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Summary

With the rapid expansion of hardware development, there is a growing demand for
more efficient and effective design techniques. Starting from a C/C++ behavioral-
level programming language, High-Level Synthesis (HLS) is a solution for rapid
prototyping of application-specific hardware design, where designers can apply
HLS directives to optimize hardware implementations by trading-off between
cost and performance. However, current commercial HLS tools do not provide
reliable Quality of Results (QoR) estimations, which prevents designers from
making aforementioned trade-offs and ensuring that the design complies with the
constraints. Under the background of the widespread use of Machine Learning (ML)
to improve the predictability of Electronic Design Automation (EDA) tools, we
proposed Graph Neural Network (GNN) based predictive models that inductively
learn the principle behind the HLS and downstream implementation by exploiting
the graph representation power of the HLS design point.

We first created a dataset by choosing 30 designs from the widely-known real-
case HLS benchmark suites, covering a broad range of application domains. This
approach ensures that the trained ML model is robust enough to be generalized
across various applications. We propose a method that provides graph-based
representations of HLS based designs containing both program semantics and HLS
synthesis directives information. We develop a multi-objective GNN-based learning
model targeting a post-implementation estimation of resource usage and timing for
a design point in milliseconds without invoking HLS tool. The experimental results
demonstrate that our proposed model not only provides an improved prediction
up to 74 % compared to Vitis HLS , but can also extend the knowledge learned for
generalizing on unseen designs
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Chapter 1

Introduction

1.1 Background
With the rapid expansion of hardware development, there is a growing demand for
more efficient and effective design techniques. In recent years, High-Level Synthesis
(HLS) has emerged as a significant method for hardware design, allowing high-level
programming languages such as C/C++ to be automatically transformed into
hardware designs[1]. Traditionally, hardware design has been an expensive and
time-consuming process that required a high level of expertise and specialized
knowledge.

Yet, the introduction of HLS has made it possible for software developers to
create hardware using familiar high-level programming languages. By utilizing HLS,
designers may benefit from the abstraction and modularity offered by high-level
programming languages, which enables them to produce more sophisticated and
powerful hardware designs with more portability in less time. In addition, designers
can apply HLS directives to optimize hardware implementations by trading-off
between cost and performance. This easy-to-use setup allows designers to rapidly
and effectively prototype hardware designs, enabling them to experiment with
different design configurations before involving in the final implementation.

1.2 Motivation
HLS has developed to meet the aforementioned demands, but the current com-
mercial HLS tools do not provide reliable Quality of Results (QoR) estimations.
As a result, designers are unable to trade-off between cost and performance and
guarantee that the design complies with the requirements because its estimation
results in terms of timing and resource usage frequently deviate from the actual
QoR attained from post-implementation.
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Introduction

The use of Machine Learning (ML) techniques to boost Electronic Design
Automation (EDA) has attracted widespread attention In recent years. ML-
assisted EDA offers several benefits to designers, including enhanced design quality,
decreased design time and effort, and increased predictability. Predicting the
behavior of electronic systems allows designers to know design results before
they are implemented, which is one of the main advantages of ML-assisted EDA.
Moreover, designers may employ ML algorithms to automate the design process,
allowing them to swiftly explore a larger design space and identify the optimal
solution.

In this work, we concentrate on estimating the post-implementation QoR using
a Graph Neural Network (GNN) based ML model.

1.3 State Of The Art
Machine Learning techniques have been applied successfully to address different
challenges during the chip design flow [2]. These techniques have also been applied to
solve the difference between the QoR estimations in HLS and post-implementation
results. Table 1.1 summarizes the relevant state-of-the-art ML-based approaches
for HLS prediction tasks and compares them with our contributions.

Dai et al. [3] and Makrani et al. [4] proposes non-graph-based ML models to
estimate post-implementation resource usage and timing of a design by extracting
global features from HLS synthesis reports mainly. In [3], they use the Linear
model (Lasso), Artificial Neural Network (ANN), and XGBoost to calibrate the
results produced from HLS reports. [4] uses Linear Regression, ANN, Support
Vector Machine (SVM), Random Forest (RF), and Ensemble of the four models.
Even though these studies are encouraging, however, they require considerable
feature extraction engineering after High-Level Synthesis stage. Another concern
is the restricted generalizable capability as the inputs to the model can only be
extracted after HLS step. This means that for every new and unseen design, one
must need to run time-consuming HLS, possibly taking hours for larger designs,
to collect the features first before estimating the Quality of Results. On the other
hand, our model predicts QoR without going through the HLS step for the unseen
designs.

Wu et al. [5] and Ustun et al. [6] uses a graph-based ML models to perform HLS
prediction tasks. [5] proposes an end-to-end reinforcement learning-based framework
for design space exploration. GNN-based performance predictor (GPP) is integrated
inside the framework to predict the post-route LUT and DSP utilization, and timing
based on the data-flow graph (DFG) representation. [6] build a customized GNN
based model to automatically learn operation mapping patterns to reduce the delay
prediction for HLS based designs. Their approach results in a 72% reduction in

2
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RMSE compared to Vivado HLS. These works evidently show the effectiveness
of using Graph Neural Networks but they don’t include pragmas in their input
representation.

De et al. [7] compares both graph-based and non-graph-based Machine Learning
models to improve delay prediction accuracy for ASIC HLS and proposes a hybrid
model comprised of both local (structural) and global (Domain Knowledge) features.
The global features are extracted from HLS reports, and therefore, one must run
HLS during the inference phase which can require a long time based on the design.

Wu et al. [8] propose a graph-based ML approaches to estimate resource usage
and timing based on different HLS stages. The input graphs are constructed from
the IR operator information (*.adb file) and the features are extracted from both
*.adb file, and HLS intermediate results. *.adb file contains information not only
related to the operation type of a node but also information like whether a node is
the starting node of a path and its cluster number. Instead, in our case, we take
the information from LLVM Bitcode (*.bc) which is generated right after the HLS
front-end compilation process. Moreover, the work in [8] doesn’t consider the HLS
synthesis directives unlike ours.

Table 1.1: Comparison of ML-based Approaches for HLS Prediction Tasks

ML model Target
Work Graph Non-Graph FPGA ASIC Task Feature Source Tool

[3] ✓ ✓ Resource Usage and Timing HLS reports Vivado HLS
[4] ✓ ✓ Resource Usage and Timing HLS reports Vivado HLS
[5] ✓ ✓ DSE DFG Vivado HLS
[6] ✓ ✓ Operation Delay Operation Type and Bitwidths from HLS IR code Vivado HLS
[8] ✓ ✓ Resource Usage and Timing IR operator information (*.adb) and HLS report Vitis HLS
[7] ✓ ✓ ✓ Timing HLS reports Stratus HLS

This Work ✓ ✓ Resource Usage and Timing HLS LLVM IR Vitis HLS

1.4 Thesis Overview
This thesis aims to explore the use of GNNs for predicting post-implementation
QoR metrics of HLS-generated designs. Fig. 1.1 depicts the overall workflow of our
proposed framework. On the left-hand side, we present the general C-to-circuit
workflow, which includes the input, HLS, and downstream implementation stages.
On the right-hand side, we illustrate the input data and corresponding labels that
we can obtain from the left-hand side of the figure. Specifically, we extract an
HLS Intermediate Representation (IR) graph that represents the functionality of
the design, which serves as the input data for our proposed GNN-based predictive
model. The ground truth labels used to train the model are extracted from
post-implementation reports that are generated after the place and route phase.

3
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Figure 1.1: Overall framework flow

The thesis is structured into several chapters as follows:

• Chapter 1 introduces the thesis and outlines the motivation behind the re-
search.

• Chapter 2 delves into the general concepts of HLS and Vitis HLS .

4
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• Chapter 3 discusses Low Level Virtual Machine (LLVM) and its utilization to
convert the program into a graph representation.

• Chapter 4 covers general concepts of ML, including categorical data encoding
techniques.

• Chapter 5 explores the fundamental concepts of GNNs and the various variants

• Chapter 6 presents our dataset generation framework and feature selection.

• Chapter 7 details the architecture of our GNN-based predictive models, in-
cluding their training and inference procedures.

• Chapter 8 presents the experimental results and evaluates the efficacy of our
proposed approach.

• Chapter 9 concludes the thesis work and provides an outlook on future research
directions.

5



Chapter 2

High Level Synthesis

2.1 Introduction
High-Level Synthesis (HLS) is a hardware design methodology for developing
hardware circuits from high-level programming languages like C/C++. It has
increasingly become a hot spot for hardware development in recent years, as it
allows for more efficient and effective design techniques to cope with the rapid
growth of hardware development.

HLS technology enables engineers to design digital systems at a higher level of
abstraction than traditional hardware design methods. Instead of using a hardware
description language (HDL) such as Verilog or VHDL to design digital systems,
engineers can use a high-level programming language such as C, C++, or SystemC
to describe the functionality. These high-level languages provide engineers with
more abstraction and modularity, enabling them to create more complex and
powerful hardware designs with greater portability in less time[9].

2.2 General Workflow
The workflow of HLS typically involves several phases and is shown in Fig. 2.1.
Initially, the HLS tool translates the high-level functional description of the design
into a Register-Transfer Level (RTL) representation. A hardware description
language (HDL), such as VHDL or Verilog, is often used to express the resulting
RTL representation. This HDL code can then be used with tools like synthesis
and place-and-route for the physical implementation of the design. These tools
optimize and map the RTL representation to a target architecture, such as Field-
Programmable Gate Array (FPGA) or Application-Specific Integrated Circuit
(ASIC), and eventually generate a configuration file or bitstream that can be loaded
onto the target device such as for testing or deployment.

6
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Figure 2.1: General HLS workflow[10]

2.3 Quality of Results
In HLS, Quality of Results (QoR) is a comprehensive and multidimensional metric
employed in the field of digital circuit design to evaluate and optimize the overall
performance, effectiveness, and functionality of a synthesized circuit. Numerous
factors are taken into consideration by QoR, including resource usage, timing,
power consumption, area, design productivity, reliability, and scalability. These
factors collectively contribute to the success of the design project and its ability to
meet specific requirements and goals.

In this section, we concentrate on two key factors of QoR in HLS: resource usage
and timing, which are explained in depth as follows:

• Flip-Flops (FFs), which serve as data storage components and can store
a single binary digital bit of data, are the basic building blocks of digital
circuits. These storage components are essential to the sequential logic used
in electronics, where the current input and state as well as the output decide
the next state.

• Lookup Tables (LUTs) are a type of digital circuit used in FPGAs to
execute any Boolean function based on specified input-output relationships.

7
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These programmable logic units serve as unique truth tables that are filled
with values in accordance with the needs and instructions of the designer.

• Digital Signal Processing units (DSPs) are specialized processing com-
ponents in FPGAs that are designed with the aim of efficiently performing
arithmetic operations like multiplication and accumulation. These dedicated
hardware units enable FPGA-based designs to handle computationally inten-
sive tasks at high speeds.

• Critical Path (CP) is a crucial metric in evaluating the timing performance
of digital circuits, which measures the longest propagation delay between input
and output signals and directly affects the maximum operating frequency of
the design.

2.4 Vitis High-Level Synthesis
Xilinx High-Level Synthesis tool Vitis HLS allows designers to write the design
algorithm in high-level languages such as C, C++, and SystemC. This design
algorithm is then translated into hardware specifications that can be used in
programmable devices like FPGA. Vitis HLS significantly simplifies the tedious,
time-consuming, and error-prone process of creating RTL code, which formerly
required designers to grapple with low-level hardware implementation[11].

In essence, high-level synthesis serves as a link between hardware and software,
offering a variety of advantages. The ability to work at a higher level of abstraction
when developing high-performance hardware is provided by HLS, which boosts
the productivity of hardware designers. Moreover, HLS offers the ability to create
various solutions on several architectural platforms without altering the C/C++
source code. This makes it possible to explore the design space and aids in
determining the best implementation.

2.4.1 Development Flow
Fig. 2.2 illustrates the Vitis HLS Development Flow which is explained as follows:

• Architect the algorithm in accordance with the necessary Design Principles

• C-Simulation: Compile C/C++ code with Clang. Execute the C/C++ code
to simulate its behavior and ensure it works as expected by comparing it to
the C/C++ testbench. The C/C++ top function serves as the main input to
Vitis HLS .

8
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Figure 2.2: Vitis HLS workflow[11]

• C-Synthesis: Generate the RTL by synthesizing the C/C++ top function
by using HLS. To instruct the synthesis process to carry out a certain op-
timization, HLS synthesis directives i.e. HLS pragmas and constraints can
be imposed directly. once C-Synthesis is done, a report including estimated
timing hardware resource utilization and timing information is generated.
When C-Synthesis is finished, a comprehensive report with time and hardware
resource usage estimation is produced, offering the designer crucial references
for subsequent refinement and optimization.

• Co-Simulation: C/RTL Co-Simulation in Vitis HLS refers to the process of
verifying and validating a hardware design written in RTL (register-transfer
level) using a C/C++ simulation. The designer can verify the correctness of
the RTL implementation of the design by comparing the results from the RTL
and C/C++ testbench. Any discrepancies between the two outputs can be
analyzed and corrected, and this simulation can be performed again until the

9
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outputs match.

• Analyze: Review and investigate the HLS synthesis reports and co-simulation
reports

• Repeat prior steps until the desired performance is achieved

In this work, we employ Vitis HLS to create our dataset by synthesizing the
well-known HLS benchmark.

2.4.2 Optimization Directives
HLS synthesis directives i.e. HLS pragmas are essential for optimizing the HLS
process in Vitis HLS , a prominent HLS tool developed by Xilinx. Pragmas provide
directives to the compiler, guiding the generation of hardware implementations from
high-level C, C++, or OpenCL code. They enable users to control the fine-grained
aspects of the design, allowing for the optimization of specific objectives such as
resource usage, performance, or power consumption.

In Vitis HLS , there are several types of synthesis directives, including loop-level,
variable-level, and function-level. These optimizations can significantly improve the
performance of the synthesized hardware, albeit often at the expense of increased
resource utilization. The details are explained as follows:

• Loop-level pragmas focus on optimizing the execution of loops in the design,
which includes loop pipelining, loop unrolling, loop flattening, etc.
Loop pipelining reduces the initiation interval (II) for a function or loop by
allowing the concurrent execution of operations. Fig. 2.3 shows an example of
the same function with and without loop pipelining. example Comparison of
function with and without loop pipelining
Loop unrolling is for creating multiple independent operations of the loop
body rather than a single collection of operations, which enables some or all
loop iterations to occur in parallel.
Loop flattening allows nested loops to be flattened into a single loop hierarchy
with improved latency.

• Variable-level pragmas are applied to specific variables in the design and
can be used to control their storage or access characteristics. Examples
include array partitioning, which can partition an array into smaller sub-
arrays, improving parallel access, and array reshaping, which changes the
array’s storage organization to optimize specific access patterns.

10
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Figure 2.3: Comparison of function with and without loop pipelining in Vitis
HLS[11]

• Function-level pragmas influence the overall behavior of a function. One
Example of function-level pragmas is function inlining, which removes a
function as a separate entity in the hierarchy. After inlining, the function is
dissolved into the calling function and no longer appears as a separate level of
hierarchy in the RTL.

In this work, we utilize aforementioned HLS synthesis directives i.e. HLS
pragmas create our dataset to cover as much the design space as possible

11



Chapter 3

Low Level Virtual Machine

3.1 Introduction
Low Level Virtual Machine (LLVM) is a group of compiler and toolchain technologies
that enables the development of both the front-end and back-end for programming
languages on any Instruction Set Architecture (ISA )[12]. A language-independent
IR, which serves as a portable high-level assembly language and may be improved
to produce a new IR, is its main component. The new IR can then be translated
and linked into platform-specific machine-dependent assembly language code.

By receiving IR code from a compiler and generating an optimized IR, LLVM
can supply the middle layers of a comprehensive compiler system. Every instruction
is in the static single assignment(SSA) form and provides a language-independent
instruction set and type system. This makes it easier to analyze the dependencies
between variables since each variable, also known as a typed register, is only
allocated once and then frozen.

Moreover, LLVM is able to accept the IR from the GNU Compiler Collection
(GCC) toolchain, enabling it to work with a variety of compiler front-ends that
have already been developed for different projects. Without having to build and
implement a unique compiler from scratch, its adaptability and portability make it
a great tool for developers to construct new programming languages on any ISA.

3.2 LLVM Structure
The LLVM infrastructure provides a flexible and modular approach to compiler
design, with separate front-end, mid-end, and back-end (see Fig. 3.1) components
that can be combined to support a wide range of programming languages and
hardware platforms.

12
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Figure 3.1: LLVM structure: Front-end, LLVM IR, Backend[13]

• The front-end of LLVM is responsible for converting source code written in
a specific programming language into LLVM IR. This component is language-
specific and is designed to handle the idiosyncrasies of the programming
language. LLVM currently supports front-ends for a variety of programming
languages, including C, C++, Objective-C, Fortran, Swift, and Rust. Each
front-end takes the source code as input and produces LLVM IR as output.

• The mid-end of LLVM performs optimizations on the LLVM IR to improve
program performance and efficiency. This component is responsible for per-
forming a wide range of optimizations, such as dead code elimination, loop
unrolling, and common subexpression elimination. These optimizations can
significantly improve program performance by reducing the amount of redun-
dant work that the program needs to do. The mid-end is also responsible for
generating code that is suitable for the back-end to use.

• The back-end of LLVM generates machine code for a specific ISA based
on the optimized LLVM IR. This component is responsible for translating
the LLVM IR into instructions that can be executed by the target hardware.
LLVM currently supports back-ends for a wide range of ISAs, including x86,
ARM, MIPS, PowerPC, and RISC-V. Each back-end generates machine code
that is tailored to the specific characteristics of the target hardware.

13
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3.3 LLVM Intermediate Representation
A language-independent Intermediate Representation (IR) is a key component
of the LLVM infrastructure. The LLVM IR is a low-level code representation
designed to be used by the LLVM compiler framework. It is designed to be
language-independent, meaning that it can be used to represent code written in
any programming language.

The fundamental feature of the LLVM IR is that it can be extracted as a
graph that can be represented in several forms, such as a Data Flow Graph (DFG)
or Control Data Flow Graph (CDFG). While a CDFG provides both data and
control dependencies, DFG only illustrates the data dependencies between program
instructions. These graphs are helpful for program analysis and optimization
because they provide insightful information about how programs behave.

Using LLVM IR as a graph representation has several benefits as follows:
• Providing a more compact representation of the program compared to a large

sequence of instructions.

• Mapping naturally to program structure, where nodes represent instructions
and edges represent dependencies, makes it easier to understand the behavior
of the program, which is critical for program optimization.

• Developers can visualize program structure and performance characteristics
more intuitively. This helps identify areas that can be optimized for better
performance or detect bugs that may be challenging to spot through traditional
debugging techniques.

• Representing a program as a graph allows developers to apply graph analysis
techniques to the program. They can use graph algorithms for optimization
tasks like dead code elimination, loop unrolling, and common subexpression
elimination. They can also perform program analysis tasks such as data flow
analysis and control flow analysis using graph-based techniques.

The LLVM IR is typically represented using one of two file formats: .ll or .bc.
The .ll format is a human-readable text format that is easily understood and
modified by developers. On the other hand, the .bc format is a binary format that
is more efficient for storing and processing large amounts of code.

The LLVM Disassembler is part of the LLVM compiler infrastructure and is
used to disassemble LLVM bitcode files (.bc files) into human-readable LLVM
assembly language files (.ll files). The tool is commonly used for debugging and
analyzing LLVM bitcode, as it allows users to examine the LLVM IR of a program
in a human-readable format. Once the bitcode has been disassembled into LLVM
assembly language, other tools can be used to further transform the code for various
purposes.
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3.4 Design as Graph

Most major compiler tools use graphs for optimization and transformation, and
the first step in their compilation process is always to transform the input program
into an IR (IR) graph. Because the essence of a program is a pre-designed process
flow, an IR graph is a data structure that represents the information of a program
and it can be swiftly extracted after the front-end compiler.

Modern HLS tools(see Fig. 3.2) are developed and based on state-of-the-art
compilers like LLVM[14] and GCC[15]. The input is a high-level code representing
the functionality of the design and can be written in programming languages like
C/C++. The input is passed to the front-end of the HLS tool before different IR
transformations are applied and on completion of the compilation outputs an IR
geared towards hardware circuit generation. An HLS IR is made up of basic blocks
where each block contains assembly-like instructions with neither branches in nor
branches out except at the start and the exit of the block respectively. Each HLS
IR can be transformed into a different kind of graph like control-flow, data-flow,
and call-flow for specific information extraction.

Figure 3.2: Vitis HLS software architecture[16]
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In the control-flow, the graph nodes are inserted in terms of the LLVM instruc-
tions of the program, and the edges illustrate how instructions propagate; Data-flow
reveals the formation flow from the raw data served as operands of instructions and
from these operations to processed data in a form closely resembling Static Single
Assignment(SSA). Operands are represented as graph nodes. Data dependencies
between the nodes are determined by each node’s potential existence of one or
more in- and out-edges; And the call-flow expresses the calling relationship between
sub-functions inside the program. We have considered a combination of these three
graphs for our experiments.

In this work, we compiled our design program using the HLS front-end to obtain
the HLS LLVM IR. We then converted the generated IR into a graph representation,
which made it adaptable for use with GNNs. This allowed us to leverage the powerful
representation capabilities of GNNs to gain insight into the program more effectively.
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Chapter 4

Machine Learning

4.1 Introduction
Machine Learning (ML) is dedicated to developing algorithms that are able to
automatically discover patterns in incoming data without requiring explicit pro-
gramming[17]. This makes it possible for ML algorithms to handle a wide range
of challenging problems, such as speech recognition, natural language processing,
image recognition, and others.

Input data, a learning algorithm, and eventually a well-trained output model
are the three key components that are often included in ML methods. A learning
algorithm trains an output model from the input data so that it can make predictions
or decisions about fresh data.

4.2 Supervised and Unsupervised Learning
This model can be trained using either supervised or unsupervised learning tech-
niques.

• Supervised learning involves using labeled datasets for training models.
These datasets are composed of input-output pairs, where each input is
associated with a corresponding output, also known as a "label" or "target."
The goal of supervised learning is to use these labeled examples to teach
the model how to accurately predict the correct output given a new input.
During the training process, the model is presented with many examples
from the labeled dataset and learns to make predictions by adjusting its
internal parameters based on the differences between its predicted outputs
and the ground truth labels. By repeatedly presenting the model with labeled
examples and adjusting its parameters, the model gradually improves its
ability to accurately predict outputs for new inputs.
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• Unsupervised learning can identify underlying patterns or structures in
data without the need for labeled examples, which makes it valuable in
circumstances when labeled data is not readily available or prohibitively
expensive to obtain. Unsupervised learning methods work with unlabeled
datasets, where the input data is not connected to any matching output.
Instead of trying to predict a specific output, unsupervised learning algorithms
focus on identifying relationships or similarities between the input data points.
One common technique used in unsupervised learning is clustering, where
the algorithm groups together similar data points based on their features.
Another type of unsupervised learning is dimensionality reduction, which seeks
to identify the most important or relevant features of the data by reducing its
overall complexity. This can be useful for visualizing complex data in lower
dimensions, or for identifying hidden variables or factors that are influencing
the observed data.

In this work, we frame our prediction problem within the context of supervised
learning.

4.3 Model Evaluation
Model evaluation is a crucial step in ML, as it allows us to assess the performance
of a well-trained model and determine its ability to generalize unseen data. In this
section, we discuss two commonly used approaches to model evaluation: single test
and cross-validation.

• A single test is a simple approach to model evaluation that involves randomly
splitting the dataset into three parts: training, validation, and test sets,
typically in a 7:1:2 ratio. The model is trained on the training set, and the
validation set is used to optimize hyperparameters and prevent overfitting.
Finally, the model is tested on the test set to evaluate its performance. This
approach is basic and computationally efficient, but it may not always provide
an accurate estimate of the model’s performance, especially if the dataset is
small or unbalanced.

• Cross-validation, a more robust approach to model evaluation that addresses
the limitations of the single test approach. Typically, there are two distinct
implementations of this approach: conducting k-fold cross-validation on the
whole dataset or only on the training set.
The first implementation involves dividing the whole dataset into k equally-
sized subsets, where the model is trained and tested k times. In each iteration,
a different fold serves as the test set, and the remaining k − 1 folds combine
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to form the training set. This ensures that each data point has a chance to
be included in both the training and test sets, providing a comprehensive
evaluation of the model’s performance. The performance metrics of each fold
are averaged to provide a reliable measure of the model’s overall performance.

Figure 4.1: k-Fold Cross-validation on the training set[18]

The second implementation conducts k-fold cross-validation exclusively on
the training set and reserves a separate holdout set for final model evaluation.
As shown in Fig. 4.1, the training set is divided into k equally-sized folds,
and the model is trained and tested k times in a similar manner to the first
implementation. The cross-validation is only applied to the training set,
while the holdout set is used to evaluate the model’s performance on unseen
data. Although less common, this approach provides additional validation for
certain applications, ensuring that the model’s true performance is evaluated
on entirely new data.

The performance of the model can be evaluated using various metrics, depending
on the problem domain and the type of model. For classification tasks, metrics
such as accuracy, precision, recall, and F1 score are commonly used. For regression
tasks, metrics such as Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Error (MAE) are often used.
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4.4 PyTorch for Implementation
For developing and deploying ML models, an open-source framework called PyTorch
is frequently utilized. It offers several optimization methods, such as automated
differentiation, which enables the accurate determination of gradients during train-
ing[19]. In addition, PyTorch provides a rich set of libraries for building ML
models, including TorchVision for computer vision, TorchText for natural language
processing, and PyTorch Geometric[20] for graph-based ML.

4.5 Encoding Categorical Data
In ML, categorical data is a sort of data that represents qualitative variables with a
limited number of discrete categories. Examples of categorical data include gender
(male, female, other), education levels (high school, bachelor’s degree, master’s
degree, Ph.D.), and work title (manager, engineer, analyst). Categorical data must
be encoded in a numerical representation before it can be used as input for a ML
model. One-hot encoding and embedding are two methods that are frequently used
to encode categorical data.

• One-hot encoding is a well-liked method in ML for encoding categorical
data. Each category is represented in this method as a binary vector, where
each element in the vector corresponds to a category and is either 0 or 1, with
1 indicating the category’s presence. As it enables the Neural Network (NN) to
quickly distinguish between categories without assuming any underlying struc-
ture or relationships between them, one-hot encoding is frequently employed
in NNs. Although its ease to use, one-hot encoding has some drawbacks. The
fact that it produces high-dimensional sparse vectors, which can be difficult to
process computationally, especially when working with huge datasets, is one
of its main drawbacks. One-hot encoding also fails to capture any underlying
structure or relationships between categories, which may restrict the model’s
capacity to generalize new categories that have not yet been discovered.[21].

• Embedding is another technique used for encoding categorical data in Ma-
chine Learning. Category representation in embedding is in the form of dense
vectors of continuous values, as opposed to one-hot encoding, which uses
high-dimensional, sparse vectors to represent categories. The idea behind
embedding is to convert categorical data into a continuous space and learn
a mapping lookup table where similarity is captured by representing similar
categories by similar vectors in that space. Embedding is superior to one-hot
encoding in several ways. First, it leads to low-dimensional dense vectors,
which are more computationally efficient to handle. Second, embedding cap-
tures the underlying structure and relationships between categories, which can
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improve the ability of the model to generalize to previously unseen categories.
Embedding is commonly used in natural language processing tasks, where
words are represented as embeddings to capture their semantic and syntactic
relationships[22].
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Chapter 5

Graph Neural Network

Recently, there has been a significant surge of interest in using Deep Neural
Network (DNN) for the analysis of graphs, also classified as Graph Neural Networks
(GNNs)[23]. GNNs are a subclass of NNs that operate on graph-structured data.

5.1 Graph Theory

5.1.1 Graphical Data

Graphs are a type of data structure that helps us to represent complex information
explicitly by building relationships between objects. A graph is represented as
G(V, E, A) where V and E are node and edge set respectively and A ∈ Rn×n is
an adjacency matrix that represents the structure of the graph with n nodes (see
Fig. 5.1, Fig. 5.2 and Fig. 5.3). Additionally, a graph may have node features X
where X ∈ Rn×d is a node attribute matrix where the attribute of i-th node is
represented by a d-dimension vector in an i-th row.

Figure 5.1: A simple graph example[24]
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Figure 5.2: A simple example of a graph with a feature assigned to each node[24]

Figure 5.3: A simple example of the adjacency matrix and feature matrix[24]

5.1.2 Challenges in Analyzing Graph Data
The non-Euclidean nature of graphs, the absence of a fixed form, and the difficulty
in visualizing large graphs present significant challenges when analyzing graph data,
and a detailed explanation of these challenges is provided as follows:

• The inability to represent graphs in a Euclidean space makes it more difficult
to analyze graph data since it is not easily mappable to a coordinate system.
This makes it challenging to use traditional data analysis methods since they
require a Euclidean space for data representation.

• The absence of a fixed form in graphs also makes it difficult to be analyzed.
It can be challenging to recognize patterns or connections of a network due to
the fact that graphs might share the same adjacency matrix yet have entirely
different structures and are visually distinct.

• Due to the high dimensions and dense node grouping, displaying big networks
is also a complex problem. Human interpretation and analysis of the graph
data may be difficult because of its magnitude and complexity.
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Despite these challenges, GNN offers a promising solution for analyzing graph-
based data efficiently. By leveraging the structural information of graphs, GNN
can extract meaningful features that capture the crucial structural patterns in the
graph, and therefore gain insights from the complex graph data[25].

5.2 Overview and Architecture
GNN has emerged as a powerful tool for processing and learning from graph-
structured data. The fundamental principle of GNNs is to learn features that
capture significant structural patterns in the network by propagating information
via edges and nodes. The direct operation on the node feature vectors (node
embeddings) in the graph enhances its capacity to capture both structural and
contextual information. A GNN is a model which learns a trainable non-linear
mapping function F such that H = F (A, X) where H ∈ Rn×k is an embedding
matrix which keeps the local structural information of the graph.

GNN iterates over each node’s features through a series of cascading layers
to extract the graph information by learning the features of each node. An
aggregate (AGG) and update (UPDATE) function are applied to each node in
every layer. An AGG function receives information from the neighboring nodes and
sends the aggregated information to the UPDATE function to update the current
node embeddings based on the aggregated message and the node’s previous layer
embedding. Fig. 5.4 depicts an aggregation example in which node A is the target
node. A READOUT function is applied after the last layer to summarize the
embeddings from all the nodes to assemble a graph-level embedding vector. Eq. (5.1),
Eq. (5.2) and Eq. (5.3) summarize the message passing-based architecture[26] of
GNN model.

mt+1
i = AGG

1
ht

u | u ∈ N (i) ∪ {i}
2

(5.1)

ht+1
i = UPDATE

1
mt+1

i

2
(5.2)

hG = READOUT
1
hT

i , i ∈ V
2

(5.3)

where the embedding for node i at iteration t is denoted by ht
i, N(i) represents

the neighborhood of node i, mt+1
i represents the aggregated message from the

target node and its neighbors, V is the node set of the graph G, and T is the
number of message-passing iterations, hG is the final graph-level embedding.
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Figure 5.4: Aggregation of information from the neighbors of the target node[27]

5.3 Graph Neural Network Models Variants
Generally, different GNN models differ from each other based on different aggregate
and update functions[25]. Any permutation-invariant operation can serve as an
AGG function, and any differentiable function can be used as an UPDATE function.
Fig. 5.5 shows a general GNN model. In our experimentation, we have used 4
different GNNs, specifically Graph Convolutional Network (GCN)[28], Dynamic
Graph Attention Network (GAT)[29], Graph Isomorphism Network (GIN)[30] and
Deep Adaptive Graph Neural Network (DAGNN)[31].

5.3.1 Graph Convolutional Network
Graph Convolutional Network (GCN)[28] represents an efficient variant of Convolu-
tional Neural Network(CNN) specifically designed for processing graph-structured
data. The core idea behind GCN is to extend the concept of convolution, commonly
used for grid-structured data (e.g., images). To achieve this, GCN employs a
localized graph convolution operation that aggregates information from neighboring
nodes and transforms the aggregated information using a shared weight matrix.

GCN leverages an aggregation function to implement a weighted summation
of the embeddings of neighboring nodes, taking into account node degrees and
edge weights. A typical GCN architecture consists of several layers, with each
layer performing a graph convolution operation followed by a non-linear activation
function. This architecture allows GCN to effectively capture both local and global
information in graph-structured data.

The node-wise formulation that describes how GCN iterates the node embeddings
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Figure 5.5: A general GNN model[32]

combining aggregation and update operation is presented as Eq. (5.4).

x′
i = Θ⊤ Ø

j∈N (v)∪{i}

ej,iñ
d̂j d̂i

xj (5.4)

with d̂i = 1 + q
j∈N (i) ej,i, where N (i) is the set of neighbors of node i, ej,i denotes

the edge weight from source node j to target node i which is set to 1.0 by default.

5.3.2 Dynamic Graph Attention Network
Dynamic Graph Attention Network (GAT) [29] aims to overcome the limitations
of GCN, which assigns equal weights to each node neighbor embeddings. GAT
employs masked self-attention layers to learn the importance of node neighbors,
which enables it to assign various weights to the contributions of its neighbors
accordingly in the update phase.

To achieve this, GAT introduces an innovative attention mechanism that allows
the model to focus on relevant information. This mechanism involves learning
attention coefficients that weigh the significance of each neighboring node during
the aggregation process. GAT implements this attention mechanism using a shared
self-attention function to compute the attention coefficients, which is normalized
across all neighbors j ∈ Ni using softmax formulated as Eq. (5.5):

αi,j = softmaxj (e (hi, hj)) (5.5)

where a scoring function e (hi, hj) : Rd × Rd → R computes a score for every edge
(j, i).
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The scoring function indicating the importance of the features of the neighbor j
to the node i is formulated as Eq. (5.6):

e (hi, hj) = a⊤ LeakyReLU (W · [hi∥hj]) (5.6)
where hi and hj are the feature vectors of nodes i and j, respectively, W is a
trainable shared linear transformation, a is a trainable shared attention vector, ∥
denotes concatenation, LeakyReLU represents Leaky Rectified Linear Unit, serving
as an activation function for introducing non-linearity.

The computed attention coefficients are then used to perform a weighted summa-
tion aggregation of the target node’s embeddings about those of its neighbor nodes.
The node-wise formulation that describes how GAT iterates the node embeddings
combining aggregation and update operation is presented as Eq. (5.7).

x′
i = αi,iΘxi +

Ø
j∈N (i)

αi,jΘxj (5.7)

where N (i) is the set of neighbors of node i, the attention coefficients αi,j are
computed as Eq. (5.5).

Figure 5.6: Attention in GAT. Left: The attention mechanism. Right: An
illustration of multi-head attention on its neighborhood.

To improve the expressive power of the model, GAT typically employs multiple
attention heads in parallel, allowing the model to capture different aspects of the
graph structure simultaneously (see Fig. 5.6).

5.3.3 Graph Isomorphism Network
Graph Isomorphism Network (GIN)[30] is a powerful GNN variant with significant
expressive capacity. The Weisfeiler-Lehman (WL) test indicates that the GIN
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theoretical expressive is the upper limit of all GNN variations, which makes it the
ideal model for dealing with graphs that exhibit structural similarities but are
represented differently where it is challenging to determine their isomorphism.

The universal approximation theorem, which allows for arbitrary precision
approximations of any permutation-invariant function when given sufficient depth,
is the foundation for the expressive capability of GIN. In order to provide GIN the
capacity to distinguish between various graphs, it uses MLPs as its aggregation
functions. This guarantees that these functions are injective.

Fig. 5.7 depicts the architecture of GIN where the aggregation function employed
by GIN is a MLP that processes the sum of embeddings of the target node and
its neighborhood, followed by a linear transformation and a non-linear activation
function. This process is repeated multiple times to generate a fixed-length feature
vector representing the entire graph.

Figure 5.7: Architecture of GIN[33]

The aggregation, update, and readout functions of GIN are detail formulated as
Eq. (5.8), Eq. (5.9), Eq. (5.10) respectively.

m′
i = (1 + ϵ) · xi +

Ø
j∈N (i)

xj (5.8)

where N (i) is the set of neighbors of node i, ϵ is a trainable parameter or a
fixed scalar, m′

i represents the aggregated message from the target node and its
neighbors.

x′
i = MLP (m′

i) (5.9)
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where MLP is serving as an injective update function for the aggregated message.

hG = CONCAT
1
READOUT

1î
ht

i | i ∈ V
ï2
| t = 0,1, . . . , T

2
(5.10)

where CONCAT denotes concatenation and READOUT can be a simple sum or
mean of the node embeddings, ht

i denotes the embedding for node i at iteration t,
V is the node set of the graph G, T is the number of GIN layers, i.e. the model
depth.

5.3.4 Deep Adaptive Graph Neural Network

Deep Adaptive Graph Neural Network (DAGNN)[31] addresses the over-smoothing
problems brought on by the deeper GNN model by introducing an adaptive adjust-
ment mechanism.

Although neighborhood aggregation is performed via graph convolutions, one of
the most significant graph operations, one layer of these neighborhood aggregation
methods only takes into account immediate neighbors, which results in limited
receptive fields. To obtain larger receptive fields, the depth of the graph convolution
layer needs to be increased. However, performance suffers as going deeper. The
cause of this performance degradation is the over-smoothing problem, in which
individual nodes’ embedding throughout propagation and update tends to be
identical, resulting in the degradation of discriminative power.

To address this issue, DAGNN implements an adaptive adjustment mechanism,
which adaptively adjusts the balance between local and global neighborhood
information from each node. This mechanism is realized by introducing an adaptive
weighting matrix that modulates the contribution of different graph layers to
the final node embeddings. By learning this weighting matrix, DAGNN is able
to adaptively incorporate information from large receptive fields, mitigating the
over-smoothing problem and thus preserving the discriminative power of node
embeddings. In addition, DAGNN decouples the representation transformation and
propagation in the current graph convolution operation to boost the performance
of deeper GNNs that can be used to achieve a larger receptive field.

Fig. 5.8 depicts the overall architecture where the DAGNN model consists of a
series of graph convolutional layers, followed by an adaptive weighting layer that
combines the embeddings from intermediate layers.

The formulation that describes how GIN works by combining aggregation, update
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Figure 5.8: Architecture of DAGNN[31]

and readout operation is presented as Eq. (5.11):

Z = MLP(X) ∈ Rn×c

Hℓ = âAℓZ, ℓ = 1, 2, · · · , k ∈ Rn×c

H = stack (Z, H1, · · · , Hk) ∈ Rn×(k+1)×c

S = σ(Hs) ∈ Rn×(k+1)×1åS = reshape(S) ∈ Rn×1×(k+1)

Xout = squeeze(åSH) ∈ Rn×c

(5.11)

Where n is the number of nodes, c is the expected number of node features, k is a
hyperparameter that determines the depth of the model. The transformed feature
matrix Z ∈ Rn×c is produced by applying an MLP. The symmetrical normalization
propagation mechanism ãA = æD− 1

2 æAæD− 1
2 is utilized, where Â = A + I denotes the

adjacency matrix with inserted self-loops and D̂ii = q
j=0 Âij its diagonal degree

matrix. s ∈ Rc×1 is a trainable projection vector serving as the adaptive adjustment
mechanism.

5.4 Transductive and Inductive Learning
GNNs can be categorized into two groups based on the learning method: Trans-
ductive and Inductive learning[34]. Transductive-based GNNs need to see the
whole graph structure to learn each node embedding vector during the training.
If there is a change in the structure of the graph, a model needs to be trained.
Therefore, they are unable to generalize to unseen graphs. On the other hand, the
Inductive-based GNNs learn a trainable function that aggregates the features from
a node’s neighborhood to generate embeddings of the nodes in the graph. Because
this trainable function is shared throughout the graph, hence, the learned model
can be applied to unseen graphs without going through the training again, which
makes it generalizable.
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In this work, we have conducted the training via Inductive learning for the GNN
models.

5.5 Tasks Addressed by Graph Neural Networks
GNNs have demonstrated their effectiveness in a wide range of tasks. In this section,
we discuss three renowned problems that GNNs can handle: node classification,
link prediction, and graph classification.

• Node classification is the task of assigning labels to nodes in a graph
based on their attributes and structural information. GNNs are ideally suited
for this task because of their ability to learn the non-linear mapping of the
node attributes based on connectivity. Fig. 5.9 shows an example of node
classification task.

Figure 5.9: An simple example of node classification task in GNN[35]

• Link prediction is the task of predicting whether or not there will be
linkages between nodes in a graph. It is a fundamental problem in graph
analysis, with applications in a variety of fields, including recommendation
systems, knowledge graph completion, and drug discovery. Since they can
capture complicated interactions between nodes and their neighbors, GNNs
are particularly effective for link prediction.[36].

• Graph classification is the task of assigning labels to entire graphs. By
producing graph-level embeddings that summarize the overall structure and
both node and edge features of the entire graph, GNNs can successfully handle
graph classification tasks.[26].

In this work, we formulate our prediction problem as graph regression, which
means that we are trying to predict continuous objective values related to the whole
graph.
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Chapter 6

Dataset Generation

The fundamental step in any ML problem is to have the data on which the ML
model can be trained and tested.

6.1 Design Selection from HLS Benchmarks
The dataset should also include a diverse range of designs from various applications
so that the trained ML model is robust enough to be generalized. For this purpose,
we choose 30 designs from the widely-known real-case HLS benchmark suites,
MachSuite[37], Polyhedral[38], and Rosetta[39]. The application domains of these
designs encompass a wide range of areas, including Linear Algebra computations,
Scientific simulations, Digital Signal Processing, Image Processing, Computer
Graphics, Machine Learning algorithms, Data-mining, Stencils, and Sorting. The
detailed application domain for each design is shown in Table 6.1.

Table 6.1: HLS Designs and Their Application Domains

Design Application Domain
2mm Linear algebra computations, 2 Matrix Multiplications

(D = A ·B; E = C ·D)
3mm Linear algebra computations, 3 Matrix Multiplications

(E = A ·B; F = C ·D; G = E · F )
3d-rendering Computer graphics, rendering 2D images from 3D models

(3D triangle mesh)
atax Linear algebra computations, Matrix Transpose and Vec-

tor Multiplication
bicg Linear algebra computations, BiCG Sub Kernel of

BiCGStab Linear Solver
Continued on next page
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Table 6.1 – Continued from previous page
Design Application Domain
correlation Digital signal processing, correlation of two signals
covariance Digital signal processing, covariance calculation of two

signals
doitgen Linear algebra computations, Multiresolution analysis

kernel (MADNESS)
fdtd_2d Finite-difference time-domain simulation, 2-D Finite Dif-

ferent Time Domain Kernel
fft_strided Digital signal processing, Image processing, Recursive

formulation of the Fast Fourier Transform
gemm General matrix multiplication, Matrix-multiply C =

α · A ·B + β · C
gemm_blocked General matrix multiplication with a blocked algorithm,

with better locality
gemm_ncubed General matrix multiplication with different algorithm

and computational complexity, O(n3) algorithm for dense
matrix multiplication

gemver Linear algebra computations, Vector Multiplication and
Matrix Addition

gesummv Linear algebra computations, Scalar, Vector and Matrix
Multiplication

jacobi_1d Linear system solver, 1-D Jacobi stencil computation
jacobi_2d Linear system solver, 2-D Jacobi stencil computation
lu Linear algebra computations, LU decomposition of a

matrix
md Molecular dynamics simulation, chemistry, materials sci-

ence research
merge The mergesort algorithm, on an integer array
mvt Linear algebra computations, Matrix-Vector Product and

Transpose
optical flow Image processing, computation of the movement of each

pixel in five continuous image frames
seidel_2d 2-D Seidel stencil computation
spam_filter Spam filtering using Naive Bayes classifier
spmv_crs Sparse matrix-vector multiplication, using variable-

length neighbor lists
spmv_ellpack Sparse matrix-vector multiplication, using fixed-size

neighbor lists
Continued on next page
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Table 6.1 – Continued from previous page
Design Application Domain
stencil2d Scientific simulations, A two-dimensional stencil compu-

tation, using a 9-point square stencil
symm Linear algebra computations, Symmetric matrix-multiply
trisolv Linear system solver, solving triangular system of linear

equations
trmm Linear algebra computations, Triangular matrix-multiply

6.2 Data Generation using Vitis HLS and Vivado
To create multiple hardware implementations for each design, we leveraged different
HLS pragmas i.e. synthesis directives (see Table 6.2) and various clock periods
(2.5, 5, 7.5, 10 ns). This allows our predictive model to learn designs with different
area-delay trade-offs. Thus, we build a dataset containing 2465 data points in
total. We synthesized each design point in our dataset with Vitis HLS 2021.2 [11]
and implemented with Vivado 2021.2 [40] (using Vivado defaults for synthesis and
implementation) targeting different FPGA devices, Avnet Ultra96v1 and Xilinx
ZCU104 boards. The dataset is generated on an Intel Xeon processor-based server
with 128GB RAM.

Table 6.2: Synthesis Pragma configurations

Pragma Configuration

Loop Pipelining Enabled/Disabled
Loop Unrolling Unrolling Factor
Loop Flattening Yes/No

Array Partitioning Block/Reshape/Cyclic/Complete
Function Inline Yes/No

The ground truth (actual resource usage and critical path timing) of each of
these design points is extracted from the implementation and timing reports which
are generated after the place and route phase. Table 6.3 shows the range of values
of target objectives in our dataset.

6.3 Graph Generation for HLS Design
The input to our proposed GNN predictive model is an HLS IR graph representing
the functionality of the design and is extracted after the front-end compilation. As
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Table 6.3: Overall Summary of designs in our DATASET

# of LUTs # of DSPs # of FFs C.P. (ns)
Min. 8 0 24 1.5
Max. 53239 360 31004 8.562
Mean 2456 28 2619 3.72

mentioned in Section 3.4, we have considered a combination of control-flow, data-
flow and call-flow graphs for our experiments. A program semantic information
representation tool, ProGraML[41] is used to extract a graph from a given IR which
combines the aforementioned graphs into a unique graph. It assigns separate nodes
to operands explicitly and also keeps the function hierarchies by incorporating the
call flow.

During the processing of ProGraML, LLVM instructions are converted into
nodes of the generated graph with specific attributes like opcode. Referencing
LLVM Language Reference Manual[42], we extended ProGraML capabilities to
retrieve more critical information from the given LLVM instructions and append it
as attributes of the corresponding nodes in the graph. Specifically, we added two
key pieces of information for each LLVM instruction as follows:

• Bitwidth describes the number of bits in the operands that the instruction
operates on, which affects the resources required to store and manipulate
the operands and is thus highly relevant to the consumption of the hardware
resources we are trying to predict. For example, an instruction that operates
on 8-bit operands will require fewer hardware resources than an instruction
that operates on 32-bit operands.

• Opcode category identifies the functionality of LLVM instruction. In general,
the resource requirements and behaviors of various LLVM instruction categories
vary, which makes it affects the overall performance and resource utilization.
For example, the "Arithmetic" category contains instructions that perform
arithmetic operations, such as adding or multiplying. These instructions
typically consume more hardware resources than others.

Algorithm 1 illustrates the process of generating a graph representation of an
HLS design. The input to the algorithm is the HLS design, and the output is the
graph representation of the design.

Fig. 6.1 shows a toy example demonstrating how the input graph to our model
is generated. For ease of demonstration purposes, only the apt nodes in the graph
are presented.

Fig. 6.1 (a) shows the HLS code for implementing the dot product with two
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Algorithm 1 Graph Generation for HLS design
Require: HLS design

LLVM IR bitcode ← Vitis HLS Front-end(HLS design)
LLVM IR ← LLVM Disassembler(LLVM IR bitcode)
Graph representation ← Extended ProGraML(LLVM IR)

Figure 6.1: An HLS design example with its graph representation

HLS pragmas inside the loop. Fig. 6.1 (b) illustrate its graph representation which
is extracted after the HLS front-end compilation. The graph contains two different
kinds of nodes. The LLVM instructions are represented by the nodes in blue,
which are connected to one another according to the control flow. The variables
and constant values that show the operands of the instructions in the data flow
are represented by the nodes in red. Three different colors are used to symbolize
different types of edges: blue, red, and green for control, data, and call respectively.
Fig. 6.1 (c) shows the local and global features that can be directly extracted from
the IR graph and user-defined optimization directives (See Section 6.4 for detail).

6.4 Features
Our proposed approach uses two different sets of features which are useful for
predicting post-implementation QoR. These sets of features are extracted from two
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distinct sources which are HLS IR code and user-defined HLS synthesis directives.
We call these sets local and global features respectively.

Local features include structural and contextual information. Structural infor-
mation tells about the connectivity of the nodes in the graph and is encoded as an
adjacency matrix. Contextual information relates to the node and edge attributes
and this information is explicitly encoded for each node and edge. For each node,
its type, category, opcode, block ID, function ID and bitwidth are considered. For
example, a type shows whether the node is an instruction, variable, or constant.
As for an edge, we only considered its type which basically tells whether the edge
belongs to control, data, or call flow. Details of the local features are listed in
Table 6.4.

Table 6.4: Local Features: Nodes and Edges

Feature Description Examples

Type Node Type Instruction, Variable, Constant
Block LLVM Block ID 0, 1, 2 etc.

Function Function ID 0, 1, 2 etc.
Opcode Category Opcode type based on LLVM Unary, Binary, Terminator etc.

Opcode Opcode of the node add, icmp, shl etc.

Node

Bitwidth Bitwidth of the operand 8, 16, 32, etc.
Edge Type Flow Type Control, Data, Call

In order to represent categorical features numerically (see Section 4.5), we
employ both one-hot encoding and embedding techniques. To be more precise, we
represent the node feature vector using a combination of one-hot encoding for the
node type and embedding for the remaining features. The resulting node feature
vector is constructed by concatenating the one-hot encoding of the node type with
the embedding of the remaining features. As the node type is the most influential
feature and we want to explicitly encode and convey this information to the model,
we utilize one-hot encoding for this particular feature.

6.5 Normalization
Before the training, we pre-process the data and apply normalization so that each
objective can contribute equally to the training loss. For example, in the case of
resource usage, we normalize the resource utilization by dividing them by the total
number of resources available on the FPGA.
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Chapter 7

Predictive Model

We formulate the QoR predictive problem as a multi-objective regression task to
estimate post-implementation timing and resource usages for LUT, FF, and DSP
of a given design based on its HLS IR without invoking HLS tool.

7.1 Model structure

Figure 7.1: General Structure of the framework to evaluate different GNN models.
The only difference is the type of GNN models.

We employ multi-task learning where a single GNN model is trained and the
generated graph embeddings are shared with a set of MLPs to estimate the
different objectives. The general structure of our model architecture is shown in
Fig. 7.1. It takes the graph representation of the design as an input and creates
the initial node/edge embeddings by encoding the attributes (Section Table 6.4).
This information is then passed to the GNN model which updates the embeddings.
These updated embeddings are used to generate a graph-level representation
vector via pooling which is passed to a set of MLPs to predict multiple objectives.
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We evaluated different GNN models (Section 5.3) using the same flow for a fair
comparison and the only difference lies in the type of a GNN layer.

7.2 Training
Fig. 7.2 shows the training flow of the proposed framework. Once the dataset
and the associated features are available, we can then perform the training to
obtain a predictive model. The ground truth labels are extracted from the post-
implementation reports. We train the GNN models by supervised learning to
learn the underlying heuristics and optimization techniques to predict the desired
objectives swiftly and accurately. During the training phase, an HLS design
with its configurations is first fed into the HLS tool front-end where the IR is
generated. The graph generator (see Section 6.3 for detail) will then convert the
IR into a graph. The generated graph is passed to the GNN model and the final
graph-level embedding is obtained, which is subsequently concatenated with the
global features and passed to the non-graphical regression model for predicting the
post-implementation QoR.

7.3 Inference
The inference flow of the proposed framework is shown in Fig. 7.3. The main
purpose of the inference phase is to achieve fast and accurate QoR prediction of the
design compared to HLS baseline without going through implementation processes
which are time-consuming and resource intensive. In the inference phase, we apply
the same pre-processing workflow for any new design to generate a graph and
extract features respectively. Afterward, these are fed to the well-trained model to
perform the prediction of the objectives. We perform two types of cross-validations
to get a better assessment of the effectiveness of the different models. For the
model selection, we first set aside a 20 % of the dataset, also called the hold-out set,
randomly. This hold-out remains isolated and is only used at the end to assess the
final performance and to select the best-performing models. Then, we executed the
k-fold cross-validation on the remaining 80 % dataset where the hyper-parameters
of the considered models are optimized and tuned. Furthermore, for the evaluation
and effectiveness of the selected models, we also performed the generic k-fold cross-
validation on the whole dataset as well. It is worth mentioning that our predictive
models are able to finish the inference for objective estimation within milliseconds
as opposed to the implementation phases which generally require minutes to hours.
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Figure 7.2: Training phase of the proposed framework
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Figure 7.3: Inference phase of the proposed framework
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Chapter 8

Experimental Results

We investigated numerous configurations using trial and error to identify the optimal
setup, and then conducted an extensive experiment to thoroughly evaluate the
effectiveness of our predictive models.

8.1 Setup
All the mentioned GNN models in Section 5.3 are implemented and trained using
PyTorch Geometric[20] on a Linux host machine equipped with Nvidia GeForce
RTX 3060 laptop GPU. For our experiments, each model is set to have 2 layers
with an initial embedding size of 300 followed by 3 MLP layers for each objective.
The graph-level representation is derived by using mean pooling. We trained all
the models with Adam optimizer[43] for 100 epochs using a learning rate of 0.001, a
weight decay of 0.0005, and an Exponential Linear Unit (ELU)[44] as an activation
function. All these hyper-parameters are tuned on the validation set. As the
prediction problem is formulated as a regression task, we use Root Mean Squared
Error (RMSE) as a metric for the evaluation of the models. We perform 5-fold
cross-validation to check the efficacy and robustness of the models and to select
the best-performing model.

The designs in the dataset (Section 6.1) are synthesized and implemented using
Vitis HLS 2021.2 [11] and Vivado 2021.2 [40] respectively. The ground truth labels
(LUT, FF, DSP, CP) are extracted from the post-implementation reports. The
dataset is randomly split into 70 % for training, 10 % for validation and 20 % for
testing. We also compare our models with the commercial HLS tool (Vitis HLS),
used as a Baseline Model and a graph learning-based performance prediction model
[8].

As illustrated in Algorithm 2, we utilize the HLS Estimation Report as the
baseline and the Post-Implementation Report as the ground-truth label. The HLS
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Algorithm 2 Baseline and Groundtruth Extractor
Require: HLS design

RTL design, HLS report ← Vitis HLS(HLS design)
Bitstream, Post-implementation report ← Vivado(RTL design)
Baseline ← HLS baseline Extractor(HLS report)
Groundtruth ← Groundtruth Extractor(Post-implementation report)

Estimation Report is extracted to establish a baseline for our proposed approach.
The Post-Implementation Report provides performance metrics after the RTL
design has been implemented on a target FPGA device. These metrics are used
to generate the ground-truth labels for training and evaluating our proposed
GNN-based predictive models.

8.2 Model Evaluation
Based on the discussion in Section 4.3, we utilize both the single test and cross-
validation approaches to evaluate the effectiveness of our proposed predictive
model.

8.2.1 Single test
GNN models encode the local features into graph-level embeddings which are then
passed to the non-graphical regression model. We first test the performance of
the GNN models with local features. Fig. 8.1 shows the performance evaluation of
GNN models with respect to the Baseline regarding LUT, FF, DSP and CP.

Please note that all the models performed better than the baseline for all the
prediction objectives. Fig. 8.2 shows the prediction improvements of the models over
the baseline. For LUT utilization prediction, GAT provide the best improvement
of more than 55 % over the baseline. In the case of FF, GCN, GAT, and DAGNN
give prediction improvements of more than 40 %. GAT is the best among all the
models in reducing the prediction error with respect to the HLS baseline model
for DSP utilization. For critical path timing (CP), all the models improve the
prediction by more than 45 %. On average, GAT is the best-performing model in
reducing the resource usage prediction, and DAGNN in terms of timing.

It is worth mentioning that all these GNN based predictive models perform
better prediction than the HLS baseline model for all the targeted objectives. GIN
provides the least advantage in terms of reducing the prediction error among all
the tested models, especially in the case of DSP utilization prediction. On the
basis of this empirical evidence, we drop GIN for the model selection phase.
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Figure 8.1: RMSE with Local Features only
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Figure 8.2: QoR Improvements with Local Features only
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8.2.2 Cross-validation
We further evaluated the predictive models using a 5-fold cross-validation to obtain
a more comprehensive evaluation of their performance after performing the single
test. This approach allows us to train and test the models on different subsets of the
dataset, reducing the risk of overfitting and providing a more accurate estimate of
their predictive power. As previously discussed in Section 4.3, there are two distinct
methods for conducting cross-validation: one involves applying the technique to
the whole dataset, while the other involves applying it only to the training set.
Both methods were employed, and the results are presented below.

• Cross-validation is exclusively applied to the training set.

LUT FF DSP C. P.
Prediction Objectives
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SE
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DAGNN

Figure 8.3: RMSE of 5-fold Cross Validation on the training set

For the model selection purpose, we apply 5-fold cross-validation with a holdout
test set. Fig. 8.3 compares the performance evaluation of GCN, GAT and
DAGNN models with respect to the HLS Baseline. Fig. 8.4 shows the Quality
of Results (QoR) improvements of the selected model over the baseline for the
target objectives. For the LUT and FF utilization predictions, all the selected
graph-based models give improvements of more than 50 %; GAT based model
provides the best 57 % for LUT and GCN based model provides the best 55 %
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Figure 8.4: QoR Improvements of 5-fold Cross Validation on the training set

for FF with respect to the baseline, respectively. In the case of DSP prediction,
GAT is clearly the winner and reduces the prediction error by more than
30 %. For critical path timing (CP), all the graph-based models provide the
prediction improvement by more than 67 %, with GAT based predictive model
being the best (71 %). GAT outperforms other graph-based models in three
out of four target objectives and is not far behind in the prediction of FF
utilization in which GCN based model performs the best. On the basis of
these results, we select GAT based model.

• Cross-validation is applied to the whole dataset.
To evaluate the selected model over the whole dataset, we perform a generic
5-fold cross-validation. Fig. 8.5 shows the Quality of Results prediction
improvements over the whole data. It can be seen that the GAT based
predictive model clearly provides better prediction with respect to the HLS
baseline model, and gives up to 74 % performance prediction improvements.

8.3 Generality and Comparison with other work
To evaluate the generality of our chosen model, we conduct an evaluation on unseen
data points from new applications. We randomly selected data points from our
dataset and ensured that the training and testing sets are from distinct applications.
By doing so, we can assess the capability of our model to generalize effectively to
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Figure 8.5: QoR Improvements of 5-fold Cross Validation on the whole dataset

unseen applications. Moreover, we conduct a quantitative comparative analysis
with the state-of-the-art using the same dataset split method. Note that all these
kernels are from diverse application domains and have different coding structures.
We compare our model quantitatively with the graph-based Machine Learning
approach in [8], as they open-source their work. For the comparison with other
ML based approaches, Table 1.1 provides a qualitative analysis.

We take the best-performing regression model in [8] for resource usage and
timing prediction, implement and train to the best of our knowledge, and refer
to it as PNA-HLS. Fig. 8.6 shows that our GAT based predictive model reduces
the prediction error for resource usage and timing prediction by 68 % and 34 %
with respect to the HLS, respectively. Our proposed model also outperforms the
state-of-the-art model PNA-HLS by 28 % and 22 % for resource usage and timing
prediction respectively. Consequently, these findings substantiate the assertion
that the proposed model possesses the capacity to generalize to unexplored domain
applications, thereby achieving a performance that is superior to the current state-
of-the-art. This shows the importance of encoding the design configurations (HLS
synthesis directives) as features in the models.
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Figure 8.6: QoR Improvements on Unseen application domain designs
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Chapter 9

Conclusion

9.1 Achievement
An High-Level Synthesis (HLS) offers great flexibility to optimize designs for
area and performance but HLS estimated QoR often differ from actual post-
implementation results achieved. In this thesis work, we proposed an HLS tool-
agnostic GNN-based framework to estimate Quality of Results of HLS designs. We
first developed a method to extract a graph-based representation of design straight
from the HLS front-end, which encodes both program semantics and HLS synthesis
directives information. Then, we proposed a multi-objective GNN-based learning
model to predict resource usage and timing of HLS designs in milliseconds without
invoking HLS tool synthesis process. The experimental results demonstrate that
our proposed predictive model outperforms the commercial HLS tool for real-case
applications from various domains. It also shows that our model is capable of
extending the learned knowledge and generalizing it to unseen design cases.

9.2 Feature Work
We plan to extend our framework to cover larger designs and cover more application
domains in future work.
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