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Summary

Deep Reinforcement Learning has been successfully applied to several computer
games, but it is still rarely used in real-world applications. One of the main
reasons is the lack of generalization since it is still challenging to produce robust
agents generally capable of RL. This is an even greater issue considering UAVs,
since a full assessment of the UAV capabilities is complex. With the current
advancements applying reinforcement learning (RL) in robotics and promising
methods for producing more robust agents such as curricula and unsupervised
environment design, this work proposes to harness the work of designing several
environment configurations to train agents with greater capability of generalization.
Our approach seeks to automatically generate useful training levels, proposing a
new Unsupervised Environment Design (UED) method. This thesis introduces a
configurable 2D python quadrotor simulation to ease the training with RL, reaches
a marginal step forward in the research of unsupervised environment design, and
successfully trains an agent capable of seeking an object while avoiding obstacles
in our 2D simulation.
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Chapter 1

Introduction

The topic of Unmanned Air Vehicles (UAVs) poses a significant research challenge,
demanding from different areas such as mechanics, electronics, geolocalization,
control and planning. The latter usually requires extensive work in studying and
designing the application dynamics for developing and testing the planning solution.

With the advancement of computational power, reinforcement learning has emerged
as a leading technique in designing solutions of planning and control in the robotics
field [1] [2], thanks to its ease in gathering data from a simulation for training.
Indeed, UAVs have gained widespread use across several industries, such as surveil-
lance, aerial photography, agriculture, inspection, construction, among others. But
it is usually common that mobile robots must deal with several environment config-
urations and tasks, which makes the designing of a training environment complex,
since once the data is gathered and the agent is trained, it is difficult and expensive
to retrain and get a second solution if the task changes.

It is also difficult to model the real world, it has several possible scenarios and
edge cases and numerating, studying, and designing all of them is difficult and
time consuming. On the other hand the distribution of some parameters in an
environment can severely affect the result of an agent trained on them. We also
do not want to spend time training an agent on tasks that are not useful or that
it already knows how to solve on ease. To avoid wasting time and computational
resources on irrelevant tasks or on data that the agent already knows how to
solve, it is crucial to develop solutions that handle the generalization of problems
efficiently and focus on what is really relevant.

In order to train robots that can handle different environment configurations,
without having to study and design every possible configuration, it is necessary
to automate the generation of different environments, focusing only on the useful
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Introduction

configuration parameters. The goal is to teach a quadrotor that automatically
reaches a target position avoiding obstacles in several environment configurations
without specifying them all explicitly.

To this end, this Master Thesis aims to explore the use of Reinforcement Learning
in solving the trajectory planning and obstacles avoidance problems for UAVs. The
focus will be on developing a system that can handle different environment configu-
rations and tasks without having to design and study each scenario explicitly. The
objective is to train the UAV to automatically reach a target position while avoiding
obstacles in diverse environment configurations, using only the useful configuration
parameters, generated by a Unsupervised Environment Design algorithm. The
results of this work will provide insights forthe feasibility of using Reinforcement
Learning for UAV trajectory planning and demonstrate its potential for real-world
applications.

1.1 Problem Statement
Autonomous drones are an interesting research topic for mobile robotics, control,
perception, and path planning since they must be energy efficient, light and small.
To be able to fly, they cannot be heavy, but due to their limited computational
capabilities, which relies on onboard computers, they must be computationally
fast, which consumes relevant power, besides the energy of motors and controllers.
Therefore, they also need sufficient energy on the batteries, which can increase
its weight. It is easy to notice that designing drones is a hard task, since ground
robots usually have less restrictions on weight, can have faster computers and
larger batteries. Therefore, an algorithm for an autonomous quadrotor is usually
also a good solution for ground robots for example, due to the lack of the above
mentioned restrictions.

Regarding navigation algorithms, we can generally say that they are composed by
building blocks of localization, control and path planning [3]. Each block is linked
to the other to have a fully autonomous navigation system. The planning block
needs a working control block to follow the desired coordinates, and the control
block needs a state estimation for localization to check if the actions are being
followed, additionally, the planning also needs the state to compute next actions.
Designing efficient trajectory planning algorithms usually demands a long study on
the dynamics of the specific problem and the implementation of complex control
laws. The problem with this approach is the lack of generalization in the solution.
While performing trajectory planning, an autonomous drone has to plan several
movements between rotating, adjusting altitude, accelerating, avoiding crashing
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with an obstacle, between others. If you train a drone to inspect agricultural
areas in a field without elevation changes, the same algorithm will probably have
problems in terrain with altitude changes. Similarly, a drone trained to avoid
electricity pylons, which probably would require only rotations, will not be able to
surpass an obstacle like a building if necessary.

It is challenging to develop general solutions, but recent work shows an increasing
effectiveness in the use of machine learning based algorithms. The role that ML
presents in the field of robotics, specially reinforcement learning, is that it gives to
the robot the ability to learn, adapt and reproduce behaviors for challenging tasks
based on autonomous exploration and learning. Considering industrial robotics,
it is way more usual to find solutions based on programming instead of learning,
since there is not so much necessity for constant and autonomous adaptation for
different situations and constraints. ML gives most robots this ability, the ability
to learn rather than just reproduce the programmed actions, and in an even easier
way, since it is autonomous, the adaptation is more straightforward than other
methods that would probably require the adjustment of already learned parameters.

In the field of autonomous aerial vehicles, the use of machine learning techniques
is of much use. UAVs have plenty of constraints that are difficult to model and
test, and the challenges faced by them usually require great ability of adaptation
and generalization. For this reason, using ML to model and solve UAV tasks
has been an increasing topic of research, even since, relatively speaking, artificial
intelligence the way it is today is still a new topic with plenty of room for research
and improvement. Hence, with the good results shown by recent work, and the
known challenge that it is to build robust algorithms for autonomous vehicles, this
work aims to discuss and propose a machine learning solution for an important
task for autonomous aerial vehicles.

Specifically, the main purpose of this work is to teach a quadrotor to reach a
target location avoiding obstacles in a simulation using reinforcement learning with
a training algorithm that automatically provides useful environment configurations
for convergence. This work does not focus on hardware implementation, energy
and computational efficiency, but only on the designing of the trajectory planning
problem using Reinforcement Learning methods and the most recent methodology
for generalization.

This work proposes to solve the stated problem by creating a computer simu-
lation of a quadrotor, designing reinforcement learning algorithms to train an agent
in the simulation and developing a training algorithm that automatically generates
different relevant environment configurations to the agent’s learning, exploiting the
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concept of unsupervised environment design, which will be furtherly discussed in
another section.
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Chapter 2

Reinforcement Learning
Obstacle Avoidance
Applications

This chapter aims to introduce the problem of trajectory planning for mobile robots,
with emphasis on aerial robots, but also to give a brief introduction to reinforcement
learning. This chapter then focuses on the state of the art of reinforcement learning
for trajectory planning and obstacle avoidance and then introduces a training
approach called unsupervised environment design.

2.1 Introduction to trajectory planning for mo-
bile robots

Mobile robots can be said to be any device capable of locomotion, they can move
using wheels, wings, rotors and others. The usage of mobile robots is really
extensive, from transport of payloads and organization in distribution centers,
cleaning and disinfection in houses or hospitals, fruit and vegetable picking in
farms, military usage, to autonomous delivery systems. This section is referenced
by [3],[4] and [5].

Flying robots or unmanned aerial vehicles (UAV) are increasingly becoming
more common and acting in different sectors, not only in the industry and robotics
research, but also for photography and personal use. The main types of aerial
robots are fixed wing UAVs, similar to an aircraft, with wings and a propeller; and
rotorcraft UAVs, in several configurations, being one of the most popular in the
research field, the quadrotor. One of the reasons for its popularity is the ability to
take-off and land vertically and that it is possible to fly it indoors.
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Figure 2.1: Mobile Robot at an Amazon fulfillment center [6]

Figure 2.2: Delivery UAV from Alphabet’s Wing company [7]

Quadrotors have six degrees of freedom, being three transitional movements,
upward and downward, forward and backward, and right and left; and three rota-
tional movements, roll, pitch and yaw.
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Figure 2.3: Degrees of freedom of an UAV

For manipulating those configurations, flying robots are actuated by forces, in
the case of quadrotors, actuated by four accelerations of the rotors. This means it
is necessary to use a dynamic model of the flying robot for its control.

Figure 2.4: Dynamic modelling of a Quadrotor [5]

The process of planning and moving the robot along a path, safely between
two points, that is, without colliding, is called navigation. Navigation in robotics,
differently to most human approaches, does not necessarily include or are map
dependants. This kind of navigation, without a map, is referred to as reactive
navigation. Some examples include a line-follower robot, vacuum cleaning, or a
racing drone that uses gates to localize itself. However, a map is not necessary to
successfully complete several tasks, since it is not the only available way for a robot
to sense and perceive the environment. In the study of navigation, the tasks are
usually divided in three subgroups: localization, motion control and path planning .

7



Reinforcement Learning Obstacle Avoidance Applications

2.1.1 Localization
Localization is the process of estimating the location of the robot in the world, or
more specifically, in the task environment. The task of localization can vary in
difficulty depending on the problem and also in the available information. A robot
in the outdoors with a GPS available probably does not face major difficulties
to estimate its location. However, besides the inaccuracy of the GPS, in indoor
tasks, problems where a map is not available or situations where there are few
sensors are more likely to depend on advanced techniques to estimate its location.
Another aspect of localization is that it is often required not to know the global
position of the robot, but the relative position of some object, or target. Those
tasks also require the robot to understand the data from its sensors to exploit
relevant information, a process known as perception.

One way of estimating a mobile robot position is through the integration of
the robot’s velocity, if it is known, over the sampling interval ∆t, which consists in
the technique of odometry. For a differential robot for example, it is possible to
update its location through integration by knowing the traveled distances for each
wheel, which can be measured by an encoder.

A more advanced way of estimating the robot’s state is by using a Kalman filter,
which combines the information from the measuring devices, the knowledge of the
system and measurement errors and uncertainty in the system modeling. At each
step the system gathers information through its sensors, predicts the state with the
dynamical modeling and then combines it by filtering the information. The result is
a more robust estimation of the robot’s state, but requires modeling the dynamics
of the problem and estimating the system’s uncertainty and measurement errors.

Though maps are not always available, it is possible to localize itself by con-
structing a map while facing the task, that is, to autonomously build a map. A
popular technique of location while also building the environment map is called
Simultaneous Localization and Mapping (SLAM). Starting from an arbitrary point,
the robot physically explores the environment and estimates its location while also
gathering information from its sensors to build a map, and localize itself relative to
this map.

2.1.2 Path and Trajectory Planning
Path planning is the task of finding an optimal path from the initial position
until some desired goal, or target, position. Trajectory planning has the same
idea of path planning but with the added time constraint, that is, instead of only
geometrical goals there is also a restriction in time. An ideal path or trajectory
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planning must be good enough to deal with adversities and uncertainties in the way.
Therefore, given the robot’s perception of the world, it is also important that it is
able to sense and change the trajectory to avoid obstacles in the way to prevent any
impact that can prevent the robot to reach the goal or damage itself. The previous
definition is called obstacle avoidance. Hence, in order to successfully fulfill the task
of reaching a target position, it is not only necessary to plan a trajectory or path,
but also to gather information during it, perceive the environment and react to any
eventualities, since there can always be imperfections in the modeling of the prob-
lem, noise in the sensors and even due the fact that the world is dynamic, not static.

One way of solving the path planning problem is through graph search, which
consists of constructing a graph configuration of the environment and then finding
the optimal path between the initial and final points. Though there are several
algorithms to solve this task, only the A* (pronounced “a star”) algorithm is going
to be shown in this work. A* combines ideas of the Dijkstra’s Algorithm by looking
for vertices that are closer to the starting point, and ideas of using heuristics like in
Greedy Best-First-Search, by looking for vertices that are close to the goal. That is,
A* uses the actual distance from the starting point combined with the estimated
distance to the goal. Below follows the A∗ algorithm, based on [8].

Algorithm 1 Implementation of A* algorithm
1: procedure A*(Queue)
2: ▷ Queue contains the root
3: ▷ Initialization
4: path dictionary ← {} ▷ Empty
5: costcurrent ← 0 ▷ Execution
6: while Queue is not empty do
7: Get current from Queue
8: ▷ Gets the path from the priority queue
9: if current is goal then

10: Break
11: end if
12: for All neighbors do
13: costnew ← cost(current) + cost(current, neighbor)
14: Update costcurrent

15: Update Queue on heurist
16: Update path dictionary
17: end for
18: end while
19: end procedure

9
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Therefore, A* works by searching the graphs by a priority queue based on
heuristics of the estimated distance to the goal and the traveled path from the
start.

Another approach for path planning is potential field planning, which creates
a gradient across the environment’s map that directs the robot though the target
position. The robot is seen as a point in the influence of a potential field and
follows the direction of the field just until a point of minimum, which is the goal
position. The obstacles are designed as peaks in the field, repelling the robot away
from it.

Both graph search and potential field planning solve both the path planning
and the obstacle avoidance problem, the first can find optimal solution and the
later can also be used to derive a control law for the robot, since the potential field
can be understood as forces actuating in the robot. However, both solutions need
prior information of the environment, such as the map, which in many cases is not
possible to have. As mentioned above, there are techniques that can construct a
map during the locomotion, but this requires an expensive amount of time and
that the robot explores the entire environment. In the recent development of
robots, several approaches use a combination of perception with machine learning
techniques to solve the problem of online trajectory planning.

2.1.3 Motion Control
After the robot is able to understand its relative position and where it should go,
it is necessary to assure that the given inputs to the motors or rotors are actually
leading the robot to the desired location. In order to guarantee that the followed
trajectory is in fact the desired one, a control strategy is necessary.

One strategy to make the robot go from its initial location to a final desired
location is to divide the computed path into several segments and apply those
inputs. If the actual robot trajectory is not being measured, or at least estimated,
this is called an open-loop control. The main disadvantage for this technique is
that it is not possible to automatically adapt the trajectory if there is any error
or changes in the environment. A more robust approach is to use a feedback
control, a so-called closed-loop control, in which the robot’s state is fed back to the
computation of inputs for the motors. In that way it is possible to track trajectory
errors and automatically readapt the inputs to correct this behavior.

A common and basic feedback control strategy, known as Proportional, Inte-
grative, Derivative (PID) control, consists of minimizing the robot’s position (could
also be another target variable for a different problem) error, instead of just the
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position. The error e will be computed as the desired position pd minus the actual
measure, or estimated, position p:

e = pd − p

The PID controller will consist of three parameters KP , KI ,and KD, one for
each kind of error, the proportional error, as shown above, the integrative error
and the derivative error, which is, in order, the integral of e and the time derivative
of e. The control law is:

PID(e) = KP · e + KI

Ú
edt + KD

de

dt

There are several other feedback control laws, each one with their advantages, but
the main reason that PID is so common is that it is easy to implement and does
not require a dynamic model of the system.

Without motion control it is not possible in the real world to follow a trajec-
tory planning strategy since the environment is often subject to variations, the
sensor readings are noisy and there are probably several simplifications when
designing the dynamical model of the system.

2.2 Introduction to Reinforcement Learning
The idea of having machines that automatically solves complex problems for us is
not new, in fact, humans have been since the beginning trying to build more and
more complex tools for its use. Computers were not different, created to aid us
and nowadays most jobs would not even exist without them, but since they were
conceived, people wondered if one day computers would be as intelligent as us. In
the primitive work of artificial intelligence, the initially solved problems were tasks
that could be written as a series of logical commands, usually problems that are
more difficult for humans than machines, since they were described by mathematical
rules. The difficult problems arise when trying to solve tasks that are not a logical
description, but rather something more intuitive for humans. One example is that
it is easier to show a computer how to solve mathematical equations than teaching
it the difference between an image of a dog and a cat, something that a toddler can
do. The first can be described by a list of commands, while the later is something
more intuitive, there is no easy mathematical rule to describe what a dog and cat are.

Better solutions for those more intuitive problems came with machine learning,
where the computer learns how to solve problems by experience or existing data,
which avoid the need of a human to formally describe all the knowledge needed by
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the computer to solve it. There are mainly three types of learning in the machine
learning field. If the computer learns to map input examples from labeled data into
the target variable, that is, the answer, then it is said to be a Supervised Learning
problem. For example, a set of pictures of dogs and cats, and each one containing
its label, if it is a dog or cat picture, and the goal is that, given a picture, whether
it is a dog or cat picture.

Figure 2.5: Scheme of Supervised Learning, representing a classification problem

When a model is taught to describe or extract relationships in the data, without
any labels given, then this is a Unsupervised Learning problem, the algorithm learns
by itself to make sense of the given data. Given a table of different customers from
a shop and their characteristics, an unsupervised learning algorithm can try to
identify the different existing types of customers of that shop, without any answer
given in the data.
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Figure 2.6: Scheme of a Unsupervised Learning problem

Now, when an algorithm is used to interact with an environment by taking
actions and receiving numerical rewards for each action taken in each environment
state, and tries to learn the best actions to take in each situation, then this is a
reinforcement learning problem. Reinforcement Learning includes trial-and-error
search in an unknown environment and the problem of trading off instant and
future rewards, without being taught which actions to take, but only whether these
were good or bad actions based on the given reward.

The goal of this chapter is to give an introduction of the reinforcement learning
framework, its basics concepts and some of its methods.

2.2.1 Brief story of Reinforcement Learning
The first studies in Reinforcement Learning can be traced back to the 1980s, when
psychology researchers began exploring the concept of learning through trial and
error. Another thread was the study of optimal control using value function and
dynamic programming, although it did not involve learning. The RL known as this
day, which focuses on teaching an agent to make decisions in an environment by
maximizing a reward signal through trial and error, came with the advancement of
those studies.

Over the years, RL has experienced significant growth and development, becoming
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a well-established field with numerous real-world applications. Today, RL is the
topic of research in fields such as robotics, gaming, and recommendation systems,
among others. The advancements in machine learning algorithms and techniques
have led to significant improvements in RL, allowing it to tackle more complex
problems. The increasing use of big data in various industries, such as healthcare,
finance, and retail, has also driven the development of RL, as it allows for the
analysis and prediction of large amounts of data. The continued advancement of
RL is expected to lead to further breakthroughs in fields of autonomous systems.

2.2.2 Elements of Reinforcement Learning
The basic elements of reinforcement learning are the agent, environment, policy,
reward signal and a value function. The given definitions here are based on [9]. The
agent is the learner and decision maker of the RL framework. Everything the agent
interacts with, that is, everything outside the agent, is called the environment. In
a computer chess game, the agent is the machine taking actions, the environment
comprises the board, the adversary and the pieces, thus everything the agent can
interact with.

The policy is the agent’s rule for acting, it maps what it can sense of the en-
vironment state into the action to be taken in that particular scenario. The policy
describes how the agent should behave. In the reinforcement learning framework,
usually the policy is what we are interested in discovering, because it is what
describes how to solve a given problem.

The reward signal is a way of describing the goal of the problem, it is what
at each time step will give a numerical value, the reward, to describe how close or
far from the goal a given action is. The agent’s objective is to maximize all collected
rewards, just as a student wants to maximize all its grades along its semester.

As the reward describes how good an action is at each time step, the value
function describes the goal in the long term, that is, after many time steps. Each
state will have its value, that describes how good it is to be in that state. The
value function can act as a prediction of the future rewards, given that the agent
chooses the best actions. Therefore, estimating value functions for state is a way of
finding how to maximize its reward in the long-run.

As an example of the game chess, by moving the pawn to get the opponent’s
pawn can give a good reward, but getting the queen will yield an even better
reward. Nevertheless, if by getting the queen we end up being in a state where the
opponent can give us a checkmate, then the reward was good but the value of that
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state is bad.
On the other hand, we can sacrifice a piece, getting a bad reward, but giving a

check to the opponent, ending up in a good state. The policy in that example is
the set of rules that the agent should follow based on each state.

2.2.3 Markov Decision Process (MDP)

In the reinforcement learning framework, an agent interacts with an environment,
taking actions and receiving rewards for them, analyzing those values and doing
everything once again. The formalization of this sequential decision making pro-
cess is a Markov Decision Process, where an action does not only influences the
immediate rewards, but also the future returns and future states.

At each time step t=0,1,2,3. . . the agent has some representation of the en-
vironment’s state at that time step, called St ∈ S, and takes an action based on
that state, At ∈ A(s), receiving a numerical reward Rt+1 ∈ R ⊂, then changing to
a new state St+1 ∈ S, repeating this process.

Figure 2.7: Agent-environment interaction in a finite MDP [9]

In most cases we deal with finite MDPs, which means that the sets of states,
actions and rewards (S, A, R) all have a finite number of elements. The reason for
that is that the real world is too complex to be solvable in an easy way for most
problems, it is easier to deal with a model of our problem, and thus it is useful to
model it as a finite problem.

For some problems, given a state s and an action a, it is not clear which is
the next state s′ the agent will fall into and the reward r it will receive, we can
define the probability of that happens:

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a}
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p(S, R, S, A)→ [0,1]

That function p, describing the probability of an agent in the state s taking an
action a, receiving a reward r and ending up in the state s′ is called the dynamics of
the MDP. In an MDP, it is said that it has the Markov Property if the probability
of each possible value for St and Rt depend only on the present values of state and
action St−1 and At−1, and not on the past values as well. That is, the next state
depends only on the present state and action, not on earlier values. The Markov
Property is assumed to solve RL problems.

The goal of the agent in reinforcement learning is the maximization of the expected
value of the sum of rewards throughout the long run. The reward signal is the
only thing describing the agent’s purpose, and the only way of meeting that goal is
to maximize the sum of those values, which means the agent is doing a good job.
This is called the reward hypothesis. In supervised learning tasks we want to get
the right value of the target given our input, the equivalent of that in RL is that
given our state we want to maximize the cumulative sum of rewards.

To formalize that idea, we define the expected return, which is the sum of re-
wards for each state the agent has been in, from t to the final step T , which we
call episode:

Gt = Rt+1 + Rt+2 + Rt+3 + ... + RT

, this sum starts on t + 1 since there is no reward for the initial state.

Each episode consists of the run that the agent makes through the environment,
from the initial timestep until the last state, called terminal state, in which the
episode ends. Every time an episode ends, a new episode begins, not depending at
all on the last episode. Tasks that can be easily formulated with a very specific
ending, such as chess where the end is a win, loss or draw situation, are called
episodic tasks. On the other hand, tasks without a defined end, such as the control
of a robot’s motor, are called continuous tasks.

Since an episode can have an undefined and unpredictable number of steps, and
that a continuous task may have an infinite number of steps, it is difficult to try
to maximize an infinite sum. Therefore, it makes sense for the agent to try to
maximize the discounted return, defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞Ø

k=0
γkRt+k+1
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Where 0 ≤ γ ≤ 1 is called the discount rate. The discount rate determines the
relevance we give for future rewards, that is, how much we prioritize the long term
sum of rewards in respect to the instantaneous reward. Higher values of γ give
higher importance for future rewards, while if γ equals 0, then the agent is only
trying to maximize the current reward.

The above function can also be computed recursively:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

Gt = Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + ...)
Gt = Rt+1 + γGt+1

2.2.4 Policy and Value function
Value functions tell how good it is for the agent to be in that state, most RL
algorithms involve estimating value functions, but the concept of good is only based
on the future rewards, the expected return. This expected return will depend on
the actions chosen by the agent and, of course, it wants to choose the actions that
give the best expected return. The way the agent chooses those actions is defined
by the policy. Hence, the expected return is dependable on the policy that the
agent is following.

The policy is a function that will map the current state into the probability
of selecting an action at that time step. Policies will be denoted by π. So π(a|s) is
the probability that the agent chooses the action given that the current state is s.

The value function of a state s under a policy π is the expected return if an
agent starts at the state s and follows the policy π.

vπ(s) = Eπ[Gt|St = s]

If the agent follows a policy π indefinitely, saving each reward if received, com-
puting an average of the returns it found from each state, then this average will
convert to the actual value function. Methods that use this procedure to estimate
vπ(s) are called Monte Carlo Methods.

It is also possible to define the expected value of taking an action a in the state s
under the policy π, called action-value function, defined as:

qπ(s, a) = Eπ[Gt|St = s, At = a]
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The relation between the two above functions is given by just multiplying qπ(s, a)
by the probability of taking action a at state s given by the policy, for all actions:

vπ(s) =
Ø

a

π(a|s)qπ(s, a)

Another useful way of computing vπ(s) is relating it with the value of the next
state:

vπ(s) = Eπ[Gt|St = s]
vπ(s) = Eπ[Rt+1 + Gt+1|St = s]
vπ(s) = Eπ[Rt+1|St = s] + Eπ[Gt+1|St = s]
vπ(s) =

Ø
r

Ø
s′

Ø
a

r · π(a|s) · p(s′, r|a, s)+

γ ·
Ø

r

Ø
s′

Ø
a

Eπ[Gt+1|St+1 = s′] · p(s′, r|a, s) · π(a|s)

vπ(s) =
Ø

a

π(a|s)
Ø
s′,r

p(s′, r|a, s)[r + γvπ(s′)

This resulting relation is called Bellman equation for vπ, and express the relation
between the value of a state and the values of its successor states. This equation
acts like an average of all possibilities of rewards and next states the agent could
fall into based on the environment model, and all possible actions it could take
at the present state given its policy. If the agent is on state s and takes action a,
there is a probability p(s′, r|a, s) that the next state is s′ yielding a reward of value
r. We sum for all possible values of s′ and r given that probability, then sum for
all possible actions in respect to the probability π(a|s) that the agent takes this
action. For all those probabilities we compute the next reward and the next state’s
value.

2.2.5 Optimal Policies
When solving a reinforcement learning problem, the goal is to find a policy that
yields the maximum of rewards over all timesteps, so basically finding the best
existing policy, the one that achieves the higher amount of reward. The policy that
is better than or equal to all other policies is defined as optimal policy, and there
may be more than one, all of them are denoted equally by π∗ A policy π is said to
be better than or equal to another policy π′ if and only if vπ(s) ≥ vπ′(s) for all s ∈ S.

Therefore, the value of the the optimal policy is:

v∗(s) = maxπvπ(s)
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For the optimal policy, the expected return is the sum of all rewards achieved
from the current state by following an optimal policy, hence, it is equal to the value
of the next state. Thus, applying the Bellman equation for the optimal policy we
get:

v∗(s) = maxaqπa(s, a)
v∗(s) = maxaEπa [Rt+1 + γGt+1|St = s, At = a]
v∗(s) = maxaEπa [Rt+1 + γv∗(St+1)|St = s, At = a]
v∗(s) = maxa

Ø
s′,γ

p(s′, r|a, s)[r + γv∗(s′)]

This equation is called Bellman optimality equation for v∗. This relation is
actually a system of equations, since there is one Bellman optimality equation
for each state of the system, therefore, for finite MDPs there is a unique solution,
which is possible to solve if the dynamics p(s′, r|a, s) of the environment is known.

Usually this dynamics is not known and the environment has a large state space,
making it hard to find the optimal policy. Reinforcement Learning methods try
to solve this problem in different ways to find the optimal policy, which usually
rarely happens, or a policy that is good enough even if the environment dynamics
is unknown and the state space is large or even infinite.

Taking again chess as an example, some estimates say that there are 1046 [10]
legally possible chess configurations, being impossible with current computers to
compute the optimal policy for chess. It is then necessary to compute approximate
estimates of value-function to find a good policy for chess, which is usually done
with RL achieving great results, even because there are usually states, or chess
board configurations, with improbable chance of happening, and there is no great
gain in computing the value for those states, there is a higher gain in having good
estimates for state that happen more often.

2.2.6 Model free learning
In reinforcement learning, a model-free learning algorithm is an algorithm that
does not use the the transition probability distribution p(s′, r|s, a), which, together
with the reward function of the MDP, can be said to be the model of the problem.
Thus, model free algorithms are useful because they do not require a model of the
environment to act, being more straightforward to be used, since the process of
obtaining all the formulas that describe the problem can be challenging, specially
depending on the size of the problem. On the other hand, if it is possible to acquire
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the model of the problem, it can be easier to find an optimal solution, since there
is more information to solve the problem.

One problem of model-free learning is that it is totally dependent on the data used
for training, or on the simulation that the learning algorithm runs, since the model
of the problem is not available the algorithm will converge on the distribution
presented by the data, and if any dynamics of the real problem is missing in the
simulation or the available data, then the policy will not englobe those features.

2.2.7 Tabular and approximate methods
When the state and action spaces are small enough such that the value function
can be represented as arrays or tables, it is possible to use tabular methods to
find the MDP’s value function and estimate the optimal policy. Tabular meth-
ods can often find optimal solutions, that is, the optimal policy, but only in the
stated case where the problem is small enough. When this is not an option, it is
needed to use approximate methods, which does not necessarily find the optimal
policy, only approximate solutions, but can be applied to a higher range of problems.

In the tabular methods, we store each possible state, or state-action pair and
explore the environment, saving the received rewards for better estimation of V (s)
or Q(s, a). The three main classes of tabular methods are Dynamic Programming,
Monte Carlo and Temporal Difference.

Dynamic Programming are model-based methods in which the transition probability
distribution is used to compute each value with the values from surrounding states
and the Bellman Equation. The process is repeated for every state until it converges.

Monte Carlo are model-free methods in which at each episode we explore through
the environment storing state, action, reward and next state at each time step of
the episode. At the end of each episode we average the saved values to estimate V (s).

Temporal Difference are also model-free methods that compute the value of the
current state based on the estimates of other states at each time step exploring
the environment. Both at Monte Carlo and Temporal Difference the exploration is
usually done epsilon-greedly.

Approximate methods are useful when the problem presents a large state or action
space, since by using tabular methods it would be needed a large amount of mem-
ory to store all state-values but also an enormous time to explore several times
every possible state. Approximate methods try to estimate those values even if

20



Reinforcement Learning Obstacle Avoidance Applications

it has never seen a state in the training process. Those methods benefit from the
previous study done in other machine learning fields, function approximation. A
common family of methods for approximate solutions in reinforcement learning
are Policy Gradient (PG) methods. Those methods do not take actions consulting
action-values, but rather try to learn the policy directly based on the gradient of
some performance measure.

2.2.8 Exploration and Exploitation

One problem that arises in the reinforcement learning framework, not encountered
in other types of learning, is the exploration vs exploitation trade off, being present
in every RL problem. The goal of the agent is to find a policy that maximizes
the discounted expected return and, in order to get the maximum possible value
for that, it must take actions that reflect what it already knows from previous
exploration, that is, the agent exploits to maximize its return in the long run. In
other words, the agent chooses the actions that it thinks are the best.

On the other hand, there is a chance that those actions are not the best ones, are
just a local maximum and not the global, that maybe there are better actions to
be taken. Thanks to that, the agent also needs to explore, take different actions
that lead to unknown states or that improves the accuracy of action-values for the
policy, and those actions may lead to even better states than the previously learnt
policy.

With only exploration or exploitation, the agent will certainly fail. It must alter
between those two to find good policies. To solve that, some RL methods use
ϵ-greedy action selection. A parameter 0<ϵ<1 is defined such that, at learning
time, the best-known action is selected with probability 1-ϵ, and a random action
is selected with probability ϵ. Selecting an initial value of ϵ close to 1 will lead the
agent to initially explore more and learn more accurate action-values and then,
decreasing through the learning process will lead the agent to exploit more in the
end, following the best-known actions.

21



Reinforcement Learning Obstacle Avoidance Applications

Figure 2.8: Example of the evolution in return for different values of ε in the
multi-armed bandit problem [9]

2.2.9 On-policy and Off-policy algorithms
On-policy methods evaluate, or try to improve, the policy that is used to make
decisions, that is, the policy used to choose actions based on the current state.
Those methods estimate the policy being followed.

Off-policy methods find the optimal policy based on actions chosen by a different
policy. They follow actions taken by a second policy to estimate action-values. For
example, if a learning approach uses -greedy action selection, than the policy it
follows is different from the policy it is trying to estimate, since we are not choosing
the best action from this policy, but actually randomly alternating between this
policy and a random action, which is by itself a different policy.

2.3 Neural networks and function approximation
As discussed previously, some reinforcement learning tasks have a large state space,
where it is not possible to find the optimal policy through tabular methods, and
therefore we need to estimate the optimal policy with different methods. One way
of approximating nonlinear functions, that is very studied in supervised learning,
are neural networks (NN).

The goal of a neural network is to approximate some function y = f ∗(x), that is, a
map from an input variable x to an output y. The neural network will then learn
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some parameter θ to best approximate this function as f(x, θ).

Neural networks, also referred as feedforward neural networks, have this name
because feedforward refers to a series of computations that flows from the input, to
some intermediate computations and then the output; the term network because
it is a composition of several functions; and neural since the motivation was to
somehow represent a simplified working of the brain, though its actual purpose is
not to replicate the brain functioning, but rather to learn and generalize functions.

2.3.1 Brief History of Neural Networks and Deep Learning

Neural Networks first appeared as an attempt to mathematically model the princi-
ple of brain cells, neurons [11]. The McCulloch-Pitts neuron (1943) was an early
linear model of the brain function, but the weights of the linear model had to be
set manually by an human operator. Later, the Rosenblatt perceptron arrived in
the late 1950s, and was the first model that could learn the weights with the usage
of input examples. In the 1960s appeared the first version of the known algorithm
called stochastic gradient descent, used to learn weights. Machine learning did
not gain much attention at that time since the known algorithms could not learn
non-linear functions, such as the exclusive OR (XOR). A wave of advancements in
neural networks and machine learning came with the popularization of the back-
propagation algorithm and the introduction to nonlinear units in the feedforward
NN, and then being actually able to learn more complex functions and train larger
models.

Recent history has benefited from the advancements of the study of large ar-
tificial neural networks, well known as deep learning, mainly after the pioneer use
of deep Convolutional Neural Networks [12] that won the ILSVRC-2012, a visual
recognition challenge. One of the reasons why deep learning and neural networks
have become more useful lately is due to the increasing amount of available useful
training data with the digitalization of society. The world has been storing all
kinds of data in the last decades, and now researchers have found a tool that
can understand and use all this huge amount of knowledge. Deep learning has
been shown to be a very useful method for several applications, but it is highly
dependable on large amounts of data. Another explanation of the improvement of
neural networks was the increase in its size. The possibility to build larger models
with a higher number of layers was only possible with the advancement in hardware
and software, mainly on GPU’s, that made possible the training of deep learning
in large amounts of data in a feasible time.
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2.3.2 Neural Networks Architecture

Figure 2.9: Simplified scheme of the Neural Network architecture

The general architecture of a neural network is composed of layers, each layer
represents a function that will be performed on the output of the previous layer.
The first layer is the input layer, and the final layer is the output layer. All
intermediate layers are called hidden layers, and the number of layers in a NN
defines the depth of the model, which is why the study of “deep learning” is the
study of neural networks with more than one hidden layer. The name hidden comes
from the fact that it is not known or specified what the model should learn to do
in the intermediate layers. The first layer deals with the input and the last layer
must take the output from the previous layer and map it into the target variable.
However, the working of the hidden layers is not known, in the sense that the
learning algorithm learns by itself what to do in the intermediate layers.

At each layer, a matrix multiplication will be performed. Suppose the first layer
parameters are composed by a weight w1 and a bias b1, and that the second layer
parameters are w2 and b1. The functions of each layer are:

f (1)(x, w1, b1) = xT w1 + b1, f (2)(x, w2, b2) = xT w2 + b2

This is actually the same as linear regression in each layer. Combining the two
functions to compute the output we would actually have:

y = f (2)(f (1)(x, w1, b1), w2, b2)

24



Reinforcement Learning Obstacle Avoidance Applications

This will end up being also a linear regression, with a new weight w1 · w2. The
gain of NNs compared to other models is that, by adding a nonlinear function at
the end of each layer it is possible to learn complex nonlinear functions. These
functions are called activation functions.

2.3.3 Activation Functions
Activation functions are nonlinear functions placed at the end of each layer in a
neural network so it is able to learn to approximate nonlinear functions. Being g()
the activation function, the output of a layer is:

h = g(W T x + b)

The main activation function used in hidden layers nowadays is the rectified
linear unit, ReLU (Rectified Linear Units Improve Restricted Boltzmann Machines,
Vinod Nair 2009). ReLU is defined by g(z) = max(0, z).

Figure 2.10: Output of the ReLU function

Other important to mention activation functions, but that are not so used in
modern deep learning are:

Sigmoid (or logistic) function:

σ(z) = 1
1 + e−z
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Figure 2.11: Output of the Sigmoid function

Hyperbolic tangent

Figure 2.12: Output of the Hyperbolic Tangent function

The two functions above were mainly used before the introduction of ReLU,
and the reason they were replaced is that they both saturate in the extremities,
which can make gradient-based learning very difficult.

Now considering the output layer the most common function for classification
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functions is the softmax function. For each output category j, or neuron, it is
computed as:

softmax(zj) = ezjq
j ezj

This function can be understood as the probability function for each class of
the output, that is, the probability that each category corresponds to the target.

2.3.4 Gradient Descent Algorithm
Machine learning problems usually require finding the maximum or minimum of
some function, for example minimizing the error function to increase accuracy, this
task is called optimization. A very popular optimization algorithm is the Gradient
Descent. For neural networks, we often deal with the minimization of a function
f(x), which can also be called by cost function. It is known from calculus that
usually the minimization or maximization of some function requires finding the
value that its derivative equals to zero, since the derivative gives the slope of the
function at some point, if the slope is zero this point will be a local maxima or
minima.

Figure 2.13: Illustration of the use of the derivative function to follow the function
to a minimum [11]
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The derivative is also useful to understand what a small variation of x will
correspond to the function:

f(x + ϵ) ≈ f(x) + ϵf ′(x)

It is then possible to minimize this function by giving small increments with the
opposite sign of the derivative. This technique is called gradient descent.

In neural networks however, this optimization happens with multiple inputs, being
necessary to compute how the function changes with respect to several variables.
The gradient is the function responsible for computing the derivative of a function
in the case where the input is a vector, that is, more than one input, it will show the
direction of increase of the function for each variable. The gradient of a function in
respect to the variables x is ∇xf(x).

Therefore, the update of the gradient descent to find the variables x that minimizes
f(x) is:

x′ = x− ϵ∇xf(x)

Where ϵ is a small scalar that represents the size of the update step, called
learning rate.

The cost function used in machine learning often will be a sum over all train-
ing data,of size m, of some loss function L(x, y, θ):

J(θ) = 1
m

mØ
i=1

L(x(i), y(i), θ)

And the gradient becomes:

∇J(θ) = 1
m

mØ
i=1
∇θL(x(i), y(i), θ)

One problem of the gradient descent though is that it becomes very slow for
large training datasets, since at each update step we compute the cost for all data
points. A variation of gradient descent, called Stochastic Gradient Descent (SGD),
is usually used. It consists on, instead of computing the actual gradient of the cost
function, it computes an approximate by computing the gradient of a small set of
the data, called minibatch. Now, even if the dataset increases the SGD remains
relatively small.

The approximation for the gradient, g, in SGD is:
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g = 1
m′

m′Ø
i=1
∇θL(x(i), y(i), )

Where m′ is the size of the minibatch.

2.3.5 Backpropagation
To compute the output of a feedforward neural network it is necessary to compute
a series of matrix multiplication, each one followed by an activation function. This
process is called forward propagation. To do so, however, it is necessary to learn the
matrices weights and biases values. During training, forward propagation produces
a cost function, in order to update the value of the parameters to minimize the
cost function, that is, to have the output of the network closer to the target, it is
necessary to know how the change of those parameters affect the output, using the
partial derivatives of the cost function relative to the parameters.

Since we know the function for each layer, it is possible to manually compute
the partial derivative of the cost function in relation with the weights and biases
and perform stochastic gradient descent. The numerical evaluation of those opera-
tions, however, is too expensive to be performed computationally. What is actually
done for computing the gradient in the training of neural networks is to use the
algorithm of backpropagation which, as the name suggests, is the operation of, once
computed the cost, compute the gradient values from the output to the input layer.

The difference for the backpropagation algorithm is that it employs computa-
tional graphs and the chain rule of calculus to evaluate the partial derivatives
during training, and a recursive method flows each partial derivative back through
the network by each layer, until the gradient is computed for the input layer.

2.4 Overview of the Reinforcement Learning meth-
ods

There are several reinforcement learning methods between model-free and model-
based, on-policy and off-policy, tabular and approximate. In this work two algo-
rithms will be presented, Q-Learning, due to its simplicity and efficiency, being
one of the most used for simple tasks, and the Actor-Critic algorithm, due to
its increasing usage in several fields and ability to solve complex tasks, also the
algorithm used in this work, an evolution of Actor-Critic.
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2.4.1 Q-Learning algorithm
Q-learning [13] is an off-policy, model-free, and temporal difference reinforcement
learning algorithm created by Watkins in 1989. In its paper, it is described as
“a simple way for agents to learn how to act optimally in controlled Markovian
domains.”

Q-Learning works by interacting with the environment, tries an action at a par-
ticular state and updates its estimate of q-value (action-state value) based on the
received reward and its previous estimate of the q-value. Being a tabular method,
by trying all states and actions repeatedly, this method eventually converges to
the optimal policy.

Algorithm 2 Q-learning algorithm
procedure Q-Learning(ϵ)

2: ▷ small ϵ > 0 is for the ϵ-greedy policy
▷ Initialization

4: Q(s, a) inits arbitrarily ▷ Q(s, a) stores all state-action values
α ∈ (0,1] ▷ Is the step size

6: γ ∈ [0,1] ▷ Is the discount factor
▷ Execution

8: for Each episode do
Initialize state S

10: for Each step do
Choose action A with probability ϵ

12: Otherwise choose A from maxaQ(S, a)
Take action A and observe R, S ′ ▷ Reward and next State

14: Q(S, A)← Q(S, A) + α[R + γmaxaQ(S ′, a)−Q(S, A)]
S ← S ′

16: end for
end for

18: repeat until S is terminal
end procedure

As seen from the above algorithm, Q-Learning is a temporal difference method,
since it updates its policy during the episode, and not only when it ends, and it is
also off-policy, since the policy used to generate the agent’s behavior, in this case
a ϵ-greedy policy derived from the actual policy, is different from the policy that
is being learnt. This method is also model-free, since it is non dependable of the
environment’s model.
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The update rule for the Q-Learning is a derivation of the Bellman Optimality
Equation for action-value function but not taking the model of the environment
into account:

q∗(s, a) =
Ø
s′,r

p(s′, r|s, a)[r + γmaxa′q∗(s′, a′)]

qupdate(s, a) = [1− α] · qold(s, a) + α · [r + γmaxa′qold(s′, a′)]

2.4.2 Deep Q-Learning algorithm

As discussed previously, tabular methods are not feasible when the environment’s
state space is very large, being necessary to use approximate solutions. In 2013
DeepMind presented a variant of Q-Learning, calling it Deep Q-Networks (DQN)
[14], using deep learning to successfully teach an agent to play Atari. In this
modification, the state space of the problem are the pixels from the game’s image
and the neural network is used to map the input state into an approximation of
the action-state value.

In its releasing paper, the approach is used with something called experience
replay buffer, which is basically a storage of all played transitions of state, action,
reward and next state and then, instead of training the policy sequentially, it
randomly selects a transition from this buffer.
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Algorithm 3 Deep Q-learning with Experience Replay
procedure DQN

Initialize replay memory D to capacity N
3: Initialize action-value function Q with random weights

for episode=1,M do
Initialize sequence s1 = {x1} and preprocessed sequenced σ1 = σ(s1)

6: for t = 1, T do
With probability ϵ select a random action at

otherwise select at = maxaQ∗(σ(st), at; θ)
9: Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess σt+1 = σ(st+1
Store transition (σt, at, rt, σt+1) in D

12: Sample random minibatch of transitions (σj, aj, rj, σj+1) from D
Set

yj =
rj for terminal σj+1

rj + γmaxa′Q(σj+1, a′; θ) for non terminal σj+1
(2.1)

Perform a gradient descent step on (yj −Q(σj, aj; θ))2

15: end for
end for

end procedure

The benefit of this approach in respect to tabular Q-Learning is that the learnt
policy can generalize for unseen states in the training, with the use of the neural
network, since it will try to predict the q-value for any given input.

2.4.3 Advantage Actor-Critic (A2C) algorithm
Actor-Critic is a family of on-policy, model-free, policy gradient reinforcement
learning algorithms. Different from Q-Learning, which takes actions consulting
action-values, Actor-Critic tries to learn the policy directly.

Policy gradient methods learns a parameterized policy, which is dependable on a set
of parameters denoted θ, thus the policy is written as π(a, s, θ), that is, the actual
policy is being learnt as an estimate of the policy with some function represented
by the parameters θ. The parameters are then updated with the gradient of some
metric function called J(θ), the performance measure. Since the objective is to
maximize performance, the updates are done with gradient ascent in respect to
J(θ):
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θt+1 = θt + α∇J(θt)

Policy gradient methods are any method that follow this general idea of learn-
ing a parameterized policy. A subfamily of PG are Actor-Critic methods, which
learn an approximation for both policy and value-functions. The name actor-critic
comes from the fact that there are two learned functions, the actor, which is the
approximate of the policy, since it tells the agent how to “act”, and the critic,
the value-function, which tells how good a state is. The actor-critic variation
shown here will be the Advantage Actor-Critic (A2C), which is a variation of the
Asynchronous Advantage Actor-Critic algorithm [15] shown by DeepMind, but
which they later stated that the asynchronous part brings no great advancement.

The main difference between Policy Gradient methods is how the performance
measure is estimated. This function, J(θ), is defined as being the state-value of
the start state of the episode, for episodic cases but the idea hold also for contin-
uous tasks, and is estimated with the policy gradient theorem, which states the
performance measure is proportional to the distribution of states under the policy
θ, the action-state value function and the gradient of the policy:

∇J(θ) ∝
Ø

s

µ(s)
Ø

a

qπ(s, a)∇π(a|s, θ)

For the actor-critic, this relation is replaced by an expectation of gradient of
the policy and a comparison between the return and a baseline. For the advantage
actor-critic algorithm, the comparison will be the advantage function:

A(s) = Gt − v(St, w),

where w is the parameter for the value function.

To estimate the advantage function, it can be computed as:

A(s) = Rt+1 + γv(St+1, w)− v(St, w)

The update for the A2C algorithm ends up being:

θt+1 = θt + α[Rt+1 + γv(St+1, w)− v(St, w)] · ∇π(At|St, θt)
π(At|St, θt)

θt+1 = θt + α[Rt+1 + γv(St+1, w)− v(St, w)] · ∇π(At|St, θt)

The pseudocode for the A2C is as follows:
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Algorithm 4 Advantage Actor Critic algorithm
procedure A2C(θ,θv)

▷ θ and θv are parameter vectors
t← 1 ▷ Initialize step counter

4: E ← 1 ▷ Initialize episode counter
for each Episode do

▷ Reset gradients
dθ ← 0

8: dθv ← 0
tstart = t
Get stat st

for each step until terminal do
12: Perform at according to policy π(at|st; θ

Receive reward rt and new state st+1
t← t + 1

end for

R =
0 for terminal st

V (st, θv) for non terminal st

(2.2)

16: for i ∈ {t− 1, ..., tstart} do
R← ri + γR
Accumulate gradients
dθ ← dθ +∇thetalogπ(ai|si; θ)(R− V (si; θv)) + βc∂H(π(ai|si; θ))/∂θ

20: dθv ← dθv + βv(R− V (si; θv))(∂V (si; θv)/∂θv

end for
Perform update of θ using dθ and of θv using dθv

E ← E + 1
24: end for

end procedure

For the parameterized policy and value-functions it is common to use neural
networks, which are usually defined with the same architecture. In the pseudocode
above, the NN can be represented as the vector of parameters parameters , which
would be the weights and biases of the neural network.

2.5 State of the art of RL Trajectory Planning
Applications

Reinforcement learning has been gaining notorious importance for control problems,
mainly after DeepMind taught an agent to play several Atari games with its new
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algorithm Deep Q-learning [14]. Since then, RL has shown to have great success
in games or game-like problems, with the benefit of learning policies that directly
map state into action, without any prior knowledge of the environment.

With that progress in learning how to play video-games, and in some cases even
achieving superman-like performance, like the AlphaGo, a computer program by
DeepMind that was the first time a computer has defeated a human professional
player in the game Go [16], combined with the progress in GPUs, which allowed
faster onboard inference for neural networks, reinforcement learning also gained
attention in the robotics field, and has been replacing classic control strategies in
some tasks.

Considering the many existing challenges on solving trajectory planning for mobile
robots, such as finding the solution of the robot dynamics, finding all the constraints,
designing a robust control strategy and solving the optimization problem for the
planning, many current works are focusing on training reinforcement learning
algorithms on computer simulations, simulating real world sensors and focusing on
the specific desired task.

Deep RL has been applied for autonomous navigation tasks, trained in a small set
of simulated environments and tested in real life afterwards and have shown good
performance with only the simulated training [17], or performed a small second
training in the real world [18], but with no great advancements. Some also perform
end-to-end trajectory planning and obstacle avoidance in quadrotors [19] training
in a realistic simulation changing the agent’s and obstacles positions for better
generalization, showing better results than other finite state machine methods.

Another activity of high interest in the field of trajectory planning is autonomous
racing, which also involves, besides the trajectory constraints, some time constraints,
usually solved with rewards functions that penalizes the time spent on track [20]
or rewarding the course progress [21]. In this first work, the generalization is
accounted for by generating random tracks with increasing difficulty, based on the
crash ratio the curvature between two gates would increase. In the later, they
deploy the fastest agent trained on one track layout to train in different settings,
such as changing the car model, the track, adding uniform noise and delaying the
agent’s inference, but the agent however was not able to extrapolate its behavior
to some of the unseen tracks.

In most of the above works the algorithm used was a policy gradient method,
like actor-critic variations, deep deterministic policy gradient and proximal policy
optimization. At [19], DQN was used for a smaller memory utilization, since the
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algorithm was deployed onboard in a micro drone.

2.6 Problem of the Unsupervised Environment
Design

Using reinforcement learning to learn path planning with obstacle avoidance presents
several challenges, especially with deep learning methods that are very data depen-
dent. Specifically in the case of using RL for aerial vehicles, it is difficult to train
policies online, that is, during the real world flight, since the battery is limited and
probably each battery charge would not be enough to gain considerable knowledge,
being required several flights and battery charges. Secondly, the initial policy does
not yet know how to avoid obstacles, being dangerous to train during real flight
since the UAV will most likely crash and break. Those two reasons by themselves
are sufficient to recommend that the reinforcement learning training for aerial
vehicles in obstacle avoidance tasks must be done in simulated environments. A
new problem, however, arises when considering training in simulation. Since the
goal of learning this policy is probably to fly a UAV in the real world, and not
only in the simulation, the training must guarantee that the efficiency of the learnt
algorithm is also good enough in the real world, which is a problem since the
training only consists of simulated images.

Yet some approaches trained only in simulation work in the real world, it is
not guaranteed. In the computer vision field it is often common to train a neural
network in one dataset configuration that is easier to gather a large sample, and
then perform transfer learning in another target configuration which is more difficult
to find good data. In the robotics field this could also be done by training an
algorithm in simulated data and then training in a small sample of real world data,
but gathering good data for aerial vehicles is difficult and time consuming, usually
requiring extra sensors like motion capture systems.

Some works try to address this issue without the need of capturing real world data,
but instead exploring the advantages of simulated environments. One technique is
called Domain Randomization, which consists of randomly changing simulation pa-
rameters so that the policy is less likely to overfit to the simulated environment, but
rather be able to generalize and transfer knowledge to another environment, in most
cases the real world. At [22] the authors randomize dimensions, color and lightning
conditions, and dynamic configurations to train a robot hand to manipulate a
colored cube so that it is able to transfer to the real world. And in [23] the authors
randomize the visual properties of the environment, like background, illumination
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and shapes to teach a drone to fly through gates in a simulation and then ap-
ply it in the real world, since the learnt policy is very robust to environment changes.

To properly work in the real world, the training must provide the ability of great
generalization to the policy, that it is able to find solutions for not seeing before
environments or configurations. A trained policy robust to environment changes
will most likely be able to pass the task in the real world. For that to happen, it is
necessary to have a useful distribution of several environment configurations, which
is hard to achieve, since the developer needs considerable effort and time to design
valid and useful distributions of environments. To address this issue, a different
approach was proposed at [24] with the name of Unsupervised Environment Design
(UED) to create environment configurations, from unknown parameters, that can
adapt the current knowledge of the agent and be able to generalize to a large set
of environments, since they claim that methods like Domain Randomization may
create levels that are too difficult for the current knowledge of the agent. They
define UED as “the problem of using an underspecified environment to produce
a distribution over fully specified environments, which supports the continued
learning of a particular policy”.

Their approach consists of having a set of two agents, one denoted protagonist,
the one we are interested in training, and another called antagonist, which is a
pre-trained agent responsible for adapting the environment’s difficulty, and a third
policy, called adversary policy, responsible for generating environment parameters
θ for new configurations. The third policy tries to maximize regret, defined as
the difference between the rewards obtained for a set of decisions and the rewards
obtained for a different set of decisions. In this case, the regret is computed
between the both agents, and maximizing the regret between the antagonist and
the protagonist, that is:

REGRET
−→
θ (πP , πA) = U

−→
θ (πA)− U

−→
θ (πP )

Means that the adversarial policy is trying to output parameters that contribute
to the antagonist and disturb the protagonist, such that the new environment is a
useful difficult environment for the protagonist to learn.
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Algorithm 5 PAIRED
1: Randomly initialize Protagonist πP , Antagonist πP , and Adversary Λ̃
2: while not converged do
3: Use adversary to generate environment parameters: θ ∼ Λ̃. Use to create

POMDP Mθ

4: Collect Protagonist trajectory τP in Mθ. Compute: U θ(πP ) = qT
i=0 rtγ

t

5: Collect Antagonist trajectory τA in Mθ. Compute: U θ(πA) = qT
i=0 rtγ

t

6: Compute: REGRET θ(πP , πA) = U θ(πA)− U θ(πP )
7: Train Protagonist Policy πP with RL update and reward R(τP ) =
−REGRET

8: Train Antagonist Policy πA with RL update and reward R(τA) = REGRET

9: Train Adversary Policy Λ̃ with RL update and reward R(τ Λ̃) = REGRET
10: end while

In their research, they show that their method provides better results than other
tested approaches to surpass never seeing before environment configurations, mean-
ing that the learnt policy has the ability to generalize for different environments.

Another work on UED by [25] proposes a regret based adversarial training, that is,
a student and a teacher agent, to make small edits in previous high-regret levels to
produce increasingly complex configurations that are in the frontier of the student’s
capability. Their work consists of randomly sampling levels from a level generator,
running both agents to compute the level’s regret value, then a curator selects
levels to be replayed. The student only trains on replay levels, and after training,
the replayed levels are edited and evaluated again to compute regret.

Figure 2.14: Diagram of their proposed algorithm, ACCEL [25]
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Algorithm 6 ACCEL
Input: Buffer size K,initial fill ratio ρ, level generator
Initialize: Initialize policy π(ϕ),level buffer Λ
▷ Initial Data Collection
Sample K · ρ initial levels
▷ Main Training Loop
while not converged do

Sample replay decision d ∼ PD(d)
if d = 0 then

▷ Evaluate DR levels but do not update
Sample level θ from level generator
Collect π’s trajectory τ on θ,with a stop gradient ϕ⊥
Compute approximate regret S
Add θ to Λ if score S meets threshold

else
▷ Train student agent on curated high regret levels
Sample a replay level θ ∼ Λ
Collect policy trajectory τ on θ
Update π with rewards R(τ)
▷ Edit previously high regret levels and evaluate
Edit θ to produce θ’
Collect π’s trajectory τ on θ’,with a stop gradient ϕ⊥
Compute approximate regret S
Add θ’ to Λ if score S meets threshold
(Optionally) Update Editor using score S

end if
end while

They show that their method is able to produce complex levels that facility the
zero-shot transfer to human-designed environments in their tested tasks.

2.7 Proposal for new UED method
In this work, it is proposed a new and simpler method for Unsupervised Environ-
ment Design, with the goal of generating new and solvable methods with increasing
complexity to achieve policies with high capability of generalization for zero-shot
transfer in new levels.

Other methods rely on training two adversary agents, one to actually learn the
desired policy and another to serve as a comparison for the level difficulty, and also
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a third policy to learn how to design new levels, or to produce a level generator.
The present work uses the same approach on adversary agents, one pre-trained
antagonist and one protagonist, but tries a different method on generating new
levels that does not depend on a third policy. This work also has the goal of trying
to understand what is the best way to pre-train the antagonist agent.

For this present approach, it is necessary to have an unstructured environment
with some free environment parameters. The antagonist agent is trained in a
set of levels with the same parameters, in our case of obstacle avoidance for an
UAV, the parameters of the environment are the level’s size and the density of
obstacles in the level. After the antagonist is trained in a set of levels with fixed
size and number of obstacles, the protagonist is initiated, without training, and
in a random environment with “easy” parameters, in this case the level begins
small in size and with only one obstacle. To test the feasibility of this generated
environment, the A* algorithm is applied to check if there is a path between the
initial point and the target without collisions. If no free path is found in three trials
changing the location of the obstacles, then the algorithm reduces the difficulty of
the level by reducing the obstacle density. If a path is found, both the antagonist
and the protagonist are evaluated in this level, without training, to compute the
regret between the two agents. The agents are then both trained in this set of
environments.

At the end of this step of evaluating and training, if the regret computed in
the evaluation is higher than a threshold regret, then the levels are reduced in
difficulty, otherwise the level is increased in difficulty, by increasing the obstacle
density until we reach a limit, in this case the level’s size is increased. This iteration
runs for some episodes, if the algorithm is not able to increase in difficulty for the
limit of episodes then the environment changes in configuration.
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Algorithm 7 Proposed UED method
procedure UED(SF, Etot, Etrain, Eval, REGRET, tries)

▷ SF is the desired Success Factor to change difficulty
▷ Etot is the total trained episodes
▷ Etrain is the total trained episodes at each level
▷ Eval is the total evaluating episodes at each level
▷ REGRET is the threshold between antagonist and protagonist
▷ tries is the maximum tries generating a new level configuration
▷ Initialization
Initialize pre-trained antagonist, protagonist
episodes← 0
current SF ← 0
while Etot not reached do

while environment not feasible do
Initialize environment
Evaluate environment with A∗

end while
while current SF < SF and episodes < Etot do

Evaluate agents for Eval

Compute Success Factor and regret
Train agents for Etrain

if median(regret) ≥ REGRET then
Decrease environment difficulty

end if
if maximum tries in environment is reached then

Change environment configuration and maintain difficulty
else

Increase environment difficulty
end if

end while
end while

end procedure

The idea of this algorithm is to maintain the assumption that if the protago-
nist’s regret, that is, the difference in discounted return of the antagonist and the
protagonist, is too high then the environment is too difficult yet for the protagonist,
and it is not useful for its learning. However, this work tries to maintain that idea
without the need of training a third policy, but by only checking the feasibility of
the generated environment with known methods, such as the A* algorithm, and
checking by using a flag to increase or decrease the level’s difficulty, based on the
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regret evaluation and the number of times the protagonist tried to surpass this level
with the requested success factor. In our case, the success factor is the amount of
times the agent succeeds in reaching the target without collisions divided by the
number of trials.

The law used to increase and decrease the difficulty of the environment may
depend on the application, since it may make sense that some parameters possess
limits or constraints. In this work’s case, the update law is simple and just increases
the number of obstacles until some defined limit is reached, and then randomly
increases the size of the environment. This law is further explained in the training
section.

2.8 Requirements and Constraints to Implement
an RL application

Developing UAVs with classic control techniques usually requires a dynamic formu-
lation of the problem, which can be complex but usually brings greater reliability
when testing, since the user knows the inner workings of its application. Rein-
forcement Learning applications however may not require dynamic formulation,
with the advancement of open source programs, it is easier to find off-the-shelf
simulations that may be harder to check if its inner working is precisely the same
of your end application, but may be good enough with some adaptations to train a
policy. This makes the train easier but does not guarantee that the test in the real
world will be fail proof, even having the dynamic formulation it is not possible to
guarantee that errors will not happen.

The above problem is a recurrent one in the robotics field, but requires spe-
cial attention when employing RL techniques in simulated environments to be
transferred to real applications. The search for a robust policy that succeeds in
different environments is essential but demands several extra steps in the training.
It is possible to try to solve this problem by re-training the policy with data from
the real world or to manually add other commands to adapt to the real world. The
concern of transferring a policy from simulation to the real world is a complex
problem by itself and will not be covered in this work.
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Chapter 3

Creation of the Simulation

Drones must be low in weight in order to be less energy consuming and fly, thus
they are often made with fragile components and are not resistant to falls and
collisions. Therefore, it is not a good idea to use the real-life drone to train a
reinforcement learning policy, specially in an obstacle avoidance task, obviously
it is preferable to crash models than crashing real life robots. Moreover, training
a model in a simulation can avoid the tedious process of collecting good quality
data and can be changed and modeled with more facility to fulfill the desired
requirements of the application. Often a realistic computer simulation is designed
to train a policy and then deployed in the real hardware. Probably a realistic
scenario with more detailed physics can help the agent to achieve better results
in the real world. Sometimes it is also useful that real-world data is collected to
perform transfer learning and fine tune the model trained in simulation. How-
ever, using realistic simulations and real world data is not sufficient for success
if the model is trained in only a few situations or if the simulation and real data
cannot exploit the generality needed to solve our problem. It is also necessary
that we train policies considering a high range of situations. In this work, we are
proposing to develop an algorithm able to generate useful environment configura-
tions to train a trajectory planning solution for a quadrotor. Since the training
of machine learning models is already time consuming, we decided to develop
and test our solution in a 2D environment because it is already sufficient to val-
idate our results and less computationally consuming than a realist 3D environment.

Therefore, we saw the need of designing our own simulation to be able to generate
different environment configurations and test the trajectory planning algorithm
with more ease.
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3.1 Assumptions of the developed simulation
To test our solution, our simulation had to be simple and fast, since our focus is to
generate different environment configurations with ease, so it does not contemplate
the real dynamics of a quadrotor in real-life, such as:

• Friction

• Inertia

• Gravity

• Battery life of drone

• Delay of computing actions

• Sensors precision

• Non-linearity

• Natural environmental conditions

Certainly simulating a quadrotor including its dynamics and non-linearity, and
also including friction factors, imperfections of sensors and natural conditions such
as wind, contribute when deploying the agent into the real world because it is more
similar to reality. However, those factors have a huge impact on the simulation
complexity, harming the computational speed and delaying the model’s training.

3.2 Development of the 2D simulation
For our work, it was important that our simulation generates different environment
configurations, simulates necessary sensors and has an easy interaction when training
machine learning algorithms, since our main purpose is to provide useful and feasible
configurations for training. We decided that two important environment parameters
would be the size and shape of our environment and the number of obstacles, in
that way our agent would face different situations in several difficulty scales. It
was also important that we could simulate different perception possibilities, sensor
configurations, and drone movements, to find the best parameters for our problem.

3.2.1 Simulation Objects
Inside the simulation, the drone, the target and the obstacles are objects, making
it easy to store attributes, functions and checking its interactions.
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Each object stores its size, position, sprite image (necessary for rendering the
simulation), and an init function.

Drone

The drone class also stores the necessary functions for performing its actions,
such as rotating, accelerating and moving. This class is the first object to start
in the simulation, and can be initialized at a random spot or at the upper left corner.

This class holds the actions for moving the drone’s state, such as forward motion,
lateral motion, rotation and acceleration. To discretize the actions, they are divided
into 12 possible actions, being combinations of those 4 main actions. It is worth
mentioning that each one can be positive or negative, that is, positive forward
motion and the negative being backward motion. The resulting action is then
inserted in the simulation as an array. The division into lateral and forward motions
are to account for the drone’s perspective when rotated.

The forward update is:

x← x + cos(angle) · velocity

y ← y − sin(angle) · velocity

And the lateral motion:

x← x− sin(angle) · velocity

y ← y − cos(angle) · velocity

Obstacles

Obstacles are initialized after the drone and they are placed at a random position,
checking if there is superposition with the drone and, if so, a new object is created
at a different spot.

Target

A target is created checking if there is no superposition with the drone nor with
the obstacles.

3.2.2 Target position sensor
The information regarding the target’s position is not given by a specific sensor, but
it can be understood as information given by a camera or GPS. This sensor gives
the true direction of the target relative to the drone’s forward-looking side and
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can be configured to provide only the direction or also the distance in each direction.

Another possible application of the “target sensor” is of a light seeking robot,
such as in search and rescue tasks in closed environments, so it is possible to
provide the direction and intensity of the light source.

In our script it works by getting the target position and drone’s position, cal-
culating its relative position and then converting to the drone’s own coordinate
system, since for the agent’s point of view it is easier to learn thinking on its
own coordinate, rather than a “general” coordinate system. In our study we then
normalized the relative distance of the target.

The only parameter configuration for this sensor is its range, that is, the maximum
distance the sensor can provide an accurate distance from the quadrotor and, above
it, it only returns the direction of the target.

xdist = xtarget − xdrone

ydist = ytarget − ydrone

forwarddist = xdist · cos(droneang)− ydist · sin(droneang)
targetrange

lateraldist = −xdist · sin(droneang)− ydist · cos(droneang)
targetrange

To be able to avoid obstacles and walls, a robot must have a reliable sensor to
perceive its surroundings and update at each step how close it is to other objects.
This task can be done usually with cameras or distance sensors, such as ultrasonic
sensors, laser sensors and LIDARs. In our simulation we developed our distance
perception inspired by laser sensors. Some possible configurations are:

• How many sensors surround the quadrotor

• Range of distance

• If the laser surrounds the entire robot or just its front

Thinking in search and rescue tasks or racing tasks where time is crucial, the
agent barely has time to go backwards, since it can optimize its time going only
forwards. Sometimes it is also crucial that the agent only perform forward moves
because of some sensor limitation, such as a single camera at the front, with that
configuration it is dangerous to perform several backward moves.
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With that reasoning, we used 9 sensors taking place at 180º degrees around
the quadrotor’s front to perform this work analysis.

The laser rays of the sensor are evenly divided around the drone and each one
provides the distance between the drone and the closed object found, including the
simulation walls. This sensor is also designed with a limited range, defined in the
simulation.

To compute the distance, each ray is treated as a line, and each object has its
surrounding lines. At each timestep, for each laser ray, it is computed the point
of intersection for each object line in the simulation, then it is stored the closest
point from the drone.

Algorithm 8 Computation of distance and point of intersection
1: ▷ Initialization
2: distance←∞
3: ▷ distance stores the minimum distance of the laser and the obstacles
4: Obstacle list obstacles
5: for each obj in obstacles do
6: for each line in lines of obj do
7: if line intersects with laserlines then
8: xd, yd, dist = point of intersection of line and laserlines

9: if dist < distance then
10: distance← dist
11: store points of the closest intersection
12: end if
13: end if
14: end for
15: end for

Then, each laser ray is drawn with its starting point around the drone until
the intersection point, that can be an obstacle, the simulation walls, or, if there
is no intersection, the laser’s end according to its range. Since the target is not a
physical object, but more a desired location, the laser sensor does not detect the
target. To compute the point of intersection between lines, we define:

A = Fy − Iy

B = Ix − Fx

C = A · Ix + B · Iy
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Being Ix, Iy the x,y coordinates of the init point and Fx, Fy the x,y coordinates
of the end point.

If line1.A·line2.B−line2.A·line1.B = 0 then there is no intersection. Otherwise,

x = line2.B · line1.C − line1.B · line2.C

det

y = line1.A · line2.C − line2.A · line1.C

det

3.2.3 Simulation Parameters
• Number of obstacles

The number of obstacles in the simulation is necessary for starting, every
obstacle has a random position and it is not possible to have zero obstacles.

• Size of environment

There are three possible predefined sizes for the environment

• Size of objects

The drone, the obstacles and the target’s size are defined by a single variable
that can be changed. In our work we used the size of 32 pixels

• Number of possible actions for the quadrotor

The quadrotor can move up, right, left, down, rotate clockwise and counter-
clockwise, speed up and speed down. It is possible to choose between
combinations of those movement to discretize the action space of the agent

• Easy/hard

If the simulation is at easy mode the target will always spawns closer to the
drone

• Change obstacles positions

It at the end of each episode the objects change position or not

• Quadrotor spawn position

It is Possible to choose between random spawn, a predefined position or, as
default, the top right corner
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• Agent state type

If the state to train the agent is the laser sensor measures or the general
position of the drone in the environment

• Number of laser rays for distance sensor

The number of rays for distance sensors around the drone. If an even number
it will go around 360º the drone, and if it is an odd number it will go
around 180º in the front of the drone.

• Reward function

There are several defined reward functions that we used to tune our agent,
but it is possible to write other reward functions and choose the wanted
one

• Mode of usage (training, running, evaluation, keyboard)

To be more easily developed and tested, the simulation has to option to
be playable by the keyboard, this is defined by the mode of usage, also
possible to choose between the training of an agent, running the trained
agent in some environment, evaluating the agent in several environment
configurations and saving the results, and also other training configurations

• Rendering ON or OFF

For faster training it is useful to not render the simulation, and therefore not
image is produced, but for checking results or debugging it is necessary
to see the simulation

• Randomness of simulation

Since the objects are randomly placed, it is possible to define the seed for the
random generator and make the randomness controlled, useful to keep
track of results.

3.2.4 Simulation Working
The simulation initially initiates all objects in the according environment size,
making sure no superposition occurs. Then, at every agent action a step is
performed, which applies the given action, updates all the objects, and then checks
if the target is reached or if any collision happened. If so, the episode is terminated.
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Figure 3.1: Example of an environment of the simulation

To generate objects, making sure there are no superpositions between drone,
obstacles and target, to reach the desired simulation design, we initialize the drone
randomly and add it to a list of existing objects. While we do not have the desired
number of obstacles, we add random objects and check with the collision algorithm
if superposition occurs, and then add the new object into the list. First all obstacles
are created and lastly the target position.

Algorithm 9 Generating objects
Input: Number of obstacles N ▷ Initialization

2: Initialize objects← [...]
Superposition← True

4: ▷ Flag for superposition
Init drone position randomly

6: while length of objects < N do
while Superposition is True do

8: Initialize new object randomly
Check collision between new object and existing objects

10: Update superpostion flag
end while

12: Insert new object in objects
end while

To check for collisions, and therefore also superpositions, we input the center
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coordinates of the objects and their size, which is always the same, and then check
if x1 + size

2 > x2− size
2 and x1− size

2 < x2 + size
2 , which returns the below algorithm.

Figure 3.2: Scheme of block superposition

Algorithm 10 Collision check
Input: Object1 and Object2 (x, y) coordinates and size
if (size > x2 − x1) and (x1 − x2 < size) then

3: if (size > y2 − y1) and (y1 − y2 < size) then
Collision is True

else
6: Collision is False

end if
else

9: Collision is False
end if

The function responsible for the real working of the simulation, updating all
states given the input actions is the step function. The step function gets the
current state and the agent’s action and computes the next state, reward and if
the episode is done. This function is used to run the simulation, train and test the
agent.

To initiate the simulation it is necessary to input the environment size, number
of obstacles, the state parameters, the reward function and specify if the objects
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Algorithm 11 Functioning of the Simulation
for each step do

Render environment
Get input action

4: Update all objects with action
Check for collisions
Check if simulation is finished
Compute reward

8: Return state, reward and done
end for

should be placed randomly or not. If it is decided to not initiate the objects
randomly, their positions must be stated.
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Chapter 4

Training of the Agent

Differently from supervised and unsupervised machine learning training, the train-
ing procedure for reinforcement learning usually is not done by collecting labeling
data and then applying the training algorithm. The training procedure involves
letting the agent interact with the environment, take actions, and learn from the
received rewards and next states. That means that when evaluating the training
results, usually the training curve, the states that the agent would pass through
and the outcomes of those interactions are not known beforehand. One way of
analyzing the training curve in reinforcement learning is by plotting the evolution of
the discounted return and not on rewards or the normal return. This is because in
episodic tasks, as in this work, it is harder to deduce if the algorithm is converging.
Still, when looking directly at the discounted return, it is easier to analyze if the
training succeeded.

In this work, different algorithms were trained using different levels with different
difficulties and different difficulty increases for different numbers of episodes. One
challenge of analyzing those results is that when the difficulty of the environment
changes, the environment size changes, meaning the agent will spend more steps in
a single episode so that episode is finished. This changes the return’s value, which
is why the graphics in this section will present the discounted return.

4.1 Reward Function
One of the main challenges of developing a reinforcement learning application is
the design of the reward function. The reward function is the only aspect of the
application that will tell your learning algorithm what the problem needs to be
solved because it is what the algorithm will use to differentiate good and bad
actions, as in the supervised learning applications that the label will show the
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algorithm if it is right or wrong. Hence, this means that a reward function that
is not precisely designed will show the learning algorithm how to solve a different
problem differently from the one desired. Besides that, currently, there are no
guidelines on designing a reward function rather than intuition.

To aid the analysis of the model’s evolution, the success factor of the agent
was computed at each training loop, that is, the percentage of episodes in which
the agent reached the target position with no collisions.

4.1.1 Design of the Reward Function
The final reward function chosen to train the agent, after several different functions,
rewards the agent when it reaches the target location with a high value, penalizes
with the opposite value when it collides, gives small rewards when the agent gets
closer to the target and slightly greater penalties when it moves further away. The
above reward tells the agent that the target location is always the best and moves
towards obstacles are always the worst. It also tells the agent that moves that get
closer to the target are better, but moves further are not so much worse, or on the
contrary, the agent might never find a turnaround to reach the target if the path is
blocked.

The reward value that accounts for the end of the episode, that is, if the tar-
get is found or if a collision happened, is:

rewardfinish =


50 if target is found
−50 if collision

0 otherwise
(4.1)

Regarding the proximity to the target, the reward is:

rewardcloser =
0.2 · (distlast − distcurrent) if distcurrent < distlast

0.8 · (distlast − distcurrent) if distlast ≥ distcurrent

(4.2)

To account for obstacle avoidance, there is also a penalization based on the laser
distance closest to an obstacle. The penalization is worse when the agent is too
close to an obstacle. Still, it accounts only for the smallest laser distance value.

rewardlaser = 6 · (min(laser measures)− 1)

Where laser measure is an array containing all laser measurements normalized
by the greatest possible distance measure of the sensor. Therefore, rewardlaser will
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always be a value in the range ]− 6,0].

When training the agent, it was noticed that sometimes the agent would stop
to try to find a different path and would drive in circles or back and forth for
several episodes. This would slow down the training while also not discovering new
possibilities. To account for that problem, a penalization was introduced when the
agent spent several steps without a significant change in its location, by saving the
agent’s position in a buffer and computing its x and y coordinates average location.

rewardstuck =
−10 if mean(|xbuffer|) < 7 and mean(|ybuffer|) < 7

0 otherwise
(4.3)

Then, the final reward is:

reward =
rewardfinish if done

rewardcloser + rewardlaser + rewardstuck otherwise
(4.4)

This update in the function was enough to solve the issue above. The agent
would quickly stop being stuck after a few episodes, understanding that repeating
moves and not changing positions was bad for fulfilling the application goal.

4.2 Methodology and parameters adopted
The RL algorithm chosen for this work was the A2C algorithm, which is a very
well-known and consolidated algorithm, since the initial tests showed a faster
convergence in comparison with a second chosen algorithm, DQN. The function
approximation used two neural networks with two layers each, implemented with
the PyTorch framework, being one NN for the actor and a second for the critic.
Since the actor’s output must be a probability distribution for action values, a
softmax activation function was placed at the network’s output.

To tune the number of neurons, a few tests were made to balance a NN with
small complexity to have faster training, but not so simple that it is not big enough
to learn complex functions. To present the results, it was chosen to train the agent
with 32 neurons, which showed an increase in the results to smaller networks but
not compromising the training time.The input size is 12, since the chosen state for
the agent is composed of 9 normalized laser readings, the drone’s speed, and the
normalized lateral and forward distances from the agent to the target. The output
size is also 12, being a discretization of 12 possible actions for the drone:

• Right or left
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• Forward or backward

• Accelerate or decelerate

• Rotate clockwise or counter-clockwise

• Go forward and accelerate or go forward and decelerate

• Go forward rotating clockwise or go forward rotating counter-clockwise

The normal train loop, the one without UED, is done online with the simulation,
reacting to the states that succeeded after the action chosen. The neural network,
however, trains in batches of 128 observations, which makes the train faster.

Algorithm 12 Training of agent
1: ▷ Initialization
2: done← False
3: Etrain, γ ▷ Total number of episodes to train
4: E ← 0 ▷ Number of episodes trained
5: SF ← 0 ▷ Success Factor
6: while E < Etrain do
7: RETURN ← 0
8: Get state S from environment
9: while notdone do

10: get action A from policy π of agent
11: S ′, reward, done← environment step using A
12: Update parameters θ of agent’s Neural Network
13: RETURN ← RETURN + reward · (1− γ)
14: S ← S ′

15: end while
16: Update SF
17: E ← E + 1
18: end while

While training, the agent chooses a random action, according to the probabilities
of its policy, so it explores more state-action value pairs and increases its chances
of finding a global maximum instead of getting stuck in a local maximum. And
then, when testing the trained agent, this option is disabled, so it only chooses the
best action according to its policy.

action =
random action according to policy π probability distribution if training

choose best action according to policy π, otherwise
(4.5)
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4.3 UED Training

When training with the UED algorithm, the training algorithm is the same, with
both protagonist and antagonist training with the same parameters in the same
levels. The difference is that more parameters related to UED, are needed to
tune to train the agent. The needed parameters are the increase and decrease in
the size of the environment and the maximum obstacle density allowed per level.
Every time the UED algorithm increases the difficulty of the environment, it first
increases the number of obstacles until the maximum density is reached; then, it
applies a random increase in the width and height of the environment so that the
environment shape is always changing.

Algorithm 13 UED training
▷ Initialization

2: Initialize increasemax, increasemin, densitymax, height, width
▷ increase max and min are the proportions to change environment’s size

4: ▷ densitymax is the maximum obstacle density
Nobstacles ← 1

6: while Nobstacles

width·height
< densitymax do

Nobstacles ← Nobstacles + 1
8: end while

▷ Increase between increasemin and increasemax

10: width← width · random(increasemin, increasemax)
height← height · random(increasemin, increasemax)

12: Nobstacles ← 1

Note that the test levels will always have the same proportion of width and
height. Still, the levels generated by the UED can have any shape, with the idea of
generating several different environments to increase robustness.
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Figure 4.1: Return evolution for the normal training during 50k episodes in the
environment 2 with 8 obstacles

Figure 4.2: Return evolution for the UED training during 15k episodes, using as
antagonist an agent trained for 50k episodes in the environment 2 with 8 obstacles
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Chapter 5

Analysis of the Results

Reinforcement learning aims to find the best parameters to reach an optimal
policy that maximizes the sum of discounted returns of a defined reward function.
One of its main advantages is that those frameworks learn by interacting with
the environment without designing and tuning complicated control algorithms or
optimization functions. Of course, there is usually the need to design the dynamics
of the environment and choose and tune reinforcement learning methods, but those
are usually more straightforward to design.

One problem, however, in the reinforcement learning framework is to find the
right parameters of your environment or at least find the parameters that yield
the best results faster. Since robotics problems are usually task-based, in most
cases, the parameters will be easier to choose, probably focused on one specific
task. Nevertheless, several problems, even being task-based, do not rely on a single
environment configuration and depend on the high ability of generalization of the
robot.

In those cases, it can be difficult to find the best set of parameters that pro-
vides the best and fastest learning of the reinforcement learning agent since some
parameters can just be redundant or even make an environment too difficult for
the agent and therefore provides no use case for learning.

With that in mind, this chapter aims to analyze the results provided by both
learning procedures, with UED and without, and check if the first approach
provides an easier way to train reinforcement learning agents, not focusing on
environment design by trial and error.

The goal of our reinforcement learning agent is to reach a target position avoiding
obstacles in the way, and every time our agent completes its task, the episode
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finishes. To test the efficiency of each trained agent, we will compute the success
factor in several environment configurations of each solution, that is, the percentage
of episodes that the agent reached the target without hitting any obstacle with
different values for a number of obstacles and environment size.

SuccessFactor = SuccessfulEpisodes

TotalEpisodes
· 100[%]

An episode will be successful when the agent reaches the target position without
hitting an obstacle or a wall.

Moreover, suppose the drone does not reach the target in 15-time steps. In
that case, the episode is finished unsuccessfully since it shows us that the drone
probably does not know how to solve this level, being stuck in a succession of
actions that do not lead to the episode’s goal.

To compare both approaches, between environment-fix training and training with
UED, the agent trained normally, without UED, will only train in one environment
configuration: the same number of obstacles and the same environment size. On the
contrary, the UED training will tackle a wider range of environment configurations.

Therefore, this chapter aims to check whether the agent trained with UED will
succeed more efficiently in more environment configurations, showing that this tech-
nique provides more general solutions than the agent trained in a single environment.

We also want to check if the UED method converges faster to good results than
the other solution.

5.1 Report of the results
In these reports, we want to compare the influence that each method of learning
has on the efficiency and ability of generalization of the agent. Three environment
sizes were used to test the performance of the trained agents since at every increase
of size; the environment gets more difficult because at each time step, there is a
chance the agent does not find the best possible move, having a greater chance of
colliding. On the contrary, small environments have less space to maneuver and
thus are also difficult in a different way to be passed successfully. Being necessary
to test different level sizes to analyze the agent’s performance and ability to pass
different level configurations.

Besides the increase in size, it is also needed to increase the density factor of
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obstacles in the simulation, that is, the number of obstacles for each environment
size, until it reaches challenging levels for the agent since levels with more obstacles
have less free moving space for the agent, and therefore have a greater chance of
collision. Therefore, a test set was created to compare the agent’s performance in
different levels, made by three different environment sizes, each with three obstacle
densities, approximately 4%, 6%, and 7.5%, that is, the ratio between the summed
area of obstacles and the environment area.

The three sizes are the following:

Env Size 1 250 width, 200 height
Env Size 2 400 width, 320 height
Env Size 3 800 width, 640 height

A total of 450 evaluation levels were used, 50 for each kind of configuration,
and for better visualization, the results are shown in the form of a 3x3 heatmap
and a boxplot showing the distribution of the success factor of the agent in all
9 possible level configurations. It is expected that the generated heatmaps are
lighter, meaning a higher success rate, on the left side, since those levels have less
obstacles.

Moreover, in this analysis, we are not interested in how the agent succeeds the
environment. That is, an episode is successful independently of the time it took to
reach the target if it was the optimal or suboptimal path. No comments will be
made on different approaches to completing an episode.

5.1.1 Method
In this section, our objective is to compare the performance between models trained
with and without Unsupervised Environment Design and thus compare where each
trained model performs better. It is expected that if we train a model in a single
environment configuration, for example, in environment size 1 with 4% obstacle
density, this model will have better results at this level than bigger or more crowded
levels since it is not the kind of environment where it has learned. On the other
hand, it may not be obvious if an agent trained at environment size 3 with 7.5%
obstacle density will have better results at env 1.1 than the agent trained only there.

Hence, the method we used to test the efficiency and generalization of our al-
gorithm is to train six different agents, three for each algorithm (with and without
UED), and for each one, we train in three environment configurations.

The chosen three levels are:

61



Analysis of the Results

• Environment size 1 with 4% of obstacle density, denoted env 1.1

• Environment size 2 with 6% of obstacle density, denoted env 2.2

• Environment size 3 with 7.5% of obstacle density, denoted env 3.3

Hence, for each method, with and without UED, we will train agents in those
three environment configurations. The difference for the UED method is that, since
it does not stay at only one configuration, we will use the agent trained in that
environment configuration as the antagonist agent.

Our motivation is that using those three environment configurations, we can
compare how the agent generalizes in the other configurations away from that
“diagonal”, if we think in a 3x3 matrix, we can directly look at agent 1.1 and
compare at all the levels that are higher in that matrix, such as all levels lower than
agent 3.3, and in the same way agent 2.2 acts as the most central possible agent,
which we can compare if is the best one for generalizing without the UED technique.

On the other hand, for the UED algorithm, we want to test which kind of agent
is the best one guiding the protagonist agent, if it is an agent better or worse at
generalizing, and how the environment used as training affects the agent when
playing the part of antagonist.

But also considering the problem of choosing the best protagonist agent for the
algorithm, we also need to check whether it is better to have a more experienced
agent or one that is only slightly trained. Considering that, for each method and
environment configuration, we are also training for different numbers of episodes:
non-UED agents will be trained for 35k and 50k episodes. In contrast, UED agents
will be trained for 15k and 35k episodes, using as antagonists the agents trained
for 35k episodes.

With those tests, we want to check whether the algorithm works better with
the over-trained antagonists or simpler ones. We also want to check if the UED
has a faster convergence than the normal method since to train 15k episodes,
we also need to train, in our case, 35k a normal agent to use as the antagonist.
Therefore we need to check if this higher-cost training with UED is paid with better
generalization.

5.2 Analysis of the results
Previous parts of this chapter explained the method used to compare the results
obtained with two training methods in different environment configurations and
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the different number of trained episodes. This part will focus on evaluating the
results generated by those methods, the training with three different environment
configurations, and the training using an unsupervised environment design.

For each trained agent, its performance, that is, the result of the training procedure
will be analyzed with a heatmap, since it is an easier form to check the agent’s
generalization ability, and also in which environment configurations the agent per-
forms better. A more generalized heat map will have colors closer to a clear green
while poor performances will have a dark blue color. For each agent, a boxplot
with the general performance of the agent, showing the average performance and
its confidence margin is computed.

As explained in the “method” section, three environment configurations were
chosen for the agent without UED, or “normal” agent, and will be denoted by env
1.1, env 2.2, and env 3.3. For each of those configurations, there are two agents, one
trained for 35k episodes and another trained for 50k episodes. For the UED agent,
there are three agents for each antagonist, one trained for 15k and antagonist for
35k, one trained for 15k with an antagonist for 50k, and the third one trained for
35k using an antagonist trained for 35k. Since the UED needs a previously trained
agent, the idea is to compare the additional gain using the UED method after
training an agent with another method. In that way, we can compare a normal
agent trained for 50k with a UED agent trained for 15k with an antagonist trained
for 35k. Which sums up to 50k episodes trained.

We can also compare the difference of using as antagonist a shortly trained agent
for 15k with a more experienced agent trained for 50k, and then infer if this more
experienced agent can guide the protagonist faster to better results.

Lastly, we check a midterm solution, using as antagonist an agent trained for
35k and then training the protagonist for 35k and comparing the gain using the
UED method for more episodes, also comparing the difference with the normal
agent trained for 35k.
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5.2.1 Comparison in the gain of using UED

Table 5.1: Left: Normal training for 50k episodes. Right:UED Training for 15k
episodes using an antagonist trained for 35k episodes

Env Normal Training UED Training

Env 1.1

Env 2.2

Env 3.3

Comparing side by side at 5.1 the normal agents trained for 50k and the UED
agents trained for 15k, using as antagonist an agent trained for 35k, it shows
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that for practically every environment configuration in the tests, the normal agent
performs better than the UED agent. In fact, the normal agents trained in env
2.2 and env 1.1 have success factors surpassing 70 and 60 percent, respectively in
the upper left quadrant, while in the rightmost and down most lines, the values
are quite lower. One explanation is that results for environments with the highest
obstacle density will naturally have lower values of success factor since they are
the hardest levels. And secondly, the same explanation may apply for environment
size 3. Since it is the larger one, it requires a longer path to reach the target and
therefore, there is a long path where the agent can crash.

For the agents trained with env 3.3, it can be noticed that this is the config-
uration that has less difference between the two methods and that even the normal
agent being trained only on levels with the same configuration did not have a good
performance on levels of size 3.

However, despite the lower performance compared to the normal agents, the
UED agents had a more consistent performance. That is, the difference in success
factor between test environments is lower than the difference in the tests of the
normal agents. Another point regarding the difference in performance is that 15k is
probably not enough for the agent to learn a good policy, and therefore, even using
an antagonist trained for 35k episodes, the summed knowledge is not sufficient to
reach the same results of training an agent without UED for 50k episodes.
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5.2.2 Comparison of antagonist agents trained for different
number of episodes

Table 5.2: Left: UED Training for 15k episodes using an antagonist trained for
35k episodes. Right: UED Training for 15k episodes using an antagonist trained
for 50k episodes

Env 35k eps antagonist 50k eps antagonist

Env 1.1

Env 2.2

Env 3.3
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The comparison at 5.2 between agents trained for 15k episodes with UED using
antagonists trained for 35k and 50k episodes shows that for those parameters, a
more experienced antagonist can lead to better success factor rates for practically
every test level. The analysis, however, does not show a considerable gain in
generalization since the performance in the test levels that are different from the
training did not have a great gain in performance. Both approaches in every
configuration showed a poor success factor in environment 3.3.

A possible explanation is that the parameters chosen for the UED training, with
only 15 episodes, are not enough to reach environments with sizes close to size 3
and, therefore, may not perform well enough at this environment size.
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5.2.3 Results of the midterm solution

Table 5.3: Left: Normal agent trained for 35k episodes. Right: UED Training for
35k episodes using an antagonist trained for 35k episodes

Env Normal UED

Env 1.1

Env 2.2

Env 3.3

This analysis aims to compare agents trained for the same number of episodes, but
with and without UED, and, for that, in the UED training, we use as antagonists
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the same non-UED agent of the analysis.

This comparison at 5.3 shows that for the first agent, trained at env 1.1, the
UED method provided considerable leverage in the overall performance. For exam-
ple, every test level had better results than the normal training in environment size
2 with 6% obstacle density, going from 32% to 57% of success factor. The UED
also showed a better generalization for this environment configuration since test
results in the other environments different from env 1.1 performed better than the
normal agent.

For the other agents of environments 2.2 and 3.3, which already had higher values
of success factor to practically every test configuration, at least in comparison with
every result achieved by every agent, the UED training did not achieve the same
performance as the normal agent. It showed a downgrade in the generalization,
with the agent not being able to pass most of the test levels at env 3.3.

It is possible that the antagonist agent was too good to help the training of
the protagonist agent and that a better approach would be to use antagonists that
are good in performance but not too good.

5.2.4 Difference of environment configuration for training
without UED

Comparing all the trained agents without the UED algorithm, analyzing which
environment configurations provided better results is useful. This analysis is not
straightforward because a higher number of training episodes is usually expected
to provide better results. In the tests presented in this work, some agents trained
for 50k episodes had worse results than 35k episodes, which may show over-fit in
training.

The agent with the highest success factor in one of the test sets was agent 2.2
trained for 50k episodes, which had 84% and 82% in environments 2.1 and 2.2,
respectively. This agent also had success factors above 50% for every test set except
env 3.3, which shows a considerably good ability for generalization.

Agents trained for 35k episodes at environments 2.2 and 3.3 have also shown
considerably high success factors in all test sets, with values ranging from 30% to
74%, while agent 1.1 trained for 35k episodes and agent 3.3 trained for 50k episodes
had lower performances.

These results show that the choice of environment can significantly affect the
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agent’s performance and that environment 2.2 was roughly the one that provided
better results, probably for being the one in the middle of the possible parameters,
since it is a mid-sized environment with a number of obstacles that is neither too
high nor too low.

5.2.5 Difference in the antagonist environment configura-
tion for training with UED

As seen in the results obtained, the choice of antagonist has shown to be an
important factor in the performance of the agent trained with UED. Therefore, the
environment configuration used to train the antagonist is also important.

For every training configuration, the antagonists trained in the environment
2.2 had good results in comparison with the other antagonists, and this has an
effect on the protagonist as shown in 5.4, since even trained for fewer episodes, the
protagonist shows better success factors for the majority of level configurations.
However, it does not succeed in the hardest level. For the other protagonists, with
antagonists of environment 1.1 and 3.3, both do not achieve satisfactory results
when trained for only 15k episodes using antagonists trained for 35k episodes but
increase the performance when using an antagonist trained for 50k, which implies
that even trained for the same amount of episodes, the performance increases when
led by a better antagonist.

Another aspect is that there is a clear gain when using the 35k antagonist, from
training the protagonist for 15k episodes to 35k episodes in most levels but the
last one, which may imply that the chosen parameters for the UED algorithm were
not sufficient to generalize to the most challenging level. This may be because 35k
episodes were not enough to evolve to a configuration as hard as the hardest level
in the tests.

5.2.6 General results obtained for the trajectory planning
task

This subsection aims to show the overall results achieved in fulfilling the trajectory
avoidance task, regardless of the method used as training, but only the performances
achieved in succeeding the test sets.

For every reinforcement learning problem, finding a good simulation environment,
simulation parameters, and mainly finding a suitable reward function presents
challenging tasks to achieve a nearly optimal policy. Although one of the goals
of this work is to exploit the idea of Unsupervised Environment Design to find
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robust policies, it is also worth discussing the overall performance of the trajectory
planning problem.

Figure 5.1: Heatmap of the agent with best overall performance: trained for 50k
episodes at env 2.2

Considering only our proposed task, the trajectory planning problem, some of
the agents had considerably good results at most levels. The normal agent trained
for 50k episodes at env 2.2 has shown the best rates of success factor at low obstacle
density levels but also great results in the hardest levels, 84% at env 2.1 and 82%
at env 2.2, which are considered good rates. However, this agent was not able to
generalize well enough for the hardest environment, with a SF of 26%, while the
normal agent trained for 50k episodes at env 1.1 had worse results, in comparison,
at easier environments but with a 40% SF at the hardest levels, which, considering
the obstacle density, maybe a satisfactory result. As shown at 5.5, the overall SF,
the mean of success factors, is considerably lower due to the last environment.

Episodes Trained Env Trained mean(SF )
50k 2.2 64.7%
35k 2.2 56.7%
35k 3.3 53.3%
50k 1.1 51.3%

Table 5.5: Summary of results obtained by the training without UED. Comparison
of environment trained and mean of Success Factor in the test levels.
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Table 5.4: Left: UED Training for 15k episodes using an antagonist trained for
35k episodes. Center: UED Training for 15k episodes using an antagonist trained
for 50k episodes. Right: UED Training for 35k episodes using an antagonist trained
for 35k episodes

Env 15k eps 15k eps 35k eps

Env
1.1

Env
2.2

Env
3.3
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Chapter 6

Conclusions and Outlook

In this section, the overall outcomes of this study regarding the intended objectives
are analyzed, along with the difficulties in implementing RL solutions in real-world
scenarios. Finally, future directions for this research are proposed.

The goal was to develop a 2D simulation environment to train and test rein-
forcement learning algorithms to solve trajectory planning for quadrotors. In
addition to this, it was required to easily change environment parameters with
the idea of developing more robust solutions. To promote this, an Unsupervised
Environment Design framework was implemented.

6.1 Conclusions of the developed work

6.1.1 Development of a drone simulation for training and
testing

The 2D python drone simulation was successfully developed. Although its develop-
ment consumed a considerable amount of time, the simulation was able to simulate
basic quadrotor movements, not considering the degrees of freedom related to the
z-axis. It simulated a LIDAR-like sensor, which can also be seen as several distance
sensors. The decision to move to a custom-designed simulation is motivated by
the only purpose of testing an UED framework. Similar off-the-shelf simulations
available could have been used, but none with the advantage of simulating distance
sensors and also with the facility to change the environment parameters, which sup-
ports this work’s initial idea to develop its simulation. Furthermore, the possibility
of controlling all the simulation parameters could allow the future to add additional
features, such as realistic quadrotor dynamics. The latter, more specifically, was
not developed due to the increased difficulty of finding a more robust solution and
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increased simulation time.

6.1.2 Solving the TP problem
Regardless of the method applied, it can be observed that the trajectory planning
problem and obstacle avoidance with the aid of onboard distance sensors, considering
only the 2D problem, have been solved to a certain extent, as demonstrated by
the different difficulty levels available in the experiments. This is particularly
noteworthy when considering the highest difficulty level, as multiple agents could
attain satisfactory performances. These results demonstrate the potential of RL in
solving real-world problems, such as trajectory planning and obstacle avoidance,
efficiently and effectively.

6.1.3 Ability of Generalization
With respect to the general ability of generalization, it is possible to say that both
UED and non-UED agents were able, at some level, to provide an increase in
generalization between environments. Still, no one had the best performance at all
of them; that is, the tests done in this work were not able to find an agent good
enough, so it can be said that it is robust enough to all of the test levels, but only
that it achieved good performance in the levels with smaller difficulty.

Therefore, the realized tests did not provide a one-shot solution since choosing
and testing a few training configurations for the antagonist agent is still necessary.
What this work achieved is that the results with the UED solution are more robust
with respect to the initial parameters in comparison to a random trial and error
training, meaning that even a not-so-good choice of parameters for the antagonist
agent may still yield better results when using UED in comparison to just training
the agent normally without some prior knowledge of which parameters to choose.

6.2 Constraints to bringing the agent into real
environments

Simulation plays a crucial role in developing real-world applications, enabling safe
testing without the risk of accidents and allowing for almost limitless experimen-
tation. However, it is important to keep in mind that there may be limitations
when transitioning from simulation to deployment, such as accurately modeling
real-world dynamics such as friction and inertia. Considering all assumptions made
during the development process, another aspect is that most applications have
complex, multi-dimensional structures. It is important to test the application in
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all possible degrees of freedom before deployment.

One reason the training of ML models is done offboard is that training is much faster
on desktop computers or the cloud. Onboard computers, used for actual application
deployment after training, typically have limited computational resources. More-
over, it is not guaranteed that a test done in a simulation on a computer will have
the same results when deployed on the application. If an algorithm on simulation
can perform two actions per second and, when deployed in an onboard computer, is
only able to compute one action per second, then probably this one action will not
be enough to change the robot’s state to avoid a collision for example, since it would
probably have been necessary to make a greater adjustment for this amount of
time. Therefore it is essential to simulate and test the developed algorithms under
the real conditions in which they will be deployed. Concerning neural networks,
some well-known adjustments and different implementations exist when considering
real-time systems that provide faster and lighter solutions. Unfortunately, these
optimizations may come at the cost of reduced algorithm precision and must be
carefully evaluated.

Another aspect is the presence of imperfections in real-world sensors. Sensors
and cameras need calibrations to increase their accuracy and precision, being also
a challenge to deal with uncertainties in data acquisition, which require special
attention. Uncertainties and imperfections may not come only from sensors but
also from external factors such as wind and rain; which are particularly relevant in
a scenario of outdoor operating UAVs.

6.3 Next steps of this work
The next steps of this work can be divided into three main parts:

• The reward function successfully guided the agent to solve the trajectory
planning problem but encountered difficulty in making complex decisions such
as navigating around obstacles, making large turns, and adjusting trajectory to
reach the destination. Further refinement of the reward function is necessary
to address these challenging scenarios.

• The implementation of realistic dynamics and a 3D simulation is understood to
be the biggest required step to deploy the decision-making agent into hardware.
The ability to simulate real-world conditions is crucial for the agent to perform
effectively in hardware. A 3D simulation provides a visual representation of the
environment and the agent’s behavior, allowing for an accurate assessment of
performance and potential areas for improvement. Furthermore, implementing
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realistic dynamics also requires integrating accurate sensory data, which the
agent can use to make informed decisions. This helps ensure that the agent’s
behavior in the simulation closely reflects its behavior in the physical world,
reducing the risk of unexpected results when deployed in hardware.

• Considering the development of Unsupervised Environment Design, it is recom-
mended, to exploit the advances of robustness, to introduce more parameters
to be changed in the environments. In this case, some ideas would be to make
the size of obstacles changeable; introduce the possibility of making the objects
move and their speeds change. Those modifications make the environment
more difficult to be tuned, therefore making the UED even more parametric.
It is also desirable to test the algorithm on different applications for better
tuning of the parameters, such as the rate at which the environment gets more
difficult.

In conclusion, this study successfully achieved its overall objective, demonstrating
the potential of the proposed approach in solving complex problems that require
extended environment development and design. However, it is acknowledged that
there are still areas for improvement, as identified above. These areas provide
valuable opportunities for further refinement and optimization, leading to even
better performance in the future. In sum, this thesis provides a solid foundation
for future research in the field of Unsupervised Environment Design and Trajectory
Planning in the context of Reinforcement Learning and highlights the significance
of ongoing advancements.
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