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Abstract

In recent years, deep learning has garnered significant interest due to its ability to achieve
state-of-the-art results across a wide range of applications, including image processing. By
leveraging powerful algorithms and vast amounts of data, deep learning has produced remark-
able results in tasks such as image classification, object detection and semantic segmentation,
through Convolutional Neural Networks architectures. This is due to their capabilities in
learning high-level representations of the data, capturing the underlying patterns and ex-
tracting features from the images. As a result, traditional image processing algorithms have
been outperformed by Artificial Intelligence techniques in terms of accuracy and efficiency,
and researchers have been able to tackle more challenging and complex tasks with greater
ease.
At Huawei Nice Research Center the teams are working intensely on the smartphone camera
image signal processor, developing efficient solutions which can be integrated into the next
generations of smartphones. This thesis work aims to demonstrate how Convolutional Neural
Networks can be used to detect image artifacts at the pixel level that may be created in the
image signal processor. First, by focusing on the demosaicing and ghosting artifacts, which
are known to have a significant impact on image quality, the study builds the datasets labels
for the training of deep learning models capable of detecting these artifacts, in a weak-
supervised scenario. Then, the models performances are rigorously assessed on a variety of
images, ensuring their robustness and testing their generalization capabilities. The ultimate
goal is to use the trained models to create a useful metric based on artifacts detection, which
can be used to assess the quality of images and to aid in the development of more effective
image processing tools. Achieved results are promising since the trained models are using a
limited number of parameters and they are able to correctly detect common image artifacts
with a low inference time. The models have also been successfully used to optimize the
parameters of the well-knownMalvar-He-Cutler demosaicing algorithm which is an important
improvement that may be applied to smartphone camera image signal processor.



Résumé

Ces dernières années, le deep learning a suscité un intérêt considérable en raison de sa
capacité à obtenir des résultats exceptionnels dans toutes sortes d’applications, y compris le
traitement et l’analyse d’images. En tirant parti d’une base de données d’images, le deep
learning a produit des résultats remarquables, en utilisant entre autres des réseaux neuronaux
convolutionnels, dans des tâches telles que la classification d’images, la détection d’objets
et la segmentation sémantique. Ceci est dû à leur capacité à saisir les modèles sous-jacents
et à extraire les caractéristiques de haut niveau/bas niveau des images. En conséquence,
les algorithmes traditionnels de traitement d’images ont été surpassés par les techniques
d’intelligence artificielle en matière de résultats et d’efficacité, et les chercheurs ont été en
mesure de s’attaquer à des tâches plus difficiles et plus complexes.
Au centre de recherche Huawei Nice, les équipes travaillent intensément sur le processeur
de signal d’image de la caméra de smartphone, développant des solutions efficaces qui peu-
vent être intégrées dans les prochaines générations de smartphones. Ce travail de thèse vise à
démontrer comment les réseaux neuronaux convolutifs peuvent être utilisés pour détecter des
artefacts dans les images créées par certains algorithmes. Tout d’abord, en se concentrant sur
les artefacts de demosaicing et de ghosting, qui sont connus pour avoir un impact significatif
sur la qualité de l’image. Une première partie de cette thèse a consisté à construire automa-
tiquement le dataset annoté pour l’entrâınement de modèles de deep learning capables de
détecter ces artefacts, dans un scénario weekly supervised. Ensuite, les performances des
modèles sont rigoureusement évaluées sur une variété d’images, en assurant leurs robustesses
et en testant leurs capacités de généralisation. Le but ultime est d’utiliser les modèles en-
trainés dans le but de créer une métrique pour évaluer la qualité des images et pour ainsi
aider à la mise au point d’outils de traitement d’images plus efficaces. Les résultats obtenus
sont prometteurs puisque les modèles entraines utilisent un nombre limité de paramètres et
sont capables de détecter correctement des artefacts avec un temps d’inférence faible. Les
modèles ont également été utilisés avec succès pour optimiser les paramètres de l’algorithme
de demosaicing bien connu Malvar-He-Cutler. Ce qui est une amélioration importante et
peut-être appliquée pour améliorer les algorithmes de caméra de smartphone.
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About Huawei

Chapter 1

1 Introduction

1.1 About Huawei

Huawei Technologies Co. Ltd. is a Chinese private company founded the 15 September 1987
in Shenzhen in China. Its native name is 华为 which means Chinese Achievement. Huawei
is a leading Information and Communications Technology (ICT) solutions provider and it
operates in a variety of industries such as Telecommunications, Electronics, Semiconductors,
Artificial Intelligence, Automation, and Cloud Computing. It is the second biggest global
investor in Research and Development (R&D) and its products and services are used in more
than 170 countries, serving over one-third of the world’s population as reported in Figure 1.

Figure 1: Map of Huawei globalized resource deployment

In particular, Huawei has more than 80 laboratories and 15000 researchers across the
world and it invests approximately 15% of the company’s turnover in Research, with a peak
of 22.4% in 2021. Huawei is also helping the most promising tech start-ups across the world.
In France, they created a project called Digital InPulse in 2014 which consists of financial
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Nice Research Center

help to the start-ups that performed better in public competitions organized every year,
and it also consists of business trips in China in order to discover the Chinese technology
ecosystem. Up to 2022, Huawei has helped almost 90 start-ups with a total of more than
2.6 million euros. This project is organized with local french organizations and its theme
changes every year, and it may be IoT, Big Data, Smart City, Mobility, Well-being, and
Green Tech. Huawei France is involved in other big projects such as OpenLab where they
work on development and innovation with their partners on different topics (up to today,
more than 50 projects have been realized). One of the most impactful examples is the
work that Huawei did with Orange establishing a new world record for transmission of 157
Tbit/s on a fiber of 120km. Huawei is also working for the environment, making sure that
future technologies will be fully-sustainable. They are working very hard on reducing the
impacts of their infrastructures of communications, and they are also pushing their clients’
companies to do the same. In particular, Huawei is designing infrastructures at high density
to lower heat dissipation and they are reducing the data volume, which needs to be processed
and requires a lot of energy. This process is already providing good results as Huawei has
produced 84.2 kWh of green electricity, reducing carbon dioxide emissions by 23.8 million
tons. Finally, Huawei is also including young and talented students through several projects
such as Talents Numériques and Huawei ICT Academy.

1.2 Nice Research Center

In France, there are 5 Huawei Research and Development centers; Aesthetics in Paris,
Mathématiques, Algorithms and Software and Standardisation industrielle in Boulogne Bil-
lancourt, Capteurs and Santé in Grenoble and the Nice Research Center (NRC). These
centers have been experiencing a strongly positive evolution in recent years as shown in
Figure 2.

Nice Research Center is the second biggest establishment of Huawei in France, after
the Paris site. It is located in Mougins, Sophia-Antipolis, and it was founded in 2013 by
Mr. Stephen Busch, who picked a team of 9 talented people whose goal was to develop
a complete Image Signal Processor (ISP) which will be released in 2016. The ISP was
integrated into the P9 smartphone, and this success allowed the center to grow into a team
of 30 people, from 14 different countries. Employees at Huawei NRC contributed heavily to
the progress in the ISP domain, which role has increasingly become crucial and complex.
Image processing algorithms are updated constantly and the progress in research allows new
possibilities for smartphone camera features. In recent years in Nice Center, a lot of work has
been done in the Artificial Intelligence (AI) domain in order to achieve even better results.
However, AI is a field very hungry for data and energy, which is a physical limitation to the
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Thesis Overview

Figure 2: Evolution of economic fingerprint of Huawei France from 2012 to 2021.

hardware. Since progress is always more difficult to accomplish, the main focus in the last
years was on developing and applying state-of-the-art Computer Vision algorithms in the ISP
domain, but also to make these algorithms highly efficient in order to run on a smartphone
without exceeding the thermal budget of 4 Watts. Overall, NRC’s focus moved from full
Development to a balance between Development and Research throughout the years, mixing
business culture and university culture, with several opportunities as Master’s Internships
and Doctorate projects.

1.3 Thesis Overview

After Image Signal Processing (ISP) pipeline, it is very common to have images with arti-
facts, which are features that did not appear in the original scene. They are also known as
errors in image representation or perception from the human visual system. These wrong
areas in the image may be very small and difficult to detect at first sight, and it makes it
more complicated to evaluate the performance of image processing algorithms automatically.
The goal of this project is to create datasets of images with artifacts and to build a Con-
volutional Neural Network (CNN) which is able to segment different kinds of artifacts as
demosaicing artifacts (false color, zippering, etc.) and ghosting artifacts automatically and
quickly. Results of the CNN are then going to be used as a further metric to assess image
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quality since methods like Peak Signal-to-Noise Ratio (PSNR) or Structural Similarity In-
dex Measure (SSIM) are not extremely precise at estimating quality in small regions of an
image. In addition, the trained demosaicing CNN will be used to optimize the well-known
Malvar-He-Cutler demosaicing algorithm. To our knowledge, currently there is no competi-
tor on this task, and for this reason we will not be able to benchmark our results against
any available model. In particular, this project is more oriented to be a proof of concept in
the image processing research domain.

The project can be divided into different steps: the first one consists of creating a dataset
with demosaicing artifacts. In particular, the selected dataset is MIT-Adobe FiveK dataset
[1]. First, the images are mapped into the Bayer domain, then demosaicing is applied to
these images through the Malvar-He-Cutler algorithm, and the artifacts are automatically
annotated. The following step is building a segmentation model to provide pixel-wise labels
of the artifacts at full resolution since Deep Learning models have been proven to perform
extremely well on Computer Vision tasks. Finally, the trained segmentation network is
validated on the test set, which was obtained with a split on the Adobe FiveK dataset.
Once these steps are completed, we introduced a new artifact: ghosting. This has been done
by using the Kalantari dataset [2] which contains a set of exposures for different images.
Again, labels are created automatically, a convolutional neural network is trained on them,
and its performances are assessed. Then, the two networks are joined in order to have a
unique model which is able to segment precisely both artifacts with a low inference time.
Finally, the demosaicing network results are used as a further metric for optimizing the
kernel parameters of the Malvar-He-Cutler demosaicing algorithm.

1.4 Hardware, Software and Programming Tools

All the work has been done either locally or on a remote machine in order to exploit an
external Graphics Processing Unit. The local machine is a ThinkPad with an Intel(R)
Core(TM) i7 processor. The RAM installed is 16.0 GB and the system type is characterized
by a 64-bit operating system (Windows 10 Pro), x64-based processor. The remote machine
has Windows operating system as well, and it provides a powerful GPU; Nvidia Tesla P100-
PCIE, 16GB. The chosen programming language was Python 3.9 due to its usability in a
Deep Learning context. A variety of libraries have been used, such as:

• argparse: It is a parser for command-line options, arguments, and sub-commands. It
has been used since it allows running Python scripts with command line parameters
through command line [3].

• colour: It is a library for manipulating common color representation such as RGB,
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HSV, etc. in an easy and pythonic way [4].

• cv2: OpenCV is the most used library for Computer Vision tasks in Python. It allows
extremely efficient ways to load, store and manipulate images in a variety of formats
[5].

• Matplotlib: It is a well-known Python library for creating static, animated, and
interactive visualizations in Python, conveying results in a compact way [6].

• NumPy: It stands for Numerical Python and it offers a comprehensive set of routines
for handling numerical problems and complex data structures in an easy way [7].

• os: It provides a portable way of using operating system-dependent functionality, such
as opening files, manipulating paths, etc [8].

• pathlib: It handles different operations related to the file system, allowing modification
and creation of different files and folders in a specific path in Python [9].

• PIL: It is the Python Imaging Library and it includes a set of image processing capa-
bilities, extensive file format support, and an efficient internal representation [10].

• SciPy: Scientific Python library that provides utility functions for integration, opti-
mization, statistics, etc [11].

• shutil: It consists of a set of high-level efficient operations on files and collection of
files [12].

• skimage: Scikit-Image is a collection of algorithms for image processing that often
includes some uncommon models that may be useful in specific scenarios [13].

• time: It provides time-related functions and it is extremely helpful for comparing
algorithms’ speed or testing deep learning model’s inference time [14].

• torch: It is the core library of this project. Torch is an open-source library for Deep
Learning, which allows building Deep Neural Networks in a user-friendly way. It is
extremely flexible since operations on each network layer are easy and more pythonic
than other Deep Learning libraries. It was installed with CUDA [15] to allow GPU
programming [16].

• torchvision: It is part of the PyTorch project and it consists of popular datasets and
model architectures for Computer Vision [17].
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• urllib: It is a collection of several modules for working with Uniform Resource Locators
(URLs) [18].

Besides these libraries, we also used a software called Beyond Compare 4 [19] which allows
comparing two images at a pixel level, according to a certain threshold. It works for a variety
of images format and it includes many useful features such as blending and swapping, that
helps when looking at artifacts predictions.

6



Data and Dataset creation

Chapter 2

2 Demosaicing artifacts

2.1 Overview

The first artifact type that we worked on is the demosaicing artifact. It is an error that
occurs at the pixel level when interpolating an image from the raw domain (i.e. how the light
was captured from the camera’s sensors) to the RGB domain. This process may introduce
problems in the image such as zippering, false colors, etc. which will decrease the image
quality. We were not provided with data containing these problems, hence we replicated
locally the issue starting from clean RGB images available in an open-source dataset. Overall,
demosaicing algorithms which interpolate raw inputs are working very well, however, they
introduce small artifact regions whose detection will be our focus in this section.

2.2 Data and Dataset creation

The dataset we used is the MIT-Adobe FiveK Dataset. It contains 5000 different-shape
photos taken from Single Lens Reflex (SLR) cameras, which are cameras using a system
made of a mirror and a prism, allowing the possibility to see what will be captured through
the lens. In particular, all the images are in RAW format, preserving all the information
captured by the camera’s sensors. The available data archive consists of the following:

• 5000 images in DNG format, which stands for Digital Negative and it is characterized
by being raw, open and lossless. It is open since is licensed through an open license and
its specification can be used and implemented by anyone. The raw format is instead
well-known for containing data that has been minimally processed, allowing for almost
full-information preservation. Finally, it is lossless since the data can be reconstructed
from its compressed version without loss of detail.

• 5 renditions per image made by five experts from an art school. Each of them adjusted
the photos through Adobe Lightroom which is a photo-adjustment software on which
they had a lot of processing skills. They retouched each photo according to their visual
pleasure, so the lack of an objective metric allowed us to have a good range of visual
exposures per image. Experts’ names are Todd Carroll, David Mager, Jaime Permuth,
LaNola Katheleen Stone and Damian Wampler, which will be called experts A, B, C,
D, and E for the sake of brevity.
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• Semantic information about each photo, as reported in Table 1. In particular, there is
information about the subject, light, location, time, and camera that took the picture.
We did not report the camera information as the majority of the photos have been taken
with a different camera setting. For each image, there are 5 high-quality renditions
made by the five experts. We selected the first 2000 images for computational reasons,
rendered from expert C since they are visually more similar to the DNG images as
reported below (3).

Subject Light Location Time Number of images

Man-made object Sun or sky Outdoors Day 1193

Nature Sun or sky Outdoors Day 848

Person(s) Sun or sky Outdoors Day 692

Person(s) Artificial Indoors Unknown 360

Animal(s) Sun or sky Outdoors Day 239

Man-made object Artificial Indoors Unknown 210

Unknown Mixed Unknown Unknown 112

Unknown Mixed Outdoors Unknown 104

Man-made object Sun or sky Outdoors Dawn or dusk 86

Nature Sun or sky Outdoors Dawn or dusk 84

Table 1: Top 10 categories’ sets in terms of number of images in MIT-Adobe FiveK Dataset

Figure 3: Example of DNG image and renditions from the five experts

8



Data and Dataset creation

2.2.1 Gamut conversion

The dataset images’ renditions were in ProPhoto RGB format (also known as ROMM RGB)
so we had to map them to sRGB (standard RGB) format in order to process them with well-
known Python libraries such as NumPy and OpenCV. The RGB term stands for Red, Green,
and Blue respectively, and every color we can see is made by taking into account different
amounts of red, green, and blue channels. However, channel information is necessary but not
sufficient in identifying a unique color; further information that we need is the color space
in which we are operating. ProPhoto RGB and sRGB are both color spaces: a specific set
of colors obtained by taking two paints (e.g. red and blue) plus a white canvas and mixing
the two paints. The difference between sRGB and ProPhoto RGB is the dimension of the
gamut which is the range area of what human’s eyes can see among all the colors. For the
sake of simplicity, if we take a 2-dimensional representation of every color humans can see
(not accounting for the luminance dimension) we can visualize the difference between the
two gamuts in Figure 4 and Figure 5, while the luminance contribution can be found in
Appendix A.1. The sRGB color space is the smallest and it is widely used on smartphones,
web browsers, etc. for reading and displaying colors, since there are hardware limitations
on different devices and a standard is required. In particular, choosing a small color space
allows consistency through a variety of devices, at the cost of introducing a bigger limitation
in the number of different colors that can be displayed. ProPhoto RGB includes the so-called
imaginary colors which are not visible to humans. We mapped values from ProPhoto RGB
to sRGB reducing also the bit depth from 16 bits per pixel to 8 bits per pixel, hence we
reduced the number of combinations of different RGB values. We did that because many
applications and the majority of Python libraries assume we are using a default color space,
and so ProPhoto RGB pixel coordinates would be read wrongly. However, when it is possible,
it is better to use ProPhoto as the working space, and sRGB as the output space. In order to
convert from ProPhoto RGB to sRGB, first we convert the image’s pixels to floating-point
representation in the range [0, 1] dividing by 216− 1 which is the largest number that can be
represented on 16 bits. After that, we decode with RIMM-ROMM RGB decoding function
and then from that gamut to sRGB gamut using CAT02 conversion matrix (CAT stands for
Chromatic Adaption Transform, which is a function emulating human’s capability to adjust
to changes in illumination in order to preserve the appearance of object colors). Finally,
we encode with sRGB inverse Electro-Optical Transfer Function and we convert to integer
representation in the range [0, 255].
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Figure 4: Gamut of standard RGB Figure 5: Gamut of ProPhoto RGB

2.2.2 Mosaicing

Mosaicing is a process that is applied to the RGB images in order to map them to the Bayer
domain. In particular, this is the domain that is obtained after that a Color Filter Array
(CFA) is applied on a grid of the camera’s photosensors. There are different filters that can
be used, however, we chose the well-known Bayer filter as shown in Figure 6 which is an
RGB filter that allows capturing either red, green, or blue light’s intensity for a specific pixel
in the image (Figure 7). The photosensors are made of semiconductors and the camera’s
green photosensors are commonly called luminance-sensitive elements, while red and blue
are called chrominance-sensitive elements.

The filter layer is hence composed of red, green, and blue filters which filter the light by
the wavelength range, providing information about the light’s intensity in the three different
colors. The filter pattern is half green, one-quarter red, and one-quarter blue. Depending
on the arrangement of these 4 color filters we can have BGGR, GBRG, GRBG, or RGGB
Bayer filters. The Bayer pattern alternates blue rows (B, G, B, G, ...) and red rows (G, R,
G, R, ...), using twice as many green as red or blue because the human eye is more sensitive
to green light and the filters wish to mimic human eye physiology. The filter that we chose
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Figure 6: Bayer filter
Figure 7: Profile and cross-section of pho-
tosensors

is BGGR which is also represented in Figure 7.

2.2.3 Demosaicing

The demosaicing process consists of interpolating the color value of the neighborhood’s pixels
in order to get the complete color information for a specific pixel, in an image that has been
captured through a Bayer filter. There are different demosaicing algorithms, and we chose
the well-known Malvar-He-Cutler gradient-corrected bilinear interpolation [20], proposed in
2004, which exploits a linear method with 5 × 5 filters. This method is a modification
of the bilinear interpolation where, at a blue or red location, the green component of a
pixel is derived by the average of its four axial neighbors (Equation 1), while red and blue
components at a green location are derived similarly, but using the four diagonal components
(Figure 8), due to the filter shape.

Ĝbl(i, j) =
1

4
(G(i− 1, j) +G(i+ 1, j) +G(i, j − 1) +G(i, j + 1)) (1)

To improve upon the quality of this simple method, Malvar, He, and Cutler add Laplacian
cross-channel corrections. For example, the green component at a red pixel location is
estimated as:

Ĝ(i, j) = Ĝbl(i, j) + α∆R(i, j)

∆R(i, j) := R(i, j)− 1

4
(R(i− 2, j) +R(i+ 2, j) +R(i, j − 2) +R(i, j + 2))

(2)
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Figure 8: Examples of bilinear interpolation of red at a blue location, green at a red location,
and blue at a red location respectively. Highlighted pixels are averaged in order to get the
interpolated value.

where ∆R is the discrete 5-point Laplacian of the red channel and α controls the weight
of the Laplacian correction term. This term is about a different channel with respect to
the one we are computing, and that is why the correction is called cross-channel. Further
equations can be found in Appendix A.2. The 5 × 5 linear filters and their coefficient are
represented in Figure 9.

In order to deal with the poor quality of interpolation on the borders of the images,
we applied padding of size 5 with reflection. In this way, pixels on the border had better
quality and after doing that, padding pixels were removed. An example of the results of the
mosaicing and the demosaicing process is shown in Figure 10, where artifacts are particularly
evident for visualization purposes.

2.2.4 Labels creation

Our goal at this point was to annotate automatically the artifacts. In Figure 11 it is evident
that at first sight images obtained with demosaicing look identical to original scenes, however,
zooming on the details we can clearly see that interpolation led to the introduction of artifacts
in some image’s areas.

In order to annotate automatically the artifacts the following steps are followed:

• Obtain a raw approximation of the labels: pixels of the original image are compared
with the pixels of the image after the interpolation and if the value on at least one
channel is higher than a default threshold, then the pixel is considered as part of an
artifact (Figure 12). The comparison is pixel-wise and the chosen threshold was 20
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Figure 9: The 5× 5 linear filters. The coefficient values are scaled by 8

since it was the value that allowed us to visually highlight the majority of the artifacts
(difference between pixel values) in Beyond Compare 4.

• Apply closing: it consists of a dilation followed by an erosion and it is useful for
having wider labeled areas since the first approximation is very noisy and not smooth.
In particular, both dilation and erosion operations are computed through a kernel.
Dilation consists of applying a convolution to an image through a kernel, and every
pixel in the image region under the kernel is replaced by the maximum value of the
same image’s region. Since the image in our case is a binary label this means that
if at least one pixel value in the label region under the kernel is 1, then all the area
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Figure 10: Application of mosaicing and demosaicing on input image

Figure 11: Example of difference between original image (left) and interpolated image (right)

under the kernel becomes 1. Erosion is similar to dilation, but it uses the minimum
value instead of the maximum for the replacement of pixel values in the area under
the kernel. Dilation and Erosion operations are reported respectively in the set of
equations 3.
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Figure 12: First criteria that is used to label a pixel as demosaicing artifact

dst(x, y)
dil
= max(x′,y′) : element(x′,y′) ̸=0 src(x+ x′, y + y′)

dst(x, y)
er
= min(x′,y′) : element(x′,y′) ̸=0 src(x+ x′, y + y′)

(3)

• Remove regions with few pixels: it is important to have labeled regions that do not
contain too many sparse pixels since they carry little information alone and overall
they are a contribution to noise in the label. We implemented two ways to do this: the
first consists in applying opening which is the opposite of closing (erosion followed by
dilation), and the second way is to apply the Region Proposals algorithm from skimage
library and removing regions made of one pixel only. This algorithm simply clusters
some possible regions of pixels, and we discarded the regions which were not relevant
from an area point of view.

An example of this process is reported in Figure 13. These steps are done using a threshold
of 20, a closing kernel with shape (4, 4), and the Region Proposals algorithm, because it
provided the best visual results. Once these operations are done, the percentage of the image
which has been labeled is considered. This information is used for computing an adaptive
threshold (Equation 4), adapted to the current image, in order to avoid labeling too many
pixels in noisy images. Without doing that, noisy images would have had labels containing
a lot of pixels labeled as artifacts, when in fact they are only noise. The adaptive threshold
mitigated this problem and it allowed us to avoid having misleading label information. An
example of the effectiveness of an adaptive threshold is reported in Figure 14.
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Figure 13: From left to right: original raw label, label after closing, label after opening

thadaptive =

⌊
thdefault ·

(
1 + 10 · pixelsartifacts

pixelstotal

)⌋
; thdefault = 20 (4)

Figure 14: Example of how using the adaptive threshold improves the results in noisy images

The adaptive threshold has been computed with the aim of making the threshold more
severe with an increasing ratio of pixels labeled as demosaicing artifacts in the overall image.
The 10 factor in Equation 4 has been introduced because, on average, there was a small
number of foreground pixels, and so we would have ended up having a range of thresholds
that was very small (each threshold would have been very close to 20, which is the default
threshold). Instead, we wanted a broad range that was able to represent the labels for
different input images correctly. Then, the process explained above (applying closing and
removing regions with few pixels) is repeated to obtain the final label image, which is however
to be considered as weak supervision. Visual examples of artifacts and their labels are
reported in Figure 15.
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Figure 15: From left to right: original scene, artifacts generated, labels

2.2.5 Training-Validation-Test Split

For computational reasons, we worked with the first 2000 images of the MIT-Adobe FiveK
dataset instead of the full 5000 images dataset and, in order to set up the data for a supervised
deep learning model, (in this case, a segmentation Convolution Neural Network) we divided
the images into 3 sets:

• Training set: This set contains the images which will be used for training the model,
it should be large enough in order to be representative of the problem we would like
to address. It is called training because it is the set that the model exploits for tuning
its layers parameters which are part of the non-linear function which will provide a
solution to our problem. In our case, this set consists of 1440 images.

• Validation set: It is fundamental that the model we will train will be able to learn,
but also to generalize on a variety of data, without the risk of overfitting on the training
set (i.e. achieving good performances on the training data, with poor results on new
data). In order to do that we use a validation set that we generated by selecting 160
images.
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• Test set: This is the set of images that will be used to assess the performance of our
model; it consists of images that are not seen during the training process, in order to
quantify the performance of our model on new data. For this set, we used 400 images.

The split was performed by setting a random seed that ensured the replicability of all the
experiments. Further seeds should have been tried, but for computational and time reasons
we worked with seed 42 only.

2.3 Segmentation network

The next step consists in building a segmentation network that allows labeling artifacts in
a full automatic way. The network we chose is the U-Net [21]. Originally, this network
was used for biomedical images and it became very popular for its promising results with
a reasonable training time. The network architecture consists of a contractive path and
an extractive path. The former is made of a sequence of two 3 × 3 convolutions, followed
by batch normalization (not present in the original network, it is an addition we did in
order to mitigate internal covariance shift), a ReLU activation function and a 2 × 2 max
pooling operation, with a stride 2. In the original paper architecture, at each downsampling
the number of feature maps’ channels is doubled, however, we kept a 32-depth of feature
maps since we prefer light models from a hardware perspective. On the other hand, the
extractive path consists of a sequence of two 3 × 3 convolutions as well, also applying a
2 × 2 up-convolution that upscales the feature maps, but instead of halving the number of
channels as in the original paper, it keeps them at a fixed value of 32 channels. In addition,
in each block of the extractive path, it is also applied a concatenation with the features
of the corresponding contractive path block. Finally, we obtain a segmentation mask on
which we apply the sigmoid function to get the predicted labels. An overview of the U-Net
architecture is reported in Figure 16.

2.4 Training

Since all the input images have different shapes, we cropped each input image, making sure
that the crop contains some artifact pixels. In addition, to make the training more robust
we sometimes feed training crops from original images, which do not contain artifacts. We
tried two different ways to select training crops. The first one consists of taking 20 random
crops in a random image among the training ones. Then, we pick the random crop with the
highest number of foreground pixels (i.e. the crop with the highest number of artifacts in the
current image). We feed this crop to the network, but we also feed the same crop from the
original image, which is in theory without artifacts, but this depends on the original data’s

18



Training

Figure 16: Our U-Net architecture

quality, which we assumed to be completely clean from artifacts. In this way, the network
will have at its disposal the difference in appearance between a crop with artifacts and a
crop without them. A scheme of this process is reported in Figure 17.

The second way to select training crops we tried consists in selecting a random image
and then sampling a crop from either its version with artifacts or from the clean one. We
used a Bernoulli random variable with probability p = 0.4 to sample a random crop from
a training image with artifacts, otherwise, we pick a random crop from a random image
without artifacts. As before, if the crop is sampled from an image with artifacts, we make
sure to select the crop with the highest number of foreground pixels, among a set of 20
sampled crops. Eventually, we picked this latter training crop criteria, which process is
reported in Figure 18.

We trained the network on a GPU (Nvidia Tesla P100-PCIE, 16GB), assessing the results
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Figure 17: First training crops sampling criteria we implemented

Figure 18: Second training crops sampling criteria we implemented

both visually and in terms of Dice Score which will provide partial information about the
ability of the neural network to identify demosaicing artifacts. We also used visual quality as
a metric because the Dice Score may be misleading sometimes since we have labels that are
very small compared to the input image size and since the Ground Truth labels are weak.
The set of parameters, losses, and optimizers we tried are reported in Table 2, and the best
set has been highlighted. The training was 40 epochs long, which took approximately 35
hours.

We chose to work with region-based loss functions only, as this approach was more suitable
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Batch size Crop size Learning rate Optimizer Loss

2 256 0.001 SGD Dice

4 512 0.01 Adam Tversky (β = 0.25)

8 1024 0.05 RMSProp Tversky (β = 0.75)

Table 2: Set of hyperparameters tried in training the demosaicing segmentation network

for the type of data that we had as it considers loss information both locally and globally
(distribution-based losses like the Binary Cross-Entropy Loss provides a lower performance).
The Dice Loss [22] is derived from the Dice Score which is a well-known metric used in
Computer Vision to compute the similarity between two images. From this metric, we can
compute the Dice Loss as reported in the set of equations 5. From a Set Theory perspective,
the Dice Score is a measure of overlap between two sets, in particular between two image
labels in this case (y which is the Ground Truth label, and ŷ which is the predicted label).
The score ranges between 0 and 1, and we can use 1 − Dicescore to maximize the overlap
between the two labels. The numerator of the Dice Score consists of 2 times the overlap,
instead, the denominator is the union of the two sets. They both have an additional ϵ term
(default is 1) to avoid edge scenarios in which the function is not defined (if y = ŷ = 0).

DiceScore(y, ŷ) =
2yŷ + ϵ

y + ŷ + ϵ

DiceLoss(y, ŷ) = 1−DiceScore

(5)

The Tversky Loss [23] is instead derived from the Tversky index, which is a generalization
of the Dice Score. The derivation of the loss is the same as Dice, and the Tversky Index
introduces a weight for both False Positives (FP) and False Negatives (FN) through a β
parameter which ranges from 0 to 1, as the index itself (6). In particular, a higher β would
lead to a model more sensitive to FP, and the value of the index would decrease when the
number of False Positives increases. When FP and FN have the same weight (β = 0.5) the
Tversky Index corresponds to the Dice Coefficient; the proof can be found in Appendix B.1.
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TverskyIndex(y, ŷ) =
yŷ + ϵ

yŷ + β(1− y)ŷ + (1− β)y(1− ŷ) + ϵ

TverskyLoss(y, ŷ) = 1− TverskyIndex

(6)

2.5 Results

With the previously explained setting, we obtained an average Dice Score of 0.62, which was
computed by considering the score on the demosaicing artifacts class (0.31) and the score
on the background class (0.93) on all the test set images. This set consists of 400 images
that were never seen during training. However, these quantitative results must be analyzed
considering that the Ground Truth consisted of weak labels automatically generated, and
since the artifacts are very small regions where the Ground Truth may not be fully reliable,
we analyzed with more attention the visual results as they are more representative of the
true performances of the model. In addition, we paid attention to the inference time as we
wanted to build a fast model and the average prediction time is 34.2±0.5 ms per image with
a shape of (1024, 1024) and it was computed again considering the test set only (even though
this was not strictly necessary), making sure to apply a GPU warm-up, in order to avoid
misleading results due to GPU initialization time. Examples of visual results of the inference
step are reported in Figure 19 which consists of zoomed areas of the original images since
demosaicing artifacts regions are tiny and difficult to be seen looking at the whole image.

As shown in Figure 20 sometimes there is a problem with False Positives (i.e. the pixels
labeled as artifacts, which are instead correct pixels) and False Negatives, even though this
issue is raising only in a small number of predictions. This problem is more likely to happen in
images where there is a strong texture, as grass, tree and other nature’s elements. However,
sometimes False Positives are not actually false, but the bad quality of the input (an image
that should be clean, but in reality, it is not) is fooling the network, which will predict some
areas of pixels as artifacts (21).

Finally, we report an analysis over the feature maps which the trained neural network is
producing at a specific layer. In particular, we want to visually assess that if we take the
same image, with and without demosaicing artifacts, the network is able to extract different
features. As shown in Figure 22, we can see that taking the third U-Net decoder, the feature
maps are very different depending on the input presence of artifacts. The network is clearly
able to focus automatically on the regions affected by the artifacts, which is what we wished
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Figure 19: Examples of good demosaicing’s artifacts segmentation

Figure 20: Examples of bad demosaicing artifacts segmentation. On the left, there are False
Positives, and on the right there are False Negatives.

and expected.
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Figure 21: Examples of how the input quality of an image can fool the network.

Figure 22: Feature maps at third U-Net decoder for input image with and without artifacts.

24



High Dynamic Range images

Chapter 3

3 Ghosting artifacts

3.1 Overview

At this point, we wanted to assess our model on a new type of artifact: the so-called ghosting.
Ghosting artifacts are created when merging between multiple exposures happens and there
has been some movement across them. In particular, an exposure is the amount of light that
reaches a camera’s sensor for a period of time. Movement across exposures can be either
referred to objects in the scene, or to the camera. For this new artifact, we worked with
the Kalantari dataset which paper was presented at SIGGRAPH conference of 2017, which
is a well-known computer graphics conference organized by the Association for Computing
Machinery’s Special Interest Group on Computer Graphics and Interactive Techniques.

3.2 High Dynamic Range images

High Dynamic Range images, also known as HDR, are images obtained by combining differ-
ent exposures (different amounts of light per unit area) of a certain subject. The dynamic
range is quantified as the ratio between the maximum value of a quantity, and its minimum.
In particular, in image context, the dynamic range is referred to as the quantity of light. A
natural effect in camera images is that the human eye is only able to differentiate between
luminosity in a certain range, outside of which brighter areas are perceived as pure white
and darker areas as pure black. However, by taking different exposures and combining them
we can obtain a higher dynamic range; that is where the name comes from.

The dynamic range in image processing is measured in EVs which stands for Exposure
Value and it is a combination of exposure time (t) and f-number (N), as reported in Equation
7.

EVabsolute = log2
N2

t
(7)

This is the most common way to define the EV, in an absolute way. However, it is also
possible to define it in a relative way by using a reference exposure time which is defined in
Equation 8.

EVrelative = log2
texposure
tref

(8)
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After having merged the exposures, we have to apply tone mapping. Tone mapping is an
operation performed with the aim to map a 32-bit image to another set of colors (typically
8-bits) giving the image the appearance of a High Dynamic Range image. An example of
this process is reported in Figure 23.

Figure 23: Examples of merging exposures and tone mapping

3.3 Data and Dataset creation

For this artifact, we used the Kalantari dataset, which originally contains 74 training images
and 15 test images. For each image, there are 3 different exposures, a text file providing
information about the exposure values, and the merged HDR image. In order to create a
functional dataset we had to create ghosting artifacts by merging the provided exposures for
each image. Since among each exposure there has been movement, the final merged image
will contain ghosting. We have to label automatically the ghosting first, and then do it
through a segmentation network as we did for the demosaicing artifacts.

3.3.1 Merging exposures

The original dataset contains, for each image, a short, medium, and long exposure. In order
to enlarge the dataset, we decided to merge each pair of exposures (i.e. short with medium,
medium with long, and short with long) as reported in Figure 24.

Also, we kept the original exposures to have a dataset containing both images with ghost-
ing and clean images. In this way, we managed to obtain a training dataset of 444 images
and a test set of 90 images. There are many different algorithms to merge exposures; we
implemented Debevec [24], Robertson [25] and Mertens [26] thanks to the OpenCV library.
The first two algorithms use the exposure times and the tone mapping, while Mertens does
not need them, and it is the one that we used. It does so because this allows a simplification
of the acquisition pipeline (physically-based HDR assembly is skipped) and it is computa-
tionally efficient. The main idea is that the merging is guided by simple quality measures as
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Figure 24: Merging pair of exposures with movements across each other

contrast, saturation and well-exposedness. Contrast is computed through a Laplacian filter
to the grayscale version of each image (taking the absolute value of the filter response); in this
way, the higher weights will be assigned to edges and texture areas. Saturation is computed
as the standard deviation within the 3 channels at each pixel. Finally, well-exposedness is
computed by looking at the raw intensity within a channel and multiplying them. The fusion
is then computed through a weighted average along each pixel whose value is the multiplica-
tion of the three metrics we discussed above. The final step is to compute the fusion using a
Laplacian pyramid decomposition and a Gaussian pyramid of the weight maps, which rep-
resents measures such as contrast and saturation. This algorithm expects the images to be
aligned, however, we did not align them because we wanted to introduce the ghosting effect.
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3.3.2 Labels creation

As we did for the artifacts coming from demosaicing in the MIT-Adobe FiveK Dataset,
the first step is to create raw labels automatically. A näıve and simple solution would be
to compare the provided HDR image with the merged image, and the difference would be
the ghosting artifacts, however, in the Kalantari dataset the HDR images are referred to
the medium exposure and so these images become useless in this context. In particular,
Kalantari’s HDR image for a certain set of exposures is derived from a merging operation
between the exposures, after that they have been aligned to the middle exposure. For this
reason, the HDR could not be used as a Ground Truth image for labeling ghosting artifacts
automatically. So, the solution we implemented consists of the following:

• First, we invert Gamma correction by exponentiating each pixel value by the
Gamma value, which is 2.2 in most of the cases. This is done for each image and for
each set of exposures; for example first image and set (short, medium), set (medium,
long), and so on. Thus, we would end with a set of exposure images whose colors
are different in a linear way. Then we map each pair of exposures to the same colors
by exploiting the EV information, which is provided for every image. For example, if
an exposure has an EV=0 and another exposure has EV=2 we can map the first one
to the colors of the second one by inverting gamma correction, and multiplying the
image by a factor of 22/20, assuming a reference exposure time of 1 second. Finally,
we compute the absolute difference between these two exposures (which we will name
D), taking the maximum difference along channels and normalizing the values in the
interval [0, 1]. This first step is summarized in Figure 25.

• Despite being useful, the D difference is not sufficient information for labeling a pixel
as a ghosting artifact. In fact, if we would simply select a threshold above which a pixel
is considered a ghosting artifact, we would lose the ghosting artifacts in darker regions,
where the difference from the previous point may be low, but still evident to the human
eye and relevant from a ghosting perspective. For this reason, we compute a mask of
low luminance of the image coming from the merging of the exposures. A pixel is
considered as part of the low luminance area if its luminance value is below the average
image’s luminance, multiplied by a factor of 2

3
, which was a tuned parameter. This

mask is used to compute another mask starting from D ; it is a mask that aims to select
possible ghosting pixels in dark regions and in regions of medium brightness. These
pixels are selected through two bounds, LB and UB, which were tuned by looking at
visual results. An example of this step is reported in Figure 26.

• At this point, we computed a mask for ghosting pixels which are in brighter areas,
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Figure 25: How the difference between two exposures is computed

Figure 26: Low luminance mask computation and raw detection of ghosting in dark and
medium brightness areas

simply by looking at pixels whose D value was above a certain threshold, which was
tuned again by looking at visual results. Finally, a first approximation of the raw
ghosting label is derived according to Equation 9, which exploits all the masks that we
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computed.

labelraw = masklow luminance · maskLB < D < UB + maskD > TH (9)

The mask that deals with ghosting pixels in dark and medium brightness areas is
multiplied by the mask of low luminance because the bounds values we found through
parameter tuning may not work for every image in the dataset, so this multiplication
allowed us to make sure that the bounded region is consistent with the low luminance
area of the current image. An example of how these masks are combined is reported
in Figure 27.

Figure 27: Visual example of how the raw label is created by exploiting previous steps and
luminance information

• Finally, we exploited the dataset’s information that the person is always moving across
exposures. In particular, sometimes the person is in a very dark area of the image
and some details of the ghosting are lost there. In order to partially recover them,
we combine the previous step’s raw label with the pixel segmentation of the person.
The person’s segmentation has been obtained for every merged image thanks to a
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pre-trained semantic segmentation network. For this step, we used PyTorch
pre-trained DeepLabV3-ResNet50 [27] which provides very accurate results. Therefore,
the final label is given by:

labelfinal = labelraw +maskperson · (D > (D ·maskperson)mean) (10)

and the result is improved through operations of dilation and erosion as it was done
for the previous kind of artifact. An example of this last step is reported in Figure 28.

Figure 28: From left to right: merged image, approximation of raw label, improved raw label
with the pre-trained network, closing and opening operations.

After these steps were done, we obtained some good quality raw labels, as reported in
Figure 29.

3.4 Training

The training process is similar to the demosaicing model, however, this time we have to
consider 3 aspects:

• The dataset is balanced because for every set of 3 exposures we generated 3 merged
images containing ghosting artifacts, and we also kept the exposures as clean data. For
this reason, at training time we simply picked a random image, and this process can
be seen as randomly selecting from a Bernoulli random variable with p = 0.5, in the
long run.

• Differently from the demosaicing artifacts, when dealing with ghosting in the Kalantari
dataset, we have a wider area with foreground pixels. For this reason, we decided
not to apply the most representative foreground crop criteria as we did for demosaicing
(Figure 18), but to simply take a random crop, since selecting the most representative
crop is an expensive operation that we should perform only if strictly necessary.
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Figure 29: Examples of raw ghosting artifacts labels.

• The Kalantari dataset is much smaller than the MIT-Adobe FiveK Dataset, and
for this reason, we performed an important data augmentation step, which will be
described in detail in the next subsection.

Following the same approach that we used for the previous training, we made sure to
have 3 datasets: training set, validation set, and test set since we wanted to avoid overfitting
and we wanted to be able to test the model’s generalization capabilities.

3.4.1 Data Augmentation

Data Augmentation is a process that aims to both enlarge small datasets, but also to in-
troduce variety in the data we are dealing with. In fact, deep learning models need a huge
amount of training data and a small dataset may not be enough to train a good model (even
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though pre-trained models exist and practices like fine-tuning and transfer learning are very
common and effective). Also, the variety of data is a crucial aspect when training a model
because we want to avoid overfitting on a very limited domain of input images. For example,
if a training dataset consists of images of winter scenes and at inference time we are provided
with similar images, but in a different season, results may be poor. In the Kalantari dataset,
we had to keep into account this effect because it is a dataset containing images created
by a small number of people, with pretty similar scenes and so augmentation was necessary
to allow a better generalization on this task. We performed data augmentation with the
following criteria; with 60% probability, we made the image’s crop darker by lowering its
brightness, through a brightness factor that has a deterministic term and a random term x
for better generalization, as reported in Equation 11. This factor was further clipped into
the range [0, 1], which is the same range value of the input image’s crop.

brightnessfactor =
1− imagemean

3
+ x ; x ∈ [0, 1) (11)

After that, with a 30% probability, we entered in another set of augmentations, each of
which was applied with a 50% probability (hence, we can apply multiple augmentations at
the same time). These augmentations are random horizontal flipping, color jittering and
Gaussian noise addition. We made sure to apply a small color jittering and Gaussian noise,
not altering too much the images’ domain. A scheme of this data augmentation model is
reported in Figure 30 where augmentations are strongly intensified only for visualization
purposes.

3.4.2 Network

For the ghosting segmentation task, we used the same network that we utilized in the De-
mosaicing Artifacts segmentation task: the U-Net, in a lighter version. Following a similar
approach with respect to what we did in demosaicing problem, we tuned the U-Net by
performing different training runs with different hyperparameter sets which are reported in
Table 3, where we highlighted the best combination of them.

3.5 Results

From a visual point of view, after a training of 20 epochs (which took approximately 18
hours), the CNN yielded very good results on clean images, i.e. it predicted almost every
pixel in the image as a background pixel, which means not being a ghosting artifact. An
example of this model’s quality is reported in Figure 31.
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Figure 30: Data augmentation criteria applied for Kalantari’s dataset. Each xi is sampled
from a uniform distribution with range [0, 1].

Batch size Crop size Learning rate Optimizer Loss

2 256 0.001 SGD Dice

4 512 0.01 Adam Tversky (β = 0.25)

8 1024 0.05 RMSProp Tversky (β = 0.75)

Table 3: Set of hyperparameters tried in training the ghosting segmentation network

Instead, predictions on images containing ghosting artifacts were not extremely well-
performing. Overall, ghosting areas are detected, but label boundaries are a bit noisy and
the label area is often slightly wide with respect to the ghosting area. This may be due
to the implicit hard task we are trying to solve. In particular, detecting and labeling a
ghosting area is difficult also for the human eye, because, as the name suggests, ghosting
areas are regions where there is just a shadow of objects which were present in a certain
exposure, and if this shadow is not particularly opaque it is very difficult to detect it. Also,
in the Kalantari dataset, it often happens to have exposures in which objects have moved
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Figure 31: Examples of ghosting prediction on clean images.

considerably, making it even harder to select which regions can be considered as real, and
which areas as ghosted, in the final merged image. We report some visual results in Figure
32 where it is clearly visible that ghosting CNN performance is acceptable, but there is room
for improvement, especially for what concerns the precision of label boundaries.

Probably, a different and deeper network may have helped in achieving better results, but
we kept working with the light U-Net for hardware limitations and also because we wanted
to fairly assess the CNN performance on a different range of artifacts. As we discussed in
the Demosaicing Network, when we are dealing with artifacts and weak labels, numerical
metrics such as the Dice Score can not be considered fully reliable. However, for the sake
of completeness, we report that the average Dice Score of the model is 0.7, and the scores
of ghosting artifacts class and background are respectively 0.46 and 0.94. These values have
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Figure 32: Examples of ghosting prediction on images with artifacts.

been computed considering the predictions on the test set, which consists of 90 images never
seen during the training step. Instead, the average inference time of the model is 36.9±0.4 ms
for an image with shape (1024, 1024), and it was computed as we did previously for the
demosaicing network.

Finally, we report an analysis of the feature maps which the trained neural network is
producing at a specific layer, as we did previously for the demosaicing CNN. As shown
in Figure 33 we can see that taking again the third U-Net decoder, the feature maps are
very different depending on the input presence of the ghosting artifacts. Also this time, the
network seems to understand correctly the meaning of ghosting artifacts and it automatically
focuses on the regions of interest when getting closer to the predictions.
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Figure 33: Feature maps at third U-Net decoder for input image with and without artifacts.

37



Training

Chapter 4

4 Joint network

4.1 Architecture

Once the two artifacts segmentation networks have been successfully trained, we merged
them in order to have a unique model being able to identify both demosaicing and ghosting
artifacts. We kept the U-Net structure, however instead of moving towards a multi-class
problem we decided to keep it binary and adding two branches at the end of the U-Net, one
for each type of artifact. This was done because it allowed us to have a first part of shared
parameters, and then a set of specific parameters for each artifact. Both branches consist of
a convolution block which is made by two sets of convolutions with (3, 3) kernels, a Batch
Normalization layer, and a ReLU activation function. Finally, each branch has a mapping
from the 32-channel feature map to the output segmentation map, through a convolution
and a sigmoid activation function to map real values to probabilities. The joint network
architecture is reported in Figure 34.

4.2 Training

Despite the two branches do not contain a big amount of blocks, they introduce a set of new
parameters to be tuned. A clear consequence of this is a lower memory space when training
the model. Indeed, we had to reduce the batch size in order to match CUDA memory
requirements for the joint deep neural network. For this reason, the space of hyperparameters
that we explored during the training runs had smaller batch size values, as summarized in
Table 4, where we reported part of the hyperparameters that we tried. The model was
trained for 40 epochs which took approximately 40 hours.

Batch size Crop size Learning rate Optimizer Loss

2 256 0.001 SGD Dice

4 512 0.01 Adam Tversky (β = 0.25)

8 1024 0.05 RMSProp Tversky (β = 0.75)

Table 4: Set of hyperparameters tried in training the joint segmentation network
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Figure 34: Joint U-Net architecture.

The training criteria did not change, as it just consisted of randomly picking images from
either the demosaicing dataset or the ghosting dataset. Then, the local dataset training
criteria were the same as the two single models that we described in previous sections. As
we did and explained before, we used a training, validation, and test dataset split.

4.3 Results

The joint network had the goal to maximize performance on both kinds of artifacts at the
same time. Overall, we noticed that this goal was achieved, even though a trade-off was
necessary. In particular, convolutional neural networks trained for demosaicing artifacts
detection and ghosting artifacts detection separately provided better results on the kind of
artifacts they were trained on, but poor performance on the other type of artifact as it was
never seen during training. The joint network instead yielded much better predictions on
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the type of artifact on which the network was not trained before, at the cost of a slight
decrease in performance on the artifacts on which the single-artifact network was trained.
For example, the CNN trained only on ghosting artifacts is providing good performance
on this kind of artifact, but poor results if the input contains demosaicing artifacts, while
the joint network provides good results on both (even though the performance on ghosting
decreases a bit as the network is trained on two artifact types instead of ghosting only). An
example of this behavior is reported in Figure 35 and Figure 36.

Figure 35: Effectiveness of joint network with respect to the demosaicing network.

As we did for the previous networks, for the sake of completeness we report some metric
values for the joint artifacts segmentation network, which are not fully reliable as we discussed
in previous sections. In particular, in Table 5 we report a scheme in terms of Dice Scores in
different settings. It is interesting to notice that the joint model has learned to distinguish
the two artifacts very well. In fact, when using the joint model with an input containing
demosaicing artifacts, its predictions very rarely contain ghosting artifacts (and vice-versa).
In particular, in these cases, the average percentage of False Positives was 0.05%, which
was again computed and averaged on both the full test sets. The average inference time is
instead 55.6 ± 0.9 ms for an image with shape (1024, 1024), which is a bigger value with
respect to the single-artifact models, and we could expect that since the joint network has
more parameters than the previous networks.
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Figure 36: Effectiveness of joint network with respect to the ghosting network.

Dice Score
Joint model on demosaicing test set

Demosaicing Artifacts predictions

Joint model on ghosting test set

Ghosting Artifacts predictions

Artifacts Class 0.3 0.43

Background Class 0.94 0.95

Average 0.62 0.69

Table 5: Results in terms of Dice Score for the joint model in different settings.
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Chapter 5

5 Optimization

The last goal of this work consists of optimizing well-known and used image processing algo-
rithms by exploiting the Convolution Neural Networks that we trained in previous steps. The
algorithm that we chose was the Malvar-He-Cutler (MHC) demosaicing method, which we
used when creating the demosaicing dataset from MIT-Adobe FiveK images. In particular,
our goal was to optimize the weights of the MHC filters in order to improve the quality of the
images after the interpolation, making them more similar to the original RGB images. The
Malvar-He-Cutler algorithm can be formulated through programming, by computing con-
volution operations through kernels. As reported in Figure 37 , given the raw information
captured by the camera, the process is divided into two stages:

Figure 37: How, given a Bayer input, the RGB image is obtained through Malvar-He-Cutler.

• We apply a set of 3 convolutions; the first one consists of applying a kernel of shape
(5, 5) to the sum of the red and blue Bayer channels information. The output is going
to be a weighted combination of these 2 colors, which we represented in purple. It
will contain a grid of zero values according to the input MHC kernel. The other

42



5 Optimization

convolutions provide two green maps, which we call Green Horizontal (GH) and Green
Vertical (GV) as they are the horizontal and gradient corrections from green. These
maps are computed from the same kernel, however, the kernel for GV is transposed.

• In the last stage, we compute the sum of a set of maps for each channel. Some of these
maps come from a convolution operation with either a kernel of size (3, 3) or size (5, 5).
In particular, the red channel information is interpolated through the sum of original
red Bayer information, the same information convolved with a kernel (3, 3), the blue
locations’ information from the purple map described before, and the green information
in the blue rows and red rows from GV and GH respectively. The green information
is instead computed through the sum of the original green Bayer information, the
same information convolved with a kernel (3, 3), and the sum of red and blue Bayer
information convolved with a kernel (5, 5). Finally, the blue information is obtained
through the sum of the original blue Bayer information, the same information convolved
with a kernel (3, 3), the red locations’ information from the purple map, and the green
information in blue and red rows from GH and GV respectively. Overall, this step can
be summarized as retrieving the channel information by the contribution of the Bayer
filter values for that channel, and the interpolation of missing values through the other
channels (exploiting the cross-channel information).

In this process, each convolution would lead to map shapes with a lower size with respect
to the Bayer input, for this reason, proper zero-padding is applied when computing each
convolution, allowing the preservation of the input shape throughout the algorithm. The
optimization we performed was applied to the kernels in the MHC algorithm, which default
values are reported in Appendix C.1. This algorithm can be mathematically formulated
through the set of equations 12, on which we are going to optimize the kernels parameters.
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RB = (RBayer +BBayer) ∗K1

GH = GBayer ∗K2

GV = GBayer ∗KT
2

R = RBayer +RBayer ∗K3 +RBblue locations +GHred rows G +GVblue rows G

G = GBayer +GBayer ∗K4 + (RBayer +BBayer) ∗K5

B = BBayer +BBayer ∗K6 +RBred locations +GHblue rows G +GVred rows G

(12)

5.1 Training

We implemented these equations as a simple Convolutional Neural Network which contains
7 convolutions operations through kernels that we optimize with backpropagation. In par-
ticular, we implemented the loss function (Equation 13) which consists of 2 terms.

Loptim(y, ŷ) = L1(y, ŷ) +
λ

cropsize

∑
CNNdemosaicing(ŷ) (13)

The first is the L1 loss which is computed between the current RGB image produced
by the MHC algorithm (ŷ) and the true RGB image (y, the original image we downloaded
from the MIT-Adobe FiveK Dataset), this term is thought for allowing a prediction that
overall looks similar to the true image. The second term is instead thought for allowing
an improvement on small demosaicing artifacts region, and it consists of the sum of the
pixels probabilities of ŷ to be demosaicing artifacts, normalized by the cropping size (1024).
Those pixel probabilities are obtained through the best demosaicing CNN that we trained
and discussed in previous sections, which is kept frozen during the training (gradient flows
back, but CNN parameters are not updated). These two terms are balanced through a
hyper-parameter λ whose reference value was 0.001 and it has been obtained by looking at
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the average ratio between the two loss terms. However, this value would give approximately
the same weight to the two terms in the loss, but we want to give a higher weight to the
L1 term because the term ruled by the CNN demosaicing network is related only to very
small and specific image regions; the artifacts. In fact, if we would rely too much on the
artifacts term we would lead the model toward a wrong solution from a color point of view
because it would be optimal only for a very small amount of pixels in the image. We did
several training processes with different λ values in order to get the best visual results, which
were obtained with λ = 1.5 · 10−4. Also, we implemented different scheduler criteria, such
as standard learning rate and cosine annealing learning rate. The latter consists in setting
an initial learning rate value and progressively decreasing it (through a cosine function) to
a minimum value that is set by the programmer. In addition, the number of epochs during
which the annealing is performed must be specified. It is defined in Equation 14 where ηmin

and ηmax are the final and initial learning rates respectively, Tmax is the maximum number
of iterations and Tcur represents the number of epochs since the last restart of the process.
However, we implemented the cosine annealing process without the so-called warm restarts,
hence the learning rate is decreasing in the specified number of epochs and once it reaches
the minimum learning rate it does not change anymore (instead, with restarts it would have
been updated to a higher value and the decaying process would have been restarted).

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Tcur

Tmax

π

))
(14)

Finally, we tried different kernels for the training process. In particular, we first trained
initializing the kernel values to the original values of the MHC algorithm, however since
they contain a limited number of parameters, and a high number of 0-values parameters, we
also tried to use bigger kernels with respect to the original MHC demosaicing algorithm and
we tried to initialize these kernels both full randomly and also in a partially random way
(padding original MHC kernels with zeros and setting randomly only the 0-values). This was
done in order to increase the number of parameters, at the cost of a heavier training process
and a longer time to get final results. A summary of the parameters and combinations we
tried during the training step is reported in Table 6, where we highlighted the combination
which provided the best visual results.
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Batch size Crop size Learning rate Optimizer Kernels initialization

2 256 0.001 SGD Standard MHC

4 512

Cosine Annealing

Tmax = 15

ηmax = 0.001

ηmin = 0.0001

Adam

Standard MHC

Size = (11,11)

Randomly initialized 0-values

8 1024

Cosine Annealing

Tmax = 15

ηmax = 0.01

ηmin = 0.001

RMSProp
Size = (11,11)

Fully randomly initialized

Table 6: Set of values tried in training the optimization network

5.2 Results

In the end, we chose to use the standard MHC kernels as initialization of the parameters of
our Convolutional Neural Network. We have done that because, as we reported in previous
sections (Figure 37), it is important that the parameters of the kernels are organized in a
certain pattern. In particular, we want to make sure that the raw input channels information
is preserved as much as possible, as it is the true amount of light captured by the camera’s
photosensors. Instead, by selecting a larger kernel with full-random values, it would be more
likely for the parameters to heavily alter the original camera raw information, getting an
output with poor-quality colors. However, it is clear that a training process long enough
would allow us to reach a good local minimum in the loss landscape (in general it is very hard
to reach a global optimum), however, both for time constraints and computational power
we went with the more effective and faster solution which consisted in using standard MHC
kernels as initial parameters for the network. This solution required also adopting a very
small learning rate because the initial point has been already proven to be good in the MHC
paper. We chose to use cosine annealing as it could be difficult to escape local minima at the
beginning and we wanted to make sure to find other possible local minima by starting with a
higher learning rate and then decreasing it over epochs. Overall, the goal was achieved as the
trained network parameters allowed us to obtain better quality images, closer to the Ground
Truth (clean RGB image) and better than the original Malvar-He-Cutler algorithm, with a
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training of 20 epochs (approximately 5 hours). An example of these results is reported in
Figure 38 and Figure 39 respectively.

Figure 38: Comparison between trained model result (left) and Ground Truth image (right)

Figure 39: Comparison between trained model result (left) and original MHC result (right)

We also proved the effectiveness of the second term in the loss function, the one related
to the demosaicing artifacts regions. In fact, as shown in Figure 40 we can see how the
introduction of this term is beneficial with respect to a model trained considering only the
L1 loss between the clean RGB image and the RGB predicted image. In this case, however,
the difference may be difficult to notice for a non-expert eye.

The results of the optimization process are satisfactory as the visual quality of the image
is overall better with respect to the quality obtained through the standard MHC algorithm.
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Figure 40: Comparison between the trained model result (left) and the model trained with
L1 loss term only (right)

The scores in terms of L1 loss between these two models and the true RGB image are very
similar (L1 score is around 0.007 in both cases, considering the full demosaicing test set),
however, it is well-known that global metrics are not always indicative of what is happening
in very small regions of the image, as we explained in previous sections, and in the context
of artifacts reduction we should rely more on the visual results rather than the numerical
results. We also tested the performance of the best demosaicing network (which we trained
in previous sections) on these new RGB images coming from the optimized version of the
Malvar-He-Cutler kernels. We assessed that these new input images, with less demosaicing
artifacts, yield a better result in terms of artifacts detected from the segmentation network,
which confirms the success of the optimization process. In particular, the average percentage
of artifact pixels detected as demosaicing artifacts in an image after the optimization process
is 0.9%, while without the optimization process is 1.8%. Both values have been computed
considering the 400 images of the test set that we created in the MIT-Adobe FiveK Dataset.
Overall, we can say that the optimization process allowed to create RGB images whose
quality halves the number of artifacts predicted by the demosaicing artifacts segmentation
neural network. An example of this positive result is reported in Figure 41.

For the sake of completeness, we report the optimized Malvar-He-Cutler kernel param-
eters in Figure 42. Note that the kernels names correspond to the ones defined in the set
of equations 12, but we renamed KT

2 as K7 since the transpose condition is no longer true
after the model’s training.
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Figure 41: Comparison between the demosaicing artifacts prediction with an RGB input
which comes from the standard MHC kernels (left), and with an RGB input which comes
from the optimized version of the MHC kernels (right).
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Figure 42: Optimized kernel parameters for the MHC demosaicing algorithm
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Chapter 6

6 Conclusions and future work

The main goal of this thesis work was to perform a study on the possibility to apply Computer
Vision algorithms to the difficult task of artifacts segmentation. The work was challenging as
we had to create our own datasets with weak labels to be used as information to feed to the
Convolutional Neural Networks. Then we had to use the trained models to optimize common
image processing algorithms. Nevertheless, we can be satisfied with the results, since the
trained models are using a limited number of parameters and they are able to correctly detect
common image artifacts with a low inference time. The models have also been successfully
used to optimize the parameters of the well-known Malvar-He-Cutler demosaicing algorithm
which is an important improvement that may be applied to smartphone camera image signal
processor. We could not benchmark our results against any available model since to our
knowledge there is no current competitor, however, our work can be considered as a first
step towards a new research topic in the image processing domain.

There is certainly room for improvement, as new techniques for weak labeling could be
tried and the computational resources dedicated to this project in Huawei Nice Research
Center were limited. However, research in the Computer Vision domain is reaching impor-
tant milestones every year, and so new architectures could be used for improving artifacts
segmentation, or new optimization techniques could be applied to the current networks to
make them faster and even lighter. Unfortunately, very deep Neural Networks may not
be able to fit on smartphones as there are strict hardware requirements, however, in this
work we showed how the trained models may be useful to optimize standard image pro-
cessing algorithms that are implemented in the smartphone camera image signal processor.
In conclusion, Convolutional Neural Networks and other Computer Vision architectures are
showing their ability to achieve state-of-the-art results across a wide range of applications,
learning high-level representations of the data and capturing the underlying patterns, and
image processing is certainly a field in which Deep Learning potential is going to radically
change the domain.
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Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
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Role of luminance in 3D sRGB Gamut

A Appendix

A.1 Role of luminance in 3D sRGB Gamut

We report the visualization of the sRGB gamut in 3D through the colour library. The third
dimension is used to represent the luminance information.

Figure 43: 3D sRGB Gamut, with the role of luminance
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A.2 Additional equations in Malvar-He-Cutler algorithm

We report the equation to estimate a red component at a green pixel location (15), the equa-
tion to estimate a red component at a blue pixel location (16), and the optimal coefficients
for the Malvar-He-Cutler algorithm (17).

R̂(i, j) = R̂bl + β∆G(i, j) (15)

R̂(i, j) = R̂bl + γ∆B(i, j) (16)

α =
1

2
, β =

5

8
, γ =

3

4
(17)
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From Tversky Index to Dice Score

B Appendix

B.1 From Tversky Index to Dice Score

By exploiting Set Theory in binary classification problems (44) and in Dice formulation (45),
we can mathematically prove that the Dice Score is equal to the Tversky Index when β is
0.5, as reported below:

Figure 44: Binary classification problem through Set Theory
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Figure 45: Dice Score representation in terms of sets

DiceScore(y, ŷ) =
2yŷ + ϵ

y + ŷ + ϵ

=
2TP

2TP + FP + FN

TverskyIndex(y, ŷ) =
yŷ + ϵ

yŷ + β(1− y)ŷ + (1− β)y(1− ŷ) + ϵ

=
TP

TP + βFP + (1− β)FN

=
TP

TP + 0.5FP + 0.5FN

=
2TP

2TP + FP + FN
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C Appendix

C.1 Malvar-He-Cutler initial kernel values

We report the original kernel values which are used to replicate the Malvar-He-Cutler algo-
rithm at a programming level. They have been used as initialization for the optimization
model. Note that the kernel names correspond to the ones defined in the set of equations
12.
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