
POLITECNICO DI TORINO
INSTITUT EURECOM

Double Master Degree in Computer Engineering and Data Science

Experimental Quantum Natural Lan-
guage Processing for the Travel Industry

Supervisors
Prof. Bartolomeo Montrucchio1

Prof. Marios Kountouris2

Dr. Alix Lhéritier3

Nicolas Bondoux3

Dr. Mourad Boudia3

Candidate
Massimiliano Pronesti

Academic Year 2022 - 2023

1Politecnico di Torino
2EURECOM

3Amadeus IT Group

To my family, girlfriend, teachers and friends,
who taught me to achieve my dreams through patience and commitment.

Abstract

In the last decade, Natural Language Processing (NLP) has made giant leaps in
treating textual data, by means of large deep neural networks capable of addressing
complex tasks such as machine translation, language generation and text summa-
rization. These models are based on the principle of distributionality — a word’s
meaning is defined by the context in which it appears — and learn a represen-
tation of words in a vector space. This implies training the model on a massive
amount of data to learn the interdependencies among words. In addition, despite
the successful achievements, the general problem of natural language understanding
is still unsolved as neural network models lack of explainability, which raises further
concerns when we entrust our decisions to their predictions in critical domains.

Another line of research, sparked by linguists such as N. Chomsky and J. Lam-
bek and culminated in the distributional compositional categorical (DisCoCat)
model of Coecke, Clark and Sadradeh tries to address natural language under-
standing from a different perspective, introducing a simple, yet powerful, analogy
between computational linguistics and quantum theory: the grammatical structure
of text and sentences connects the meaning of words in the same way that entan-
glement connects the states of a quantum system. This language-to-qubit analogy
is mathematically formalized using category theory.

Starting from these foundations, this thesis work engineers the process of using
quantum computers for natural language processing on real-world data related to
the travel industry, assessing at the same time the expressiveness of the approach
and the maturity of the technology it is destined to, providing experiments on and
benchmarks of real world quantum hardware and showing that noisy intermediate-
scale quantum (NISQ) devices are Quantum-NLP-friendly. Lastly, we provide com-
parisons with popular state-of-the-art models and we show interesting advantages
in terms of model size.

i

Résumé

Au cours de la dernière décennie, le traitement du langage naturel (NLP) a fait
progresser à pas de géant le traitement des données textuelles, au moyen d’immenses
réseaux de neurones profonds capables de traiter des tâches complexes telles que la
traduction automatique, la génération de texte et le résumé de texte. Ces modèles
sont basés sur le principe de distributionnalité — le sens d’un mot est défini par le
contexte dans lequel il apparaît — et apprennent une représentation des mots dans
un espace vectoriel. Cela implique d’entraîner le modèle sur une quantité massive
de données pour apprendre les interdépendances entre les mots. De plus, malgré les
succès, le problème général de la compréhension du langage naturel n’est toujours
pas résolu car les modèles de réseaux de neurones manquent d’explicabilité, ce qui
est problématique lorsque leurs prédictions sont utilisées pour prendre des décisions
dans des domaines critiques.

Une autre ligne de recherche, initiée par des linguistes tels que N. Chomsky et J.
Lambek et culminant dans le modèle catégorique de composition distributionnelle
(DisCoCat) de Coecke, Clark et Sadradeh, tente d’aborder la compréhension du
langage naturel d’un point de vue différent, en introduisant une analogie simple,
mais puissante, entre la linguistique computationnelle et la théorie quantique : la
structure grammaticale du texte et des phrases relie le sens des mots de la même
manière que l’intrication relie les états d’un système quantique. Cette analogie
langage-qubit est formalisée mathématiquement en utilisant la théorie de catégories.

Partant de ces fondements, ce travail de thèse décrit le processus d’utilisation
des ordinateurs quantiques pour le traitement du langage naturel, sur des don-
nées du monde réel liées à l’industrie du voyage, évaluant à la fois l’expressivité de
l’approche et la maturité de la technologie à laquelle elle est destinée, fournissant
des expériences et des références sur le matériel quantique du monde réel et mon-
trant que les dispositifs quantiques à échelle intermédiaire bruyants (NISQ) sont
compatibles avec le traitement quantique du langage naturel (QNLP). Enfin, nous
fournissons des comparaisons avec les modèles de l’état de l’art les plus répandus
et nous montrons des avantages intéressants en termes de taille de modèle.

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Company overview and business sector 1

1.1.1 Team presentation . 2
1.2 Thesis objective . 3
1.3 Why Quantum Computers for NLP ? 4
1.4 Isn’t it too early ? . 6

2 Background 9
2.1 Quantum Computing . 9

2.1.1 Qubits . 9
2.1.2 State Evolution . 12
2.1.3 Measurement . 13
2.1.4 Quantum Circuits . 15
2.1.5 Universal Gate Sets . 18
2.1.6 Parameterized Quantum Circuits 19

2.2 Category Theory . 20
2.2.1 Categories . 20
2.2.2 Monoidal categories . 20
2.2.3 Rigid Monoidal Categories 21
2.2.4 Pregroup Grammars . 22
2.2.5 Monoidal Functors . 23

3 Quantum Natural Language Processing 25
3.1 A Quantum model for Natural Language 25
3.2 The QNLP pipeline . 27

3.2.1 Parsing . 28
3.2.2 Rewriting . 29
3.2.3 Parameterization . 30

iii

3.2.4 Optimization . 32
3.2.5 Model-level view . 34

3.3 Lambeq . 35
3.3.1 Quantum Simulations on Classical Hardware 36
3.3.2 Run on Real Quantum Hardware 37
3.3.3 Lambeq compared to quantum machine learning 37

3.4 Quantum native and quantum advantage 38

4 Customer Feedback Analysis 41
4.1 Sentiment Analysis on Twitter Airline Dataset 41

4.1.1 Modeling the problem . 41
4.1.2 Exact simulation . 45
4.1.3 Run on IBM Oslo and Nairobi via IBM Cloud 46

4.2 Hotel Reviews . 49

5 Passenger Intent Recognition on Chatbot Queries 53
5.1 Modeling the problem . 53
5.2 Exact simulation . 54
5.3 Run on IBM Oslo and IBM Nairobi on IBM Cloud 55
5.4 Run on IonQ QPU via Microsoft Azure 58

6 Conclusion and Future Work 61

Bibliography 65

iv

List of Figures

1.1 Amadeus world presence as the leading company in the travel industry 1
1.2 Amadeus business model . 2
1.3 Amadeus Applied Research and Technology team activity 3
1.4 Timeline of modern language models growth in terms of size (number

of parameters). 5

2.1 Bloch sphere representation of a qubit’s state 10
2.2 Quantum circuit for creating and measuring a Bell state |Φ+⟩. . . . 16
2.3 A quantum circuit consisting of 8 gates with a depth of 4. 17
2.4 Copying a computational basis state using CNOT where j ∈ {0, 1}. 18
2.5 Decomposition of the Toffoli gate using CNOT, H, S and T gates. . 18
2.6 Scheme of a variational quantum circuit for supervised learning . . 19
2.7 Cumulative diagram for 3 morphism 20
2.8 Caps, Cups and snake equations . 21

3.1 Diagrammatic representation of three unentangled states associated
to the sentence “passenger books flight” 26

3.2 Non-annotated string diagram associated to the sentence “passenger
books flight” . 27

3.3 The general QNLP pipeline . 28
3.4 DisCoCat string diagram for the sentence service is very good using

Bobcat parser . 28
3.5 String diagram for the sentence “service is very good” using Spiders

Reader . 29
3.6 Stairs and Cups parsing for the sentence “service is very good” . . . 29
3.7 Rewritten string diagram using the auxiliary rewriting rule 30
3.8 Normalized rewritten string diagram using the auxiliary rewriting

rule . 30
3.9 Discopy circuit produced after parameterization via IQP Ansatz . . 31
3.10 Qiskit circuit produced after parameterization via IQP Ansatz . . . 32
3.11 Relationship between the String diagram and the parameterized quan-

tum circuit . 33

v

3.12 Relationship between the String diagram and the parameterized quan-
tum circuit for spiders reader . 33

3.13 Hierarchy of experimental setups in lambeq 36
3.14 High-level comparison of “traditional” Quantum Machine Learning

vs Lambeq . 38

4.1 Wordcloud visualization of the dataset 42
4.2 High-level model for accessing a quantum processing unit (QPU) on

IBM cloud . 47
4.3 IBM Oslo and Nairobi map views 47
4.4 Results of the quantum computation on IBM Oslo and Nairobi com-

pared to the exact and shot-based simulations in terms of conver-
gence and accuracy(averaging 5 runs). 48

4.5 Quantum and classical models in terms of performance and number
of parameters . 50

5.1 F1 score, ROC AUC score and cost functions produced by the exact
simulation . 55

5.2 Results of the quantum computation on IBM Oslo and Nairobi com-
pared to the exact and shot-based simulations in terms of conver-
gence, accuracy, ROC-AUC and F1 score (averaging 5 runs). 57

5.3 High-level model for accessing a quantum processing unit (QPU) on
Microsoft Azure . 58

5.4 Results of the Ionq QPU on Microsoft Azure after 5 epochs (on
a single run) on the training set, compared with IBM Oslo, IBM
Nairobi and Qiskit Aer. 60

vi

List of Tables

2.1 Frequently used quantum gates with their circuit symbol and matrix
representation. 16

4.1 Hyperparameter tuning of the exact simulation on the Twitter US
Airlines dataset . 45

4.2 Comparison of classical models with the Quantum architecture, in
terms of accuracy and number of parameters (averaging 20 runs). . 45

4.3 Training and inference time of IBM Oslo and IBM Nairobi compared
to the exact and the shot-based simulations on the Twitter US Air-
lines use case (averaging 5 runs). 49

4.4 Comparison of classical models with the Quantum one using 2 pars-
ing approaches, in terms of accuracy and number of parameters (av-
eraging 20 runs) . 51

5.1 ATIS dataset overview with example entries and distribution 54
5.2 Hyperparameter tuning of the shot-based simulation using t|ket⟩

compiler and Qiskit Aer . 56

vii

Chapter 1

Introduction

1.1 Company overview and business sector

Amadeus IT Group is the world leading Global Distribution System (GDS) com-
pany operating in the travel and tourism industries and one of the world’s leading
software companies. It was established in 1987 as an alliance between Air France,
Lufthansa, Iberia and Scandinavian Airline System and counts over 16.000 employ-
ees worldwide, with the main product development site located in Sophia Antipolis,
France and the corporate headquarter in Madrid, Spain. At market level, Amadeus
maintains customer operations through 173 local Amadeus Commercial Organisa-
tions (ACOs) covering over 190 countries, as shown in Figure 1.1.

Figure 1.1: Amadeus world presence as the leading company in the travel industry

1

Introduction

More in details, Amadeus works within two main areas:

• as a Global Distribution System platform, offers the infrastructure for search-
ing, princing, booking, ticketing and several other processing services to differ-
ent travel providers and travel agencies through its central reservation system
(CRS)

• as an Information Technology (IT) company, provides software to automate
processes in different areas, such as inventory management, revenue man-
agement, data analysis and travel intelligence services for a wide variety of
customers, including airlines, hotels, tour operators, etc.

Among the others, the company currently provides services to 770 airlines, 132
airport operators, 1M+ hotel properties, 53 cruises, 43 car rental companies, 128
ground handlers and 90 rail operators.

Figure 1.2: Amadeus business model

1.1.1 Team presentation

This thesis work has been carried out as part of the Applied Research and Tech-
nology Team. The team, whose acronym within the organization is ART, does
applied and exploratory research to enable new applications and improve current
products throughout Amadeus, specifically in the fields of Artificial Intelligence,
Data Science and Emerging Technologies. This research is usually promoted by
publishing in top journals and conferences and most of the research work done
within the team is eventually put in production as part of the company’s services
pipeline or submitted as patent. Specifically, the applied side of the research work
carried out within the team is use case driven and aims at solving specific problems
related to company needs or customer’s ones, while the exploratory branch has the

2

1.2 – Thesis objective

long term goal to make the company always on track on the technological novelties
and consider upgrading existing solutions to more modern alternatives. This thesis
work belongs to the latter branch.

Figure 1.3: Amadeus Applied Research and Technology team activity

Moreover, the research work of the team is further boosted by active collaborations
with Academia, including the Massachusetts Institute of Technology (MIT), Eure-
com, the University of Côte d’Azur and Inria through internships, industrial PhDs
and shared research projects.

1.2 Thesis objective
The purpose of this thesis is to explore quantum models for Natural Language
Processing — with particular attention to Amadeus business and use cases — and
to compare them with existing classical models such as state-of-the-art transformer-
based models and recurrent neural networks approaches. In addition, this work aims
at evaluating the capabilities of real quantum devices both in terms of performances
and speed on tasks close to real world problems, in order to get hands-on experience
on this technology and assess how far or close we are from industrial production-
oriented applications. In doing so, we also want to highlight the quality of different
platforms offered by quantum vendors and providers, such as IBM and Microsoft.
This thesis has, thereby, a data science “flavour”, related to the study and the
applications of a different approach towards NLP and a quantum computational
one, motivated by the advantages brought to this approach.

3

Introduction

We will look particularly at two use cases: a customer feedback analysis task,
described in Chapter 4 and an intent recognition one on Chatbot queries, object of
Chapter 5. In both cases, differently from the existing applied works on this topic
— which only make use of tiny, ad hoc, synthetic datasets [1, 2] —, we will use
real textual data to further boost the meaningfulness of the comparisons.

Some of the results of this work have been presented to IBM and Quantinuum
(including Cambridge Quantum) as well as at SophI.A Summit 2022 [3].

1.3 Why Quantum Computers for NLP ?

Quantum computers have, notoriously, the potential to revolutionize several branches
of science and engineering, such as artificial intelligence, cryptography and commu-
nications. However, it is a common misconception that they will be only exploited
to solve certain types of intractable problems for classical machines or to speedup
complex optimization tasks classical machines struggle with. In fact, quantum
computers implement a rather different computation paradigm than classical ma-
chines, thus there needs to be some structure that they can exploit in some unique
advantageous way: their own structure in the case of physics simulation or the
group-theoretic structure of cryptographic protocols in Shor’s algorithm [4]. This
section will argue that natural language shares a common structure with quantum
theory, in the form of two linguistic principles: compositionality and distribu-
tionality.

Starting from 2011, when Apple, Amazon and Google made their vocal assis-
tants mainstream, modern NLP models rely on deep neural networks characterized
by complex architectures based on a simple statistical concept: language models,
namely probability distributions over sequence of words. It is the case for the re-
current neural architectures, proposed by Rumelhart et al. [5] and for their more
elaborated variants, i.e. LSTM [6] and its bidirectional counterpart [7], which treat
a text as a sequence of words processed one at a time at each step to update their
internal state.

The attention mechanism, proposed by Vaswani et al. [8] in one of the most
successful papers in the history of Artificial Intelligence, provided an even more
elegant solution, allowing the network to learn the interdependencies among words,
instead of just using those coming before and after in the sequence. This was a
truly revolutionary achievement in NLP and gave birth to transformer models, the
first of whom was BERT [9]. Today transformers have replaced RNNs as the state-
of-the-art models in natural language processing and proved capable of addressing
complex tasks such as language generation and machine translation.

Despite all these successful achievements, the fundamental problem of under-
standing language —the iceberg lying under words and sentences— remains un-
solved. As a matter of fact, we can probe the way these models map inputs to

4

1.3 – Why Quantum Computers for NLP ?

outputs, but we have no interpretation for their weights, which also makes impos-
sible to address problems such as fairness and biases in the data. The problem
of explainability is further hindered by the models’ size, characterized by a huge
amount of parameters, in the order of magnitude of billions or even trillions, as
shown in Figure 1.4.

Figure 1.4: Timeline of modern language models growth in terms of size (number of
parameters).

The number of parameters goes hands in hands with the amount of data needed
to train the model. That’s why transformers are extremely data hungry and
massively expensive in terms of computational power. As a result, only big
tech companies can afford to train them for scratch, while everybody else relies on
pre-trained versions fine-tuned on the specific task they are addressing.

To assess the problem of explainability as well as to reduce the size of such
models, we need to change the way we “learn language” and move from feeding
huge amounts of data to deep networks to a different approach. The novelty is
to exploit grammar: instead of learning the interdependencies among words, we
can exploit their grammatical relations and embed them in the way we represent
the language, so that we no longer have to learn it. This is what distributional
compositional (DisCo) models do, assigning to words a representation in a vector
space and representing their interaction with tensor products ⊗.

What has this to do with quantum computing ? The analogy was pro-
posed by Clark, Coecke and Sadrzadeh [10, 11] in their distributional compositional

5

Introduction

categorical model (DisCoCat, described more thoroughly in Chapter 3) of mean-
ing, where they showed that modeling words as element of high dimensional vector
spaces and their relations as tensor products is nothing but the way we model
states in a quantum system. In addition, grammar describes how information flows
in a sentence in the very same way entanglement connects quantum states and
tells how information flows in a complex quantum system. This analogy allows us
to borrow well-established mathematical tools from quantum theory and use them
for natural language processing. Nonetheless, this would only make this approach
quantum-inspired. The quantum computational side comes from the observation
that representing the meaning of a sentence as a quantum process and resorting
to a tensor-like representation of the interactions introduce a critical drawback: an
exponential complexity in a classical machine. This is where quantum com-
puters come into play: to compute the meaning of a sentence, DisCoCat requires
computing in high dimensional tensor products spaces, which is something a quan-
tum machine is “naturally” suited for, because that’s how it inherently manipulates
information. In other words, on a quantum computer this scales linearly in the
number of qubits.

To further understand this much, we need to first describe the practical im-
plementation of this approach. In this regard, section 3.4 will provide additional
insights.

1.4 Isn’t it too early ?
Given the limited capabilities of modern quantum devices, one might claim that
trying to use them to tackle tasks related to one of the most challenging fields in
Artificial Intelligence is premature, as stated in the following anonymous journal
review:

“I am subjectively skeptical of the core assumption that the authors
are making that now is the right time to be working on applications
like NLP with quantum algorithms. It sounds like many of the current
challenges are at the core level of basic machine learning and dealing
with the esotericities of hardware and compilers.”

(Anonymous reviewer of the QNLP in practice [1] paper)

However, as we will show in the applied chapters of this thesis, this approach
can be run already on existing noisy intermediate-scale quantum (NISQ) devices.
Furthermore, the development of quantum hardware is proceeding lightning-fast
such that progressing in the formulation and development of frameworks capable
of leveraging it became crucial. In this regard, being ambitious and trying to use
a (currently) immature — but promising — technology for such effortful tasks will
eventually prove to be the key.

6

1.4 – Isn’t it too early ?

“Despite the limited capabilities of the current quantum machines, this
early work is important in helping us understand better the process,
the technicalities, and the unique nature of this new computational
paradigm. At this stage, getting more hands-on experience is crucial in
closing the gap that exists between theory and practice, and eventually
leading to a point where practical real-world QNLP applications will
become a reality”

(Lambeq [12] paper)

7

Chapter 2

Background

This chapter aims at making the reader familiar with the theoretical concepts used
throughout this work. First, an introduction to quantum computation is given, to
set a common ground on the computational paradigm and, afterwards, an overview
of category theory is provided, in order to establish a mathematical framework to
express how quantum computers can deal with natural language.

2.1 Quantum Computing

Quantum mechanics is the most complete description of the physical properties
of nature on the atomic scale. It is also at the core of quantum computation
and information. This section describes the necessary background of quantum
computing required for understanding quantum natural language processing.

2.1.1 Qubits

In classic information theory, the smallest unit of information is the bit. Quantum
information is built upon an analogous concept: the quantum bit, or qubit. Qubits
are physical objects that appear in nature on the scale of atoms and subatomic
particles. A qubit can be any two-state quantum-mechanical system such as the
spin of an electron, which can be spin up or down, or the polarization of a photon,
which can be horizontally or vertically polarized. In this thesis, qubits will be
treated as abstract mathematical objects as the physical realization of qubits is
beyond the scope of this work. The state of a qubit is denoted as follows:

|ψ⟩ = α0 |0⟩+ α1 |1⟩ . (2.1)

Quantum states are often described using Dirac notation | · ⟩, which describes a
column vector in C2n . The states {|0⟩ , |1⟩} are the computational basis states which
are defined as (1 0)T and (0 1)T respectively, and form an orthonormal basis for

9

Background

this vector space. The values α, β ∈ C are the state’s probability amplitudes,
and cannot be examined directly. This comes as a consequence of the fact that
when a qubit is measured, it collapses probabilistically to one of the basis states.
Specifically, the probability of measuring 0 is given by the absolute square |α0|2, and
the probability of measuring 1 is given by |α1|2. As these values are probabilities,
they need to be normalized, i.e. it must hold that: |α0|2 + |α1|2 = 1. Formally, a
qubit can be thought of as a unit vector in a two-dimensional Hilbert space.

A qubit differs from a classical bit in the sense it can be in a linear combination,
or superposition of states. While a bit can only be in the state 0 or 1, a qubit can
be in one of infinitely many superpositions of states. Nevertheless, differently from
classical information, the laws of quantum mechanics restrict direct access to the
probability amplitudes of a state. In fact, when measuring a qubit, it collapses to
basis state |j⟩ with probability |αj|2. For example, consider the state

|+⟩ = 1√
2
(|0⟩+ |1⟩) . (2.2)

This state has equal probability of measuring 0 and 1, as |1/
√
2|2 = 1/2. Note

that measurement changes the state of a qubit: if the state from Equation (2.2) is
measured as 1, the superposition is lost and the state becomes |1⟩.

A helpful geometric interpretation of a qubit’s state can be obtained by rewriting
Equation (2.1) as

|ψ⟩ = eiδ
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)
, (2.3)

where δ, θ, φ ∈ R. The global phase eiδ can often be ignored, as ∀δ ∈ R : |eiδ| = 1,
so it does not impact measurement outcome. Simplifying then, the state of a qubit
can be written as

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ . (2.4)

Here, θ and φ define a point on the surface of a three-dimensional sphere referred
to as the Bloch sphere, shown in Figure 2.1.

φ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 2.1: Bloch sphere representation of a qubit’s state

10

2.1 – Quantum Computing

While this visualization is limited to a single qubit, it can be a useful visual
to build intuition. For example, the |+⟩ state described in Equation (2.2) can be
thought of as being exactly between |0⟩ and |1⟩ on the Bloch sphere.

The amount of probability amplitudes grows exponentially with the number of
qubits: a n-qubit state has N = 2n amplitudes. Consider a two-qubit system which
lives in a 22 = 4-dimensional Hilbert space spanned by the computational basis
states {|00⟩ , |01⟩ , |10⟩ , |11⟩}. This state is defined by the linear combination

|ψ⟩ = α0 |00⟩+ α1 |01⟩+ α2 |10⟩+ α3 |11⟩ . (2.5)

We remark again that, unlike classical bits who can only be in one state at a time,
this state can be in a superposition of all four states. The normalization condition
still applies for Equation (2.5):

∑
j=0 |αj|2 = 1. Single-qubit states can be combined

to form multi-qubit states by taking the tensor product of the two states. Given
states |ψ⟩ = α0 |0⟩+ α1 |1⟩ and |φ⟩ = β0 |0⟩+ β1 |1⟩:

|ψ⟩ ⊗ |φ⟩ =
(
α0

α1

)
⊗
(
β0
β1

)

=

α0

(
β0
β1

)
α1

(
β0
β1

)


=


α0β0
α0β1
α1β0
α1β1


= α0β0 |00⟩+ α0β1 |01⟩+ α1β0 |10⟩+ α1β1 |11⟩ .

(2.6)

A multi-qubit state is mathematically formalized through the tensor product. The
following notations can be employed interchangeably:

|0⟩ ⊗ |0⟩ = |0⟩ |0⟩ = |00⟩ (2.7)

The relative phases of α0, α1 and β0, β1 in Equation (2.6) are responsible for the
quantum mechanical property of interference. When the phase of αj and βk is the
same, they will interfere constructively and increase the probability amplitude for
that state. On the other hand, if αj and βk have opposite phases, they will interfere
destructively and decrease the probability amplitude for the considered state.

It’s important to point out that not all multi-qubit systems can be expressed
as a tensor product of individual states, as shown in Equation (2.6). For instance,
consider the following state: ∣∣Φ+

〉
=

1√
2
(|00⟩+ |11⟩) . (2.8)

11

Background

This state cannot be expressed as a tensor product of two individual states, as that
would imply

(
α0β0 = α1β1 = 1/

√
2
)
∧
(
α0β1 = α1β0 = 0

)
, which is a contra-

diction. States like |Φ+⟩ are referred to as entangled states. Entanglement is the
quantum phenomena of correlation in measurement outcomes. For example, when
measuring the state |Φ+⟩ from Equation (2.8), the only two possible measurement
outcomes are 00 and 11. So by measuring one qubit, one also knows the state of the
other qubit. This is by likely the most important feature of quantum computation.

2.1.2 State Evolution

The evolution of a closed quantum system is described by a unitary transformation.1
A state |ψ⟩ at time t1 is related to state |ψ′⟩ at time t2 by a unitary operator U :

|ψ′⟩ = U |ψ⟩ . (2.9)

The unitary nature of these operators implies UU † = U †U = I, where † is the
conjugate transpose and I the identity matrix. Single-qubit operators can be rep-
resented as 2×2 complex-valued unitary matrices. A common single-qubit operator
is the Pauli-X operator which transforms a state α0 |0⟩ + α1 |1⟩ to α1 |0⟩ + α0 |1⟩.
It is part of the set of Pauli matrices:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.10)

These matrices are ubiquitous in the study of quantum computation and informa-
tion. Another useful and common operator is the Hadamard operator:

H =
1√
2

(
1 1
1 −1

)
, (2.11)

which maps the computational basis states to an equal superposition state.
The Pauli X, Y and Z operators give rise to the rotation operators about the

1A perfectly closed system is assumed, even though in reality all systems interact somewhat
with other systems. This is not an issue for practical quantum computers though due to quan-
tum error correction, which can protect quantum information against noise from the external
environment.

12

2.1 – Quantum Computing

x̂, ŷ, and ẑ axes when exponentiated:

Rx(θ) = e−i
θ
2
X =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
, (2.12)

Ry(θ) = e−i
θ
2
Y =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
, (2.13)

Rz(θ) = e−i
θ
2
Z =

e−i θ2 0

0 ei
θ
2

 . (2.14)

These operators can be thought of as rotating a qubit’s state among its relative
axis by an angle θ. Note that any single-qubit operator U can be decomposed into
these operators, for example U = Rz(γ)Ry(β)Rz(α) where α, β, γ ∈ R.

Multi-qubit operators act on two or more qubits and are required for creating
entangled states. Two common two-qubit operators are the CNOT and CZ oper-
ators. The CNOT operator can be thought of as a controlled-X operator, which
applies a Pauli-X operation on the target qubit if the control qubit is in the |1⟩
state. Equivalently, the CZ operator applies a Pauli-Z operation on the target
qubit if the control qubit is |1⟩. Their matrix representations are as follows:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (2.15)

Generally, a controlled-U operator applies U on the target qubit if the control qubit
is |1⟩.

2.1.3 Measurement

While the evolution of quantum states in a closed system is unitary, at some point
the quantum state has to interact with the outside world. This is what measure-
ment means: any interaction from an outside system with the quantum system.
Specifically, a measurement is what brings quantum information back to the clas-
sical domain. Formally, measurement is defined by a set of measurement operators
{Mm}, where the probability of measuring the state m is given by

p(m) = ⟨ψ|M †
mMm |ψ⟩ . (2.16)

With ⟨ψ| = |ψ⟩†, this equation can then be read as the inner product between
Mm |ψ⟩ and itself. This is just a generalization of the definition of measurement
given in Section 2.1.1. For example, the probability of measuring 0 for an arbitrary

13

Background

state |ψ⟩ = α0 |0⟩+ α1 |1⟩, using M0 = |0⟩⟨0| can be estimated as:

p(0) = ⟨ψ|M †
0M0 |ψ⟩

= ⟨ψ|0⟩ ⟨0|0⟩ ⟨0|ψ⟩
= ⟨ψ|0⟩ ⟨0|ψ⟩

=
(
α∗
0 α∗

1

)(1
0

)(
1 0

)(α0

α1

)
= α∗

0α0

= |α0|2.

(2.17)

Similarly, using M1 = |1⟩⟨1| gives p(1) = |α1|2. Measuring with the measurement
operators {|0⟩⟨0| , |1⟩⟨1|} is referred to as measuring in the computational basis.

After measurement, the state of the system can be described as follows:

|ψ⟩ = Mm |ψ⟩√
p(m)

. (2.18)

Following the example from Equation (2.17) with M0 = |0⟩⟨0| and p(0) = |α0|2,
after measuring 0 the system is in the state

|ψ⟩ = |0⟩ ⟨0|ψ⟩√
|α0|2

=
|0⟩α0

|α0|
=

α0

|α0|
|0⟩ .

(2.19)

Notice that a global phase eiδ shows up as the factor α0/|α0|. As mentioned in
Section 2.1.1, the states eiδ |0⟩ and |0⟩ are considered equal up to the global phase
factor.

A special class of measurements called projective measurements can sometimes
be used to simplify calculations. A projective measurement is defined by an ob-
servable O, which is a Hermitian operator on the state space of the system. This
observable has a spectral decomposition

O =
∑
j

λj |λj⟩ ⟨λj| , (2.20)

being λj the eigenvalues of O and |λj⟩ the respective eigenstates. For example, the
Pauli-Z operator can be thought of as an observable with the spectral decomposition

Z = 1 |0⟩⟨0| − 1 |1⟩⟨1| , (2.21)

14

2.1 – Quantum Computing

which has eigenstates {|0⟩ , |1⟩} with respective eigenvalues {1,−1}. As the observ-
able Z has the computational basis states as eigenstates, a measurement of Z can
also be thought of a measuring in the computational basis. With this definition
of projective measurements, the expectation value of an observable O for state |ψ⟩
can be defined as

⟨O⟩ψ = ⟨ψ|O |ψ⟩

= ⟨ψ|

(∑
j

λj|λj⟩⟨λj|

)
|ψ⟩

=
∑
j

λj⟨ψ|λj⟩⟨λj|ψ⟩

=
∑
j

λj|⟨λj|ψ⟩|2.

(2.22)

The expectation value is the sum of all possible outcomes (eigenvalues ofO) weighted
by their probability. Calculating the expectation value experimentally means prepar-
ing and measuring the state multiple times and is a useful way of extracting a de-
terministic quantity from a non-deterministic model of computation. This is what
operationally a quantum algorithm should be designed for.

2.1.4 Quantum Circuits

Analogous to the classical circuit model, the quantum circuit model uses gates which
act on qubits. Most of the common quantum gates used in quantum computing
were already described as operators in Section 2.1.2. However, to be more in line
with the nomenclature of classical computing, from here onward these operators will
be referred to as quantum gates in the context of quantum circuits, the abstraction
usually employed to model quantum operations in quantum computer science.

In a quantum circuit, qubits are represented by wires on which gates can act, and
classical bits are represented by double-lined wires. Qubits are usually assumed to
be instantiated to |0⟩, unless noted otherwise. Quantum gates are unitary and thus
reversible, making the quantum circuit model a reversible model of computation.
The inverse of a gate U is denoted as the conjugate transpose U †. By the definition
of unitary UU † = U †U = I, applying the inverse U † after U essentially uncomputes
U and vice versa. Gates whose conjugate transpose are equal to themselves are
referred to as Hermitian. For example, H is Hermitian as H† = H and thus
H2 = I. A list of frequently used quantum gates is reported in Table 2.1.

Figure 2.2 demonstrates a simple quantum circuit which creates the maximally
entangled state |Φ+⟩ = (|00⟩+ |11⟩) /

√
2 from Equation (2.8) and measures both

qubits. This state is one of four maximally entangled two-qubit states referred to as
a Bell state. This circuit does the following. The system starts in state |ψ⟩ = |00⟩.

15

Background

Gate name Circuit symbol Matrix representation

Hadamard H
1√
2

(
1 1

1 −1

)

Pauli-X X

(
0 1

1 0

)

Pauli-Y Y

(
0 −i
i 0

)

Pauli-Z Z

(
1 0

0 −1

)

Phase (S) S

(
1 0

0 i

)

T T

(
1 0

0 eiπ/4

)

CNOT •


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



CZ •
•


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


Table 2.1: Frequently used quantum gates with their circuit symbol and matrix represen-
tation.

|0⟩ H •

|0⟩
Figure 2.2: Quantum circuit for creating and measuring a Bell state |Φ+⟩.

A Hadamard gate is applied on the first qubit:

|ψ⟩ = 1√
2
(|0⟩+ |1⟩) |0⟩ (2.23)

=
1√
2
(|00⟩+ |10⟩) . (2.24)

16

2.1 – Quantum Computing

Then, a CNOT is applied with the first qubit as control and the second qubit as
target, giving the final state

|ψ⟩ = 1√
2
(|00⟩+ |11⟩) . (2.25)

This state is then measured, which will measure 00 or 11 with equal probability.
Quantum circuits are often executed multiple times (called “shots") to get a prob-
ability distribution of all possible outcomes. This is what, operationally, makes
quantum computing probabilistic.

Quantum gates can be applied in parallel on different qubits, which is why it
is often more useful to talk about the depth of a quantum circuit rather than the
number of gates. The depth of a quantum circuit corresponds to the number of steps
required for the quantum operations making up the circuit to run. For example,
the quantum circuit represented in Figure 2.3 consists of 8 quantum gates, but
has a depth of 4 (measurement gates are omitted from the depth calculation).
The gates in every column are considered to be one time step as they can be
executed in parallel. Instead of applying the first column of gates sequentially as
(I ⊗ I ⊗S)(I ⊗X ⊗ I)(H ⊗ I ⊗ I) |000⟩, it can be thought of as applying the single
operator (H ⊗X ⊗ S) |000⟩.

|0⟩ H • • S

|0⟩ X Rz(π/4)

|0⟩ S Rx(π/2) T †

Figure 2.3: A quantum circuit consisting of 8 gates with a depth of 4.

In classical computations, copying bits is a common operation. However, in
quantum computing, the data one can copy is much more restricted. If a qubit is in
a computational basis state, that state can be copied by a CNOT gate (Figure 2.4).2
However, trying to copy an arbitrary state |ψ⟩ = α0 |0⟩+α1 |1⟩ using the circuit in
Figure 2.4 yields:

|ψ⟩ = α0 |00⟩+ α1 |11⟩ . (2.26)

This state does not contain two copies of |ψ⟩ (unless α0α1 = 0 as is true with
computational basis states), which should have the form

|ψ⟩ |ψ⟩ = α2
0 |00⟩+ α0α1 |01⟩+ α1α0 |10⟩+ α2

1 |11⟩ . (2.27)

2More formally, if a quantum state is in a basis state of a known orthogonal basis, the state
can be copied.

17

Background

|j⟩ • |j⟩

|0⟩ |j⟩
Figure 2.4: Copying a computational basis state using CNOT where j ∈ {0, 1}.

In fact, is it impossible to copy an unknown quantum state. There exists no solution
for a unitary operator U that does the transformation

α0 |00⟩+ α1 |01⟩
U−→ α2

0 |00⟩+ α0α1 |01⟩+ α1α0 |10⟩+ α2
1 |11⟩ . (2.28)

This property is known as the no-cloning theorem, and is a fundamental limit of
quantum information. Note that this holds for unknown quantum states. If one has
the circuit to prepare |ψ⟩, you could simply create |ψ⟩|ψ⟩ by executing the circuit
on a second qubit.

2.1.5 Universal Gate Sets

A universal gate set is defined as a finite set of gates that can be used to represent
any other gate. In the classical circuit model, NAND is a universal gate with which
all other gates can be represented. Equivalently, in the filed of quantum computing,
universal gate sets are sets of quantum gates any quantum operation can be reduced
to. A common universal gate set is {CNOT, H, S, T}, i.e. any quantum operation
can be reduced to a combination of CNOT, H, S, and T gates. For instance, the
three-qubit equivalent of the CNOT gate, the Toffoli gate, can be decomposed
into these gates as shown in Figure 2.5. The Solovay-Kitaev theorem shows that
any universal gate set can simulate any other universal gate set efficiently, so the
choice of universal gate set does not impact the asymptotic efficiency of a quantum
computer. It turns out that almost any set of one- and two-qubit gates is universal
— in fact, [13] shows that just the Toffoli and Hadamard gates are universal.

• • • • T •

• = • • T T †

H T † T T † T H

Figure 2.5: Decomposition of the Toffoli gate using CNOT, H, S and T gates.

18

2.1 – Quantum Computing

2.1.6 Parameterized Quantum Circuits

Now that the foundations of quantum information and quantum circuits are set,
we move our attention to Parameterized Quantum circuits, also known as Varia-
tional Quantum circuits, which are the key element of Quantum Machine Learning
approaches (including QNLP).

Like standard quantum circuits, they consist of three elements:

• Preparation of a fixed initial state (e.g., the vacuum state or the zero state)

• A quantum circuit U(θ), parameterized by a set of free parameters θ

• Measurement of an observable B̂ at the output. This observable may be made
up from local observables for each wire in the circuit, or just a subset of wires.

The set of free parameters θ = (θ1, θ2, ..., θn) of the circuit is tuned to optimize
some cost function computed after measurement for some given task. This scalar
cost can be defined as f(θ) = ⟨0|U †(θ)B̂U(θ)|0⟩.

Variational circuits are trained by a classical optimization algorithm that makes
queries to the quantum device. The optimization is usually an iterative scheme that
searches out better candidates for the parameters θ with every step, analogously
to classical machine and deep learning algorithms. A schematic representation is
shown in Figure 2.6.

Figure 2.6: Scheme of a variational quantum circuit for supervised learning

Variational circuits have become popular as a way to think about quantum
algorithms for near-term quantum devices. Such devices can only run short gate
sequences, since without fault tolerance every gate increases the error in the output.
Usually, a quantum algorithm is decomposed into a set of standard elementary
operations, which are in turn implemented by the quantum hardware. This is the
approach we will adopt in the following chapters of this thesis.

19

Background

2.2 Category Theory

This section aims at providing a gentle introduction to category theory and, espe-
cially, to make the reader familiar with pregroup grammars, which is the algebraic
formalism the quantum model for natural language — presented in section 3.1 — is
built upon. Category theory is an abstract framework which deals with mathemat-
ical structures and relations between them. It thus allow to formalize, through the
categorical concept of functors, the mapping between the different representation
of the language, from pregroups to vector spaces.

2.2.1 Categories

A category consists of a collection of objects A,B,C, ... and a collection of mor-
phisms between objects of the form f : A → B, g : B → C, h : C → D, ... such
that

• morphism with matching type compose. For instance, given two morphisms
f : A → B and g : B → C, they can compose to make g ◦ f : A → C, but
not the opposite.

• morphism compose in an associative way: (h ◦ g) ◦ f = h ◦ (g ◦ f)

• each object has an identity arrow 1B ◦ f = f = f ◦ 1A

This formalism can be intuitively grasped from the cumulative diagram showed in
Figure 2.7.

A B

C
g◦f

f

1A

g

1B

1C

Figure 2.7: Cumulative diagram for 3 morphism

2.2.2 Monoidal categories

A monoidal category is a category equipped with the monoidal product ⊗ and
monoidal unit I and has the following properties

20

2.2 – Category Theory

• morphism can be combined to get a new morphism whose domain and codomain
are given applying the monoidal product

(f : A→ B)⊗ (g : C → D) = f ⊗ g : A⊗ C → B ⊗D

• ⊗ is associative on objects: (A⊗B)⊗ C = A⊗ (B ⊗ C)

• ⊗ is associative on morphisms: (f ⊗ g)⊗ h = f ⊗ (g ⊗ h)

• I is the identity operator for objects: A⊗ I = A = I ⊗ A

• 1I is the identity operator for morphisms: f ⊗ 1I = f = 1I ⊗ f

2.2.3 Rigid Monoidal Categories

A rigid category is a monoidal category where every object A has a left adjoint
Al and a right adjoin Ar. The left adjoint and the right adjoint of the object are
nothing but the object itself, i.e. (Ar)l = (Al)r = A.

The key property of a rigid category is the existence of cups and caps between
an object and its adjoint: these are special morphisms that are drawn as bent wires
in diagrammatic notation and they satisfy the snake equations (Figure 2.8)

xl

x xl =

xl

x

x xl =

x

Figure 2.8: Caps, Cups and snake equations

In other words, exploiting the diagrammatic calculus of monoidal algebra, one
can visually "yank" a cup or a cup, i.e. given an object A, it holds that

Al · A = 1 = A · Ar (2.29)

which are also referred to as the contraction rules of rigid monoidal categories.

21

Background

2.2.4 Pregroup Grammars

Given the introductory concepts of monoidal categories, presented above, we look
now at the main formalism we will extensively use in the following chapters: pre-
group grammar, devised by Joachim Lambek in 1999 [14].

A pregroup grammar is a partially-ordered monoid where each element is a type
p with a left adjoint pl and a right adjoint pr such that the following conditions
(also known as Ajdukiewicz laws) hold:

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl (2.30)

To treat this partially-ordered monoid as a grammar, the two axioms p · pr ≤ 1
and pl · pl ≤ 1 serve as reductions in the grammar and are represented as:

p · pr → 1 pl · p→ 1 (2.31)

An example grammar might be composed using the following pregroup assignments:

• a noun is given the base type n

• an adjective consumes a noun on the noun’s left to return another noun, so
it is given the type n · nl

• a transitive verb consumes a noun on its left and another noun to its right to
give a sentence, so its type is nr · s · nl.

In the context of pregroups, the left and right adjoints nl and nr can be thought
of as, respectively, the left and right inverse of the atomic type n. Words are con-
catenated using the monoidal product ⊗ and linked using cups, as explained in the
previous section. A sentence is grammatically sound if its derivation has a single
uncontracted s wire in the diagrammatic representation or if, applying the contrac-
tion rules (2.31), we are only left with an s type. For instance, a sentence containing
the subject with its adjective, a transitive verb and an objective complement, using
the above assignments, will yield

(n · nl) · n · (nr · s · nl) · n→ (n · 1 · nr · s · nl · n)
→ (1 · s · nl · n)
→ (s · 1)
→ s

We provide more extensive examples both of this analytical calculus and its much
more powerful graphical variant in Chapter 3.

22

2.2 – Category Theory

2.2.5 Monoidal Functors

The last introductory concepts we need to define before diving into quantum natural
language processing are monoidal functors.

Given two monoidal categories C and D, a monoidal functor F : C → D is
a structure-preserving transformation from one category to another which satisfies
the following properties: given 2 objects A, B, the functor F

• preserves the monoidal structure: F (A⊗B) = F (A)⊗ F (B)

• preserves the adjoints: F (Al) = F (A)l F (Ar) = F (A)r

• preserves the monoidal structure of morphism: F (g ⊗ f) = F (g)⊗ F (f)

• preserves the compositional structure of morphisms: F (g ◦ f) = F (g) ◦ F (f)

In a free monoidal category, applying a monoidal functor to a diagram amounts to
simply providing a mapping for each generating object and morphism.

Functors are one of the most powerful concepts in category theory. In fact,
the encoding, rewriting and parameterization steps of the QNLP pipeline we will
present in the next chapter are implemented individually as monoidal functors,
resulting in an overall functorial transformation from parse trees to tensor networks
and circuits.

23

Chapter 3

Quantum Natural Language
Processing

3.1 A Quantum model for Natural Language

The approach towards Quantum Natural Language Processing followed through-
out this work is based on the DisCoCat model, proposed by Coecke et al. as a
Distributional, Compositional, Categorical model of natural language [10, 11].
This mathematical framework is based on a pregroup grammar to keep track of the
types and the interactions between words in a sentence through a composition of
their semantic representation. The model is said to be distributional because the
semantic representations of the words are vectors in some finite-dimensional vector
space.

As introduced in Section 2.2, in a pregroup grammar each type p has a left pl
and a right pr adjoint, for which the contraction equations 2.31 hold:

pl · p→ 1 p · pr → 1

Adjoints are, thus, used to express the expected input or output of a word.
Considering, for instance, the sentence “service is very good”, whose diagrammatic
representation is showed in Figure 3.4 and will be further illustrated in the next
section. n corresponds to a noun or a noun phrase and s to a sentence. The adjoints
nr and nl indicate that a noun is expected on the left or on the right, respectively,
so that the adjective “good” of type nrs requires a noun to its right to return a
sentence type. This makes sense intuitively: an adjective and a noun alone form
sentence. Applying the reduction shown above we end up with a properly formatted
sentence:

25

Quantum Natural Language Processing

n · (nr · s · sl · n) · (nr · s · sl · n) · (nr · s)→ n · (nr · 1 · n) · (nr · 1 · n) · (nr · s)
→ n · 1 · 1 · (nr · s)
→ 1 · s
→ s

The transition from pregroups to vector space semantics, which is what DisCo-
Cat adds to pregroup grammar, is achieved by a mapping that sends atomic types
to vector space (n→ N and s→ S) and composite types to tensor product spaces,
for instance “is” in the previous example

nr · s · sl · n→ N ⊗ S ⊗ S ⊗N

Therefore, each word can be seen as a specific state in the corresponding space
defined by its grammatical type, i.e. a tensor, the order of which is determined by
the number of wires emanating from the corresponding box. A concrete instantia-
tion of the diagram requires the assignment of dimensions (which in the quantum
case amounts to fixing the number of qubits) for each vector space corresponding
to an atomic type as further discussed in section 3.2.3.

This theory, as hinted in Section 1.3, can be “naturally” recasted in quantum
computational terms, as showed by Coecke et al. [15]. Given a string of words
w1, ..., wN we can associate to them a quantum state |ψwi

⟩ ∈ Cki2 where the dimen-
sion of this space depends on its grammatical type. We then tensor these states
together:

|ψwi
⟩ ⊗ ...⊗ |ψwN

⟩

In this scenario, all the words are still disentangled. Let’s consider the sentence
“Passenger books flight”. In the diagrammatic representation, that we will present
more extensively afterwards, it corresponds to the following scenario:

Passenger books flight

Figure 3.1: Diagrammatic representation of three unentangled states associated to the
sentence “passenger books flight”

In other words, it doesn’t exist any interaction between them. To introduce the
semantics of the sentence, we exploit the fact that cups and caps, introduced in the

26

3.2 – The QNLP pipeline

previous chapter, can be modeled in Dirac notation as Bell states

⟨Bell| = ⟨00|+ ⟨11| |Bell⟩ = |00⟩+ |11⟩

which are, in diagrammatic formalism

=⟨Bell| =|Bell⟩

The final state is mathematically obtained applying a map fG corresponding to a
pregroup grammar as follows

fG(|ψwi
⟩ ⊗ ...⊗ |ψwN

⟩)

that we can construct as follows

⟨Bell| ⊗ I⊗ |Bell⟩

The resulting state, in quantum computational formalism, is thereby

|ψns tv no⟩ = (⟨Bell| ⊗ I⊗ |Bell⟩) ◦ (|ψns⟩ ⊗ |ψtv⟩ ⊗ |ψno⟩) (3.1)

which produces the following string diagram:

Passenger books flight

Figure 3.2: Non-annotated string diagram associated to the sentence “passenger books
flight”

Equation 3.1 shows how the complexity of the Dirac notation grows quickly
with the length of the sentence. The diagrammatic notation, on the other hand,
proves more expressive and effective, as we will show in the following sections.

3.2 The QNLP pipeline
This section describes the sequence of steps involved in the training of a QNLP
model using the DisCoCat framework. The proposed pipeline has been described

27

Quantum Natural Language Processing

parsing rewriting parame-
terisation

optimisa-
tionsentence string

diagram
optimized
diagram

quantum
circuit

trained
model

Figure 3.3: The general QNLP pipeline

in the lambeq paper [12], extensively used in this work and further presented in
Section 3.3. An high-level overview is showed in Figure 3.3.

The core idea is to produce a diagrammatic representation of a sentence (called
a string diagram), map it to a parameterized quantum circuit and embed this in
a model architecture to be trained for some machine learning task and eventually
used to make inference on unseen data.

3.2.1 Parsing

The DisCoCat model of natural language is based on string diagrams, i.e. a di-
agrammatic representations of parts of text based on category theory and rooted
on the idea to build connections between the words according to their grammatical
role in the sentence [16].

Figure 3.4 shows the diagram generated for the sentence “Service is very good” –
taken from one of the datasets we will describe in the next chapter – using Bobcat,
a grammar-aware parser.

Figure 3.4: DisCoCat string diagram for the sentence service is very good using Bobcat
parser

This is however not the only possibility, as multiple approaches exist towards
parsing [17, 18]. If the text data we are dealing with is not grammatically correct
(e.g. social media language), a grammar-aware approach might introduce a lot of
noise, resulting in a degradation of the performances. In such a scenario, resorting
to a linear reader – which only uses the s category – proves more beneficial. Figure
3.5 shows the parsing using a spiders reader, a formalism derived from Frobenius
algebra.

28

3.2 – The QNLP pipeline

Figure 3.5: String diagram for the sentence “service is very good” using Spiders Reader

Figure 3.6 shows the parsing using two other parsing approaches: a stairs reader,
which encodes a sentence in a recurrent stairs-like fashion and a cups reader, which
encodes the sentence as a sequence of cups.

(a) stairs reader (b) cups reader
Figure 3.6: Stairs and Cups parsing for the sentence “service is very good”

3.2.2 Rewriting

Rewriting is an optional step of the pipeline, where the string diagram can be
simplified and optimized for resource constraints, without losing its expressiveness.
This is especially relevant since, as we will explain in Section 3.2.3, the diagram will
be associated to a quantum representation and quantum computers are nowadays
quite limited in terms of number qubits.

Figure 3.7 shows how to simplify the string diagram showed in 3.4 using the
auxiliary rewriting rule, which replaces the auxiliary verbs with caps.

29

Quantum Natural Language Processing

Figure 3.7: Rewritten string diagram using the auxiliary rewriting rule

The diagram can be further simplified applying the snake equations to yank the
wires, as shown in Figure 3.8.

Figure 3.8: Normalized rewritten string diagram using the auxiliary rewriting rule

From the mathematical perspective, this step of the pipeline is performed applying
a monoidal functor.

3.2.3 Parameterization

Up to this stage of the pipeline, we only dealt with classical computing. Param-
eterization is where quantum comes into play. In fact, the string diagram is now
converted into a concrete parameterized quantum circuit via an ansatz. Ansätze

30

3.2 – The QNLP pipeline

are maps defining concrete quantum structures for each box and wire in the string
diagram, defining hyperparameters such as

• the number of qubits associated to each type

• the number of single qubit rotations

• the number of layers

The output of the ansatz is thereby a parameterized quantum circuit. Figure 3.9
shows the quantum circuit obtained parameterizing the string diagram showed in
Figure 3.4 via a IQP (Instantaneous Quantum Polynomial) ansatz [19] using the
following configuration

• 1 qubit for the n and s types

• 2 single qubit rotations

• 2 layers

Figure 3.9: Discopy circuit produced after parameterization via IQP Ansatz

31

Quantum Natural Language Processing

In DisCoPy [20, 21], each up-pointing arrow (state) represents an input qubit,
whereas each down-pointing arrow (effect) a measurement; each box corresponds
to a quantum gate while the bridges between each qubit line are controlled negations
(cNOTs). In general, for m qubits, this consists of all m qubits initialized in |0⟩
followed by d many IQP layers, where each layer consists of an H gate on each
qubit composed with m− 1 controlled Rz gates connecting adjacent qubits.

Figure 3.10 shows the same parameterized quantum circuit converted to Qiskit.
It’s important to notice that each qubit is eventually measured but the one associ-
ated to the floating wire(s), as it carries the output given to the user for its task,
thus allowing the usage as a subroutine.

Figure 3.10: Qiskit circuit produced after parameterization via IQP Ansatz

Eventually, Figure 3.11 highlights how the parameterized quantum circuit re-
lates to the original string diagram.
We can notice how each box contains the parameters associated to each symbol of
the string diagram. The 1:1 mapping of the string diagram to the parameterized
quantum circuit is not exclusive of the full grammatical parsing. For instance,
Figure 3.12 shows how the string diagram obtained using a spiders reader (Figure
3.5) relates to its parameterized quantum circuit obtained using the IQP ansatz
with 3 single qubit rotations and 1 layer.

3.2.4 Optimization

Optimization is where machine learning actually comes in play. As for classical
models, the procedure boils up to finding a suitable parameter assignment θ such
that the loss landscape described by the function L(θ) is minimized.

In classical Machine Learning, the prevalent methods to find such an optimal
assignment are gradient-descent and its derivations (Adam, Nesterov, etc.), which
evaluate the parameter vector at iteration t as follows

32

3.2 – The QNLP pipeline

Figure 3.11: Relationship between the String diagram and the parameterized quantum
circuit

Figure 3.12: Relationship between the String diagram and the parameterized quantum
circuit for spiders reader

θt+1 = θt − αt∇L(θ)|θ=θt (3.2)

being α the learning rate or step of the optimizer and ∇L(θ) is the gradient of
the loss function. This process is usually repeated for a fixed number of iterations
or until some constraint is met.

33

Quantum Natural Language Processing

Nevertheless, in Quantum Machine Learning, this approach usually proves com-
putationally expensive as it would require computing the gradient of each parameter
for each circuit at each step [12, 1]. More common approaches in quantum machine
learning involve using gradient-based classical optimizer which computes an ap-
proximation of the gradient through some numerical procedure without requiring
us to evaluate analytically the gradient circuit. The approach we are going to
use in this work is called SPSA (Simultaneous Perturbation Stochastic Approxi-
mation) [22]. Just like with gradient-based methods, SPSA starts with an initial
parameter vector θ0, iteratively updated as follows

θt+1 = θt − αtĝt(θt) (3.3)

where, differently from 3.2, ĝt is an estimate of the gradient at iteration t based
on a prior measurement of the cost function.

Another relevant feature of this algorithm is its robustness to any noise that
may occur when measuring the function L. Let’s consider a function y(θ) = L(θ)+
ϵ, where ϵ is a perturbation we take into account in the output. The gradient
estimation produced by SPSA at each iteration is expressed as

ĝti(θt) =
y(θt + ct∆t)− y(θt − ct∆t)

2ct∆ti

(3.4)

being ct a positive number and ∆t = (∆k1 , ...,∆kp)
T a perturbation vector whose

components are randomly generated at each iteration using a zero-mean distri-
bution. It is this perturbation that makes SPSA robust to noise — since every
parameter is already being shifted, additional shifts due to noise are less likely to
hinder the optimization process. In a sense, noise gets “absorbed” into the already-
stochastic process.

3.2.5 Model-level view

The above steps refer to the process each data point of the dataset goes through,
from a sentence to a parameterized quantum circuit. In this section we aim at
providing a model-level view, highlighting how we actually train a QNLP model
and predict on unseen data.

Algorithm 1 describes the training process. Each model embeds the parameter-
ized quantum circuits associated to the training set, obtained following the steps
described above. In addition, for each symbol in the vocabulary Vtrain the model
contains a parameter vector θi.

The optimization process aims at finding the final assignments for the parame-
ters, similarly to what we would do for a classical Deep Learning model.

34

3.3 – Lambeq

Algorithm 1 Quantum Model Training
1: procedure train(Xtrain, ytrain)
2: raw_diagrams← [parser(xi) for each xi in Xtrain]
3: diagrams← [rewriter(xi) for each xi in Xtrain]
4: circuits← [ansatz(di) for each di in diagrams]
5: for wi in Vtrain do
6: θ0i ← initialize_params()
7: end for
8: θ0 ← (θ01, ..., θ

0
|Vtrain|)

9: for t← 1 ... Nepochs do
10: θt ← SPSA(L, θt−1, circuits, ytrain)
11: end for
12: weights← {wi : θi for wi in Vtrain}
13: return weights
14: end procedure

Algorithm 2 describes the process to evaluate a trained model on unseen data.
The test set is again converted into a string diagram and then into a quantum
circuit. Now circuits are fed with the weights learned during the training phase
and their measured outputs used to predict labels matched against some evaluation
metric depending on the specific problem we are tackling, e.g. accuracy.

Algorithm 2 Quantum Model Evaluation
1: procedure evaluate(weights, Xtest, ytest)
2: test_diagrams← [parser(xi) for each xi in Xtrain]
3: diagrams← [rewriter(xi) for each xi in Xtrain]
4: circuits← [ansatz(di) for each di in diagrams]
5: for wi in Vtest do
6: θi ← weights[wi]
7: end for
8: θtest ← (θ1, ..., θ|Vtest|)
9: ŷ ← model(circuits, θtest)

10: score ← eval_metric(ytest, ŷ)
11: return score
12: end procedure

3.3 Lambeq

Lambeq [12] is an open-source high-level Python toolkit for quantum natural lan-
guage processing built on top of DisCoPy [20, 21] and specifically designed to allow

35

Quantum Natural Language Processing

people run QNLP experiments without dealing with the low level details of the
pregroup grammar modeling.

It covers a wide range of experimental setups in three broad categories, sum-
marized in Figure 3.13:

• quantum simulations on classical hardware

• run on real quantum hardware

• evaluation of tensor networks on classical hardware

In this work we never make use the third setup as, despite tensor network “emulate”
the way quantum hardware computes, it is a fully classical approach. We use
simulation approaches both to validate the model and to test them beyond the
limitations of current quantum hardware and eventually assess the performances
yielded when run on real devices.

Figure 3.13: Hierarchy of experimental setups in lambeq

3.3.1 Quantum Simulations on Classical Hardware

Computing with NISQ (Noisy intermediate-scale Quantum) devices is nowadays
constrained by the several limitations that real hardware suffers from, especially
the limited number of qubits, the noise and the systematic need of error correction
protocols. In addition, being the various quantum devices available on the market

36

3.3 – Lambeq

quite heterogeneous, only relying on the results yielded by a particular platform
might be deceiving. For such reasons, simulation is always the best option during
the first stages of modeling. To this regards, lambeq supports two different options:

• exact noiseless simulation using Jax [23]

• noisy shot-based simulation

The former one is a non shot-based approach where quantum gates are associated
to their algebraic representation — meaning complex-valued tensors — and the
measured probability distribution comes out of tensor contraction. This approach
allows to run QNLP experiments in a scenario where a shot-based simulation would
be impossible because of the required number of qubits whose simulation on classical
hardware would make it run out of memory.

The latter one is the usual probabilistic approach used in quantum computation:
the same circuit is ran many times (or shots), exploiting statistical aggregation,
using a noisy quantum simulator, e.g. Qiskit Aer.

3.3.2 Run on Real Quantum Hardware

Once the results of the simulation are consistent, the model can be tested on real
quantum hardware, taking however into account that the size of the quantum com-
puters offered for free by the various providers is quite limited. Lambeq exploits
tket [24] as a quantum compiler, which is integrated with all the major providers
(IBM Quantum, Google Cloud, Microsoft Azure, Amazon Braket, etc.). In this
work, we use IBM and Microsoft Azure’s quantum cloud platforms.

3.3.3 Lambeq compared to quantum machine learning

In this last section we further highlight how lambeq – and, in general , this approach
towards quantum language processing – inherently differs from “traditional” quan-
tum machine learning. The latter usually relies on (classical) neural network which
learned some kind of vector representation of the vocabulary that is the encoded
in some qubit representation and used to carry the computation inside a quantum
machine. The output is afterwards measured and optimized via a classical opti-
mizer. In QNLP and specifically in lambeq, we focus on the sentence representation
and we directly output a quantum representation that matches the string diagram
and we learn the parameters we eventually use to make inference on unseen text
for which we will produce a representation to be evaluated. An high-level view of
this comparison is shown in Figure 3.14.

37

Quantum Natural Language Processing

Figure 3.14: High-level comparison of “traditional” Quantum Machine Learning vs Lambeq

3.4 Quantum native and quantum advantage
In the introductory part of this thesis, we hinted at the fact that a quantum ma-
chine is naturally suited for the distributional compositional categorical approach
towards natural language, alluding at the similarity between the way it carries the
computation and the framework’s mathematical formulation — most notably in
terms of diagrams — as well as the exponential complexity of the classical imple-
mentation. Given the concepts presented in this chapter, we can now describe two
additional values:

• NISQ devices are QNLP-friendly: in the light of the variational quantum
circuits paradigm, when used to encode classical data on quantum hardware,
accounting for linguistic structure comes as a free lunch while on classical
hardware it looks to be exponentially expensive. We showed this visually in
Figure 3.11.

• QNLP is meaning-aware: regardless of the performances to solve some
kind of tasks, which is often a matter of engineering, the flows of meanings
in QNLP are clearly exposed and understood, due to the linguistic structure.
This is true for all the parsers presented above.

38

3.4 – Quantum native and quantum advantage

In light of these considerations, it emerges that QNLP is not just another quantum
counterpart to some classical method. Instead, already at a foundational level, it’s a
brand new approach inspired by computational linguistics and specifically tailored
to quantum hardware.

39

Chapter 4

Customer Feedback Analysis

In this chapter we will explore the suitability of the quantum natural language
processing models described in the previous chapter on two sentiment analysis
datasets related to customers’ feedback in the travel domain. The first one is the
popular Twitter US Airlines dataset1, containing data scraped from February of
2015 on six major US airline companies. The second one is an internal dataset
of hotel reviews, enjoying a good grammar. The purpose of this use case is to
first apply a modeling approach where the grammatical constraints are only loosely
enforced, as tweets are in general very far from plain English, and then to try the
full grammatical parsing approach on the second dataset. In doing so, we want to
also assess the performance yielded on real quantum hardware and the requirements
in terms of size of the problem.

4.1 Sentiment Analysis on Twitter Airline Dataset

This original dataset consists of 3 classes corresponding to the passenger’s sentiment
on their experience traveling with one of the 6 major American Airlines (Virgin
America, United, US Airways, American, Southwest, Delta). To ensure a fair
comparison with the hotel reviews use case, which includes applying the very same
approach at all the stages of the pipeline after the parsing, the dataset has been
binarized. A wordcloud visualization is shown in Figure 4.1

4.1.1 Modeling the problem

In this section we describe how the problem has been modeled practically. Firstly,
we preprocess the dataset removing tags and nicknames and converting slangs and

1https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment

41

Customer Feedback Analysis

Figure 4.1: Wordcloud visualization of the dataset

abbreviation into plain English using the TextBlob library2. This step aims at
slightly improving the quality of the text we are dealing with. In addition, emoti-
cons and emojis are converted into the corresponding word associated to the sen-
timent they’re trying to convey. Eventually, to reduce the noise introduced by
infrequent words — which is often the case in the context of tweets — we apply a
functor to replace those with an UNK token

1 from discopy import Word
2 from discopy.rigid import Functor
3

4 def replace(box):
5 if isinstance(box, Word) and dataset.count(box.name) < 5:
6 return Word('unk', box.cod, box.dom)
7 return box
8

9 replace_functor = Functor(ob=lambda x: x, ar=replace)

Differently from standard practices in NLP, we don’t apply any lemmatization or
stemming nor remove the stopwords, as they might prove useful in our parsing

2https://github.com/sloria/TextBlob

42

4.1 – Sentiment Analysis on Twitter Airline Dataset

approach. We randomly split the training set into a training and a validation set
(70%:30%). To convert each tweet in a string diagram, we employ spiders, a linear
reader:

1 from lambeq import SpidersReader
2

3 reader = SpidersReader()
4

5 train_diagrams = reader.sentences2diagrams(train_data.text)
6 val_diagrams = reader.sentences2diagrams(val_data.text)

As regards the targets, we will exploit a one-hot encoding. This is a rather conve-
nient representation for our models because the output of the quantum measure-
ment is nothing but a vector of probabilities for the measured qubit (remember
that |0⟩ = [1, 0], |1⟩ = [0, 1]).

1 import numpy as np
2 from sklearn.preprocessing import OneHotEncoder
3

4 _sentiment_categories = np.unique(train_data.target).reshape((-1, 1))
5 enc = OneHotEncoder().fit(_sentiment_categories)
6

7 def encode_label(label: str):
8 """
9 Encodes sentiment to a one-hot label

10 given an input string
11 """
12 try:
13 # wrap the string label into a 2d array
14 # to comply with sklearn requirements
15 label = [[label]]
16 # transform the label to a one-hot vector
17 return enc.transform(label).toarray().tolist()[0]
18 except ValueError:
19 print(f"Label {label} is not valid."
20 f"Value must be one of {_sentiment_categories}")

Each diagram is then converted into a parameterized quantum circuit using an IQP
Ansatz and the diagram optimized using the remove_cups functor. Since we need
to measure a bidimensional output of probabilities [p0, p1] we need to allocate one
qubit to the measured wire. This is due to the fact that the vector spaces in which
the noun and sentence embeddings live have dimension N = 2qn and S = 2qs , where

43

Customer Feedback Analysis

qn and qs are the number of qubits associated those embeddings. In the general
case, when using a linear reader, to represent a sentence of w words we need:

nqubits = w · qs (4.1)

since the measured wire needs to be dout dimensional, where dout is the desired
output size, we need to enforce that

qs = min
q∈N+

q s.t. dout ≤ 2q (4.2)

which implies that:

nqubits = w · ⌈log2(dout)⌉ (4.3)

where the ceiling is applied to take into account the constraints of Equation 4.2.
To keep the depth of the circuit as small as possible, we set the number of layers
k = 2 .

1 from lambeq import IQPAnsatz, AtomicType, remove_cups
2

3 S = AtomicType.SENTENCE
4 N = AtomicType.NOUN
5

6 ob_map = {
7 S: 1,
8 N: 1
9 }

10

11 ansatz = IQPAnsatz(ob_map, n_layers=2, n_single_qubit_rotations=3)
12

13 train_circuits = [ansatz(remove_cups(diag)) for diag in train_diagrams]
14 val_circuits = [ansatz(remove_cups(diag)) for diag in test_diagrams]

We use accuracy as evaluation metric and a binary cross-entropy as loss function.

1 from sklearn.metrics import accuracy_score
2

3 def accuracy(y_hat, y):
4 return accuracy_score(y_true=y, y_pred=np.round(y_hat))
5

6 def cross_entropy(y_hat, y, epsilon=1e-12):
7 y_hat = np.clip(y_hat, epsilon, 1. - epsilon)
8 N = y_hat.shape[0]
9 return -np.sum(y * np.log(y_hat)) / N

44

4.1 – Sentiment Analysis on Twitter Airline Dataset

Lastly, as explained in Section 3.2.3, Simultaneous Perturbation Stochastic Ap-
proximation is the technique we use to optimize the loss landscape.

4.1.2 Exact simulation

Since the full dataset is relatively big and each tweet might be long several words,
using a shot-based simulation would be impossible on a classical machine. For this
reason, as first proof of concept, we resort to an exact non shot-based one, using
NumpyModel . We use a gridsearch to tune the batch size B as well as the optimizer
hyperparameters, i.e. the learning rate lr, the decay factor c while leaving the
stability factor A to the recommended value 0.01 · nepochs. We train the classifier
for 10 epochs. The most meaningful results are summarized in Table 4.1.

learning rate batch size decay factor training accuracy validation accuracy
0.02 16 0.06 77.7% 71.4%
0.02 32 0.03 89.5 % 77.3 %
0.02 32 0.06 93.0 % 89.7 %
0.05 32 0.06 91.0 % 86.4%
0.1 32 0.06 88.4 % 85.4 %

Table 4.1: Hyperparameter tuning of the exact simulation on the Twitter US Airlines
dataset

After choosing the best configuration, we compare the performances yielded
with classical models, including a state-of-the art BERT uncased and recurrent-
based neural networks.

Model number of parameters best score
Quantum model 3207 88.6 %
Pretrained BERT uncased 110M 99 %
distil BERT 66M 94%
bi-LSTM 1.4M 76.4 %
Attention LSTM 1.4M 81.4 %
Vanilla RNN 180k 57.8 %

Table 4.2: Comparison of classical models with the Quantum architecture, in terms of
accuracy and number of parameters (averaging 20 runs).

We can notice that, despite losing to BERT, the quantum model outperforms all the
other architectures with a significant smaller number of parameters. Furthermore, it
should be noted that the uncased BERT-base model we used for this comparison has
been pretrained for 1M steps on the entire English Wikipedia corpus (2500M words)
and on BookCorpus [25] (800M words), for a total of 3.3B words and eventually
fine-tuned on this task for 5 epochs. In this sense, it’s understandable that it

45

Customer Feedback Analysis

outperforms any other model trained from scratch on much less data and for much
less iteration steps. To further support this claim, we reported the same experiment,
with the very same preprocessing, using distilBERT [26], a distilled version of BERT
obtained from the bert-base-uncased checkpoint, having half of the layers and 60%
of the original parameters. As we can see, it again outperforms the quantum model,
however the accuracy dropped of 5% and the number of parameters is still 18000
times higher.

4.1.3 Run on IBM Oslo and Nairobi via IBM Cloud

After analyzing the results yielded by the exact non shot-based simulation, useful
to understand the potential of this approach and its limitations, we take one step
further into our analysis targeting real quantum hardware. Specifically, we will
work on IBM Oslo and IBM Nairobi, the two biggest superconducting quantum
computers available for free on IBM Cloud, with 7 qubits connected as shown in
Figure 4.3 and quantum volume 323.

In the context of this experiment, apart from measuring the accuracy, we want
to benchmark training and inference time of the platforms in order to provide
further insights on the status of quantum hardware today.

Figure 4.2 shows an high-level view of how quantum hardware is accessed in the
cloud. When a user submits a job to a quantum system, it enters the scheduler for
the specific system, joining the pool of jobs (from all users) that are waiting to be
executed on that system. The order in which these jobs are executed is, by default,
determined by a fair-share formula attempting to balance the workload between
different plans according to the allocated system access amount over a given time
window. As a consequence, running an experiment on IBM Quantum might take
several hours or days, even if the actual running time of the experiment might be in
the ballpark of seconds. In the following benchmarks we will only take into account
the actual running time.
In our QNLP use cases, a job is a batch of samples. Thereby we need to run

njobs = nepochs

⌈
|Dtrain|
|B|

⌉

being |B| the batch size.
Given this much and the limitations imposed by Equation 4.3 and that we only

have access to 7 qubits, we need to restrict our problem. Specifically, we extracted

3Quantum volume is a metric which allows quantum computers of different architectures to
be compared in terms of overall performance. It quantifies the largest circuit of equal width and
depth that the device can successfully implement

46

4.1 – Sentiment Analysis on Twitter Airline Dataset

Figure 4.2: High-level model for accessing a quantum processing unit (QPU) on IBM
cloud

(a) IBM Oslo (b) IBM Nairobi
Figure 4.3: IBM Oslo and Nairobi map views

from the original dataset a balanced subset of 250 tweets of, at most, 7 words,
50 of which are used as test set. The implementation only requires to change the
backend to properly interface with IBM’s platform. For instance, for IBM Oslo:

1 from qiskit import IBMQ
2 from lambeq import TketModel
3 from pytket.extensions.qiskit import IBMQBackend
4

5 # assuming the IBM API token has been cached
6 IBMQ.load_account()
7

8 backend = IBMQBackend(backend_name='ibm_oslo', hub='ibm-q', group='open')
9 backend_config = {

10 'backend': backend,
11 'compilation': backend.default_compilation_pass(2),
12 'shots': 8192
13 }
14

47

Customer Feedback Analysis

15 model = TketModel.from_diagrams(circuits, backend_config=backend_config)

We also provide a comparison with the results yielded by a shot-based simulation
using qiskit’s Aer simulator.

1 from pytket.extensions.qiskit import AerBackend
2

3 backend = AerBackend()

Lastly, we want to assess how optimistic the exact simulation is. Figure 4.4 shows
a comparison of the results obtained in the four scenarios averaging 5 runs4.

(a) Training loss (b) Test loss

(c) Training accuracy (d) Test accuracy
Figure 4.4: Results of the quantum computation on IBM Oslo and Nairobi compared to
the exact and shot-based simulations in terms of convergence and accuracy(averaging 5
runs).

4running experiments on quantum hardware is very time expensive because of the queuing
time to access the platform, which is the reason why we only repeat the experiment 5 times

48

4.2 – Hotel Reviews

We notice that the exact simulation has a smoother trend both in terms of
loss decrease and accuracy growth, whereas the other three platforms are overall
aligned, with Oslo and Nairobi reaching a slightly better accuracy than the simu-
lator both in the training and validation set. We remark that, differently from the
trend one would observe on classical models, these plots are quite noisy, which is
peculiar of today’s quantum hardware. In all the four analyzed cases, the models
are appropriately fitting the data.

Table 4.3 compares the training and inference time of the above experiments.
It should be noted however that 7 qubits are not many which makes the simulation
on a classical CPU competitive with real hardware. This is even more evident if
one considers that bringing data from the control server to the quantum device and
eventually reading the results might introduce a significant component of latency,
definitely not negligible for such a small quantum device. We expect an experiment
on a bigger system, e.g. 27 qubit’s IBM Toronto, to show some advantages with
respect to the simulated version.

System training time inference time (100 sentences)
Aer Simulator 32.9 min 15.0 s
IBM Oslo 32.4 min 26.8 s
IBM Nairobi 34.3 min 28.3 s
Exact Simulation 3.7 min 1.53 s

Table 4.3: Training and inference time of IBM Oslo and IBM Nairobi compared to the
exact and the shot-based simulations on the Twitter US Airlines use case (averaging 5
runs).

Despite the last consideration, we never mentioned speedup in this work. In fact,
the purpose of this benchmark is to provide further insights on the status of the
technology today, for industrial interest and as a glimpse on its current capabilities
and its future prospects on that side, conscious of the fact that today’s quantum
technology is still far from being able to bring the speedup theoretically provable.

4.2 Hotel Reviews

The previous use case showed how this approach is valuable and versatile even when
the quality of text doesn’t allow to enforce strict grammatical constraints. In the
second use case we aim at probing the capabilities of a full-grammatical approach.
To accomplish this goal we make use of an internal Amadeus dataset of labeled
single-sentence hotel reviews consisting of 1200 binary samples. The goal is again
to use classical, neural network-based models as a mean of comparison to evaluate
the performances of the quantum approaches. For this task we exploit Bobcat, a

49

Customer Feedback Analysis

statistical CCG (combinatory categorial grammar) parser5 [17].

1 from lambeq import BobcatParser
2

3 parser = BobcatParser(text='verbose')

Since most of the reviews are relatively long in terms of the number of words and
considering that BobcatParser is slightly more demanding in terms of qubit — as it
has to learn for each word its possible grammatical role in the sentence — for this
use case we only resort to the exact simulation. This will also allow us to repeat the
experiments more times. The modeling approach described in the previous section
still applies to this case. We compare this approach with the spiders reader we used
before as well as classical models. Table 4.4 shows the obtained results averaging
20 runs. A visual representation of the comparison is provided in Figure 4.5

Figure 4.5: Quantum and classical models in terms of performance and number of param-
eters

The full grammar-aware approach outperforms spiders reader on a comparable
number of parameters, which shows that grammar was an added value in this
scenario. In addition, the performances yielded are comparable to the bi-LSTM
with a much smaller number of parameters. On the other hand, BERT outperforms

5In computational linguistics, a parser is said to be statistical if it makes use of a procedure to
search over a space of all candidate parses, and the computation of each candidate’s probability,
to derive the most probable parse of a sentence

50

4.2 – Hotel Reviews

Model number of parameters best score
Bobcat parser 1718 80.7 %
Spiders parser 1506 73.5 %
Pretrained BERT uncased 110M 100.0 %
bi-LSTM 256k 81.4 %
Vanilla RNN 180k 57.5 %

Table 4.4: Comparison of classical models with the Quantum one using 2 parsing ap-
proaches, in terms of accuracy and number of parameters (averaging 20 runs)

again all the other models we compared it, which is understandable considering that
the employed dataset is quite small with respect to the size of the vocabulary, thus a
pretrained model has a lot of advantage. Overall, we conclude that the grammatical
approach has a lot of expressive potential, but requires to be applied to the proper
use case, making sure that the structure of the text is appropriate and that the
task we want to solve can leverage syntax, which is not necessarily the case for a
sentiment analysis task.

51

Chapter 5

Passenger Intent Recognition on
Chatbot Queries

Starting from the experiments and the results of the previous chapter, we will now
take a significant step forward tackling a natural language understanding (NLU)
task dealing with recognizing the intent of a user query, one of the main steps of
a Chatbot platform pipeline. To address this task, we will use the popular ATIS
dataset 1, a benchmark dataset widely used as an intent classification. ATIS Stands
for Airline Travel Information System.

Within a chatbot, intent refers to the goal the customer has in mind when
typing in a question or comment. While entity refers to the modifier the customer
uses to describe their issue, the intent is what they really mean. For example, if
a user says, “I need new shoes.”, the intent behind the message is to browse the
footwear on offer. Understanding the intent of the customer is key to implementing
a successful chatbot experience for end-user.

It should be noted that, differently from the previous two use cases, this is a
multiclass task (Table 5.1), which will require a relatively different design in the
architecture as well as taking care of the depth of the architecture to allow the
model to effectively learn the pattern. As for the previous use cases, we will run
a reduced version of this problem on IBM superconducting quantum computers
and, in addition, we will explore trapped ions quantum computers using Microsoft
Azure.

5.1 Modeling the problem

As explained in the previous chapter, the output size of the measurement depends
on the way we parameterize the string diagram, specifically it is equal to the number

1https://www.kaggle.com/datasets/hassanamin/atis-airlinetravelinformationsystem

53

Passenger Intent Recognition on Chatbot Queries

class example entry percentage
atis_abbreviation what is fare code h 3%
atis_aircraft what kind of aircraft is used on a flight from cleveland to

dallas
1%

atis_airfare round trip fares from pittsburgh to philadelphia under
1000 dollars

9%

atis_airline could you please tell me the airlines that fly from toronto
to san diego

3%

atis_flight i need to know information for flights leaving dallas on
tuesday evening and returning to atlanta

74%

atis_flight_time what is the arrival time in san francisco for the 755 am
flight leaving washington

2%

atis_ground_service show me the car rentals in baltimore 5%
atis_quantity please tell me how many nonstop flights there are from

boston to atlanta
2%

Table 5.1: ATIS dataset overview with example entries and distribution

of qubits allocated to the s wire. In this scenario, we need to be able to discriminate
among 8 classes. Recalling again that the size of of the vector space in which the
sentence embedding lives is S = 2qs , we need 3 qubits, i.e. qs = 3. In this fashion,
the possible measurement outcomes are |000⟩, |001⟩, ..., |111⟩.

1 ansatz = IQPAnsatz({S: 3}, ...)

Since each measurement accounts for one qubit, the final output size of a mea-
surement is going to be a tuple of qs vectors of size 2, which additionally requires to
squash the probability vector before computing the loss and the evaluation metrics.
Despite the problem grew significantly in terms of size and complexity (number of
classes) with respect to the previous one, we notice empirically that 2 layers and 3
parameters per gate suffices for learning.

Lastly, being this dataset extremely unbalanced, we will use F1-score and ROC-
AUC score as metrics and a (categorical) cross-entropy as loss function, resorting
again to SPSA for the optimization procedure.

5.2 Exact simulation

As observed in the previous chapter, a shot-based simulation wouldn’t be feasible
on a classical CPU when working with this kind of datasets. This is even more
true in this scenario, as we have deeper circuits and a much higher requirement in
terms of qubit (recall that simulating q qubits requires probing 2q combinations).
For such reasons, in the first part of this use case, we resort to exact simulation
using NumpyModel . The results yielded in terms of F1 score and ROC AUC score
are reported in figure 5.1.

54

5.3 – Run on IBM Oslo and IBM Nairobi on IBM Cloud

(a) F1 score

(b) ROC AUC score
Figure 5.1: F1 score, ROC AUC score and cost functions produced by the exact simulation

5.3 Run on IBM Oslo and IBM Nairobi on IBM
Cloud

As done in Chapter 4, we want again to assess the performances of real hardware on
this task, with a novelty: we will compare the results obtained on superconducting
qubits technology with trapped ions topological qubits, object of the next section.

To achieve this much, we need again to shrink the dataset. Looking again at

55

Passenger Intent Recognition on Chatbot Queries

the constraints imposed by Equation 4.3, we are forced to regress to a binary task.
In fact, with only 7 qubits, a 3 or 4 classes classification task would allow at most 3
words per query, which is not enough for any of those available in the ATIS dataset.
We gather 200 queries from the training set respecting this constraints and 82 from
the test set, trying to keep the original proportion of the classes and we resort to
Qiskit Aer simulator to tune the model.

learning rate batch size f1 score roc-auc score precision accuracy
0.001 32 0.63 0.67 0.66 0.60
0.01 32 0.88 0.93 0.91 0.90
0.01 16 0.91 0.97 0.99 0.93
0.05 32 0.72 0.81 0.75 0.72
0.05 16 0.58 0.61 0.54 0.61

Table 5.2: Hyperparameter tuning of the shot-based simulation using t|ket⟩ compiler and
Qiskit Aer

Eventually, we use the best hyperparameters to run the experiment on IBM Oslo
and IBM Nairobi, as shown in Figure 5.2.

(a) Training loss (b) Test loss

(c) Training ROC AUC score (d) Test ROC AUC score

56

5.3 – Run on IBM Oslo and IBM Nairobi on IBM Cloud

(e) Training F1 score (f) Test F1 score

(g) Training Accuracy (h) Test Accuracy
Figure 5.2: Results of the quantum computation on IBM Oslo and Nairobi compared to
the exact and shot-based simulations in terms of convergence, accuracy, ROC-AUC and
F1 score (averaging 5 runs).

Specifically, we follow the procedure explained in Section 4.1.3 and we average over
5 runs (remind that these experiments are very expensive). The models are trained
for 30 epochs and we show the training and test losses and metrics against the noisy
shot-based simulation using Qiskit Aer and the exact non shot-based one.

We notice that the curves obtained on the two platforms are overall aligned be-
tween each other and with the simulator, while the exact simulation yields overall
slightly better results and smoother trends both in the minimization of the loss
and in the learning process. Going more into the details, IBM Nairobi’s results
are closer to the noisy shot-based simulation while IBM Oslo is slower in conver-
gence and eventually underperforms the other platforms in terms of accuracy and
F1 score. Moreover, IBM Nairobi seems to be initially slightly underfitting (until
epoch 12) despite the loss minimization being globally consistent. Overall, as stated
in the previous chapter, we conclude that the exact simulation is in fact optimistic
with respect to NISQ technology and that despite having the same quantum vol-
ume, the same number of qubits and the same connectivity, two existing quantum

57

Passenger Intent Recognition on Chatbot Queries

devices can yield results not entirely aligned, as a lot of other factors impact the
overall computation. We remark again that the plots are very noisy because of
technological limitations of today’s quantum devices.

5.4 Run on IonQ QPU via Microsoft Azure
At this stage, it most certainly matters which technology one uses, and in particular
which circuit one wishes to execute. Although all of existing technologies imple-
ment universal gates, the topology of superconducting devices is quite different and
potentially more limiting from those of trapped ions. For instance, the latter one
can have (almost) all-to-all connectivity, meaning any qubit within a line can act on
(almost) any other qubit on the line. On the other hand, superconducting qubits
have a particular topology where one qubit can only act on some nearest neighbor
qubits through particularly fabricated microwave couplers, as we already hinted in
the previous chapter, specifically Figure 4.3. Accordingly, superconducting devices
may use a lot of SWAP gates to move qubits around; this can impact overall gate
fidelity. Consider, for instance, a quantum circuit consisting of 24 qubits where
qubit 1 acts as a control for the negation of qubit 23. A trapped-ion system may
be able to have qubit 1 act directly on qubit 23 with a CNOT gate. However,
a superconducting system may require that qubit 23 swaps with qubit 22, which
swaps with qubit 21 and so on before qubit 3 is swapped with qubit 2, and then
qubits 1 and 2 can finally apply the CNOT gate. In such a dramatic example all of
these swap gates really impact the overall fidelity of the superconducting system.
Of course you could always attempt to redesign a circuit so that qubits 1 and 23
don’t have to be doing a CNOT gate therebetween, which is what transpiler are
there for. It’s not always guaranteed this is possible though and here comes our
exploration of a different technology.

Figure 5.3: High-level model for accessing a quantum processing unit (QPU) on Microsoft
Azure

The access model of a quantum computing unit on Microsoft Azure cloud is

58

5.4 – Run on IonQ QPU via Microsoft Azure

shown in Figure 5.3. Differently from IBM Cloud, Azure is a middle layer between
the user and the real quantum providers (IonQ and Honeywell, including Quantin-
uum) offering, at infrastructure level, the storage system and the communication
means. However, running a quantum program follows the same job submission
paradigm: before execution, each task is appended to a queue, which can have a
waiting time of 6-12 hours. This significantly impacts the overall processing time,
as the quantum SDK does not currently support Azure Durable Functions, which
would prove paramount to perform asynchronous executions.

In this section, we explore the 11 qubits trapped ions quantum processing unit
(QPU), offered by IonQ, to run the same experiment described in the previous
section. From the software perspective, we only need to provide an appropriate
backend able to interface with platform:

1 from azure.quantum import Workspace
2 from pytket.extensions.qsharp import AzureBackend
3

4 workspace = Workspace(
5 subscription_id='YOUR_SUBSCRIPTION_ID',
6 resource_group='YOUR_RESOURCE_GROUP',
7 name='ENV_NAME',
8 location='westeurope' # might change depending on where you are
9)

10

11 backend = AzureBackend(
12 target_name='ionq.qpu',
13 resourceId='YOUR_RESOURCE_ID',
14 location='westeurope' # might change depending on where you are
15)

Since a training experiment on this platform on the described setup is quite
expensive (in the order of $50 per epoch), we only let it run for 5 epochs. This
will unfortunately not allow us to make a fair comparison with any of the above
experiments run on IBM devices as we’re not iterating on the same number of steps
and we’re not statistically assessing the experiment several times with multiple runs.
However, in the context of our quantum hardware exploration, it is useful to give
further insights on the different existing technological branches in the quantum
computing industry, without making any strong statement on the comparison. The
obtained results are shown in Figure 5.4.

We notice a faster convergence and, in general, a smoother trend of the curves,
with the model yielding better results both in terms of F1 score and ROC-AUC
score compared to the noisy shot-based simulation and to IBM Oslo and Nairobi.
This might be due to the several factors, including relevant differences in the way

59

Passenger Intent Recognition on Chatbot Queries

the computation is carried out on this hardware. Nonetheless, in the light of the
conditions in which this last experiment was performed, these observations are not
very conclusive, but help us understanding how the transition from a quantum
program developed and tested on some quantum platform to a different one might
require reconsidering the approach used or even the design of the algorithm (for
instance, in our case, the choice of the ansatz and its hyperparameters).

(a) Loss (b) F1 score

(c) ROC AUC score
Figure 5.4: Results of the Ionq QPU on Microsoft Azure after 5 epochs (on a single run)
on the training set, compared with IBM Oslo, IBM Nairobi and Qiskit Aer.

60

Chapter 6

Conclusion and Future Work

In this thesis we explored Quantum models for Natural Language Processing based
on the DisCoCat framework derived from the field of computational linguistics.
We assessed the performances of such models on problems close to real world ap-
plications related to the travel industry and evaluated the status of real quantum
devices taking into considerations two different technological branches: supercon-
ducting qubits and trapped ions. Despite the limited capabilities of the technology
as well as the limitation of our budget — which foreclosed us from trying existing
devices with more qubits — we obtained overall promising results and significant
insights on the usefulness of this technology for one of the most challenging field in
Artificial Intelligence.

Future work includes evaluating this approach on quantum hardware with more
qubits as well as extending it to deal with entire texts, developing on the new
circuital textual approach proposed by Hamza Waseem, Coecke et al. [27]. In
addition, we believe this approach has a lot of potential to deal with tasks like
language generation: state-of-the-art models to produce text are trained in a self-
supervised fashion to predict the following word using the attention mechanism.
Nevertheless, exploiting a mathematical framework capable of determining whether
the next word is supposed to be an adjective, a noun or a verb based on grammar
— which is not supposed to be learned but embedded in the representation, as we
explained — might prove more successful. Eventually, applying this approach to
other kind of languages, e.g. programming languages since they have a fixed and
limited grammar, might result effective.

61

Acknowledgments

My first words of gratitude go to my company supervisors Alix Lhéritier, Nico-
las Bondoux and Mourad Boudia for believing in me, for their constant help and
constructive feedback, for their rigor and attention to details, for the magnificent
opportunity to present this work at SophI.A Summit 2022 and to interact with
world leading companies in the quantum industry like IBM and Quantinuum; for
the social and friendly environment they created within the team, for treating me
as an experienced professional (which I’m not) and a friend, for always taking into
consideration my proposals and ideas. I’m also much indebted to them for reviewing
this work.

I’m grateful to Rodrigo Acuna Agost, who played a crucial role in steering this
thesis in an industrial direction, with his pragmatism and attention to business,
and to all the members of the Amadeus Applied Research and Technology team,
who will recognize themselves.

I would like to also thank Professor Marios Kountouris and Professor Bar-
tolomeo Montrucchio for accepting me as master thesis student and for embracing
my project, being always available for help, suggestions and support.

On a more personal side, my most special thanks to my family: my parents
Maria and Pantaleone, my siblings Sonia and Dario and my girlfriend Martina, the
girl I’ve been growing up with, my safe haven, my adventure partner and by far
the person who made me the man I am today. Thanks for all your unconditional
love, support and appreciation. Without you all, I wouldn’t be here.

63

Bibliography

[1] Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri Kartsak-
lis, and Bob Coecke. QNLP in Practice: Running Compositional Models of
Meaning on a Quantum Computer.

[2] Victor Martinez and Guilhaume Leroy-Meline. A multiclass q-nlp sentiment
analysis experiment using discocat, 2022.

[3] SophI.A Summit. https://univ-cotedazur.eu/events/sophia-summit.
[4] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, oct 1997.

[5] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. 323(6088):533–536.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory. 9:1735–
80.

[7] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks.
45(11):2673–2681.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the
2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguistics.

[10] Stephen Clark, Bob Coecke, and Mehrnoosh Sadrzadeh. A Compositional
Distributional Model of Meaning. In Proceedings of the Second Symposium on
Quantum Interaction (QI-2008), pages 133–140.

[11] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foun-
dations for a compositional distributional model of meaning. arXiv preprint
arXiv:1003.4394, 2010.

[12] Dimitri Kartsaklis, Ian Fan, Richie Yeung, Anna Pearson, Robin Lorenz, Alexis

65

Bibliography

Toumi, Giovanni de Felice, Konstantinos Meichanetzidis, Stephen Clark, and
Bob Coecke. Lambeq: An Efficient High-Level Python Library for Quantum
NLP. abs/2110.04236.

[13] Yaoyun Shi. Both toffoli and controlled-not need little help to do universal
quantum computation. 2002.

[14] J Lambek. Type grammars revisited. a. lecomte, f. lamarche and g. perrier
(eds.): Logical aspects of computational linguistics. lnai 1582, 1999.

[15] Bob Coecke, Giovanni de Felice, Konstantinos Meichanetzidis, and Alexis
Toumi. Foundations for Near-Term Quantum Natural Language Processing.

[16] Richie Yeung and Dimitri Kartsaklis. A CCG-Based Version of the DisCoCat
Framework.

[17] Stephen Clark. Something old, something new: Grammar-based CCG parsing
with transformer models. CoRR, abs/2109.10044, 2021.

[18] Masashi Yoshikawa, Hiroshi Noji, and Yuji Matsumoto. A* CCG parsing with
a supertag and dependency factored model. CoRR, abs/1704.06936, 2017.

[19] V Havlíček, AD Córcoles, K Temme, AW Harrow, A Kandala, JM Chow, and
JM Gambetta. Supervised learning with quantum-enhanced feature spaces.
Nature, 567(7747):209–212, 2019.

[20] Giovanni de Felice, Alexis Toumi, and Bob Coecke. DisCoPy: Monoidal Cat-
egories in Python. In Proceedings of the 3rd Annual International Applied
Category Theory Conference, ACT, volume 333. EPTCS.

[21] Alexis Toumi, Giovanni de Felice, and Richie Yeung. Discopy for the quantum
computer scientist, 2022.

[22] J.C. Spall. Implementation of the simultaneous perturbation algorithm for
stochastic optimization. IEEE Transactions on Aerospace and Electronic Sys-
tems, 34(3):817–823, 1998.

[23] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, et al. Jax: composable transformations of python+
numpy programs. Version 0.2, 5:14–24, 2018.

[24] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edg-
ington, and Ross Duncan. t| ket>: a retargetable compiler for nisq devices.
Quantum Science and Technology, 6(1):014003, 2020.

[25] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In The
IEEE International Conference on Computer Vision (ICCV), December 2015.

[26] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
bert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108, 2019.

[27] Muhammad Hamza Waseem, Jonathon Liu, Vincent Wang-Maścianica, and
Bob Coecke. Language-independence of discocirc’s text circuits: English and

66

Bibliography

urdu. arXiv e-prints, pages arXiv–2208, 2022.

67

	Dedication
	List of Figures
	List of Tables
	Introduction
	Company overview and business sector
	Team presentation

	Thesis objective
	Why Quantum Computers for NLP ?
	Isn't it too early ?

	Background
	Quantum Computing
	Qubits
	State Evolution
	Measurement
	Quantum Circuits
	Universal Gate Sets
	Parameterized Quantum Circuits

	Category Theory
	Categories
	Monoidal categories
	Rigid Monoidal Categories
	Pregroup Grammars
	Monoidal Functors

	Quantum Natural Language Processing
	A Quantum model for Natural Language
	The QNLP pipeline
	Parsing
	Rewriting
	Parameterization
	Optimization
	Model-level view

	Lambeq
	Quantum Simulations on Classical Hardware
	Run on Real Quantum Hardware
	Lambeq compared to quantum machine learning

	Quantum native and quantum advantage

	Customer Feedback Analysis
	Sentiment Analysis on Twitter Airline Dataset
	Modeling the problem
	Exact simulation
	Run on IBM Oslo and Nairobi via IBM Cloud

	Hotel Reviews

	Passenger Intent Recognition on Chatbot Queries
	Modeling the problem
	Exact simulation
	Run on IBM Oslo and IBM Nairobi on IBM Cloud
	Run on IonQ QPU via Microsoft Azure

	Conclusion and Future Work
	Bibliography

