
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Liquid Computing on
Multiclustered Hybrid Environment
for Data Protection and Compliance

Supervisor Candidate
Prof. Fulvio Risso Alessandro Lucani
Company tutor
Ing. Antonino Sirchia

Academic Year 2022-2023

Summary

With business logic running at the Edge, much larger volumes of data can be se-
cured and processed locally where the data is produced. This reduces the network
bandwidth requirements and consumption between Edge and Cloud, increases re-
sponsiveness, decreases costs, and protects customers’ data privacy.

In particular the data privacy is nowadays becoming a topic more and more
relevant, in fact more and more nations are developing and adopting legislation
regarding data privacy and protection and so the companies that leverages on cloud
services to manage data need to change their processes in order to be compliant
to the new regulations.

The objective of this thesis is to propose a solution about the data storage and
personal data processing within the scope of the Digital Ecosistem Platforms. This
technology is becoming everyday more popular but it has to face the limitation
imposed by the regulations in order to exploit its potentiality. In fact it is based
on a cloud-native design that provides extensibility through its ability to blend
edge devices with more powerful central clusters, creating hybrid cloud scenarios.

This thesis aims to analyze some solutions that don’t include any further techno-
logical step but only architectural and organizational ones and then, after making
some evaluations on these, propose a possible new approach and real-world appli-
cation to solve the problem. The proposed idea leverages on the liquid computing
concept which points to the creation of a resource continuum, by connecting to-
gether several clusters and hiding everything behind standard cloud computing
concepts. This approach has been deeply studied and the solution that is the re-
sult of this thesis make use of it to create the architecture that allows to store and
process data according to data protection regulations.

This thesis, developed with Engineering Ingegneria Informatica[5], has been
tested in-house and will now be incorporated into the company’s solutions offered
to costumers. Moreover this solution has been presented at one of the meetings of
the European initiative Gaia-X[6] at Paris as one of the assets of the lighthouse
project Structura-X[23].

2

Contents

List of Tables 6

List of Figures 7

I Introduction 9

II Container orchestration and digital platforms 13

1 Introduction to containers 15

2 Container Orchestrators 17
2.1 DockerSwarm . 17
2.2 Kubernetes . 18

2.2.1 Architecture . 18
2.2.2 Objects vocabulary . 21
2.2.3 Extension possibilities . 28

2.2.3.1 Operator Pattern 28
2.2.3.2 Custom Resources 28

2.2.4 Distributions . 29
2.2.4.1 Openshift . 29
2.2.4.2 Rancher . 30
2.2.4.3 Lightweight distributions 30

K3s[12] . 31
MicroK8s[18] . 31
Kind[13] . 31

2.2.4.4 Cloud distributions 31
EKS . 31
AKS . 32
GKE . 32

3

3 Digital platforms 33
3.1 Main characteristics . 33
3.2 Thingsboard . 34
3.3 Digital Enabler . 35

3.3.1 Architecture . 36
3.3.2 Services . 37
3.3.3 Challenges . 37

III Data protection regulations 39

4 GDPR 43
4.1 History . 43
4.2 Key concepts . 44
4.3 Data management at rest . 46
4.4 Data sovereignty . 48

5 Other worldwide data management regulations 49
5.1 US regulation . 49
5.2 Chinese regulation . 50
5.3 Brazilian regulation . 51

IV State of art 53

6 Use multiple scattered clusters 57
6.1 Main characteristics . 58
6.2 Deployment scenarios . 58

7 Use private provider technologies 61
7.1 Main characteristics . 61
7.2 Deployment scenarios . 62

8 Liquid computing 63
8.1 Main characteristics . 64
8.2 Deployment scenarios . 64
8.3 Admiralty . 65
8.4 KubeEdge . 68
8.5 Liqo . 73

8.5.1 Architecture . 73
8.5.2 Implementation details . 76

8.6 Comparison . 76

4

8.7 Other minor alternatives . 79
8.7.1 Tensile-kube . 79

V Design and proof-of-concept 81

9 General concept 83

10 Use cases 85
10.1 Database offloading on Edge . 85
10.2 Remote Data processing . 85

11 Implementation 87
11.1 Database offloading on Edge with Liqo and Digital Enabler 88

12 Results and evaluation 93
12.1 A real-world use case: Gaia-X and Structura-X project 93

12.1.1 The federation . 94
12.2 Issues emerged and solved . 95

12.2.1 Accessibility of API Server 95
12.2.2 Fedora CoreOS interfaces management 95
12.2.3 Openshift privileges management 96
12.2.4 Customize type of service depending on the cluster configu-

ration . 96
12.3 Split-brain scenario evaluation . 96
12.4 Inter-cluster traffic evaluation . 97

VI Conclusion and future developments 101

5

List of Tables

Liquid computing solutions community comparison 77
Inter-cluster traffic evaluation . 97

6

List of Figures

1.1 Evolution of deployment technology 15
2.1 Kubernetes cluster components . 18
2.2 Multi-container pod example . 24
2.3 Example of scaling down with StatefulSet 24
3.1 Digital Enabler workflow . 35
3.2 Data Protection and Privacy Legislation Worldwide[26] 41
8.1 A graphical representation of the three deployment scenarios fos-

tered by liquid computing . 65
8.2 Admiralty multi-cluster tolopologies 66
8.3 Admiralty scheduling process . 67
8.4 KubeEdge architectural schema . 69
8.5 KubeEdge flow example from Edge to Cloud 70
8.6 KubeEdge flow example from Cloud to Edge 71
8.7 Liqo network fabric high level representation 75
8.8 Alternatives community comparison 78
11.1 Liqo out-of-band peering[16] . 89
11.2 Liqo in-band peering[16] . 89
12.1 Project partners . 94
12.2 Liqo-gateway network namespaces and interfaces 95
12.3 Inter-cluster traffic compared by phase 99
12.4 Inter-cluster traffic monitoring over time 100

7

8

Part I

Introduction

9

General introduction
The increasing diffusion of cloud computing lead companies to move to container-
ized applications and to adopt the cloud native approach in creating solutions.

On the other hand one of the assets that is gaining every day more value are
data, in particular personal data, which can be collected in many different ways:
by filling a form, by using a device or just by being in a specific place.

These two flows lead to the creation and diffusion of the Digital platforms,
huge and widespread systems which are usually based upon container orchestrator
in order to be more flexible and easy to be deployed and managed. They are
composed of various parts which cooperate in order to give a service to the client
that has requested it. These ecosystems can be exploited for various reasons but
among their objectives the main ones are to collect and process data from users
around the world to create a data workspace.

The adoption of this solution needs to face several issues such as network ones,
response speed, availability and others but the main one is the compliance to the
worldwide data protection regulations. In fact the data privacy legislation around
the world set limits about where data should be stored and how they should be
transferred.

Goal of the thesis
The objective of this thesis is to find and analyze the state of the art of the current
technologies in order to propose a solution for the issue described above.

In particular the focus will be on containers, orchestrators, data regulations
around the world to understand which are the limits to which the solution must
be compliant, and then on the Digital platforms in order to find a real applica-
tion of the proposed solution. In the following paragraphs will be paid attention
to several possible theoretical approaches and actual implementations and then,
after a careful analysis, a solution will be proposed and the choices made will be
motivated.

Outline
• Chapter 2: introduction to containers and cloud native approach (going

through some implementations and distributions) and presentation of Digital
platforms with some examples.

• Chapter 3: presentation of data protection regulations going from the the-
oretical aspects to the description of some of the most famous legislation.

11

• Chapter 4: presentation of the state of art of the possible solutions to the
highlighted problem with the description of the proposed new approach.

• Chapter 5: deep analysis of the issue and the proposed solution in all its
aspects including the actual implementation and the results.

• Chapter 6: conclusion and presentation of possible future developments.

12

Part II

Container orchestration and
digital platforms

13

Chapter 1

Introduction to containers

During the years the process to deploy an application has changed a lot and this
section will briefly summarize the main steps that are depicted in the following
figure.

Figure 1.1: Evolution of deployment technology

Long back organizations ran applications on physical servers and each particular
server was used in the deployment of only one particular application because there
was no way to define resource boundaries for applications, and this caused resource
allocation issues. Running only one application per server did not scale as
resources were underutilized, and it was expensive for organizations to maintain
many physical servers. In this scenario if the organizations wants to run several
applications on the same machine the problem of unequal resource division arises.
So some applications would take up most of the resources, and as a result, the
other applications would underperform.

15

Introduction to containers

The problem described above was affecting the entire IT industry so virtualiza-
tion was introduces as a solution. Virtualization is the process of running a virtual
instance of a computer system in a layer abstracted from the actual hardware. This
innovation allows to run multiple Virtual Machines (VMs) on a single physical
server’s CPU exploiting the concept of isolation between VMs achieved through
an hypervisor that is a software responsible for creating and running virtual ma-
chines, it allows one host computer to support multiple guest VMs by virtually
sharing its resources, such as memory and processing. In this new scenario the
utilization of resources and the unequal resource division was solved so a better
scalability can be achieved because an application can be added or updated easily.
This innovation solves the problems highlighted before but it brings new issues in
fact it is needed to install OS in each of these systems, they use a lot of RAM and
the same applies to other physical resources like CPU and hard disk and so this is
not suitable for scenarios where the startup time is an important feature.

So, to overcome the problems of the VMs, a new technology was developed:
containers. Containers are similar to VMs, but they have relaxed isolation prop-
erties to share the Operating System (OS) among the applications and this new
step in the virtualization process is called lightweight virtualization. They also
allows a better resource utilization and isolation that brings to a scenario with pre-
dictable application performances. Containers offers a lot of features that made
them so popular. Among them must be highlighted that they allows agile ap-
plication creation and continuous integration and deployment due to the layered
filesystem, improved the DevOps by the Dev and Ops separation of concerns (cre-
ate application container images at build/release time rather than deployment
time) and environmental consistency across development, testing, and production
(runs the same on a laptop as it does in the cloud) and they enables a greater
portability.

The endless growing of popularity of containers and their increasingly widespread
use led to the problem of maintaining and controlling them.

Containers effectively guarantee that applications run the same way anywhere,
allowing to scale applications up and down but it is needed some way to help
automate the maintenance of those applications, enable the replacement of failed
containers automatically, and manage the rollout of updates and reconfigurations
of those containers during their lifecycle.

Tools to manage, scale, and maintain containerized applications are called or-
chestrators, and the most common examples of these are Kubernetes, with all
its distributions, and Docker Swarm that will be further and deeper evaluated in
the next chapter.

16

Chapter 2

Container Orchestrators

This chapter will focus on presenting the most common orchestrators and in par-
ticular, Kubernetes, with some of its main features.

2.1 DockerSwarm

Docker Swarm is a part of the native Docker engine that allows to scale container-
ized applications inside clusters, arbitrary number of machines logically grouped.
It enables central cluster management as well as the orchestration of containers.
The Docker Swarm architecture is based on a master Node and a variable number
of worker nodes. The master handles the management of the cluster and schedul-
ing tasks, while the swarm workers perform the execution. The main concept that
describe the way containers are orchestrated is the Service. The Service is the
abstraction of how tasks are carried on by the cluster. Each service is composed
by a set of individual tasks that are processed in a single container deployed in one
or more nodes of the cluster. When creating a service, must be specified which
container image it’s based on and which commands are run in the container.

Another tool present in the Docker engine is Docker Compose that allows to
define multi-container applications - or “stacks” - and run them in a Docker node
or cluster. Stacks in Docker are defined as groups of interconnected services that
share software dependencies and are orchestrated and scaled together.

In the end the correct usage of these two tools lead to a valid orchestration
architecture that can be suitable in various scenarios and is ideal for small work-
loads. Among its advantages there are the simple installation and familiarity and
emphasis on ease-of-use.

17

Container Orchestrators

2.2 Kubernetes
Kubernetes is a portable, extensible, open source platform for managing container-
ized workloads and services, that facilitates both declarative configuration and au-
tomation. It has a large, rapidly growing ecosystem. Kubernetes services, support,
and tools are widely available.

Google open-sourced the Kubernetes project in 2014. Kubernetes combines
over 15 years of Google’s experience running production workloads at scale with
best-of-breed ideas and practices from the community. The following section
is a brief introduction to Kubernetes that takes inspiration from the official
documentation.[15]

2.2.1 Architecture
The first element that must be introduced is the cluster that is the first con-
cept that a user get in touch with after deploying Kubernetes. A Kubernetes
cluster consists of a set of worker machines, called nodes, that run containerized
applications. Every cluster has at least one node that acts as the master and
hosts the control plane. The control plane manages the worker nodes and the
pods in the cluster. In production environments, the control plane typically runs
on multiple machines, and a cluster typically comprises multiple nodes, ensuring
fault-tolerance and high availability. The worker node(s) host the pods that are
the components of the application workload.

Figure 2.1: Kubernetes cluster components

18

2.2 – Kubernetes

Control Plane Components
The control plane’s components make decisions that affect the entire cluster, such
as scheduling, as well as detecting and responding to events within the cluster,
such as launching a new pod when there are not enough replicas for a deployment.
Control plane components can be run on any machine in the cluster.

API server
The API server is a component of the Kubernetes control plane that exposes the
Kubernetes API. The API server is the frontend for the Kubernetes control plane.

The primary implementation of the Kubernetes API server is kube-apiserver.
It is built to scale horizontally by adding more instances and in some cases, it’s
recommended to run multiple instances and distribute the traffic among them.

etcd
The etcd is a consistent and highly-available key value store used as Kubernetes’
backing store for all cluster data.

Scheduler
The scheduler is the control plane component that monitors for newly created pods
without a designated node, and selects a node for them to run on.

The scheduler takes into account various factors such as resource requirements,
hardware/software/policy constraints, affinity and anti-affinity specifications, data
locality, workload interference, and deadlines, when making scheduling decisions.

The default scheduler for Kubernetes is kube-scheduler, which runs as part
of the control plane. It is also designed to be replaced by a custom scheduling
component if desired.

19

Container Orchestrators

kube-controller-manager
kube-controller-manager is the component of the control plane that manages the
controller processes and compares the current state of a resource with its desired
state as defined in the resource’s definition. It consists of multiple separate con-
trollers and processes, but for simplicity, they are all combined into a single binary
and run as a single process.
Some types of these controllers are:

• Node controller: responsible for noticing and responding when nodes go
down.

• Replication controller: ensures that a specified number of pod replicas are
running at any one time.

• Service Account & Token controllers: create default accounts and API
access tokens for new namespaces.

cloud-controller-manager
cloud-controller-manager is a component of the Kubernetes control plane that
includes cloud-specific control logic. It only runs controllers that are designed for
for each specific cloud provider.

Like the kube-controller-manager, the cloud-controller-manager combines mul-
tiple independent control loops into a single binary that is run as a single process
and can be scaled horizontally.
Some controllers that can have cloud provider dependencies:

• Node controller: responsible for updating Node objects when new servers
are created in your cloud infrastructure. The node controller obtains infor-
mation about the hosts running inside your tenancy with the cloud provider.

• Route controller: responsible for setting up routes in the underlying cloud
infrastructure.

• Service controller: creates, updates and deletes cloud provider load bal-
ancers.

20

2.2 – Kubernetes

Node Components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

kubelet
The kubelet is a agent that runs on each node in the cluster, and it responsible
for ensuring that the containers in a pod are running properly.

It follows a set of specifications that are provided through different means, and
ensures that the containers described in those are running and healthy.

kube-proxy
kube-proxy is a network proxy that runs on each node in your cluster, implementing
part of the Kubernetes Service concept.

It manages network rules on the nodes, which allow for network communication
to the pods from sessions inside or outside the cluster.

Container runtime
The container runtime is the software that is responsible for running containers.

Kubernetes supports container runtimes such as containerd, CRI-O, Docker
Engine, Mirantis Container Runtime (formerly known as Docker Enterprise Edi-
tion) and any other implementation of the Kubernetes CRI (Container Runtime
Interface).

2.2.2 Objects vocabulary
Kubernetes objects are persistent entities in the Kubernetes system. Kubernetes
uses these entities to represent the state of your cluster. Specifically, they can
describe:

• which containerized applications are running (and on which nodes)

• the resources available to those applications

• the policies around how those applications behave, such as restart policies,
upgrades, and fault-tolerance

When an object is created, the user is effectively communicating to the Kuber-
netes system what the desired state of the cluster’s workload should look like. The
Kubernetes controllers will continuously work to ensure that the object exists.

To interact with Kubernetes objects, the Kubernetes APIs must be used, which
can be accessed through the API server that is present in the control plan

21

Container Orchestrators

When creating an object in Kubernetes, the object spec that describes its de-
sired state must be provided, as well as some basic information about the object
(such as a name). Most often, the information is provided to kubectl, the Kuber-
netes command-line tool, in a .yaml file and then kubectl converts the information
to JSON when making the API request.

Here there is an example of the .yaml file used to create a pod:

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name: b u s y b o x
5 namespace : d e f a u l t
6 spec :
7 c o n t a i n e r s :
8 - image : b u s y b o x
9 command:

10 - s l e e p
11 - " 3600 "
12 imagePul lPo l i cy : I f N o t P r e s e n t
13 name: b u s y b o x
14 r e s t a r t P o l i c y : A lways

Namespaces

In Kubernetes, namespaces provide a mechanism for isolating groups of resources
within a single cluster. The names of resources must be unique within a names-
pace, but not across different namespaces. Namespaces are used to divide cluster
resources among multiple users by means of resource quota, a tool that sets limits
on resource consumption.
Kubernetes starts with four initial namespaces:

• default: the default namespace for objects with no other namespace.

• kube-system: the namespace for objects created by the Kubernetes system.

• kube-public: this namespace is created automatically and is readable by all
users (including those not authenticated). This namespace is mostly reserved
for cluster usage, in case that some resources should be visible and readable
publicly throughout the whole cluster.

• kube-node-lease: this namespace is used for Lease objects associated with
each node that allow the kubelet to send heartbeats so that the control plane
can detect node failure.

22

2.2 – Kubernetes

Labels and Selectors

Labels are key/value pairs that are attached to objects, such as pods. They are
intended to be used to identify objects in a way that is meaningful to users, but
does not carry any semantics for the core system. Labels can be added to objects
at creation time and can be modified at any point later on.

Unlike names and UIDs, labels do not provide uniqueness. It is common for
multiple objects to carry the same label(s). A label selector can be used to identify
a group of objects that share a common characteristic.

Finalizers

Finalizers are namespaced keys that instruct Kubernetes to wait for specific con-
ditions to be met before fully deleting resources that are marked for deletion.

When an object with finalizers is requested to be deleted, the Kubernetes API
marks the object by populating the .metadata.deletionTimestamp field and re-
turns a 202 status code (HTTP "Accepted"). The object remains in a terminating
state while the control plane performs the actions defined by the finalizers. Once
these actions are completed, the controller removes the relevant finalizers from the
object. When the .metadata.finalizers field is empty, Kubernetes considers the
deletion complete and deletes the object.

Finalizers can be used to control the garbage collection of resources. For exam-
ple, a finalizer can be defined to clean up related resources or infrastructure before
the controller deletes the target resource.

Pod

Pods are the building blocks of a Kubernetes deployment. They are the smallest
deployable units that can be created and managed in a Kubernetes cluster. Pods
consist of one or more containers that are tightly coupled and share storage and
network resources. They are always co-located and co-scheduled, and run in a
shared context (Figure 2.2).

Pods are typically not created directly, but rather through other resources such
as Deployments or StatefulSets. These resources provide additional function-
ality such as replication, rollout, and automatic healing in case of pod failure. For
example, if a node fails, a controller will notice that the pods on that node have
stopped working and create a replacement pod, which the scheduler will place on
a healthy node.

Pods are designed to share resources, communicate with each other, and coor-
dinate their termination.

23

Container Orchestrators

Figure 2.2: Multi-container pod example

ReplicaSet

ReplicaSets are responsible for maintaining a stable number of running pods at all
times. They are commonly used to ensure a specified number of identical pods are
running for high availability. However, they are often not used directly, but rather
through a Deployment. A Deployment is a higher-level concept that manages
ReplicaSets, providing declarative updates to pods and additional features.

StatefulSet

The StatefulSet resource is designed to manage stateful applications in Kubernetes.
It is responsible for deploying and scaling a set of pods, and ensuring the or-

dering and uniqueness of these pods.
When persistence is required for your workload, using a StatefulSet can be an

effective solution. The persistent pod identifiers make it possible to match existing
storage volumes to new pods, even in the event of pod failure.

Figure 2.3: Example of scaling down with StatefulSet

Deployment

A Deployment is a resource object in Kubernetes that provides declarative updates
to applications. A deployment allows to describe an application’s life cycle, such
as which images to use for the app, the number of pods there should be, and the
way in which they should be updated.

24

2.2 – Kubernetes

A Deployment is a high-level concept in Kubernetes that manages ReplicaSets
and Pods, providing declarative updates and rollouts for your application. It
enables you to define the desired state of your application, including the number
of replicas, the images to use, and the update strategy. This allows for easy scaling,
rolling updates, and automatic recovery in case of failures.

Here there is an example of a deployment:

1 ap iVers ion : a p p s / v1
2 kind : D e p l o y m e n t
3 metadata :
4 name: n g i n x −d e p l o y m e n t
5 l a b e l s :
6 app: n g i n x
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app: n g i n x
12 template :
13 metadata :
14 l a b e l s :
15 app: n g i n x
16 spec :
17 c o n t a i n e r s :
18 - name: n g i n x
19 image : n g i n x : 1 . 1 4 . 2
20 p o r t s :
21 - co nta ine rPo rt : 80

In this example a Deployment named nginx-deployment is created, indicated by
the .metadata.name field. The Deployment creates three replicated Pods, indicated
by the .spec.replicas field. The .spec.selector field defines how the Deployment
finds which pods to manage. In this case, the selected label is app: nginx and it
is defined in the .spec.template section.
The .spec.selector field contains the following sub-fields:

• The pods are labeled app: nginx using the .metadata.labels field.

• The pod template’s specification, .template.spec field, indicates that the pods
run one container which runs the nginx Docker Hub image at version 1.14.2.

• Create one container and name it nginx using the .spec.template.spec.containers[0]
.name field.

25

Container Orchestrators

• The container exposes the port 80 to be contacted using the .spec.template.spec
.containers[0].ports[0].containerPort field.

Service

A Service is an abstract way to expose an application running on a set of pods
as a network service. The application does not require modification for using an
unfamiliar service discovery mechanism. Pods are given unique IP addresses and
a shared DNS name, allowing for load balancing.
There are 4 types of service that are used in different scenarios:

• ClusterIP: exposes a service which is only accessible from within the cluster.
This is the deafult value for the Service type.

• NodePort: exposes a service via a static port on each node’s IP.
The NodePort Service can be accessed from outside the cluster at
<NodeIP>:<NodePort>.

• LoadBalancer: exposes the service via the cloud provider’s load balancer.

• ExternalName: maps a service to a predefined externalName field by re-
turning a value for the CNAME record.

The following is an example of a pod and a Service related to it:

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name: n g i n x
5 l a b e l s :
6 app . kubernetes . i o /name: p r o x y
7 spec :
8 c o n t a i n e r s :
9 - name: n g i n x

10 image : n g i n x : s t a b l e
11 p o r t s :
12 - co nta ine rPo rt : 80
13 name: h t t p −web− s v c
14 ---
15 ap iVers ion : v1
16 kind : S e r v i c e
17 metadata :
18 name: n g i n x − s e r v i c e

26

2.2 – Kubernetes

19 spec :
20 s e l e c t o r :
21 app . kubernetes . i o /name: p r o x y
22 p o r t s :
23 - name: name−o f − s e r v i c e −p o r t
24 p r o t o c o l : TCP
25 port : 80
26 t a r g e t P o r t : h t t p −web− s v c

This specification creates a pod, as explained above, and a new Service object
named "nginx-service", which targets TCP port named http-web-svc on any pod
with the app.kubernetes.io/name=proxy label and exposes it through port 80. In
this case the type is not specified so it is a ClusterIP. It can be selected using the
.spec.type field.

There is also another solution that is the use of an Ingress to expose your
Service. Ingress is not a Service type, but it acts as the entry point for your
cluster. It allows to expose multiple services under the same IP address.

Ingress Ingress exposes HTTP and HTTPS routes from outside the cluster
to services within the cluster. Traffic routing is controlled by rules defined on
the Ingress resource. An Ingress may be configured to give Services externally-
reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based
virtual hosting. An Ingress specifies rules that map incoming requests to spe-
cific services based on the request’s host or path. This allows for easy access to
multiple services within a cluster using a single IP address or domain name. It
needs an Ingress controller to work. The Ingress controller, on the other hand,
is a piece of software that implements the ingress rules and actually routes the
traffic. It watches the Kubernetes API for new ingress resources and configures a
load balancer or reverse proxy to enforce the rules. There are different types of
ingress controllers available, such as Nginx, HAProxy, Istio, etc. Must be high-
lighted that an Ingress does not expose arbitrary ports or protocols. Exposing
services other than HTTP and HTTPS to the internet typically uses a service of
type Service.Type=NodePort or Service.Type=LoadBalancer.

EndpointSlices EndpointSlices provide a simple way to track network end-
points within a Kubernetes cluster. An EndpointSlice contains references to a
set of network endpoints. The control plane automatically creates EndpointSlices
for any Kubernetes Service that has a selector specified. These EndpointSlices
include references to all the Pods that match the Service selector. EndpointSlices
group network endpoints together by unique combinations of protocol, port num-
ber, and Service name.

27

Container Orchestrators

2.2.3 Extension possibilities

Kubernetes is highly configurable and extensible and that’s precisely why there is
rarely the need to fork or submit patches to the Kubernetes project code.

Kubernetes is designed to be automated by writing client programs. Any pro-
gram that reads and/or writes to the Kubernetes API can provide useful automa-
tion. There is a specific pattern for writing client programs that work well with
Kubernetes called Controller pattern. Controllers typically read an object’s .spec,
possibly do things, and then update the object’s .status.

In particular in this section the focus will be on the Operator Pattern and
the Custom Resources because they will be used in the next chapters.

2.2.3.1 Operator Pattern

Operators are software extensions to Kubernetes that make use of custom resources
to manage applications and their components. Operators follow Kubernetes prin-
ciples, notably the control loop.

Kubernetes is designed for automation and the operator pattern lets you ex-
tend the cluster’s behaviour without modifying the code of Kubernetes itself by
linking controllers to one or more custom resources. Operators are clients of the
Kubernetes API that act as controllers for a Custom Resource.

2.2.3.2 Custom Resources

Custom resources are extensions of the Kubernetes API. A resource is an endpoint
in the Kubernetes API that stores a collection of API objects of a certain kind;
for example, the built-in pods resource contains a collection of pod objects.

A custom resource is an extension of the Kubernetes API that is not necessarily
available in a default Kubernetes installation. It represents a customization of a
particular Kubernetes installation. However, many core Kubernetes functions are
now built using custom resources, making Kubernetes more modular.

Custom resources can appear and disappear in a running cluster through dy-
namic registration, and cluster admins can update custom resources independently
of the cluster itself. Once a custom resource is installed, users can create and access
its objects just as they do for built-in resources like pods.

The Kubernetes declarative API enforces a separation of responsibilities.The
desired state of the resource can be declared. The Kubernetes controller keeps the
current state of Kubernetes objects in sync with your declared desired state. The
Operator pattern combines custom resources and custom controllers.

28

2.2 – Kubernetes

2.2.4 Distributions
When setting up a Kubernetes environment, there are two possibilities: vanilla
Kubernetes and managed Kubernetes. With vanilla Kubernetes, a software de-
velopment team has to pull the Kubernetes source code binaries, follow the code
path, and build the environment on the machine. The other option, managed Ku-
bernetes, presents some pre-installed and pre-configured tools that improve some
features such as storage, security, deployment, monitoring, etc. Managed Kuber-
netes versions are also known as Kubernetes distributions.

2.2.4.1 Openshift

Red Hat OpenShift[19] is a leading enterprise Kubernetes platform that enables
a cloud-like experience everywhere it’s deployed. Whether it’s in the cloud, on-
premise or at the edge, Red Hat OpenShift gives the ability to choose where to
build, deploy, and run applications through a consistent experience.

The foundation of OpenShift Container Platform is based on Kubernetes and
therefore shares the same technology.

Both Kubernetes and OpenShift can deploy and run on public cloud and
local environments to enable a better end user experience. But there are some dif-
ferences that must be taken into consideration for better explointing the resources.
This section summarize the main differences.[20]

• Deployment: Kubernetes offers more flexibility as an open-source frame-
work and can be installed on almost any platform — like Microsoft Azure
and AWS — as well as any Linux distribution, including Ubuntu and De-
bian. OpenShift, on the other hand, requires Red Hat’s proprietary Red Hat
Enterprise Linux Atomic Host (RHELAH), Fedora, or CentOS.

• Security: OpenShift has stricter security policies. For instance, it is forbid-
den to run a container as root. It also offers a secure-by-default option to
enhance security. Kubernetes doesn’t come with built-in authentication or
authorization capabilities, so developers must create bearer tokens and other
authentication procedures manually.

• Support: Kubernetes has a large active community of developers who contin-
uously collaborate on refining the platform. It also offers support for multiple
frameworks and languages. OpenShift has a much smaller support community
that is limited primarily to Red Hat developers.

• Networking: Kubernetes lacks a networking solution but lets users employ
third-party network plug-ins. OpenShift, on the other hand, has its out-of-
the-box networking solution called Open vSwitch, which comes with three

29

Container Orchestrators

native plug-ins.

• Templates: Kubernetes offers Helm templates that are easy to use and pro-
vide a generous amount of flexibility. OpenShift templates are nowhere near
as flexible or user-friendly.

• Image Registry Management: Kubernetes doesn’t have an integrated
image registry, although it allows you to pull images from a private registry
so you can create your own pods. Additionally, you can make your own
Docker registry.
OpenShift, on the other hand, has an in-built image registry and pairs seam-
lessly with DockerHub or Red Hat. Therefore, developers can use image
streams to effortlessly search for and manage container images.

• User Experience and Interface: the Kubernetes interface, which can be
complex, may confuse beginners. Users who want to access the Kubernetes
web graphics user interface (GUI) must install the Kubernetes dashboard and
use kube-proxy to send their machine’s port to the cluster server. Users also
must create bearer tokens to make authentication and authorization easier,
since the dashboard doesn’t have a login page.
OpenShift, conversely, features an intuitive web console which includes a one-
touch login page. The console offers a simple, form-based interface, allowing
users to add, delete, and modify resources. OpenShift has the distinct user
advantage

2.2.4.2 Rancher

Rancher[22] is a complete software stack for teams adopting containers. It ad-
dresses the operational and security challenges of managing multiple Kubernetes
clusters, while providing integrated tools for running containerized workloads, and
also unites them with centralized authentication, access control and observability.

The main scenario of applicability of Rancher is the management of several
Kubernetes cluster, maybe with different distributions from different vendors.

2.2.4.3 Lightweight distributions

Kubernetes is the most widely orchestrator but there are some use cases in which
it is not needed in all its features or the hardware characteristics of the testbed
are not enough to execute correctly the full Kubernetes. For this situations some
lightweight versions of Kubernetes were developed and in this section the focus
will be on three of them: K3S, MicroK8s and Kubernetes Kind

30

2.2 – Kubernetes

K3s[12] is a highly available, certified Kubernetes distribution designed for pro-
duction workloads in unattended, resource-constrained, remote locations or inside
IoT appliances. The main features of this distribution are the lightweight and the
small size of the binary, the fact that, unlike traditional Kubernetes, which runs
its components in different processes, K3s runs the control plane, kubelet, and
kube-proxy in a single Server, or Agent, process, and also k3s can use seamlessly
containerd, which it ships inside itself, or an existing Docker installation instead.
All of the embedded K3s components can be switched off, giving the user the
flexibility to install their own ingress controller, DNS server, and CNI.

MicroK8s[18] is a single-package fully conformant lightweight Kubernetes that
works on 42 flavours of Linux and was built to perfectly suit to developer worksta-
tions, IoT, Edge and CI/CD scenarios. The principal concepts under this distribu-
tion are: to be small, developers want the smallest K8s for laptop and workstation
development, simplicity, minimize administration and operations with a single-
package install that has no moving parts for simplicity and certainty, security,
updates are available for all security issues and can be applied immediately or
scheduled to suit your maintenance cycle, it’s comprehensive, MicroK8s includes a
curated collection of manifests for common K8s capabilities and services (Service
Mesh, Serverless, Monitoring, Ingress, DNS, Dashboard, Clustering).

Kind[13] is a tool for running local Kubernetes clusters using Docker container
as nodes. Kind was primarily designed for testing Kubernetes itself, but may
be used for local development or CI. The main principles at the base of Kind
are: gacefully degradation, as much as possible kind should not fail, because it is
to be used for testing and partially degraded states can still be useful and still
be debugged, follow Kubernetes API conventions, minimize assumptions, which
currently are having Docker installed, that the "node" follows the standard format
and the standard Kubernetes assumptions, no external state, it is offloaded into
the “node” containers and this simplifies a lot of problems and eases portability.

2.2.4.4 Cloud distributions

The last category of distributions described are the cloud managed distributions
offered by a large number of provider. The main competitors in this field are
Microsoft, Amazon and Google with their offers of Kubernetes distributions that
hides all the management of nodes and the complexity of the installation.

EKS Amazon Elastic Kubernetes Service[4] is a managed Kubernetes service
to run Kubernetes in the AWS cloud and on-premises data centers. The term

31

Container Orchestrators

"managed" means that certain aspects of Kubernetes, such as provisioning each
node and connecting them to form the cluster, are managed by the cloud provider.

AKS Azure Kubernetes Service[2] simplifies deploying a managed Kubernetes
cluster in Azure by offloading the operational overhead to Azure. As a hosted
Kubernetes service, Azure handles critical tasks, like health monitoring and main-
tenance. Since Kubernetes masters are managed by Azure the user only manages
and maintains the agent nodes.

GKE Google Kubernetes Engine[8] provides a managed environment for deploy-
ing, managing, and scaling your containerized applications using Google infrastruc-
ture. The GKE environment consists of multiple machines (specifically, Compute
Engine instances) grouped together to form a cluster.

32

Chapter 3

Digital platforms

The term Digital Ecosystem Platform is composed by the word “ecosystem” that
comes from biology and is a contraction of “ecological system” and it describes a
system in which entities have a mutual dependence. In this systems, each mem-
ber is complementary to the others and the overall value is made by the single
components but also by their interaction.

A platform can be made by a fixed set of members dedicated wholly to that
platform or by a dynamical set of entities that can enter, exit or change freely and
participating in multiple platforms simultaneously.

3.1 Main characteristics
From the technical, legal and business-related points of view the difficulties found
in digital ecosystems are significant, for example service orchestration, delivery and
monetization, as well as customer communication and data management across the
entire ecosystem constitute some of the most significant challenges.

Ecosystem Platforms focus on flawlessly connecting users and smart devices on
a platform, guaranteeing a wide range of additional services to process the data.
The platform ecosystem creates revenue streams from platform usage.

There is also a super category of ecosystem platform, often called super ecosys-
tem platforms, which are the most complex type of digital ecosystem. They focus
on integrating several platforms into one integrated service, while also capturing
user data from the integrated platform.

The use of this resource lead to a faster adoption of technology. The service
orchestration and management that is in charge of the platform allows companies
to implement new technology in an easier a more faster way, allowing them to take
full advantage of cloud services and SaaS.

Another important point that needs to be stressed out is the relation of these

33

Digital platforms

platforms with orchestrators that allows them to be easily deployed, scaled and
managed. In general the adoption of this technology is useful for having control
on the number of replicas deployed for each services and scale in order to deny the
overload of the resources and the deployment of a new instance of the platform is
almost architecture independent because it leverages on Docker images that runs
in pod managed by the orchestrator.

In the following sections some main examples of data ecosystem platform will
be analyzed.

3.2 Thingsboard
ThingsBoard[25] is an open-source IoT platform that enables rapid development,
management, and scaling of IoT projects which goal is to provide the out-of-the-
box IoT cloud or on-premises solution that will enable server-side infrastructure
for IoT applications.
The main features of this platform are:

• Provisioning of devices, assets and customers, and defining relations between
them.

• Collecting and visualizing data from devices and assets.

• Analyzing incoming telemetry and triggering alarms with complex event pro-
cessing.

• Controlling devices using remote procedure calls.

• Building work-flows based on a device life-cycle event, REST API event, RPC
request, etc.

• Designing dynamic and responsive dashboards and presenting devices or as-
sets telemetry and insights to customers.

• Enabling use-case specific features using customizable rule chains.

• Pushing device data to other systems.

The main concepts on which it leverages are devices, attributes and alarms.
The platform strongly based on the idea of devices that are basic IoT entities

that can produce telemetry data and handle RPC commands, for example, sensors,
actuators, switches.

ThingsBoard provides the ability to assign custom attributes to entities and
manage them. Those attributes are stored in a database and may be used for data
visualization and data processing.

34

3.3 – Digital Enabler

Attributes are key-value pairs and this gives them flexibility and simplicity and
allow easy and seamless integration with almost any IoT device on the market.
The key is always a string and is basically an attribute name, while the attribute
value can be either string, boolean, double, integer or JSON.

ThingsBoard provides the ability to create and manage alarms related to en-
tities: devices, assets, customers, etc. For example, there is the possibility of
creating an alarm when the temperature sensor reading is above a certain thresh-
old. Of course, this is a very simplified case, and real scenarios can be much more
complex.

3.3 Digital Enabler
Digital Enabler[3] is a data driven, cloud native, ecosystem platform. Designed
and engineered by Engineering’s R&D Labs over the past years, today it is one
of the few available, fully functioning, ready to use, Cloud Ecosystems Platforms
available on the market.

It is a multi-purpose platform for organizations, communities and marketplace
end-users because it offers advanced analytics, data presentation, subscriptions
and data monetization process.

Figure 3.1: Digital Enabler workflow

It enables fast connection of various sources, including real-time streams, data
integration through low-code approach, and rule-based action triggering. One of
the tools included is the Discovery Engine which automatically discovers public
data sources. It features a robust built-in API Manager and Gateway, greatly

35

Digital platforms

improving interoperability and offers the possibility of publishing and accessing
APIs through a marketplace. Another important aspect of this platform are all teh
features that regards the edge computing and sensor management. It optimizes
IoT potential by facilitating easy device connection, with control over deployed
assets supported by integrated Big Data and AI tools. The key aspect of the
Digital Enabler lies in the concept of ecosystem by fostering collaboration among
businesses and utilizing open-data as a valuable asset.

3.3.1 Architecture
The platform is built to have a core component on the cloud and an edge one. Both
of them are based on the same layered infrastructure but with some differences
that are needed for the different scope of the two implementations. Starting from
the most technical aspects, there is an orchestrator that in this case is Openshift.
For what concerns the Data spaces, the platform offers several possibilities among
which SQl and NoSql DBs, Time Series DB and Graph DBs.

Going up in the architecture there are different levels that describes a pahse of
data management:

• DataSource connection: includes all the connectors that allows to create
a connection to edge devices in roder to collect data .

• Device Management & Data Management: layer composed of tools
that manages (add, configure and delete) devices and data sources in general.

• Data Integration: formed of software for mashups, serverless functions and
workflows that allows to create custom flows to reorganize, reformat and
enrich data..

• Analytics & AI: includes AI processes, early Warning and anomaly detec-
tion.

• Application Enablement: the upper layer which is composed by data visu-
alization tools (dashboards and synoptic development) and the API gateway.

For what concerns the edge component it is linked to a gateway that act as
a connection point between the single core component and the possible multiple
edge instances. The gateway supports several protocols in other to be more flexible
and avoid the vendor lock-in. The edge component has a structure that is very
similar to the one described above but it has a different scope and among its main
objectives there are:

• Distributed Endpoints: easy connectivity to High-Value Assets and exter-
nal platforms, e.g. Eurotech, AWS and Azure.

36

3.3 – Digital Enabler

• IoT HUB capabilities: device provisioning (eg. Status monitoring, Con-
figuration management, Data plane), data availability (all data provided by
IoT Devices are available and can be used for multiple purposes), IoT Devices
data can be mashed up with data from other data sources, easy connection
with with FIWARE/Eclipse Open Frameworks.

• Integration capabilities: Hybrid IoT ecosystems (single modules can be
easily integrated to existing frameworks), Partner ecosystems (Eurotech,
MindSphere, Telit, Sensors and IoT devices providers), Azure and AWS IoT
frameworks (full compatibility with market platforms, for integrated solutions
in greatly reduced time to market).

3.3.2 Services
The main services offered by the DigitalEnabler are:

• Data discovery: identify potential data sources within an ecosystem (e.g.
city).

• Data collection: collect insightful data and make it easily exploitable via
the platform.

• Low/No code Data integration adn harmonization, workflow: Mashup
multi-source data to create new knowledge, harmonize data to standard data
models. Define and monitor data pipelines.

• IOT & Edge Management: Orchestrate the IoT backbone making avail-
able a wide set of standard protocols to interact with field devices.

• Rule Engine, Advanced analytics, Serverless: Rules and AI to trigger
actions based on conditions and identify data trends, apply algorithms and
Machine Learning models to deduct new valuable information. Developers
are allowed to upload and run any code in a serverless manner.

• Data visualization and provisioning: Visualize data through intuitive
and replicable dashboards built in a self-service manner, Digital Twins,
AR/VR apps and APIs.

3.3.3 Challenges
The Digital platforms have the main purpose of managing data and this arises
several problems regarding the privacy of the personal data and the storage of
them. Companies which use personal data have to follow a strict regulations,
variable depending on geographical region or field of application (e.g. the medical

37

Digital platforms

sector has different requirements from the financial one). This causes conflicts
with the usage of ecosystem platforms that leverages on the cloud to have better
performances and scale rapidly. In fact, because of this strictness, is not allowed to
transport personal data over the Internet to a central powerful cluster to perform
some operations on them.

In particular the concepts to which digital platforms must comply are the data
management at rest and data sovereignty that will be further explained in
next chapter together with some of the principal worldwide regulations regarding
data protection.

38

Part III

Data protection regulations

39

This is becoming increasingly important as more data needs to be secured.
While the use of the internet is widespread, not all countries have laws in place.
In fact, data from the United Nations Conference on Trade and Development
(UNCTAD)[26] reveals that only 71% of countries have data protection legislation,
while 5% of countries do not produce data. The map below depicts the global
distribution of these regulations.

Figure 3.2: Data Protection and Privacy Legislation Worldwide[26]

In particular regions such as Asia and Africa has respectively only the 57% and
61% of countries covered by a legislation. In the following part a deep analysis
will be carried out in particular on the European regulation (GDPR) and then on
the USA regulations, the Chinese and the Brazilian ones.

41

42

Chapter 4

GDPR

The General Data Protection Regulation (GDPR) is the strongest law regarding
data privacy and security in the world. It was approved by the European Union
but it has value on countries and organizations around the world that collect data
related to people in the EU.

4.1 History
The concept of privacy rights has its origins European Convention on Human
Rights of the 1950 which states: "Everyone has the right to respect for his private
and family life, his home and his correspondence".As technology advanced rapidly
over the years, regulations had to keep pace. Some examples of this rapid ascent
are the project ARPANET (forerunner of internet) was built in 1969, the 26 March
1976 the queen Elizabeth II sent an email to the Royal Signals and Radar Estab-
lishment, in 1979 the emoticon where invented and in 1991 the HTTP protocol was
defined by Tim Berners-Lee. So in 1995 The European Data Protection Directive
was releases. The directive established minimum standards for data privacy, and
each country used it as a basis to create its own laws. Then many companies were
created like Google (1998), Facebook(2006) and the first privacy problems arises.
In 2011 Goggle was sued by a user for scanning her emails. Google confirmed that
Gmail has used an automated scanning technology to show users relevant adver-
tisements that help to keep the service free. So it was evident that the regulation
on data protection had to be updated. In particular the Europe’s data protection
authority declared the EU needed “a comprehensive approach on personal
data protection”.

The GDPR come into effect in 2016 after passing the European Parliament and
all organization were required to be compliant for the 25 May 2018.

43

GDPR

4.2 Key concepts
The GDPR[7] is a regulation aims to address most scenarios concerning the ma-
nipulation and storage of personal data and outlines the corresponding penalties
for breaking the rules. It is important to note that personal data refers to any in-
formation that relates to an individual that can be directly or indirectly identified.
This includes, but is not limited to, names, email addresses, location information,
ethnicity, gender, biometric data, religious beliefs, web cookies, and political opin-
ions. Even pseudonymous data can be considered personal data if it is relatively
easy to identify someone from it. The GDPR requires data controllers, the indi-
viduals who decide how and why personal data will be processed, to demonstrate
their compliance with the regulation. If they cannot do so, they are considered
non-compliant and subject to fines, which can reach up to €20 million or 4% of
their global revenue, whichever is higher. Additionally, the data subject, the per-
son whose data is being processed, has the right to seek compensation for damages.
In the next section, the main principles of the GDPR will be discussed.

The Article 5 regulates, according to seven principles, the way in which data
must be processed. For data processing is intended any action performed on data,
whether automated or manual.

• Lawfulness, fairness and transparency : processing must be lawful, fair,
and transparent to the data subject.

• Purpose limitation: data processing propose must be legitimate and spec-
ified explicitly to the data subject when collecting information.

• Data minimization: collected and processed data must be the only abso-
lutely necessary for the purposes specified.

• Accuracy: personal data must be kept accurate and up to date.

• Storage limitation: personally identifying data may only be stored for as
long as necessary for the specified purpose.

• Integrity and confidentiality: processing must be done in such a way as
to ensure appropriate security, integrity, and confidentiality (e.g. by using
encryption).

• Accountability: the data controller is responsible for being able to demon-
strate GDPR compliance with all of these principles.

44

4.2 – Key concepts

Lawfulness, fairness and transparency
Whenever processing data there must be a good reason to do so and this is ex-
pressed in the GDPR by the concept of the lawfulness which lists a series of valid
reasons for the collection and processing of data:

1) the user has given you consent to do so.

2) there is a contract to honor.

3) it’s necessary to fulfill a legal obligation.

4) for protection of vital interests of a natural person.

5) it’s a public task done in public interest.

6) proof can be provided that the data controller has legitimate interest, and it’s
not overridden by data subject’s rights and interests.

The principle of fairness comes directly from the lawfulness. Essentially, it
means that the data controller must not deliberately conceal information about
the reasons for collecting personal data and how it will be processed. Adhering to
this principle ensures that personal data is not misused or handled improperly.

Transparency, on the other hand, involves being clear, straightforward, and
honest with data subjects about who is collecting their personal data, the purposes
for doing so, and how the data will be processed.

Purpose limitation
This emphasizes that data collection should only occur for specific, explicit, and
lawful purposes and that these purposes should be clearly defined and commu-
nicated to individuals via a privacy notice. The collected data must be used in
accordance with the defined purpose and if it is necessary to use it for an incom-
patible purpose, the data subject must give explicit consent.

Data minimization
Data minimization requires that only the minimum amount of personal data nec-
essary for the specified purpose be collected, avoiding the collection of excessive
information that could result in privacy issues.

Accuracy
The accuracy principle requires data collectors to ensure the accuracy of the in-
formation they collect. This involves regularly updating and verifying the data to
avoid incorrect or misleading information.

45

GDPR

Storage limitation
The GDPR requires that the length of time data is kept stored must be justified.
This is often done through the use of data retention policies. These policies outline
what data should be stored, where it should be stored, and for how long. Typically,
data that is not actively used is deleted or anonymized for historical reports after
a specified period of time.

Integrity and confidentiality
This principle outlines the guidelines about the security of the collected data. It
mandates the protection of personal data from unauthorized or unlawful access,
as well as accidental loss, destruction, or damage. The data controller must take
appropriate measures to ensure the security of the collected data, both against
internal and external threats.

Accountability
According to the GDPR, supervisory authorities have the right to request evidence
of an organization’s compliance with the regulation’s rules at any given time. As
a result, organizations must have the necessary measures and documentation in
place to demonstrate their adherence to the principles of data processin

4.3 Data management at rest
When speaking about data a differentiation based on the way data are used must
be considered because there are different rules basing on the state in which data
are:

• Data at rest: data that is not in use or being transferred is referred to as
"data at rest." This refers to data that is stored on a physical local device or
in the cloud. Data at rest is easier to secure, as it encompasses the majority
of data throughout most of its "lifecycle".

• Data in transit: refers to data that is being transferred from one place
to another, such as between two storage devices. It is considered the most
vulnerable of the three data states, making it easier for malicious actors to
execute Man in the Middle (MitM) attacks.

• Data in use: data that is being actively utilized or accessed at the present
moment is referred to as data "in use." It remains in this state until it is either
stored or transferred to another location.

46

4.3 – Data management at rest

In this section the focus will be on the data at rest because the use case devel-
oped manages data in this state and must be compliant to the related regulations.
This category of data must undergo several best practices to ensure the privacy of
the information stored:

• Identify and locate data: organizations handling customer data must be
aware of which data is considered sensitive and where it is stored. To ensure
the privacy of sensitive information, companies must implement processes to
restrict its storage locations. However, this can only be accomplished they
aren’t able to properly identify the critical nature of their data.

• Classify data: data classification is an ongoing process that enables organi-
zations to continuously evaluate the sensitivity of their data and adjust their
data protection measures accordingly. This includes not only implementing
encryption, but also establishing policies for managing encryption keys and
implementing access controls.

• Enforce encryption at rest: data encryption is the process of converting
data into an unreadable form that cannot be understood without the proper
decryption keys. By encrypting data while it is stored, the data remains
protected even if there is unauthorized access. However, encryption can im-
pact performance, so it is important to properly classify data and choose the
most appropriate encryption method to minimize performance issues, such as
selectively encrypting specific database fields, rows, or columns.

• Enforce access control: various protective measures, such as access con-
trol using the principle of least privilege, backups, segregation, and version
tracking, can all help secure data while it is at rest.

In the actual technological scenario with the spread of the cloud storage and
computing many companies uses these type of services to store their data. This
process, that functionally speaking, is completely transparent and smooth brings
some privacy problems according to GDPR regulations because that data go on
the internet and until they arrive in the remote storage they are data in motion,
that are intrinsically less secure than data at rest. It is important to remember
that the GDPR requires data collected on European citizens to be kept within
Europe, which can restrict the use of cloud storage. To ensure GDPR compliance,
it is recommended to adopt a hybrid cloud approach, keeping sensitive data on-
premises for better control over data usage and location. This is a crucial aspect
to keep in mind when considering the proposed solution later. The highlight of
this point is of central importance to understand the solution proposed later.

47

GDPR

4.4 Data sovereignty
Data sovereignty means that personal information is governed by the laws of
the country in which it is collected and physically stored. This determines the
legal rights of the individuals whose data is being gathered, retained, or processed,
as these rights vary based on the geographical location of the data. Thus, orga-
nizations must comply with different requirements based on where their data is
stored.

Data sovereignty is distinct from data localization and data residency:

• Data localization: refers to a government policy that requires organizations
to keep data within a specific geographical location and not transfer it outside
that area. It is a specific application of the principle of data sovereignty.

• Data residency: refers to the act of a company selecting a specific geo-
graphical location to store its data. This choice may be made to avoid legal
requirements, benefit from tax laws, or for performance reasons. When data
is stored in a particular location, the company becomes subject to the data
sovereignty laws of that region.

Companies that use cloud infrastructure must take a comprehensive ap-
proach to addressing data sovereignty. Some nations have restrictions on transfer-
ring data outside their borders, and some states have privacy laws that limit the
sharing of personal data with third parties. This means that businesses operating
in these countries may be legally prohibited from transferring their data to third-
party cloud providers for storage or processing. Additionally, cloud-stored data
can be subject to the laws of multiple countries, creating a particularly challeng-
ing situation in hybrid-cloud scenarios, where the deployment must comply with
different local legal requirements.

Data sovereignty, which concerns the laws and regulations regarding the storage
and transfer of data, affects not just legal matters, but also has a significant impact
on businesses. Data subjects who provide personal information expect guarantees
about where their data will be stored, while providers aim to have the flexibility
to choose the best geographical location for their data to optimize their cloud
infrastructure.

48

Chapter 5

Other worldwide data
management regulations

In this section, the focus will shift from European regulations to other data man-
agement laws that are globally relevant. The section will highlight the data man-
agement aspect of each regulation and compare it to the GDPR. Three regulations
have been selected for comparison: the US situation, where each state has its own
regulation and there is no federal regulation; the Chinese regulation, which is heav-
ily influenced by state control; and the Brazilian regulation, which is inspired by
the GDPR and showcases the growing need for data privacy regulation in devel-
oping countries.

5.1 US regulation
In the United States, there is not a singular law dedicated to data protection, but
rather a multitude of regulations at both the federal and state levels that dictate
how U.S. residents’ data should be handled. The Federal Trade Commission Act
grants the U.S. Federal Trade Commission (FTC) broad authority to take legal
action against unfair or deceptive practices, as well as to enforce federal regulations
governing privacy and data protection. Additionally, individual states have their
own statutes that safeguard the privacy rights of their residents, with protections
varying widely between states.

Regarding data management, the FTC has established that companies must
implement "reasonable" security measures to protect personal data, taking into
account various factors such as the amount and sensitivity of the information
held, the company’s size and complexity, and the cost of implementing appropri-
ate processes. Some federal and state-level regulations also require companies to
ensure the security of personal information, such as the GLBA and HIPAA, which

49

Other worldwide data management regulations

mandate security requirements for financial and healthcare entities, respectively.
Certain states also impose data security obligations on specific entities that handle
limited types of personal information. For instance, the New York Department of
Financial Services (NYDFS) implemented regulations in 2017 that require "reg-
ulated entities" to implement a cybersecurity program and governance processes,
and to report cybersecurity incidents like data breaches and attempted infiltrations
to regulators.

5.2 Chinese regulation
In China, there are three distinct acts that make up the regulatory framework for
data governance. These include the Cybersecurity Law (CSL), which was enacted
in 2017, and the Data Security Law (DSL) and Personal Information Protection
Law (PIPL), which were promulgated and implemented in 2021. The DSL and
CSL focus on safeguarding national security and public interests, while the PIPL
is primarily concerned with safeguarding personal information rights and interests
during the processing of personal data.

The CSL consolidates a variety of laws and regulations related to cybersecurity
under one comprehensive framework, with the goal of protecting China’s national
security, fighting online crime, and enhancing information and network security.

The PIPL, which is the most recent of the three laws, draws heavily on the Euro-
pean Union’s General Data Protection Regulation (GDPR). Its primary objectives
are to protect personal data, regulate its processing, and promote reasonable use
of personal information.

The regulation of data management in China is primarily governed by the
Data Security Law (DSL), which builds upon the Cybersecurity Law (CSL) by ex-
panding the focus on national security and classifying data based on its importance
to Chinese national security. The DSL creates two main categories of data: core
data, which pertains to Chinese national or economic security, citizens’ welfare, or
significant public interests, and important data, which is a level below core data.
However, the DSL does not provide precise definitions for these categories.

The DSL also imposes requirements on data localization and cross-border trans-
fers for core and important data. For instance, operators of critical information
infrastructure (CII) are required to store data generated in China within the coun-
try, and if data needs to be transferred abroad, a security assessment must be con-
ducted beforehand. Moreover, the DSL prohibits CII operators and other network
operators from disclosing any data stored in China to any foreign judicial or law
enforcement body without the consent of Chinese authorities.

Similar to the PIPL, the DSL has extraterritorial scope, meaning that compa-
nies outside of China that handle data subject to the DSL’s provisions are required

50

5.3 – Brazilian regulation

to comply with the DSL’s requirements.

5.3 Brazilian regulation
The Brazilian General Data Protection Law (LGPD) is a regulatory framework
that governs the protection of personal data in Brazil. It outlines regulations on
processing activities, the rights of data subjects, obligations of data processing
agents and data protection officers, information security parameters, and require-
ments for the international transfer of personal data. Modeled after the European
GDPR, the LGPD places Brazil among the group of Latin American countries
with a general data protection law. The law also has extraterritorial scope, which
means that not only companies established in Brazil, but also entities that process
or have collected data within Brazilian territory, and those that offer or provide
goods and services to individuals located in Brazil are subject to its rules.

The LGPD is based on fundamental principles that are similar to those of the
GDPR, including purpose, necessity, adequacy, and transparency. These princi-
ples require that personal data processing is conducted for specific and legitimate
reasons, is necessary for the purpose, is adequate to fulfill the purpose, and that
individuals have access to clear and easily accessible information.

In terms of data management, the LGPD and GDPR share similar principles
such as explicit purpose of data collection and processing, transparency in all stages
of data processing, and appropriate use of the data.

51

52

Part IV

State of art

53

As mentioned previously, digital platforms face challenges in managing data
when deploying on cloud infrastructures, especially with regards to personal data
location. This chapter will present potential approaches that could be considered
to comply with data privacy regulations.

One option is to use multiple clusters, each located in a different region and
compliant with local regulations.

Another solution is to engage a reputable and widely-used cloud infrastructure
provider to manage data protection compliance on the platform’s behalf.

Lastly, a liquid computing approach could be utilized to create a resource con-
tinuum across several clusters.

55

56

Chapter 6

Use multiple scattered
clusters

This first solution is based upon the usage of several cluster, one for each region
that has a different regulation. This solution is suitable for scenarios where the
company that uses the digital platform has several users for each region and so
each instance of the deployed platform can be exploited. The main advantage of
this approach is the fact that each cluster will be independent from the other and
should be compliant only to its local regulation. For example a typical scenario
can be to have a cluster in Europe that stores and process data gathered from
citizens of European countries while another cluster in China to work with data
that refers to Chinese people. In this way the principle of data sovereignty and
the location of data at rest is respected and at the same time the two cluster can
have customization depending on different needs.

On the other hand this scenario requires a considerable amount of economic
resources to provide the widespread cloud infrastructure and the other drawback
is the fact that each cluster should be managed independently and needs a specific
configuration which is an effort that cannot be ignored. About the first disad-
vantage, recalling the previous example, the provider company have to buy and
maintain two different cluster with their associated costs, both hardware (e.g. elec-
tricity, facility space) and software (e.g. engineering and installation manpower,
system monitoring) ones, which may be unsustainable for all enterprises. Regard-
ing the second drawback highlighted the scenario presented above requires to have
direct access to both clusters because they are physically and logically separated
and this duplicate the effort and the costs. This would include the configuration
of all the tools and processes present in the digital platform that may be the same
in both installation. Another point that must be stressed out is the fact that both
deployment are a single point of failure because the second one cannot act as a

57

Use multiple scattered clusters

backup one for the other one as it would break the data privacy principles.

6.1 Main characteristics
This approach is based on some principles that make this solution a valid oppor-
tunity in some scenarios:

• Instances independence: each instance in the super-cluster (the all infras-
tructure managed by the operator that includes all the clusters) is managed
independently from the others in therms of hardware involved, and conse-
quently costs, software and tools deployed and how data are processed.

• Geographic location-based customization: the possibility of creating
different clusters in different locations is a feature that gives more flexibility
to the operators. In particular this enforces the ability to adapt to customer
needs or laws in place depending on the geographical location of the cluster
in question.

• Autonomous instance management: the management of each instance
is entirely handled by the operator int his approach. This allows all possi-
ble customization. The other important point that must be stressed is the
avoidance of the vendor lock-in. This concept describe the situation where
the cost of switching to a different vendor is so high that the customer is es-
sentially stuck with the original vendor. With the autonomous management
this problem is completely avoided, but it requires a greater economic and
technical effort to perform this management.

6.2 Deployment scenarios
Each of the presented solutions is more suitable for a different customer and a
different scenario. Regarding this first approach, some of the scenarios that best
exploit this method will be presented.

(a) Customized cluster replicas: the considered solution perfectly fits in a
situation where the operator needs to offer different services to customers. In
this scenario having multiple clusters spread around the world allows to offer
customized services depending on the customer’s needs and location and it
reduces latency by positioning clusters closer to the end user.

(b) Huge worldwide spread company: the other scenario is the one that
address the main problem highlighted in this thesis: the data management

58

6.2 – Deployment scenarios

of users that are under different legislation. In this case having customized
cluster with are compliant to local regulations is one of the possible solutions.
Having an entire working cluster per area allows to store and process personal
data collected from users in a certain area locally and this is achieved without
sacrificing any performance.

59

60

Chapter 7

Use private provider
technologies

The second approach to the highlighted problem leverages on some known and
widespread cloud services provider. Buying the infrastructure from the world
biggest companies gives the possibility to exploit their hundreds points of presence
but with respect to the previous solution the managing of the infrastructure is in
charge of the cloud provider. The main advantage of this solution is the outsourcing
of all the low level cluster management to external service without giving up the
flexibility in term of covered regions. The major drawback is the fact that this
solution locks the platform, or some tools of it, to a particular private technology
owned by the provider creating a dependence that will cause problems in case of
necessity of changing infrastructure, this phenomenon is called vendor lock-in,
as explained in the previous solution.

This solution descends from the previous one, adding a level of abstraction, and
so it has the same advantage of the previous one in terms of cluster independence
but also the high cost. Even if the infrastructure management is no more directly
needed the cost of the cloud services is not negligible and, as said before it adds
the vendor lock-in problem.

Coming back to the example presented in this chapter the company that has
the digital platform and wants to deploy it should buy the IaaS in the two regions
where it has the users, so the provider to which the enterprise buys the service
should be big enough to cover that areas.

7.1 Main characteristics
This second solution is aimed at customers with different needs than the previous
one, but it derives from it so the first two characteristics are in common:

61

Use private provider technologies

• Instances independence

• Geographic location-based customization

The big difference is in the third principle:

• Outsourcing low level management: this approach leverages on the ser-
vices offered big providers that have resource spread all over the world. This
is a great possibility because it avoids low-level resource management, but
risks vendor lock-in. This feature is particularly useful in certain scenarios
that will be described later. Additionally, the ability to outsource all hard-
ware resource provisioning, and beyond, enables the use of this solution in
situations where specialized personnel is not present.

7.2 Deployment scenarios
This solution, unlike the previous one, targets a specific audience, going into detail
on certain aspects as previously highlighted. The main application scenarios are:

(a) Small worldwide spread company: the target of this solution are com-
panies that does not have the budget or the possibility of having huge and
complete self-managed clusters around the world so leveraging on services that
provide this resource can be a perfect solution for implementing ecosystem
platform compliant to the different data privacy regulations.

(b) Huge worldwide spread non technology specialized company: the
outsourcing of the low-level management duties increases the possibility of
implementing ecosystem platforms even by non-specialized operators, lever-
aging ready-made services and provider support for all technical cluster man-
agement.

62

Chapter 8

Liquid computing

The third solution refers to concept called liquid computing and make the most
of edge devices without the need of having multiple replicas of the platform. This
has the main advantage, in terms of costs and complexity, of not having to manage
multiple clusters and it allows to have a central cluster that acts as a central
point of control of the whole platform. It allows to exploit the edge computing
resources, that are becoming more and more widespread, connecting them to the
central powerful cluster that can control, manage and deploy tools on them. The
second aspect that must be stressed is the fact that this solution connects standard
clusters that can be already present or that can be shared helping the companies
for what concerns financial issues.

This concept is deeper explained in this section with a drill down on some
implementations that offers different additional features to the bare theoretical
concept.

The liquid computing usually refers to a style of workflow interaction of appli-
cations and computing services across multiple devices, such as computers, smart-
phones, and tablets. The term was coined in July 2014 by InfoWorld, but the
underlying concepts have long existed in computer science. An example of this
approach is Apple’s Handoff (Continuity) service in iOS 8 and OS X Yosemite.
The focus of this section is a broader concept which encompasses the creation of a
resource continuum composed of cloud and edge-grade infrastructures, on-premise
clusters, as well as, in its widest form, single end-user and IoT devices. The in-
formation retrieved in this chapter takes inspiration from the official presenting
paper of Liqo[9] and the Liqo official documentation[17].

63

Liquid computing

8.1 Main characteristics
We envision liquid computing as a continuum of resources and services allowing the
seamless and efficient deployment of applications, independently of the underlying
infrastructure. Here are presented the main characteristics of liquid computing:

• Intent-driven: clusters have varying properties such as geographical location
and security, which is why cluster spread exists. Adopting an internet-driven
approach allows end users to specify high-level policies for their workloads,
such as geographical location and cost constraints. Automated schedulers
then choose the best place to execute the workload based on available re-
sources and the policies specified by the user, across the entire infrastructure
without borders.

• Decentralized architecture: The resource continuum operates with a peer-
to-peer method, lacking a central authority for control and management, and
no privileged members. Each entity can make independent, dynamic decisions
on whom to connect with, facilitated by a dynamic discovery and peering
protocol. This protocol automatically identifies available peers and negotiates
peering agreements based on the demands and offerings of each participant.

• Multi-ownership: each entity retains full control over its own infrastructure,
while making choices at any moment as to how many resources and services
to share and with whom. Once a new peering connection is established, the
target infrastructure’s control plane is responsible for setting up the proper
isolation measures such as resource quotas, network, and security policies.

• Fluid topology: entities have the flexibility to enter and exit the system at
any moment, regardless of the size of their infrastructure, which can range
from large data centers to Internet of Things (IoT) devices and personal de-
vices. The approach aims to handle highly dynamic situations, characterized
by frequent and unexpected connections and disconnections.

8.2 Deployment scenarios
Overall, the following section will present the three deployment scenarios that are
mostly fostered by liquid computing.

(a) Elastic cluster: enables the transparent utilization of resources located in
different locations, allowing for load balancing and the ability to handle spikes
in demand (cloud bursting). This is particularly useful in edge computing sce-
narios, where computational capacity is limited, as well as in traditional cloud

64

8.3 – Admiralty

Figure 8.1: A graphical representation of the three deployment scenarios fostered
by liquid computing

environments where multiple clusters are active. Entities engaged in resource
sharing can be located in on-premise and public data centers, allowing for the
deployment of applications with specific latency or data privacy requirements
close to the end-users, while also taking advantage of the virtually unlimited
computational power offered by larger infrastructures for resource-intensive
tasks.

(b) Super cluster: liquid computing model allows for the creation of a higher-
level cluster abstraction, acting as a single point of access for deploying and
controlling applications across a vast infrastructure made up of hundreds or
thousands of smaller clusters, often located at the edge of the network. De-
spite this centralization, the level-2 clusters maintain their own local orches-
tration logic, making them resilient to network disruptions and preventing po-
tential synchronization problems with high-latency WAN connections. This
approach streamlines the replication of jobs across clusters, enabling opera-
tors to easily replicate services on a subset of edge clusters to serve end-users
in their immediate vicinity.

(c) Brokering cluster: liquid computing paradigm can promote the establish-
ment of new Resource and Service Exchange Points (RXPs), which act as
intermediaries between consumers and providers. For consumers, accessing
services offered by providers becomes easier as they only need to connect
with a single RXP to immediately benefit from the full range of resources
and services available. On the other hand, resource providers are incentivized
to participate as they can reach a larger number of potential customers with
ease.

8.3 Admiralty
Admiralty[1] is a system of Kubernetes controllers that enables intelligent workload
scheduling across clusters, which was launched at the end of 2018. It supports

65

Liquid computing

multiple multi-cluster topologies, including the Central Control Plane, Cloud
Bursting, and Decentralized Federation.

In the Central Control Plane topology, a central cluster, also known as the
"management cluster," manages several workload clusters. This topology is useful
when there is a powerful central cluster and some smaller edge clusters.

The Cloud Bursting topology is suitable for scenarios where there is a primary
on-premises cluster with fixed resources that manages both itself and a secondary
cloud-based cluster with elastic resources.

The Decentralized Federation topology is designed for organizations in different
administrative and trust domains that manage different clusters and want to con-
nect their control planes, share resources, or delegate operations without relying
on a central cluster owned by a single organization.

Figure 8.2: Admiralty multi-cluster tolopologies

The various topologies that Admiralty offers demonstrate how the solution can
be applied to a range of use cases.

The solution proposed by Admiralty is based on a multi-cluster scheduling
algorithm that leverages on four main components:

• a mutating pod admission webhook

• the proxy scheduler

• the pod chaperon controller

• the candidate scheduler

66

8.3 – Admiralty

Figure 8.3: Admiralty scheduling process

The cluster where the source pod is created runs the mutating pod admission
webhook and the proxy scheduler, while the target cluster(s) where the pod
will be deployed is managed by the pod chaperon controller and the candidate
scheduler.

The first step is to transform the user-requested source pod into a proxy pod
through the mutating pod admission webhook, saving the original manifest
and modifying scheduling constraints to select virtual nodes and the proxy sched-
uler

The proxy scheduler oversees the scheduling and binding of proxy pods to
virtual nodes representing target clusters. Candidate pod chaperons are created
in each target cluster, and later, the candidate scheduler in that cluster reserves
a node for the corresponding candidate pod, if available.de for the corresponding
candidate pod if available.

Pod chaperons are custom resources that are intermediate objects between
proxy pods and candidate pods. The proxy scheduler creates the candidate pod
chaperon using the original spec of the pod saved in the first step and sets the
scheduler to the candidate scheduler.

The pod chaperon controller creates a candidate pod using the same spec

67

Liquid computing

field as before and updates the pod chaperon status from the candidate pod
status. If the candidate pod is deleted directly, the controller replaces the pod
even in case of split-brain scenarios.

The candidate scheduler of each target cluster schedules candidate pods to
regular nodes. If the candidate pod is unschedulable, the proxy scheduler sees
it from the pod chaperon’s status, stops waiting, and rejects the virtual node.
If it succeeds, the candidate scheduler waits for the proxy scheduler to select a
candidate pod as the delegated pod. At this point, the virtual nodes are filtered
and scored using Kubernetes functions/plugins, and only one virtual node is finally
reserved for the proxy pod.

The proxy scheduler sees the success or failure of the candidate scheduler from
the pod chaperon’s status. If it succeeds, all other candidate pods are deleted. If
it fails, it is put back in the scheduling queue. This process is done at this point
because the candidate schedulers have all the knowledge required to determine if
those pods can be scheduled, unlike the proxy scheduler which knows little about
the target clusters.

8.4 KubeEdge
KubeEdge[14], which was initiated in 2018, is an open-source platform aimed at
expanding the containerized application orchestration capabilities to the edge. It
was primarily designed to address the requirements of the IoT industry, where there
is a need to better utilize the resources of edge devices and leverage a familiar
technology for central control. KubeEdge is based on Kubernetes and provides
fundamental infrastructure support for networking, application deployment, and
metadata synchronization between the cloud and the edge. With Kubernetes-
native support, KubeEdge enables users to utilize the standard Kubernetes APIs
for interacting with the infrastructure and managing edge devices through Custom
Resource Definitions (CRDs).

68

8.4 – KubeEdge

Figure 8.4: KubeEdge architectural schema

The KubeEdge architecture is asymmetrical and so the components are divided
in Cloud Components, the one that runs inside the remote core, and Edge
Components, the ones that are deployed in the edge device.

In the first set are included: the CloudHub, the EdgeController and the
DeviceController.

The middleware component of the CloudCore, known as the CloudHub, fa-
cilitates communication between Controllers and the Edge side by reading and
writing messages from the Edge and publishing them to the Controllers. To es-
tablish a connection to the Edge, the CloudHub uses HTTP over WebSocket,
specifically through the EdgeHub module. For internal communication, it directly
communicates with the Controllers.

The EdgeController acts as a bridge between the Kubernetes API-Server
and EdgeCore, and its primary functions include relaying add, update, and delete
events from the K8s API-Server to EdgeCore, monitoring and updating the status
of resources and events (such as nodes, pods, and configmaps) to the K8s API-
Server, and subscribing to messages from EdgeCore.

69

Liquid computing

The DeviceController is a key component of KubeEdge responsible for man-
aging devices. KubeEdge leverages Kubernetes CRDs to define device metadata
and status, with the device controller facilitating synchronization between edge and
cloud. The device controller initiates two independent goroutines to manage this
synchronization: upstream and downstream controllers. The upstream controller
synchronizes device updates from edge to cloud via the device twin component,
while the downstream controller synchronizes device updates from cloud to edge
by monitoring the API server.

Device management in KubeEdge is achieved through the use of device models
and device instances. The former describes device properties and methods to
access them, serving as a reusable template for creating and managing multiple
devices. On the other hand, a device instance is an actual object representing
a specific device, instantiated from the device model and referencing properties
defined in the model. The device specification is static, defining the desired state
of device properties, while the device status contains dynamic data reflecting the
current device state.

Here there is a representation of the flow in case of an update from Edge to
Cloud.

Figure 8.5: KubeEdge flow example from Edge to Cloud

The mapper monitors devices for any updates and transmits them to the event
bus using the MQTT broker. The event bus then forwards the device’s reported
state to the device twin, which saves it locally and synchronizes the updates to the
cloud. In parallel, the device controller keeps an eye out for any device updates
coming from the edge, which it receives through the cloudhub, and updates the
reported state in the cloud accordingly.

70

8.4 – KubeEdge

The following graph shows the update from Cloud to Edge.

Figure 8.6: KubeEdge flow example from Cloud to Edge

The device updates in the cloud are monitored by the device controller, which
then propagates them to the edge node. These updates are also stored locally
in the device twin. The mapper receives the updates via the MQTT broker and
performs actions on the device accordingly.

In the Edge Components are included: EdgeD, the EventBus, the EdgeHub,
the DeviceTwin, the MetaManager, and the ServiceBus.

EdgeD is an edge node module which manages pod lifecycle. It helps users to
deploy containerized workloads or applications at the edge node. There are many
modules which work in tandem to achieve edged functionalities, among them there
are:

• Pod Management: this component manages the addition, deletion, and mod-
ification of pods, while also monitoring their health status through the pod
status manager and the Pod Lifecycle Event Generator.

• Pod Lifecycle Event Generator: this module is designed to monitor the status
of pods in the edge environment. It updates the pod status manager for each
pod with information obtained every second using probes for liveness and
readiness.

• Secret Management: secrets in edged are managed independently with sep-
arate configuration messages and interfaces for operations such as addition,

71

Liquid computing

deletion, and modification. The cache store is updated using these inter-
faces to manage secrets. Additionally, secrets are kept separate from other
resources for security purposes.

• Volume Management: the volume manager runs as an edge routine and is
responsible for handling volume operations such as attachment, mounting,
unmounting, and detachment based on the pods scheduled on the edge node.
Prior to starting a pod, the specified volumes referenced in the pod specifi-
cations are attached and mounted. During this time, the flow is blocked to
prevent other operations from taking place.

• MetaClient: is an interface of the Metamanager for the edged module. It
enables the edged module to retrieve details of ConfigMaps and secrets from
the Metamanager or cloud. It also sends synchronization messages, node
status, and pod status to the Metamanager in the cloud.

• Container Runtime: through its Container Runtime Interface (CRI), EdgeD
provides a plugin interface that allows for the use of various container runtimes
such as Docker, containerd, CRI-O, and others, without requiring recompila-
tion.

The EdgeBus module is responsible for facilitating communication between the
cloud and the edge by interacting with the CloudHub components in the cloud. Its
functions include synchronizing updates to cloud-side resources, reporting changes
in host and device status on the edge, and forwarding messages between the cloud
and the edge to the appropriate modules.

The DeviceTwin module plays a vital role in KubeEdge by storing the device
status, managing device attributes, and handling device twin operations. It estab-
lishes a connection between the edge device and edge node and ensures that the
device status is synced to the cloud. The module is also responsible for synchro-
nizing the device twin information between the edge and cloud, and it provides
query interfaces that can be used by applications.

The MetaManager is the message processor between Edged and Edgehub.
It’s also responsible for storing, retrieving metadata to and from a lightweight
database (SQLite).

The EventBus acts as an interface for sending and receiving messages on
MQTT topics.

The ServiceBus is an HTTP client designed to communicate with applications
running on the edge. It functions similarly to the EventBus, but uses a different
protocol. When a message passes through the ServiceBus, the flow is as follows:
The cloud sends a message to the edge via CloudHub. EdgeHub receives the

72

8.5 – Liqo

message and passes it to the ServiceBus, which makes an HTTP call and sends
the response back to the cloud via EdgeHub.

The components inside the KubeEdge architecture are linked through Beehive,
which is a messaging framework based on go-channels and it is used to add or
remove modules to the edgecore or to a group.

8.5 Liqo
Liqo is an open-source project that supports the vision of liquid computing de-
scribed above. It extends Kubernetes to enable the creation of dynamic and seam-
less multi-cluster topologies, regardless of underlying infrastructure limitations.
Liqo achieves this without introducing modifications to standard Kubernetes APIs
for application deployment, making it compatible with a wide range of common in-
frastructures and cluster types, with no restrictions on networking configurations.
In the following section, we will present the main architectural features of Liqo
and focus on its actual implementation.

8.5.1 Architecture
• Discovering and Peering with Remote Clusters: the Liqo discovery

logic plays a crucial role in identifying potential remote clusters for peering.
The output of this process is a remote network endpoint that can be utilized
to initiate the authentication procedure, which includes the desired peering
state and any additional attributes that may be needed. This information is
then represented through a ForeignCluster Custom Resource (CR).
The peering procedure is divided into several phases, beginning with the au-
thentication process, which involves a private key generated by server A and
a Certificate Signing Request. Once cluster B has been selected as the desired
target, the negotiation phase begins, and a ResourceRequest CR is generated
locally by cluster A to request computational resources and/or services from
the remote cluster. The CRDReplicator is then activated to duplicate the
CR on the remote cluster. When the ResourceRequest is received, cluster B
discovers cluster A and initiates the symmetrical authentication procedure.
If the request made by cluster A is accepted, cluster B sends a Resource-
Offer CR to indicate its willingness to share available resources/services at
a specified price, and duplicates it to cluster A through the CRDReplicator.
Upon acceptance of the ResourceOffer, the peering relationship is established,
and the inter-cluster network fabric is established. Furthermore, the reverse
procedure can be initiated by cluster B, allowing for bidirectional peering.

73

Liquid computing

• Virtual Node Abstraction: Liqo uses the virtual node concept to mask the
resources that are shared by each remote cluster. This approach enables the
local cluster to seamlessly expand by taking into account the virtual node(s)
when determining the optimal location for executing workloads, using the
vanilla Kubernetes scheduler. To implement this virtual node abstraction, an
extended version of the Virtual Kubelet project[27] is used. This project re-
places a traditional kubelet when managing non-physical nodes, which allows
it to control arbitrary objects via standard Kubernetes APIs. Therefore, the
virtual kubelet (VK) enables custom logic to handle the lifecycle of both the
node itself and the pods hosted within it. The virtual kubelet is responsible
for the following three features:

– Node lifecycle handling: the virtual kubelet (VK) manages the virtual
node, which conceals the shared resources of the remote cluster. It ensures
that the node status conforms to the negotiated configuration (Resource-
Offer), and performs regular health checks to evaluate the accessibility of
the remote cluster.

– Pod lifecycle handling: unlike a traditional kubelet, which starts con-
tainers on a designated node, the Liqo VK implementation maps each
operation to a corresponding twin pod object in the remote cluster for
actual execution. Remote status changes are automatically propagated to
the respective local pods, allowing for proper monitoring and administra-
tive inspection. To create an offloaded pod, a user requests the execution
of a new pod, either directly or through higher level abstractions (such
as Deployments), which is then assigned by the Kubernetes scheduler to
a virtual node. The corresponding VK instance creates a twin copy of
the pod in the remote cluster using a ShadowPod, a CR that wraps the
pod definition and triggers the remote enforcement logic. This approach
avoids resiliency problems in split-brain scenarios that can cause service
disruption if remote pods are deleted following node failure or eviction.

– Resource and service reflection: the Liqo VK handles the remote propa-
gation and synchronization of artifacts necessary for proper execution of
offloaded workloads. Currently, it supports shadow ConfigMaps and Se-
crets, which store application configurations, as well as shadow Services
and EndpointSlices to enable intercommunication between microservices
distributed across multiple clusters.

• Workload Scheduling Policies: a set of labels, key/value pairs describing
the main characteristics of each peered remote cluster, is associated with it
and automatically propagated to the corresponding virtual node. These labels
are configured by the cluster administrators and enable fine-tuned selection

74

8.5 – Liqo

of the cluster(s) on which each workload should be executed, based on the
workload’s requirements and the current resource continuum capabilities.

• Liqo Network Fabric: the liqo network fabric extends the Kubernetes net-
work model across multiple independent clusters, enabling offloaded pods to
communicate with each other as if they were locally executed. To achieve
this, the liqo networking module enhances the standard Kubernetes feature
that allows pods on a node to communicate with all pods on any other node
without NAT translation. The liqo module ensures that all pods in a given
cluster can communicate with all pods on all remote peered clusters, with
or without NAT translation. However, since liqo supports arbitrary clusters
with completely uncoordinated parameters and components (such as CNI),
it is impossible to guarantee non-overlapping pod IP address ranges (i.e.,
PodCIDR). Therefore, liqo supports IP translation mechanisms, providing
NATless communication whenever the address ranges are disjointed.

Figure 8.7: Liqo network fabric high level representation

• Liqo Storage Fabric: liqo transparently enables also the offloading of state-
ful tasks through a transparent inter-cluster storage continuum. The solution
is based on two main pillars:

– Storage binding deferral: to ensure that storage pools are created in the
exact location where their associated pods are scheduled for execution
(whether local or remote), the pools are not created until the first con-
sumer is scheduled onto the cluster.

– Data gravity: the automatic policies come into effect during subsequent
scheduling processes, directing pods to the appropriate cluster. This en-
sures that pods requesting existing storage pools (e.g., following a restart)
are scheduled onto the cluster where the corresponding data physically
resides.

Kubernetes uses PersistentVolumeClaim (PVC) to request storage, which

75

Liquid computing

eventually leads to the creation of a PersistentVolume (PV) either manu-
ally or through a StorageClass. Liqo implements a virtual storage class to
create storage pools on different clusters. If the target is a physical node,
PVC operations are remapped to a second node associated with the corre-
sponding storage class to provision the volume transparently. However, for
virtual nodes, the reflection logic creates a remote shadow PVC, remapped to
the negotiated storage class, and synchronizes the PV information to enable
pod binding.

8.5.2 Implementation details
Liqo’s codebase is written in Go, and its user-facing APIs and internal status are
defined using Custom Resource Definitions (CRDs). The operators pattern is used
to implement the logic, where each controller is responsible for ensuring that the
observed status in the cluster aligns with the desired status expressed through the
relevant resources. Besides the network fabric already described, liqo includes the
following four components:

• liqo-controller-manager : similarly to the Kubernetes controller manager, it
groups together all the different operators dealing with liqo resources.

• liqo-virtual-kubelet: is designed to run one replica for each remote cluster,
providing isolation and separating the different authentication tokens. This
control plane is responsible for managing the lifecycle of the virtual node and
the pods running on it, as well as for resource and service reflection.

• liqo-crd-replicator : component responsible for the interaction between peering
clusters, enabling resource negotiation and network setup procedures through
the exchange of CRs.

• liqo-webhook: a mutating webhook is used to determine which subset of pods
can be scheduled on virtual nodes based on system administrator policies.
These policies may include strict constraints based on an intent-driven ap-
proach.

8.6 Comparison
Technical aspects

The solutions described in the previous sections offer different approaches to
the same problem. All of them leverages on the Virtual Kubelet that is an open-
source Kubernetes kubelet implementation that masquerades as a kubelet for the

76

8.6 – Comparison

purposes of connecting Kubernetes to other APIs. Admiralty, for example, in terms
of performance, because of its scheduling-driven approach, has worse performance
than Liqo when deploying a high number of pods.

KubeEdge, like Liqo, enforces the concept of edge autonomy that consists in
keeping the edge nodes (and resources) running even when the network between
the cloud and the edge is unstable or offline. The main differences between Liqo
and this solution are that Liqo connects standard independent working clusters
while KubeEdge connects edge devices to a CloudCore. The CloudCore contains
an extended version of standard Kubernetes components instead at the edge runs
EdgeD, which is a custom module that manages the pods lifecycle and other com-
ponents useful for service exposure and status reflection. The second difference is
that, for the reasons explained above, KubeEdge has a unidirectional connection
with a predefined core and edge and not all the nodes have the same importance.
Furthermore, KubeEdge does not work with Openshift at the moment this thesis
is written and it has a strong limitation in the deployment scenarios in fact it is
available only for Ubuntu and CentOS OS.

Interest

Analysing data on GitHub KubeEdge has the highest number of stars, 5.1k,
and watch, 173. Behind it are Liqo and Admiralty with respectively 655 and 490
stars, 20 and 14 watches.

Liqo Admiralty KubeEdge

Stars 655 490 5.1k

Watch 20 14 174

Forks 55 70 1.4k

Commits 1368 244 4288

Contributors 28 5 26

Start date 11/2019 12/2018 09/2018

Last update 8/07/2022 17/03/2022 12/07/2022

Percentage solved

issues

122 on 142

86%

48 on 70

69%

1072 on 1277

84%

77

Liquid computing

Figure 8.8: Alternatives community comparison

Further looking at the star trend, the picture above shows how, despite being
more recent, Liqo is growing faster than Admiralty, while the KudeEdge fame is
still rising and the trend does not seem to slow down.

Development

Looking again at the statistics inside the GitHub repositories KubeEgde has a
way higher number of forks, 1.4k, and commits, 4274, in the main branch. Also in
this category at the second and third place are Liqo with 55 forks and 1368 commits
and Admiralty with 70 forks and 244 commits. In this case the number of forks and
commits shows different trends and this is maybe also influenced by the number of
contributors, way higher in Liqo than in Admiralty, that participate in the main
project and don’t fork the project on themselves. The number of contributors
in Liqo is higher also than the one in KubeEdge representing a bigger developer
community.

Updates

In this category Liqo and KubeEdge emerge because they are continuously
updated, even at this time, then there is Admiralty that has his last commit in
March of this year. Must be also highlighted that Liqo projected started in 2019
and Admiralty and KubeEdge in 2018. When speaking about updates must be
taken into consideration even the way in which developers takes care of issues. In
this category Liqo and KubeEdge has similar percentages, but KubeEdge has 10

78

8.7 – Other minor alternatives

times the number of total issues. At the last place there is Admiralty with a small
number of issues and a not so good percentage of solved ones.

8.7 Other minor alternatives

8.7.1 Tensile-kube
tensile-kube[24] is a project that ensures high utilisation in case of resources frag-
mented across multiple clusters. This means that it leverages on the resource
continuum abstraction of different clusters not geographically close exploiting at
the maximum the available resources. It supports remote pod offloading, as well
as resource reflection, along with custom scheduling. It doesn’t support resilience
mechanisms in case of split brain scenarios so in case of loss of connectivity be-
tween the clusters the remote cluster doesn’t manage the lifecycle of the offloaded
pods on its own. From the community point of view it has a small number of stars,
watches, forks and commit with respect to the other competitors highlighted pre-
viously. Furthermore, it doesn’t have a website but only the repository on GitHub,
so it is harder to find information and documentation about it and in general in-
teracting with it is more difficult. From the updates point of view tensile-kube
hasn’t been updated in the last 9 months and it is the most recent born project
among the exposed ones.

79

80

Part V

Design and proof-of-concept

81

Chapter 9

General concept

This thesis addresses the proposal of expanding control over data localization while
still utilizing standard tools such as Kubernetes. The use of cloud platforms for
data processing raises the issue of data sovereignty, which means that the data
is subject to the laws and regulations of the country where it was collected. This
presents challenges for data owners who want their data to be stored nearby and
for data controllers who face restrictions related to the physical location of data
during IT system implementation due to official regulations.

One potential solution to this issue is to store the data at the edge, closer to
the source of collection. However, this requires access to remote infrastructure
for installation, management, and support, which may not always be possible and
could result in slower processes or a need for customized configurations for each
specific case.

The issue being addressed raises necessary conditions that have been analyzed
in order to make the best decision on the methodology to propose the most suitable
solution. The macro-requirements that emerged are:

• having the possibility of processing data from users that come from every part
of the world.

• deploying the platform with customization, even in terms of which tools are
installed, depending on the needs.

• connecting to IoT devices that are used to collect data.

• allowing the connection third-party clusters or devices that are already in
place to deploy tools or collect/store data.

With regards to the first issue, all three proposed solutions provide a way to
address it. However, the first solution is slightly inferior as it requires starting
from scratch to set up new clusters, whereas the third solution utilizes existing

83

General concept

resources, and the second solution involves purchasing pre-configured ones. All
three solutions offer the potential to meet the second requirement through different
architectures and processes. Regarding the third requirement, the best option
appears to be liquid computing, as it directly offers a way to connect IoT devices.
The first solution involves installing a light version of an orchestrator on the IoT
device, but it is not a straightforward or manageable method. As for the solution
that relies on a provider, it can be difficult to find an operator that offers this
possibility. The last criteria involves the ability to utilize third-party resources,
which is achievable through the third proposed solution. The other two solutions
do not provide this possibility unless the resource manager makes the credentials
available, but this is not necessary with liquid computing through peering.

Therefore, it can be stated that the best solution in this case is liquid computing
because it solves all the requirements imposed by the problem at hand in the best
way.

Specifically, this approach eliminates duplications and cost increases while pro-
moting higher flexibility and easier management of the platform as a whole. The
chosen solution allows for data storage in compliance with data protection regula-
tions and central management and control of all edge deployments, as all instances
are perceived as part of a single cluster. This is a crucial aspect, as it facilitates
the release of new versions of platform tools and troubleshooting without the need
for direct access to the edge cluster.

The solution proposed here is based on some choices according to the research
on the state of art presented previously.

84

Chapter 10

Use cases

After the general concept explanation, the following chapter will focus on the two
main use cases taken into consideration, starting from the theoretical idea and
then going inside he actual implementation.

The two use cases cover the remote data storage and the remote data processing
using AI flows.

10.1 Database offloading on Edge
The first use case studied consider the problem of storing data according to the data
protection regulations or any other particular requirement that may be present in
the specific case. This requirements often include the limitation in terms of geo-
graphical location of sensible data and so standard cloud Persistence as a Service
cannot be used. An example use case of this concept is in the medical field, where
sensitive data is collected by hospitals or other structures and must be stored.
There are privacy policies that these data must adhere to, but the goal is to be
able to store them locally while still leveraging the full potential of a digital plat-
form with all its services.

The proposed solution involves configuring a single cluster using the principle
of liquid computing. This cluster would be located between an edge device, which
could be present in the data collection structure or elsewhere, and the digital
platform’s tools used for data storage.

10.2 Remote Data processing
Another use case that was considered involves running processing algorithms in a
remote instance. This can be beneficial in terms of regulations, such as applying

85

Use cases

anonymization algorithms at the edge before sending data to the central cloud or
performing AI processes faster without the need to move data.

Although this use case has not been implemented yet, it is a highly valuable
application that will be included in future implications.

86

Chapter 11

Implementation

This chapter will cover the implementation of the previously presented use case,
detailing the technology choices made and explaining the reasoning behind them.

After conducting a comparison, Kubernetes was chosen as the most suitable
technology for orchestration, particularly Openshift and K3s distributions, due to
its widespread use and interoperability across various distributions.

The interconnection between the cloud and edge instances is achieved through
the liquid computing concept, which was evaluated in the presentation of three
possible solutions. The selected solution, presented in this thesis, offers several
advantages from an architectural and financial perspective, as described earlier.
The use of the Liqo tool ensures the continuity of resources and central manage-
ment, guaranteeing service continuity even in the case of temporary connectivity
loss. Furthermore, the use of Liqo allows for a significant simplification in terms
of both cluster management and software development and deployment, thanks to
the continuity of resources that allows hiding the distances between instances, such
as in the discovery of services present within the entire cluster. The development
of this project resulted in the resolution of several issues, leading to new features
in the latest release of Liqo (v0.6.0), which was used in the final implementation.

For data processing, a digital ecosystem platform was selected, and specifically
the DigitalEnabler solution with the Database Manager tool for creating persis-
tence instances.

The product of this thesis is part of the Structura-X project, which is a part of
the Gaia-X initiative that will be further explained in the following chapter.

87

Implementation

11.1 Database offloading on Edge with Liqo and
Digital Enabler

The project began with an exploration of Liqo, specifically its installation on Open-
shift. The testbed used was an internal Openshift installation at an Engineering
data center, using the OKD version 4.6 that corresponds to Kubernetes 1.19. The
nodes were running the FedoraCoreOS operating system, which is one of the sup-
ported systems along with CentOS and Red Hat release. The cluster was located
behind a load balancer that exposed a public hostname, and services were exposed
through NodePorts or through Openshift Router, which is an Ingress distribution
with improved security and the ability to handle multiple weighted backends, as
the cluster did not have the standard Kubernetes object named Ingress.

Initially, the installation and testing were performed between the Openshift
cluster and a publicly hosted machine. Later, the Liqo installation was integrated
into the Structura-X project, and peering was established with the federated part-
ner within the project.

At the beginning of this research project, the latest Liqo release was v0.4.0,
which presented some issues that were further explored and resolved in the subse-
quent release also thanks to the results of this thesis, v0.6.0.

This troubleshooting process required a deep dive into Liqo, including all its
features and processes, as well as the Openshift platform and the networking con-
figuration of the testbed.

Liqo offers two different methods of peering: the out-of-band one and the
in-band one.

The typical method for peering is known as an "out-of-band control plane," as
the Liqo control plane traffic travels outside the VPN tunnel that connects the two
clusters. The VPN tunnel is created dynamically in a later stage of the peering
process and is only utilized for cross-cluster pods traffic, as depicted in the figure
below. This approach is well-suited for linking clusters controlled by different
administrative domains, since each party only interacts with its own cluster: the
provider acquires an authentication token, which is subsequently shared with the
consumer to initiate the peering process. This mechanism requires each cluster to
expose three endpoints: the Liqo authentication service, the Liqo VPN endpoint,
and the Kubernetes API server, all of which must be accessible from the pods
running in the remote cluster.

88

11.1 – Database offloading on Edge with Liqo and Digital Enabler

Figure 11.1: Liqo out-of-band peering[16]

The in-band approach creates a VPN tunnel to transfer all Liqo control plane
traffic. This tunnel is established at the beginning of the peering process and all
three cross-cluster traffic flows are transmitted through it, as shown in the dia-
gram. Compared to the out-of-band approach, this method requires fewer peering
requirements. The Liqo CLI tool performs the network parameter negotiation,
and only the Liqo VPN endpoint needs to be accessible from the pods in the re-
mote cluster. Unlike the out-of-band approach, the Kubernetes API service does
not need to be exposed outside the cluster because the inter-cluster traffic flows
through the VPN tunnel. Additionally, the administrator initiating the peering
process must have access to both clusters.

Figure 11.2: Liqo in-band peering[16]

The thesis project was developed in two different steps, each with its own sce-
nario that required the use of different peering methods. In the first scenario,
where only a single machine was being connected, the in-band method was used
since access to both clusters was possible and the limited number of connectivity
requirements made it more suitable, especially to avoid firewall-related problems.
In the second scenario, which involved the Structura-X project, the out-of-band
peering method was used since the clusters were under different administrative
domains and this was the only viable solution.

89

Implementation

The development of the Database Manager required an enabling technology to
provide high availability persistence instances. Therefore, a thorough assessment
of some solutions was conducted, and the final decision was to use an operator
containing Custom Resource Definitions, which allows the creation of the necessary
databases. The chosen operator was the Percona Operator[21], which automates
routine database operations and provides the ability to create a custom internal
DBaaS.

YAMLs study and definition
The initial stage of the project involved studying the custom resources in order

to comprehend their precise functionality, and creating a custom resource yaml that
includes the necessary components for optimal performance. During this phase,
three technologies were evaluated: MYSQL, POSTGRESQL, and MONGODB.

MYSQL
In this case, the utilized resource is the PerconaXtraDBCluster, which includes

the actual pxc pods with the persistence volume claim, a high availability proxy
responsible for distributing incoming requests, and a log collector that consolidates
logs from all deployed instances into a single location. Additionally, a custom
finalizer was added to delete PVCs when the resource is removed.

Another necessary yaml file is the Secret, which contains the root user’s pass-
word for the database and other related tools.

POSTGRESQL
In this case, the resource used is the PerconaPGCluster. It consists of several

components, including the pgPrimary which is the pod that holds the actual vol-
ume, the backup which is scheduled to perform backups at the expected timescales,
the pgBouncer which exposes the service to contact the database, and the pgRepli-
cas which specifies the number of high availability replicas.

Similar to the previous case, there is also a Secret that includes the password
for the customizable database user and for other components.

MONGODB
In the final case, the resource used is the PerconaServerMongoDB, which in-

cludes the ReplicaSet representing the database implementation and a backup pod.
Similar to previous cases, a custom finalizer has been added to delete the PVCs
when the resource is deleted.

Additionally, a Secret is used, which includes the names of the users and their
associated passwords for all the tools used in the process.

90

11.1 – Database offloading on Edge with Liqo and Digital Enabler

The development process related to this thesis project began from a first simple
implementation of the tool and started by extending the DTO and DAO structures
adding the needed information for the offloading of the database.

YAMLs customization
The development process of this thesis project involved first extending the

DTO and DAO structures to include the necessary information for offloading the
database. The next step was to create methods to take the information sent by
the frontend through the DTO and insert them into the YAML files to customize
the resources.

To perform these operations, the Jackson library was used, specifically the
databind[10] and the dataformat[11] components for parsing and interacting with
the YAML files. The ObjectNode and JsonNode objects were used to navigate the
YAML structure and write values to it, while the yamlMapper object was used to
map the YAML file to a JsonNode object.

The operations performed for all three cases were similar, with small differ-
ences. This phase involved inserting the chosen password (and possibly the user-
name) in the Secret, and adding the name of the database, the number of replicas,
the volume size, and binding the previously created Secret in the resource file.
Additionally, the correct affinity was added, which will be explained in a later
paragraph.

Affinity
In this project, affinity is used to specify rules for scheduling pods. Specifically,

nodeAffinity is used to select a node based on a specified label. The process involves
searching for the requested label on all available nodes and selecting nodes that
have the same or different value of the label from the value field, depending on the
value of the operator.

1 . . .
2 spec :
3 . . .
4 a f f i n i t y :
5 advanced :
6 n o d e A f f i n i t y :
7 requiredDuringSchedul ingIgnoredDuringExecut ion :
8 nodeSelectorTerms :
9 - matchExpress ions :

10 - key: l i q o . i o / t y p e
11 operator : I n
12 v a l u e s :

91

Implementation

13 - v i r t u a l −node
14 . . .

For this case the affinity needed select the label liqo.io/type that is by default
present in all the virtual nodes created by the Liqo peering. It has always the
value virtual-node.

Initially, the Database Manager was tested with only one virtual node repre-
senting the publicly hosted machine. However, for the Structura-X project, it was
necessary to allow the selection of the virtual node among the peered ones. To
achieve this, the presence of the label kubernetes.io/hostname was exploited,
which has a value starting with liqo- and ending with the name of the remote
Liqo instance set by the flag —cluster-name used in the liqoctl install command.
This improvement allowed for the selection of the desired virtual node among the
peered ones.

So the final section will be:
1 . . .
2 spec :
3 . . .
4 a f f i n i t y :
5 advanced :
6 n o d e A f f i n i t y :
7 requiredDuringSchedul ingIgnoredDuringExecut ion :
8 nodeSelectorTerms :
9 - matchExpress ions :

10 - key: l i q o . i o / t y p e
11 operator : I n
12 v a l u e s :
13 - v i r t u a l −node
14 - key: k u b e r n e t e s . i o / h o s t n a m e
15 operator : I n
16 v a l u e s :
17 - l i q o −{peered−node}
18 . . .

To improve the user experience of the latest addition, a list of available vir-
tual nodes has been added to the Structura-X frontend. This is achieved by a
method that interacts with the API server to obtain all nodes that have the label
liqo.io/type. To allow the user to make an informed choice about where to locate
the database, labels describing the region, latitude, and longitude of the remote
cluster have been added to all virtual nodes.

92

Chapter 12

Results and evaluation

12.1 A real-world use case: Gaia-X and Structura-
X project

Gaia-X[6] is a software framework developed as a European initiative to provide
governance and control over cloud/edge technologies. The framework is designed
to be deployed on top of any existing cloud platform that follows the Gaia-X stan-
dard. This enables the creation of Data Spaces, digital ecosystems that reflect the
underlying physical or analog ecosystem by enabling data collection and exchange
among multiple organizations.

Currently, proprietary, non-transparent, and non-interoperable technologies
limit the exchange of data between federated partners, which affects the necessary
level of trust. Gaia-X aims to bridge this trust gap by implementing a new gen-
eration of digital platforms that provide transparency, controllability, portability,
and interoperability of services.

The architecture of Gaia-X is decentralized, and its implementation is based
on a common standard, the Gaia-X standard, followed by multiple individual
platforms. The goal is not to compete with existing hyperscalers but to connect
data and make it available to a broad audience via open interfaces and standards.

Recently, European cloud providers launched Structura-X, a lighthouse project
that meets all Gaia-X requirements and 28 companies and organisations have
agreed to make their cloud services Gaia-X compliant. The project aims to create
an ecosystem for European data sovereignty by shaping the existing infrastructure
services of the partners into a European cloud infrastructure. The infrastructure
will enable users to test and deploy their services and data rooms on a Gaia-X-
approved infrastructure, allowing for new cross-sector and cross-country collabo-
ration in the cloud and decreasing fragmentation in the European cloud market.
Structura-X will enable the necessary scale for new cross-sector and cross-country

93

Results and evaluation

collaboration in the cloud, helping to decrease the previous fragmentation of the
European cloud market.

12.1.1 The federation
The federation is the entity behind the project and that allows the use case to
became a real world implementations that will be consumed by users. The actual
federation is composed be CSPs and IXPs. The firsts are the Communications
Service Providers, the ones that offers services upon the infrastructure (for example
the database offloading on edge), while the others are the Internet Exchange Points
the is the one which provides the infrastructure and the connection layer to the
CSPs.

The picture below describes the involved entities: Engineering, Polytechnic of
Turin, Aruba and Ionos as CSPs and Topix and DE-CIX as IXPs. The graphic
shows how they interact among each other and the fact that this project collects
partners belonging to different domains, from service providers to academic insti-
tutions and that is still expanding.

Figure 12.1: Project partners

94

12.2 – Issues emerged and solved

12.2 Issues emerged and solved
In this section, the main challenges that emerged during the project’s development
will be discussed, along with the solutions that were adopted to overcome them.
The work carried out in this thesis contributed to Liqo’s evolution as it uncovered
several issues, some of which led to permanent fixes now available in Liqo version
0.6.0.

12.2.1 Accessibility of API Server
The initial challenge encountered during the project was the accessibility of the API
server of the Openshift cluster, which is attributed to the network configuration
and the load balancer positioned in front of the cluster. The process of peering
through Liqo requires the host executing the command to communicate with the
API servers of all parties involved, which was not possible due to the presence of the
load balancer. The first approach was to manually modify the resources created by
Liqo to establish the correct IP addresses. However, this problem is now resolved
in Liqo version 0.6.0 with the introduction of the option --set apiServer.address=
that allows users to customize the exposed addresses.

12.2.2 Fedora CoreOS interfaces management
Another issue that emerged during the project and caused several problems is
related to the behavior of Fedora CoreOS with newly created interfaces inside a
network namespace that is different from the host namespace. The diagram below
illustrates all the interfaces that are present in the liqo-gateway pod.

Figure 12.2: Liqo-gateway network namespaces and interfaces

The behavior of Fedora CoreOS with newly created interfaces inside a network
namespace different from the host one caused a significant problem during various
steps of the project. Specifically, the issue arose when creating the liqo.tunnel
interface, which exists in the newly created namespace. The operating system
created the interface once, deleted it, and then immediately recreated it, causing

95

Results and evaluation

issues with the configuration of the two interfaces in the gateway namespace. When
the interface is initially created, Liqo takes the MAC address of the interface and
creates a permanent entry in the APR table of the namespace. This operation
enables communication in standard scenarios, but since the second interface, the
one that remains, has a different MAC address from the first one, the ARP table
becomes incorrect. To solve this problem, the new version of Liqo includes a
handler that watches the newly created interface. If the MAC address changes, the
handler modifies the ARP table to keep everything aligned and maintain correct
configuration.

12.2.3 Openshift privileges management
The third issue pertains to a unique feature of Openshift that differs from the
standard Kubernetes in terms of permission management. Specifically, the Red
Hat distribution operates differently with regard to permissions related to pods
that lack a higher-level abstraction (e.g., Deployments) and are not associated with
a properly privileged service account. To resolve this issue, the virtual kubelet
in the Openshift environment was updated in the v0.6.0 of Liqo to include the
"anyuid" SCC (security context constraints), which is automatically associated
with pods created by cluster administrators by default.

12.2.4 Customize type of service depending on the cluster
configuration

The final issue concerns the services that Liqo exposes for reflecting objects and
managing the offloading process. These services, including the custom liqo-
gateway and liqo-auth, are contacted and exposed by Liqo during peering, in
addition to the standard API server. The last one is in charge of the mutual au-
thentication of the two involved clusters while the first one come into play for all the
other connections. By default, these services are created as LoadBalancer type,
which can lead to errors during the Liqo initialization phase, as the installer waits
indefinitely for the service to come up. To solve this, the Liqo installer now allows
customization of the service type and address during installation using the follow-
ing flags: —set auth.service.type=NodePort —set gateway.service.type=NodePort
—set auth.config.addressOverride= —set gateway.config.addressOverride=

12.3 Split-brain scenario evaluation
The use case described requires resistance to split-brain scenarios, where the con-
nection between the two clusters is lost. During such a scenario, it is essential

96

12.4 – Inter-cluster traffic evaluation

to ensure that data is not lost and remains undamaged. Additionally, the data
should be accessible inside the remote cluster even during downtime.

In this situation, Liqo maintains a behavior that meets the requirements of the
use case. In fact, in case of loss of connection between the peers, each peer remains
partially independent, that is, it maintains the state of its resources to the current
one (for example, by rescheduling pods if necessary), but it does not allow manual
modification of the edge cluster (in terms of scaling horizontally a deployment
for example), which is not considered necessary for the use case unless there are
particular situations and prolonged connection problems over time.

The evaluation involved setting up a standard scenario with an offloaded
database. Then, one of the cluster’s interfaces towards the internet was inten-
tionally turned off. Tests were then performed from both clusters to reach the
database, and as expected, the cluster where the database was deployed success-
fully reached it while the other cluster could not establish a connection.

Next, some pods of the database were restarted and everything worked
smoothly. Successful connection tests further confirmed that the independence in
the pod life cycle of the two clusters is real.

Finally, the interface was restarted and everything returned to the previous
situation. The scenario used for these tests is described in the diagram below.

12.4 Inter-cluster traffic evaluation
The objective of the latest evaluation was to quantify the data transferred between
the two clusters to estimate the potential costs in terms of internet traffic.

The test setup comprised an Openshift cluster within the Engineering network
and a self-hosted K3s distribution, and the in-band peering mode was used.

The test was initiated from the start, beginning with the establishment of peer-
ing between the two clusters, with the peering being unidirectional from the Open-
shift cluster to K3s. A namespace was then offloaded, followed by the deployment
of a database from the Openshift cluster to the virtual node representing the K3s
instance. The traffic exchanged was then monitored for several hours to evaluate
the situation.

The results are summarized in the following table

97

Results and evaluation

Phase Direction Traffic (KB)
Total traffic

per phase (KB)

Peering Openshift->K3s 109,5
190.6

Peering K3s->Openshift 81,1

Offloading Openshift->K3s 3504,5
9078,1

Offloading K3s->Openshift 5573,6

1° hour Openshift->K3s 19251,2
46899,2

1° hour K3s->Openshift 27648

2° hour Openshift->K3s 19763,2
47616

2° hour K3s->Openshift 27852,8

3° hour Openshift->K3s 18841,6
45875,2

3° hour K3s->Openshift 27033,6

4° hour Openshift->K3s 19660,8
47411,2

4° hour K3s->Openshift 27750,4

Total 197070,3 (192,5 MB)

In conclusion, the test results show that the total amount of traffic generated
by Liqo is relatively low, with an average of 0.5 MB per hour. This low amount of
traffic is a significant advantage of Liqo, as each cluster has independent resource
management, and only the status of offloaded pods needs to be transmitted.

To better represent and understand the collected data two graphs are reported
here.

98

12.4 – Inter-cluster traffic evaluation

Figure 12.3: Inter-cluster traffic compared by phase

The first one describes the amount of traffic divided by phase. The main consid-
eration is that the peering and offloading phases, which could have been considered
the heaviest, have a marginal impact.

In particular the peering phase is very light from the traffic point of view and
the only packets that are transmitted are the authentication ones and the ones
used to build the VPN tunnel.

The offloading phase is slightly more traffic consuming because it includes the
offloading of the namespace and then the communication regarding the resources
that must be deployed remotely.

99

Results and evaluation

Figure 12.4: Inter-cluster traffic monitoring over time

The first report presents a breakdown of the traffic amount based on different
phases. The main observation is that the phases that might have been expected to
generate the highest amount of traffic, namely the peering and offloading phases,
actually have a relatively minor impact.

Specifically, the peering phase is very lightweight in terms of traffic, with only
authentication packets and those needed to set up the VPN tunnel being trans-
mitted.

The offloading phase is somewhat more traffic-intensive due to the offloading of
the namespace and the communication required to deploy resources remotely.

The final graph depicts the traffic during normal monitoring and it shows a
relatively constant rate of 20-30 MB in both directions. It is worth noting that
the line representing the traffic from K3s to Openshift is higher, as the resource
is offloaded from Openshift to K3s and the latter cluster needs to send back the
information on the status of the pods.

100

Part VI

Conclusion and future
developments

101

Conclusions
The work conducted in this thesis has resulted in a practical and effective solu-
tion for real-world implementations. The evaluations and tests performed have
demonstrated the feasibility and effectiveness of the proposed approach.

In particular, the project has been extensively tested through its usage in the
Structura-X project, and being part of the Engineering catalog confirms its readi-
ness for production use. The proof-of-concept built for the Gaia-X initiative has
demonstrated the possibility of connecting multiple clusters to create a federation
of CSPs from different parts of the world at reasonable costs and within reasonable
timeframes.

The simulations conducted on the proposed solution revealed two significant
aspects that are relevant for companies intending to adopt this idea in production
environments.

The first aspect is the behavior in a split-brain scenario, where connectivity
issues occur between the clusters. The test results showed that the project’s op-
eration is not affected by this potential event and guarantees continuity of service
to the users in every situation.

The other crucial outcome is the small amount of traffic exchanged between the
clusters, making the solution accessible to everyone.

In the near future, the main area of application for this project will be the
medical field, where personal data issues are common and a solution is needed
to extend cloud capabilities to multiple tools. The project’s capabilities are re-
markable, ranging from remote control, deployment, and management of software
leveraging the abstraction of a single cluster, to data storage and remote process-
ing, which can accelerate and improve efficiency in medical procedures.

Future developments
Two potential future improvements have been identified for the proposed solution.
The first is the implementation of remote processing, which was discussed as a
theoretical concept in this thesis. This could be accomplished by building upon
the existing technology and making necessary customizations based on the specific
requirements of the processing task.

The second possible improvement is the integration of remote processing
with database offloading. This would enable automatic storage of personal
data that cannot be transferred to the cloud in the local environment, while
anonymizing other data through an AI flow before transferring it to the cloud.

103

104

Bibliography

[1] Admiralty official documentation. https://admiralty.io/docs/. (Cited on
page 65.)

[2] Azure kubernetes service official documentation. https://
learn.microsoft.com/en-us/azure/aks/. (Cited on page 32.)

[3] Digitalenabler. https://www.eng.it/en/our-platforms-solutions/
digital-enabler. (Cited on page 35.)

[4] Amazon eks official documentation. https://aws.amazon.com/eks/. (Cited
on page 31.)

[5] Engineering ingegneria informatica. https://www.eng.it/. (Cited on page 2.)

[6] Gaia-x official website. https://gaia-x.eu/. (Cited on pages 2 and 93.)

[7] What is gdpr, the eu’s new data protection law? https://gdpr.eu/what-
is-gdpr. (Cited on page 44.)

[8] Amazon eks official documentation. https://cloud.google.com/
kubernetes-engine. (Cited on page 32.)

[9] M. Iorio, F. Risso, A. Palesandro, L. Camiciotti, and A. Manzalini. Computing
Without Borders: The Way Towards Liquid Computing. 2022. (Cited on
page 63.)

[10] Jackson databind official repository. https://github.com/FasterXML/
jackson-databind. (Cited on page 91.)

[11] Jackson dataformat yaml officail repository. https://github.com/
FasterXML/jackson-dataformat-yaml. (Cited on page 91.)

[12] K3s official documentation. https://k3s.io/. (Cited on pages 3 and 31.)

[13] Kind official documentation. https://kind.sigs.k8s.io/. (Cited on pages 3
and 31.)

105

https://admiralty.io/docs/
https://learn.microsoft.com/en-us/azure/aks/
https://learn.microsoft.com/en-us/azure/aks/
https://www.eng.it/en/our-platforms-solutions/digital-enable
https://www.eng.it/en/our-platforms-solutions/digital-enable
https://aws.amazon.com/eks/
https://www.eng.it/
https://gaia-x.eu/
https://gdpr.eu/what-is-gdpr
https://gdpr.eu/what-is-gdpr
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://github.com/FasterXML/jackson-databind
https://github.com/FasterXML/jackson-databind
https://github.com/FasterXML/jackson-dataformat-yaml
https://github.com/FasterXML/jackson-dataformat-yaml
https://k3s.io/
https://kind.sigs.k8s.io/

BIBLIOGRAPHY

[14] Kudeege official documentation. https://kubeedge.io/en/docs/. (Cited on
page 68.)

[15] Kubernetes official documentation. https://kubernetes.io/docs/home/.
(Cited on page 18.)

[16] Liqo peering documentation. https://docs.liqo.io/en/v0.6.0/features/
peering.html. (Cited on pages 7 and 89.)

[17] Liqo official documentation. https://docs.liqo.io/en/v0.5.0/. (Cited on
page 63.)

[18] microk8s official documentation. https://microk8s.io/docs. (Cited on
pages 3 and 31.)

[19] Openshift official documentation. https://access.redhat.com/
documentation/en-us/openshift_container_platform/4.10. (Cited
on page 29.)

[20] Understanding the difference between kubernetes vs. openshift. https:
//www.simplilearn.com/kubernetes-vs-openshift-article. (Cited on
page 29.)

[21] Percona kubernetes operator documentation. https://www.percona.com/
software/percona-kubernetes-operators. (Cited on page 90.)

[22] Rancher official documentation. https://www.rancher.com/. (Cited on
page 30.)

[23] Structura-x presentation. https://gaia-x.eu/news/latest-
news/structura-x-lighthouse-project-for-european-cloud-
infrastructure-is-launched-concrete-implementation-and-
alignment-with-the-gaia-x-roadmap-of-compatible-services/. (Cited
on page 2.)

[24] tensile-kube official repository. https://github.com/virtual-kubelet/
tensile-kube. (Cited on page 79.)

[25] Thingsboard official website. https://thingsboard.io/. (Cited on page 34.)

[26] United nations conference on trade and development. https://unctad.org/
page/data-protection-and-privacy-legislation-worldwide. (Cited on
pages 7 and 41.)

[27] Virtual kubelet. https://github.com/virtual-kubelet/virtual-kubelet.
(Cited on page 74.)

106

https://kubeedge.io/en/docs
https://kubernetes.io/docs/home/
https://docs.liqo.io/en/v0.6.0/features/peering.html
https://docs.liqo.io/en/v0.6.0/features/peering.html
https://docs.liqo.io/en/v0.5.0/
https://microk8s.io/docs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10
https://www.simplilearn.com/kubernetes-vs-openshift-article
https://www.simplilearn.com/kubernetes-vs-openshift-article
https://www.percona.com/software/percona-kubernetes-operators
https://www.percona.com/software/percona-kubernetes-operators
https://www.rancher.com
https://gaia-x.eu/news/latest-news/structura-x-lighthouse-project-for-european-cloud-infrastructure-is-launched-concrete-implementation-and-alignment-with-the-gaia-x-roadmap-of-compatible-services/
https://gaia-x.eu/news/latest-news/structura-x-lighthouse-project-for-european-cloud-infrastructure-is-launched-concrete-implementation-and-alignment-with-the-gaia-x-roadmap-of-compatible-services/
https://gaia-x.eu/news/latest-news/structura-x-lighthouse-project-for-european-cloud-infrastructure-is-launched-concrete-implementation-and-alignment-with-the-gaia-x-roadmap-of-compatible-services/
https://gaia-x.eu/news/latest-news/structura-x-lighthouse-project-for-european-cloud-infrastructure-is-launched-concrete-implementation-and-alignment-with-the-gaia-x-roadmap-of-compatible-services/
https://github.com/virtual-kubelet/tensile-kube
https://github.com/virtual-kubelet/tensile-kube
https://thingsboard.io/
https://unctad.org/page/data-protection-and-privacy-legislation-worldwide
https://unctad.org/page/data-protection-and-privacy-legislation-worldwide
https://github.com/virtual-kubelet/virtual-kubelet

	List of Tables
	List of Figures
	I Introduction
	II Container orchestration and digital platforms
	Introduction to containers
	Container Orchestrators
	DockerSwarm
	Kubernetes
	Architecture
	Objects vocabulary
	Extension possibilities
	Operator Pattern
	Custom Resources

	Distributions
	Openshift
	Rancher
	Lightweight distributions
	K3sk3s
	MicroK8smicroK8s
	Kindkind

	Cloud distributions
	EKS
	AKS
	GKE

	Digital platforms
	Main characteristics
	Thingsboard
	Digital Enabler
	Architecture
	Services
	Challenges

	III Data protection regulations
	GDPR
	History
	Key concepts
	Data management at rest
	Data sovereignty

	Other worldwide data management regulations
	US regulation
	Chinese regulation
	Brazilian regulation

	IV State of art
	Use multiple scattered clusters
	Main characteristics
	Deployment scenarios

	Use private provider technologies
	Main characteristics
	Deployment scenarios

	Liquid computing
	Main characteristics
	Deployment scenarios
	Admiralty
	KubeEdge
	Liqo
	Architecture
	Implementation details

	Comparison
	Other minor alternatives
	Tensile-kube

	V Design and proof-of-concept
	General concept
	Use cases
	Database offloading on Edge
	Remote Data processing

	Implementation
	Database offloading on Edge with Liqo and Digital Enabler

	Results and evaluation
	A real-world use case: Gaia-X and Structura-X project
	The federation

	Issues emerged and solved
	Accessibility of API Server
	Fedora CoreOS interfaces management
	Openshift privileges management
	Customize type of service depending on the cluster configuration

	Split-brain scenario evaluation
	Inter-cluster traffic evaluation

	VI Conclusion and future developments

