows of duration (Twin) and stride (Tstride). Following the method-
ology of [29], an energy filter is applied to discard non-informative windows
containing only the white noise of the viaduct and preserve windows with
disturbances generated by vehicles crossing the viaduct. The energy of each
window is extracted following equation 3.1 and compared with an energy
threshold. Any window with an energy lower than the threshold is discarded.

After applying the Masked-autoencoder proposed in the paper by [20], we
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transform the one-dimensional vibration signal into two-dimensional spec-
trogram using the following procedure: First, we extract the constant com-
ponent of each window by subtracting the mean value of the signal from
each data point. Then, we compute the Power Spectral Density (PSD) spec-
trogram by dividing the window into overlapping segments and applying
equation 4.1 to each segment, where PSD(f) is the power spectral density
at frequency f , X(f) is the Fourier transform of the signal, N is the total
number of samples, and Fs is the sampling frequency. The resulting power
spectra are stacked vertically to form a 2D array, which is then subjected to
min-max normalization. The preprocessing pipeline is summarized in Figure
4.3.

PSD(f) = |X(f)2|
N ∗ Fs2

(4.1)

Figure 4.3. Signal preprocessing pipeline.

Complete preprocessing pipeline: 1) Original signal. 2) The constant component of
the signal is deleted, and the remaining signal is filtered, the green square

represents an informative window, which contains useful signal information, in
contrast, the red square represents a window composed of white noise, which
contains no useful signal information. 3) The normalized PDS spectrogram is

generated from the informative window signal.
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4.2 Masked Autoencoder

4.2.1 Patch embeddings
Following the methodology in [20], we divide each spectrogram into non-
overlapped regular grid patches of patch size P . We then flatten each patch
and embed it using a linear projection layer. To incorporate positional in-
formation into the patches, we employ sinusoidal positional embeddings, as
shown in Equation 2.4.

4.2.2 Masking
Based on the methodology proposed in [20] and its results, we adopt the
unstructured masking strategy. This method randomly selects the patches to
be masked according to a uniform distribution and eliminates all information
from those patches. An example of this masking strategy is shown in Figure
2.5 b. To eliminate redundancy from the spectrograms, we adopt a high
masking ratio of 80%, as recommended in [20]. Listing 4.1 shows the python
implementation of the masking strategy.

1 def random_masking (self , x, mask_ratio ):
2 """
3 Perform per - sample random masking by per - sample shuffling
4 Per - sample shuffling is done by argsort random noise.
5 x: [N, L, D], sequence
6 """
7 N, L, D = x.shape # batch , length , dim
8 len_keep = int(L * (1 - mask_ratio ))
9

10 noise = torch.rand(N, L, device =x. device ) # noise in [0,
1]

11

12 # sort noise for each sample
13 ids_shuffle = torch. argsort (noise , dim =1) # ascend :

small is keep , large is remove
14 ids_restore = torch. argsort ( ids_shuffle , dim =1)
15

16 # keep the first subset
17 ids_keep = ids_shuffle [:, : len_keep ]
18 x_masked = torch. gather (x, dim =1, index= ids_keep .

unsqueeze (-1). repeat (1, 1, D))
19

20 # generate the binary mask: 0 is keep , 1 is remove
21 mask = torch.ones ([N, L], device =x. device )
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22 mask [:, : len_keep ] = 0
23 # unshuffle to get the binary mask
24 mask = torch. gather (mask , dim =1, index= ids_restore )
25

26 return x_masked , mask , ids_restore

Listing 4.1. Python implementation of the masking strategy

4.2.3 Encoder
According to [20], we construct our encoder as an n-layer stack of ViT [19]
applied to the visible patches, The value of n is a hyperparameter that we
will set in the following sections, and it will depend on each application.

1 def forward_encoder (self , x, mask_ratio ):
2 # embed patches
3 x = self. patch_embed (x)
4

5 # add pos embed w/o cls token
6 x = x + self. pos_embed [:, 1:, :]
7

8 # masking : length -> length * mask_ratio
9 x, mask , ids_restore = self. random_masking (x, mask_ratio )

10

11 # append cls token
12 cls_token = self. cls_token + self. pos_embed [:, :1, :]
13 cls_tokens = cls_token . expand (x.shape [0], -1, -1)
14 x = torch.cat (( cls_tokens , x), dim =1)
15

16 # apply Transformer blocks
17 x = self. encoder (x)
18 x = self.norm(x)
19

20 return x, mask , ids_restore

Listing 4.2. Python implementation of the forward process for the encoder

Listing 4.2 shows the Python implementation of the forward process for
the encoder. The function receives as input the normalized patches. In lines
3 and 6, the embedding is generated by adding the patch and positional
embeddings. Then, the masking process described in Listing 4.1 (which
masks a percentage of the input tokens) is called. The classification (cls)
token and its positional embedding are added, and in line 14, the cls token
is concatenated to the tensor of tokens. Finally, in line 17, the tokens are
passed through the encoder, and in line 18, the encoder output is normalized.
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4.2.4 Decoder
According to [20], we design our decoder as an n-layer stack of ViT [11]. The
decoder takes as input the set of encoded patches and a set of masked tokens
that represent the missing patches to be predicted. To provide the decoder
with positional information about the visible and masked tokens, we assign
positional encodings using the equation 2.4. Finally, we add a linear layer at
the top of the decoder to reconstruct the input spectrograms.

1 def forward_decoder (self , x, ids_restore ):
2

3 # embed tokens
4 x = self. decoder_embed (x[:, 1:, :])
5

6 # append mask tokens to sequence
7

8 mask_tokens = self. mask_token . repeat (x.shape [0],
ids_restore .shape [1] - x.shape [1], 1)

9 x_ = torch.cat ([x, mask_tokens ], dim =1) # no cls token
10 x = torch. gather (x_ , dim =1, index= ids_restore . unsqueeze

(-1). repeat (1, 1, x.shape [2])) # unshuffle
11

12 b, l, c = x.shape
13

14 assert l == self. grid_h * self.grid_w , "input feature has
wrong size"

15

16 # add pos embed
17 x = x + self. decoder_pos_embed
18 x = x.view(b, self.grid_h , self.grid_w , c)
19 # apply Transformer blocks
20 for blk in self. decoder_blocks :
21 x = blk(x)
22

23 x = rearrange (x, ’b h w c -> b (h w) c’)
24 x = self. decoder_norm (x)
25

26 # predictor projection
27 x = self. decoder_pred (x)
28

29 return x

Listing 4.3. Python implementation of the forward process for the decoder

Listing 4.3 presents the Python implementation of the decoder’s forward
process. The function takes the encoder output as input. In line 4, it gener-
ates the decoder embeddings by applying a linear projection layer that maps
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the encoder output to the expected shape of the decoder input. Then, from
lines 8 to 10, the function generates the mask tokens, concatenates them to
the tokens, and reorders them according to their original position. In lines 17
and 18, the function adds the positional embeddings, and the resulting ten-
sor is reshaped to fit the decoder’s expected input shape. In lines 20 and 21,
the function passes the tokens through the decoder blocks, and the output
is reshaped and normalized in lines 23 and 24. Finally, in line 27, a linear
projection layer maps the decoder output to the shape of the input image,
generating the reconstructed spectrogram.

4.2.5 Local attention

According to the findings in [20], spectrograms exhibit different characteris-
tics and relationships than images. Because spectrograms are more sensitive
to the position and scale of their components, these factors can directly affect
the represented sound. Following this reasoning, our work complements the
global attention of the transformers with the local attention mechanism pro-
posed in [20]. As explained in section 2.1.9, this mechanism groups patches
into self-attention windows during decoding, allowing for more precise mod-
eling of the relationships between components within the spectrogram.

We adopt the Shifted Window Location Self-Attention (SWLSA) mecha-
nism introduced by [20]. This mechanism groups consecutive patches in the
spectrogram to generate local attention and shifts the groups 50% in the top-
left direction between consecutive transformer layers. Figure 2.6 provides a
visual representation of this mechanism.

4.2.6 Reconstruction target

During the pre-training phase, the masked autoencoder is trained to re-
construct the input spectrogram by predicting each pixel from the masked
patches. We use the Mean Square Error (MSE) as show in equation 4.2 as
a loss function to measure the reconstruction error between the input and
output spectrograms. Following [20] we calculate the reconstruction loss only
on the masked patches.

MSE = 1
n

nØ
i=1

(yi − ŷi)2 (4.2)
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4.3 Pre-training configurations
In this section, we will describe the main configuration used for the masked
autoencoder during the pre-training phase. These configurations are shared
by both applications and are based on the optimal values found on the masked
autoencoder applications discussed in [19] and [20].

4.3.1 Weight initialization
Providing a good starting point for the optimization process is critical to
the performance of the autoencoder. When weights are randomly initialized,
the values may be too small or too large, leading to vanishing or exploding
gradient problems, respectively.

In this work, we apply the Xavier uniform initialization method [16]. This
method scales the initial weights based on the number of input and output
neurons in the layer. The idea is to keep the variance of the activations and
gradients approximately the same throughout the network during training.

The weights are sampled from a random uniform distribution that is
bounded within the range r generated by equation 4.3, where ni is the num-
ber of input neurons to the layer and ni+1 is the number of output neurons
from the layer.

r = ±
√

6√
ni + ni+1

(4.3)

4.3.2 Optimizer
The optimizer helps to update the weights and biases in each epoch accord-
ing to the direction of the steepest descent of the loss function. In this
application, we apply the AdamW optimizer [25] that calculates an adaptive
learning rate depending on the magnitude of the gradient. In summary, the
learning rate is reduced for weights with large gradients and increased for
weights with small gradients, allowing the optimizer to take larger steps in
flatter regions and smaller steps in steep regions.

The optimizer contains an optimizer momentum, which is an extension
useful to accelerate the convergence towards the minimum loss function. This
is achieved by adding a fraction of the previous update vector to the current
update vector to increase the step size in the relevant direction and avoid
oscillation.
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vt = β1vt−1 + (1 − β1)gt

st = β2st−1 + (1 − β2)g2
t

v̂t = vt

(1 − βt
1)

ŝt = st

(1 − βt
2)

θt+1 = θt − α
v̂t√

ŝt + ϵ

(4.4)

The momentum is calculated following the equations ref 4.4, where β1 and
β2 are hyperparameters that control the decay rates of the moving averages,
gt is the gradient at iteration t, vt and st are the moving averages of the gra-
dients and squared gradients, respectively. v̂t and ŝt are their bias-corrected
versions. θt is the parameter vector at iteration t. α is the learning rate, and
ϵ is a small value for numerical stability. In our implementation, we set the
values for β1 and β2 to 0.9 and 0.95, respectively.

4.3.3 Learning rate
The learning rate is the hyperparameter that controls how much the weights
of the model are updated with respect to the loss gradient during training.
In our implementation, we set the base learning rate to 0.0002. However, we
use a warm-up procedure to gradually increase the learning rate from 0 to
the base value. This procedure helps the model to adjust the initial weights
before making large updates. In our implementation, we set this value at 40
epochs.
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Chapter 5

Anomaly Detection for
Bridge Degradation
Tracking

Anomaly detection [7] is the process of identifying patterns, data points,
and events that do not conform to the expected behavior in a given context.
These techniques have been successfully applied in various fields, including
cybersecurity [1], fraud detection [35], and monitoring of industrial systems
[27]. The most common anomaly detection techniques are based on statistical
methods [33], machine learning algorithms [29], time series analysis [32], and
deep learning architectures such as autoencoders [39].

Although anomaly detection appears to be a standard classification prob-
lem, applying common classification algorithms such as random forest or
neural networks is often ineffective in this task for several reasons. First, it
is usually impossible to obtain real anomaly data for sampling. For example,
in our case, it is not feasible to sample anomaly data from a structurally sane
bridge. Second, classification algorithms may not be suitable for detecting
anomalies because they do not follow regular patterns or have characteris-
tics that group them into predefined categories. Thus, applying classifica-
tion algorithms may not be optimal given the difficulty of creating balanced
datasets that clearly represent normal and anomaly data. For this reason,
anomaly detection problems rely on unsupervised techniques such as cluster-
ing (grouping data points together based on similarity) [31], density-based
methods (identifying regions of low density in data) [8], and distance-based
methods (measuring the similarity or dissimilarity between data points) [18].
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As mentioned in section 2.1.3, autoencoders are one of the most used tech-
niques for anomaly detection. This is because autoencoders can be trained
in unsupervised or self-supervised ways, which is particularly useful in the
context of anomaly detection where labels for anomaly data are not avail-
able. The basic idea behind using autoencoders for anomaly detection is
that they can learn to reconstruct patterns from normal data, but may fail
to reconstruct anomalies, resulting in a higher reconstruction error. There-
fore, it is straightforward to detect anomalies by setting a threshold on the
reconstruction error.

Following the above reasoning, In the next sections, we describe the ap-
plication of the masked autoencoder introduced in section 2.1.7 for SHM
anomaly detection. The rest of this chapter is structured as follows: we
describe the composition and division of the dataset, complement the data
preprocessing pipeline introduced in section 4.1.2, introduce the architecture
of the autoencoder and the different architectures tested, and finally, intro-
duce the anomaly detection pipeline. Figure 5.1 illustrates the proposed
pipeline explained in the following sections.

5.1 Data

5.1.1 Dataset composition
As stated in Section 4.1, the dataset analyzed in this study was collected
by a Structural Health Monitoring (SHM) sensor network comprising 3-axial
MEMS accelerometers installed on a viaduct located in Italy. The network
included 70 sensors distributed along the viaduct, which measured linear
acceleration along the x, y, and z axes at a sampling frequency of 100 Hz.
Figure 5.2 provides an example of the installation of MEMS sensors in a
viaduct. Similar to [29], the viaduct was subjected to a planned maintenance
procedure, which allowed for the collection of acceleration data before and
after the intervention. The data collected after the intervention represents the
viaduct functioning optimally, while the data collected before the intervention
are considered anomalies due to the degradation of the viaduct in comparison
to the optimal scenario. The available dataset consists of fifteen days of data,
divided as follows:

• Training set: Four days after the intervention.

• Validation set: Three days after the intervention.
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Figure 5.1. Proposed anomaly detection pipeline.

At the top of the image, the complete pipeline is described. The raw datasets for
normal and anomaly data are windowed and used to generate spectrograms. The

normal data is divided into training, validation, and test sets, which are then
normalized. The autoencoder training process uses the training and validation

sets, resulting in a pre-trained autoencoder. The pre-trained autoencoder is then
used to calculate reconstruction errors on the validation set, which generates a

threshold. Finally, the pre-trained autoencoder, threshold, normalized test set, and
anomaly data are used in the anomaly detection process.

At the bottom of the image, the anomaly detection process is described in detail.
The normal and anomaly spectrograms are passed through the autoencoder in a
reconstruction task, generating the reconstruction error MSE. The reconstruction

errors are aggregated as described in Section 5.3. The aggregated error is
compared to the calculated threshold; if the error is greater than the threshold, the

window is considered an anomaly; otherwise, it is considered normal.

• Test set for normal data: Four days after the intervention.

• Test set for anomaly data: Four days before the intervention.
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Figure 5.2. Example of MEMS sensors installed on a viaduct.

Source: [6]

It is possible to notice how even if we have the availability of a dataset
representing anomalies, we follow the pipeline explained above based on self-
supervised learning. We choose this methodology because we aim to demon-
strate that our masked autoencoder can be successfully applied in a general
anomaly detention scenario where there is no availability of data representing
anomalies.

5.1.2 Data preprocessing

The data preprocessing pipeline is the first step of our framework, it follows
the process described in section 4.1.2. In this application, we aim to re-
construct the spectrogram of the signal generated in the z-axis for a vehicle
crossing the viaduct, for this reason, the dataset was divided into overlapped
windows of length Twin = 10s and stride Tstride = 1s.

The resulting windows of dimension (1000,1) are transformers into PSD
spectrograms using a frameLenght = 198 samples and a stepLenght = 10
samples. The resulting spectrograms are 2D arrays of shape (100, 80). Figure
5.3 A shows some examples of the obtained spectrograms.
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Figure 5.3. Example of generated spectrograms for Anomaly detection and TLE.

The illustration depicts an example of the spectrograms used for the different
tasks. A) An example of the spectrograms used during the anomaly detection

application is shown, which represents a vehicle crossing the viaduct. B) example
of the spectrograms used during TLE is shown, which represents a vehicle crossing

the viaduct at time step 20.

5.2 Masked-autoencoder settings

5.2.1 Patch embeddings
The 2D spectrograms are divided into non-overlapped regular grid patches
of patch size P = 5, generating a total of 320 patches.

5.2.2 Masking
Using a masking rate Mrate = 0.8, in total 256 patches are randomly masked,
and only 64 are visible for the autoencoder.

5.2.3 Autoencoder architecture
In the previous applications of masked autoencoders on [19][20] the optimal
architecture is composed as follows:

• Encoder depth: 12 ViT layers

• Decoder depth: 16 ViT layers

• Encoder embedded dimension: 768
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• Decoder embedded dimension: 512

However, the applications on [19][20] are on more extensive and diverse
datasets like ImageNet-21K and Google Audioset. Because of this, we exper-
iment with different architectures in order to find the smallest architecture
able to reconstruct accurately the spectrograms. The compared architectures
are summarized in Table 5.1.

Architecture Encoder depth Decoder depth
Small 3 Layers 4 Layers
Medium 6 Layers 8 Layers
Large 12 Layers 16 Layers

Table 5.1. Tested architectures for the pre-training phase.

Following the recommendations from [19][20], none of the proposed archi-
tectures in Table 5.1 have symmetrical encoder and decoder depths. While
most autoencoder applications use symmetrical architectures, masked au-
toencoders are a special case because the encoder processes less information
than the decoder. In this application, the encoder must create a latent repre-
sentation from only 64 visible patches, whereas the decoder must reconstruct
a complete image with 320 patches.

5.2.4 Autoencoder objective
As mentioned in section 4.2.6, the objective of our autoencoder is to min-
imize the mean squared error (MSE) 4.2 between the predicted and input
spectrogram, averaged over the masked patches. The reconstruction error in
the test set will then be used to identify anomalies, as explained in the next
section.

5.3 Anomaly detection
This section describes the proposed anomaly detection pipeline illustrated in
Figure 5.1. It starts taking the reconstruction errors as input and aims to
predict whether the viaduct is operating optimally or if there is a change in
its expected behavior. This is a critical process because an incorrect predic-
tion could result in a complete loss of functionality or costly maintenance
processes.
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The anomaly detection pipeline is composed of two stages as described
below:

• To ensure that our pipeline can handle outliers, we aggregate the recon-
struction errors into windows and calculate the average error for each
window. By aggregating the errors, we can define a threshold and de-
termine whether a window is normal or anomalous. We propose two
different strategies for aggregation:

– Aggregation by amount: This strategy aggregates the reconstruction
error of n consecutive reconstruction errors. We explore aggregation
windows ranging from 1 (no aggregation) to 500 consecutive recon-
struction errors.

– Aggregation by time: Following the methodology proposed in [29],
this strategy aggregates reconstruction errors contained in consecu-
tive time windows of duration Tsec seconds. To ensure comparability
with [29], we explore windows ranging in duration from 1 minute to
4 hours.

• Threshold definition: The threshold is statistically derived. First, all
the reconstruction errors in the validation set are calculated, then they
are aggregated as mentioned in the above section. And finally, following
the methodology on [29] the threshold is defined as the mean of the
aggregated MSEs plus n times the standard deviation (th = µ + n × σ).
After determining the threshold, it is applied to partition the test set
into anomalous and normal data. We explore three different values for
n, and the results are exposed in the following sections.
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Chapter 6

Traffic load estimation
with Masked
Autoencoders

Traffic load estimation (TLE) is the process of predicting the amount of traf-
fic traveling over a network at a particular time. In the context of structural
health monitoring (SHM), TLE is used to determine the quantity, frequency,
and weight of vehicles passing over a structure. This process is essential
in understanding traffic behavior, identifying trends and patterns, and sup-
porting planning processes for maintenance activities, interventions, or traffic
regulation.

Depending on the objective and availability of data, this problem can be
framed in different ways. For example, in [6], the problem was addressed as
a regression problem, and classical machine learning algorithms were used
to estimate the number of vehicles, as mentioned in section 3.2. Another
approach was proposed in [10], where the objective was to detect the presence
or absence of a vehicle at a freeway exit at a given time. In this case, the
problem was framed as a binary classification problem and addressed using
a Gradient Tree Boosting algorithm.

We propose to approach the application as a regression problem. Our
objective is to estimate the number of vehicles crossed on a viaduct at a
given time. The following sections describe how our masked autoencoder
introduced in chapter 4 can be used to address a regression problem. Figure
6.1 illustrates the proposed pipeline explained in the following sections.
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Figure 6.1. Proposed traffic load estimation pipeline.

The TLE pipeline starts by dividing the raw dataset into overlapping windows,
which are used to generate spectrograms. The spectrograms dataset is then split

into pre-training and fine-tuning sets and normalized. The pre-training set is
utilized to pre-train the autoencoder, resulting in a pre-trained autoencoder.

After completing the pre-training phase, the fine-tuning process commences by
preprocessing the dataset from the scale with labels. The labels are assigned to the

fine-tuning set, resulting in a labeled dataset, which is divided into training,
validation, and test sets. Finally, the pre-trained autoencoder is modified by

discarding the decoder and attaching a neural network on top of the encoder. This
new architecture is further trained with the labeled dataset in the fine-tuning

phase.

6.1 Pre-training and Fine-tuning
In order to address this regression problem with our masked autoencoder,
the training process must be divided into two stages, as follows:

• Pre-training: The masked autoencoder is trained in a self-supervised
way to learn latent representations from the SHM vibration data, as
described in chapter 4.

• Fine-tuning: Once the pre-training phase is finished, the architecture of
the autoencoder is modified to make it compatible with the new task.
First, the decoder is discarded since in the new task the reconstruction
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of the spectrograms is not necessary. Second, an MLP is added on
top of the encoder to predict the number of vehicles. Finally, the new
architecture is trained again in a supervised way.

This approach is widely used given it allows to train models on a large
general dataset to learn general features of the data, to then further train
the model again in a more specific task, with a smaller dataset to learn more
specific features. This approach has two main advantages. First, it allows
to adapt deep architectures like imageMAE, to achieve state of art results
on tasks with a small dataset with labels like ImageNet1K [19]. Finally,
once a model is pre-trained on a general dataset, it is possible to fine-tune
it quickly on different tasks given it is not necessary to start from scratch,
saving training time and computational resources. This training process
has been applied in previous applications of masked autoencoders, and it
has been proven to enhance the performance of models in tasks like image
classification [19], audio recognition [20], and text classification [9].

6.2 Dataset composition
In this application, the dataset is composed of two data sources as described
below:

• SHM sensors data: The SHM sensor data was collected using a network
of sensors installed on a real viaduct located in Italy, similar to the
dataset described in section 5.1.1.

• Log of vehicles: It was collected by a scale located 600m before the
viaduct and registered the time, weight, and speed of all the vehicles
passing the viaduct.

Refer to Table 6.1 for an example of the data generated by the scale. The
dataset is composed of the following features: ID, which is a consecutive
identification of the vehicles crossing the scale; Time, which saves the time
in which the vehicles cross the scale with a precision of 1 minute; Weight,
which saves the weight of each vehicle in kilograms; and Speed, which saves
the speed of the vehicles crossing the scale expressed in Kilometers per hour
(Km/H).

Both datasets were collected synchronously in a continued registration of
48h. However, during the pre-training phase, only non-labeled data will be
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passed to the autoencoder, while during fine-tuning the model will be trained
with labeled data. The division of the dataset will be as follows:

• Pre-training set: 24h of SHM sensor data without labels.

• Fine-tuning train set: 12h of SHM sensor data with labels.

• Fine-tuning evaluation set: 6h of SHM sensor data with labels.

• Fine-tuning test set: 6h of SHM sensor data with labels.

Notice that even with if we have the availability of labels for all the SHM
vibration data, our objective is to demonstrate that in this context a pre-
training phase on a large non-labeled dataset improves the performance of
the regression model trained on a smaller dataset.

Id StartTime VehicleLength GrossWeight Velocity
1 12/12/2021 23:59 4.43 m 1570 Kg 125 Km/h
2 12/12/2021 23:59 4.18 m 1625 Kg 113 Km/h
3 12/12/2021 23:57 5.03 m 885 Kg 96 Km/h
... ... ... ... ...

99 12/12/2021 23:48 16.78 m 27780 Kg 77 Km/h
100 12/12/2021 23:48 4.55 m 1400 Kg 120 Km/h

Table 6.1. Example of label data generated by the scale.

6.3 Data preprocessing

6.3.1 Signal preprocessing
Following the process described in section 4.1.2, and similar to the prepro-
cessing in section 5.1.2, the dataset was divided into overlapped windows of
length Twin = 60s and stride Tstride = 15s.

The resulting windows had a dimension of (6000,1), and were transformed
into PSD spectrograms using a frameLenght = 198 samples and a stepLenght =
10 samples. The resulting spectrograms are 2D arrays with a shape of (100,
100). Figure 5.3B shows some examples of the obtained spectrograms.
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6.3.2 Labels generation

As mentioned in section 6.2, the labels in this dataset are obtained from a
scale located 600m before the first sensor. Due to the distance between the
scale and the sensors, and the random nature of vehicle crossings, there is
no direct way to link the records in the scale with the perturbances detected
by each sensor. To associate the labels with the corresponding disturbances
in the sensor signals, a matching procedure was developed. Our pipeline
consists of four stages, which are described in the following sections.

Feature extraction and threshold definition

Starting from the assumption that when a vehicle crosses the viaduct the
variability in the measures of the sensors increases, our pipeline relies on
analyzing the variance in the sensor records. We begin by calculating a
moving variance window, V arwin, of 1 second for each record. Figure 6.2
shows how V arwin amplifies the perturbations in the signal, making them
easier to identify and isolate.

To isolate the white noise in V arwin and identify the pieces of a signal
corresponding to a disturbance, we use the interquartile statistical rule. This
involves calculating the first and third quartiles, Q1 and Q3, and then deter-
mining the interquartile range, IQR, as IQR = Q3 − Q1. We then calculate
the lower and upper bounds as lwb = Q1−1.5∗IQR and upb = Q1−1.5∗IQR,
respectively, and discard all records outside these bounds. Once we have iso-
lated V arwin to the white noise, we calculate its mean, miu(V arwin), and
standard deviation, std(V arwin). Finally, we calculate a threshold for each
sensor using the following equation: th = miu(V arwin) + 3.5 ∗ std(V arwin).
This threshold will be useful in the next section for identifying vehicles.

Vehicles identification

For each sensor, we filter V arwin with the previously calculated threshold for
each sensor. The goal is to identify groups of consecutive records that exceed
the threshold. If a group has a duration greater than a given threshold Tmin,
we consider it a possible vehicle. For each possible vehicle, we extract the
following information: the energy of the signal, which we calculate using
equation 3.1, and the start and end time of the perturbation.
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Figure 6.2. Example of a signal, variance amplification plot, and
resulting spectrogram.

A) The illustration depicts a signal generated by a vehicle crossing the viaduct. B)
shows the corresponding variance plot from the signal. The variance plot is useful
because it allows amplifying the disturbance generated by the vehicle making it
easier to isolate with a threshold. C) The corresponding signal spectrogram.

Labels preprocessing

To accurately match the labels with the perturbations in the sensors’ records,
we need to estimate the time at which each registered vehicle will cross each
sensor. Since each vehicle detected by the scale has a precision of 60 seconds,
we need to extract additional features to estimate the exact time of the
crossing. To accomplish this, we extract the following features:

A Minimum time: It is calculated as the timestamp plus the time to go
from the scale to the sensor according to the distance between them,
and the speed of the vehicle. We subtract 5 seconds to account for cases
when the vehicle accelerates on the road.

B Maximum time: It is calculated as the minimum time plus 60 seconds
of uncertainty, plus 30 seconds to account for cases when the vehicle
decelerates on the road.

By extracting these features, we can estimate the time range during which
each vehicle will cross each sensor. This information is crucial for accu-
rately pairing the labels with the corresponding perturbations in the sensors’
records.
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Labels assignation

The labels are matched with the signal perturbations captured by the sen-
sors through the following procedure. First, the labels are sorted from the
heaviest to the lightest. Then, for each label, a list of candidate groups is
generated. The candidates are the groups that overlap with the minimum
and maximum time extracted from the label’s preprocessing stage. Finally,
from the candidates, the one with the highest energy is assigned to the label.

6.4 Masked-autoencoder settings

6.4.1 Patch embeddings
The 2D spectrograms are divided into non-overlapped regular grid patches
of patch size P = 5, generating a total of 400 patches.

6.4.2 Masking
Using a masking rate Mrate = 0.8, in total 320 patches are randomly masked,
and only 80 patches are visible for the autoencoder.

6.4.3 Autoencoder architecture
During pre-training, the autoencoder is composed of three layers in the en-
coder and four layers in the decoder. During fine-tuning, the decoder is
discarded, and a neural network is attached on top of the encoder. The
following architectures for the neural network were tested:

• Linear projection on the cls token: A linear projection layer from the
classification token in the encoder, to the regression output. (768, 1).

• One hidden layer on the cls token: A multi-layer perceptron with an
input layer of 768 neurons, a hidden layer of 384 neurons, and an output
layer of one neuron.

• Linear projection on the encoder output: A linear projection layer from
the complete encoder output to the regression output. (61440, 1).
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6 – Traffic load estimation with Masked Autoencoders

6.4.4 Autoencoder objective
During pre-training the objective of our autoencoder is the MSE 4.2 between
the predicted and input spectrogram, averaged over the masked patches.
During fine-tuning, the objective is the MSE 4.2 between the predicted num-
ber of vehicles contained in the signal window and the ground truth.
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Chapter 7

Experimental Results

This section presents the experimental results of the masked autoencoder on
the tasks discussed in previous chapters. For the anomaly detection task
introduced in chapter 5, first, we determined the optimal architecture for the
autoencoder, we compared three different architectures with varying num-
bers of layers in the encoder and decoder. We then trained each architecture
and evaluated their performance in three different areas: reconstruction ac-
curacy, computational resources required during training, and inference time.
Based on these evaluations, we selected the architecture that achieved the
lowest reconstruction error while also minimizing training and inference time.
Subsequently, we proceeded to determine the best aggregation strategy, as
discussed in Section 5.3. We experimented with different window sizes and
evaluated the accuracy of each aggregation method while also minimizing
detection delay. Once we had identified the optimal aggregation strategy,
we compared the performance of our best model with the state-of-the-art
methodology described in Section 3.1.

For the TLE task introduced in chapter 6, we first pre-trained a base au-
toencoder architecture. Next, we discarded the decoder and proposed three
neural networks to be attached to the encoder during the fine-tuning phase.
We selected the architecture that minimized the MSE error in the regres-
sion task. Finally, we replicated the state-of-the-art methodology introduced
in section 3.2, and compared the performances of our best model with it.
Additionally, we studied the impact of the pre-training phase on the final
performance of the masked autoencoder.

The experiments were conducted using Python 3.8 and several libraries,
including Pandas, Numpy, and Scipy for data preprocessing. The masked
autoencoder was implemented using the PyTorch framework and the Pytorch
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Image Models (timm) library. All the experiments were performed using a
single GPU nVidia Tesla V100 32GB.

7.1 Results on Anomaly Detection

7.1.1 Autoencoder architecture
Choosing the right size for a model is crucial for several reasons. First, it
helps to avoid overfitting. If a model has too many parameters relative to
the complexity of the task, it may fit the training data too closely, resulting
in worse performance on the test data. Second, it helps to conserve compu-
tational resources by avoiding the unnecessary use of excessive parameters.
Finally, choosing the right size also allows embedding the model on edge de-
vices that typically have limited computational power and storage capacity.

Previous applications of the masked autoencoder on larger, noisier, and
more diverse datasets have suggested an optimal size of 12 layers in the
encoder and 16 layers in the decoder [19][20]. However, we need to determine
the optimal size of the autoencoder for this specific application.

We trained the architectures proposed in Table 5.1 according to the fol-
lowing training details.

Implementation details

As mentioned in Section 5.1.1, the available dataset comprises fifteen days
of data, with four days before the intervention and eleven days after it.
The dataset was partitioned considering its temporal dependency to avoid
incorporating time-correlated data into different partitions.

The training set comprises 500K spectrograms representing normal data
obtained from the first four days after the intervention. The validation set
consists of 400K spectrograms representing normal data obtained from the
following three days after the intervention. Finally, the test set is composed
of three days after the intervention representing normal data, and three days
before the intervention representing anomaly data. The test set includes a to-
tal of 400k spectrograms, with 200k normal spectrograms and 200k anomaly
spectrograms.

Each architecture was trained for 200 epochs using the training set as
described previously. The weights were initialized using the Xavier uniform
initialization method [16], as discussed in section 4.3.1. The MSE between
the predicted spectrograms and the original spectrograms was used as the
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loss function during the training process. Finally, after 200 epochs, the per-
formance of each architecture was evaluated on the validation set using MSE
as the evaluation metric.

7.1.2 Pre-training results
Table 5.1 presents the results of our experiments on three different architec-
tures. The large architecture achieved the best performance, with the lowest
reconstruction error of 0.000076. However, it required a significant amount
of computational resources, with a training time of 300 hours. and a higher
inference time.

Architecture Training
time (Hours)

Inference
time (Seconds)

Reconstruction
error (MSE)

Small 51 0.16 0.000109
Medium 100 0.69 0.000095
Large 300 2.10 0.000076

Table 7.1. Performance, training time and inference time comparison
for the tested architectures.

Although the medium and large architectures had better performance, we
decided to continue our analysis with the small architecture. This decision
was based on the fact that the small architecture had a similar reconstruction
error to the medium architecture, but with a significantly lower training and
inference time. Using the small architecture, we can make a fair comparison
with state-of-the-art methodologies presented in section 3.1, which are based
on classical machine learning models.

7.1.3 Anomaly detection pipeline
As described in Section 5.3, our proposed anomaly detection pipeline com-
prises two stages. In the first stage, we aggregate the reconstruction errors,
while in the second stage, we determine a threshold based on the aggregated
error. We propose two methods for aggregating the reconstruction error: ag-
gregation by the number of vehicles and aggregation by time windows. We
calculate thresholds for each aggregation type and size using the following
equation: th = µ + n × σ, where µ and σ are dependent on the aggregated
errors, and n is a hyperparameter that needs to be defined. We tested three
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different values for n as follows: n = 2.5 with a statistical probability of
0.62% for obtaining false positive errors, n = 3 with a statistical probability
of 0.13% for obtaining false positive errors, and n = 3.5 with a statistical
probability of 0.02% for obtaining false positive errors. We then select the ag-
gregation method and threshold that maximize the accuracy of the anomaly
detection pipeline.

Figure 7.1. Results aggregation by the number of vehicles for each threshold.

The plots correspond to: A) n = 2.5, B) n = 3, C) n = 3.5

• Aggregation by the number of vehicles: We evaluated the performance
of our anomaly detection system using aggregation windows of different
sizes, ranging from 1 to 500 consecutive reconstruction errors. For each
aggregation window size, we calculated three different thresholds using
the values of n (2.5, 3, and 3.5).
Figure 7.1 presents the performance of our system for the different sce-
narios. Our results show that aggregation windows greater than 200
vehicles achieve a sensitivity of approximately 1, indicating that the
system can accurately identify anomaly data for any tested threshold.
However, using larger aggregation windows decreases the specificity of
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Method Aggregation
size

Threshold
(n) Accuracy Sensitivity Specificity

MAE 100
Vehicles 3 99.4% 99.8% 98.65%

MAE 1
Minute 3.5 98.8%, 99.7% 97.4%

MAE 60
Minutes 3.5 98.7%, 1% 96.8%

PCA [29] 60
Minutes 3 98.8% 97.33% 100%

Table 7.2. Comparison between the best-performing models on the
anomaly detection task.

the model, making it harder to identify normal windows and increasing
the number of false positives detections.
Based on our experiments, the best-performing model was obtained us-
ing an aggregation window size of 200 vehicles and a threshold defined
as th = µ + 3.5 × σ. This combination achieved an accuracy of 99.6%,
with a sensitivity and specificity of 99.9% and 99.2%, respectively.

• Aggregation by time: To compare our results with those of [6], we tested
aggregation windows ranging from 1 minute to 4 hours and calculated
three different thresholds for each window size, using possible values of
n equal to 2.5, 3, and 3.5. Figure 7.2 illustrates the model’s performance
in different scenarios.
Overall, the model achieved a sensitivity near or equal to 1 for all cases,
indicating its ability to identify anomalies. However, the specificity of
the model did not improve as the aggregation window increased in size
for any of the possible thresholds. Instead, the specificity decreased,
reaching a low of 62% for aggregation windows of 4 hours. Additionally,
higher values for the threshold resulted in better performance.
The best-performing model used an aggregation window length of 60
seconds and a threshold defined as th = µ+3.5×σ. This model achieved
an accuracy of 98.8%, with a sensitivity of 99.7% and a specificity of
97.4%.
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Figure 7.2. Results aggregation by time for each threshold.

The plots correspond to: A) n = 2.5, B) n = 3, C) n = 3.5

Table 7.2 summarizes the information of our best-performing models for
each aggregation method, including the results reported on the state-of-the-
art methodology introduced in Section 3.1. Our proposed methods outper-
form the state-of-the-art methodology based on the PCA algorithm in terms
of accuracy and sensitivity, demonstrating an increased capability for iden-
tifying anomalies. Furthermore, when aggregating by time, our delay in
detecting anomalies is only 1 minute, compared to the PCA-based method’s
delay of 1 hour. This improvement is significant in ensuring the system’s
reliability in real-time applications.

7.2 Results on traffic load estimation
7.2.1 Label generation
The quality of a model’s performance is directly affected by the quality of
the dataset. In this application, the dataset’s quality depends on the accu-
rate pairing between the scale measurements and the disturbances detected
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by the acceleration sensors on the viaduct. As discussed in section 6.3.2,
there is no direct way to relate the measurements of both data sources, and
the randomness in the behavior of the vehicles and the noise captured by
the sensors make it challenging to generate accurate labels for the vibration
data. Several system characteristics affect label generation, including the
large distance between some sensors and the scale (ranging from 600 meters
to 2.5 kilometers), the variable speed of vehicles on the road between the
scale and sensors, the time granularity of the scale records, and the natural
noise affecting each sensor.

Applying the methodology proposed in section 6.3.2, we were able to pair
54% of the scale records with disturbances detected by each sensor. While
this result is reasonable given the characteristics of each dataset, it also means
that 46% of disturbances remain present in the sensor measurements but were
not properly identified. This makes our dataset noisy and challenging for any
machine learning model to learn from.

7.2.2 Pre-training phase
We first trained the masked autoencoder architecture, introduced in section
6.4.3, on a reconstruction task. The training process consisted of 200 epochs
on 283k training examples. The objective in this phase was to obtain a model
that learned the general dependencies and characteristics of the dataset. The
trained model was then further trained in a fine-tuning phase to address the
TLE tasks. In the following sections, we introduce the results of the fine-
tuning phase and study the impact of the pre-training phase on the model’s
performance in the TLE task.

7.2.3 Fine-tuning phase
In this phase, the pre-trained autoencoder is modified by discarding the de-
coder and attaching a neural network on top of the encoder for the regression
task. In section 6.4.3, we introduce three different architectures for the neu-
ral network to be tested in this phase. Each architecture is trained for 200
epochs on 50K training samples to predict the load of the bridge at a given
time. Table 7.4 summarizes the performance of each tested architecture.
First, we observed that models using only the output of the encoder’s CLS
token as input perform better than those using the complete output. The
best-performing architecture consists of a linear projection layer from the
encoder’s CLS token output to the output of the regression task.
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Architecture MSE MAE MAPE R2
Linear projection
on the CLS token 0.343 0.393 25.58% 0.53

One hidden layer
on the CLS token 0.351 0.408 26.05% 0.53

Linear projection
on the encoder output 0.350 0.412 26.26% 0.53

Table 7.3. Performance of the proposed architectures in the fine-tuning phase.

7.2.4 Comparison with state of art techniques
In section 3.2, we introduce [6] where the TLE problem is addressed using
Structural Health Monitoring (SHM) data from a viaduct in Italy. Given
the similarities with our context, this work serves as a baseline for compar-
ing the performance of our method. However, a direct comparison of our
results with the ones reported in [6] would be unfair due to differences in
the labeling process. Specifically, on [6] used a 30-minute video recording
to semi-automatically generate labels for the data recorded by the sensors,
resulting in a high-quality dataset for their proposed methodology.

To make a fair comparison between the two methodologies, we attempted
to apply our proposed method to the dataset used in [6]. However, this
dataset was not available. Therefore, to compare the two methods, we repli-
cated the methodology proposed in [6], which was introduced in section 3.2.
We then used the replicated model on our dataset to have a direct compar-
ison between the methodologies. The process to replicate the methodology
was developed as follows.

• Since [6] used only one group of sensors, we selected the group of sensors
nearest to the scale for our analysis.

• From the raw vibration signal, we generated a dataset by extracting
statistical features for the six sensors composing the selected group, as
described in table 3.1. In total, the dataset is composed of 216 features.

• To select the most relevant features for our analysis, we used the correlation-
based filter method based on the F-test. The F-test is a statistical test
that compares the variance of two groups of data to determine if they are
significantly different. We tested 11 different values for the number of
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selected features, n = (5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 216), similar
to the ones used in [6].

• To train our regression models, we used the optimal hyperparameters
reported in [6]. We trained five of the six regression algorithms proposed
in [6] using the hyperparameters reported in Table 3.2.

Figure 7.3. Results aggregation by the number of vehicles for each threshold.

Figure 7.3 illustrates the performance of each model trained with each
possible number of features, as evaluated by mean squared error (MSE) and
mean absolute percentual error (MAPE). In contrast to the results reported
in [6], where support vector regression (SVR) was found to be the best algo-
rithm, our results show that the best-performing models are based on random
forest (RF) and k-nearest neighbors regression (KNR).

In general, each model achieves the best results when trained with between
25 and 75 features. The best-performing model in our study is an RF model
with an MSE of 0.661.

Table 7.4 summarizes the performance of each trained model, as evaluated
by Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Ab-
solute Percentage Error (MAPE). Our methodology outperforms the state-
of-the-art methods by a wide margin, with an improvement of over 90% in
terms of MAE on our dataset, compared to the best-performing state-of-the-
art methodology based on RF algorithm.
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Architecture MSE MAE MAPE R2 NumFeatures
MAE 0.343 0.393 25.58% 0.53 NA
LR 1.123 0.759 69.68% -0.01 75
RF 0.661 0.539 49.47% 0.40 75
KNR 0.767 0.596 54.74% 0.30 20
MLP 0.864 0.614 56.34% 0.21 50
SVR 1.085 0.702 64.43% 0.01 25

Table 7.4. Comparison between the performance of the models proposed on
[6] and the proposed Masked Autoencoder MAE.

Figure 7.4. Performance Pre-trained Vs No Pre-trained model for an in-
creasing number of training epochs.

7.2.5 Is Pre-training enhancing performance?

On [19][20], it was demonstrated that incorporating a self-supervised pre-
training phase can be beneficial to increase the performance of models on
downstream tasks such as image classification and audio recognition. In
this section, we aim to investigate whether a similar pre-training phase can
improve the performance of models on the TLE task.

To investigate the impact of the pre-training phase on model performance,
we take the best architecture identified in section 7.2.3 and train this model
from scratch without using pre-training. Specifically, we skip the pre-training
phase and directly fine-tune the model.

The model was trained for 200 epochs on 50K labeled data points. Figure
7.4 illustrates the variation in the training performance of the model with
respect to the number of training epochs. Meanwhile, Figure 7.5 illustrates
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Figure 7.5. Percentual performance improvement of the pre-trained model
over the no pre-trained for an increasing number of training epochs.

Architecture MSE MAE MAPE R2
Pre-trained 0.343 0.393 25.58% 0.53
No pre-trained 0.429 0.480 30.60% 0.42
% improvement 20% 18.1% 16.4% 20.8%

Table 7.5. Comparison between the best-performing pre-trained Vs
no pre-trained models

the percentage difference in the performance of the pre-trained and non-pre-
trained models across different numbers of training epochs. In general, the
pre-trained model outperforms the non-pre-trained model by 15% to 30%
in terms of the chosen performance metric. Specifically, at the end of the
200 training epochs, the pre-trained model performs 17% better than the
non-pre-trained model according to the MSE metric.

Table 7.5, summarizes the metrics of the best-performing models for the
pre-trained and No pre-trained models. In conclusion, the pre-trained model
improves the performance by 20% according to the MSE error.
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Chapter 8

Conclusions and Future
Work

In this thesis, we propose the use of Masked Autoencoders for SHM tasks.
Specifically, we focus on addressing two key tasks in SHM: anomaly detec-
tion and traffic load estimation. We achieve this by leveraging self-supervised
learning techniques on acceleration data collected from an SHM sensor net-
work

For the anomaly detection task, we trained the autoencoder using a re-
construction approach that exclusively used normal data. We then used
the aggregate consecutive reconstruction errors to identify anomaly data by
applying a statistical threshold. To optimize the methodology, we tested
different configurations of autoencoder architecture, aggregation windows,
window size, and statistical threshold parameters. Based on the results, we
chose an autoencoder architecture consisting of three transformer layers in
the encoder and four in the decoder as the base model. The best-performing
configuration was determined to be a window size of 100 vehicles and a sta-
tistical threshold defined as th = mu+3std. Our methodology outperformed
state-of-the-art methods with an accuracy of 99.4%, compared to the 98.8%
accuracy reported in previous research. Moreover, our methodology achieved
quicker anomaly detection, with detection times of 1 minute compared to the
previous method’s detection time of 1 hour, while maintaining the same level
of accuracy.

For the traffic load estimation task, we trained the autoencoder in two
phases. In the first phase, we pre-trained the autoencoder on a self-supervised
reconstruction task to leverage non-labeled data. In the second phase, we
fine-tuned the autoencoder by attaching a neural network to the top of the
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encoder, and trained it using a labeled dataset to predict the number of
vehicles in the viaduct. We tested various architectures for the attached
neural network and determined that the best-performing architecture was a
linear projection layer attached to the top of the encoder CLS token.

To evaluate our methodology, we compared it with state-of-the-art meth-
ods by applying them to our dataset. We found that our methodology sig-
nificantly outperformed state-of-the-art methods, achieving a MAPE and
R-squared equal to 25.58% and 0.53, respectively. In contrast, the best-
performing state-of-the-art method based on RF achieved a MAPE and R2
equal to 49.47% and 0.40. Finally, we demonstrated that pre-training the
autoencoder using a self-supervised approach with non-labeled data led to a
20% improvement in the model’s performance, as measured by the MSE.

Future work includes improving the label generation phase for the TLE
task to enhance the quality of the labeled dataset. Another future work is
the deployment of the developed methodology on edge devices in the viaduct
for real-time traffic monitoring.
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