
1

POLITECNICO DI TORINO
DIGEP – DEPARTMENT OF MANAGEMENT AND PRODUCTION

ENGINEERING

MASTER OF SCIENCE DEGREE IN MANAGEMENT
ENGINEERING

MASTER OF SCIENCE DEGREE THESIS

MACHINE LEARNING APPLICATIONS FOR SURFACE
ROUGHNESS IN TURNING

Supervisors: Candidate:
Prof. Franco Lombardi Vito Antonio Duca
Prof. Giulia Bruno S292936

Academic Year 2021 – 2022

2

3

Acknowledgements

I would like to extend my sincere gratitude towards my thesis supervisor, Prof. Giulia Bruno

and Prof. Franco Lombardi for providing this opportunity and for valuable feedback and

constructive suggestions during the conduct of this master thesis.

Moreover, I am grateful to my supervisors for granting me the chance to work on a project

that combines data science and theoretical course knowledge in the best possible way.

Last, but not least, I would like to convey my deep appreciation to my family and friends

for their unwavering support and constant encouragement throughout my years of study.

4

Abstract

Machining production relies heavily on the quality of the surface roughness, and

researchers have spent years studying ways to predict it. Typically, three approaches are

taken to model surface roughness: empirical methods, theoretical/simulation methods,

and soft computing methods.

This study involved using Machine Learning models to analyze two datasets generated

from machining experiments. These experiments involved turning AISI H13 steel with

cutting fluid. The first dataset, which contained 324 samples, was based on theoretically

new-tool conditions. The second dataset, which contained 288 samples, varied cutting

tool flank wear in three levels. To increase the available data, a strategy was employed to

boost by six times the number of measurements without increasing the number of

experiments.

Machine Learning models were used to predict the output, which was the arithmetic mean

deviation (Ra), for both datasets. Smaller datasets resulted in models that were prone to

overfitting and performed worse than larger datasets. The models trained on the first

dataset (without tool wear) were unable to generalize to the second dataset (with tool

wear). This suggests that tool wear is a critical factor when using Machine Learning

models to model surface roughness in turning processes. Additionally, Machine Learning

models outperformed classical theoretical surface roughness equations.

The study also covers techniques for data cleansing, data manipulation to extract and

select features, the use of these features in training various Machine Learning models and

testing them to determine how turning process parameters and cutting tool wear affect

the surface roughness parameter "Ra”.

Lastly, the study highlights various tools that can be used for the regression analysis of

Machine Learning models, such as Linear Regression, Decision Tree Regression,

Random Forest Regression, Bayesian Ridge Regression, KNN Regression, Kernel Ridge

Regression, and Neural Networks.

5

Contents

ACKNOWLEDGEMENTS ...3

ABSTRACT ..4

CONTENTS ..5

LIST OF FIGURES ..8

CHAPTER 1 – INTRODUCTION .. 11

SYNOPSIS ... 11
1.1 INDUSTRY 4.0 .. 11
1.2 ENABLING TECHNOLOGIES .. 13

1.2.1 Internet of Things ... 13
1.2.1.1 Industrial applications ... 14
1.2.1.2 Challenges and open issues .. 14

1.2.2 Big Data ... 14
1.2.1.3 Industrial applications ... 16

1.2.3 Cloud Computing ... 16
1.2.4 Fog Computing ... 18
1.2.5 Digital Twin ... 18

1.3 IMPACT OF ARTIFICIAL INTELLIGENCE IN INDUSTRY .. 19
1.3.1 Artificial intelligence division .. 19
1.3.2 Types of AI: weak, strong and super intelligence .. 20

1.4 MACHINE LEARNING .. 21
1.4.1 Types of Machine Learning .. 21
1.4.2 Supervised Learning ... 22
1.4.3 Unsupervised Learning .. 23
1.4.4 Semi-supervised Learning .. 24
1.4.5 Reinforcement Learning .. 24
1.4.6 Deep Learning ... 25

1.5 TYPES OF MAINTENANCE IN MACHINE LEARNING .. 25

CHAPTER 2 - TURNING PROCESS AND SURFACE ROUGHNESS ... 27

SYNOPSIS ... 27
2.1 METAL CUTTING .. 27
2.2 TURNING PROCESS ... 28
2.3 MACHINING FORCES .. 31
2.4 CUTTING TOOL WEAR .. 32
2.5 THE MACHINED SURFACE TOPOGRAPHY ... 37
2.6 SURFACE PARAMETERS .. 39
2.7 SURFACE ROUGHNESS MODELING IN TURNING PROCESSES .. 41

2.7.1 Surface roughness modeling methods ... 41
2.7.2 Surface roughness influencing factors .. 43
2.7.3 Surface roughness theoretical models ... 44

CHAPTER 3 – LITERATURE REVIEW .. 46

SYNOPSIS ... 46
3.1 LITERATURE REVIEW .. 46
3.2 LITERATURE REMARKS .. 50
3.3 THESIS OBJECTIVES ... 51

CHAPTER 4 - MATERIAL AND METHODS ... 52

SYNOPSIS ... 52
4.1 MACHINING EXPERIMENTAL PROCEDURES ... 52

4.1.1 Experiment 1 ... 53
4.1.2 Experiment 2 ... 56
4.1.3 Workpiece material and cutting tool .. 59
4.1.4 Machining forces processing .. 60
4.1.5 Tool wear assessment ... 62

6

4.1.6 Surface roughness processing .. 62
4.1.7 Strategy to increase available data .. 64

CHAPTER 5 – ML ALGORITHMS AND EVALUATION METRICS ... 65

SYNOPSIS ... 65
5.1 EVALUATION METRICS .. 65

5.1.1 Mean Squared Error (MSE) .. 65
5.1.2 Root Mean Square Error (RMSE) .. 66
5.1.3 Mean Absolute Error (MAE) ... 66
5.1.4 Coefficient of Determination (R2) .. 66
5.1.5 Explained Variance .. 67

5.2 ML ALGORITHMS ... 67
5.2.1 Linear Regression ... 67
5.2.2 Decision Tree Regression ... 67
5.2.3 Random Forest Regression .. 69
5.2.4 Bayesian Linear Regression ... 70
5.2.5 K-Nearest Neighbours Regression ... 70
5.2.6 Kernel Ridge Regression .. 71
5.2.7 Neural Network Regression ... 71

CHAPTER 6 – MODEL IMPLEMENTATION... 73

SYNOPSIS ... 73
6.1 PROGRAMMING LANGUAGE ... 73
6.2 INTEGRATED DEVELOPMENT ENVIRONMENT ... 74
6.3 USED LIBRARIES .. 75

6.3.1 Matplotlib .. 75
6.3.2 NumPy ... 76
6.3.3 SciPy .. 76
6.3.4 Pandas .. 77
6.3.5 Scikit Learn ... 77

6.4 PIPELINE FOR MODEL IMPLEMENTATION ... 78
6.4.1 Importing Data ... 78
6.4.2 Data Cleansing .. 79

6.4.2.1 Missing Values.. 79
6.4.2.2 Drop unnecessary values ... 79
6.4.2.3 Outlier Analysis .. 80

6.4.3 Model Training and Testing .. 82
6.4.4 Cross Validation .. 83
6.4.5 Features and Labels Extraction .. 85
6.4.6 Data Standardization ... 86
6.4.7 Evaluation Metrics ... 86
6.4.8 ML Algorithms implementation .. 87

6.4.8.1 Linear Regression .. 87
6.4.8.2 Decision Tree Regression... 88
6.4.8.3 Random forest Regression... 89
6.4.8.4 Bayesian Linear Regression ... 90
6.4.8.5 K-Nearest Neighbours Regression .. 90
6.4.8.6 Kernel Ridge Regression ... 91
6.4.8.7 Neural Network Regression .. 92

CHAPTER 7 - RESULTS AND DISCUSSION ... 94

SYNOPSIS ... 94
7.1 EXPERIMENT 1 ... 94

7.1.1 Linear Regression ... 94
7.1.2 Decision Tree Regression ... 95
7.1.3 Random Forest Regression .. 95
7.1.4 Bayesian Linear Regression ... 96
7.1.5 K-Nearest Neighbours .. 96
7.1.6 Kernel Ridge Regression .. 97
7.1.7 Neural Networks ... 97

7

7.1.8 Experiment 1 – Final considerations ... 98
7.2 EXPERIMENT 2.. 98

7.2.1 Linear Regression ... 98
7.2.2 Decision Tree Regression .. 99
7.2.3 Random Forest Regression .. 99
7.2.4 Bayesian Linear Regression ... 100
7.2.5 K-Nearest Neighbours .. 100
7.2.6 Kernel Ridge Regression .. 101
7.2.7 Neural Networks ... 101
7.2.8 Experiment 2 – Final Considerations .. 102

CHAPTER 8 – ML MODELS VS THEORETICAL EQUATION .. 103

SYNOPSIS ... 103
8.1 EXPERIMENT 1: KNN VS THEORETICAL EQUATION .. 103
8.2 EXPERIMENT 2: RANDOM FOREST REGRESSION VS THEORETICAL EQUATION........................ 107

CHAPTER 9 – CONCLUSIONS AND FUTURE WORK .. 111

SYNOPSIS ... 111
9.1 CONCLUSIONS .. 111
9.2 SUGGESTIONS FOR FUTURE WORKS ... 111

BIBLIOGRAPHY .. 113

8

List of Figures
Figure 1: The four industrial revolutions (source: rematarlazzi.co.uk) .. 11
Figure 2: Industrial Internet of things (source: rocknetworks.com) ... 13
Figure 3: 5V Big Data (source: onlinelibrary.wiley.com) .. 16
Figure 4: IaaS-PaaS-SaaS (source: vitolavecchia.altervista.org) ... 17
Figure 5: Digital Twin (source: industry.itismagazine.co.uk) .. 18
Figure 6: Division of Artificial intelligence (source: medium.com) .. 20
Figure 7: Three main types of Artificial Intelligence (source: medium.com) 21
Figure 8: Types of Machine Learning (source: bootcamp.pe.gatech.edu) 22
Figure 9: Difference between scope of Classification and Regression ... 23
Figure 10: Types of Maintenance (source: www.heavy.ai) ... 26
Figure 11: Hierarchy of manufacturing processes. (SWIFT; BOOKER, 2013). 28
Figure 12: Cutting tool nomenclature and main angles. (KLOCKE, 2011; TSCHÄTSCH, 2009).. 29
Figure 13: Lathe (left side) and cylindrical turning process (right side). ... 30
Figure 14: Resultant force and its components for a general turning process (TSCHÄTSCH, 2009).
 .. 31
Figure 15: Wear causes dependent on cutting temperature (KLOCKE, 2011) 34
Figure 16: Forms of wear (KLOCKE, 2011). .. 35
Figure 17: Tool wear measures (ISO, 1993). ... 36
Figure 18: Most used forms to control tool wear (BOOTHROYD; KNIGHT, 2006). 37
Figure 19: Types of surface geometric deviations (KLOCKE, 2011; REGO, 2020). 39
Figure 20: The general effect of the feed rate (f) and the cutting speed (vc) in the average surface
roughness (Ra) (DAVIM, 2010) .. 44
Figure 21: Surface generation influencing factors for a theoretical perfectly sharp (left) and rounded
(right) cutting tool (DAVIM, 2010). .. 44
Figure 22: Publications regarding Machine Learning thematic through the years (Scopus) 46
Figure 23: The bibliometric search of “surface roughness prediction in machining using Machine
Learning.” ... 47
Figure 24: Choosing fitting papers to read for literature review .. 48
Figure 25: The overall activities. Machining experiments generated data; the results were
statistically analyzed; machine learning models were developed and investigated. 52
Figure 26: Experiment 1 Scheme (left) and the signal acquired (right). .. 54
Figure 27: Case 1 (left) depicts the adopted procedure, and Case 2 (right) depicts a collision risk
situation. ... 55
Figure 28: Randomization of the experiment and groups’ division. .. 56
Figure 29: Information acquired at Experiment 2. ... 56
Figure 30: The sequence of conditions tested in Experiment 2. Three different tool conditions were
tested through the levels. .. 58
Figure 31: Experiment 2 setup. Zoom-out view (left) shows the whole setup, and the zoom-in
(right) shows the digital microscope pointing at the tool to measure flank wear. 59
Figure 32: Force measurement acquisition system: connection configuration. 61
Figure 33: Machining forces visualization and means assessment. A discrete value was selected
from the force time-series measurements: the mean. ... 61
Figure 34: The machining force components measured in experiments 1 and 2. 62
Figure 35: Tool wear assessment with a digital microscope. Measurement setup (left) and result
example (right). .. 62
Figure 36: Mitutoyo portable roughness tester model Surftest SJ-210. Measurement setup (left) and
result example (right). .. 63
Figure 37: Surface roughness data processing-to-machine-learning workflow. 64
Figure 38: Decision Tree structure (source: www.datacamp.com) .. 68
Figure 39: Random Forest Structure (source: www.researchgate.net)... 69
Figure 40: A simple feed neural network (source: www.medium.com) .. 72
Figure 41: Regression in neural networks (source: www.medium.com) ... 72
Figure 42: US, Google searches for coding languages, 100 = highest annual traffic for any

file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115765
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115766
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115767
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115768
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115769
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115770
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115772
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115773
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115774
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115777
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115778
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115778
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115784
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115784
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115792
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115797
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115797
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115799
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115799
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115800
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115800
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115802
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115804

9

language. (source: www.kreyonsystems.com) ... 74
Figure 43: Model Implementation Pipeline.. 78
Figure 44: Dataset Split .. 83
Figure 45: K-Fold Model Tuning ... 85
Figure 46: K fold 1 - y_test vs y_pred vs y_theoretical ... 105
Figure 47: K fold 2 - y_test vs y_pred vs y_theoretical ... 105
Figure 48: K fold 3 - y_test vs y_pred vs y_theoretical ... 106
Figure 49: K fold 4 - y_test vs y_pred vs y_theoretical ... 106
Figure 50: K fold 5 - y_test vs y_pred vs y_theoretical ... 106
Figure 51: K fold 6 - y_test vs y_pred vs y_theoretical ... 107
Figure 52: K fold 1 - y_test2 vs y_pred2 vs y_theoretical2 ... 108
Figure 53: K fold 2 - y_test2 vs y_pred2 vs y_theoretical2 ... 108
Figure 54: K fold 3 - y_test2 vs y_pred2 vs y_theoretical2 ... 108
Figure 55: K fold 4 - y_test2 vs y_pred2 vs y_theoretical2 ... 109
Figure 56: K fold 5 - y_test2 vs y_pred2 vs y_theoretical2 ... 109
Figure 57: K fold 6 - y_test2 vs y_pred2 vs y_theoretical2 ... 109

List of Tables

Table 1: Some mathematical relations of cylindrical turning. ... 31
Table 2: Geometric deviations of machined surfaces according to DIN 4760 (1982). 38
Table 3: Definition of the surface roughness parameters used in this work according to ISO 4287
(1997)5. ... 40
Table 4: Functional properties of the studied surface roughness parameters (DAVIM, 2010). 41
Table 5: Complementarity of propositions for the surface roughness prediction effort’s separation.

 .. 43
Table 6: Some theoretical equations of surface roughness Ra and Rt (BOOTHROYD; KNIGHT,
2006; DAVIM, 2010; HE; ZONG; ZHANG, 2018). ... 45
Table 7: DoE of Experiment 1. ... 53
Table 8: DoE of Experiment 2. ... 57
Table 9: AISI H13 steel chemical composition (VILLARES METALS, 2006). 59
Table 10: Cutting tool specifications. .. 60
Table 11: Experiment 1 general information. .. 80
Table 12: Linear Regression performance ... 94
Table 13: Decision Tree Regression performance ... 95
Table 14: Random Forest Regression performance ... 95
Table 15: Bayesian Linear Regression ... 96
Table 16: K-Nearest Neighbours performance .. 96
Table 17: Kernel Ridge Regression performance .. 97
Table 18: Neural Networks performance ... 97
Table 19: Linear Regression performance ... 98
Table 20: Decision Tree Regression performance ... 99
Table 21: Random Forest Regression performance ... 99
Table 22: Bayesian Linear Regression performance .. 100
Table 23: K-Nearest Neighbours performance .. 100
Table 24: Kernel Ridge Regression performance .. 101
Table 25: Neural Networks performance ... 101
Table 26: Actual values vs Theoretical values performance .. 104
Table 27: Actual values vs Theoretical values performance .. 107

file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115807
file:///C:/Users/07501303/Desktop/Tesi/Machine_Learning_Applications_for_surface_roughness_in_turning.docx%23_Toc130115808

10

List of Code Snippets

Code Snippet 1: Importing Data .. 78
Code Snippet 2: Missing values deletion .. 79
Code Snippet 3: Data Cleansing ... 80
Code Snippet 4: Removal of Outliers ... 82
Code Snippet 5: Train -Test dataset split ... 83
Code Snippet 6: Features and Labels extraction .. 86
Code Snippet 7: Standardization .. 86
Code Snippet 8: Importing Evaluation Metrics .. 87
Code Snippet 9: Linear Regression Algorithm ... 88
Code Snippet 10: Decision Tree Regression Algorithm .. 89
Code Snippet 11: Random Forest Regression Algorithm .. 89
Code Snippet 12: Bayesian Linear Regression Algorithm ... 90
Code Snippet 13: KNN Regression Algorithm .. 91
Code Snippet 14: Kernel Ridge Regression Algorithm .. 92
Code Snippet 15: Neural Network Regression Algorithm .. 93
Code Snippet 16: Dataframe creation for y_theoretical ... 104
Code Snippet 17: Evaluation metrics - y_test vs y_theoretical .. 104
Code Snippet 18: Plots generation ... 105

11

Chapter 1 – Introduction
Synopsis
The opening chapter of the thesis provides an in-depth understanding of the rationale behind

the chosen topic and introduces various terms associated with it. After a brief introduction

to multiple aspects of Industry 4.0, the chapter provides insight on the key Enabling

Technologies and the significant impact of Artificial Intelligence on the industry.

1.1 Industry 4.0
The industrialization process started at the end of the 18th century with the incorporation

of mechanical production equipment, which was made possible by the utilization of

steam power in the production of goods. This first industrial revolution was then followed

by the second industrial revolution in the late 19th century, which was marked by the use

of new energy sources, such as electricity, and the implementation of the assembly line,

leading to mass production. The third industrial revolution came about in the early 1970s

and was characterized by the use of knowledge in the field of electronics and information

technology to enhance the automation of production processes. Subsequently,

advancements in digital technologies have been rapidly transforming the industry and are

continuing to do so, leading to the phenomenon referred to as Industry 4.0 [1] or the

Fourth Industrial Revolution, which has had a profound impact on all major sectors of

the economy and has spread globally.

Figure 1: The four industrial revolutions (source: rematarlazzi.co.uk)

12

Many academics view Industry 4.0 as an evolution of the Third Industrial Revolution

because it not only focuses on automating production processes, but it also introduces a

new factory model based on the digitalization, integration, and connectivity of processes,

not only within the company, but throughout the entire value chain, by combining

information and digital technologies with production technologies. This results in a new

approach to industrial production, no longer viewed as a series of separate steps, but as an

integrated flow.

The concept of Industry 4.0 originated in Germany and was formalized in 2011 during the

Hannover Messe [2]. It is an industrial strategy that involves a series of quick

transformations in the design, production, operation, and service of production systems,

transforming the entire industrial production sphere through the fusion of digital technology

and the internet with traditional industry. Although Industry 4.0 is a widely recognized

phenomenon in the industry, there is no clear-cut definition of it. Alternative terms used to

describe it include Cyber Physical Systems, Internet of Things and Services, Smart

Manufacturing, and Industrial Internet [1]. According to one of the most widely accepted

definitions, Industry 4.0 refers to the Fourth Industrial Revolution, a new phase in the

organization and management of the entire value chain during the product life cycle. This

cycle is becoming increasingly customer-focused and covers everything from design and

development to delivering the product to the end customer and its recycling, including all

related services. All elements involved in the value chain are connected, making relevant

information available in real-time and allowing for added value to be derived. Connecting

people, objects, and systems creates dynamic, self-organizing, inter-company networks that

can be updated in real-time and optimized based on various criteria, such as cost,

availability, and resource consumption [3].

The key characteristics of the Industry 4.0 paradigm are the transformation of the value

chain through digitization and interconnection of all its stages, from procurement to after-

sales service. This transformation is driven by new technologies and devices, both hardware

and software, that enable high levels of connectivity between people, devices, and

machines, creating integrated systems that can respond autonomously and promptly to any

changes in external conditions [3]. Data and information are transmitted in real-time within

the company and between several companies within the same value chain, leading to a

transition from a reactive to a proactive production system.

13

1.2 Enabling technologies
Key enabling technologies (KETs) are the backbone for implementing Industry 4.0. As

defined by the European Commission, these technologies are knowledge-intensive and

require high levels of R&D, rapid innovation, significant investment, and highly skilled

jobs [4]. To fully leverage the potential of these technologies and create efficient and

effective smart factory solutions, it is crucial to encourage synergies between them. The

value generated by Industry 4.0 technologies can only be realized when they are considered

as a whole, rather than as individual components. Therefore, the ability to derive synergies

from the integration of these technologies is more important than their individual use. The

following sections will provide an overview of the main enabling technologies of Industry

4.0, as recognized by academic and industry experts.

1.2.1 Internet of Things
The Internet of Things (IoT) was first introduced in 1999. It was defined by Kevin Ashton

of MIT as a network of sensors and devices embedded in products, machinery, and other

components that are connected to corporate information systems through the Internet. This

technology expands the concept of communication by enabling interaction between

machines, operators, processes, and sub-processes [5].

The foundation of IoT technology lies in the ability for each device in the network to have

a unique identification through an IP address, enabling it to exchange data with other

devices or software automatically using communication standards and protocols [1].

Figure 2: Industrial Internet of things (source: rocknetworks.com)

14

1.2.1.1 Industrial applications
The Internet of Things (IoT) technology has the potential to revolutionize various sectors,

including robotics, automotive, home automation, telematics, smart cities, and remote

control. Logistics, in particular, is well-suited for IoT applications, given the need for

efficient information exchange. One example of IoT application in logistics is RFID (Radio

Frequency Identification), which uses radio frequency transmission for unique object

identification and data storage [6]. This technology enables product traceability throughout

the production and assembly phase and helps operators keep track of processing and any

problems that may have arisen during the production cycle. The IoT also enables timely

detection of system malfunctions through sensors installed on machines, enabling

predictive maintenance policies rather than reactive ones [7].

1.2.1.2 Challenges and open issues
Additionally, the security of IoT devices is often a concern as they can be vulnerable to

hacking and cyberattacks. This highlights the need for proper security measures and

protocols to be put in place, such as encryption, firewalls, and authentication mechanisms,

to protect the sensitive data being transmitted and stored [7]. Furthermore, privacy is also

an issue, as personal data and information may be collected and shared by IoT devices,

which can raise privacy concerns. Therefore, it is important to ensure that privacy policies

are in place to protect the privacy of individuals, and that the collected data is only used for

the intended purposes. In conclusion, the potential benefits of the IoT for industry are vast,

but there are also important challenges that must be addressed to ensure its sustainable and

responsible development.

1.2.2 Big Data
Over the past few decades, the amount of data available to businesses has increased

exponentially and there is a growing recognition of the significance of data as a source of

value for creating new business models. Big Data encompasses "the volume of digital data

available in the individual, physical, and industrial environment from sensors, machinery,

IT infrastructure, mobile devices, electronic control units, telecommunications equipment"

[8]. In 2001, Dug Laney presented a model called the 3V model, which highlights the

unique features of Big Data, concentrating on the variables on which this technology

develops [8]. These variables are:

15

• Volume: This refers to the size of databases employed to store data. These are

expanding rapidly and necessitate high hardware capability and intricate

algorithms to manage. The quantity of data kept has increased from terabytes to

zettabytes (1 trillion bytes).

• Variety: The type of data accessible to businesses is no longer uniform but

encompasses textual data, images, audio, and video. Integrating structured data

(usually numerical) with unstructured data (text, images, video) necessitates

specific, newly generated platforms and people capable of making them functional

and effective, and ideally suited to the business's objectives.

• Speed: This pertains to the rate at which data is transmitted. A diminished speed

of information gathering and processing would make companies reluctant to

purchase data packages that include potential consumers or current customers. The

same applies to computer security companies, where a data stream must be studied

and analyzed swiftly to identify new cyber threats' presence or absence.

Consequently, the speed of data transmission and analysis is a critical factor in the

success of Big Data.

Today, Laney's paradigm has been enriched with two more variables, leading to the

emergence of the so-called 5V Model of Big Data [8]. The added variables are:

• Value: it refers to the need for industries to appropriately store, classify, and

analyze data to extract value and identify new business opportunities, due to the

impact of digitization across all sectors.

• Veracity: it highlights the challenge of ensuring the reliability of data in the

context of Big Data, where data management technologies, collection speeds, and

sources are constantly changing. Despite these challenges, ensuring the quality and

integrity of data is essential for creating useful and reliable analyses.

Given the preceding discussion, it can be argued that the success of Industry 4.0 hinges on

the ability to perform real-time analysis and intelligent processing of vast amounts of data

from diverse sources. To accomplish this, it is crucial to create algorithms that can

efficiently and effectively store, analyze, and transmit the information contained in Big

Data. By doing so, Big Data can become a valuable decision-making tool for companies.

16

1.2.1.3 Industrial applications
Big Data is a fundamental element of information management in Industry 4.0. It involves

collecting and processing data from sensors and networked control units, enabling the

monitoring of machines and plants to identify trends and anomalies. Data Mining and Data

Analytics techniques allow for the automatic monitoring of systems and the generation of

reports and KPIs. Data analysis algorithms are also useful for production quality control,

enabling companies to identify anomalies, minimize errors and improve production

processes. The implementation of Big Data represents a significant change in the way

production processes are managed.

1.2.3 Cloud Computing
Cloud computing relies on a range of technologies that enable the processing and storage

of data using distributed hardware and software resources across a network [9]. The key

elements of a cloud platform include:

• A sophisticated data storage architecture;

• Computing nodes responsible for data processing;

• Controllers, for data migration.

When discussing cloud technology, there are three types of clouds: public, private, and

hybrid. A public cloud is a service that provides infrastructure through a public network

and data centers managed by third parties over the internet. A private cloud is a service

that provides infrastructure and services through a private network and data centers

managed internally by a company that restricts access to others. A hybrid cloud is a

Figure 3: 5V Big Data (source: onlinelibrary.wiley.com)

17

combination of public and private clouds. Additionally, cloud services are categorized

into three main types, including IaaS (Infrastructure as a Service), PaaS (Platform as a

Service), and SaaS (Software as a Service) [9].

• SaaS is "a model that encompasses applications and software systems, accessible

from any type of device (computer, smartphone, tablet, etc.) through the simple

use of a client interface. In this way, the user does not have to worry about

managing the resources and infrastructure, as they are controlled by the provider

who supplies them.

• PaaS is "a model in which the services of online platforms are located, thanks to

which a user, usually a developer, can carry out the installation of applications and

web services that he or she intends to provide. In this case, the user can develop

and run his or her own applications through the tools provided by the provider,

who guarantees the proper functioning of the underlying infrastructure. (e.g.

Google Cloud App Engine, Amazon dynamoDB, Google cloud data store).

• IaaS is a 'model in which virtualised hardware resources are made available so that

users can create and manage their own infrastructure on the cloud according to

their needs, without worrying about where the resources are allocated.

This means that the services provided by SaaS, PaaS, and IaaS differ based on their

respective functionalities: IaaS provides support for PaaS, which in turn supports

SaaS.

Figure 4: IaaS-PaaS-SaaS (source: vitolavecchia.altervista.org)

18

1.2.4 Fog Computing
Fog Computing refers to local data processing in a decentralized manner, as opposed to

Cloud Computing which relies on a network of connected computers and servers [9]. This

infrastructure can offer accurate predictions and become a valuable tool for planning

production processes. Simulation, in general, involves modeling real systems over a

specified time frame to predict their performance under various constraints and conditions.

Designers can use simulation tools to evaluate product or machinery performance early in

development, identifying and addressing issues before they become costly problems. This

approach can lead to significant reductions in product development costs.

1.2.5 Digital Twin
The concept of Digital Twin, or Virtual Twin, is crucial in the field of simulation and

prototyping. It refers to a virtual real-time representation of a physical device that can

reproduce its behavior based on external stimuli perceived by sensors in the real system [7].

Working with a Digital Twin has the advantage of allowing simulations to be carried out to

evaluate how the real model would react to changing boundary conditions, thus minimizing

anomalies. Additionally, the virtual model enables remote operations to be performed, as it

can be analyzed from anywhere, irrespective of the location of the physical device. This can

lead to scenarios where technical staff can give instructions to operators working on a distant

machine by analyzing its virtual twin.

Figure 5: Digital Twin (source: industry.itismagazine.co.uk)

19

1.3 Impact of Artificial Intelligence in Industry
In modern business, companies strive to become more efficient by reducing costs and

minimizing errors, while improving product performance. Before exploring the role of

artificial intelligence (AI) in manufacturing, it's important to understand its general

definition. Professor John McCarthy, an expert from Stanford University, defines AI: “It is

a science and engineering of making intelligent machines, especially intelligent computer

programs. It is related to the similar task of using computers to understand human

intelligence, but AI does not have to confine itself to methods that are biologically

observable” [10].

Thanks to the benefits of artificial intelligence and related technologies, companies are able

to achieve higher levels of efficiency that can drive the entire business. This is possible

because AI can identify inefficiencies in the production process or at the end of the

production line, extract valuable manufacturing data, facilitate communication between

machines and people, and reduce costs. The new manufacturing model, known as intelligent

manufacturing, is based on AI, science, and technology and can lead to growth in design,

production, and management. The main goal of intelligent manufacturing is to optimize

manufacturing resources, improve business value, and enhance safety. Within the sector of

intelligent manufacturing, different types of maintenance have been developed to prevent

failures and increase reliability, including corrective, preventive, and predictive

maintenance, depending on available resources.

1.3.1 Artificial intelligence division
The primary categorization of AI can be grouped into three categories, which include

internal subsets of machine learning and deep learning [11]. Currently, there is a common

misconception where the definitions of AI, ML, and DL are not accurately comprehended

or applied, leading to confusion. To avoid this, the initial stage of this chapter will

differentiate between various types of AI, followed by an in-depth analysis of each segment.

20

1.3.2 Types of AI: weak, strong and super intelligence
Weak AI, also known as Narrow AI or Artificial Narrow Intelligence (ANI) [12], is

designed to perform specific tasks that do not match human intelligence and do not attempt

to replicate it. The term "narrow" accurately describes this type due to its limited range of

abilities, which are mostly goal-oriented for performing various tasks. This type is

commonly used today in environments that enable robust applications.

Strong AI is made up of Artificial General Intelligence (AGI) and Artificial Super

Intelligence (ASI) [12]. AGI is a form in which machines have intelligence equal to that of

humans, or in other words, self-aware consciousness with the ability for problem-solving,

learning, and planning for the future. Analyzing this type, it is possible to imagine human-

like robots that can decide by themselves and learn without human intervention.

Additionally, there is another type called Artificial Super Intelligence (ASI), which is a type

of self-conscious computer that can practically outmaster human intelligence and the

abilities of the brain. However, this type is still mostly theoretical or treated as a research

topic.

Figure 6: Division of Artificial intelligence (source: medium.com)

21

Figure 7: Three main types of Artificial Intelligence (source: medium.com)

1.4 Machine learning

Machine learning is a subfield of artificial intelligence that involves the use of algorithms

to improve themselves based on experience and data. It is also referred to as the study of

enabling machines to perform better without explicit programming. When a machine learns,

it changes its structure, program, or data in response to input or external information with

the expectation of further improvement [13]. To facilitate learning, three components are

required: an algorithm, a dataset, and features. The dataset is a collection of similar entities

and values that can be individually or collectively structured. Collecting this data can be a

time-consuming operation, and it can be done by gathering open-source data or directly

collecting it. Features are special data objects that are necessary for solving the problem at

hand, and their selection is essential for effective pattern recognition, classification, and

regression algorithms. Algorithms aim to allow the system to learn and develop its own

experience without being explicitly programmed. There are various algorithms, such as

deep learning, coevolutionary networks, and recommendation systems, each with a specific

use.

1.4.1 Types of Machine Learning
There are four main types of machine learning, which can be classified based on the type

of learning expected from the algorithms. These include Supervised Learning,

Unsupervised Learning, Semi-supervised Learning, and Reinforcement Learning [13].

22

More details on these types of machine learning will be explained in the following sub-

sections.

1.4.2 Supervised Learning
The first type of machine learning algorithm is characterized by the output of a classified

or labeled dataset that can be accurately predicted. When input data is applied to the model,

it is adjusted and weighted until the model fits appropriately, avoiding overfitting or

underfitting. Supervised learning involves providing labeled examples, each with a unique

input signal and corresponding response, to teach the model [13]. Linear regression is an

example of an algorithm that uses supervised learning, as do other machine learning

algorithms such as K-Nearest Neighbors, Support Vector Machines, Decision Trees and

Random Forests, and Artificial Neural Networks. Supervised learning models have found

application in various areas thanks to their accurate and predictable output. Examples

include predictive analytics, customer sentiment analysis, spam detection, and image and

object recognition, which will be more fully explained in subsequent chapters. The two

primary prediction problems of machine learning derived from supervised learning are

regression and classification, which differ as follows:

• Classification involves finding a model or function that can separate data into

multiple categorical classes based on given input parameters. In classification, data

 Figure 8: Types of Machine Learning (source: bootcamp.pe.gatech.edu)

23

is categorized under different labels, and then the labels are predicted for new data

[13]. The resulting mapping function could be represented in the form of "IF-

THEN" rules. Classification deals with problems where data can be divided into

binary or multiple discrete labels.

• Regression involves finding a model or function for distinguishing data into

continuous real values, and it can also identify distribution movement based on

historical data [13]. Since a regression predictive model predicts a quantity, the

accuracy of the model must be reported as an error in those predictions.

As can be partially seen from the graph above, classification is a process that predicts discrete

values in an unordered manner, while regression works with continuous values and predicts

data in an ordered manner. Examples of classification algorithms include decision trees or

logistic regression, while regression solutions include regression trees or linear regression,

among others.

1.4.3 Unsupervised Learning
Unlike the previously explained, Unsupervised Learning does not require the user to know

the final output. The model works on its own, without supervision or access to labeled

output, allowing it to discover previously undetected patterns and information [13]. The

main advantage of using UL is the ability to find all kinds of unknown patterns in data.

Other machine learning algorithms that use this type of learning include K-Means for

clustering, t-distributed Stochastic Neighbour Embedding (t-SNE) for visualization,

Figure 9: Difference between scope of Classification and Regression

24

Principal Component Analysis for dimensionality reduction, and Apriori for association

rule learning. In the manufacturing industry, a useful method of unsupervised learning is

anomaly detection, where the model is trained with standard data to detect whether new

data is normal or not, potentially detecting anomalies in machines or processes.

The three main tasks of unsupervised learning are clustering, association, and

dimensionality reduction [13]. Clustering methods are used to find similarity and

relationship patterns among data samples and cluster them into groups based on their

features. Clustering plays an important role in determining groups among present unlabeled

data and making assumptions about data points to determine their similarity.

1.4.4 Semi-supervised Learning
Semi-supervised learning is a type of ML that uses a combination of labeled and unlabeled

data to train a model. It lies between supervised and unsupervised learning, and is useful in

situations where there is a limited amount of labeled data and no additional resources to

obtain more [13]. By using the large amount of unlabeled data available, the model can

learn more about the data and improve its accuracy. This technique can be especially helpful

in domains such as natural language processing and computer vision, where labeled data

can be difficult and expensive to obtain.

1.4.5 Reinforcement Learning
The goal of Reinforcement Learning is to address closed-loop problems in which the actions

of the learning system affect its future inputs. In this type of learning, the learner does not

receive direct instruction on which action to take, but instead must discover it through trial

and error [13]. In some cases, actions may have consequences not only in the immediate

response but also in subsequent responses. Reinforcement Learning is characterized by

three main factors: closed-loop, lack of direct instruction on which actions to take, and the

consequences of actions that are important for an extended period of time [13]. One of the

challenges of Reinforcement Learning is balancing exploration and exploitation. To obtain

a large reward, an agent must prefer actions that have been effective in the past, but to

discover such actions, it has to try new things. Another key aspect of Reinforcement

Learning is its consideration of the entire, goal-directed problem interacting in an uncertain

environment. Finally, one of the most interesting aspects of modern Reinforcement

Learning is its productive interaction with other engineering and scientific disciplines, such

25

as psychology or neuroscience.

1.4.6 Deep Learning
Deep learning, also known as deep structured learning or hierarchical learning, is a newly

emerged field and subcategory of research within machine learning. Rather than providing

a thorough explanation right away, it's important to first provide a general definition in

order to convey the overall concept of this particular area. “Deep Learning is a new area of

Machine Learning research, which has been introduced with the objective of moving

Machine Learning closer to one of its original goals: Artificial Intelligence. Deep Learning

is about learning multiple levels of representation and abstraction that help to make sense

of data such as images, sound and text” [14].

Deep learning is an essential component of cognitive computing, which has gained

widespread interest due to its ability to enable applications to understand human input and

respond in a way that people can comprehend. Deep learning technology has significantly

enhanced computers' capacity to classify, identify, detect, and describe data, which means

they can better understand it. This technique is particularly useful in areas such as image

classification, speech recognition, and object recognition, where numerical data is essential.

With the development of new algorithms and technologies, deep learning is rapidly

advancing, with increased accuracy and effectiveness. As a result, new fields of study such

as text translators and image classification are becoming increasingly useful [14].

However, the complexity of the algorithms and the vast amounts of data required for

network learning mean that solving problems using deep learning requires significant

computing power. The adaptive nature of the learning method allows for continuous self-

improvement and adjustment, which makes it possible to implement more dynamic

solutions. The increased accuracy and efficiency of neural networks in applications that

have long used them is also contributing to their continued growth. With better algorithms

and higher computational power, it is possible to gain a more precise understanding of the

data being analyzed.

1.5 Types of maintenance in machine learning
Maintenance costs are a significant operating expense for the industrial sector, and can

represent up to 50% of total production costs even without factoring in unplanned downtime

[15]. As a result, a company's productivity and profitability depend heavily on the

26

maintenance process, so it's important to ensure that all equipment is working as reliably as

possible. This article describes and compares three main types of maintenance: corrective,

preventive, and predictive, as illustrated in Figure 10.

• Corrective maintenance: The first type of maintenance is focused on solving problems

that have already occurred, and only takes place when the machine is in critical condition.

This typically leads to production stoppages, resulting in reduced output and increased costs

[15]. Repair time cannot be easily scheduled, so this time is often used for machining

processes that do not have a significant impact on production. Corrective maintenance is

typically performed by a human technician.

• Preventive maintenance: The second type of maintenance is preventive, and focuses on

scheduled maintenance actions aimed at preventing spontaneous breakdowns, failures, and

degradation of equipment, components, or spare parts. This type of maintenance is usually

carried out outside of production time and is performed through periodic inspections of the

system [15]. It is useful to keep a history of previous failures of parts or machines for more

effective planning. Preventive maintenance is considered demanding, requiring precise

supervision and planning, and should be carried out by qualified personnel. Incorrect

application of preventive maintenance may lead to breakdowns, resulting in production

downtime and increased costs.

• Predictive maintenance: This type of maintenance is not new to the industry but has

gained relevance and has been developed in the Industry 4.0 scheme. In this case,

maintenance is usually carried out before a breakdown occurs. It is based on precise

formulas, sensor measurements, and analysis of measured parameters. The main goal is to

guarantee maximum intervals between consecutive repairs and minimize the number of

planned maintenance operations and associated costs. The predictive maintenance process

involves three steps: data acquisition, data processing, and machine decision-making [15].

Figure 10: Types of Maintenance (source: www.heavy.ai)

27

Chapter 2 - Turning Process and Surface

Roughness

Synopsis
This chapter focuses on metal cutting processes and provides a detailed explanation

of the turning process, turning cutting tool, and the wear phenomena associated with

cutting tool usage. It also provides an overview of Surface Roughness parameters and

explains how the Surface Roughness is affected during Turning processes.

2.1 Metal cutting
Cutting is recognized as the earliest manufacturing technique ever invented, and it has a

broad range of applications. However, this paper concentrates on metal cutting, which

involves removing a thin layer of metal, known as a chip, from a larger body called the

workpiece, using a wedge-shaped tool. In engineering, the term "cutting" or "machining"

refers to chip-forming processes, which are mainly used in metal processing. Although

these processes can be used on other materials like wood and plastic, the knowledge gained

from metal processing cannot be completely applied to other materials [16]. As a result, in

this text, the terms "cutting" and "machining" are interchangeable and are primarily

associated with metal cutting. Metal cutting or machining is part of a general manufacturing

hierarchy chain and is considered a secondary process, as depicted in Figure 11.

The fabrication of a product is typically broken down into three steps: primary shaping

processes, which are responsible for the initial transformation of the raw material;

secondary processes, which include material removal and other treatments such as heat and

surface treatments; and finally, assembly processes, which involve joining, assembly, and

testing of the product [17]. Primary shaping processes such as casting and forming shape

the workpieces while conserving their masses. However, these processes may not provide

sufficient surface quality and geometric tolerances. Therefore, material removal processes

are necessary to finish the workpieces, and metal cutting processes fulfill this need [18].

Machining refers to various processes, all of which involve removing material from a

workpiece in their unique ways. Broadly speaking, some processes utilize tools with

defined geometry (such as milling, drilling, and turning), while others use tools with non-

defined geometry (like grinding, honing, and lapping) [19]. Other material-removal-based

28

processes have more specific applications, such as electrical discharge and ultrasonic

machining. However, in this review, the focus is on turning processes.

Figure 11: Hierarchy of manufacturing processes. (SWIFT; BOOKER, 2013).

2.2 Turning process
The turning process involves the use of single-point cutting tools with a geometrically

defined cutting point. This means that there is only one theoretical cutting point. During

machining, the cutting region of the tool is continuously in contact with the workpiece,

resulting in a continuous cutting process [20]. Turning is primarily a rotational process,

where the workpiece rotates while a translational feed motion removes material from it

[21]. A typical single-point cutting tool is depicted in Figure 12. It consists of a major

cutting edge, also known as the primary cutting edge, which forms the chip that flows

through the rake face. The transient surface formed by the major cutting-edge flows through

the flank face of the tool, as shown on the right side of Figure 13. The primary cutting edge

physically divides the flank and rake faces.

29

Figure 12: Cutting tool nomenclature and main angles. (KLOCKE, 2011; TSCHÄTSCH, 2009)

The geometry of the cutting tool can have a significant impact on the machining process by

affecting various aspects such as forces, chip formation, surface roughness, and tool

durability. Each angle or inclination of the tool has distinct characteristics that should be

considered as a design parameter for the machining process [22]:

• The clearance angle α, can help reduce or avoid friction between the transient

surface and the flank face of the tool, which can greatly improve tool lifespan.

• The rake angle γ is another crucial angle to consider, as it has a significant influence

on forces, power requirements, surface finish, and heat generation.

• The cutting-edge inclination λ also play a role in directing the chips and controlling

vibration

• The cutting-edge angle κr can reduce chatter, a type of harmful self-excited

vibration that can lead to tool wear and increased forces.

• The corner radius rε, which refers to the radius of the curve that unites the minor

cutting edge to the major cutting edge, can increase power demands by up to 20%.

It is also a significant factor in most theoretical surface roughness models.

In addition, the selection of geometric features of the cutting tool must be based on the

specific characteristics of the workpiece and tool materials used in the process, as these

factors can greatly influence the machining performance [22].

Figure 13 illustrates a typical lathe machine used for turning operations, as well as its main

components and axes. The cylindrical turning process is the most commonly used turning

process and is depicted on the right side of the figure. The workpiece is clamped on the

chuck, which is connected to the motor spindle that rotates the part. For heavier or longer

30

parts, the center-tailstock can be used to support both ends. The feed motion is achieved by

moving the carriage along the feed rods and lead screws. The machine tool axes are

conventionally designated as follows: the Z-axis aligns with the spindle direction, the X-

axis is parallel to the longest direction of table movement, and the Y-axis is parallel to the

shorter direction of table movement. A, B, and C correspond to angular movements around

the X, Y, and Z axes, respectively [23]. This schematic fixture and axes system can be

entirely translated into CNC (Computer Numerically Controlled) turning centers.

The cutting process in cylindrical turning can be analyzed using mathematical equations,

which are presented in Table 1. One such equation is the cutting time equation, which can

be used to calculate the time taken for a given process and relate it to measures of tool wear.

Another useful equation is the cutting speed equation, which can be calculated by hand and

used during the execution of experiments. The relationship between the width of cut, uncut

chip thickness, and the sectional area of the chips can also be used to investigate the forces

involved in the process.

 X Z

 Y Headstock (containing main spindle)

Chuck

Workpiece

Tool

Center
Tailstock

Workpiece
Work surface

Transient surface
Machined surface

Primary motion (n)

Cross slide Bed Continuous feed
motion (f)

ap: depth of cut

Carriage
Feed rod

Lead screw

Tool post

Figure 13: Lathe (left side) and cylindrical turning process (right side).

31

Table 1: Some mathematical relations of cylindrical turning.

Item Mathematical relation Unit Eq. Source

Cutting time

 Tc = 𝐿

𝑓∙𝑛

min

1
(BOOTHROYD;

KNIGHT, 2006)

Cutting speed 𝑣𝑐 = 𝜋 ∙ 𝑑 ∙ 𝑛 m/min 2 (TSCHÄTSCH, 2009)

Width of cut

𝑏 =
𝑎𝑝

sin(κr)

mm 3 (STEMMER, 1993)

Uncut chip thickness ℎ = 𝑓 ∙ sin(𝜅𝑟) mm 4 (STEMMER, 1993)

Chip’s sectional area 𝐴 = 𝑎𝑝 ∙ 𝑓 = 𝑏 ∙ ℎ mm² 5 (TSCHÄTSCH, 2009)

2.3 Machining forces
Understanding the forces involved in metal cutting processes is crucial for various

applications. These forces can inform the design of machine tools, cutting tools, and tool

holders, as well as aid in the determination of cutting conditions. Furthermore, analyzing

the forces can help identify wear mechanisms, monitor the process for tool wear or

breakage, and classify materials based on their machinability [16]. Machinability refers to

the ease with which a specific material can be cut under specific conditions, with larger

forces typically indicating a harder-to-cut material.

Figure 14 illustrates the forces involved in a typical turning process. The forces acting on

the tool are of the same magnitude as those acting on the chip, but in opposite directions.

The resultant force F can be broken down into three components that affect the tool [21]:

F : Resultant force
Fc : Cutting force
Ff : Feed force
Fp : Passive force

Figure 14: Resultant force and its components for a general turning process (TSCHÄTSCH, 2009).

32

• The cutting force Fc : acts in the opposite direction of the cutting motion and

perpendicular to the cutting edge. It is usually the most significant force in turning

processes.

• The feed force Ff : acts in the opposite direction of the feed motion (or perpendicular

to the cutting motion). It is also known as the thrust force Ft.

• The passive force Fp : acts in the same direction as the tool holder and tends to push

the tool away from the workpiece. It is often neglected in turning operations because

it is typically the smallest of the three components.

The force components can also be named after the names of the machine tool axes: Fc is

equivalent to Fx because it acts along the X-axis; Ff is equivalent to Fz because it acts along

the Z-axis; Fp is equivalent to Fy because it acts along the Y-axis. Alternatively, they can

also be named based on their direction with respect to the workpiece: Fc , Ff , and Fp are also

known as tangential force, axial force, and radial force, respectively [24].

The cutting force is the primary force used to assess cutting processes, especially when the

other two components are insignificant. However, the specific cutting force, resultant force,

and specific resultant force may also be utilized. Since the cutting force is typically the

highest among the three components, it is used to compute the machining power required.

This calculation is simply the product of the cutting force and cutting speed [24].

Dynamometers are used to measure machining forces, and various dynamometers have

been developed over the past century, including force platforms that employ piezoelectric

load cells to measure force in multiple directions and calculate resultants [16]. Piezoelectric

dynamometers are known for their high static stiffness and rigidity, high natural frequency,

high sensitivity, accuracy and reliability, and low temperature sensitivity, which produce

accurate results [25]. The force measuring unit is the Newton (N).

The resultant force is the vector sum of the three components and can be determined using

Equation 6, which is essentially a sum of orthogonal vectors employing the Pythagorean

Theorem.

F = √𝐹𝑐2 + 𝐹𝑓2 + 𝐹𝑝2 Eq.6

2.4 Cutting tool wear
During the metal cutting process, the cutting region, including the workpiece and cutting

tool, is subjected to external thermal and mechanical loads [26]. These loads result in

33

deformation, separation, and friction in the cutting-edge area of the tool, creating a complex

and challenging environment. The constant high compressive and thermal stresses cause

the tool to wear over time, making it ineffective in cutting efficiently or even causing it to

fail altogether. Tool wear is characterized by changes in the tool's shape due to the loss of

material or deformation (ISO,1993), which can lead to poor quality final parts and defects.

When designing and implementing metal cutting processes, it is important to consider the

wear behavior, its causes, and possible solutions. Tool wear typically occurs through three

primary mechanisms: abrasion, adhesion, and diffusion [27].

• Abrasion occurs when hard particles on the chip and workpiece mechanically

remove material from the tool. These particles can be leftover strain-hardened

material, previously removed fragments, or hard workpiece components.

• Adhesion is caused by friction movement between the tool and workpiece, which

creates micro-welding between their surfaces. This causes tool material to be carried

away, and the mechanism is influenced by the tendency of materials to bond, which

can be caused by mechanical action or chemical interactions.

• Diffusion is caused by high temperatures in the cutting region, which trigger

individual atoms to migrate from the tool surface to the workpiece or vice versa.

This mechanism affects a narrow region of the contact interface between the tool

and workpiece but is critical in reducing tool resistance to abrasion, particularly

when the diffused atoms are essential constituents of the tool's alloying elements.

The causes of tool wear are closely related to the cutting temperature, which is strongly

influenced by the cutting speed. Figure 15 illustrates how the wear mechanisms change

with increasing cutting temperature. At low temperatures, the dominant wear mechanisms

are adhesion and abrasion. As the temperature rises, diffusion and oxidation become more

important. At very high temperatures, diffusion becomes the primary cause of tool wear.

34

Figure 15: Wear causes dependent on cutting temperature (KLOCKE, 2011)

One practical method for determining when a cutting tool has reached the end of its useful

life is by observing certain anomalies during cutting, such as the presence of smoke,

excessive noise, unusually severe vibrations, changes in the surface finish or geometry of

the workpiece, or changes in the dimensions of the cutting tool itself. Experienced operators

are often relied upon to identify when the tool needs to be replaced or reground. Wear

affects the dimensions of the tool in various ways, as depicted in Figure 16 for a typical

turning operation. The different forms of wear include flaking, fragmentation, plastic

deformation, smearing, notching, cratering, and flank wear. Of these, particular attention

should be paid to crater and flank wear because they tend to progress more gradually than

the others, making it easier to track their development over time. Additionally, they are the

easiest forms of wear to measure.

35

Figure 16: Forms of wear (KLOCKE, 2011).

Even though one can observe certain anomalies to determine whether a tool is broken or no

longer cutting properly, it is important to replace the tool before it wears out completely to

prevent negative consequences. Measures of wear are used to determine the extent of

change in the tool's dimensions and can serve as a criterion for tool life (ISO 1993). These

criteria vary depending on the type of tool, such as high-speed, sintered carbide, or

ceramics. For sintered carbide cutting tools (as in this work), the criteria typically used are:

the average width of the flank wear land VBB = 0.3 mm (as shown in Figure 17) for regular

wear, and the maximum width of the flank wear land VBB max. = 0.6 mm if the wear is not

regular. Additionally, criteria such as the depth of crater wear KT = 0.2 mm and the

breakage of the crater can also be used. Wear measures are associated with visible changes

in the tool's wear patterns during cutting, as shown in Figure 17, which displays the

measures of wear defined by the International Standard ISO 3685(E) (1993), including the

width of the flank wear VBB, the depth of crater wear KT, and cutting-edge displacements

(SVα and SVγ).

36

Figure 17: Tool wear measures (ISO, 1993).

The notch, indicated as VBN in Figure 16, is not considered to be a form of abrasive wear

like regions A, B, and C. Notch wear typically occurs as a result of chemical reactions and

work-hardening of the workpiece surface from previous cuts. It affects both the flank and

rake face of the tool, and it happens outside of the tool-workpiece interface (ISO, 1993).

Figure 18 displays two types of wear: crater and flank wear. The rake face of the tool, where

the interface between the chip and tool occurs, experiences wear in the form of a crater.

Crater wear is the primary form of wear that is controlled in high-speed cutting, whereas

under economic conditions [27], flank wear is typically the measure that is assessed when

determining the condition of the tool. In this dissertation, the focus will be on assessing

flank wear, which occurs at the interface between the tool and workpiece on the flank face

of the tool. The dashed lines in Figure 18 represent the original state of the tool's rake and

flank face prior to wear.

37

Figure 18: Most used forms to control tool wear (BOOTHROYD; KNIGHT, 2006).

In addition to wear measurands like the width of flank wear and the depth of crater wear,

other tool-life criteria are also commonly used, including pre-defined limits on surface

roughness, geometry deviation, cutting forces, and spindle power, among others. The

summarized tool-life criteria are as follows [21]:

• Tool wear measurands (such as a limit on flank wear width);

• Workpiece result measurands (such as a limit on surface roughness);

• Process measurands (such as a limit on spindle electric power).

2.5 The machined surface topography
The surface of a machined part contains characteristics that are related to the part's function

and performance, such as corrosion resistance, fatigue strength, and tribological behavior

[28]. These characteristics are collectively known as surface integrity aspects, which are

divided into external topography and internal aspects, including microstructure, mechanical

properties, and residual stress. In this work, the focus is on the external topography aspect

of surface integrity, specifically surface roughness. Using the definitions proposed by

Davim (2010), a nominal surface is given by the original project design without considering

any deviation, and a real profile is a resultant surface read by measuring assessment

equipment (microscopes, profilometers, etc.) that considers the geometric deviations from

the nominal surface, which are listed in Table 2. These deviations are classified into form

and waviness errors, which are first and second orders, respectively, and roughness errors,

which are third to sixth orders. The form, waviness, and roughness profiles are depicted in

Figure 19, with the waviness profile (W-Profile) being the primary profile without

roughness, and the roughness profile (R- Profile) being the primary profile without

38

waviness, obtained using low-pass and high-pass filters, respectively (ISO,1997).

Table 2: Geometric deviations of machined surfaces according to DIN 4760 (1982).

Order Deviation Causes

1st

Form errors
Errors of machine tool slides, elastic deformations,

fixation of tool/workpiece, severe tool wear

2nd

Waviness
Eccentric rotation of workpiece/tool, vibrations, tool

wear, inhomogeneity of processed material

3rd Grooves Tool edge form, process kinematics, chip morphology

4th

Cracks

Tool-nose wear, built-up-edge formation, mode of

chip formation, galvanic procedures

5th
Crystalline

structure

Crystallization mode, irregularities due to chemical

reactions, corrosive damage

6th
Crystalline

formation

Physical and chemical alterations in the material’s fine

structure, deformations of lattice

Macroscopic geometric imperfections like form errors and waviness can be eliminated by

addressing their underlying causes, but microscopic geometric variations in the form of

roughness will always be present to some degree. While it may seem that minimizing the

deviation from the nominal surface will lead to better performance and function, it's

important to recognize that reducing roughness requires greater investment in time and cost

during the machining process. As a result, the ideal roughness level should be carefully

selected based on the specific application for each part [28].

39

Figure 19: Types of surface geometric deviations (KLOCKE, 2011; REGO, 2020).

2.6 Surface parameters
Surface parameters are used to describe the topography of a surface, and they need to

represent the entire surface statistically. In many industrial applications, surface values are

evaluated and used for quality control when inspecting manufactured parts. This study

utilized five of the approximately 60 available surface parameters, including Ra: Arithmetic

mean deviation, RSm: Mean width of profile elements, Rsk: Skewness, Rku: Kurtosis, and

Rt: Total height. These parameters can be classified into three groups based on their

function [29]:

• Amplitude parameters: show vertical aspects of the profile.

• Spacing parameters: show horizontal aspects of the topography.

• Hybrid parameters: show vertical and horizontal aspects of the topography.

The Ra parameter is the most used to evaluate the roughness of machined surfaces and is

calculated as the average deviation from the mean line (ISO, 1997). While it is widely used

due to its ability to measure and represent the general profile, it does have limitations. For

example, it does not differentiate between peaks and valleys and is not sensitive to slight

deviations, which can limit understanding of the profile. Therefore, other parameters should

be used in conjunction with Ra to obtain a more complete analysis of the surface [29].

Despite its limitations, Ra is helpful as it provides a standard index for comparing surfaces

quantitatively. Table 3 outlines the surface roughness parameters utilized in this study, their

symbols, and their mathematical representation according to standards.

40

Table 3: Definition of the surface roughness parameters used in this work according to ISO 4287 (1997)5.

(*) A new series of standards, the ISO 21920, was released at the end of 2021 combining and replacing many

of the previous surface roughness standards, such as the ISO 4287 that describes the main profile parameters.

However, the changes do not affect this dissertation.

The parameter Rsk (skewness) is related to the distribution of peaks and valleys on a

surface, with negative values indicating a predominance of valleys and positive values

indicating a predominance of peaks. Kurtosis, on the other hand, is related to surface

asperity and indicates the width of peaks and valleys. Values greater than 3 indicate a

surface with narrower peaks and valleys, while values smaller than 3 indicate a smoother

surface [30].

Table 4 displays the physical and functional properties of these surface roughness

parameters and emphasizes their importance in various applications, as discussed earlier in

41

the introduction.

Table 4: Functional properties of the studied surface roughness parameters (DAVIM, 2010).

Functional properties Ra Rsk Rku RSm Rt

Contact/Contact stiffness * * * ** **

Fatigue strength * * **

Thermal conductivity * **

Electrical conductivity * *

Reflexivity **

Friction and wear * ** ** * **

Lubrication * ** * **

Mechanical sealing * ** **

Fatigue corrosion * * *

Assembly tolerances * **

Note: two asterisks indicate a pronounced influence.

2.7 Surface roughness modeling in turning processes
It is crucial in this study to comprehend how surface roughness is predicted for machined

parts. Therefore, it is necessary to introduce the classical theoretical equations that have

been developed in the field to enable comparison with the models developed in this work.

Additionally, understanding the general effects of process parameters on surface finish

would be beneficial in comparing with the machining results.

2.7.1 Surface roughness modeling methods

In the pursuit of improving manufacturing performance while maintaining quality

requirements, practitioners and engineers attempt to predict process behavior based on their

experience and general conventions that may not be universally applicable. Researchers

have tried to simulate complex cutting phenomena and establish cause-and-effect models

between independent process variables (such as feed rate) and desired surface roughness

values [31]. Regarding surface quality requirements, Benardos and Vosniakos (2003)

categorized the effort to predict surface roughness into four research approaches. These

approaches include:

42

a) Machining theory and simulation: which uses numerical computation and machining

theory to simulate the cutting process based on tool properties and kinematics. This

approach yields good results, but it may overlook important factors that can affect surface

quality, such as tool wear and temperature.

b) Experimental/empirical investigations: which involves extensive testing to identify

correlations between changing parameters/conditions and the surface response. This

approach is conventional, but it can be difficult to replicate in other process conditions due

to the high complexity of the surface generation phenomenon.

c) Design of experiments: which is similar to experimental investigations but is much more

systematic and uses experimental planning to optimize available resources. Response

surface methodology (RSM) and Taguchi techniques for "design of experiments" (DoE) are

often used in this approach.

d) Artificial intelligence: which uses machine learning models to predict surface roughness

in machining. This approach yields excellent results and has the potential for use in online

monitoring and decision systems.

Additionally, He, Zong, and Zhang (2018) classified surface roughness prediction

approaches into two categories:

• Theoretical modeling methods: these models are based on physical observations of

turning processes, such as the periodic duplication of cutting tool edge/waviness,

material spring back, plastic side flow, and other surface formation mechanisms.

• Empirical parametric modeling methods: these models are based on data mining

regarding process parameters, such as the feed rate and surface roughness responses.

These methods include the Response Surface Methodology (RSM), Machine

Learning Algorithms, and Support Vector Machines (SVM), and can include other

models.

Both categorizations proposed by Benardos and Vosniakos (2003) and He, Zong, and

Zhang (2018) have similar concepts, but the latter is more concise and relevant to the

present work, as depicted in Table 5. Therefore, the models proposed in this work are

considered to be empirical parametric models according to the separation proposed by He,

Zong, and Zhang (2018).

43

Table 5: Complementarity of propositions for the surface roughness prediction effort’s separation.

He, Zong, and Zhang (2018) proposition Benardos and Vosniakos (2003) proposition

Theoretical modeling methods a) Machining theory and simulation

Empirical parametric modeling methods

b) Experimental/empirical investigations

c) Design of experiments

d) Artificial intelligence

2.7.2 Surface roughness influencing factors

Generating an actual surface in machining is a complicated process that involves various

factors such as the machining method and parameters [28]. Typically, the actual surface

roughness values are higher than those calculated using theoretical equations due to several

reasons including chip-formation characteristics, tool wear, chatter on the machine-tool

system, improper run-out on the part, and varying feed motion. Empirically perceived

factors that influence the response of surface roughness can be collected [32]:

• Factors relative to the machine tool: depth of cut (ap), feed rate (f), cutting speed

(vc), vibration amplitude acceleration (A/a), and vibration frequency (ω);

• Factors relative to the cutting tool: tool material, angles/inclinations, corner radius

(rε), and tool edge waviness (w1);

• Factors related to the workpiece material: material hardness, Young’s modulus,

grain size, orientation, inclusions, etc.;

• Factors related to the environment: coolant (type, pressure, etc.), temperature, and

dampness.

In turning processes, the feed rate is the primary factor that influences the average surface

roughness Ra, and there is a positive correlation between the feed rate and Ra (i.e., higher

feed rate results in higher Ra). Figure 20 illustrates the general effect of feed rate and cutting

speed on Ra. Lower cutting speeds can cause the formation of a built-up edge (BUE), which

is the adhesion of workpiece material to the tool's tip, making it harder than the tool. This

formation can significantly harm the surface roughness and the tool's condition. The depth

of cut, on the other hand, does not seem to consistently affect the surface roughness Ra [28].

44

2.7.3 Surface roughness theoretical models
In the last few decades, several theoretical models have been proposed to describe surface

roughness, particularly for the average height of the profile Ra and the total height of the

profile Rt. Table 6 lists some of the most well-known models [27],[28],[32], which consider

factors such as feed rate (f), corner radius (rε), and minor and principal cutting-edge angles

(κr and κr'). Figure 21 displays the ideal surfaces produced by a perfectly sharp tool (left)

and a rounded tool (right), highlighting the essential role of feed and tool geometry

(especially the corner radius) in the machined surface.

Figure 21: Surface generation influencing factors for a theoretical perfectly sharp (left) and rounded (right)

cutting tool (DAVIM, 2010).

Other recent models, which are less well-known and more computationally complex,

consider cutting dynamics factors such as vibration amplitude acceleration (A/a), vibration

frequency (ω), minimum chip thickness (hmin), and an artificial variable called SE that

indicates cutting stability [32]. However, the focus of this work is on proposing empirical

parametric models, as described in the previous section, and comparing these new models

Ra Ra

Feed Cutting speed

Figure 20: The general effect of the feed rate (f) and the cutting speed (vc) in the average

surface roughness (Ra) (DAVIM, 2010)

45

to the classical, simplistic theoretical models.

Table 6: Some theoretical equations of surface roughness Ra and Rt (BOOTHROYD; KNIGHT, 2006;

DAVIM, 2010; HE; ZONG; ZHANG, 2018).

 Theoretical equation Description Equation

 Ra for a rounded tool and given feed rate

(f) and corner radius (rε)

Eq. 14

Rt for a rounded tool

Eq. 15

Ra for a perfectly sharp tool. κr’ is the

minor tool cutting edge angle

Eq. 16

Rt for a perfectly sharp tool. κr is the tool

cutting edge angle

Eq. 17

𝑅𝑎 =
0.0321 ∗ 𝑓2

𝑟𝜀

𝑅𝑡 =
1

8
∗

𝑓2

𝑟𝜀

𝑅𝑎 =
𝑓 ∗ tan (𝑘𝑟′)

4 ∗ (1 + tan (𝑘𝑟′)

𝑅𝑎 =
𝑓

cot(𝑘𝑟) + cot (𝑘𝑟′)

46

Chapter 3 – Literature Review
Synopsis

This chapter deals with the literature reviews of some of the well-known papers in

the field pertaining to topics such as Machining, Turning, Machine Learning and

Surface Roughness prediction. These papers in addition with the work proposed by

Canal (2022) in his Master Degree thesis have been utilized as framework in

developing this thesis.

3.1 Literature Review
To properly research surface roughness prediction in turning using machine learning

algorithms, it's important to examine what scientists from around the world have already

accomplished. One way to contribute to the international research community is by

utilizing research databases such as Scopus and Web of Science. By conducting a

bibliometric search, we can gain insight into the topic's characteristics, key players, leading

publishers, current state, and potential avenues for exploration in surface roughness

prediction studies. Our literature review framework is based on Canal's (2022) Master

Degree Thesis.

Machine learning is rapidly expanding due to the increasing volume of available data and

the constant improvement of techniques to turn data into knowledge [33]. The surge of

machine learning research is depicted in Figure 22 as an exponential curve, highlighting

its significance to the global community and the growing awareness of its potential. The

curve also implies that the field has yet to reach its full potential, with plenty of room for

further development and discovery.

Figure 22: Publications regarding Machine Learning thematic through the years (Scopus)

47

The bibliometric results, shown in Figure 23, indicate that there is a significant amount of

research being conducted on Machine Learning in the fields of engineering, materials

science, and computer science, following the same exponential curve seen in Figure 22.

Within the intersection of these three fields, which is the focus of this study, there are 83

relevant documents. Scopus provides information on the countries and affiliations that are

producing these publications. Currently, India and China lead the research on this topic,

with the National Institute of Technology (NIT), a network of institutes across India,

having the highest number of published papers.

Although India and China account for more than 50% of the citations, other countries are

also increasing their citations year by year, suggesting that this topic is of interest to

researchers from around the world.

Figure 23: The bibliometric search of “surface roughness prediction in machining using Machine

Learning.”

Reading through 83 papers is a daunting task, and conducting a good literature review

requires selecting the works that are most relevant to the thesis. Therefore, it's important to

choose effective criteria to narrow down the number of relevant publications. Excluding

papers published between 2012 and 2016 based on their publication date alone may not be

the best approach as the field of machine learning is constantly evolving, with new research

being published each year, as shown by the exponential curve in Figure 22.

A combination of criteria was used to refine the list of relevant publications. The first filter,

shown in Figure 24, retained 28 papers, while the remaining 55 were assessed based on

48

their abstracts and subjectively determined relevance to the thesis. The second filter used

several criteria, including the machine learning approach, the machining process, the

workpiece material, whether it measured machining forces and tool wear, the number of

citations, and the novelty of the papers. This resulted in 33 papers being selected for a full

read, and ultimately, 19 papers were included in this literature review.

During the reading process, additional papers cited outside of the observation period were

found to be relevant and were also included. From the 19 papers read, conclusions were

drawn, which are discussed in the subsequent paragraphs.

Figure 24: Choosing fitting papers to read for literature review

Among all the works analyzed, the Machine Learning algorithms showed relatively low

levels of error when predicting on data that had never been seen before. Several of the

research papers examined reported correlation coefficients (R) exceeding 0.90 [34] [35]

[36]. Other works reached mean absolute percentage errors (MAPE) between 5% and 15%

[37] [38] [39] [40].

Some works achieved surprisingly low errors:

• a root mean squared error RMSE = 0.0005 and an R-squared of 0.99 using only 23

samples to train the model [40];

• an MSE = 0.0001 and R-squared of 0.99 using a training dataset of 600 samples

[41];

• a root mean squared percentage error RMSPE = 0.07% with a training dataset of

130 samples [42];

• a RMSE = 0.02 using only 23 training samples [43].

49

Several authors have achieved low error results by using a training set smaller than 55

samples, as cited in references [42] [34] [37] [39] [40] [35] [36] [44] [45]. However, in a

study conducted by Pontes et al. (2012), the performance of various ML models was

compared using different numbers of labeled training examples, ranging from 20 to 500

samples. The results suggested that generally, the ML model's performance in predicting

Ra is improved with an increased number of training samples.

Most of the papers use the same three inputs: cutting speed (vc), depth of cut (ap), and feed

rate (f), to predict some of the surface roughness parameters [47] [43] [34] [48] [38] [39]

[45] [46].

However, some papers included additional factors as inputs, such as:

• Cooling methods, whether wet or dry cut, coolant placement (through the tool or

outside), or different uses of minimum quantity lubrication (MQL) [35] [36] [49];

• Different cutting tools and workpieces with varying heat treatments [42];

• Cutting time, depth of cut, and cutting speed [37], [41];

• Cutting tool edge radius (rɛ) [40];

• Using depth of cut, feed rate, and cutting speed to predict the three components of

machining force (Fx, Fy, Fz) and three components of tool vibration (Vx, Vy, Vz),

then utilizing all nine factors as inputs to calculate the surface roughness Ra [44].

In terms of the results, most of the research studies examined developed Machine Learning

algorithms, with a particular focus on Artificial Neural Networks (ANN) models, to forecast

the surface roughness Ra [47] [41] [43] [44] [48] [42] [39] [40] [36] [49] [45]. Ra is the

most used parameter for surface roughness in practical applications, making it the most

sought-after prediction model.

However, some papers incorporated other outputs into their prediction models, such as:

• Predicting the resultant machining force and cutting tool flank wear width (VB) in

addition to surface roughness Ra [48];

• Predicting the tool condition in terms of flank wear width (VB) along with surface

roughness Ra [45];

• Predicting the machining time and cost [47].

Most of the research papers studied used RMSE and MSE as their cost functions [47] [41]

[43] [44] [38] [42] [40] [35] [36] [49].

50

Despite its popularity and open-source nature, Python was not used in many of the

reviewed papers.

3.2 Literature remarks
After examining recent developments, certain observations and patterns were made:

• The most frequently used process parameters were depth of cut, feed rate, and

cutting speed;

• The parameter most commonly modeled was the average height of the profile (Ra);

• A machine learning model's ability to predict Ra improves with a larger number of

training samples;

• The most commonly used cost functions were RMSE and MSE.

In addition to technical issues, there was a lack of transparency observed, which could

hinder reproducibility. For example, most of the reviewed papers did not provide a

description of the different machine learning models with their codes. A comprehensive

review paper on the history and trends of data science suggests that reproducibility of soft

computing research will be more widely practiced in the future, and that code and data must

be universally citable and systematically retrievable [50].

The aim of this dissertation is to make the process of constructing Surface Roughness

prediction models using machine learning algorithms as transparent as possible, by

providing full access to the data, code, and output results. Based on the literature reviewed,

two opportunities for contribution to this research area have been identified.

The first opportunity involves the tendency to produce more accurate models (with mean

absolute percentage errors ranging from 1% to 10%) using fewer training samples.

However, achieving minimal errors (MAPE < 2%) with very few training samples can lead

to overfitting [51]. Therefore, a potential solution to this problem is to increase the amount

of data without increasing the number of experiments.

The second opportunity comes from the fact that the ML models developed in previous

studies did not adequately consider cutting tool wear. Given that cutting tools inevitably

wear down when cutting metals, it is reasonable to assume that this phenomenon, which

can alter cutting kinematics, should be considered [32]. Therefore, investigating how tool

wear affects ML modelling of surface roughness configures a second opportunity for

contribution.

51

3.3 Thesis objectives
The main goal of this dissertation is to contribute to the understanding of using machine

learning to model metal cutting results. More precisely, the goal is to use Machine Learning

models to predict surface finish results in the turning process. Toward this broad objective,

the following specific objective stood out:

i. Statistically assess the effect of the factors (depth of cut, feed rate and tool condition,

in terms of flank wear width) on the responses surface finish roughness parameters

(Ra, Rsk, Rku, RSm, and Rt), and the machining forces;

ii. Develop ML models to predict the surface roughness parameter [Ra] and evaluate

it with a chosen error metric;

iii. Propose a strategy to augment available data without increasing experiments;

iv. Investigate the influence of the dataset size on the ML models’ prediction

performance;

v. Investigate the influence of the tool condition, flank wear width, on the ML models’

prediction performance;

vi. Compare the prediction performance of the ML models with one theoretical

equation.

52

 Chapter 4 - Material and Methods
 Synopsis
The work can be divided into two parts: machining experiments and the development of

Machine Learning algorithms. Figure 25 shows the two datasets obtained from two

machining procedures. Experiment 1 involved varying three factors at three levels, resulting

in a dataset of 324 labeled examples (factors, responses). Experiment 2 varied three factors

at different levels, producing a dataset of 288 labeled examples. The data from Experiment

1 and Experiment 2 were then used in the development of Machine Learning algorithms in

Chapter 6. The models differed in their inputs, training dataset size, and the dataset used

for training. Afterward, the models were analyzed to determine the impact of the training

set size and cutting tool wear on Surface Roughness parameters.

Figure 25: The overall activities. Machining experiments generated data; the results were statistically

analyzed; machine learning models were developed and investigated.

4.1 Machining experimental procedures
Although the content of this work is primarily focused on computational science, its

fundamental objective is to investigate the turning process in manufacturing. Thus, to

support the results obtained from the computer procedures, detailed explanations of the

machining experiments are provided. Two experiments were carried out as shown in Figure

25. The machining was carried out on a CNC turning center, using cutting fluid. All

experiments were conducted in the Competence Center in Manufacturing (CCM)

infrastructure, which is a laboratory at the Aeronautics Institute of Technology (ITA).

53

4.1.1 Experiment 1
The initial test investigated how three different process parameters affected the surface

finish outcome of the steel workpiece. The experiment was set up based on the design in

Table 7, with the cutting speed (vc), feed rate (f), and depth of cut (ap) being adjusted to

three different levels in a full factorial design 3³, resulting in a total of 27 unique conditions

being evaluated. In addition, the experiment was replicated, giving a total of 54 trials. When

multiple factors impact a response, factorial experiments are typically the most effective

approach. This approach ensures that all possible combinations of factor levels are

examined. The range for each parameter level was selected based on the tool manufacturer's

recommendations to simulate real production conditions and to prevent any possible

disturbances that could arise from out-of-range parameters.

Table 7: DoE of Experiment 1.

 Independent variables (factors)

Factors Symbol Units Level No. of levels

Cutting speed

(vc)

m/min

310

350

390

3

Feed rate (f) mm/rev 0.07 0.1 0.13 3

Depth of cut (ap) mm 0.25 0.5 0.8 3

The steel workpiece was prepped to enable each unique condition (combination of process

parameters) to be tested independently as a single machining operation, without being

impacted by any other runs. To accomplish this, grooves were made in the workpiece to

divide each machining area associated with each condition. This method also ensured that

measurements were taken in the correct location, as the test parts were physically separated.

The experimental design and acquired signals are illustrated in Figure 26.

54

Figure 26: Experiment 1 Scheme (left) and the signal acquired (right).

Each testing length, area, or machining space (example (a) in Figure 26) had a length of 12

mm. To increase the amount of available data, surface roughness was measured in six

different locations along the surface of the workpiece within the testing area. The

measurement locations were 60º apart from each other, with the center of the workpiece's

face serving as the reference point (Figure 26, right side). Measurements were taken

perpendicular to the surface texture, as recommended in industry standards and practical

manuals (ISO, 1996), and were randomly distributed throughout the 12 mm testing area to

minimize systematic errors and ensure representative results.

The grooves machined into the workpiece were the exact width of the grooving tool,

measuring 4 mm. Out of the total length of the workpiece, 12 testing areas were created,

with nine utilized in the experiment, and three held in reserve for potential reruns. The space

between the tailstock (or the right face of the workpiece) and the first testing area was too

small to accommodate the dynamometer plate and, therefore, had to be machined and could

not be utilized.

One factor that was varied in the experiment was the depth of cut. Randomizing the depth

of cut could pose a problem, as machining a testing area with a smaller diameter than the

previous one could result in a collision during the subsequent runs (Figure 27, Case 2).

While there was enough space between each sample area to approach the cutting tool in

each run, it was preferable to avoid the risk of collision. Consequently, the depth of cut was

kept constant for each of the nine conditions throughout the workpiece length (Figure 27,

Case 1). This was accomplished by grouping the experiment design into "9 + 9 + 9"

55

segments.

Figure 27: Case 1 (left) depicts the adopted procedure, and Case 2 (right) depicts a collision risk situation.

The first experiment was designed with a randomized approach to reduce the influence of

extraneous factors and maintain the observations as independent random variables. Figure

28 displays the actual sequence of the tested conditions in Experiment 1. Randomization

was applied both within and between groups. The cutting speed, with three levels, was used

to form sub-groups (orange box) within the depth of cut groups (blue box), while the feed

rate was randomized within the sub-groups. Thus, the effect of the feed rate was studied

within each sub-group, the effect of the cutting speed was studied between sub-groups, and

the effect of the depth of cut was studied between groups.

The nine testing areas were individually machined with a stop between runs. Starting from

group 1, the following steps were followed:

1. initiate cutting with the current condition's process parameters (in the first case,

condition 4, position a),

2. measure forces during the cut,

3. after completing the cut, measure surface roughness six times, varying the

measurement position,

4. continue cutting the subsequent testing area until all conditions have been tested,

5. Move on to the next group and repeat steps 1-5 until all groups have been tested.

56

f

Group 1 (2nd replica)

Sub-group 1 Sub-group 3 Sub-group 2

0.07 0.13 0.10 0.07 0.10 0.13 0.07 0.13 0.10

vc 310 310 310 390 390 390 350 350 350

ap 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Cond. 1 3 2 7 8 9 4 6 5

4.1.2 Experiment 2
Experiment 2 aimed to examine how the condition of the cutting tool, as measured by the

flank wear height VB, affected the surface finish results. The setup for this experiment was

the same as that of Experiment 1, which can be seen in Figure 26 (left side), with the testing

areas divided by grooves. However, Experiment 2 used fewer testing areas and stopped at

position (h) on the workpiece. Additionally, an extra measurement system was used in

Experiment 2 to evaluate the tool's wear. The results of this experiment are presented in

Figure 29.

Figure 29: Information acquired at Experiment 2.

f

Group 1
Sub-group 1 Sub-group 3 Sub-group 2

0.13 0.07 0.10 0.07 0.13 0.10 0.10 0.13 0.07
vc 310 310 310 390 390 390 350 350 350
ap 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Cond. 3 1 2 7 9 8 5 6 4

f

Group 2
Sub-group 5 Sub-group 6 Sub-group 4

0.07 0.13 0.10 0.13 0.07 0.10 0.10 0.13 0.07
vc 350 350 350 390 390 390 310 310 310
ap 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Cond. 13 15 14 18 16 17 11 12 10

f

Group 2 (2nd replica)
Sub-group 6 Sub-group 5 Sub-group 4

0.13 0.10 0.07 0.07 0.10 0.13 0.07 0.13 0.10
vc 390 390 390 350 350 350 310 310 310
ap 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Cond. 18 17 16 13 14 15 10 12 11

f

Group 3
Sub-group 7 Sub-group 9 Sub-group 8

0.10 0.07 0.13 0.13 0.10 0.07 0.10 0.13 0.07
vc 310 310 310 390 390 390 350 350 350
ap 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Cond. 20 19 21 27 26 25 23 24 22

f

Group 3 (2nd replica)
Sub-group 9 Sub-group 8 Sub-group 7

0.10 0.13 0.07 0.10 0.13 0.07 0.13 0.07 0.10
vc 390 390 390 350 350 350 310 310 310
ap 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Cond. 26 27 25 23 24 22 21 19 20

Feed direction

Workpiece

Figure 28: Randomization of the experiment and groups’ division.

57

Before conducting Experiment 2, a pre-analysis of the results from Experiment 1 was

carried out. As a result, the cutting speed was kept constant since it was found to have a

minimal impact on the surface finish response. The depth of cut was only varied in two

levels, as it had less influence on the surface finish compared to the feed rate. However, the

depth of cut was still varied more than the cutting speed, as it was found to have a greater

impact on the machining forces. The feed rate was varied four times as it was discovered

to be the most influential factor on surface finish. Table 8 depicts the design of Experiment

2.
 Table 8: DoE of Experiment 2.

 Independent variables (factors)

Factors Symbol Units Level No. of levels

Cutting factors

Cutting speed (vc) m/min 350 1

Feed rate (f) mm/rev 0.07 0.09 0.11 0.13 4

Depth of cut (ap) mm 0.25 0.5 2

Cutting tool factors

Tool condition (VB) mm 0 0.1 0.3

The categorical levels of tool condition (VB) used in Experiment 2 were approximated for

the sake of simplification. The actual flank wear size of each cutting tool was slightly

around these values. New tools, such as tool 44 and 53, had a VB of 0.000 mm, while mid-

life tools like tool 13 and 33 had VB of 0.102 mm and 0.096 mm, respectively. End-life

tools, such as tool 81 and 23, had VB of 0.300 mm and 0.305 mm, respectively.

Figure 30 shows the sequence of tool conditions tested during Experiment 2, with runs

randomized in the same manner as in Experiment 1. The depth of cut was kept constant at

each level to avoid collision, as explained in Figure 27, and replica conditions were grouped

and randomized within each level. The tool condition was tested through six levels, with

Levels 1 and 2 using new cutting tools. Levels 3 and 4 used mid-life tools with flank wear

between 0.1 mm and 0.15 mm. Levels 5 and 6 used end-life cutting tools with a VB of more

than or equal to 0.3 mm but not exceeding 0.35 mm.

58

Figure 30: The sequence of conditions tested in Experiment 2. Three different tool conditions were tested

through the levels.

Figure 31 illustrates the experimental setup utilized in Experiment 2. The assessment of

tool wear (represented in blue) was conducted with a digital microscope mounted on a

magnetic base that was held in the same position after each run and pointed towards the

cutting tool's flank. The surface roughness measurement was performed in the same way as

in Experiment 1. Figure 31 also displays the setup for Experiment 1, except for the tool

wear assessment system.

In Experiment 2, the data was collected using the same approach presented in Experiment

1, measuring the surface roughness at six different locations after each cut. For each surface

roughness parameter, 288 labeled pairs of input and response were obtained, resulting in a

total of 1440 pairs of labeled examples collected in Experiment 2 considering the five

surface roughness parameters.

59

Figure 31: Experiment 2 setup. Zoom-out view (left) shows the whole setup, and the zoom-in (right) shows

the digital microscope pointing at the tool to measure flank wear.

4.1.3 Workpiece material and cutting tool
This section provides information about the material and cutting tool used in Experiment 1,

and Experiment 2. The material used in all experiments was the AISI H13 steel, which was

manufactured by Villares Metals. The chemical composition of the steel is provided in

Table 9, and its average hardness is 200HV, measured transversally to the bar. This steel is

commonly used in plastic injection molds due to its good mechanical properties,

machinability, and wear resistance, among other characteristics [52].

Table 9: AISI H13 steel chemical composition (VILLARES METALS, 2006).

Element C Si Mn Cr Mo V

Percentage (%) 0.40 1.00 0.35 5.20 1.50 0.90

The cutting tool used in the experiments was a commercial model manufactured by Sandvik

Coromant, with a hard metal substrate covered with TiCN, Al2O3, and TiN. This tool has

six cutting edges and is recommended for finishing applications. Further specifications of

the cutting tool can be found in Table 10.

60

Table 10: Cutting tool specifications.

The tool shank (holder) used has code ISO: MTJNL 2020K 16M1 and is also manufactured

by Sandivik Coromant. The grooving tool for preparing the workpiece was a TaeguTec TDJ

3 TT9080.

4.1.4 Machining forces processing
The force measurement system used in both Experiment 1 and Experiment 2 consisted of a

Kistler Type 9265B dynamometer, a Type 5070 charge amplifier, a Type 2825A acquisition

software, a computer, and other peripherals including a highly insulated cable, PCI

interface, connection cable, and acquisition plate (A/D), as shown in Figure 32. During

machining, the system collected data on the machining forces, which were later processed

using the Kistler DynoWare software Type 2825A (as shown in Figure 32). The beginning

and end of the cutting were removed to avoid erroneous force readings caused by the

acceleration of the cutting tool and the tool-workpiece engagement. The software then

calculated the mean value of the forces in the cutting zone, which was sufficient to describe

the continuous turning process. The force values were reasonably equally distributed

around the mean value line, so there was no need for smoothing or filtering, as these

techniques did not significantly affect the observed mean value of the forces.

61

Figure 32: Force measurement acquisition system: connection configuration.

 Part used to calculate the mean force

The Kistler dynamometer system used in the experiments collected the three components

of the resultant force, which are the cutting force (Fc) on the X-axis, the passive force (Fp)

on the Y-axis, and the feed force (Ff) on the Z-axis, as shown in Figure 34. The mean values

of these forces were collected and processed in the Kistler DynoWare software. The

resultant force was then calculated using Equation 6.

ap = 0.25 mm
f = 0.07 mm/ver
Fx = 55.86 N (mean)

Figure 33: Machining forces visualization and means assessment. A discrete value was selected from the
force time-series measurements: the mean.

62

Figure 34: The machining force components measured in experiments 1 and 2.

4.1.5 Tool wear assessment
The wear of the tool flank was evaluated using a Dino-Lite model AM4113ZT digital

microscope, as shown in Figure 35. The microscope was positioned on the workpiece using

a magnetic base, allowing the tool wear to be measured without having to remove the tool

from the machine.

4.1.6 Surface roughness processing
In order to measure the surface roughness, a Mitutoyo portable roughness tester model

Surftest SJ-210 was used, as shown in Figure 36. The tester had a diamond tip with a radius

of 2 µm and an angle of 60º. The surface roughness was measured in a direction

Dino-Lite AM4113ZT

Figure 35: Tool wear assessment with a digital microscope.

Measurement setup (left) and result example (right).

63

perpendicular to the theoretical surface, along the direction of the feed rate.

In order to read and interpret the surface roughness values, for the Machine Learning

models, data must be organized in tables or data frames. However, the surface roughness

measurements obtained in Experiment 1 and Experiment 2 were initially saved in text

format (TXT) in a memory card with non-numeric characters attached to them. There were

824 documents, with each measurement corresponding to one document, and five surface

roughness parameters were chosen for each measurement, resulting in 4120 values that

needed to be collected from the text files and organized into data frames. To avoid errors

and undesired outliers, an automated program was developed in Python to read and select

the values from the TXT files and write them into Excel and comma-separated value format

files (XLSX and CSV). The workflow from measuring to accessing the individual surface

roughness values is shown in Figure 37.

Roughness portable tester
Mitutoyo Surftest SJ-210

Part of roughness
measurement
saved file

Figure 36: Mitutoyo portable roughness tester model Surftest SJ-210.

Measurement setup (left) and result example (right).

64

Figure 37: Surface roughness data processing-to-machine-learning workflow.

4.1.7 Strategy to increase available data
A strategy was used in both Experiment 1 and Experiment 2 to increase the amount of

available data without conducting additional experiments. This approach has been

mentioned earlier in the respective experiment sections, but it is emphasized here for

clarification. The strategy involved measuring the surface roughness (the main dependent

variable) six times for each combination tested, rather than conducting additional

experiments.

65

Chapter 5 – ML algorithms and Evaluation metrics
 Synopsis
For the scope of our study, we will be focusing on the regression analysis from

supervised learning to train and test various ML models to predict the target variable

“Ra”. The algorithms we will be covering ahead:

• Linear Regression

• Decision Tree Regression

• Random forest Regression

• Bayesian Linear Regression

• KNN Regression

• Kernel Ridge Regression

• Neural Network Regression

To assess the effectiveness of the model, specific performance evaluation metrics were

utilized. The ensuing list enumerates the metrics used:

• Mean Squared Error (MSE)

• Root Mean Square Error (RMSE)

• Mean Absolute Error (MAE)

• Coefficient of Determination (R2)

• Explained Variance

5.1 Evaluation Metrics

5.1.1 Mean Squared Error (MSE)
In mathematics, the mean squared error (MSE) of an estimator is a metric that calculates

the average of the squares of the errors, i.e., the average squared difference between the

predicted and actual values. The MSE is a probability function that represents the estimated

squared error loss value. Typically, it is non-negative, and values closer to zero indicate

better performance [53]. The mean squared error function measures the mean of the squared

(quadratic) prediction error or loss value, which is a probabilistic metric [54].

66

Equation 17: Mean Squared Error

5.1.2 Root Mean Square Error (RMSE)
The standard deviation of the residuals is equivalent to the root mean square error (RMSE).

Residuals are an indicator of the distance between data points and the regression line, while

RMSE indicates the distribution of these residuals. In other words, it illustrates the

concentration of data along the best-fit line [55]. RMSE is calculated by taking the square

root of the average of the squared differences between actual and predicted observations

[56].

Equation 18: Root Mean Squared Error

5.1.3 Mean Absolute Error (MAE)
In a series of predictions, the mean absolute error (MAE) calculates the average magnitude

of the errors without considering their direction. It is the average of the absolute differences

between the forecast and the actual observation over the test set, where each individual

difference has equal weight [56].

Equation 19: Mean Absolute Error

5.1.4 Coefficient of Determination (R2)
The coefficient of determination, denoted as R2, provides an indication of how well a model

fits the data and its ability to predict unseen samples by measuring the proportion of

variance in the target variable that can be explained by the model. It is important to note

that R2 is dataset-specific and cannot be compared across different datasets. The maximum

value of R2 is 1.0, and a score close to 1.0 indicates a good fit, while a score close to 0.0

indicates a poor fit. A constant model that always predicts the mean value of the target

67

variable, regardless of the input features, will have an R2 score of 0.0. However, R2 can be

negative when the numerator is greater than the denominator, the fraction will be greater

than 1, therefore the R-squared coefficient will be less than zero [54].

Equation 20: Coefficient of Determination (R2)

5.1.5 Explained Variance
Knowing the amount of initial variance that can be explained by the model in a linear

regression problem clarifies the extent to which the data is approximated. This concept also

helps us understand the extent to which we lose information when approximating the

dataset. A minimal value of explained variance (EV) indicates that there are significant

fluctuations in the data generation process that cannot be captured by a linear model. EV is

a useful metric that is similar to R2 [57]. The optimal value of EV is 1, which indicates that

the model can explain all the variance in the target variable.

Equation 21: Explained Variance

5.2 ML algorithms

5.2.1 Linear Regression
Linear regression is a modeling technique that assumes a linear connection between the

input factors and the output variable. In the case of a singular input variable, it is known as

simple linear regression, while in the case of several input variables, it is referred to as

multiple linear regression. To determine the coefficients in simple linear regression,

statistical methods can be used, which involve calculating statistical properties such as

means, standard deviations, correlations, and covariance from the available data. It is

necessary to have access to all the data to perform these calculations [58].

5.2.2 Decision Tree Regression
Decision tree learning is a popular technique utilized in data mining [59] that aims to

68

develop a model that can anticipate the value of a target variable based on multiple input

variables. This approach constructs a regression model in the form of a tree structure. It

partitions a dataset into increasingly smaller subsets while simultaneously building an

associated decision tree. The final product is a tree that consists of decision nodes and leaf

nodes. A decision node has two or more branches, each of which represents values for the

attribute tested. On the other hand, a leaf node indicates a decision about the numerical

target. The highest decision node in a tree, which corresponds to the most reliable predictor,

is known as the root node. Decision trees can process both categorical and numerical data

[60]. Here are some important terminologies related to Decision tree:

i. Root Node: This represents the entire sample or population, which is further divided

into two or more homogeneous subsets.

ii. Splitting: The process of dividing a node into two or more sub-nodes is known as

splitting.

iii. Decision Node: When a sub-node splits into further sub-nodes, it is referred to as a

decision node.

iv. Leaf/Terminal Node: A node that does not split is called a leaf or terminal node.

v. Pruning: The process of removing sub-nodes of a decision node is called pruning.

It can be thought of as the opposite of splitting.

vi. Branch/Sub-Tree: A subsection of the entire tree is referred to as a branch or sub-

tree.

vii. Parent and Child Node: A node that is divided into sub-nodes is called the parent

node of the sub-nodes, while the sub-nodes are the children of the parent node.

Figure 38: Decision Tree structure (source: www.datacamp.com)

69

5.2.3 Random Forest Regression
Random forest is a type of Supervised Learning algorithm that employs the ensemble

learning approach for classification and regression tasks [61]. Ensemble methods involve

combining the predictions of multiple machine learning algorithms to produce more

accurate results than any individual model. An ensemble model is comprised of several

models working together to make better predictions.

Random forest is a bagging technique and not a boosting technique. In a random forest,

decision trees are run in parallel with no interaction between them during the tree-building

process. Bootstrap, also known as bagging, refers to the process of random sampling with

replacement. Bootstrap helps to better understand the bias and variance of the dataset by

randomly sampling small subsets of data from the original dataset. It is a general procedure

used to reduce the variance of algorithms with high variance, such as decision trees.

Bagging allows each model to run independently and then aggregates the outputs without

giving preference to any model.

Random forest creates multiple decision trees during the training phase and outputs the

class that has the highest frequency of occurrences (for classification) or the mean

prediction (for regression) of the individual trees. A random forest is a meta-estimator that

aggregates several decision trees with some beneficial modifications [62]. For instance, the

number of features that can be split at each node is limited to a certain percentage of the

total, which helps prevent the ensemble model from relying too heavily on any individual

feature and makes fair use of all potentially predictive features. Additionally, each tree

selects a random sample from the original dataset when generating its splits, adding another

element of randomness that helps to prevent overfitting.

Figure 39: Random Forest Structure (source: www.researchgate.net)

Features and Benefits of Random Forest are:

70

• It is one of the most precise machine learning algorithms available and can produce

a highly accurate classifier for many datasets.

• It runs efficiently on large databases.

• It can handle thousands of input variables without needing to delete any variables.

• It can provide estimates of the importance of variables in classification.

• It generates an unbiased estimate of generalization error as it builds the forest.

• It has an effective method for estimating missing data and can maintain accuracy

when a large portion of the data is missing.

The Disadvantages of Random Forest are:

• It can overfit on datasets with noisy classification/regression tasks.

• It is biased in favour of categorical variables with more levels, so the variable

importance scores generated by the algorithm may not be reliable for this type of

data.

5.2.4 Bayesian Linear Regression
In statistics, Bayesian linear regression is an analytical method for linear regression that

applies Bayesian inference to its statistical analysis. This method provides explicit

outcomes for the posterior probability distributions of the model's parameters, given that

the regression model has normally distributed errors and a specific prior distribution is

assumed [63]. Bayesian regression techniques are also useful for integrating regularization

parameters into the estimation process, without relying on fixed values, but rather

dynamically tuning them to the available data.

Some of the benefits of Bayesian regression are:

• its flexibility to adapt to the available data and

• its capacity to integrate regularization parameters into the estimation procedure.

Nonetheless, a possible downside of Bayesian regression is:

• the time-consuming nature of the model's inference.

5.2.5 K-Nearest Neighbours Regression
K-Nearest Neighbours is a simple algorithm that stores all available cases and predict the

numerical target based on a similarity measure (e.g., distance functions). KNN has been

used in statistical estimation and pattern recognition already in the beginning of 1970’s as

71

a non- parametric technique [64].

A simple implementation of KNN regression is to calculate the average of the numerical

target of the K nearest neighbours. Another approach uses an inverse distance weighted

average of the K nearest neighbours. KNN regression uses the same distance functions as

KNN classification.

Choosing the optimal value for K is best done by first inspecting the data. In general, a large

K value is more precise as it reduces the overall noise; however, the compromise is that the

distinct boundaries within the feature space are blurred. Cross-validation is another way to

retrospectively determine a good K value by using an independent data set to validate your

K value. The optimal K for most datasets is 10 or more. That produces much better results

than 1-NN.

5.2.6 Kernel Ridge Regression
Kernel ridge regression (KRR) is a combination of ridge regression, which uses linear least

squares with l2-norm regularization, and the kernel trick. It learns a linear function in the

space created by the kernel and the data, resulting in a non-linear function in the original

space when using non-linear kernels. The model learned by KRR is the same as that used

in support vector regression (SVR), but different loss functions are used. KRR utilizes

squared error loss, while SVR uses epsilon-insensitive loss, both combined with l2

regularization. While fitting a KRR model can be accomplished in closed-form and is

typically faster for medium-sized datasets than SVR, the learned model is non-sparse and

thus slower than SVR at prediction time since SVR learns a sparse model for epsilon > 0

[65].

5.2.7 Neural Network Regression
A neural network is a machine learning technique or algorithm that attempts to imitate the

functioning of neurons in the human brain to facilitate learning. Initially, a neural network

may be unstable, but after iterating through the data, it adjusts itself in such a way that its

accuracy improves [66].

72

Neural networks can be reduced to regression models, as a neural network can mimic any

type of regression model. Even a very simple neural network with only one input neuron,

one hidden neuron, and one output neuron is equivalent to a logistic regression. The neural

network takes several dependent variables as input parameters, multiplies them by their

weights (equivalent to regression coefficients), and runs them through a sigmoid activation

function and a unit step function that closely resemble the logistic regression function with

its error term [67]. When this neural network is trained, it will perform gradient descent to

find the coefficients that better fit the data, arriving at the optimal linear regression

coefficients (or optimal weights in neural network terms) [67].

Figure 41: Regression in neural networks (source: www.medium.com)

Figure 40: A simple feed neural network (source: www.medium.com)

73

Chapter 6 – Model Implementation
 Synopsis
The opening section of this chapter focuses on the instruments employed in executing the

model. The subsequent section deals with data analysis and facilitates comprehension of

the data mining process. To enhance the accuracy of Surface Roughness prediction and

simplify the process, it is essential to prepare the data carefully. The outlined procedure is

similar for both Experiment 1 and Experiment 2, with a few exceptions that will be

discussed in the following paragraphs.

6.1 Programming Language
To execute the thesis, Python has been utilized as the primary programming language.

Python is a high-level, interpreted, and object-oriented programming language with

dynamic semantics. Python's syntax is straightforward, and its emphasis on readability

reduces the cost of program maintenance. Modules and packages are supported, which

encourages modularity and code reuse. Python is a widely popular, general-purpose, and

high-level programming language, ranking in the top 10 according to the latest TIOBE

Programming Community Index (Figure 42). The language's simple syntax rules contribute

to keeping the code base readable and applications maintainable. Python is preferred over

other programming languages for several reasons [68]:

• Readable and Maintainable Code: Python's syntax rules enable the expression of

concepts without additional code, emphasizing code readability by using English

keywords instead of punctuation. The clean and readable code base of Python

reduces the time and effort required to maintain and update the software.

• Compatible with Major Platforms and Systems: Python is compatible with many

operating systems and platforms. Its interpreted nature allows for running the same

code on different platforms without the need for recompilation.

• Open-Source Frameworks and Tools: Python's open-source nature allows developers

to reduce software development costs significantly. Several open-source Python

frameworks, libraries, and development tools can also help developers to accelerate

development time without increasing development costs.

• Adopt Test Driven Development: Python is a suitable language for rapid creation of

74

software application prototypes. By adopting the test-driven development (TDD)

approach, it becomes possible to perform coding and testing simultaneously in

Python.

• Python's Standard Library: Python's extensive and robust standard library sets it apart

from other programming languages. The library offers a broad range of modules that

can be tailored to suit specific needs. With each module providing additional

functionality to the Python application, we can save time and effort by avoiding the

need to write new code. Python has a wealth of libraries and frameworks that can

simplify the implementation of AI and ML algorithms. These libraries are pre-written

code that can be used to solve common programming tasks. Python offers a wide

variety of libraries for artificial intelligence and machine learning:

• Keras, TensorFlow, and Scikit-learn for machine learning;

• NumPy for high-performance scientific computing and data analysis;

• SciPy for advanced computing;

• Pandas for general-purpose data analysis;

• and Seaborn for data visualization.

Figure 42: US, Google searches for coding languages,

100 = highest annual traffic for any language.
(source: www.kreyonsystems.com)

6.2 Integrated Development Environment
An Integrated Development Environment, also known as an IDE, is a tool that allows

programmers to bring together various components of creating a computer program. IDEs

75

improve the efficiency of programmers by integrating common activities involved in

software development into a single application, including editing source code, building

executable files, and debugging [69].

For the implementation of this thesis, Spyder has been utilized as the IDE for running

Python. Spyder is a powerful scientific environment created for Python, and tailored to the

needs of scientists, engineers, and data analysts. It combines the advanced features of a

comprehensive development tool, such as editing, analysis, debugging, and profiling, with

the data exploration, interactive execution, deep inspection, and visual representation

capabilities of a scientific package [70]. Spyder offers the following functionalities [71]:

• An editor equipped with syntax highlighting, introspection, and code completion;

• Support for multiple IPython consoles;

• The capability to explore and modify variables using a graphical user interface;

• A Help pane that can retrieve and display rich text documentation on functions,

classes, and methods automatically or on request;

• A debugger that is linked to IPdb for executing code step-by-step;

• A run-time profiler for evaluating code performance;

• Project support that allows working on multiple development projects

simultaneously;

• A "Find in Files" feature that allows for full regular expression search within a

specified scope;

• An online help browser that enables users to search and view Python and package

documentation within the IDE;

• A history log that records all user commands entered in each console;

• An internal console that permits introspection and control over Spyder's operation.

6.3 Used Libraries
A Python library is a compilation of functions and methods that enable users to execute a

variety of tasks without having to write their own code. Below is a summary of the libraries

utilized.

6.3.1 Matplotlib
Matplotlib is a Python library that allows users to generate 2-dimensional graphs and plots

76

using Python scripts. This library is particularly useful for mathematical or scientific

applications that require multiple axes in a representation, as it enables users to create

multiple plots simultaneously. Additionally, Matplotlib can be used to manipulate various

characteristics of figures [72]. Features of Matplotlib include:

• The ability to create high-quality figures that are suitable for publication in hardcopy

formats across different interactive platforms.

• Compatibility with various toolkits such as Python Scripts, IPython Shells, Jupyter

Notebook, and other graphical user interfaces.

• Integration with third-party libraries such as seaborn, ggplot, and other projection

and mapping toolkits such as basemap.

6.3.2 NumPy
NumPy is a widely used package for array processing in Python. It offers a range of tools

for managing arrays of different dimensions, as well as matrices. It is known for being fast

and efficient [72]. Features of NumPy include:

• The ability to perform modern mathematical implementations on large amounts of

data, making project execution easier and hassle-free.

• NumPy creates new arrays when the shape of any N-dimensional array is changed

and deletes the old ones.

• NumPy provides useful tools for integration with programming languages such as

C, C++, and others.

• NumPy offers functionalities that are comparable to MATLAB, both allowing users

to operate at a faster speed.

6.3.3 SciPy
SciPy is a python library that is open-source and can be utilized for both technical and

scientific calculations. This python library is free and is a great fit for machine learning.

However, SciPy is not only limited to computation tasks, it is also a preferred choice for

image editing [72]. Features of SciPy:

• SciPy comes with different modules that are appropriate for optimization,

integration, linear algebra, and statistics.

77

• SciPy efficiently utilizes NumPy arrays for general data structures, as NumPy is an

integral part of SciPy.

• Finally, the SciPy community is always there to assist us with regular questions and

solve any issues that may arise.

6.3.4 Pandas

Pandas is a software package for Python that is essential to learn for data science. It is

specifically designed for the Python language, and is a fast, demonstrative, and adaptable

platform that offers user-friendly data structures. With Pandas, we can effortlessly

manipulate any type of data, including structured or time-series data [72]. Some of the key

features of Pandas include:

• the provision of Series and DataFrames, which allow for easy organization,

exploration, representation, and manipulation of data.

• Furthermore, Pandas has some unique features that enable us to handle missing data

or values with precision.

• Pandas also provides a collection of built-in tools that allow us to read and write

data in different web services, data structures, and databases.

• Additionally, Pandas supports a wide range of formats, including JSON, Excel,

CSV, HDF5, and many more.

6.3.5 Scikit Learn
Scikit learn is a simple and useful python machine learning library. Most of it is written in

Python, but includes also Cython, C, and C++. It is a free machine learning library. It is a

flexible python package that can work in complete harmony with other python libraries and

packages such as NumPy and SciPy [72]. Features of Scikit Learn:

• Scikit Learn comes with a clean and neat API. It also provides very useful

documentation for beginners.

• It comes with different algorithms: classification, clustering, and regression. It also

supports random forests, k-means, gradient boosting, and others.

• This package offers easy adaptability.

• Scikit Learn offers easy methods for data representation. Whether we want to

present data as a table or matrix, it is all possible with Scikit Learn.

78

6.4 Pipeline for model implementation
The depicted image (Figure 43) illustrates the necessary steps to implement the ML models,

with the process being identical for both Exp 1 and Exp 2, except for a few variations that

will be emphasized when needed in the next paragraphs. Moving forward, the upcoming

paragraphs on model implementation will pertain to Exp1 specifically.

6.4.1 Importing Data
The first step was to arrange the measured responses (also known as dependent variables,

output, or labels) and the factors (also known as independent variables, inputs, or features)

in the same tables so that they could be easily read by the program. This involved extracting

surface roughness and forces, as demonstrated in sections 4.1.5 and 4.1.7, and creating

spreadsheets in Comma Separated Values (CSV) format using Python. These spreadsheets

included:

• the relevant values from the experiments,

• the experimental factors,

• the responses.

The code used to import the data is presented below for the reader's reference:
import os
for dirname, _, filenames in os.walk (r'C:\Users\vitus\Desktop\TESI\File csv'):
 for filename in filenames:
 print(os.path.join(dirname, filename))
exp_file_1 = 'Exp1.csv'
exp_complete_1 = pd.read_csv(r'C:\Users\vitus\Desktop\TESI\File csv\Exp1.csv ')

Code Snippet 1: Importing Data

Figure 43: Model Implementation Pipeline

79

6.4.2 Data Cleansing
Data cleaning, also known as data cleansing, is the process of identifying and correcting or

removing errors, inconsistencies, duplicates, and other forms of inaccuracies in a dataset.

The goal of data cleaning is to improve the quality and accuracy of the data, ensuring that

it is reliable, consistent, and usable for analysis, modeling, and decision-making purposes

[73]. This process often involves a combination of manual and automated techniques,

including data profiling, data standardization, data validation, and data enrichment.

6.4.2.1 Missing Values
Based on the documentation for the dataset presented in the previous chapter, it is possible

that some information from sections 4.1.5 and 4.1.7 may not have been properly extracted

during the experiment or that there may be missing data. No entry should be recorded if

measurements were not taken. To address this issue, the listwise deletion method, which

removes all data for an observation that has one or more missing values, was implemented.

This is a good approach, especially if the missing data is limited to a small number of

observations, and those cases can be eliminated from the analysis [74].

Out of 4320 values in Experiment 1, there were no non-numeric values and missing values

were not found.

To find and delete rows containing possible missing values is used the following code:
exp_complete_cleaned_1 = exp_complete_1.dropna()

Code Snippet 2: Missing values deletion

6.4.2.2 Drop unnecessary values
Table 11 displays the essential information for experiments, including experiment

identification, replica, cutting tool used, group and subgroup (as illustrated in Figure 28),

position in workpiece length (as shown in Figure 26), condition, tool condition (which

was consistently zero in Experiment 1 since all tools were new with a wedge dimension

VB = 0.0 mm), test length, initial and machined diameters, cutting time (not applicable

for Experiment 1), surface roughness measurement angle indicating the angular position

in which the surface roughness was accessed on the workpiece (as indicated in Figure 26),

and run identification (comprising information from the other columns).

These information values in Table 11 maintain data traceability and are necessary for

80

organizing previous data and accessing a particular value, although they are not utilized

in the ML algorithms.

In Experiment 2, the Tool condition column was not removed because the tools' condition

(VB) was no longer at 0 for all the Tools, and its information was used in the ML

algorithms.

Table 11: Experiment 1 general information.

Exp

Replica

Group

Subgroup

Position

Condition Tool

Condition

Length Initial

diameter
Machined
diameter

Cutting
time

R
measur
angle

Run ID

1 1 1 2 a 4 0 12 94 93.5 na 0 1_021_G1_4_a
1 1 1 2 a 4 0 12 94 93.5 na 60 1_021_G1_4_a
1 1 1 2 a 4 0 12 94 93.5 na 120 1_021_G1_4_a
1 1 1 2 a 4 0 12 94 93.5 na 180 1_021_G1_4_a
1 1 1 2 a 4 0 12 94 93.5 na 240 1_021_G1_4_a
1 1 1 2 a 4 0 12 94 93.5 na 300 1_021_G1_4_a

The code used to drop unnecessary values is presented below for the reader's reference:

exp_out_1 = exp_complete_cleaned_1.copy()
exp_out_1.drop(['Run_ID', 'Experiment', 'TCond’,

‘Replica','Group', 'Subgroup','Position', 'Condition','Machined_length', 'Init

_diameter', 'Final_diameter', 'CTime', 'R_measurement'],axis=1, inplace=True)

Code Snippet 3: Data Cleansing

6.4.2.3 Outlier Analysis
Subsequently, outliers were searched between the factors (ap, vc, f) and responses (Ra, Rsk,

Rku, RSm, Rt, Fx, Fy, Fz, F) throughout the data frames.

An outlier refers to a data point that deviates from the other data points in the observation.

It can be due to normal measurement fluctuations, or it can indicate experimental errors,

such as human error or instrument inaccuracy. In data mining activities, outliers can cause

significant problems and need to be detected and evaluated in order to understand their

presence and, most importantly, to remove them from the dataset [75]. Statistical methods

like standard deviation, box plots, z-score, or interquartile distribution (IQR) methods are

commonly used to identify outliers. This study will use the IQR method for detecting

outliers.

To use the IQR method, one first calculates the IQR of the dataset by finding the difference

between the third quartile (Q3) and the first quartile (Q1). Q1 is the value that separates the

lowest 25% of the data from the rest, while Q3 separates the lowest 75% of the data from

the rest. After calculating the IQR, potential outliers can be identified by determining values

81

that lie beyond a certain threshold, typically defined as Q1 – 1.5 * IQR or Q3 + 1.5 * IQR.

These values are considered outliers because they are more than 1.5 times the IQR away

from the nearest quartile.

Using the IQR method for outlier analysis has some advantages over other methods, such

as being less sensitive to extreme values like the mean and standard deviation. The IQR

method identifies potential outliers by defining a threshold that is based on the distribution

of the data, which makes it less affected by extreme values.

However, the IQR method may not be suitable for all datasets, especially those with a small

sample size, as it may not provide a reliable estimate of the distribution of the data. In such

cases, other methods or visual inspection may be needed to identify outliers.

Instead of removing the outlier, some analysts choose to replace it with the mean of all

other observations for the selected condition. This is because the outlier may not be a

measurement error or data entry error, but rather a genuine data point that belongs to the

population being studied. This can help to reduce the impact of the outlier on the statistical

analysis and provide a more accurate estimate of the central tendency of the data. In the

specific case of Exp 1, 11 outliers were identified, but they mainly came from parameters

that were extracted using a dynamometer and were believed to be genuine data points.

Therefore, the outliers were not removed but replaced with their mean to avoid bias in the

statistical analysis.

To detect and substitute outliers is used the following code:
outliers = pd.DataFrame(columns=exp_out_1.columns)
for i, row in exp_out_1.iterrows():
 if row.isna().any():
 continue
 else:
 q1=exp_out_1.quantile(0.25)
 q3=exp_out_1.quantile(0.75)
 IQR=q3-q1
 if ((row < (q1 - 1.5 * IQR)) | (row > (q3 + 1.5 * IQR))).any():
 outliers.loc[i] = row
print('number of outliers: '+ str(len(outliers)))
print('max outlier value: \n' + str(outliers.max()))
print('min outlier value: \n'+ str(outliers.min()))
outliers

#SET A FUNCTION TO SUBSTITUTE THE VALUE FOR THE OUTLIERS WITH THE MEAN VALUE
exp = exp_out_1.copy()
def impute_outliers_IQR(exp):
 q1=exp.quantile(0.25)
 q3=exp.quantile(0.75)
 IQR=q3-q1
 upper = exp[~(exp>(q3+1.5*IQR))].max()
 lower = exp[~(exp<(q1-1.5*IQR))].min()
 exp = np.where(exp > upper, exp.mean(), np.where(exp < lower, exp.mean(),
 exp))

82

 return exp

outliers substitution
exp[["ap", "vc", "f","Fx", "Fy", "Fz", "F", "Ra","Rz","Rsk","Rku","RSm","Rt"]]
 = impute_outliers_IQR(exp[["ap", "vc", "f","Fx", "Fy", "Fz", "F", "Ra","Rz","
Rsk","Rku","RSm","Rt"]])
exp_describe = exp.describe()[["ap", "vc", "f","Fx", "Fy", "Fz", "F", "Ra","Rz
","Rsk","Rku","RSm","Rt"]]
exp.describe()[["ap", "vc", "f","Fx", "Fy", "Fz", "F", "Ra","Rz","Rsk","Rku","
RSm","Rt"]]

Code Snippet 4: Removal of Outliers

6.4.3 Model Training and Testing
From the previous operations a dataset is obtained, which has 324 rows and 14 columns.

The target variable is 'Ra' and the other columns are features that are used to predict the

target variable. One way to approach this task is to train the machine learning model using

the entire dataset and then test it on the same dataset to evaluate its accuracy. However, this

method would not be reliable as the model would simply memorize the target variable and

always provide the same answer. In real-life scenarios, the model needs to be able to

accurately predict new, unseen data [76].

To evaluate the model's ability to generalize to new data, it's important to test it on

completely different datasets. For instance, if we're training a model to identify animals in

images, we can train it on cats and dogs but test it on images of birds from a different source.

This way, we can assess whether the model can generalize to new types of animals it hasn't

encountered during training. Another reason for testing on different datasets is to evaluate

the model's robustness. By testing it on data from different sources, it can be determined

how well it performs under different conditions and identify any weaknesses or limitations

that need to be addressed. For example, if the model performs well on one dataset but poorly

on another, it may suggest that it has learned to overfit to specific patterns in the training

data that aren't generalizable to other sources.

A way to assess how well a model can generalize is to use a separate hold-out set for testing,

which is distinct from the training data. The 70-30% method is commonly used, where a

fixed proportion of the available data is reserved for testing. However, since Experiment 1

dataset only includes 6 Tool IDs (tool_ids = [21,31,41,51,61,71]), the 70-30% method

cannot be applied due to the limited number of Tool IDs. Instead, the data is split into Train

and Test sets by assigning 5 Tool IDs to the Train set and 1 Tool ID to the Test set. This

approach creates a new dataset with data from the Test set, similar to a real-world scenario.

In essence, our goal is to create a model that can predict the results of the test set that are

83

currently unknown. Nevertheless, there are instances where the hold-out set may not

accurately reflect the actual data distribution that the model will face in practical scenarios.

K-fold cross validation can be used to enhance the model's performance (Figure 45).

Also for Experiment 2 the dataset included 6 Tool IDs (tool_ids = [43, 53, 33, 23, 81, 13]).

To Train and Test the dataset using the Hold – Out method, the following code is used:
tool_ids = [21,31,41,51,61,71]

x_train = []
y_train = []
x_test = []
y_test = []

for i in range(len(tool_ids)):
 train_ids = [x for j, x in enumerate(tool_ids) if j != i]
 test_id = tool_ids[i]

 train_indices = exp[exp['Tool_ID'].isin(train_ids)].index
 test_indices = exp[exp['Tool_ID'].isin([test_id])].index

 stratified_train_set = exp.loc[train_indices]
 stratified_test_set = exp.loc[test_indices]

 train = pd.DataFrame(stratified_train_set)
 test = pd.DataFrame(stratified_test_set)

Code Snippet 5: Train -Test dataset split

6.4.4 Cross Validation
Cross-validation is a statistical technique utilized to estimate the efficacy of machine

learning models. It is widely applied in practical machine learning to determine and choose

a suitable model for a given predictive modeling problem. Cross-validation is popular

because it is simple to comprehend, simple to implement, and the skill estimates derived

from it usually have lower bias than other methods [77]. As there is often insufficient data

to fully train a model, setting aside a portion of it for validation poses a challenge of

Figure 44: Dataset Split

84

underfitting. By reducing the amount of training data, important patterns and trends in the

dataset may be lost, increasing the error introduced by bias. Therefore, a method is needed

that provides adequate data for model training while still leaving enough data for validation.

K-fold cross-validation precisely achieves this scope [78]. Cross-validation is a resampling

approach used to assess machine learning models on a limited dataset. The technique

employs a single parameter, k, which determines the number of groups to split the dataset

into. Consequently, the technique is often referred to as k-fold cross-validation. When a

particular value of k is selected, it may be substituted in place of k in the model reference,

for instance, k=5 becoming 5-fold cross-validation. The dataset will be divided into 5 equal

parts and the procedure below will be executed 5 times, with a different holdout set each

time (Figure 46). Cross-validation is primarily employed to estimate the efficacy of a

machine learning model on unseen data, i.e., to estimate how the model is likely to perform

generally when employed to make predictions on data that were not used during the model's

training. For the implemented model K = 6, which is the number of tools used during

Experiment 1 and represents the number of groups to split the dataset.

The general procedure is as follows:

1. Split the dataset into k groups
2. For each unique group:

a. Take the group as a hold out or test data set
b. Take the remaining groups as a training data set
c. Fit a model on the training set and evaluate it on the test set
d. Retain the evaluation score and discard the model

3. Summarize the skill of the model using the sample of model evaluation scores

Crucially, every data point in the sample is allocated to a specific group and remains in that

group throughout the process. This ensures that each sample has the chance to be included

in the holdout set once and utilized for training the model k-1 times.

The code for Cross Validation will be displayed in the following paragraphs when ML

algorithms will be implemented.

85

Figure 45: K-Fold Model Tuning

6.4.5 Features and Labels Extraction
To enhance the accuracy and performance efficiency of a model, the dataset is divided into

two parts: features (input values, X) and labels (output values, Y) [79]. These pairs of

features and labels will be utilized as labeled examples for the ML during the training phase.

The potential features may include:

• Process parameters: depth of cut (ap), feed rate (f), and cutting speed (vc);

• Measured forces: cutting force (Fx), passive force (Fy), feed force (Fz), and resultant

force (F). While machining forces are considered as response variables in the

experimental procedure and analysis of results, they are used as input values in the

machine learning model.

The process of defining labeled examples is executed through a simple piece of code that

eliminates non-required labels and keeps only the ones of interest in the X and y sets. The

possible labels are:

• The surface roughness results such as arithmetic mean deviation (Ra), skewness

(Rsk), kurtosis (Rku), mean width of profile elements (RSm), and total height (Rt).

86

The code used to extract feature and labels is presented below for the reader's reference:
 x_train.append(train[["ap", "vc", "f", "Fx", "Fy", "Fz", "F"]])
 x_test.append(test[["ap", "vc", "f", "Fx", "Fy", "Fz", "F"]])
 y_train.append(train[["Ra"]])
 y_test.append(test[["Ra"]])

Code Snippet 6: Features and Labels extraction

6.4.6 Data Standardization
One crucial data transformation that needs to be implemented is feature scaling, which is

often used to ensure faster convergence in Machine Learning algorithms. Generally

speaking, these algorithms do not perform well when input numerical attributes have

significantly different scales. To achieve uniform scaling across all attributes, two common

techniques are used: min-max scaling and standardization [80]. The process of min-max

scaling (also known as normalization) involves shifting and rescaling the values so that they

fall within the range of 0 to 1. This is achieved by subtracting the minimum value and then

dividing by the range (max minus min). On the other hand, standardization involves

subtracting the mean value (resulting in standardized values with zero mean) and then

dividing by the variance, producing a distribution with unit variance. Unlike min-max

scaling, standardization does not restrict the values to a specific range, which can be

problematic for certain algorithms (e.g., neural networks that expect values between 0 and

1). Nonetheless, standardization is less susceptible to the influence of outliers. To

standardize the features, the scikit-learn function called StandardScaler is used, which

transforms the values to a uniform range. This process is known as standardization.

 Below, the reader can see the implemented code that standardizes the training values:
from sklearn.preprocessing import StandardScaler # define the scale method and
 range
scaler = StandardScaler()
for i in range(len(x_train)):
 scaler.fit(x_train[i])
 x_train[i] = scaler.transform(x_train[i])

for i in range(len(x_test)):
 scaler.fit(x_test[i])
 x_test[i] = scaler.transform(x_test[i])

 Code Snippet 7: Standardization

6.4.7 Evaluation Metrics

To assess the performance of the model, measuring metrics are used. Some of the

commonly used and provided within the scikitlearn library are:

87

• Mean Squared Error
• Root Mean Squared Error
• Mean Absolute Error
• Coefficient of Determination (R2)
• Explained Variance

The code below is used to add inside the model evaluation metrics:
1. import sklearn.metrics as metrics
2. from sklearn.metrics import r2_score
3. from sklearn.metrics import mean_squared_error
4. from sklearn.metrics import mean_absolute_error

Code Snippet 8: Importing Evaluation Metrics

6.4.8 ML Algorithms implementation
To move forward with the best model selection for prediction of the response variable, i.e.

‘Ra’, with the help of one of the libraries of python i.e. Scikitlearn, the following models

explained in the next paragraphs are trained and tested, using Cross validation. All the ML

models analyzed have the same structure where the code appears to be evaluating the

performance of a model using various metrics, such as mean squared error (MSE), mean

absolute error (MAE), and R2 score, among others. It also generates plots to visually

compare the model's predictions (y_pred) to the actual target values (y_test).

Overall, the code in the next paragraphs provides a way to assess the performance of a ML

model on various datasets and to compare those results visually. Results are printed to the

console, displaying the recorded metrics for each pair and the means and standard

deviations.

6.4.8.1 Linear Regression
 The algorithm outlined below was used to carry out Linear Regression for this study:

from sklearn.linear_model import LinearRegression
linreg = LinearRegression()
lin_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])

train_test_pairs = [(x_train[i], y_train[i], x_test[i], y_test[i]) for i in ra
nge(len(x_train))]

for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):
 linreg.fit(x_train, y_train)
 y_pred = linreg.predict(x_test)
 y_pred = pd.DataFrame(y_pred)

 lin_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
 lin_mse = mean_squared_error(y_test, y_pred)
 lin_mae = mean_absolute_error(y_test, y_pred)
 lin_r2 = metrics.r2_score(y_test, y_pred)

88

 lin_variance = metrics.explained_variance_score(y_test, y_pred)
 lin_error.loc[i] = [lin_rmse, lin_mse, lin_mae, lin_r2, lin_variance]

 plt.figure()
 plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')
 plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')
 plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)
 plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)
 plt.title("Tool ID Scenario {} - LinReg: Comparison Chart y_test vs y_pred
".format(i+1))
 plt.xlabel("Sample Index")
 plt.ylabel("Ra")
 plt.show()

mean_rmse = lin_error['RMSE'].mean()
mean_mse = lin_error['MSE'].mean()
mean_mae = lin_error['MAE'].mean()
mean_r2 = lin_error['R^2'].mean()
mean_variance = lin_error['EXPLAINED VARIANCE'].mean()
lin_error.loc['Mean'] = [mean_rmse,mean_mse, mean_mae, mean_r2, mean_variance]

std_rmse = lin_error['RMSE'].std()
std_mse = lin_error['MSE'].std()
std_mae = lin_error['MAE'].std()
std_r2 = lin_error['R^2'].std()
std_variance = lin_error['EXPLAINED VARIANCE'].std()

lin_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]
print(lin_error)

Code Snippet 9: Linear Regression Algorithm

6.4.8.2 Decision Tree Regression
The following algorithm was employed to execute Decision Tree Regression:

from sklearn.tree import DecisionTreeRegressor
decreg = DecisionTreeRegressor(random_state = 42)
dec_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])
for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):
 decreg.fit(x_train, y_train)
 y_pred = decreg.predict(x_test)
 y_pred = pd.DataFrame(y_pred)
 #Error calculation
 dec_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
 dec_mse = mean_squared_error(y_test, y_pred)
 dec_mae = mean_absolute_error(y_test, y_pred)
 dec_r2 = metrics.r2_score(y_test, y_pred)
 dec_variance = metrics.explained_variance_score(y_test, y_pred)
 dec_error.loc[i] = [dec_rmse, dec_mse, dec_mae, dec_r2, dec_variance]

 plt.figure()
 plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')
 plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')
 plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)
 plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)
 plt.title("Tool ID Scenario {} - DT: Comparison Chart y_test vs y_pred".fo
rmat(i+1))
 plt.xlabel("Sample Index")
 plt.ylabel("Ra")
 plt.show()

mean_rmse = dec_error['RMSE'].mean()
mean_mse = dec_error['MSE'].mean()
mean_mae = dec_error['MAE'].mean()

89

mean_r2 = dec_error['R^2'].mean()
mean_variance = dec_error['EXPLAINED VARIANCE'].mean()
dec_error.loc['Mean'] = [mean_rmse, mean_mse,mean_mae, mean_r2, mean_variance]

std_rmse = dec_error['RMSE'].std()
std_mse = dec_error['MSE'].std()
std_mae = dec_error['MAE'].std()
std_r2 = dec_error['R^2'].std()
std_variance = dec_error['EXPLAINED VARIANCE'].std()

dec_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]
print(dec_error)

Code Snippet 10: Decision Tree Regression Algorithm

6.4.8.3 Random forest Regression

Random Forest Regression was implemented using the following algorithm:
from sklearn.ensemble import RandomForestRegressor
ranreg = RandomForestRegressor(random_state = 42)
ran_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])
for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):
 ranreg.fit(x_train, y_train)
 y_pred = ranreg.predict(x_test)
 y_pred = pd.DataFrame(y_pred)
 #Error calculation
 ran_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
 ran_mse = mean_squared_error(y_test, y_pred)
 ran_mae = mean_absolute_error(y_test, y_pred)
 ran_r2 = metrics.r2_score(y_test, y_pred)
 ran_variance = metrics.explained_variance_score(y_test, y_pred)
 ran_error.loc[i] = [ran_rmse, ran_mse, ran_mae, ran_r2, ran_variance]

 plt.figure()
 plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')
 plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')
 plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)
 plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)
 plt.title("Tool ID Scenario {} - RF: Comparison Chart y_test vs y_pred".fo
rmat(i+1))
 plt.xlabel("Sample Index")
 plt.ylabel("Ra")
 plt.show()

mean_rmse = ran_error['RMSE'].mean()
mean_mse = ran_error['MSE'].mean()
mean_mae = ran_error['MAE'].mean()
mean_r2 = ran_error['R^2'].mean()
mean_variance = ran_error['EXPLAINED VARIANCE'].mean()
ran_error.loc['Mean'] = [mean_rmse, mean_mse,mean_mae, mean_r2, mean_variance]

std_rmse = ran_error['RMSE'].std()
std_mse = ran_error['MSE'].std()
std_mae = ran_error['MAE'].std()
std_r2 = ran_error['R^2'].std()
std_variance = ran_error['EXPLAINED VARIANCE'].std()

ran_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]
print(ran_error)

Code Snippet 11: Random Forest Regression Algorithm

90

6.4.8.4 Bayesian Linear Regression
By following the given algorithm, Bayesian Linear Regression was implemented:

from sklearn.linear_model import BayesianRidge
bayreg = BayesianRidge()
bay_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])

for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):
 bayreg.fit(x_train, y_train)
 y_pred = bayreg.predict(x_test)
 y_pred = pd.DataFrame(y_pred)
 #Error calculation
 bay_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
 bay_mse = mean_squared_error(y_test, y_pred)
 bay_mae = mean_absolute_error(y_test, y_pred)
 bay_r2 = metrics.r2_score(y_test, y_pred)
 bay_variance = metrics.explained_variance_score(y_test, y_pred)
 bay_error.loc[i] = [bay_rmse, bay_mse, bay_mae, bay_r2, bay_variance]

 plt.figure()
 plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')
 plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')
 plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)
 plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)
 plt.title("Tool ID Scenario {} - Bayesian: Comparison Chart y_test vs y_pr
ed".format(i+1))
 plt.xlabel("Sample Index")
 plt.ylabel("Ra")
 plt.show()

mean_rmse = bay_error['RMSE'].mean()
mean_mse = bay_error['MSE'].mean()
mean_mae = bay_error['MAE'].mean()
mean_r2 = bay_error['R^2'].mean()
mean_variance = bay_error['EXPLAINED VARIANCE'].mean()
bay_error.loc['Mean'] = [mean_rmse,mean_mse, mean_mae, mean_r2, mean_variance]

std_rmse = bay_error['RMSE'].std()
std_mse = bay_error['MSE'].std()
std_mae = bay_error['MAE'].std()
std_r2 = bay_error['R^2'].std()
std_variance = bay_error['EXPLAINED VARIANCE'].std()

bay_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]
print(bay_error)

Code Snippet 12: Bayesian Linear Regression Algorithm

6.4.8.5 K-Nearest Neighbours Regression
Using the algorithm specified below, K-Nearest Neighbours Regression has been

implemented:
from sklearn.neighbors import KNeighborsRegressor
knn = KNeighborsRegressor(n_neighbors=10, weights = 'distance')
knn_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])

for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):
 knn.fit(x_train, y_train)
 y_pred = knn.predict(x_test)
 y_pred = pd.DataFrame(y_pred)
 #Error calculation

91

 knn_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
 knn_mse = mean_squared_error(y_test, y_pred)
 knn_mae = mean_absolute_error(y_test, y_pred)
 knn_r2 = metrics.r2_score(y_test, y_pred)
 knn_variance = metrics.explained_variance_score(y_test, y_pred)
 knn_error.loc[i] = [knn_rmse, knn_mse, knn_mae, knn_r2, knn_variance]

 plt.figure()
 plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')
 plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')
 plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)
 plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)
 plt.title("Tool ID Scenario {} - K-
NN: Comparison Chart y_test vs y_pred".format(i+1))
 plt.xlabel("Sample Index")
 plt.ylabel("Ra")
 plt.show()

mean_rmse = knn_error['RMSE'].mean()
mean_mse = knn_error['MSE'].mean()
mean_mae = knn_error['MAE'].mean()
mean_r2 = knn_error['R^2'].mean()
mean_variance = knn_error['EXPLAINED VARIANCE'].mean()
knn_error.loc['Mean'] = [mean_rmse,mean_mse, mean_mae, mean_r2, mean_variance]

std_rmse = knn_error['RMSE'].std()
std_mse = knn_error['MSE'].std()
std_mae = knn_error['MAE'].std()
std_r2 = knn_error['R^2'].std()
std_variance = knn_error['EXPLAINED VARIANCE'].std()

knn_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]
print(knn_error)

Code Snippet 13: KNN Regression Algorithm

6.4.8.6 Kernel Ridge Regression
Kernel Ridge Regression has been employed in the current study, with the algorithm

provided below:
from sklearn.kernel_ridge import KernelRidge
kreg = KernelRidge(alpha=0.5, kernel='rbf', gamma =0.5)
kernel_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED V
ARIANCE'])

for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):
 kreg.fit(x_train, y_train)
 y_pred = kreg.predict(x_test)
 y_pred = pd.DataFrame(y_pred)
 #Error calculation
 kernel_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
 kernel_mse = mean_squared_error(y_test, y_pred)
 kernel_mae = mean_absolute_error(y_test, y_pred)
 kernel_r2 = metrics.r2_score(y_test, y_pred)
 kernel_variance = metrics.explained_variance_score(y_test, y_pred)
 kernel_error.loc[i] = [kernel_rmse, kernel_mse, kernel_mae, kernel_r2, ker
nel_variance]

 plt.figure()
 plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')
 plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')
 plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)
 plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)

92

 plt.title("Tool ID Scenario {} - Kernel: Comparison Chart y_test vs y_pred
".format(i+1))
 plt.xlabel("Sample Index")
 plt.ylabel("Ra")
 plt.show()

mean_rmse = kernel_error['RMSE'].mean()
mean_mse = kernel_error['MSE'].mean()
mean_mae = kernel_error['MAE'].mean()
mean_r2 = kernel_error['R^2'].mean()
mean_variance = kernel_error['EXPLAINED VARIANCE'].mean()
kernel_error.loc['Mean'] = [mean_rmse, mean_mse, mean_mae, mean_r2, mean_varia
nce]

std_rmse = kernel_error['RMSE'].std()
std_mse = kernel_error['MSE'].std()
std_mae = kernel_error['MAE'].std()
std_r2 = kernel_error['R^2'].std()
std_variance = kernel_error['EXPLAINED VARIANCE'].std()

kernel_error.loc['Std Dev'] = [std_rmse,std_mse,std_mae, std_r2, std_variance]

print(kernel_error)

Code Snippet 14: Kernel Ridge Regression Algorithm

6.4.8.7 Neural Network Regression
By utilizing the algorithm given below, Neural Network Regression was implemented:

from sklearn.neural_network import MLPRegressor
mlpreg = MLPRegressor(random_state = 1)
neu_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])

for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):
 mlpreg.fit(x_train, y_train)
 y_pred = mlpreg.predict(x_test)
 y_pred = pd.DataFrame(y_pred)
 #Error calculation
 neu_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
 neu_mse = mean_squared_error(y_test, y_pred)
 neu_mae = mean_absolute_error(y_test, y_pred)
 neu_r2 = metrics.r2_score(y_test, y_pred)
 neu_variance = metrics.explained_variance_score(y_test, y_pred)
 neu_error.loc[i] = [neu_rmse, neu_mse, neu_mae, neu_r2, neu_variance]

 plt.figure()
 plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')
 plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')
 plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)
 plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)
 plt.title("Tool ID Scenario {} - Neural Network: Comparison Chart y_test v
s y_pred".format(i+1))
 plt.xlabel("Sample Index")
 plt.ylabel("Ra")
 plt.show()

mean_rmse = neu_error['RMSE'].mean()
mean_mse = neu_error['MSE'].mean()
mean_mae = neu_error['MAE'].mean()
mean_r2 = neu_error['R^2'].mean()
mean_variance = neu_error['EXPLAINED VARIANCE'].mean()
neu_error.loc['Mean'] = [mean_rmse,mean_mse, mean_mae, mean_r2, mean_variance]

93

std_rmse = neu_error['RMSE'].std()
std_mse = neu_error['MSE'].std()
std_mae = neu_error['MAE'].std()
std_r2 = neu_error['R^2'].std()
std_variance = neu_error['EXPLAINED VARIANCE'].std()

neu_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]
print(neu_error)

Code Snippet 15: Neural Network Regression Algorithm

94

Chapter 7 - Results and Discussion

Synopsis
In the previous chapter, different models were trained and tested to evaluate their

performance using separate training and testing datasets. In a real-world scenario, not all

models can be utilized, and therefore, one model must be chosen. One method to achieve

this is by assessing the error metrics and selecting the one with the best metric performance.

However, a question arises as to whether the method of measuring error metrics is efficient

and consistent. To obtain conclusive results, all models are subjected to cross-validation to

finalize the models for evaluating the surface roughness of the machined steel bar. The

results and conclusions are discussed below.

7.1 Experiment 1

7.1.1 Linear Regression
The details on the performance of the model in each fold is as shown in table 12:

Table 12: Linear Regression performance

Fold Number = Tool
ID

RMSE MSE MAE R2
EXPLAINED
VARIANCE

21 1,3370 1,7870 1,0444 -1,7934 -17,9252

31 1,5411 2,3749 1,1235 -42,8900 -42,1391

41 0,2789 0,0778 0,2126 0,3871 0,4410

51 1,9361 3,7483 1,4162 -35,6652 -35,3488

61 1,0715 1,1482 0,8222 -13,4892 -13,4352

71 0,1413 0,0200 0,1157 0,2986 0,3387

Mean 1,0510 1,5261 0,7891 -18,2155 -18,0114

Std Dev 0,6493 1,3062 0,4756 16,4548 16,2322

Overall, the model's performance is poor, as indicated by the low R^2 and Explained

Variance scores. Additionally, there is significant variability in the model's performance

across different folds, as indicated by the high standard deviation scores for R^2 and

Explained Variance. The high standard deviation scores for MSE and RMSE also suggest

that the model's performance is highly variable across different folds.

95

7.1.2 Decision Tree Regression
Table 13 shows the performance of Decision Tree Regression:

Table 13: Decision Tree Regression performance

Fold Number = Tool
ID

RMSE MSE MAE R2
EXPLAINED
VARIANCE

21 0,1470 0,0216 0,1114 0,7711 0,7742

31 0,2929 0,0858 0,1921 -0,5854 -0,2665

41 0,2258 0,0510 0,1725 0,5982 0,6017

51 0,2315 0,0536 0,1851 0,4757 0,6219

61 0,2190 0,0480 0,1612 0,3949 0,4229

71 0,2132 0,0454 0,1877 -0,5976 -0,5662

Mean 0,2216 0,0509 0,1683 0,1762 0,2647

Std Dev 0,0425 0,0188 0,0275 0,5550 0,4997

Overall, the model shows acceptable performance in RMSE and MAE, with modest mean

values and relatively insignificant standard deviations. However, the R^2 values suggest

that the model may not be an appropriate fit for the data as the mean value is not high, and

the standard deviation is high. Furthermore, the Explained Variance indicates significant

variability across folds and Tool IDs, which implies that the model may not capture the

entire data variability.

7.1.3 Random Forest Regression

Table 14 shows the scores for Random Forest Regression:

Table 14: Random Forest Regression performance

Fold Number = Tool
ID

RMSE MSE MAE R2
EXPLAINED
VARIANCE

21 0,1367 0,0187 0,1187 0,8020 0,8155

31 0,2436 0,0593 0,1792 -0,0964 0,2871

41 0,2521 0,0636 0,1890 0,4993 0,5177

51 0,2556 0,0653 0,2150 0,3608 0,6048

61 0,1667 0,0278 0,1327 0,6494 0,6519

71 0,2100 0,0441 0,1888 -0,5496 -0,5002

Mean 0,2108 0,0465 0,1706 0,2776 0,3962

Std Dev 0,0451 0,0180 0,0338 0,4643 0,4311

In general, the model seems to exhibit good performance, as evidenced by the low values

of RMSE, MSE, and MAE. However, the R^2 and Explained Variance values are

improving, but they may not account for all the variation present in the data. Moreover, the

96

high standard deviations for R^2 and Explained Variance suggest that the model's

performance may vary considerably depending on the specific fold of data being assessed.

7.1.4 Bayesian Linear Regression
Table 15 shows the scores for Bayesian Linear Regression:

Table 15: Bayesian Linear Regression

Fold Number = Tool
ID

RMSE MSE MAE R2
EXPLAINED
VARIANCE

21 1,1636 1,3540 0,9060 -13,3410 -13,3319

31 1,2617 1,5918 0,8955 -28,4172 -27,6663

41 0,3089 0,0954 0,2356 0,2483 0,3023

51 1,7447 3,0440 1,2872 -28,7759 -28,4595

61 0,9125 0,8327 0,7066 -9,5083 -9,4542

71 0,1483 0,0220 0,1273 0,2266 0,2667

Mean 0,9233 1,1567 0,6930 -13,2613 -13,0572

Std Dev 0,5515 1,0254 0,4019 11,8949 11,6884

Overall, the model exhibits satisfactory performance concerning RMSE and MAE, with

minimal mean values and relatively insignificant standard deviations. However, based on

the R^2 values, it appears that the model might not be a suitable match for the data as the

mean value is low, and the standard deviation is high. The Explained Variance further

highlights significant variability across folds and Tool IDs, which implies that the model

may not fully capture all the data's variability.

7.1.5 K-Nearest Neighbours
Table 16 shows the scores for KNN:

Table 16: K-Nearest Neighbours performance

Fold Number = Tool
ID

RMSE MSE MAE R2
EXPLAINED
VARIANCE

21 0,1276 0,0163 0,0951 0,8277 0,8286

31 0,2556 0,0654 0,1978 -0,2077 0,1685

41 0,3043 0,0926 0,2290 0,2706 0,4492

51 0,2856 0,0815 0,2194 0,2023 0,6075

61 0,2018 0,0407 0,1624 0,4863 0,4873

71 0,1818 0,0331 0,1548 -0,1619 0,2937

Mean 0,2261 0,0549 0,1764 0,2362 0,4725

Std Dev 0,0616 0,0271 0,0454 0,3583 0,2122

The mean performance metrics of the model are satisfactory, as indicated by the low values

97

of RMSE, MSE, and MAE, and positive R2 and Explained Variance. Additionally, the

standard deviation is relatively low, indicating consistent performance across the folds.

However, it is worth mentioning that the R2 values were negative for some folds, suggesting

that the model performed worse than a simple baseline model in those instances.

Conversely, in one of the folds, the model achieved an R2 value of 0.8277, indicating a good

fit to the data. Overall, the model's performance seems to be moderately good, but there is

room for improvement, particularly in cases where the R2 value is negative.

7.1.6 Kernel Ridge Regression
Table 17 shows the scores for Kernel Ridge Regression:

Table 17: Kernel Ridge Regression performance

Fold Number = Tool
ID

RMSE MSE MAE R^2
EXPLAINED
VARIANCE

21 0,3388 0,1148 0,2710 -0,2161 0,5108

31 0,2389 0,0571 0,1627 -0,0546 0,1310

41 0,4931 0,2431 0,3969 -0,9153 0,3260

51 0,5604 0,3141 0,4846 -2,0724 0,2247

61 0,3471 0,1205 0,2856 -0,5206 0,3134

71 0,3537 0,1251 0,3411 -3,3973 0,6935

Mean 0,3887 0,1624 0,3237 -1,1961 0,3666

Std Dev 0,1067 0,0876 0,1014 1,1840 0,1861

The model's performance seems to be moderate, with relatively high variance overall. The

negative R2 and low Explained Variance values suggest that the model might not be suitable

for the data. Additionally, the standard deviations of the metrics indicate that the model's

performance variability across the six folds is high for R2, Explained Variance, and MAE,

while it is moderate for RMSE and MSE.

7.1.7 Neural Networks
Table 18 shows the scores for the neural networks:

Table 18: Neural Networks performance

Fold Number = Tool
ID

RMSE MSE MAE R2
EXPLAINED
VARIANCE

21 0,2634 0,0694 0,2209 0,2650 0,4392

31 0,2413 0,0582 0,2050 -0,0761 -0,0629

41 0,4051 0,1641 0,3205 -0,2929 0,1351

51 0,4061 0,1649 0,3216 -0,6133 0,3404

98

61 0,2827 0,0799 0,1938 -0,0088 0,1907

71 0,2585 0,0668 0,1836 -1,3497 -0,6127

Mean 0,3095 0,1006 0,2409 -0,3460 0,0716

Std Dev 0,0690 0,0457 0,0578 0,5231 0,3445

In general, these findings indicate that the model's performance is not performing well, as

indicated by the negative or near-zero values of R-squared and Explained Variance.

Moreover, the RMSE and MSE values indicate a considerable amount of error in the

model's predictions, while the MAE values suggest that the average absolute error is

relatively high. The high standard deviations also suggest that the model's performance

varies significantly across different folds and tools.

7.1.8 Experiment 1 – Final considerations
From the error metric scores, following models were shortlisted:

• K-Nearest Neighbours

• Random Forest Regression

• Decision Tree Regression

The K-Nearest Neighbours approach produced results with reliable metric accuracy,

making it a viable option for detecting Surface Roughness. In Chapter 8, the framework

used to compare the predicted Surface Roughness from the KNN model with actual values

and a theoretical equation will be discussed.

7.2 Experiment 2

7.2.1 Linear Regression
Table 19 shows the scores for Linear Regression:

Table 19: Linear Regression performance

Fold Number = Tool ID RMSE MSE MAE R2
EXPLAINED
VARIANCE

43 0,3913 0,1531 0,3683 -0,6716 -0,3635

53 0,3831 0,1468 0,3182 -0,9144 -0,5292

33 0,3105 0,0964 0,2227 -15,6087 -10,9125

23 0,2382 0,0567 0,1862 -12,8279 -1,1995

81 0,1771 0,0313 0,1606 -0,0936 -0,0935

13 0,3180 0,1011 0,2617 -8,4823 -7,1834

Mean 0,3030 0,0976 0,2530 -4,5089 -3,3803

99

Std Dev 0,0759 0,0439 0,0725 5,7233 4,1631

Based on the mean values, it appears that the model's performance is acceptable in terms of

RMSE and MAE, but not satisfactory in terms of R2 and Explained Variance. Furthermore,

the high standard deviations suggest that there is a considerable amount of variability in the

model's performance across different folds.

7.2.2 Decision Tree Regression
Table 20 shows the scores for Decision Tree Regression:

Table 20: Decision Tree Regression performance

Fold Number = Tool ID RMSE MSE MAE R2
EXPLAINED
VARIANCE

43 0,4004 0,1603 0,3378 -0,7505 0,0205

53 0,3376 0,1140 0,3036 -0,4864 0,4018

33 0,2964 0,0878 0,2780 -14,1322 -3,6979

23 0,1957 0,0383 0,1617 -0,5409 0,3122

81 0,2385 0,0569 0,1835 -0,9840 -0,9148

13 0,2237 0,0500 0,1863 -3,6917 -2,7089

Mean 0,2820 0,0846 0,2418 -3,4310 -1,0979

Std Dev 0,0708 0,0423 0,0674 4,9122 1,5746

The mean values of RMSE, MSE, and MAE are lower than the standard deviations, which

suggests that the model's performance varies significantly across different folds. The mean

R2 value is negative, indicating that the model is not a good fit for the data. Moreover, the

mean explained variance value is also negative, suggesting that the model explains less

variance than the mean of the observed values. Overall, the model's performance is poor,

as indicated by the negative R2 and explained variance values, as well as the high standard

deviations of the evaluation metrics.

7.2.3 Random Forest Regression
Table 21 shows the scores for Random Forest Regression:

Table 21: Random Forest Regression performance

Fold Number = Tool ID RMSE MSE MAE R2
EXPLAINED
VARIANCE

43 0,3097 0,0959 0,2861 -0,0472 0,4325

53 0,2972 0,0883 0,2563 -0,1524 0,3466

33 0,2454 0,0602 0,2414 -9,3725 -2,7410

100

23 0,1503 0,0226 0,1263 0,0907 0,1170

81 0,1434 0,0206 0,1008 0,2830 0,2835

13 0,2023 0,0409 0,1688 -2,8392 -2,0066

Mean 0,2247 0,0548 0,1966 -2,0063 -0,5947

Std Dev 0,0653 0,0296 0,0689 3,4609 1,2793

Overall, the model's performance varies significantly across different folds and tool IDs, as

indicated by the high standard deviations. However, the model's performance, on average,

shows relatively low error rates and a moderate ability to explain the variance in the data.

7.2.4 Bayesian Linear Regression
Table 22 shows the scores for Bayesian Linear Regression:

Table 22: Bayesian Linear Regression performance

Fold Number = Tool ID RMSE MSE MAE R2
EXPLAINED
VARIANCE

43 0,2645 0,0699 0,2541 0,2363 0,5445

53 0,3662 0,1341 0,3010 -0,7493 -0,3641

33 0,2966 0,0880 0,2173 -14,1559 -9,4597

23 0,2058 0,0424 0,1824 -0,7049 -0,6216

81 0,1649 0,0272 0,1395 0,0516 0,0517

13 0,1359 0,0185 0,1177 -0,7314 0,5676

Mean 0,2390 0,0633 0,2020 -2,6756 -1,5469

Std Dev 0,0789 0,0396 0,0634 5,1492 3,5653

The metrics' standard deviations are high, which suggests that the model's performance

differs considerably across the various folds. Moreover, the negative R2 and explained

variance values indicate that the model does not fit the data well.

7.2.5 K-Nearest Neighbours
Table 23 shows the scores for KNN:

Table 23: K-Nearest Neighbours performance

Fold Number = Tool ID RMSE MSE MAE R2
EXPLAINED
VARIANCE

43 0,3060 0,0936 0,2877 -0,0224 0,4136

53 0,2991 0,0895 0,2576 -0,1672 0,1331

33 0,2667 0,0711 0,2395 -11,2503 -3,5823

23 0,1036 0,0107 0,0930 0,5678 0,5728

81 0,1398 0,0196 0,0970 0,3177 0,5197

13 0,2344 0,0550 0,2009 -4,1531 -0,8085

101

Mean 0,2250 0,0566 0,1960 -2,4513 -0,4586

Std Dev 0,0773 0,0320 0,0759 4,2469 1,4726

The evaluation metrics vary significantly across different folds, with some folds having

negative R2 or explained variance values, indicating poor model fit. Furthermore, the high

standard deviations suggest that there is a considerable amount of variability in the model's

performance across different folds. Overall, the model shows some potential for prediction,

but further analysis and improvement may be required.

7.2.6 Kernel Ridge Regression
Table 24 shows the scores for Kernel Ridge Regression:

Table 24: Kernel Ridge Regression performance

Fold Number = Tool ID RMSE MSE MAE R2
EXPLAINED
VARIANCE

43 0,3893 0,1515 0,2540 -0,6545 -0,0872

53 0,5177 0,2680 0,4672 -2,4961 0,3514

33 0,2108 0,0444 0,1924 -6,6552 -0,2775

23 0,4670 0,2181 0,4382 -7,7742 -0,0477

81 0,3866 0,1495 0,3437 -4,2150 -0,0949

13 0,4723 0,2231 0,4566 -19,9167 -0,3676

Mean 0,4073 0,1758 0,3587 -6,9520 -0,0873

Std Dev 0,0995 0,0720 0,1053 6,2697 0,2269

The models' performance is subpar, with negative R2 values observed in certain instances.

The standard deviation of these metrics is quite high, implying that the models' performance

differs significantly across different folds and tool IDs.

7.2.7 Neural Networks
Table 25 shows the scores for the Neural Networks:

Table 25: Neural Networks performance

Fold Number = Tool ID RMSE MSE MAE R2
EXPLAINED
VARIANCE

43 0,2416 0,0584 0,2109 0,3628 0,3969

53 0,4481 0,2008 0,3745 -1,6193 -0,4881

33 0,1911 0,0365 0,1708 -5,2884 -4,8873

23 0,4360 0,1901 0,3887 -6,6505 -2,1438

81 0,3498 0,1224 0,3235 -3,2683 0,3780

13 0,3283 0,1078 0,3017 -9,1083 -0,5756

102

Mean 0,3325 0,1193 0,2950 -4,2620 -1,2200

Std Dev 0,0937 0,0611 0,0801 3,1519 1,8449

The provided standard deviations for each metric across all six folds indicate that the

machine learning model is not performing well. The model has high error rates and negative

R2 and explained variance values, suggesting that it may not be a good fit for the data.

7.2.8 Experiment 2 – Final Considerations
From the error metric scores, following models were selected:

• Random Forest Regression

• K-Nearest Neighbours

The Random Forest Regression method has the more accurate metric results, making it a

feasible alternative for detecting Surface Roughness. Chapter 8 will cover the methodology

employed to compare the predicted Surface Roughness obtained from the Random Forest

Regression model against real values and a theoretical equation.

103

Chapter 8 – ML models vs Theoretical Equation
Synopsis
Chapter 7 provides the basis for this chapter's findings. The K-Nearest Neighbours

algorithm demonstrated higher accuracy in Experiment 1, whereas the Random Forest

Regression method showed greater accuracy in Experiment 2. The theoretical equation for

Ra (Eq.14) in Table 6 will be utilized in both experiments, and its predictive capabilities

will be compared to those of the machine learning models identified in the previous chapter.

 Eq. 14

The parameters contained in Eq. 14 are the feed rate and the Edge radius (r𝜀 = 0.397 mm)

which is a geometric specification (Table 10) of the cutting tool used for the Experiments.

8.1 Experiment 1: KNN vs Theoretical Equation

Below it is shown the procedure to calculate the dataset containing the values for

Ra_theoretical using the theoretical equation (Eq.14):
tool_ids = [21,31,41,51,61,71]

x_train = []
y_train = []
x_test = []
y_test = []
y_theoretical = []

for i in range(len(tool_ids)):
 train_ids = [x for j, x in enumerate(tool_ids) if j != i]
 test_id = tool_ids[i]

 train_indices = exp[exp['Tool_ID'].isin(train_ids)].index
 test_indices = exp[exp['Tool_ID'].isin([test_id])].index

 stratified_train_set = exp.loc[train_indices]
 stratified_test_set = exp.loc[test_indices]

 train = pd.DataFrame(stratified_train_set)
 test = pd.DataFrame(stratified_test_set)

 # DEFINE FEATURES AND LABELS:
 x_train.append(train[["ap", "vc", "f", "Fx", "Fy", "Fz", "F"]])
 x_test.append(test[["ap", "vc", "f", "Fx", "Fy", "Fz", "F"]])
 y_train.append(train[["Ra"]])
 y_test.append(test[["Ra"]])

 f = x_test[i]["f"].values
 Ra_theor = ((0.0321 * f**2) / 0.397) * 1000 # Ra is expressed in um
 y_theoretical.append(Ra_theor)
print(f"\nDataFrame {i}:\n{x_test[i]}\n\n
Ra theoretical DataFrame {i}:\n{y_theoretical[i]}")
y_theoretical = np.array(y_theoretical)

𝑅𝑎 =
0.0321 ∗ 𝑓2

𝑟𝜀

104

Code Snippet 16: Dataframe creation for y_theoretical

The new dataframe containing the values for Ra theoretical has been created and the goal

is to compare the actual values contained in y_test with y_theoretical, calculating error

metrics that will be compared with the error metrics calculated in Chapter 7 for the KNN

algorithm.

rmse2 = np.sqrt(metrics.mean_squared_error(y_test,y_theoretical))
mse2 = mean_squared_error(y_test,y_theoretical)
mae2 = mean_absolute_error(y_test,y_theoretical)
r2T = metrics.r2_score(y_test,y_theoretical)
variance2 = metrics.explained_variance_score(y_test,y_theoretical)
error2.loc[i] = [rmse2, mse2, mae2, r2T, variance2]
print(error2)

Code Snippet 17: Evaluation metrics - y_test vs y_theoretical

Table 26 shows the scores for Error metrics when y_test and y_theoretical are compared:

Table 26: Actual values vs Theoretical values performance

Fold Number = Tool
ID

RMSE MSE MAE R2
EXPLAINED
VARIANCE

21 0,2339 0,0547 0,1852 0,4206 0,7723

31 0,4336 0,1880 0,3258 -2,4746 -0,5134

41 0,1888 0,0356 0,1297 0,7192 0,7814

51 0,2658 0,0707 0,2001 0,3089 0,3095

61 0,3239 0,1049 0,2473 -0,3240 0,2448

71 0,3195 0,1021 0,2752 -2,5892 -1,9983

Mean 0,2943 0,0927 0,2272 -0,6565 -0,0673

Std Dev 0,0780 0,0492 0,0638 1,3623 0,9654

The prediction performance using the K-Nearest Neighbours algorithm are better than the

ones made with the theoretical equation. Using Table 16 the performances of the two

models can be compared. However, Experiment 1 with the theoretical equation produced

even a reasonable model.

The following code shows the construction of the graph where Actual values (y_test),

Predicted values using KNN algorithm (y_pred) and Theoretical values (y_theoretical) are

plotted to give the reader a visual interpretation.

plt.figure()
plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')
plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')
plt.plot(np.arange(len(y_theoretica)),y_theoretical,'g’,label='y_theoretical')
plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)
plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)
plt.scatter(np.arange(len(y_theoretical)), y_theoretical, color='green', s=10)

105

plt.legend(loc = 'upper right')
plt.title("Tool ID Scenario {} - KNN: y_test vs y_pred vs y_theoretical".forma
t(i+1))
plt.xlabel("Sample Index")
plt.ylabel("Ra")
plt.show()

Code Snippet 18: Plots generation

The following pictures show the plots generated from the above code:

Figure 46: K fold 1 - y_test vs y_pred vs y_theoretical

Figure 47: K fold 2 - y_test vs y_pred vs y_theoretical

106

Figure 48: K fold 3 - y_test vs y_pred vs y_theoretical

Figure 49: K fold 4 - y_test vs y_pred vs y_theoretical

 Figure 50: K fold 5 - y_test vs y_pred vs y_theoretical

107

Figure 51: K fold 6 - y_test vs y_pred vs y_theoretical

8.2 Experiment 2: Random Forest Regression vs Theoretical Equation

Experiment 2 follows the logic implemented in Experiment 1 and the code implemented

for this case is not reported to avoid repetition.

Table 27 shows the scores for Error metrics when y_test2 and y_theoretical2 are compared:

Table 27: Actual values vs Theoretical values performance

Fold Number = Tool
ID RMSE MSE MAE R2

EXPLAINED
VARIANCE

43 0,3938 0,1550 0,3639 -0,6928 0,7528

53 0,3015 0,0909 0,2065 -0,1859 -0,1010

33 0,4858 0,2360 0,4048 -39,6598 -17,1525

23 0,3230 0,1043 0,2786 -3,1985 -1,8073

81 0,3084 0,0951 0,2612 -2,3190 -0,5455

13 0,3034 0,0921 0,2508 -7,6321 -6,1485

Mean 0,3527 0,1289 0,2943 -8,9480 -4,1670

Std Dev 0,0674 0,0528 0,0683 13,9456 6,2178

However, for Experiment 2, the predictions made with the theoretical equation did not follow

the same behavior as Experiment 1, producing mean errors of much larger magnitudes.

108

Figure 52: K fold 1 - y_test2 vs y_pred2 vs y_theoretical2

Figure 53: K fold 2 - y_test2 vs y_pred2 vs y_theoretical2

Figure 54: K fold 3 - y_test2 vs y_pred2 vs y_theoretical2

109

Figure 55: K fold 4 - y_test2 vs y_pred2 vs y_theoretical2

Figure 56: K fold 5 - y_test2 vs y_pred2 vs y_theoretical2

Figure 57: K fold 6 - y_test2 vs y_pred2 vs y_theoretical2

These performances generated by the equation in Experiment 2 must be discussed in the

110

light of tool wear presence. Experiment 2 reproduced the actual production situation where

tool wear occurs, and such disturbance has made the theoretical equation much worse in

predicting surface roughness values.

111

Chapter 9 – Conclusions and Future Work
Synopsis
The final chapter provides a summary of the study, emphasizing the key steps taken.

Additionally, it presents suggestions for future work that could build upon this study as a

foundation.

9.1 Conclusions
The objective of this study was to analyze a dataset provided by the Competence Center in

Manufacturing (CCM) infrastructure, located at the Aeronautics Institute of Technology

(ITA) in Brazil. The provided dataset deals with turning operations and the goal of this

work is to predict Surface Roughness (Ra) using Machine Learning models. Two

machining experiments were conducted to obtain data to train the ML models. The accuracy

of the models was further improved by using k-fold cross validation to evaluate the

accuracy metrics obtained during different folds.

Based on the performance of the ML algorithms, the one that performed the best for both

experiments was chosen to determine the Surface Roughness of the steel bar. Finally, the

predicted results generated from the ML models were compared with a theoretical equation.

Subsequently, the predicted results generated by the ML models were compared with a

theoretical equation. The soft computing method used to model the surface roughness

parameter Ra exhibited excellent predictive capabilities, with evaluation metrics that

outperformed the classical theoretical equation. Although the results were limited and basic

due to the lack of sufficient data, the framework utilized to estimate surface roughness

represented a crucial step towards geometry detection studies.

The major drawback of this study was the limited amount of data used to train the model,

which affected its overall success. This constraint could be overcome by gathering

additional data from multiple devices, varying different parameters, and incorporating more

types of sensors and data sources. There is significant room for improvement in this study

One could delve deeper into the nuances of the study for perfection and rectification in

order to obtain a cleaner and more satisfactory result.

9.2 Suggestions for Future Works
While the machine learning framework presented in this work provides a comprehensive

approach for predicting surface roughness, there are several areas in which improvements

112

can be made to further enhance prediction accuracy and provide better guidance to operators

regarding steel bar geometry defect analysis.

Some of the key areas where further development could be beneficial include:

• Additional areas for exploration include using the dataset generated in this study to

further explore ML modelling:

1. Modeling more complex surface roughness parameters such as Skewness and

Kurtosis, which were significantly affected by cutting tool wear.

2. Exploring the use of cutting tool wear as an input feature

3. Utilizing available data to map different responses, such as machining forces or

cutting tool wear.

• Exploration of different features, responses, or manufacturing processes

generating new experimental data:

1. Collecting different features. Accelerometers, for example, tend to be more

affordable and easier to install in production systems, and software to monitor

machine signals is already commercially available, making acceleration,

vibration, and electric current attractive features to use.

2. Modeling different responses, such as the cutting tool wear, by collecting data

from more complete tool-life tests;

3. Expand the methodology to other:

3.1 Manufacturing processes, such as milling or grinding;

3.2 Machines to explore their difference in terms of rigidity;

3.3 Materials, especially regarding their hardness.

113

Bibliography
[1] IBM - Deutschland | IBM [Internet]. What is Industry 4.0 and how does it work? | IBM; [Online].

Available: https://www.ibm.com/topics/industry-4-0

[2] Campbell C. Wikipedia: The Free Encyclopedia. http://en.wikipedia.org/wiki, s.vv. Theatre, Performance,

and Performance Studies. TDR The Drama Rev [Internet]. Novembre 2009 [consultato il 21 marzo

2023];53(4):185-7. [Online]. Available: https://doi.org/10.1162/dram.2009.53.4.185

[3] i-SCOOP [Internet]. Industry 4.0 and the fourth industrial revolution explained [Online].

Available: https://www.i-scoop.eu/industry-4-0/.

[4] DAVIES R. Policy Commons . Industry 4.0: Digitalisation for productivity and growth; 22 settembre 2015.

[Online]. Available: https://policycommons.net/artifacts/1335939/industry-40/1942749/.

[5] Filin SA, Yakushev AZ. https://www.fin-izdat.com/journal/digest/detail.php?ID=75034. Dig Finance

[Internet]. 30 settembre 2019 ;24(3):256-65 [Online]. Available: https://doi.org/10.24891/df.24.3.256

[6] Zhou K, Taigang Liu, Lifeng Zhou. Industry 4.0: Towards future industrial opportunities and challenges.

In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) [Internet]; 15-

17 agosto 2015; Zhangjiajie, China. IEEE; 2015 [Online].

Available: https://doi.org/10.1109/fskd.2015.7382284

[7] Pure - Login [Internet]. - University of Leoben research gateway[Online].

Available: https://pure.unileoben.ac.at/portal/en/publications/digitalization-and-digital-transformation-in-

metal-forming-key-technologies-challenges-and-current-developments-of-industry-40-

applications(e0144032-87a1-4d1b-901b-28647aae7ec1)/export.html

[8] Ylijoki O, Porras J. Perspectives to Definition of Big Data: A Mapping Study and Discussion. J Innov

Manag [Internet]. 4 maggio 2016 ; 4(1):69-91. [Online]. Available: https://doi.org/10.24840/2183-

0606_004.001_0006

[9] Qi Q, Tao F. A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and

Cloud Computing. IEEE Access. 2019;7:86769-77 [Online].

Available: https://doi.org/10.1109/access.2019.2923610

[10] "www.tutorialspoint.com" [Online]. Available:

https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_overview.htm.

[11] Khedri A, Kalantari N, Vadiati M. Corrigendum: Water Supply 20 (3), 909–921: Comparison study of

artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran

unconfined aquifer, https://iwaponline.com/ws/article/20/3/909/72227/Comparison-study-of-artificial-

intelligence-method?searchresult = 1. Water Supply . 26 giugno 2020;20(6):2440. [Online].

Available: https://doi.org/10.2166/ws.2020.133

[12] EZTUIR Home [Online]. Available: http://eztuir.ztu.edu.ua/jspui/bitstream/123456789/6479/1/142.pdf

[13] Oladipupo T. New Advances in Machine Learning: InTech; 2010. Types of Machine Learning

Algorithms; [Online]. Available: https://doi.org/10.5772/9385

[14] Zhang WJ, Yang G, Lin Y, Ji C, Gupta MM. On Definition of Deep Learning. In: 2018 World Automation

Congress (WAC) [Internet]; 3-6 giugno 2018; Stevenson, WA. IEEE; 2018 [Online].

Available: https://doi.org/10.23919/wac.2018.8430387

http://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_overvie
http://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_overvie

114

[15] ToolSense . The 6 Types of Maintenance Explained | ToolSense Glossary [Online].

Available: https://toolsense.io/maintenance/the-6-types-of-maintenance-definitions-benefits-

examples/#:~:text=What%20Are%20the%20Different%20Types,Predictive%20Maintenance%20and%20Re

active%20Maintenance

[16] Trent, E.; Wright, P. Metal Cutting. 4th Ed. Woburn, Ma: Butterworth-Heinemann, 2000. 464 P.

[17] Swift, K. G.; Booker, J. D. Manufacturing process selection handbook. Oxford, Ma: Elsevier, 2013.

[18] Beddoes, J.; Bibby, M. J. Principles Of Metal Manufacturing Processes. Carleton: Elsevier, 1999.

[19] Davim, J. P. (Ed.). Traditional Machining Processes. Berlin: Springer-Verlag, 2015.

[20] Machado, A. R. Et Al. Teoria Da Usinagem Dos Materiais. São Paulo: Blucher, 2009. 371 P.

[21] Klocke, F. Manufacturing Processes 1. Berlin, Heidelberg: Springer, 2011. 524 P.

[22] Stemmer, C. E. Ferramentas De Corte I. 3rd Ed. Florianópolis, Sc: Editora Da Ufsc, 1993. 249 P.

[23] Altintas, Y. Manufacturing Automation. 2nd Ed. Cambridge, Uk: Cambridge University Press, 2012.

(Robotics And Automation Handbook).

[24] Smith, G. T. Cutting Tool Technology: Industrial Handbook. London: Springer, 2008. 605 P.

[25] Tschätsch, H. Applied Machining Technology. Berlin: Springer, 2009. 375 P.

[26] Brinksmeier, E. Et Al. Process Signatures: A New Approach To Solve The Inverse Surface Integrity

Problem In Machining Processes. Procedia Cirp, V. 13, P. 429–434, 2014.

[27] Boothroyd, G.; Knight, W. A. Fundamentals Of Machining And Machine Tools. 3rd Ed. Boca Raton, Fl:

Taylor & Francis, 2006.

[28] Davim, J. P. (Ed.). Surface Integrity In Machining. London: Springer, 2010.

[29] Gadelmawla, E. S. Et Al. Roughness Parameters. Journal Of Materials Processing

Technology, V. 123, P. 133–145, 2002.

[30] Mundim, R. B.; Lucas, E. O. Effect Of Tool Wear On Surface Topography In Finish Turning Of Abnt

1045 Steel. In: Brazilian Congress Of Mechanical Engineering, 21, 2011, Natal, Rn. Proceedings [...]. Natal,

Rn: Abcm, 2011.

[31] Benardos, P. G.; Vosniakos, G. C. Predicting Surface Roughness In Machining: A Review. International

Journal Of Machine Tools And Manufacture, V. 43, N. 8, P. 833–844, 2003.

[32] He, C. L.; Zong, W. J.; Zhang, J. J. Influencing Factors And Theoretical Modeling Methods Of Surface

Roughness In Turning Process: State-Of-The-Art. International Journal Of Machine Tools And Manufacture,

V. 129, P. 15–26, Feb. 2018.

[33] Alpaydin, E. Introduction To Machine Learning. 3rd Ed. Massachusetts, Ma: Mit Press, 2014. 640 P.

(Adaptative Computation And Machine Learning).

[34] Çaydaş, U.; Ekici, S. Support Vector Machines Models For Surface Roughness Prediction In Cnc Turning

Of Aisi 304 Austenitic Stainless Steel. Journal Of Intelligent Manufacturing, V. 23, N. 3, P. 639–650, June

2012.

[35] Mia, M. Et al. Effect of time-controlled MQL pulsing on surface roughness in hard turning by statistical

analysis and artificial neural network. The International Journal of Advanced Manufacturing Technology, v.

91, n. 9–12, p. 3211–3223, Aug. 2017.

[36] Mia, M.; Dhar, N. R. Prediction Of Surface Roughness In Hard Turning Under High Pressure Coolant

Using Artificial Neural Network. Measurement, V. 92, P. 464–474, Oct. 2016.

115

[37] Garg, A.; Tai, K. Stepwise Approach For The Evolution Of Generalized Genetic Programming Model In

Prediction Of Surface Finish Of The Turning Process. Advances In Engineering Software, V. 78, P. 16–27,

Dec. 2014.

[38] Jurkovic, Z. Et Al. A Comparison Of Machine Learning Methods For Cutting Parameters Prediction In

High Speed Turning Process. Journal Of Intelligent Manufacturing, V. 29, N. 8, P. 1683–1693, Dec. 2018.

[39] Laouissi, A. et al. Investigation, modeling, and optimization of cutting parameters in turning of gray cast

iron using coated and uncoated silicon nitride ceramic tools. Based on ANN, RSM, and GA optimization. The

International Journal of Advanced Manufacturing Technology, v. 101, n. 1–4, p. 523–548, Mar. 2019.

[40] Meddour, I. Et Al. Prediction Of Surface Roughness And Cutting Forces Using Rsm, Ann, And Nsga-Ii

In Finish Turning Of Aisi 4140 Hardened Steel With Mixed Ceramic Tool. The International Journal Of

Advanced Manufacturing Technology, V. 97, N. 5–8, P. 1931– 1949, July 2018.

[41] Asiltürk, I. Predicting Surface Roughness Of Hardened Aisi 1040 Based On Cutting Parameters Using

Neural Networks And Multiple Regression. The International Journal Of

[42] Kara, F. Et Al. Effect Of Machinability, Microstructure And Hardness Of Deep Cryogenic Treatment In

Hard Turning Of Aisi D2 Steel With Ceramic Cutting. Journal Of Materials Research And Technology, V. 9,

N. 1, P. 969–983, Jan. 2020.

[43] Beatrice, B. A. Et Al. Surface Roughness Prediction Using Artificial Neural Network In Hard Turning Of

Aisi H13 Steel With Minimal Cutting Fluid Application. Procedia Engineering, V. 97, P. 205–211, 2014.

[44] Chen, Y. Et Al. A Nested-Ann Prediction Model For Surface Roughness Considering The Effects Of

Cutting Forces And Tool Vibrations. Measurement, V. 98, P. 25–34, Feb. 2017.

[45] Senthilkumaar, J. S.; Selvarani, P.; Arunachalam, R. M. Intelligent

Optimization And Selection Of Machining Parameters In Finish Turning And Facing Of Inconel 718. The

International Journal Of Advanced Manufacturing Technology, V. 58, N. 9–12, P. 885–894, Feb. 2012.

[46] Pontes, F. J. Et Al. Optimization Of Radial Basis Function Neural Network Employed For Prediction Of

Surface Roughness In Hard Turning Process Using Taguchi’s Orthogonal Arrays. Expert Systems With

Applications, V. 39, N. 9, P. 7776–7787, July 2012.

[47] Abbas, A. Et Al. Ann Surface Roughness Optimization Of Az61 Magnesium Alloy Finish Turning:

Minimum Machining Times At Prime Machining Costs. Materials, V. 11, N. 5, P. 808, May 2018.

[48] Jafarian, F.; Taghipour, M.; Amirabadi, H. Application Of Artificial Neural Network And Optimization

Algorithms For Optimizing Surface Roughness, Tool Life And Cutting Forces In Turning Operation. Journal

Of Mechanical Science And Technology, V. 27, N. 5, P. 1469–1477, May 2013.

[49] Saric, T.; Simunovic, G.; Simunovic, K. Use Of Neural Networks In Prediction And Simulation Of Steel

Surface Roughness. International Journal Of Simulation Modelling, V. 12, N. 4, P. 225–236, Dec. 2013.

[50] Donoho, D. 50 Years Of Data Science. Journal Of Computational And Graphical Statistics, V. 26, N. 4,

P. 745–766, Oct. 2017.

[51] Shi, D.; Gindy, N. N. Tool Wear Predictive Model Based On Least Squares Support Vector Machines.

Mechanical Systems And Signal Processing, V. 21, N. 4, P. 1799–1814, May 2007.

[52] Montgomery, D. C. Design And Analysis Of Experiments. 8th Ed. New York: John Wiley & Sons, 2013.

[53] Villares Metals. Vh13iso. São Paulo: Villares Metals, 2006. 2 p.

[54] Wikipedia, “Mean squared error - Wikipedia.” [Online]. Available:

116

https://en.wikipedia.org/wiki/Mean_squared_error#In_regression

[55] “Model Evaluation Metrics.” [Online]. Available: https://scikit-

learn.org/stable/modules/model_evaluation.html#mean-squared-error.

[56] S. Glen, “RMSE: Root Mean Square Error - Statistics How To,” StatisticsHowTo.com: Elementary

Statistics for the rest of us! 2017, [Online]. Available: https://www.statisticshowto.com/probability-and-

statistics/regression- analysis/rmse-root-mean-square-error/.

[57] O.Reilly, “Explained variance - Machine Learning Algorithms - Second Edition [Book].” [Online].

Available: https://www.oreilly.com/library/view/machine-learning- algorithms/9781789347999/49c4b96f-

a567-4513-8e91-9f41b0b4dab0.xhtml.

[58] S. Statistics, “What is Linear Regression?,” 2013. p. 1, 2013, [Online]. Available: [

[59] Levene M. ROKACH LIOR AND MAIMON ODED * Data Mining with Decision Trees: Theory and

Applications. * World Scientific (2008). ISBN-13: 978-981-277-171-1. 244 pp. Hardcover. Comput J

[Internet]. 2 dicembre 2008;53(4):489.

[60] "saedsayad.com," [Online]. Available: https://www.saedsayad.com/decision_tree_reg.htm.

[61] A. Chakure, "Towards Datascience," [Online]. Available: https://towardsdatascience.com/random-forest-

and-its-implementation- 71824ced454f.

[62] Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Bayesian_linear_regression.

[63] "Scikit Learn," [Online]. Available: https://scikit- learn.org/stable/modules/linear_model.html#bayesian-

ridge-regression.

[64] "www.saedsayad.com," [Online]. Available: https://www.saedsayad.com/k_nearest_neighbors_reg.htm.

[65] "scikit learn," [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html.

[66] R. Gupta, "Medium.com," 26 06 2017. [Online]. Available:

https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for- regression-and-tensorflow-

58ad3bd75223.

[67] "missinglink.ai," [Online]. Available: https://missinglink.ai/guides/neural-network- concepts/neural-

networks-regression-part-1-overkill-opportunity/

[68] Mindfire Solutions, "Medium," 3 October 2017. [Online]. Available:

https://medium.com/@mindfiresolutions.usa/python-7-important-reasons-why-you- should-use-python-

5801a98a0d0bhttps://medium.com/@mindfiresolutions.usa/python-7-important- reasons-why-you-should-

use-python-5801a98a0d0b.

[69] "Code Academy," [Online]. Available: https://www.codecademy.com/articles/what- is-an-ide.

[70] "Spyder," [Online]. Available: https://www.spyder-ide.org/.

[71] "Spyder," [Online]. Available: https://docs.spyder-ide.org/overview.html.

[72] ROWNOK ARA, "ubuntupit," [Online]. Available: https://www.ubuntupit.com/best-python-libraries-and-

packages-for-beginners/.

[73] Wu S. A review on coarse warranty data and analysis. Reliab Eng Amp Syst Saf [Internet]. Giugno 2013

[consultato il 22 marzo 2023];114:1-11.

[74] A. Swalin, "How to Handle Missing Data," 2018. [Online]. Available:

https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4.

http://www.statisticshowto.com/probability-and-statistics/regression-
http://www.statisticshowto.com/probability-and-statistics/regression-
http://www.oreilly.com/library/view/machine-learning-
http://www.saedsayad.com/decision_tree_reg.htm
http://www.saedsayad.com/decision_tree_reg.htm
http://www.saedsayad.com/
http://www.saedsayad.com/k_nearest_neighbors_reg.htm
http://www.saedsayad.com/k_nearest_neighbors_reg.htm
https://medium.com/%40mindfiresolutions.usa/python-7-important-reasons-why-you-
http://www.codecademy.com/articles/what-
http://www.codecademy.com/articles/what-
http://www.spyder-ide.org/
http://www.ubuntupit.com/best-python-libraries-and-packages-for-beginners/
http://www.ubuntupit.com/best-python-libraries-and-packages-for-beginners/
http://www.ubuntupit.com/best-python-libraries-and-packages-for-beginners/

117

[75] C. Agarwal, Outlier Analysis, Springer, 2017.

[76] K. Markham, "Github," 2019. [Online]. Available: https://github.com/justmarkham/scikit-learn-videos.

[77] J. Brownlee, "Machine Learning Mastery," 23 May 2018. [Online]. Available:

https://machinelearningmastery.com/k-fold-cross-validation/.

[78] P. Gupta, "towards Data Science," 5 June 2017. [Online]. Available: https://towardsdatascience.com/cross-

validation-in-machine-learning- 72924a69872f.

[79] "Deep AI," [Online]. Available: https://deepai.org/machine-learning-glossary-and- terms/feature-

extraction.

[80] Géron A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media,

Incorporated; 2022.

