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Abstract 

Machining production relies heavily on the quality of the surface roughness, and 

researchers have spent years studying ways to predict it. Typically, three approaches are 

taken to model surface roughness: empirical methods, theoretical/simulation methods, 

and soft computing methods. 

 

This study involved using Machine Learning models to analyze two datasets generated 

from machining experiments. These experiments involved turning AISI H13 steel with 

cutting fluid. The first dataset, which contained 324 samples, was based on theoretically 

new-tool conditions. The second dataset, which contained 288 samples, varied cutting 

tool flank wear in three levels. To increase the available data, a strategy was employed to 

boost by six times the number of measurements without increasing the number of 

experiments. 

 

Machine Learning models were used to predict the output, which was the arithmetic mean 

deviation (Ra), for both datasets. Smaller datasets resulted in models that were prone to 

overfitting and performed worse than larger datasets. The models trained on the first 

dataset (without tool wear) were unable to generalize to the second dataset (with tool 

wear). This suggests that tool wear is a critical factor when using Machine Learning 

models to model surface roughness in turning processes. Additionally, Machine Learning 

models outperformed classical theoretical surface roughness equations. 

 

The study also covers techniques for data cleansing, data manipulation to extract and 

select features, the use of these features in training various Machine Learning models and 

testing them to determine how turning process parameters and cutting tool wear affect 

the surface roughness parameter "Ra”. 

 

Lastly, the study highlights various tools that can be used for the regression analysis of 

Machine Learning models, such as Linear Regression, Decision Tree Regression, 

Random Forest Regression, Bayesian Ridge Regression, KNN Regression, Kernel Ridge 

Regression, and Neural Networks. 
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Chapter 1 – Introduction 
Synopsis 
The opening chapter of the thesis provides an in-depth understanding of the rationale behind 

the chosen topic and introduces various terms associated with it. After a brief introduction 

to multiple aspects of Industry 4.0, the chapter provides insight on the key Enabling 

Technologies and the significant impact of Artificial Intelligence on the industry. 

 

1.1 Industry 4.0  
The industrialization process started at the end of the 18th century with the incorporation 

of mechanical production equipment, which was made possible by the utilization of 

steam power in the production of goods. This first industrial revolution was then followed 

by the second industrial revolution in the late 19th century, which was marked by the use 

of new energy sources, such as electricity, and the implementation of the assembly line, 

leading to mass production. The third industrial revolution came about in the early 1970s 

and was characterized by the use of knowledge in the field of electronics and information 

technology to enhance the automation of production processes. Subsequently, 

advancements in digital technologies have been rapidly transforming the industry and are 

continuing to do so, leading to the phenomenon referred to as Industry 4.0 [1] or the 

Fourth Industrial Revolution, which has had a profound impact on all major sectors of 

the economy and has spread globally. 

 
 

Figure 1: The four industrial revolutions (source: rematarlazzi.co.uk) 
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Many academics view Industry 4.0 as an evolution of the Third Industrial Revolution 

because it not only focuses on automating production processes, but it also introduces a 

new factory model based on the digitalization, integration, and connectivity of processes, 

not only within the company, but throughout the entire value chain, by combining 

information and digital technologies with production technologies. This results in a new 

approach to industrial production, no longer viewed as a series of separate steps, but as an 

integrated flow.  

The concept of Industry 4.0 originated in Germany and was formalized in 2011 during the 

Hannover Messe [2]. It is an industrial strategy that involves a series of quick 

transformations in the design, production, operation, and service of production systems, 

transforming the entire industrial production sphere through the fusion of digital technology 

and the internet with traditional industry. Although Industry 4.0 is a widely recognized 

phenomenon in the industry, there is no clear-cut definition of it. Alternative terms used to 

describe it include Cyber Physical Systems, Internet of Things and Services, Smart 

Manufacturing, and Industrial Internet [1]. According to one of the most widely accepted 

definitions, Industry 4.0 refers to the Fourth Industrial Revolution, a new phase in the 

organization and management of the entire value chain during the product life cycle. This 

cycle is becoming increasingly customer-focused and covers everything from design and 

development to delivering the product to the end customer and its recycling, including all 

related services. All elements involved in the value chain are connected, making relevant 

information available in real-time and allowing for added value to be derived. Connecting 

people, objects, and systems creates dynamic, self-organizing, inter-company networks that 

can be updated in real-time and optimized based on various criteria, such as cost, 

availability, and resource consumption [3].  

The key characteristics of the Industry 4.0 paradigm are the transformation of the value 

chain through digitization and interconnection of all its stages, from procurement to after-

sales service. This transformation is driven by new technologies and devices, both hardware 

and software, that enable high levels of connectivity between people, devices, and 

machines, creating integrated systems that can respond autonomously and promptly to any 

changes in external conditions [3]. Data and information are transmitted in real-time within 

the company and between several companies within the same value chain, leading to a 

transition from a reactive to a proactive production system. 
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1.2 Enabling technologies 
Key enabling technologies (KETs) are the backbone for implementing Industry 4.0. As 

defined by the European Commission, these technologies are knowledge-intensive and 

require high levels of R&D, rapid innovation, significant investment, and highly skilled 

jobs [4]. To fully leverage the potential of these technologies and create efficient and 

effective smart factory solutions, it is crucial to encourage synergies between them. The 

value generated by Industry 4.0 technologies can only be realized when they are considered 

as a whole, rather than as individual components. Therefore, the ability to derive synergies 

from the integration of these technologies is more important than their individual use. The 

following sections will provide an overview of the main enabling technologies of Industry 

4.0, as recognized by academic and industry experts. 

 

1.2.1 Internet of Things 
The Internet of Things (IoT) was first introduced in 1999. It was defined by Kevin Ashton 

of MIT as a network of sensors and devices embedded in products, machinery, and other 

components that are connected to corporate information systems through the Internet. This 

technology expands the concept of communication by enabling interaction between 

machines, operators, processes, and sub-processes [5].                         

 
 

The foundation of IoT technology lies in the ability for each device in the network to have 

a unique identification through an IP address, enabling it to exchange data with other 

devices or software automatically using communication standards and protocols [1]. 

Figure 2: Industrial Internet of things (source: rocknetworks.com) 
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1.2.1.1 Industrial applications 
The Internet of Things (IoT) technology has the potential to revolutionize various sectors, 

including robotics, automotive, home automation, telematics, smart cities, and remote 

control. Logistics, in particular, is well-suited for IoT applications, given the need for 

efficient information exchange. One example of IoT application in logistics is RFID (Radio 

Frequency Identification), which uses radio frequency transmission for unique object 

identification and data storage [6]. This technology enables product traceability throughout 

the production and assembly phase and helps operators keep track of processing and any 

problems that may have arisen during the production cycle. The IoT also enables timely 

detection of system malfunctions through sensors installed on machines, enabling 

predictive maintenance policies rather than reactive ones [7]. 

 

1.2.1.2 Challenges and open issues 
Additionally, the security of IoT devices is often a concern as they can be vulnerable to 

hacking and cyberattacks. This highlights the need for proper security measures and 

protocols to be put in place, such as encryption, firewalls, and authentication mechanisms, 

to protect the sensitive data being transmitted and stored [7]. Furthermore, privacy is also 

an issue, as personal data and information may be collected and shared by IoT devices, 

which can raise privacy concerns. Therefore, it is important to ensure that privacy policies 

are in place to protect the privacy of individuals, and that the collected data is only used for 

the intended purposes. In conclusion, the potential benefits of the IoT for industry are vast, 

but there are also important challenges that must be addressed to ensure its sustainable and 

responsible development. 
 

1.2.2 Big Data 
Over the past few decades, the amount of data available to businesses has increased 

exponentially and there is a growing recognition of the significance of data as a source of 

value for creating new business models. Big Data encompasses "the volume of digital data 

available in the individual, physical, and industrial environment from sensors, machinery, 

IT infrastructure, mobile devices, electronic control units, telecommunications equipment" 

[8]. In 2001, Dug Laney presented a model called the 3V model, which highlights the 

unique features of Big Data, concentrating on the variables on which this technology 

develops [8]. These variables are: 
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• Volume: This refers to the size of databases employed to store data. These are 

expanding rapidly and necessitate high hardware capability and intricate 

algorithms to manage. The quantity of data kept has increased from terabytes to 

zettabytes (1 trillion bytes). 

• Variety: The type of data accessible to businesses is no longer uniform but 

encompasses textual data, images, audio, and video. Integrating structured data 

(usually numerical) with unstructured data (text, images, video) necessitates 

specific, newly generated platforms and people capable of making them functional 

and effective, and ideally suited to the business's objectives. 

• Speed: This pertains to the rate at which data is transmitted. A diminished speed 

of information gathering and processing would make companies reluctant to 

purchase data packages that include potential consumers or current customers. The 

same applies to computer security companies, where a data stream must be studied 

and analyzed swiftly to identify new cyber threats' presence or absence. 

Consequently, the speed of data transmission and analysis is a critical factor in the 

success of Big Data. 

Today, Laney's paradigm has been enriched with two more variables, leading to the 

emergence of the so-called 5V Model of Big Data [8]. The added variables are: 

• Value: it refers to the need for industries to appropriately store, classify, and 

analyze data to extract value and identify new business opportunities, due to the 

impact of digitization across all sectors. 

• Veracity: it highlights the challenge of ensuring the reliability of data in the 

context of Big Data, where data management technologies, collection speeds, and 

sources are constantly changing. Despite these challenges, ensuring the quality and 

integrity of data is essential for creating useful and reliable analyses. 

Given the preceding discussion, it can be argued that the success of Industry 4.0 hinges on 

the ability to perform real-time analysis and intelligent processing of vast amounts of data 

from diverse sources. To accomplish this, it is crucial to create algorithms that can 

efficiently and effectively store, analyze, and transmit the information contained in Big 

Data. By doing so, Big Data can become a valuable decision-making tool for companies. 
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1.2.1.3 Industrial applications 
Big Data is a fundamental element of information management in Industry 4.0. It involves 

collecting and processing data from sensors and networked control units, enabling the 

monitoring of machines and plants to identify trends and anomalies. Data Mining and Data 

Analytics techniques allow for the automatic monitoring of systems and the generation of 

reports and KPIs. Data analysis algorithms are also useful for production quality control, 

enabling companies to identify anomalies, minimize errors and improve production 

processes. The implementation of Big Data represents a significant change in the way 

production processes are managed. 
 

1.2.3 Cloud Computing 
Cloud computing relies on a range of technologies that enable the processing and storage 

of data using distributed hardware and software resources across a network [9]. The key 

elements of a cloud platform include: 

• A sophisticated data storage architecture; 

• Computing nodes responsible for data processing; 

• Controllers, for data migration. 

When discussing cloud technology, there are three types of clouds: public, private, and 

hybrid. A public cloud is a service that provides infrastructure through a public network 

and data centers managed by third parties over the internet. A private cloud is a service 

that provides infrastructure and services through a private network and data centers 

managed internally by a company that restricts access to others. A hybrid cloud is a 

Figure 3: 5V Big Data (source: onlinelibrary.wiley.com) 
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combination of public and private clouds. Additionally, cloud services are categorized 

into three main types, including IaaS (Infrastructure as a Service), PaaS (Platform as a 

Service), and SaaS (Software as a Service) [9]. 

• SaaS is "a model that encompasses applications and software systems, accessible 

from any type of device (computer, smartphone, tablet, etc.) through the simple 

use of a client interface. In this way, the user does not have to worry about 

managing the resources and infrastructure, as they are controlled by the provider 

who supplies them.  

• PaaS is "a model in which the services of online platforms are located, thanks to 

which a user, usually a developer, can carry out the installation of applications and 

web services that he or she intends to provide. In this case, the user can develop 

and run his or her own applications through the tools provided by the provider, 

who guarantees the proper functioning of the underlying infrastructure. (e.g. 

Google Cloud App Engine, Amazon dynamoDB, Google cloud data store). 

• IaaS is a 'model in which virtualised hardware resources are made available so that 

users can create and manage their own infrastructure on the cloud according to 

their needs, without worrying about where the resources are allocated. 

This means that the services provided by SaaS, PaaS, and IaaS differ based on their 

respective functionalities: IaaS provides support for PaaS, which in turn supports 

SaaS. 

 
 

  
Figure 4: IaaS-PaaS-SaaS (source: vitolavecchia.altervista.org) 
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1.2.4 Fog Computing 
Fog Computing refers to local data processing in a decentralized manner, as opposed to 

Cloud Computing which relies on a network of connected computers and servers [9]. This 

infrastructure can offer accurate predictions and become a valuable tool for planning 

production processes. Simulation, in general, involves modeling real systems over a 

specified time frame to predict their performance under various constraints and conditions. 

Designers can use simulation tools to evaluate product or machinery performance early in 

development, identifying and addressing issues before they become costly problems. This 

approach can lead to significant reductions in product development costs. 

 

1.2.5 Digital Twin 
The concept of Digital Twin, or Virtual Twin, is crucial in the field of simulation and 

prototyping. It refers to a virtual real-time representation of a physical device that can 

reproduce its behavior based on external stimuli perceived by sensors in the real system [7]. 

Working with a Digital Twin has the advantage of allowing simulations to be carried out to 

evaluate how the real model would react to changing boundary conditions, thus minimizing 

anomalies. Additionally, the virtual model enables remote operations to be performed, as it 

can be analyzed from anywhere, irrespective of the location of the physical device. This can 

lead to scenarios where technical staff can give instructions to operators working on a distant 

machine by analyzing its virtual twin. 

 
 

 
Figure 5: Digital Twin (source: industry.itismagazine.co.uk) 
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1.3 Impact of Artificial Intelligence in Industry 
In modern business, companies strive to become more efficient by reducing costs and 

minimizing errors, while improving product performance. Before exploring the role of 

artificial intelligence (AI) in manufacturing, it's important to understand its general 

definition. Professor John McCarthy, an expert from Stanford University, defines AI: “It is 

a science and engineering of making intelligent machines, especially intelligent computer 

programs. It is related to the similar task of using computers to understand human 

intelligence, but AI does not have to confine itself to methods that are biologically 

observable” [10].  

Thanks to the benefits of artificial intelligence and related technologies, companies are able 

to achieve higher levels of efficiency that can drive the entire business. This is possible 

because AI can identify inefficiencies in the production process or at the end of the 

production line, extract valuable manufacturing data, facilitate communication between 

machines and people, and reduce costs. The new manufacturing model, known as intelligent 

manufacturing, is based on AI, science, and technology and can lead to growth in design, 

production, and management. The main goal of intelligent manufacturing is to optimize 

manufacturing resources, improve business value, and enhance safety. Within the sector of 

intelligent manufacturing, different types of maintenance have been developed to prevent 

failures and increase reliability, including corrective, preventive, and predictive 

maintenance, depending on available resources. 

 

1.3.1 Artificial intelligence division 
The primary categorization of AI can be grouped into three categories, which include 

internal subsets of machine learning and deep learning [11]. Currently, there is a common 

misconception where the definitions of AI, ML, and DL are not accurately comprehended 

or applied, leading to confusion. To avoid this, the initial stage of this chapter will 

differentiate between various types of AI, followed by an in-depth analysis of each segment. 
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1.3.2 Types of AI: weak, strong and super intelligence 
Weak AI, also known as Narrow AI or Artificial Narrow Intelligence (ANI) [12], is 

designed to perform specific tasks that do not match human intelligence and do not attempt 

to replicate it. The term "narrow" accurately describes this type due to its limited range of 

abilities, which are mostly goal-oriented for performing various tasks. This type is 

commonly used today in environments that enable robust applications. 

Strong AI is made up of Artificial General Intelligence (AGI) and Artificial Super 

Intelligence (ASI) [12]. AGI is a form in which machines have intelligence equal to that of 

humans, or in other words, self-aware consciousness with the ability for problem-solving, 

learning, and planning for the future. Analyzing this type, it is possible to imagine human-

like robots that can decide by themselves and learn without human intervention. 

Additionally, there is another type called Artificial Super Intelligence (ASI), which is a type 

of self-conscious computer that can practically outmaster human intelligence and the 

abilities of the brain. However, this type is still mostly theoretical or treated as a research 

topic. 

Figure 6: Division of Artificial intelligence (source: medium.com) 
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Figure 7:  Three main types of Artificial Intelligence (source: medium.com) 

 

1.4 Machine learning 

Machine learning is a subfield of artificial intelligence that involves the use of algorithms 

to improve themselves based on experience and data. It is also referred to as the study of 

enabling machines to perform better without explicit programming. When a machine learns, 

it changes its structure, program, or data in response to input or external information with 

the expectation of further improvement [13]. To facilitate learning, three components are 

required: an algorithm, a dataset, and features. The dataset is a collection of similar entities 

and values that can be individually or collectively structured. Collecting this data can be a 

time-consuming operation, and it can be done by gathering open-source data or directly 

collecting it. Features are special data objects that are necessary for solving the problem at 

hand, and their selection is essential for effective pattern recognition, classification, and 

regression algorithms. Algorithms aim to allow the system to learn and develop its own 

experience without being explicitly programmed. There are various algorithms, such as 

deep learning, coevolutionary networks, and recommendation systems, each with a specific 

use. 

 

1.4.1 Types of Machine Learning 
There are four main types of machine learning, which can be classified based on the type 

of learning expected from the algorithms. These include Supervised Learning, 

Unsupervised Learning, Semi-supervised Learning, and Reinforcement Learning [13]. 



22 

More details on these types of machine learning will be explained in the following sub-

sections. 

 

 

1.4.2 Supervised Learning 
The first type of machine learning algorithm is characterized by the output of a classified 

or labeled dataset that can be accurately predicted. When input data is applied to the model, 

it is adjusted and weighted until the model fits appropriately, avoiding overfitting or 

underfitting. Supervised learning involves providing labeled examples, each with a unique 

input signal and corresponding response, to teach the model [13]. Linear regression is an 

example of an algorithm that uses supervised learning, as do other machine learning 

algorithms such as K-Nearest Neighbors, Support Vector Machines, Decision Trees and 

Random Forests, and Artificial Neural Networks. Supervised learning models have found 

application in various areas thanks to their accurate and predictable output. Examples 

include predictive analytics, customer sentiment analysis, spam detection, and image and 

object recognition, which will be more fully explained in subsequent chapters. The two 

primary prediction problems of machine learning derived from supervised learning are 

regression and classification, which differ as follows: 

• Classification involves finding a model or function that can separate data into 

multiple categorical classes based on given input parameters. In classification, data 

         Figure 8: Types of Machine Learning (source: bootcamp.pe.gatech.edu) 



23 

is categorized under different labels, and then the labels are predicted for new data 

[13]. The resulting mapping function could be represented in the form of "IF-

THEN" rules. Classification deals with problems where data can be divided into 

binary or multiple discrete labels. 

• Regression involves finding a model or function for distinguishing data into 

continuous real values, and it can also identify distribution movement based on 

historical data [13]. Since a regression predictive model predicts a quantity, the 

accuracy of the model must be reported as an error in those predictions. 

 

As can be partially seen from the graph above, classification is a process that predicts discrete 

values in an unordered manner, while regression works with continuous values and predicts 

data in an ordered manner. Examples of classification algorithms include decision trees or 

logistic regression, while regression solutions include regression trees or linear regression, 

among others. 

 

1.4.3 Unsupervised Learning 
Unlike the previously explained, Unsupervised Learning does not require the user to know 

the final output. The model works on its own, without supervision or access to labeled 

output, allowing it to discover previously undetected patterns and information [13]. The 

main advantage of using UL is the ability to find all kinds of unknown patterns in data. 

Other machine learning algorithms that use this type of learning include K-Means for 

clustering, t-distributed Stochastic Neighbour Embedding (t-SNE) for visualization, 

Figure 9:  Difference between scope of Classification and Regression 
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Principal Component Analysis for dimensionality reduction, and Apriori for association 

rule learning. In the manufacturing industry, a useful method of unsupervised learning is 

anomaly detection, where the model is trained with standard data to detect whether new 

data is normal or not, potentially detecting anomalies in machines or processes.  

The three main tasks of unsupervised learning are clustering, association, and 

dimensionality reduction [13]. Clustering methods are used to find similarity and 

relationship patterns among data samples and cluster them into groups based on their 

features. Clustering plays an important role in determining groups among present unlabeled 

data and making assumptions about data points to determine their similarity. 

 

1.4.4 Semi-supervised Learning 
Semi-supervised learning is a type of ML that uses a combination of labeled and unlabeled 

data to train a model. It lies between supervised and unsupervised learning, and is useful in 

situations where there is a limited amount of labeled data and no additional resources to 

obtain more [13]. By using the large amount of unlabeled data available, the model can 

learn more about the data and improve its accuracy. This technique can be especially helpful 

in domains such as natural language processing and computer vision, where labeled data 

can be difficult and expensive to obtain. 

 

1.4.5 Reinforcement Learning 
The goal of Reinforcement Learning is to address closed-loop problems in which the actions 

of the learning system affect its future inputs. In this type of learning, the learner does not 

receive direct instruction on which action to take, but instead must discover it through trial 

and error [13]. In some cases, actions may have consequences not only in the immediate 

response but also in subsequent responses. Reinforcement Learning is characterized by 

three main factors: closed-loop, lack of direct instruction on which actions to take, and the 

consequences of actions that are important for an extended period of time [13]. One of the 

challenges of Reinforcement Learning is balancing exploration and exploitation. To obtain 

a large reward, an agent must prefer actions that have been effective in the past, but to 

discover such actions, it has to try new things. Another key aspect of Reinforcement 

Learning is its consideration of the entire, goal-directed problem interacting in an uncertain 

environment. Finally, one of the most interesting aspects of modern Reinforcement 

Learning is its productive interaction with other engineering and scientific disciplines, such 
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as psychology or neuroscience. 

 

1.4.6 Deep Learning 
Deep learning, also known as deep structured learning or hierarchical learning, is a newly 

emerged field and subcategory of research within machine learning. Rather than providing 

a thorough explanation right away, it's important to first provide a general definition in 

order to convey the overall concept of this particular area. “Deep Learning is a new area of 

Machine Learning research, which has been introduced with the objective of moving 

Machine Learning closer to one of its original goals: Artificial Intelligence. Deep Learning 

is about learning multiple levels of representation and abstraction that help to make sense 

of data such as images, sound and text” [14]. 

Deep learning is an essential component of cognitive computing, which has gained 

widespread interest due to its ability to enable applications to understand human input and 

respond in a way that people can comprehend. Deep learning technology has significantly 

enhanced computers' capacity to classify, identify, detect, and describe data, which means 

they can better understand it. This technique is particularly useful in areas such as image 

classification, speech recognition, and object recognition, where numerical data is essential. 

With the development of new algorithms and technologies, deep learning is rapidly 

advancing, with increased accuracy and effectiveness. As a result, new fields of study such 

as text translators and image classification are becoming increasingly useful [14]. 

However, the complexity of the algorithms and the vast amounts of data required for 

network learning mean that solving problems using deep learning requires significant 

computing power. The adaptive nature of the learning method allows for continuous self-

improvement and adjustment, which makes it possible to implement more dynamic 

solutions. The increased accuracy and efficiency of neural networks in applications that 

have long used them is also contributing to their continued growth. With better algorithms 

and higher computational power, it is possible to gain a more precise understanding of the 

data being analyzed. 

 

1.5 Types of maintenance in machine   learning 
Maintenance costs are a significant operating expense for the industrial sector, and can 

represent up to 50% of total production costs even without factoring in unplanned downtime 

[15]. As a result, a company's productivity and profitability depend heavily on the 
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maintenance process, so it's important to ensure that all equipment is working as reliably as 

possible. This article describes and compares three main types of maintenance: corrective, 

preventive, and predictive, as illustrated in Figure 10. 

• Corrective maintenance: The first type of maintenance is focused on solving problems 

that have already occurred, and only takes place when the machine is in critical condition. 

This typically leads to production stoppages, resulting in reduced output and increased costs 

[15]. Repair time cannot be easily scheduled, so this time is often used for machining 

processes that do not have a significant impact on production. Corrective maintenance is 

typically performed by a human technician. 

• Preventive maintenance: The second type of maintenance is preventive, and focuses on 

scheduled maintenance actions aimed at preventing spontaneous breakdowns, failures, and 

degradation of equipment, components, or spare parts. This type of maintenance is usually 

carried out outside of production time and is performed through periodic inspections of the 

system [15]. It is useful to keep a history of previous failures of parts or machines for more 

effective planning. Preventive maintenance is considered demanding, requiring precise 

supervision and planning, and should be carried out by qualified personnel. Incorrect 

application of preventive maintenance may lead to breakdowns, resulting in production 

downtime and increased costs. 

• Predictive maintenance: This type of maintenance is not new to the industry but has 

gained relevance and has been developed in the Industry 4.0 scheme. In this case, 

maintenance is usually carried out before a breakdown occurs. It is based on precise 

formulas, sensor measurements, and analysis of measured parameters. The main goal is to 

guarantee maximum intervals between consecutive repairs and minimize the number of 

planned maintenance operations and associated costs. The predictive maintenance process 

involves three steps: data acquisition, data processing, and machine decision-making [15]. 

 
Figure 10: Types of Maintenance (source: www.heavy.ai) 
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Chapter 2 - Turning Process and Surface 

Roughness 

Synopsis 
This chapter focuses on metal cutting processes and provides a detailed explanation 

of the turning process, turning cutting tool, and the wear phenomena associated with 

cutting tool usage. It also provides an overview of Surface Roughness parameters and 

explains how the Surface Roughness is affected during Turning processes. 

 

2.1 Metal cutting 
Cutting is recognized as the earliest manufacturing technique ever invented, and it has a 

broad range of applications. However, this paper concentrates on metal cutting, which 

involves removing a thin layer of metal, known as a chip, from a larger body called the 

workpiece, using a wedge-shaped tool. In engineering, the term "cutting" or "machining" 

refers to chip-forming processes, which are mainly used in metal processing. Although 

these processes can be used on other materials like wood and plastic, the knowledge gained 

from metal processing cannot be completely applied to other materials [16]. As a result, in 

this text, the terms "cutting" and "machining" are interchangeable and are primarily 

associated with metal cutting. Metal cutting or machining is part of a general manufacturing 

hierarchy chain and is considered a secondary process, as depicted in Figure 11. 

The fabrication of a product is typically broken down into three steps: primary shaping 

processes, which are responsible for the initial transformation of the raw material; 

secondary processes, which include material removal and other treatments such as heat and 

surface treatments; and finally, assembly processes, which involve joining, assembly, and 

testing of the product [17]. Primary shaping processes such as casting and forming shape 

the workpieces while conserving their masses. However, these processes may not provide 

sufficient surface quality and geometric tolerances. Therefore, material removal processes 

are necessary to finish the workpieces, and metal cutting processes fulfill this need [18]. 

Machining refers to various processes, all of which involve removing material from a 

workpiece in their unique ways. Broadly speaking, some processes utilize tools with 

defined geometry (such as milling, drilling, and turning), while others use tools with non-

defined geometry (like grinding, honing, and lapping) [19]. Other material-removal-based 
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processes have more specific applications, such as electrical discharge and ultrasonic 

machining. However, in this review, the focus is on turning processes.  

 
Figure 11: Hierarchy of manufacturing processes. (SWIFT; BOOKER, 2013). 

 

2.2 Turning process 
The turning process involves the use of single-point cutting tools with a geometrically 

defined cutting point. This means that there is only one theoretical cutting point. During 

machining, the cutting region of the tool is continuously in contact with the workpiece, 

resulting in a continuous cutting process [20]. Turning is primarily a rotational process, 

where the workpiece rotates while a translational feed motion removes material from it 

[21]. A typical single-point cutting tool is depicted in Figure 12. It consists of a major 

cutting edge, also known as the primary cutting edge, which forms the chip that flows 

through the rake face. The transient surface formed by the major cutting-edge flows through 

the flank face of the tool, as shown on the right side of Figure 13. The primary cutting edge 

physically divides the flank and rake faces. 
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Figure 12: Cutting tool nomenclature and main angles. (KLOCKE, 2011; TSCHÄTSCH, 2009) 

 

The geometry of the cutting tool can have a significant impact on the machining process by 

affecting various aspects such as forces, chip formation, surface roughness, and tool 

durability. Each angle or inclination of the tool has distinct characteristics that should be 

considered as a design parameter for the machining process [22]: 

• The clearance angle α, can help reduce or avoid friction between the transient 

surface and the flank face of the tool, which can greatly improve tool lifespan.  

• The rake angle γ is another crucial angle to consider, as it has a significant influence 

on forces, power requirements, surface finish, and heat generation. 

• The cutting-edge inclination λ also play a role in directing the chips and controlling 

vibration 

• The cutting-edge angle κr can reduce chatter, a type of harmful self-excited 

vibration that can lead to tool wear and increased forces.  

• The corner radius rε, which refers to the radius of the curve that unites the minor 

cutting edge to the major cutting edge, can increase power demands by up to 20%. 

It is also a significant factor in most theoretical surface roughness models. 

In addition, the selection of geometric features of the cutting tool must be based on the 

specific characteristics of the workpiece and tool materials used in the process, as these 

factors can greatly influence the machining performance [22]. 

Figure 13 illustrates a typical lathe machine used for turning operations, as well as its main 

components and axes. The cylindrical turning process is the most commonly used turning 

process and is depicted on the right side of the figure. The workpiece is clamped on the 

chuck, which is connected to the motor spindle that rotates the part. For heavier or longer 
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parts, the center-tailstock can be used to support both ends. The feed motion is achieved by 

moving the carriage along the feed rods and lead screws. The machine tool axes are 

conventionally designated as follows: the Z-axis aligns with the spindle direction, the X-

axis is parallel to the longest direction of table movement, and the Y-axis is parallel to the 

shorter direction of table movement. A, B, and C correspond to angular movements around 

the X, Y, and Z axes, respectively [23]. This schematic fixture and axes system can be 

entirely translated into CNC (Computer Numerically Controlled) turning centers. 

                                 

The cutting process in cylindrical turning can be analyzed using mathematical equations, 

which are presented in Table 1. One such equation is the cutting time equation, which can 

be used to calculate the time taken for a given process and relate it to measures of tool wear. 

Another useful equation is the cutting speed equation, which can be calculated by hand and 

used during the execution of experiments. The relationship between the width of cut, uncut 

chip thickness, and the sectional area of the chips can also be used to investigate the forces 

involved in the process. 

  

 X  Z 

 Y Headstock (containing main spindle) 

 
Chuck  

 
Workpiece  

 
Tool 

Center  
Tailstock 

Workpiece 
Work surface  

Transient surface 
Machined surface  

Primary motion (n) 

Cross slide Bed Continuous feed 
motion (f) 

ap: depth of cut 

Carriage  
Feed rod  

Lead screw 

Tool post 

Figure 13: Lathe (left side) and cylindrical turning process (right side). 
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Table 1: Some mathematical relations of cylindrical turning. 

Item Mathematical relation Unit Eq. Source 
 

Cutting time 
 

             Tc = 𝐿

𝑓∙𝑛
 

 

min 
 

1 
(BOOTHROYD; 

KNIGHT, 2006) 

Cutting speed 𝑣𝑐 = 𝜋 ∙ 𝑑 ∙ 𝑛 m/min 2 (TSCHÄTSCH, 2009) 

 

Width of cut                                           

 

𝑏 =  
𝑎𝑝

sin(κr)
 

mm 3 (STEMMER, 1993) 

Uncut chip thickness ℎ = 𝑓 ∙ sin(𝜅𝑟) mm 4 (STEMMER, 1993) 

Chip’s sectional area 𝐴 = 𝑎𝑝 ∙ 𝑓 = 𝑏 ∙ ℎ mm² 5 (TSCHÄTSCH, 2009) 

 
 
2.3 Machining forces 
Understanding the forces involved in metal cutting processes is crucial for various 

applications. These forces can inform the design of machine tools, cutting tools, and tool 

holders, as well as aid in the determination of cutting conditions. Furthermore, analyzing 

the forces can help identify wear mechanisms, monitor the process for tool wear or 

breakage, and classify materials based on their machinability [16]. Machinability refers to 

the ease with which a specific material can be cut under specific conditions, with larger 

forces typically indicating a harder-to-cut material. 

 

 

 

 

 

 

Figure 14 illustrates the forces involved in a typical turning process. The forces acting on 

the tool are of the same magnitude as those acting on the chip, but in opposite directions. 

The resultant force F can be broken down into three components that affect the tool [21]: 

F  : Resultant force  
Fc : Cutting force  
Ff  : Feed force 
Fp : Passive force 

Figure 14: Resultant force and its components for a general turning process (TSCHÄTSCH, 2009). 
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• The cutting force Fc : acts in the opposite direction of the cutting motion and 

perpendicular to the cutting edge. It is usually the most significant force in turning 

processes. 

• The feed force Ff : acts in the opposite direction of the feed motion (or perpendicular 

to the cutting motion). It is also known as the thrust force Ft. 

• The passive force Fp : acts in the same direction as the tool holder and tends to push 

the tool away from the workpiece. It is often neglected in turning operations because 

it is typically the smallest of the three components. 

The force components can also be named after the names of the machine tool axes: Fc is 

equivalent to Fx because it acts along the X-axis; Ff is equivalent to Fz because it acts along 

the Z-axis; Fp is equivalent to Fy because it acts along the Y-axis. Alternatively, they can 

also be named based on their direction with respect to the workpiece: Fc , Ff , and Fp are also 

known as tangential force, axial force, and radial force, respectively [24].  

The cutting force is the primary force used to assess cutting processes, especially when the 

other two components are insignificant. However, the specific cutting force, resultant force, 

and specific resultant force may also be utilized. Since the cutting force is typically the 

highest among the three components, it is used to compute the machining power required. 

This calculation is simply the product of the cutting force and cutting speed [24]. 

Dynamometers are used to measure machining forces, and various dynamometers have 

been developed over the past century, including force platforms that employ piezoelectric 

load cells to measure force in multiple directions and calculate resultants [16]. Piezoelectric 

dynamometers are known for their high static stiffness and rigidity, high natural frequency, 

high sensitivity, accuracy and reliability, and low temperature sensitivity, which produce 

accurate results [25]. The force measuring unit is the Newton (N). 

The resultant force is the vector sum of the three components and can be determined using 

Equation 6, which is essentially a sum of orthogonal vectors employing the Pythagorean 

Theorem. 

 

F = √𝐹𝑐2 + 𝐹𝑓2 + 𝐹𝑝2                                                                Eq.6  

 

2.4 Cutting tool wear 
During the metal cutting process, the cutting region, including the workpiece and cutting 

tool, is subjected to external thermal and mechanical loads [26]. These loads result in 
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deformation, separation, and friction in the cutting-edge area of the tool, creating a complex 

and challenging environment. The constant high compressive and thermal stresses cause 

the tool to wear over time, making it ineffective in cutting efficiently or even causing it to 

fail altogether. Tool wear is characterized by changes in the tool's shape due to the loss of 

material or deformation (ISO,1993), which can lead to poor quality final parts and defects. 

When designing and implementing metal cutting processes, it is important to consider the 

wear behavior, its causes, and possible solutions. Tool wear typically occurs through three 

primary mechanisms: abrasion, adhesion, and diffusion [27]. 

• Abrasion occurs when hard particles on the chip and workpiece mechanically 

remove material from the tool. These particles can be leftover strain-hardened 

material, previously removed fragments, or hard workpiece components.  

• Adhesion is caused by friction movement between the tool and workpiece, which 

creates micro-welding between their surfaces. This causes tool material to be carried 

away, and the mechanism is influenced by the tendency of materials to bond, which 

can be caused by mechanical action or chemical interactions.  

• Diffusion is caused by high temperatures in the cutting region, which trigger 

individual atoms to migrate from the tool surface to the workpiece or vice versa. 

This mechanism affects a narrow region of the contact interface between the tool 

and workpiece but is critical in reducing tool resistance to abrasion, particularly 

when the diffused atoms are essential constituents of the tool's alloying elements. 

The causes of tool wear are closely related to the cutting temperature, which is strongly 

influenced by the cutting speed. Figure 15 illustrates how the wear mechanisms change 

with increasing cutting temperature. At low temperatures, the dominant wear mechanisms 

are adhesion and abrasion. As the temperature rises, diffusion and oxidation become more 

important. At very high temperatures, diffusion becomes the primary cause of tool wear. 
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Figure 15: Wear causes dependent on cutting temperature (KLOCKE, 2011) 

 

One practical method for determining when a cutting tool has reached the end of its useful 

life is by observing certain anomalies during cutting, such as the presence of smoke, 

excessive noise, unusually severe vibrations, changes in the surface finish or geometry of 

the workpiece, or changes in the dimensions of the cutting tool itself. Experienced operators 

are often relied upon to identify when the tool needs to be replaced or reground. Wear 

affects the dimensions of the tool in various ways, as depicted in Figure 16 for a typical 

turning operation. The different forms of wear include flaking, fragmentation, plastic 

deformation, smearing, notching, cratering, and flank wear. Of these, particular attention 

should be paid to crater and flank wear because they tend to progress more gradually than 

the others, making it easier to track their development over time. Additionally, they are the 

easiest forms of wear to measure. 
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Figure 16: Forms of wear (KLOCKE, 2011). 

 
Even though one can observe certain anomalies to determine whether a tool is broken or no 

longer cutting properly, it is important to replace the tool before it wears out completely to 

prevent negative consequences. Measures of wear are used to determine the extent of 

change in the tool's dimensions and can serve as a criterion for tool life (ISO 1993). These 

criteria vary depending on the type of tool, such as high-speed, sintered carbide, or 

ceramics. For sintered carbide cutting tools (as in this work), the criteria typically used are: 

the average width of the flank wear land VBB = 0.3 mm (as shown in Figure 17) for regular 

wear, and the maximum width of the flank wear land VBB max. = 0.6 mm if the wear is not 

regular. Additionally, criteria such as the depth of crater wear KT = 0.2 mm and the 

breakage of the crater can also be used. Wear measures are associated with visible changes 

in the tool's wear patterns during cutting, as shown in Figure 17, which displays the 

measures of wear defined by the International Standard ISO 3685(E) (1993), including the 

width of the flank wear VBB, the depth of crater wear KT, and cutting-edge displacements 

(SVα and SVγ). 
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Figure 17: Tool wear measures (ISO, 1993). 

The notch, indicated as VBN in Figure 16, is not considered to be a form of abrasive wear 

like regions A, B, and C. Notch wear typically occurs as a result of chemical reactions and 

work-hardening of the workpiece surface from previous cuts. It affects both the flank and 

rake face of the tool, and it happens outside of the tool-workpiece interface (ISO, 1993). 

Figure 18 displays two types of wear: crater and flank wear. The rake face of the tool, where 

the interface between the chip and tool occurs, experiences wear in the form of a crater. 

Crater wear is the primary form of wear that is controlled in high-speed cutting, whereas 

under economic conditions [27], flank wear is typically the measure that is assessed when 

determining the condition of the tool. In this dissertation, the focus will be on assessing 

flank wear, which occurs at the interface between the tool and workpiece on the flank face 

of the tool. The dashed lines in Figure 18 represent the original state of the tool's rake and 

flank face prior to wear. 
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Figure 18: Most used forms to control tool wear (BOOTHROYD; KNIGHT, 2006). 

 

In addition to wear measurands like the width of flank wear and the depth of crater wear, 

other tool-life criteria are also commonly used, including pre-defined limits on surface 

roughness, geometry deviation, cutting forces, and spindle power, among others. The 

summarized tool-life criteria are as follows [21]: 

• Tool wear measurands (such as a limit on flank wear width); 

• Workpiece result measurands (such as a limit on surface roughness); 

• Process measurands (such as a limit on spindle electric power). 

 

2.5 The machined surface topography 
The surface of a machined part contains characteristics that are related to the part's function 

and performance, such as corrosion resistance, fatigue strength, and tribological behavior 

[28]. These characteristics are collectively known as surface integrity aspects, which are 

divided into external topography and internal aspects, including microstructure, mechanical 

properties, and residual stress. In this work, the focus is on the external topography aspect 

of surface integrity, specifically surface roughness. Using the definitions proposed by 

Davim (2010), a nominal surface is given by the original project design without considering 

any deviation, and a real profile is a resultant surface read by measuring assessment 

equipment (microscopes, profilometers, etc.) that considers the geometric deviations from 

the nominal surface, which are listed in Table 2. These deviations are classified into form 

and waviness errors, which are first and second orders, respectively, and roughness errors, 

which are third to sixth orders. The form, waviness, and roughness profiles are depicted in 

Figure 19, with the waviness profile (W-Profile) being the primary profile without 

roughness, and the roughness profile (R- Profile) being the primary profile without 
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waviness, obtained using low-pass and high-pass filters, respectively (ISO,1997). 

Table 2:  Geometric deviations of machined surfaces according to DIN 4760 (1982). 

Order Deviation Causes 

 

1st 

 

Form errors 
Errors of machine tool slides, elastic deformations, 

fixation of tool/workpiece, severe tool wear 

 

2nd 
 

Waviness 
Eccentric rotation of workpiece/tool, vibrations, tool 

wear, inhomogeneity of processed material 

3rd Grooves Tool edge form, process kinematics, chip morphology 

 
4th 

 
Cracks 

Tool-nose wear, built-up-edge formation, mode of 

chip formation, galvanic procedures 

 

5th 
Crystalline 

structure 

Crystallization mode, irregularities due to chemical 

reactions, corrosive damage 

 

6th 
Crystalline 

formation 

Physical and chemical alterations in the material’s fine 

structure, deformations of lattice 

 

Macroscopic geometric imperfections like form errors and waviness can be eliminated by 

addressing their underlying causes, but microscopic geometric variations in the form of 

roughness will always be present to some degree. While it may seem that minimizing the 

deviation from the nominal surface will lead to better performance and function, it's 

important to recognize that reducing roughness requires greater investment in time and cost 

during the machining process. As a result, the ideal roughness level should be carefully 

selected based on the specific application for each part [28]. 
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Figure 19: Types of surface geometric deviations (KLOCKE, 2011; REGO, 2020). 

 

2.6 Surface parameters 
Surface parameters are used to describe the topography of a surface, and they need to 

represent the entire surface statistically. In many industrial applications, surface values are 

evaluated and used for quality control when inspecting manufactured parts. This study 

utilized five of the approximately 60 available surface parameters, including Ra: Arithmetic 

mean deviation, RSm: Mean width of profile elements, Rsk: Skewness, Rku: Kurtosis, and 

Rt: Total height. These parameters can be classified into three groups based on their 

function [29]:  

• Amplitude parameters: show vertical aspects of the profile. 

• Spacing parameters: show horizontal aspects of the topography. 

• Hybrid parameters: show vertical and horizontal aspects of the topography. 

The Ra parameter is the most used to evaluate the roughness of machined surfaces and is 

calculated as the average deviation from the mean line (ISO, 1997). While it is widely used 

due to its ability to measure and represent the general profile, it does have limitations. For 

example, it does not differentiate between peaks and valleys and is not sensitive to slight 

deviations, which can limit understanding of the profile. Therefore, other parameters should 

be used in conjunction with Ra to obtain a more complete analysis of the surface [29]. 

Despite its limitations, Ra is helpful as it provides a standard index for comparing surfaces 

quantitatively. Table 3 outlines the surface roughness parameters utilized in this study, their 

symbols, and their mathematical representation according to standards. 
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Table 3: Definition of the surface roughness parameters used in this work according to ISO 4287 (1997)5. 

 

(*) A new series of standards, the ISO 21920, was released at the end of 2021 combining and replacing many 

of the previous surface roughness standards, such as the ISO 4287 that describes the main profile parameters. 

However, the changes do not affect this dissertation. 

 

The parameter Rsk (skewness) is related to the distribution of peaks and valleys on a 

surface, with negative values indicating a predominance of valleys and positive values 

indicating a predominance of peaks. Kurtosis, on the other hand, is related to surface 

asperity and indicates the width of peaks and valleys. Values greater than 3 indicate a 

surface with narrower peaks and valleys, while values smaller than 3 indicate a smoother 

surface [30]. 

Table 4 displays the physical and functional properties of these surface roughness 

parameters and emphasizes their importance in various applications, as discussed earlier in 
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the introduction. 

Table 4: Functional properties of the studied surface roughness parameters (DAVIM, 2010). 

Functional properties Ra Rsk Rku RSm Rt 

Contact/Contact stiffness * * * ** ** 

Fatigue strength *  *  ** 

Thermal conductivity *   **  

Electrical conductivity *   *  

Reflexivity     ** 

Friction and wear * ** ** * ** 

Lubrication * ** *  ** 

Mechanical sealing * **   ** 

Fatigue corrosion * *  *  

Assembly tolerances *    ** 

Note: two asterisks indicate a pronounced influence. 

 

2.7 Surface roughness modeling in turning processes 
It is crucial in this study to comprehend how surface roughness is predicted for machined 

parts. Therefore, it is necessary to introduce the classical theoretical equations that have 

been developed in the field to enable comparison with the models developed in this work. 

Additionally, understanding the general effects of process parameters on surface finish 

would be beneficial in comparing with the machining results. 

 

2.7.1 Surface roughness modeling methods 

In the pursuit of improving manufacturing performance while maintaining quality 

requirements, practitioners and engineers attempt to predict process behavior based on their 

experience and general conventions that may not be universally applicable. Researchers 

have tried to simulate complex cutting phenomena and establish cause-and-effect models 

between independent process variables (such as feed rate) and desired surface roughness 

values [31]. Regarding surface quality requirements, Benardos and Vosniakos (2003) 

categorized the effort to predict surface roughness into four research approaches. These 

approaches include: 



42 

a) Machining theory and simulation: which uses numerical computation and machining 

theory to simulate the cutting process based on tool properties and kinematics. This 

approach yields good results, but it may overlook important factors that can affect surface 

quality, such as tool wear and temperature. 

b) Experimental/empirical investigations: which involves extensive testing to identify 

correlations between changing parameters/conditions and the surface response. This 

approach is conventional, but it can be difficult to replicate in other process conditions due 

to the high complexity of the surface generation phenomenon. 

c) Design of experiments: which is similar to experimental investigations but is much more 

systematic and uses experimental planning to optimize available resources. Response 

surface methodology (RSM) and Taguchi techniques for "design of experiments" (DoE) are 

often used in this approach. 

d) Artificial intelligence: which uses machine learning models to predict surface roughness 

in machining. This approach yields excellent results and has the potential for use in online 

monitoring and decision systems. 

Additionally, He, Zong, and Zhang (2018) classified surface roughness prediction 

approaches into two categories:  

• Theoretical modeling methods: these models are based on physical observations of 

turning processes, such as the periodic duplication of cutting tool edge/waviness, 

material spring back, plastic side flow, and other surface formation mechanisms.  

• Empirical parametric modeling methods: these models are based on data mining 

regarding process parameters, such as the feed rate and surface roughness responses. 

These methods include the Response Surface Methodology (RSM), Machine 

Learning Algorithms, and Support Vector Machines (SVM), and can include other 

models.  

 

Both categorizations proposed by Benardos and Vosniakos (2003) and He, Zong, and 

Zhang (2018) have similar concepts, but the latter is more concise and relevant to the 

present work, as depicted in Table 5. Therefore, the models proposed in this work are 

considered to be empirical parametric models according to the separation proposed by He, 

Zong, and Zhang (2018). 
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Table 5: Complementarity of propositions for the surface roughness prediction effort’s separation. 

He, Zong, and Zhang (2018) proposition Benardos and Vosniakos (2003) proposition 

Theoretical modeling methods a) Machining theory and simulation 

 

Empirical parametric modeling methods 

b) Experimental/empirical investigations 

c) Design of experiments 

d) Artificial intelligence 

 

2.7.2 Surface roughness influencing factors 

Generating an actual surface in machining is a complicated process that involves various 

factors such as the machining method and parameters [28]. Typically, the actual surface 

roughness values are higher than those calculated using theoretical equations due to several 

reasons including chip-formation characteristics, tool wear, chatter on the machine-tool 

system, improper run-out on the part, and varying feed motion. Empirically perceived 

factors that influence the response of surface roughness can be collected [32]:  

• Factors relative to the machine tool: depth of cut (ap), feed rate (f), cutting speed 

(vc), vibration amplitude acceleration (A/a), and vibration frequency (ω); 

• Factors relative to the cutting tool: tool material, angles/inclinations, corner radius 

(rε), and tool edge waviness (w1); 

• Factors related to the workpiece material: material hardness, Young’s modulus, 

grain size, orientation, inclusions, etc.; 

• Factors related to the environment: coolant (type, pressure, etc.), temperature, and 

dampness. 

In turning processes, the feed rate is the primary factor that influences the average surface 

roughness Ra, and there is a positive correlation between the feed rate and Ra (i.e., higher 

feed rate results in higher Ra). Figure 20 illustrates the general effect of feed rate and cutting 

speed on Ra. Lower cutting speeds can cause the formation of a built-up edge (BUE), which 

is the adhesion of workpiece material to the tool's tip, making it harder than the tool. This 

formation can significantly harm the surface roughness and the tool's condition. The depth 

of cut, on the other hand, does not seem to consistently affect the surface roughness Ra [28]. 
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2.7.3 Surface roughness theoretical models 
In the last few decades, several theoretical models have been proposed to describe surface 

roughness, particularly for the average height of the profile Ra and the total height of the 

profile Rt. Table 6 lists some of the most well-known models [27],[28],[32], which consider 

factors such as feed rate (f), corner radius (rε), and minor and principal cutting-edge angles 

(κr and κr'). Figure 21 displays the ideal surfaces produced by a perfectly sharp tool (left) 

and a rounded tool (right), highlighting the essential role of feed and tool geometry 

(especially the corner radius) in the machined surface. 

 

Figure 21: Surface generation influencing factors for a theoretical perfectly sharp (left) and rounded (right) 

cutting tool (DAVIM, 2010). 

 

Other recent models, which are less well-known and more computationally complex, 

consider cutting dynamics factors such as vibration amplitude acceleration (A/a), vibration 

frequency (ω), minimum chip thickness (hmin), and an artificial variable called SE that 

indicates cutting stability [32]. However, the focus of this work is on proposing empirical 

parametric models, as described in the previous section, and comparing these new models 

Ra Ra 

Feed Cutting speed 

Figure 20: The general effect of the feed rate (f) and the cutting speed (vc) in the average 

surface roughness (Ra) (DAVIM, 2010) 
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to the classical, simplistic theoretical models. 

 
Table 6: Some theoretical equations of surface roughness Ra and Rt (BOOTHROYD; KNIGHT, 2006; 

DAVIM, 2010; HE; ZONG; ZHANG, 2018). 

 Theoretical equation Description Equation 

 Ra for a rounded tool and given feed rate 

(f) and corner radius (rε) 

 

Eq. 14 

 

 

 

Rt for a rounded tool 

 

 

 

Eq. 15 

 

 

 

Ra for a perfectly sharp tool. κr’ is the 

minor tool cutting edge angle 

 

Eq. 16 
 
 
 

 
 

 
Rt for a perfectly sharp tool. κr is the tool 

cutting edge angle 

 

Eq. 17 
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Chapter 3 – Literature Review 
Synopsis 

This chapter deals with the literature reviews of some of the well-known papers in 

the field pertaining to topics such as Machining, Turning, Machine Learning and 

Surface Roughness prediction. These papers in addition with the work proposed by 

Canal (2022) in his Master Degree thesis have been utilized as framework in 

developing this thesis. 
 

3.1 Literature Review 
To properly research surface roughness prediction in turning using machine learning 

algorithms, it's important to examine what scientists from around the world have already 

accomplished. One way to contribute to the international research community is by 

utilizing research databases such as Scopus and Web of Science. By conducting a 

bibliometric search, we can gain insight into the topic's characteristics, key players, leading 

publishers, current state, and potential avenues for exploration in surface roughness 

prediction studies. Our literature review framework is based on Canal's (2022) Master 

Degree Thesis. 

Machine learning is rapidly expanding due to the increasing volume of available data and 

the constant improvement of techniques to turn data into knowledge [33]. The surge of 

machine learning research is depicted in Figure 22 as an exponential curve, highlighting 

its significance to the global community and the growing awareness of its potential. The 

curve also implies that the field has yet to reach its full potential, with plenty of room for 

further development and discovery. 

 

 
Figure 22: Publications regarding Machine Learning thematic through the years (Scopus) 
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The bibliometric results, shown in Figure 23, indicate that there is a significant amount of 

research being conducted on Machine Learning in the fields of engineering, materials 

science, and computer science, following the same exponential curve seen in Figure 22. 

Within the intersection of these three fields, which is the focus of this study, there are 83 

relevant documents. Scopus provides information on the countries and affiliations that are 

producing these publications. Currently, India and China lead the research on this topic, 

with the National Institute of Technology (NIT), a network of institutes across India, 

having the highest number of published papers. 

Although India and China account for more than 50% of the citations, other countries are 

also increasing their citations year by year, suggesting that this topic is of interest to 

researchers from around the world. 

 
Figure 23: The bibliometric search of “surface roughness prediction in machining using Machine 

Learning.” 
 

Reading through 83 papers is a daunting task, and conducting a good literature review 

requires selecting the works that are most relevant to the thesis. Therefore, it's important to 

choose effective criteria to narrow down the number of relevant publications. Excluding 

papers published between 2012 and 2016 based on their publication date alone may not be 

the best approach as the field of machine learning is constantly evolving, with new research 

being published each year, as shown by the exponential curve in Figure 22. 

A combination of criteria was used to refine the list of relevant publications. The first filter, 

shown in Figure 24, retained 28 papers, while the remaining 55 were assessed based on 
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their abstracts and subjectively determined relevance to the thesis. The second filter used 

several criteria, including the machine learning approach, the machining process, the 

workpiece material, whether it measured machining forces and tool wear, the number of 

citations, and the novelty of the papers. This resulted in 33 papers being selected for a full 

read, and ultimately, 19 papers were included in this literature review. 

During the reading process, additional papers cited outside of the observation period were 

found to be relevant and were also included. From the 19 papers read, conclusions were 

drawn, which are discussed in the subsequent paragraphs. 

 
Figure 24: Choosing fitting papers to read for literature review 

 

Among all the works analyzed, the Machine Learning algorithms showed relatively low 

levels of error when predicting on data that had never been seen before. Several of the 

research papers examined reported correlation coefficients (R) exceeding 0.90 [34] [35] 

[36]. Other works reached mean absolute percentage errors (MAPE) between 5% and 15% 

[37] [38] [39] [40].  

Some works achieved surprisingly low errors:  

• a root mean squared error RMSE = 0.0005 and an R-squared of 0.99 using only 23 

samples to train the model [40];  

• an MSE = 0.0001 and R-squared of 0.99 using a training dataset of 600 samples 

[41]; 

• a root mean squared percentage error RMSPE = 0.07% with a training dataset of 

130 samples [42]; 

• a RMSE = 0.02 using only 23 training samples [43].  
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Several authors have achieved low error results by using a training set smaller than 55 

samples, as cited in references [42] [34] [37] [39] [40] [35] [36] [44] [45]. However, in a 

study conducted by Pontes et al. (2012), the performance of various ML models was 

compared using different numbers of labeled training examples, ranging from 20 to 500 

samples. The results suggested that generally, the ML model's performance in predicting 

Ra is improved with an increased number of training samples. 

Most of the papers use the same three inputs: cutting speed (vc), depth of cut (ap), and feed 

rate (f), to predict some of the surface roughness parameters [47] [43] [34] [48] [38] [39] 

[45] [46]. 

However, some papers included additional factors as inputs, such as: 

• Cooling methods, whether wet or dry cut, coolant placement (through the tool or 

outside), or different uses of minimum quantity lubrication (MQL) [35] [36] [49]; 

• Different cutting tools and workpieces with varying heat treatments [42]; 

• Cutting time, depth of cut, and cutting speed [37], [41]; 

• Cutting tool edge radius (rɛ) [40]; 

• Using depth of cut, feed rate, and cutting speed to predict the three components of 

machining force (Fx, Fy, Fz) and three components of tool vibration (Vx, Vy, Vz), 

then utilizing all nine factors as inputs to calculate the surface roughness Ra [44]. 

In terms of the results, most of the research studies examined developed Machine Learning 

algorithms, with a particular focus on Artificial Neural Networks (ANN) models, to forecast 

the surface roughness Ra [47] [41] [43] [44] [48] [42] [39] [40] [36] [49] [45]. Ra is the 

most used parameter for surface roughness in practical applications, making it the most 

sought-after prediction model. 

However, some papers incorporated other outputs into their prediction models, such as: 

• Predicting the resultant machining force and cutting tool flank wear width (VB) in 

addition to surface roughness Ra [48]; 

• Predicting the tool condition in terms of flank wear width (VB) along with surface 

roughness Ra [45]; 

• Predicting the machining time and cost [47]. 

Most of the research papers studied used RMSE and MSE as their cost functions [47] [41] 

[43] [44] [38] [42] [40] [35] [36] [49]. 
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Despite its popularity and open-source nature, Python was not used in many of  the 

reviewed papers. 

3.2 Literature remarks 
After examining recent developments, certain observations and patterns were made: 

• The most frequently used process parameters were depth of cut, feed rate, and 

cutting speed; 

• The parameter most commonly modeled was the average height of the profile (Ra); 

• A machine learning model's ability to predict Ra improves with a larger number of 

training samples; 

• The most commonly used cost functions were RMSE and MSE. 

In addition to technical issues, there was a lack of transparency observed, which could 

hinder reproducibility. For example, most of the reviewed papers did not provide a 

description of the different machine learning models with their codes. A comprehensive 

review paper on the history and trends of data science suggests that reproducibility of soft 

computing research will be more widely practiced in the future, and that code and data must 

be universally citable and systematically retrievable [50]. 

The aim of this dissertation is to make the process of constructing Surface Roughness 

prediction models using machine learning algorithms as transparent as possible, by 

providing full access to the data, code, and output results. Based on the literature reviewed, 

two opportunities for contribution to this research area have been identified. 

The first opportunity involves the tendency to produce more accurate models (with mean 

absolute percentage errors ranging from 1% to 10%) using fewer training samples. 

However, achieving minimal errors (MAPE < 2%) with very few training samples can lead 

to overfitting [51]. Therefore, a potential solution to this problem is to increase the amount 

of data without increasing the number of experiments. 

The second opportunity comes from the fact that the ML models developed in previous 

studies did not adequately consider cutting tool wear. Given that cutting tools inevitably 

wear down when cutting metals, it is reasonable to assume that this phenomenon, which 

can alter cutting kinematics, should be considered [32]. Therefore, investigating how tool 

wear affects ML modelling of surface roughness configures a second opportunity for 

contribution. 
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3.3 Thesis objectives 
The main goal of this dissertation is to contribute to the understanding of using machine 

learning to model metal cutting results. More precisely, the goal is to use Machine Learning 

models to predict surface finish results in the turning process. Toward this broad objective, 

the following specific objective stood out: 

i. Statistically assess the effect of the factors (depth of cut, feed rate and tool condition, 

in terms of flank wear width) on the responses surface finish roughness parameters 

(Ra, Rsk, Rku, RSm, and Rt), and the machining forces; 

ii. Develop ML models to predict the surface roughness parameter [Ra] and evaluate 

it with a chosen error metric; 

iii. Propose a strategy to augment available data without increasing experiments; 

iv. Investigate the influence of the dataset size on the ML models’ prediction 

performance; 

v. Investigate the influence of the tool condition, flank wear width, on the ML models’ 

prediction performance; 

vi. Compare the prediction performance of the ML models with one theoretical 

equation. 
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 Chapter 4 - Material and Methods 
 Synopsis 
The work can be divided into two parts: machining experiments and the development of 

Machine Learning algorithms. Figure 25 shows the two datasets obtained from two 

machining procedures. Experiment 1 involved varying three factors at three levels, resulting 

in a dataset of 324 labeled examples (factors, responses). Experiment 2 varied three factors 

at different levels, producing a dataset of 288 labeled examples. The data from Experiment 

1 and Experiment 2 were then used in the development of Machine Learning algorithms in 

Chapter 6. The models differed in their inputs, training dataset size, and the dataset used 

for training. Afterward, the models were analyzed to determine the impact of the training 

set size and cutting tool wear on Surface Roughness parameters.  

 

Figure 25: The overall activities. Machining experiments generated data; the results were statistically 

analyzed; machine learning models were developed and investigated. 

4.1  Machining experimental procedures 
Although the content of this work is primarily focused on computational science, its 

fundamental objective is to investigate the turning process in manufacturing. Thus, to 

support the results obtained from the computer procedures, detailed explanations of the 

machining experiments are provided. Two experiments were carried out as shown in Figure 

25. The machining was carried out on a CNC turning center, using cutting fluid. All 

experiments were conducted in the Competence Center in Manufacturing (CCM) 

infrastructure, which is a laboratory at the Aeronautics Institute of Technology (ITA). 
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4.1.1  Experiment 1 
The initial test investigated how three different process parameters affected the surface 

finish outcome of the steel workpiece. The experiment was set up based on the design in 

Table 7, with the cutting speed (vc), feed rate (f), and depth of cut (ap) being adjusted to 

three different levels in a full factorial design 3³, resulting in a total of 27 unique conditions 

being evaluated. In addition, the experiment was replicated, giving a total of 54 trials. When 

multiple factors impact a response, factorial experiments are typically the most effective 

approach. This approach ensures that all possible combinations of factor levels are 

examined. The range for each parameter level was selected based on the tool manufacturer's 

recommendations to simulate real production conditions and to prevent any possible 

disturbances that could arise from out-of-range parameters. 

Table 7:  DoE of Experiment 1. 

  Independent variables (factors)  

Factors Symbol Units Level   No. of levels 

 
Cutting speed 

 
(vc) 

 
m/min 

 
310 

 
350 

 
390 

 
3 

Feed rate (f) mm/rev 0.07 0.1 0.13 3 

Depth of cut (ap) mm 0.25 0.5 0.8 3 

 

The steel workpiece was prepped to enable each unique condition (combination of process 

parameters) to be tested independently as a single machining operation, without being 

impacted by any other runs. To accomplish this, grooves were made in the workpiece to 

divide each machining area associated with each condition. This method also ensured that 

measurements were taken in the correct location, as the test parts were physically separated. 

The experimental design and acquired signals are illustrated in Figure 26. 
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Figure 26: Experiment 1 Scheme (left) and the signal acquired (right). 

Each testing length, area, or machining space (example (a) in Figure 26) had a length of 12 

mm. To increase the amount of available data, surface roughness was measured in six 

different locations along the surface of the workpiece within the testing area. The 

measurement locations were 60º apart from each other, with the center of the workpiece's 

face serving as the reference point (Figure 26, right side). Measurements were taken 

perpendicular to the surface texture, as recommended in industry standards and practical 

manuals (ISO, 1996), and were randomly distributed throughout the 12 mm testing area to 

minimize systematic errors and ensure representative results. 

The grooves machined into the workpiece were the exact width of the grooving tool, 

measuring 4 mm. Out of the total length of the workpiece, 12 testing areas were created, 

with nine utilized in the experiment, and three held in reserve for potential reruns. The space 

between the tailstock (or the right face of the workpiece) and the first testing area was too 

small to accommodate the dynamometer plate and, therefore, had to be machined and could 

not be utilized. 

One factor that was varied in the experiment was the depth of cut. Randomizing the depth 

of cut could pose a problem, as machining a testing area with a smaller diameter than the 

previous one could result in a collision during the subsequent runs (Figure 27, Case 2). 

While there was enough space between each sample area to approach the cutting tool in 

each run, it was preferable to avoid the risk of collision. Consequently, the depth of cut was 

kept constant for each of the nine conditions throughout the workpiece length (Figure 27, 

Case 1). This was accomplished by grouping the experiment design into "9 + 9 + 9" 
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segments. 

 
Figure 27: Case 1 (left) depicts the adopted procedure, and Case 2 (right) depicts a collision risk situation. 

 

The first experiment was designed with a randomized approach to reduce the influence of 

extraneous factors and maintain the observations as independent random variables. Figure 

28 displays the actual sequence of the tested conditions in Experiment 1. Randomization 

was applied both within and between groups. The cutting speed, with three levels, was used 

to form sub-groups (orange box) within the depth of cut groups (blue box), while the feed 

rate was randomized within the sub-groups. Thus, the effect of the feed rate was studied 

within each sub-group, the effect of the cutting speed was studied between sub-groups, and 

the effect of the depth of cut was studied between groups.  

The nine testing areas were individually machined with a stop between runs. Starting from 

group 1, the following steps were followed:  

1. initiate cutting with the current condition's process parameters (in the first case, 

condition 4, position a),  

2. measure forces during the cut,  

3. after completing the cut, measure surface roughness six times, varying the 

measurement position,  

4. continue cutting the subsequent testing area until all conditions have been tested,  

5. Move on to the next group and repeat steps 1-5 until all groups have been tested. 
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f 

Group 1 (2nd replica) 

Sub-group 1 Sub-group 3 Sub-group 2 

0.07 0.13 0.10 0.07 0.10 0.13 0.07 0.13 0.10 

vc 310 310 310 390 390 390 350 350 350 

ap 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Cond. 1 3 2 7 8 9 4 6 5 

 

4.1.2 Experiment 2 
Experiment 2 aimed to examine how the condition of the cutting tool, as measured by the 

flank wear height VB, affected the surface finish results. The setup for this experiment was 

the same as that of Experiment 1, which can be seen in Figure 26 (left side), with the testing 

areas divided by grooves. However, Experiment 2 used fewer testing areas and stopped at 

position (h) on the workpiece. Additionally, an extra measurement system was used in 

Experiment 2 to evaluate the tool's wear. The results of this experiment are presented in 

Figure 29. 

 
Figure 29: Information acquired at Experiment 2. 

 
 

f 

Group 1 
Sub-group 1 Sub-group 3 Sub-group 2 

0.13 0.07 0.10 0.07 0.13 0.10 0.10 0.13 0.07 
vc 310 310 310 390 390 390 350 350 350 
ap 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Cond. 3  1  2 7  9  8 5  6  4 
                 

 

 
 

f 

Group 2 
Sub-group 5 Sub-group 6 Sub-group 4 

0.07 0.13 0.10 0.13 0.07 0.10 0.10 0.13 0.07 
vc 350 350 350 390 390 390 310 310 310 
ap 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Cond. 13 15 14 18 16 17 11 12 10 
 

 
 

f 

Group 2 (2nd replica) 
Sub-group 6 Sub-group 5 Sub-group 4 

0.13 0.10 0.07 0.07 0.10 0.13 0.07 0.13 0.10 
vc 390 390 390 350 350 350 310 310 310 
ap 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Cond. 18 17 16 13 14 15 10 12 11 
 

 
 

f 

Group 3 
Sub-group 7 Sub-group 9 Sub-group 8 

0.10 0.07 0.13 0.13 0.10 0.07 0.10 0.13 0.07 
vc 310 310 310 390 390 390 350 350 350 
ap 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

Cond. 20 19 21 27 26 25 23 24 22 
 

 
 

f 

Group 3 (2nd replica) 
Sub-group 9 Sub-group 8 Sub-group 7 

0.10 0.13 0.07 0.10 0.13 0.07 0.13 0.07 0.10 
vc 390 390 390 350 350 350 310 310 310 
ap 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

Cond. 26 27 25 23 24 22 21 19 20 
 

Feed direction 
 

Workpiece 
 

Figure 28: Randomization of the experiment and groups’ division. 
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Before conducting Experiment 2, a pre-analysis of the results from Experiment 1 was 

carried out. As a result, the cutting speed was kept constant since it was found to have a 

minimal impact on the surface finish response. The depth of cut was only varied in two 

levels, as it had less influence on the surface finish compared to the feed rate. However, the 

depth of cut was still varied more than the cutting speed, as it was found to have a greater 

impact on the machining forces. The feed rate was varied four times as it was discovered 

to be the most influential factor on surface finish. Table 8 depicts the design of Experiment 

2. 
        Table 8:  DoE of Experiment 2. 

  Independent variables (factors)

  

Factors Symbol Units Level    No. of levels 

 
Cutting factors 

       

Cutting speed (vc) m/min 350    1 

Feed rate (f) mm/rev 0.07 0.09 0.11 0.13 4 

Depth of cut (ap) mm 0.25 0.5   2 

Cutting tool factors 
      

Tool condition (VB) mm 0 0.1 0.3   

 

The categorical levels of tool condition (VB) used in Experiment 2 were approximated for 

the sake of simplification. The actual flank wear size of each cutting tool was slightly 

around these values. New tools, such as tool 44 and 53, had a VB of 0.000 mm, while mid-

life tools like tool 13 and 33 had VB of 0.102 mm and 0.096 mm, respectively. End-life 

tools, such as tool 81 and 23, had VB of 0.300 mm and 0.305 mm, respectively. 

Figure 30 shows the sequence of tool conditions tested during Experiment 2, with runs 

randomized in the same manner as in Experiment 1. The depth of cut was kept constant at 

each level to avoid collision, as explained in Figure 27, and replica conditions were grouped 

and randomized within each level. The tool condition was tested through six levels, with 

Levels 1 and 2 using new cutting tools. Levels 3 and 4 used mid-life tools with flank wear 

between 0.1 mm and 0.15 mm. Levels 5 and 6 used end-life cutting tools with a VB of more 

than or equal to 0.3 mm but not exceeding 0.35 mm. 
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Figure 30: The sequence of conditions tested in Experiment 2. Three different tool conditions were tested 

through the levels. 

Figure 31 illustrates the experimental setup utilized in Experiment 2. The assessment of 

tool wear (represented in blue) was conducted with a digital microscope mounted on a 

magnetic base that was held in the same position after each run and pointed towards the 

cutting tool's flank. The surface roughness measurement was performed in the same way as 

in Experiment 1. Figure 31 also displays the setup for Experiment 1, except for the tool 

wear assessment system. 

In Experiment 2, the data was collected using the same approach presented in Experiment 

1, measuring the surface roughness at six different locations after each cut. For each surface 

roughness parameter, 288 labeled pairs of input and response were obtained, resulting in a 

total of 1440 pairs of labeled examples collected in Experiment 2 considering the five 

surface roughness parameters. 
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Figure 31: Experiment 2 setup. Zoom-out view (left) shows the whole setup, and the zoom-in (right) shows 

the digital microscope pointing at the tool to measure flank wear. 
 

4.1.3 Workpiece material and cutting tool 
This section provides information about the material and cutting tool used in Experiment 1,  

and Experiment 2. The material used in all experiments was the AISI H13 steel, which was 

manufactured by Villares Metals. The chemical composition of the steel is provided in 

Table 9, and its average hardness is 200HV, measured transversally to the bar. This steel is 

commonly used in plastic injection molds due to its good mechanical properties, 

machinability, and wear resistance, among other characteristics [52]. 

Table 9: AISI H13 steel chemical composition (VILLARES METALS, 2006). 

Element C Si Mn Cr Mo V 

Percentage (%) 0.40 1.00 0.35 5.20 1.50 0.90 

The cutting tool used in the experiments was a commercial model manufactured by Sandvik 

Coromant, with a hard metal substrate covered with TiCN, Al2O3, and TiN. This tool has 

six cutting edges and is recommended for finishing applications. Further specifications of 

the cutting tool can be found in Table 10. 
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Table 10: Cutting tool specifications. 

 

The tool shank (holder) used has code ISO: MTJNL 2020K 16M1 and is also manufactured 

by Sandivik Coromant. The grooving tool for preparing the workpiece was a TaeguTec TDJ 

3 TT9080. 

 

4.1.4 Machining forces processing 
The force measurement system used in both Experiment 1 and Experiment 2 consisted of a 

Kistler Type 9265B dynamometer, a Type 5070 charge amplifier, a Type 2825A acquisition 

software, a computer, and other peripherals including a highly insulated cable, PCI 

interface, connection cable, and acquisition plate (A/D), as shown in Figure 32. During 

machining, the system collected data on the machining forces, which were later processed 

using the Kistler DynoWare software Type 2825A (as shown in Figure 32). The beginning 

and end of the cutting were removed to avoid erroneous force readings caused by the 

acceleration of the cutting tool and the tool-workpiece engagement. The software then 

calculated the mean value of the forces in the cutting zone, which was sufficient to describe 

the continuous turning process. The force values were reasonably equally distributed 

around the mean value line, so there was no need for smoothing or filtering, as these 

techniques did not significantly affect the observed mean value of the forces. 
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Figure 32: Force measurement acquisition system: connection configuration. 

 

                                                       Part used to calculate the mean force 

The Kistler dynamometer system used in the experiments collected the three components 

of the resultant force, which are the cutting force (Fc) on the X-axis, the passive force (Fp) 

on the Y-axis, and the feed force (Ff) on the Z-axis, as shown in Figure 34. The mean values 

of these forces were collected and processed in the Kistler DynoWare software. The 

resultant force was then calculated using Equation 6. 

 

ap = 0.25 mm 
f = 0.07 mm/ver 
Fx = 55.86 N (mean) 

Figure 33: Machining forces visualization and means assessment. A discrete value was selected from the 
force time-series measurements: the mean. 
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Figure 34: The machining force components measured in experiments 1 and 2. 

 
4.1.5 Tool wear assessment 
The wear of the tool flank was evaluated using a Dino-Lite model AM4113ZT digital 

microscope, as shown in Figure 35. The microscope was positioned on the workpiece using 

a magnetic base, allowing the tool wear to be measured without having to remove the tool 

from the machine. 

 

 

4.1.6 Surface roughness processing 
In order to measure the surface roughness, a Mitutoyo portable roughness tester model 

Surftest SJ-210 was used, as shown in Figure 36. The tester had a diamond tip with a radius 

of 2 µm and an angle of 60º. The surface roughness was measured in a direction 

 
Dino-Lite AM4113ZT 

 

 

  

Figure 35: Tool wear assessment with a digital microscope.  

Measurement setup (left) and result example (right). 
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perpendicular to the theoretical surface, along the direction of the feed rate. 

 

 

In order to read and interpret the surface roughness values, for the Machine Learning 

models, data must be organized in tables or data frames. However, the surface roughness 

measurements obtained in Experiment 1 and Experiment 2 were initially saved in text 

format (TXT) in a memory card with non-numeric characters attached to them. There were 

824 documents, with each measurement corresponding to one document, and five surface 

roughness parameters were chosen for each measurement, resulting in 4120 values that 

needed to be collected from the text files and organized into data frames. To avoid errors 

and undesired outliers, an automated program was developed in Python to read and select 

the values from the TXT files and write them into Excel and comma-separated value format 

files (XLSX and CSV). The workflow from measuring to accessing the individual surface 

roughness values is shown in Figure 37.  

Roughness portable tester 
Mitutoyo Surftest SJ-210 

Part of roughness 
measurement 
saved file 

Figure 36: Mitutoyo portable roughness tester model Surftest SJ-210.  

Measurement setup (left) and result example (right). 
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Figure 37: Surface roughness data processing-to-machine-learning workflow. 

 
4.1.7 Strategy to increase available data 
A strategy was used in both Experiment 1 and Experiment 2 to increase the amount of 

available data without conducting additional experiments. This approach has been 

mentioned earlier in the respective experiment sections, but it is emphasized here for 

clarification. The strategy involved measuring the surface roughness (the main dependent 

variable) six times for each combination tested, rather than conducting additional 

experiments. 
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Chapter 5 – ML algorithms and Evaluation metrics 
 Synopsis 
For the scope of our study, we will be focusing on the regression analysis from 

supervised learning to train and test various ML models to predict the target variable 

“Ra”. The algorithms we will be covering ahead: 

• Linear Regression 

• Decision Tree Regression 

• Random forest Regression 

• Bayesian Linear Regression 

• KNN Regression 

• Kernel Ridge Regression 

• Neural Network Regression 

To assess the effectiveness of the model, specific performance evaluation metrics were 

utilized. The ensuing list enumerates the metrics used: 

• Mean Squared Error (MSE) 

• Root Mean Square Error (RMSE) 

• Mean Absolute Error (MAE) 

• Coefficient of Determination (R2) 

• Explained Variance 

 

5.1 Evaluation Metrics 
 
5.1.1 Mean Squared Error (MSE) 
In mathematics, the mean squared error (MSE) of an estimator is a metric that calculates 

the average of the squares of the errors, i.e., the average squared difference between the 

predicted and actual values. The MSE is a probability function that represents the estimated 

squared error loss value. Typically, it is non-negative, and values closer to zero indicate 

better performance [53]. The mean squared error function measures the mean of the squared 

(quadratic) prediction error or loss value, which is a probabilistic metric [54]. 
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Equation 17: Mean Squared Error 
 

5.1.2 Root Mean Square Error (RMSE) 
The standard deviation of the residuals is equivalent to the root mean square error (RMSE). 

Residuals are an indicator of the distance between data points and the regression line, while 

RMSE indicates the distribution of these residuals. In other words, it illustrates the 

concentration of data along the best-fit line [55]. RMSE is calculated by taking the square 

root of the average of the squared differences between actual and predicted observations 

[56]. 

 

Equation 18: Root Mean Squared Error 
 

5.1.3 Mean Absolute Error (MAE) 
In a series of predictions, the mean absolute error (MAE) calculates the average magnitude 

of the errors without considering their direction. It is the average of the absolute differences 

between the forecast and the actual observation over the test set, where each individual 

difference has equal weight [56]. 

 

Equation 19: Mean Absolute Error 
 

5.1.4 Coefficient of Determination (R2) 
The coefficient of determination, denoted as R2, provides an indication of how well a model 

fits the data and its ability to predict unseen samples by measuring the proportion of 

variance in the target variable that can be explained by the model. It is important to note 

that R2 is dataset-specific and cannot be compared across different datasets. The maximum 

value of R2 is 1.0, and a score close to 1.0 indicates a good fit, while a score close to 0.0 

indicates a poor fit. A constant model that always predicts the mean value of the target 
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variable, regardless of the input features, will have an R2 score of 0.0. However, R2 can be 

negative when the numerator is greater than the denominator, the fraction will be greater 

than 1, therefore the R-squared coefficient will be less than zero [54]. 

 

Equation 20: Coefficient of Determination (R2) 
 

5.1.5 Explained Variance 
Knowing the amount of initial variance that can be explained by the model in a linear 

regression problem clarifies the extent to which the data is approximated. This concept also 

helps us understand the extent to which we lose information when approximating the 

dataset. A minimal value of explained variance (EV) indicates that there are significant 

fluctuations in the data generation process that cannot be captured by a linear model. EV is 

a useful metric that is similar to R2 [57]. The optimal value of EV is 1, which indicates that 

the model can explain all the variance in the target variable. 

 

Equation 21: Explained Variance 
 

5.2 ML algorithms 
 
5.2.1 Linear Regression 
Linear regression is a modeling technique that assumes a linear connection between the 

input factors and the output variable. In the case of a singular input variable, it is known as 

simple linear regression, while in the case of several input variables, it is referred to as 

multiple linear regression. To determine the coefficients in simple linear regression, 

statistical methods can be used, which involve calculating statistical properties such as 

means, standard deviations, correlations, and covariance from the available data. It is 

necessary to have access to all the data to perform these calculations [58]. 

 

5.2.2 Decision Tree Regression 
Decision tree learning is a popular technique utilized in data mining [59] that aims to 
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develop a model that can anticipate the value of a target variable based on multiple input 

variables. This approach constructs a regression model in the form of a tree structure. It 

partitions a dataset into increasingly smaller subsets while simultaneously building an 

associated decision tree. The final product is a tree that consists of decision nodes and leaf 

nodes. A decision node has two or more branches, each of which represents values for the 

attribute tested. On the other hand, a leaf node indicates a decision about the numerical 

target. The highest decision node in a tree, which corresponds to the most reliable predictor, 

is known as the root node. Decision trees can process both categorical and numerical data 

[60]. Here are some important terminologies related to Decision tree: 

i. Root Node: This represents the entire sample or population, which is further divided 

into two or more homogeneous subsets. 

ii. Splitting: The process of dividing a node into two or more sub-nodes is known as 

splitting. 

iii. Decision Node: When a sub-node splits into further sub-nodes, it is referred to as a 

decision node. 

iv. Leaf/Terminal Node: A node that does not split is called a leaf or terminal node. 

v. Pruning: The process of removing sub-nodes of a decision node is called pruning. 

It can be thought of as the opposite of splitting. 

vi. Branch/Sub-Tree: A subsection of the entire tree is referred to as a branch or sub-

tree. 

vii. Parent and Child Node: A node that is divided into sub-nodes is called the parent 

node of the sub-nodes, while the sub-nodes are the children of the parent node. 

 

Figure 38: Decision Tree structure (source: www.datacamp.com) 
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5.2.3 Random Forest Regression 
Random forest is a type of Supervised Learning algorithm that employs the ensemble 

learning approach for classification and regression tasks [61]. Ensemble methods involve 

combining the predictions of multiple machine learning algorithms to produce more 

accurate results than any individual model. An ensemble model is comprised of several 

models working together to make better predictions. 

Random forest is a bagging technique and not a boosting technique. In a random forest, 

decision trees are run in parallel with no interaction between them during the tree-building 

process. Bootstrap, also known as bagging, refers to the process of random sampling with 

replacement. Bootstrap helps to better understand the bias and variance of the dataset by 

randomly sampling small subsets of data from the original dataset. It is a general procedure 

used to reduce the variance of algorithms with high variance, such as decision trees. 

Bagging allows each model to run independently and then aggregates the outputs without 

giving preference to any model. 

Random forest creates multiple decision trees during the training phase and outputs the 

class that has the highest frequency of occurrences (for classification) or the mean 

prediction (for regression) of the individual trees. A random forest is a meta-estimator that 

aggregates several decision trees with some beneficial modifications [62]. For instance, the 

number of features that can be split at each node is limited to a certain percentage of the 

total, which helps prevent the ensemble model from relying too heavily on any individual 

feature and makes fair use of all potentially predictive features. Additionally, each tree 

selects a random sample from the original dataset when generating its splits, adding another 

element of randomness that helps to prevent overfitting. 

 
Figure 39: Random Forest Structure (source: www.researchgate.net) 

 

Features and Benefits of Random Forest are: 
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• It is one of the most precise machine learning algorithms available and can produce 

a highly accurate classifier for many datasets. 

• It runs efficiently on large databases. 

• It can handle thousands of input variables without needing to delete any variables. 

• It can provide estimates of the importance of variables in classification. 

• It generates an unbiased estimate of generalization error as it builds the forest. 

• It has an effective method for estimating missing data and can maintain accuracy 

when a large portion of the data is missing. 

The Disadvantages of Random Forest are: 

• It can overfit on datasets with noisy classification/regression tasks. 

• It is biased in favour of categorical variables with more levels, so the variable 

importance scores generated by the algorithm may not be reliable for this type of 

data. 

 

5.2.4 Bayesian Linear Regression 
In statistics, Bayesian linear regression is an analytical method for linear regression that 

applies Bayesian inference to its statistical analysis. This method provides explicit 

outcomes for the posterior probability distributions of the model's parameters, given that 

the regression model has normally distributed errors and a specific prior distribution is 

assumed [63]. Bayesian regression techniques are also useful for integrating regularization 

parameters into the estimation process, without relying on fixed values, but rather 

dynamically tuning them to the available data.  

Some of the benefits of Bayesian regression are: 

• its flexibility to adapt to the available data and 

• its capacity to integrate regularization parameters into the estimation procedure.  

Nonetheless, a possible downside of Bayesian regression is:  

• the time-consuming nature of the model's inference. 

 

5.2.5 K-Nearest Neighbours Regression 
K-Nearest Neighbours is a simple algorithm that stores all available cases and predict the 

numerical target based on a similarity measure (e.g., distance functions). KNN has been 

used in statistical estimation and pattern recognition already in the beginning of 1970’s as 
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a non- parametric technique [64]. 

A simple implementation of KNN regression is to calculate the average of the numerical 

target of the K nearest neighbours. Another approach uses an inverse distance weighted 

average of the K nearest neighbours. KNN regression uses the same distance functions as 

KNN classification. 

Choosing the optimal value for K is best done by first inspecting the data. In general, a large 

K value is more precise as it reduces the overall noise; however, the compromise is that the 

distinct boundaries within the feature space are blurred. Cross-validation is another way to 

retrospectively determine a good K value by using an independent data set to validate your 

K value. The optimal K for most datasets is 10 or more. That produces much better results 

than 1-NN. 

 

5.2.6 Kernel Ridge Regression 
Kernel ridge regression (KRR) is a combination of ridge regression, which uses linear least 

squares with l2-norm regularization, and the kernel trick. It learns a linear function in the 

space created by the kernel and the data, resulting in a non-linear function in the original 

space when using non-linear kernels. The model learned by KRR is the same as that used 

in support vector regression (SVR), but different loss functions are used. KRR utilizes 

squared error loss, while SVR uses epsilon-insensitive loss, both combined with l2 

regularization. While fitting a KRR model can be accomplished in closed-form and is 

typically faster for medium-sized datasets than SVR, the learned model is non-sparse and 

thus slower than SVR at prediction time since SVR learns a sparse model for epsilon > 0 

[65].  

 

5.2.7 Neural Network Regression 
A neural network is a machine learning technique or algorithm that attempts to imitate the 

functioning of neurons in the human brain to facilitate learning. Initially, a neural network 

may be unstable, but after iterating through the data, it adjusts itself in such a way that its 

accuracy improves [66]. 
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Neural networks can be reduced to regression models, as a neural network can mimic any 

type of regression model. Even a very simple neural network with only one input neuron, 

one hidden neuron, and one output neuron is equivalent to a logistic regression. The neural 

network takes several dependent variables as input parameters, multiplies them by their 

weights (equivalent to regression coefficients), and runs them through a sigmoid activation 

function and a unit step function that closely resemble the logistic regression function with 

its error term [67]. When this neural network is trained, it will perform gradient descent to 

find the coefficients that better fit the data, arriving at the optimal linear regression 

coefficients (or optimal weights in neural network terms) [67]. 

 
Figure 41: Regression in neural networks (source: www.medium.com) 

  

Figure 40: A simple feed neural network (source: www.medium.com) 
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Chapter 6 – Model Implementation  
 Synopsis 
The opening section of this chapter focuses on the instruments employed in executing the 

model. The subsequent section deals with data analysis and facilitates comprehension of 

the data mining process. To enhance the accuracy of Surface Roughness prediction and 

simplify the process, it is essential to prepare the data carefully. The outlined procedure is 

similar for both Experiment 1 and Experiment 2, with a few exceptions that will be 

discussed in the following paragraphs. 

 

6.1  Programming Language 
To execute the thesis, Python has been utilized as the primary programming language. 

Python is a high-level, interpreted, and object-oriented programming language with 

dynamic semantics. Python's syntax is straightforward, and its emphasis on readability 

reduces the cost of program maintenance. Modules and packages are supported, which 

encourages modularity and code reuse. Python is a widely popular, general-purpose, and 

high-level programming language, ranking in the top 10 according to the latest TIOBE 

Programming Community Index (Figure 42). The language's simple syntax rules contribute 

to keeping the code base readable and applications maintainable. Python is preferred over 

other programming languages for several reasons [68]: 

 

• Readable and Maintainable Code: Python's syntax rules enable the expression of 

concepts without additional code, emphasizing code readability by using English 

keywords instead of punctuation. The clean and readable code base of Python 

reduces the time and effort required to maintain and update the software. 

• Compatible with Major Platforms and Systems: Python is compatible with many 

operating systems and platforms. Its interpreted nature allows for running the same 

code on different platforms without the need for recompilation.  

• Open-Source Frameworks and Tools: Python's open-source nature allows developers 

to reduce software development costs significantly. Several open-source Python 

frameworks, libraries, and development tools can also help developers to accelerate 

development time without increasing development costs. 

• Adopt Test Driven Development: Python is a suitable language for rapid creation of 
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software application prototypes. By adopting the test-driven development (TDD) 

approach, it becomes possible to perform coding and testing simultaneously in 

Python.  

• Python's Standard Library: Python's extensive and robust standard library sets it apart 

from other programming languages. The library offers a broad range of modules that 

can be tailored to suit specific needs. With each module providing additional 

functionality to the Python application, we can save time and effort by avoiding the 

need to write new code. Python has a wealth of libraries and frameworks that can 

simplify the implementation of AI and ML algorithms. These libraries are pre-written 

code that can be used to solve common programming tasks. Python offers a wide 

variety of libraries for artificial intelligence and machine learning:   

• Keras, TensorFlow, and Scikit-learn for machine learning;  

• NumPy for high-performance scientific computing and data analysis;  

• SciPy for advanced computing;  

• Pandas for general-purpose data analysis; 

• and Seaborn for data visualization.  

 
Figure 42: US, Google searches for coding languages,  

100 = highest annual traffic for any language.  
(source: www.kreyonsystems.com) 

 

6.2 Integrated Development Environment 
An Integrated Development Environment, also known as an IDE, is a tool that allows 

programmers to bring together various components of creating a computer program. IDEs 
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improve the efficiency of programmers by integrating common activities involved in 

software development into a single application, including editing source code, building 

executable files, and debugging [69]. 

For the implementation of this thesis, Spyder has been utilized as the IDE for running 

Python. Spyder is a powerful scientific environment created for Python, and tailored to the 

needs of scientists, engineers, and data analysts. It combines the advanced features of a 

comprehensive development tool, such as editing, analysis, debugging, and profiling, with 

the data exploration, interactive execution, deep inspection, and visual representation 

capabilities of a scientific package [70]. Spyder offers the following functionalities [71]: 

• An editor equipped with syntax highlighting, introspection, and code completion; 

• Support for multiple IPython consoles; 

• The capability to explore and modify variables using a graphical user interface; 

• A Help pane that can retrieve and display rich text documentation on functions, 

classes, and methods automatically or on request; 

• A debugger that is linked to IPdb for executing code step-by-step; 

• A run-time profiler for evaluating code performance; 

• Project support that allows working on multiple development projects 

simultaneously; 

• A "Find in Files" feature that allows for full regular expression search within a 

specified scope; 

• An online help browser that enables users to search and view Python and package 

documentation within the IDE; 

• A history log that records all user commands entered in each console; 

• An internal console that permits introspection and control over Spyder's operation. 
 

6.3 Used Libraries  
A Python library is a compilation of functions and methods that enable users to execute a 

variety of tasks without having to write their own code. Below is a summary of the libraries 

utilized. 

 

6.3.1 Matplotlib 
Matplotlib is a Python library that allows users to generate 2-dimensional graphs and plots 
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using Python scripts. This library is particularly useful for mathematical or scientific 

applications that require multiple axes in a representation, as it enables users to create 

multiple plots simultaneously. Additionally, Matplotlib can be used to manipulate various 

characteristics of figures [72]. Features of Matplotlib include: 

• The ability to create high-quality figures that are suitable for publication in hardcopy 

formats across different interactive platforms. 

• Compatibility with various toolkits such as Python Scripts, IPython Shells, Jupyter 

Notebook, and other graphical user interfaces. 

• Integration with third-party libraries such as seaborn, ggplot, and other projection 

and mapping toolkits such as basemap. 

 

6.3.2 NumPy 
NumPy is a widely used package for array processing in Python. It offers a range of tools 

for managing arrays of different dimensions, as well as matrices. It is known for being fast 

and efficient [72]. Features of NumPy include: 

• The ability to perform modern mathematical implementations on large amounts of 

data, making project execution easier and hassle-free. 

• NumPy creates new arrays when the shape of any N-dimensional array is changed 

and deletes the old ones. 

• NumPy provides useful tools for integration with programming languages such as 

C, C++, and others. 

• NumPy offers functionalities that are comparable to MATLAB, both allowing users 

to operate at a faster speed. 

 

6.3.3 SciPy 
SciPy is a python library that is open-source and can be utilized for both technical and 

scientific calculations. This python library is free and is a great fit for machine learning. 

However, SciPy is not only limited to computation tasks, it is also a preferred choice for 

image editing [72]. Features of SciPy: 

• SciPy comes with different modules that are appropriate for optimization, 

integration, linear algebra, and statistics.  
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• SciPy efficiently utilizes NumPy arrays for general data structures, as NumPy is an 

integral part of SciPy. 

• Finally, the SciPy community is always there to assist us with regular questions and 

solve any issues that may arise. 

 

6.3.4 Pandas 

Pandas is a software package for Python that is essential to learn for data science. It is 

specifically designed for the Python language, and is a fast, demonstrative, and adaptable 

platform that offers user-friendly data structures. With Pandas, we can effortlessly 

manipulate any type of data, including structured or time-series data [72]. Some of the key 

features of Pandas include: 

• the provision of Series and DataFrames, which allow for easy organization, 

exploration, representation, and manipulation of data.  

• Furthermore, Pandas has some unique features that enable us to handle missing data 

or values with precision.  

• Pandas also provides a collection of built-in tools that allow us to read and write 

data in different web services, data structures, and databases. 

• Additionally, Pandas supports a wide range of formats, including JSON, Excel, 

CSV, HDF5, and many more. 

 

6.3.5 Scikit Learn 
Scikit learn is a simple and useful python machine learning library. Most of it is written in 

Python, but includes also Cython, C, and C++. It is a free machine learning library. It is a 

flexible python package that can work in complete harmony with other python libraries and 

packages such as NumPy and SciPy [72]. Features of Scikit Learn: 

• Scikit Learn comes with a clean and neat API. It also provides very useful  

documentation for beginners. 

• It comes with different algorithms: classification, clustering, and regression. It also         

supports random forests, k-means, gradient boosting, and others. 

• This package offers easy adaptability. 

• Scikit Learn offers easy methods for data representation. Whether we want to                         

present data as a table or matrix, it is all possible with Scikit Learn. 
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6.4 Pipeline for model implementation 
The depicted image (Figure 43) illustrates the necessary steps to implement the ML models, 

with the process being identical for both Exp 1 and Exp 2, except for a few variations that 

will be emphasized when needed in the next paragraphs. Moving forward, the upcoming 

paragraphs on model implementation will pertain to Exp1 specifically. 

 

 
6.4.1 Importing Data 
The first step was to arrange the measured responses (also known as dependent variables, 

output, or labels) and the factors (also known as independent variables, inputs, or features) 

in the same tables so that they could be easily read by the program. This involved extracting 

surface roughness and forces, as demonstrated in sections 4.1.5 and 4.1.7, and creating 

spreadsheets in Comma Separated Values (CSV) format using Python. These spreadsheets 

included: 

• the relevant values from the experiments, 

• the experimental factors,   

• the responses.  

The code used to import the data is presented below for the reader's reference: 
import os   
for dirname, _, filenames in os.walk (r'C:\Users\vitus\Desktop\TESI\File csv'):   
    for filename in filenames:   
        print(os.path.join(dirname, filename))     
exp_file_1 = 'Exp1.csv'   
exp_complete_1 = pd.read_csv(r'C:\Users\vitus\Desktop\TESI\File csv\Exp1.csv ')   

 
Code Snippet 1:  Importing Data 

Figure 43: Model Implementation Pipeline 
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6.4.2 Data Cleansing 
Data cleaning, also known as data cleansing, is the process of identifying and correcting or 

removing errors, inconsistencies, duplicates, and other forms of inaccuracies in a dataset. 

The goal of data cleaning is to improve the quality and accuracy of the data, ensuring that 

it is reliable, consistent, and usable for analysis, modeling, and decision-making purposes 

[73]. This process often involves a combination of manual and automated techniques, 

including data profiling, data standardization, data validation, and data enrichment. 

 
 

6.4.2.1 Missing Values  
Based on the documentation for the dataset presented in the previous chapter, it is possible 

that some information from sections 4.1.5 and 4.1.7 may not have been properly extracted 

during the experiment or that there may be missing data. No entry should be recorded if 

measurements were not taken. To address this issue, the listwise deletion method, which 

removes all data for an observation that has one or more missing values, was implemented. 

This is a good approach, especially if the missing data is limited to a small number of 

observations, and those cases can be eliminated from the analysis [74]. 

Out of 4320 values in Experiment 1, there were no non-numeric values and missing values 

were not found. 

 

To find and delete rows containing possible missing values is used the following code:  
exp_complete_cleaned_1 = exp_complete_1.dropna() 

Code Snippet 2: Missing values deletion  
  

6.4.2.2 Drop unnecessary values 
Table 11 displays the essential information for experiments, including experiment 

identification, replica, cutting tool used, group and subgroup (as illustrated in Figure 28), 

position in workpiece length (as shown in Figure 26), condition, tool condition (which 

was consistently zero in Experiment 1 since all tools were new with a wedge dimension 

VB = 0.0 mm), test length, initial and machined diameters, cutting time (not applicable 

for Experiment 1), surface roughness measurement angle indicating the angular position 

in which the surface roughness was accessed on the workpiece (as indicated in Figure 26), 

and run identification (comprising information from the other columns).  

These information values in Table 11 maintain data traceability and are necessary for 
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organizing previous data and accessing a particular value, although they are not utilized 

in the ML algorithms.  

In Experiment 2, the Tool condition column was not removed because the tools' condition 

(VB) was no longer at 0 for all the Tools, and its information was used in the ML 

algorithms. 

Table 11: Experiment 1 general information. 

 
Exp 

 
Replica 

 
Group 

 
Subgroup 

 
Position 

 
Condition Tool 

Condition 

 
Length Initial 

diameter 
Machined 
diameter 

Cutting 
time 

R 
measur 
angle 

 
Run ID 

1 1 1 2 a 4 0 12 94 93.5 na 0 1_021_G1_4_a 
1 1 1 2 a 4 0 12 94 93.5 na 60 1_021_G1_4_a 
1 1 1 2 a 4 0 12 94 93.5 na 120 1_021_G1_4_a 
1 1 1 2 a 4 0 12 94 93.5 na 180 1_021_G1_4_a 
1 1 1 2 a 4 0 12 94 93.5 na 240 1_021_G1_4_a 
1 1 1 2 a 4 0 12 94 93.5 na 300 1_021_G1_4_a 

The code used to drop unnecessary values is presented below for the reader's reference: 

exp_out_1 = exp_complete_cleaned_1.copy()   
exp_out_1.drop(['Run_ID', 'Experiment', 'TCond’, 

‘Replica','Group', 'Subgroup','Position', 'Condition','Machined_length', 'Init

_diameter', 'Final_diameter', 'CTime', 'R_measurement'],axis=1, inplace=True)  

Code Snippet 3: Data Cleansing 

 

6.4.2.3 Outlier Analysis 
Subsequently, outliers were searched between the factors (ap, vc, f) and responses (Ra, Rsk, 

Rku, RSm, Rt, Fx, Fy, Fz, F) throughout the data frames.  

An outlier refers to a data point that deviates from the other data points in the observation. 

It can be due to normal measurement fluctuations, or it can indicate experimental errors, 

such as human error or instrument inaccuracy. In data mining activities, outliers can cause 

significant problems and need to be detected and evaluated in order to understand their 

presence and, most importantly, to remove them from the dataset [75]. Statistical methods 

like standard deviation, box plots, z-score, or interquartile distribution (IQR) methods are 

commonly used to identify outliers. This study will use the IQR method for detecting 

outliers. 

To use the IQR method, one first calculates the IQR of the dataset by finding the difference 

between the third quartile (Q3) and the first quartile (Q1). Q1 is the value that separates the 

lowest 25% of the data from the rest, while Q3 separates the lowest 75% of the data from 

the rest. After calculating the IQR, potential outliers can be identified by determining values 
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that lie beyond a certain threshold, typically defined as Q1 – 1.5 * IQR or Q3 + 1.5 * IQR. 

These values are considered outliers because they are more than 1.5 times the IQR away 

from the nearest quartile. 

Using the IQR method for outlier analysis has some advantages over other methods, such 

as being less sensitive to extreme values like the mean and standard deviation. The IQR 

method identifies potential outliers by defining a threshold that is based on the distribution 

of the data, which makes it less affected by extreme values. 

However, the IQR method may not be suitable for all datasets, especially those with a small 

sample size, as it may not provide a reliable estimate of the distribution of the data. In such 

cases, other methods or visual inspection may be needed to identify outliers. 

Instead of removing the outlier, some analysts choose to replace it with the mean of all 

other observations for the selected condition. This is because the outlier may not be a 

measurement error or data entry error, but rather a genuine data point that belongs to the 

population being studied. This can help to reduce the impact of the outlier on the statistical 

analysis and provide a more accurate estimate of the central tendency of the data. In the 

specific case of Exp 1, 11 outliers were identified, but they mainly came from parameters 

that were extracted using a dynamometer and were believed to be genuine data points. 

Therefore, the outliers were not removed but replaced with their mean to avoid bias in the 

statistical analysis. 

 

To detect and substitute outliers is used the following code:  
outliers = pd.DataFrame(columns=exp_out_1.columns)   
for i, row in exp_out_1.iterrows():   
    if row.isna().any():   
        continue   
    else:   
        q1=exp_out_1.quantile(0.25)   
        q3=exp_out_1.quantile(0.75)   
        IQR=q3-q1   
        if ((row < (q1 - 1.5 * IQR)) | (row > (q3 + 1.5 * IQR))).any():   
            outliers.loc[i] = row   
print('number of outliers: '+ str(len(outliers)))   
print('max outlier value: \n' + str(outliers.max()))   
print('min outlier value: \n'+ str(outliers.min()))   
outliers   
   
#SET A FUNCTION TO SUBSTITUTE THE VALUE FOR THE OUTLIERS WITH THE MEAN VALUE   
exp = exp_out_1.copy()   
def impute_outliers_IQR(exp):   
   q1=exp.quantile(0.25)   
   q3=exp.quantile(0.75)   
   IQR=q3-q1   
   upper = exp[~(exp>(q3+1.5*IQR))].max()   
   lower = exp[~(exp<(q1-1.5*IQR))].min()   
   exp = np.where(exp > upper, exp.mean(), np.where(exp < lower, exp.mean(),  
   exp))   
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   return exp   
   
# outliers substitution  
exp[["ap", "vc", "f","Fx", "Fy", "Fz", "F", "Ra","Rz","Rsk","Rku","RSm","Rt"]]
 = impute_outliers_IQR(exp[["ap", "vc", "f","Fx", "Fy", "Fz", "F", "Ra","Rz","
Rsk","Rku","RSm","Rt"]])   
exp_describe = exp.describe()[["ap", "vc", "f","Fx", "Fy", "Fz", "F", "Ra","Rz
","Rsk","Rku","RSm","Rt"]]   
exp.describe()[["ap", "vc", "f","Fx", "Fy", "Fz", "F", "Ra","Rz","Rsk","Rku","
RSm","Rt"]]   

Code Snippet 4: Removal of Outliers 
 

6.4.3 Model Training and Testing 
From the previous operations a dataset is obtained, which has 324 rows and 14 columns. 

The target variable is 'Ra' and the other columns are features that are used to predict the 

target variable. One way to approach this task is to train the machine learning model using 

the entire dataset and then test it on the same dataset to evaluate its accuracy. However, this 

method would not be reliable as the model would simply memorize the target variable and 

always provide the same answer. In real-life scenarios, the model needs to be able to 

accurately predict new, unseen data [76]. 

To evaluate the model's ability to generalize to new data, it's important to test it on 

completely different datasets. For instance, if we're training a model to identify animals in 

images, we can train it on cats and dogs but test it on images of birds from a different source. 

This way, we can assess whether the model can generalize to new types of animals it hasn't 

encountered during training. Another reason for testing on different datasets is to evaluate 

the model's robustness. By testing it on data from different sources, it can be determined 

how well it performs under different conditions and identify any weaknesses or limitations 

that need to be addressed. For example, if the model performs well on one dataset but poorly 

on another, it may suggest that it has learned to overfit to specific patterns in the training 

data that aren't generalizable to other sources. 

A way to assess how well a model can generalize is to use a separate hold-out set for testing, 

which is distinct from the training data. The 70-30% method is commonly used, where a 

fixed proportion of the available data is reserved for testing. However, since Experiment 1 

dataset only includes 6 Tool IDs (tool_ids = [21,31,41,51,61,71]), the 70-30% method 

cannot be applied due to the limited number of Tool IDs. Instead, the data is split into Train 

and Test sets by assigning 5 Tool IDs to the Train set and 1 Tool ID to the Test set. This 

approach creates a new dataset with data from the Test set, similar to a real-world scenario. 

In essence, our goal is to create a model that can predict the results of the test set that are 
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currently unknown. Nevertheless, there are instances where the hold-out set may not 

accurately reflect the actual data distribution that the model will face in practical scenarios. 

K-fold cross validation can be used to enhance the model's performance (Figure 45). 

Also for Experiment 2 the dataset included 6 Tool IDs (tool_ids = [43, 53, 33, 23, 81, 13]). 

 

To Train and Test the dataset using the Hold – Out method, the following code is used: 
tool_ids = [21,31,41,51,61,71]   
   
x_train = []   
y_train = []   
x_test = []   
y_test = []   
   
for i in range(len(tool_ids)):   
  train_ids = [x for j, x in enumerate(tool_ids) if j != i]   
  test_id = tool_ids[i]   
     
  train_indices = exp[exp['Tool_ID'].isin(train_ids)].index   
  test_indices = exp[exp['Tool_ID'].isin([test_id])].index   
     
  stratified_train_set = exp.loc[train_indices]    
  stratified_test_set = exp.loc[test_indices]    
     
  train = pd.DataFrame(stratified_train_set)   
  test = pd.DataFrame(stratified_test_set)   

Code Snippet 5: Train -Test dataset split  
 

 

6.4.4 Cross Validation 
Cross-validation is a statistical technique utilized to estimate the efficacy of machine 

learning models. It is widely applied in practical machine learning to determine and choose 

a suitable model for a given predictive modeling problem. Cross-validation is popular 

because it is simple to comprehend, simple to implement, and the skill estimates derived 

from it usually have lower bias than other methods [77]. As there is often insufficient data 

to fully train a model, setting aside a portion of it for validation poses a challenge of 

Figure 44: Dataset Split 
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underfitting. By reducing the amount of training data, important patterns and trends in the 

dataset may be lost, increasing the error introduced by bias. Therefore, a method is needed 

that provides adequate data for model training while still leaving enough data for validation. 

K-fold cross-validation precisely achieves this scope [78]. Cross-validation is a resampling 

approach used to assess machine learning models on a limited dataset. The technique 

employs a single parameter, k, which determines the number of groups to split the dataset 

into. Consequently, the technique is often referred to as k-fold cross-validation. When a 

particular value of k is selected, it may be substituted in place of k in the model reference, 

for instance, k=5 becoming 5-fold cross-validation. The dataset will be divided into 5 equal 

parts and the procedure below will be executed 5 times, with a different holdout set each 

time (Figure 46). Cross-validation is primarily employed to estimate the efficacy of a 

machine learning model on unseen data, i.e., to estimate how the model is likely to perform 

generally when employed to make predictions on data that were not used during the model's 

training. For the implemented model K = 6, which is the number of tools used during 

Experiment 1 and represents the number of groups to split the dataset. 

The general procedure is as follows: 

1. Split the dataset into k groups 
2. For each unique group: 

a. Take the group as a hold out or test data set 
b. Take the remaining groups as a training data set 
c. Fit a model on the training set and evaluate it on the test set 
d. Retain the evaluation score and discard the model 

3. Summarize the skill of the model using the sample of model evaluation scores 

Crucially, every data point in the sample is allocated to a specific group and remains in that 

group throughout the process. This ensures that each sample has the chance to be included 

in the holdout set once and utilized for training the model k-1 times. 

The code for Cross Validation will be displayed in the following paragraphs when ML 

algorithms will be implemented.  
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Figure 45: K-Fold Model Tuning 

 
6.4.5 Features and Labels Extraction  
To enhance the accuracy and performance efficiency of a model, the dataset is divided into 

two parts: features (input values, X) and labels (output values, Y) [79]. These pairs of 

features and labels will be utilized as labeled examples for the ML during the training phase. 

The potential features may include: 

• Process parameters: depth of cut (ap), feed rate (f), and cutting speed (vc); 

• Measured forces: cutting force (Fx), passive force (Fy), feed force (Fz), and resultant 

force (F). While machining forces are considered as response variables in the 

experimental procedure and analysis of results, they are used as input values in the 

machine learning model. 

The process of defining labeled examples is executed through a simple piece of code that 

eliminates non-required labels and keeps only the ones of interest in the X and y sets. The 

possible labels are: 

• The surface roughness results such as arithmetic mean deviation (Ra), skewness 

(Rsk), kurtosis (Rku), mean width of profile elements (RSm), and total height (Rt). 
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The code used to extract feature and labels is presented below for the reader's reference: 
 x_train.append(train[["ap", "vc", "f", "Fx", "Fy", "Fz", "F"]])  
 x_test.append(test[["ap", "vc", "f", "Fx", "Fy", "Fz", "F"]])   
 y_train.append(train[["Ra"]])   
 y_test.append(test[["Ra"]])   

Code Snippet 6: Features and Labels extraction 

 
6.4.6 Data Standardization  
One crucial data transformation that needs to be implemented is feature scaling, which is 

often used to ensure faster convergence in Machine Learning algorithms. Generally 

speaking, these algorithms do not perform well when input numerical attributes have 

significantly different scales. To achieve uniform scaling across all attributes, two common 

techniques are used: min-max scaling and standardization [80]. The process of min-max 

scaling (also known as normalization) involves shifting and rescaling the values so that they 

fall within the range of 0 to 1. This is achieved by subtracting the minimum value and then 

dividing by the range (max minus min). On the other hand, standardization involves 

subtracting the mean value (resulting in standardized values with zero mean) and then 

dividing by the variance, producing a distribution with unit variance. Unlike min-max 

scaling, standardization does not restrict the values to a specific range, which can be 

problematic for certain algorithms (e.g., neural networks that expect values between 0 and 

1). Nonetheless, standardization is less susceptible to the influence of outliers.  To 

standardize the features, the scikit-learn function called StandardScaler is used, which 

transforms the values to a uniform range. This process is known as standardization. 

 

 Below, the reader can see the implemented code that standardizes the training values:  
from sklearn.preprocessing import StandardScaler # define the scale method and
 range   
scaler = StandardScaler()   
for i in range(len(x_train)):   
    scaler.fit(x_train[i])   
    x_train[i] = scaler.transform(x_train[i])   
       
for i in range(len(x_test)):   
    scaler.fit(x_test[i])   
    x_test[i] = scaler.transform(x_test[i])   

                     Code Snippet 7: Standardization   
 
6.4.7 Evaluation Metrics 

To assess the performance of the model, measuring metrics are used. Some of the 

commonly used and provided within the scikitlearn library are: 
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• Mean Squared Error 
• Root Mean Squared Error 
• Mean Absolute Error 
• Coefficient of Determination (R2) 
• Explained Variance 

 

The code below is used to add inside the model evaluation metrics: 
1. import sklearn.metrics as metrics   
2. from sklearn.metrics import r2_score   
3. from sklearn.metrics import mean_squared_error   
4. from sklearn.metrics import mean_absolute_error   

Code Snippet 8: Importing Evaluation Metrics 

 
6.4.8 ML Algorithms implementation  
To move forward with the best model selection for prediction of the response variable, i.e. 

‘Ra’, with the help of one of the libraries of python i.e. Scikitlearn, the following models 

explained in the next paragraphs are trained and tested, using Cross validation. All the ML 

models analyzed have the same structure where the code appears to be evaluating the 

performance of a model using various metrics, such as mean squared error (MSE), mean 

absolute error (MAE), and R2 score, among others. It also generates plots to visually 

compare the model's predictions (y_pred) to the actual target values (y_test). 

Overall, the code in the next paragraphs provides a way to assess the performance of a ML 

model on various datasets and to compare those results visually. Results are printed to the 

console, displaying the recorded metrics for each pair and the means and standard 

deviations. 

 

6.4.8.1 Linear Regression 
 The algorithm outlined below was used to carry out Linear Regression for this study: 

from sklearn.linear_model import LinearRegression   
linreg = LinearRegression()   
lin_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])   
   
train_test_pairs = [(x_train[i], y_train[i], x_test[i], y_test[i]) for i in ra
nge(len(x_train))]   
   
for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):   
    linreg.fit(x_train, y_train)   
    y_pred = linreg.predict(x_test)   
    y_pred = pd.DataFrame(y_pred)   
   
    lin_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))   
    lin_mse = mean_squared_error(y_test, y_pred)   
    lin_mae = mean_absolute_error(y_test, y_pred)   
    lin_r2 = metrics.r2_score(y_test, y_pred)   
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    lin_variance = metrics.explained_variance_score(y_test, y_pred)   
    lin_error.loc[i] = [lin_rmse, lin_mse, lin_mae, lin_r2, lin_variance]   
   
    plt.figure()   
    plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')   
    plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')   
    plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)   
    plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)   
    plt.title("Tool ID Scenario {} - LinReg: Comparison Chart y_test vs y_pred
".format(i+1))   
    plt.xlabel("Sample Index")   
    plt.ylabel("Ra")   
    plt.show()   
   
mean_rmse = lin_error['RMSE'].mean()   
mean_mse = lin_error['MSE'].mean()   
mean_mae = lin_error['MAE'].mean()   
mean_r2 = lin_error['R^2'].mean()   
mean_variance = lin_error['EXPLAINED VARIANCE'].mean()   
lin_error.loc['Mean'] = [mean_rmse,mean_mse, mean_mae, mean_r2, mean_variance]
   
std_rmse = lin_error['RMSE'].std()   
std_mse = lin_error['MSE'].std()   
std_mae = lin_error['MAE'].std()   
std_r2 = lin_error['R^2'].std()   
std_variance = lin_error['EXPLAINED VARIANCE'].std()   
   
lin_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]  
print(lin_error)   

Code Snippet 9: Linear Regression Algorithm 
 
6.4.8.2 Decision Tree Regression 
The following algorithm was employed to execute Decision Tree Regression: 

from sklearn.tree import DecisionTreeRegressor   
decreg = DecisionTreeRegressor(random_state = 42)   
dec_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])   
for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):   
    decreg.fit(x_train, y_train)   
    y_pred = decreg.predict(x_test)   
    y_pred = pd.DataFrame(y_pred)    
    #Error calculation   
    dec_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))   
    dec_mse = mean_squared_error(y_test, y_pred)   
    dec_mae = mean_absolute_error(y_test, y_pred)   
    dec_r2 = metrics.r2_score(y_test, y_pred)   
    dec_variance = metrics.explained_variance_score(y_test, y_pred)   
    dec_error.loc[i] = [dec_rmse, dec_mse, dec_mae, dec_r2, dec_variance]   
       
    plt.figure()   
    plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')   
    plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')   
    plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)   
    plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)   
    plt.title("Tool ID Scenario {} - DT: Comparison Chart y_test vs y_pred".fo
rmat(i+1))   
    plt.xlabel("Sample Index")   
    plt.ylabel("Ra")   
    plt.show()   
    
mean_rmse = dec_error['RMSE'].mean()   
mean_mse = dec_error['MSE'].mean()   
mean_mae = dec_error['MAE'].mean()   
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mean_r2 = dec_error['R^2'].mean()   
mean_variance = dec_error['EXPLAINED VARIANCE'].mean()   
dec_error.loc['Mean'] = [mean_rmse, mean_mse,mean_mae, mean_r2, mean_variance]
   
std_rmse = dec_error['RMSE'].std()   
std_mse = dec_error['MSE'].std()   
std_mae = dec_error['MAE'].std()   
std_r2 = dec_error['R^2'].std()   
std_variance = dec_error['EXPLAINED VARIANCE'].std()   
   
dec_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]  
print(dec_error)    

Code Snippet 10: Decision Tree Regression Algorithm 
 
6.4.8.3 Random forest Regression 

Random Forest Regression was implemented using the following algorithm: 
from sklearn.ensemble import RandomForestRegressor   
ranreg = RandomForestRegressor(random_state = 42)   
ran_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])   
for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):   
    ranreg.fit(x_train, y_train)   
    y_pred = ranreg.predict(x_test)   
    y_pred = pd.DataFrame(y_pred)    
    #Error calculation   
    ran_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))   
    ran_mse = mean_squared_error(y_test, y_pred)   
    ran_mae = mean_absolute_error(y_test, y_pred)   
    ran_r2 = metrics.r2_score(y_test, y_pred)   
    ran_variance = metrics.explained_variance_score(y_test, y_pred)   
    ran_error.loc[i] = [ran_rmse, ran_mse, ran_mae, ran_r2, ran_variance]   
       
    plt.figure()   
    plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')   
    plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')   
    plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)   
    plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)   
    plt.title("Tool ID Scenario {} - RF: Comparison Chart y_test vs y_pred".fo
rmat(i+1))   
    plt.xlabel("Sample Index")   
    plt.ylabel("Ra")   
    plt.show()   
       
mean_rmse = ran_error['RMSE'].mean()   
mean_mse = ran_error['MSE'].mean()   
mean_mae = ran_error['MAE'].mean()   
mean_r2 = ran_error['R^2'].mean()   
mean_variance = ran_error['EXPLAINED VARIANCE'].mean()   
ran_error.loc['Mean'] = [mean_rmse, mean_mse,mean_mae, mean_r2, mean_variance] 
  
std_rmse = ran_error['RMSE'].std()   
std_mse = ran_error['MSE'].std()   
std_mae = ran_error['MAE'].std()   
std_r2 = ran_error['R^2'].std()   
std_variance = ran_error['EXPLAINED VARIANCE'].std()   
   
ran_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]  
print(ran_error)   

Code Snippet 11: Random Forest Regression Algorithm 



90  

6.4.8.4 Bayesian Linear Regression 
By following the given algorithm, Bayesian Linear Regression was implemented: 

from sklearn.linear_model import BayesianRidge   
bayreg = BayesianRidge()   
bay_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])   
   
for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):   
    bayreg.fit(x_train, y_train)   
    y_pred = bayreg.predict(x_test)   
    y_pred = pd.DataFrame(y_pred)    
    #Error calculation   
    bay_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))   
    bay_mse = mean_squared_error(y_test, y_pred)   
    bay_mae = mean_absolute_error(y_test, y_pred)   
    bay_r2 = metrics.r2_score(y_test, y_pred)   
    bay_variance = metrics.explained_variance_score(y_test, y_pred)   
    bay_error.loc[i] = [bay_rmse, bay_mse, bay_mae, bay_r2, bay_variance]   
       
    plt.figure()   
    plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')   
    plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')   
    plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)   
    plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)   
    plt.title("Tool ID Scenario {} - Bayesian: Comparison Chart y_test vs y_pr
ed".format(i+1))   
    plt.xlabel("Sample Index")   
    plt.ylabel("Ra")   
    plt.show()   
       
mean_rmse = bay_error['RMSE'].mean()   
mean_mse = bay_error['MSE'].mean()   
mean_mae = bay_error['MAE'].mean()   
mean_r2 = bay_error['R^2'].mean()   
mean_variance = bay_error['EXPLAINED VARIANCE'].mean()   
bay_error.loc['Mean'] = [mean_rmse,mean_mse, mean_mae, mean_r2, mean_variance] 
   
std_rmse = bay_error['RMSE'].std()   
std_mse = bay_error['MSE'].std()   
std_mae = bay_error['MAE'].std()   
std_r2 = bay_error['R^2'].std()   
std_variance = bay_error['EXPLAINED VARIANCE'].std()   
   
bay_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]  
print(bay_error)   

Code Snippet 12: Bayesian Linear Regression Algorithm 
 
6.4.8.5 K-Nearest Neighbours Regression 
Using the algorithm specified below, K-Nearest Neighbours Regression has been 

implemented:  
from sklearn.neighbors import KNeighborsRegressor   
knn = KNeighborsRegressor(n_neighbors=10, weights = 'distance')   
knn_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])   
   
for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):   
    knn.fit(x_train, y_train)   
    y_pred = knn.predict(x_test)   
    y_pred = pd.DataFrame(y_pred)    
    #Error calculation   
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    knn_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))   
    knn_mse = mean_squared_error(y_test, y_pred)   
    knn_mae = mean_absolute_error(y_test, y_pred)   
    knn_r2 = metrics.r2_score(y_test, y_pred)   
    knn_variance = metrics.explained_variance_score(y_test, y_pred)   
    knn_error.loc[i] = [knn_rmse, knn_mse, knn_mae, knn_r2, knn_variance]   
       
    plt.figure()   
    plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')   
    plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')   
    plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)   
    plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)   
    plt.title("Tool ID Scenario {} - K-
NN: Comparison Chart y_test vs y_pred".format(i+1))   
    plt.xlabel("Sample Index")   
    plt.ylabel("Ra")   
    plt.show()   
   
mean_rmse = knn_error['RMSE'].mean()   
mean_mse = knn_error['MSE'].mean()   
mean_mae = knn_error['MAE'].mean()   
mean_r2 = knn_error['R^2'].mean()   
mean_variance = knn_error['EXPLAINED VARIANCE'].mean()   
knn_error.loc['Mean'] = [mean_rmse,mean_mse, mean_mae, mean_r2, mean_variance] 
   
std_rmse = knn_error['RMSE'].std()   
std_mse = knn_error['MSE'].std()   
std_mae = knn_error['MAE'].std()   
std_r2 = knn_error['R^2'].std()   
std_variance = knn_error['EXPLAINED VARIANCE'].std()   
   
knn_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]  
print(knn_error)   

Code Snippet 13: KNN Regression Algorithm 

 
6.4.8.6 Kernel Ridge Regression 
Kernel Ridge Regression has been employed in the current study, with the algorithm 

provided below: 
from sklearn.kernel_ridge import KernelRidge   
kreg = KernelRidge(alpha=0.5, kernel='rbf', gamma =0.5)    
kernel_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED V
ARIANCE'])   
   
for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):   
    kreg.fit(x_train, y_train)   
    y_pred = kreg.predict(x_test)   
    y_pred = pd.DataFrame(y_pred)    
    #Error calculation   
    kernel_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))   
    kernel_mse = mean_squared_error(y_test, y_pred)   
    kernel_mae = mean_absolute_error(y_test, y_pred)   
    kernel_r2 = metrics.r2_score(y_test, y_pred)   
    kernel_variance = metrics.explained_variance_score(y_test, y_pred)   
    kernel_error.loc[i] = [kernel_rmse, kernel_mse, kernel_mae, kernel_r2, ker
nel_variance]   
       
    plt.figure()   
    plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')   
    plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')   
    plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)   
    plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)   
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    plt.title("Tool ID Scenario {} - Kernel: Comparison Chart y_test vs y_pred
".format(i+1))   
    plt.xlabel("Sample Index")   
    plt.ylabel("Ra")   
    plt.show()   
   
mean_rmse = kernel_error['RMSE'].mean()   
mean_mse = kernel_error['MSE'].mean()   
mean_mae = kernel_error['MAE'].mean()   
mean_r2 = kernel_error['R^2'].mean()   
mean_variance = kernel_error['EXPLAINED VARIANCE'].mean()   
kernel_error.loc['Mean'] = [mean_rmse, mean_mse, mean_mae, mean_r2, mean_varia
nce]   
   
std_rmse = kernel_error['RMSE'].std()   
std_mse = kernel_error['MSE'].std()   
std_mae = kernel_error['MAE'].std()   
std_r2 = kernel_error['R^2'].std()   
std_variance = kernel_error['EXPLAINED VARIANCE'].std()   
   
kernel_error.loc['Std Dev'] = [std_rmse,std_mse,std_mae, std_r2, std_variance]

print(kernel_error)   

Code Snippet 14: Kernel Ridge Regression Algorithm 

 
6.4.8.7 Neural Network Regression 
By utilizing the algorithm given below, Neural Network Regression was implemented:  

from sklearn.neural_network import MLPRegressor   
mlpreg = MLPRegressor(random_state = 1)   
neu_error = pd.DataFrame(columns=['RMSE', 'MSE', 'MAE', 'R^2', 'EXPLAINED VARI
ANCE'])   
   
for i, (x_train, y_train, x_test, y_test) in enumerate(train_test_pairs):   
    mlpreg.fit(x_train, y_train)   
    y_pred = mlpreg.predict(x_test)   
    y_pred = pd.DataFrame(y_pred)    
    #Error calculation   
    neu_rmse = np.sqrt(metrics.mean_squared_error(y_test, y_pred))   
    neu_mse = mean_squared_error(y_test, y_pred)   
    neu_mae = mean_absolute_error(y_test, y_pred)   
    neu_r2 = metrics.r2_score(y_test, y_pred)   
    neu_variance = metrics.explained_variance_score(y_test, y_pred)   
    neu_error.loc[i] = [neu_rmse, neu_mse, neu_mae, neu_r2, neu_variance]   
       
    plt.figure()   
    plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')   
    plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')   
    plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)   
    plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)   
    plt.title("Tool ID Scenario {} - Neural Network: Comparison Chart y_test v
s y_pred".format(i+1))   
    plt.xlabel("Sample Index")   
    plt.ylabel("Ra")   
    plt.show()   
   
mean_rmse = neu_error['RMSE'].mean()   
mean_mse = neu_error['MSE'].mean()   
mean_mae = neu_error['MAE'].mean()   
mean_r2 = neu_error['R^2'].mean()   
mean_variance = neu_error['EXPLAINED VARIANCE'].mean()   
neu_error.loc['Mean'] = [mean_rmse,mean_mse, mean_mae, mean_r2, mean_variance] 
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std_rmse = neu_error['RMSE'].std()   
std_mse = neu_error['MSE'].std()   
std_mae = neu_error['MAE'].std()   
std_r2 = neu_error['R^2'].std()   
std_variance = neu_error['EXPLAINED VARIANCE'].std()   
   
neu_error.loc['Std Dev'] = [std_rmse, std_mse, std_mae, std_r2, std_variance]  
print(neu_error)   

Code Snippet 15: Neural Network Regression Algorithm 
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Chapter 7 - Results and Discussion 

Synopsis 
In the previous chapter, different models were trained and tested to evaluate their 

performance using separate training and testing datasets. In a real-world scenario, not all 

models can be utilized, and therefore, one model must be chosen. One method to achieve 

this is by assessing the error metrics and selecting the one with the best metric performance. 

However, a question arises as to whether the method of measuring error metrics is efficient 

and consistent. To obtain conclusive results, all models are subjected to cross-validation to 

finalize the models for evaluating the surface roughness of the machined steel bar. The 

results and conclusions are discussed below. 

 

7.1 Experiment 1  
 
7.1.1 Linear Regression  
The details             on the performance of the model in each fold is as shown in table 12: 

Table 12: Linear Regression performance 

Fold Number = Tool 
ID 

RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

21 1,3370 1,7870 1,0444 -1,7934 -17,9252 

31 1,5411 2,3749 1,1235 -42,8900 -42,1391 

41 0,2789 0,0778 0,2126 0,3871 0,4410 

51 1,9361 3,7483 1,4162 -35,6652 -35,3488 

61 1,0715 1,1482 0,8222 -13,4892 -13,4352 

71 0,1413 0,0200 0,1157 0,2986 0,3387 

Mean 1,0510 1,5261 0,7891 -18,2155 -18,0114 

Std Dev 0,6493 1,3062 0,4756 16,4548 16,2322 

 

Overall, the model's performance is poor, as indicated by the low R^2 and Explained 

Variance scores. Additionally, there is significant variability in the model's performance 

across different folds, as indicated by the high standard deviation scores for R^2 and 

Explained Variance. The high standard deviation scores for MSE and RMSE also suggest 

that the model's performance is highly variable across different folds.  
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7.1.2 Decision Tree Regression 
Table 13 shows the performance of Decision Tree Regression: 

Table 13: Decision Tree Regression performance 

Fold Number = Tool 
ID 

RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

21 0,1470 0,0216 0,1114 0,7711 0,7742 

31 0,2929 0,0858 0,1921 -0,5854 -0,2665 

41 0,2258 0,0510 0,1725 0,5982 0,6017 

51 0,2315 0,0536 0,1851 0,4757 0,6219 

61 0,2190 0,0480 0,1612 0,3949 0,4229 

71 0,2132 0,0454 0,1877 -0,5976 -0,5662 

Mean 0,2216 0,0509 0,1683 0,1762 0,2647 

Std Dev 0,0425 0,0188 0,0275 0,5550 0,4997 

Overall, the model shows acceptable performance in RMSE and MAE, with modest mean 

values and relatively insignificant standard deviations. However, the R^2 values suggest 

that the model may not be an appropriate fit for the data as the mean value is not high, and 

the standard deviation is high. Furthermore, the Explained Variance indicates significant 

variability across folds and Tool IDs, which implies that the model may not capture the 

entire data variability. 

 

7.1.3 Random Forest Regression 

Table 14 shows the scores for Random Forest Regression:  

Table 14: Random Forest Regression performance 

Fold Number = Tool 
ID 

RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

21 0,1367 0,0187 0,1187 0,8020 0,8155 

31 0,2436 0,0593 0,1792 -0,0964 0,2871 

41 0,2521 0,0636 0,1890 0,4993 0,5177 

51 0,2556 0,0653 0,2150 0,3608 0,6048 

61 0,1667 0,0278 0,1327 0,6494 0,6519 

71 0,2100 0,0441 0,1888 -0,5496 -0,5002 

Mean 0,2108 0,0465 0,1706 0,2776 0,3962 

Std Dev 0,0451 0,0180 0,0338 0,4643 0,4311 

 

In general, the model seems to exhibit good performance, as evidenced by the low values 

of RMSE, MSE, and MAE. However, the R^2 and Explained Variance values are 

improving, but they may not account for all the variation present in the data. Moreover, the 
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high standard deviations for R^2 and Explained Variance suggest that the model's 

performance may vary considerably depending on the specific fold of data being assessed. 

 

7.1.4 Bayesian Linear Regression 
Table 15 shows the scores for Bayesian Linear Regression:  

Table 15: Bayesian Linear Regression 

Fold Number = Tool 
ID 

RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

21 1,1636 1,3540 0,9060 -13,3410 -13,3319 

31 1,2617 1,5918 0,8955 -28,4172 -27,6663 

41 0,3089 0,0954 0,2356 0,2483 0,3023 

51 1,7447 3,0440 1,2872 -28,7759 -28,4595 

61 0,9125 0,8327 0,7066 -9,5083 -9,4542 

71 0,1483 0,0220 0,1273 0,2266 0,2667 

Mean 0,9233 1,1567 0,6930 -13,2613 -13,0572 

Std Dev 0,5515 1,0254 0,4019 11,8949 11,6884 

Overall, the model exhibits satisfactory performance concerning RMSE and MAE, with 

minimal mean values and relatively insignificant standard deviations. However, based on 

the R^2 values, it appears that the model might not be a suitable match for the data as the 

mean value is low, and the standard deviation is high. The Explained Variance further 

highlights significant variability across folds and Tool IDs, which implies that the model 

may not fully capture all the data's variability. 

 

7.1.5 K-Nearest Neighbours  
Table 16 shows the scores for KNN:  

Table 16: K-Nearest Neighbours performance 

Fold Number = Tool 
ID 

RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

21 0,1276 0,0163 0,0951 0,8277 0,8286 

31 0,2556 0,0654 0,1978 -0,2077 0,1685 

41 0,3043 0,0926 0,2290 0,2706 0,4492 

51 0,2856 0,0815 0,2194 0,2023 0,6075 

61 0,2018 0,0407 0,1624 0,4863 0,4873 

71 0,1818 0,0331 0,1548 -0,1619 0,2937 

Mean 0,2261 0,0549 0,1764 0,2362 0,4725 

Std Dev 0,0616 0,0271 0,0454 0,3583 0,2122 

The mean performance metrics of the model are satisfactory, as indicated by the low values 
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of RMSE, MSE, and MAE, and positive R2 and Explained Variance. Additionally, the 

standard deviation is relatively low, indicating consistent performance across the folds. 

However, it is worth mentioning that the R2 values were negative for some folds, suggesting 

that the model performed worse than a simple baseline model in those instances. 

Conversely, in one of the folds, the model achieved an R2 value of 0.8277, indicating a good 

fit to the data. Overall, the model's performance seems to be moderately good, but there is 

room for improvement, particularly in cases where the R2 value is negative. 

 

7.1.6 Kernel Ridge Regression  
Table 17 shows the scores for Kernel Ridge Regression:  

Table 17: Kernel Ridge Regression performance 

Fold Number = Tool 
ID 

RMSE MSE MAE R^2 
EXPLAINED 
VARIANCE 

21 0,3388 0,1148 0,2710 -0,2161 0,5108 

31 0,2389 0,0571 0,1627 -0,0546 0,1310 

41 0,4931 0,2431 0,3969 -0,9153 0,3260 

51 0,5604 0,3141 0,4846 -2,0724 0,2247 

61 0,3471 0,1205 0,2856 -0,5206 0,3134 

71 0,3537 0,1251 0,3411 -3,3973 0,6935 

Mean 0,3887 0,1624 0,3237 -1,1961 0,3666 

Std Dev 0,1067 0,0876 0,1014 1,1840 0,1861 

The model's performance seems to be moderate, with relatively high variance overall. The 

negative R2 and low Explained Variance values suggest that the model might not be suitable 

for the data. Additionally, the standard deviations of the metrics indicate that the model's 

performance variability across the six folds is high for R2, Explained Variance, and MAE, 

while it is moderate for RMSE and MSE. 

 

7.1.7 Neural Networks 
Table 18 shows the scores for the neural networks:  

Table 18: Neural Networks performance 

Fold Number = Tool 
ID 

RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

21 0,2634 0,0694 0,2209 0,2650 0,4392 

31 0,2413 0,0582 0,2050 -0,0761 -0,0629 

41 0,4051 0,1641 0,3205 -0,2929 0,1351 

51 0,4061 0,1649 0,3216 -0,6133 0,3404 
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61 0,2827 0,0799 0,1938 -0,0088 0,1907 

71 0,2585 0,0668 0,1836 -1,3497 -0,6127 

Mean 0,3095 0,1006 0,2409 -0,3460 0,0716 

Std Dev 0,0690 0,0457 0,0578 0,5231 0,3445 

In general, these findings indicate that the model's performance is not performing well, as 

indicated by the negative or near-zero values of R-squared and Explained Variance. 

Moreover, the RMSE and MSE values indicate a considerable amount of error in the 

model's predictions, while the MAE values suggest that the average absolute error is 

relatively high. The high standard deviations also suggest that the model's performance 

varies significantly across different folds and tools. 

 

7.1.8 Experiment 1 – Final considerations  
From the error metric scores, following models were shortlisted: 

• K-Nearest Neighbours  

• Random Forest Regression 

• Decision Tree Regression  

The K-Nearest Neighbours approach produced results with reliable metric accuracy, 

making it a viable option for detecting Surface Roughness. In Chapter 8, the framework 

used to compare the predicted Surface Roughness from the KNN model with actual values 

and a theoretical equation will be discussed.  

 

7.2 Experiment 2  

7.2.1 Linear Regression  
Table 19 shows the scores for Linear Regression:  

Table 19: Linear Regression performance 

Fold Number = Tool ID RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

43 0,3913 0,1531 0,3683 -0,6716 -0,3635 

53 0,3831 0,1468 0,3182 -0,9144 -0,5292 

33 0,3105 0,0964 0,2227 -15,6087 -10,9125 

23 0,2382 0,0567 0,1862 -12,8279 -1,1995 

81 0,1771 0,0313 0,1606 -0,0936 -0,0935 

13 0,3180 0,1011 0,2617 -8,4823 -7,1834 

Mean 0,3030 0,0976 0,2530 -4,5089 -3,3803 
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Std Dev 0,0759 0,0439 0,0725 5,7233 4,1631 

Based on the mean values, it appears that the model's performance is acceptable in terms of 

RMSE and MAE, but not satisfactory in terms of R2 and Explained Variance. Furthermore, 

the high standard deviations suggest that there is a considerable amount of variability in the 

model's performance across different folds. 

 

7.2.2 Decision Tree Regression 
Table 20 shows the scores for Decision Tree Regression:  

Table 20: Decision Tree Regression performance 

Fold Number = Tool ID RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

43 0,4004 0,1603 0,3378 -0,7505 0,0205 

53 0,3376 0,1140 0,3036 -0,4864 0,4018 

33 0,2964 0,0878 0,2780 -14,1322 -3,6979 

23 0,1957 0,0383 0,1617 -0,5409 0,3122 

81 0,2385 0,0569 0,1835 -0,9840 -0,9148 

13 0,2237 0,0500 0,1863 -3,6917 -2,7089 

Mean 0,2820 0,0846 0,2418 -3,4310 -1,0979 

Std Dev 0,0708 0,0423 0,0674 4,9122 1,5746 

The mean values of RMSE, MSE, and MAE are lower than the standard deviations, which 

suggests that the model's performance varies significantly across different folds. The mean 

R2 value is negative, indicating that the model is not a good fit for the data. Moreover, the 

mean explained variance value is also negative, suggesting that the model explains less 

variance than the mean of the observed values. Overall, the model's performance is poor, 

as indicated by the negative R2 and explained variance values, as well as the high standard 

deviations of the evaluation metrics. 

 

7.2.3 Random Forest Regression 
Table 21 shows the scores for Random Forest Regression:  

Table 21: Random Forest Regression performance 

Fold Number = Tool ID RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

43 0,3097 0,0959 0,2861 -0,0472 0,4325 

53 0,2972 0,0883 0,2563 -0,1524 0,3466 

33 0,2454 0,0602 0,2414 -9,3725 -2,7410 
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23 0,1503 0,0226 0,1263 0,0907 0,1170 

81 0,1434 0,0206 0,1008 0,2830 0,2835 

13 0,2023 0,0409 0,1688 -2,8392 -2,0066 

Mean 0,2247 0,0548 0,1966 -2,0063 -0,5947 

Std Dev 0,0653 0,0296 0,0689 3,4609 1,2793 

Overall, the model's performance varies significantly across different folds and tool IDs, as 

indicated by the high standard deviations. However, the model's performance, on average, 

shows relatively low error rates and a moderate ability to explain the variance in the data. 

 

7.2.4 Bayesian Linear Regression  
Table 22 shows the scores for Bayesian Linear Regression:  

Table 22: Bayesian Linear Regression performance 

Fold Number = Tool ID RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

43 0,2645 0,0699 0,2541 0,2363 0,5445 

53 0,3662 0,1341 0,3010 -0,7493 -0,3641 

33 0,2966 0,0880 0,2173 -14,1559 -9,4597 

23 0,2058 0,0424 0,1824 -0,7049 -0,6216 

81 0,1649 0,0272 0,1395 0,0516 0,0517 

13 0,1359 0,0185 0,1177 -0,7314 0,5676 

Mean 0,2390 0,0633 0,2020 -2,6756 -1,5469 

Std Dev 0,0789 0,0396 0,0634 5,1492 3,5653 

The metrics' standard deviations are high, which suggests that the model's performance 

differs considerably across the various folds. Moreover, the negative R2 and explained 

variance values indicate that the model does not fit the data well. 

 

7.2.5 K-Nearest Neighbours 
Table 23 shows the scores for KNN:  

Table 23: K-Nearest Neighbours performance 

Fold Number = Tool ID RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

43 0,3060 0,0936 0,2877 -0,0224 0,4136 

53 0,2991 0,0895 0,2576 -0,1672 0,1331 

33 0,2667 0,0711 0,2395 -11,2503 -3,5823 

23 0,1036 0,0107 0,0930 0,5678 0,5728 

81 0,1398 0,0196 0,0970 0,3177 0,5197 

13 0,2344 0,0550 0,2009 -4,1531 -0,8085 
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Mean 0,2250 0,0566 0,1960 -2,4513 -0,4586 

Std Dev 0,0773 0,0320 0,0759 4,2469 1,4726 

The evaluation metrics vary significantly across different folds, with some folds having 

negative R2 or explained variance values, indicating poor model fit. Furthermore, the high 

standard deviations suggest that there is a considerable amount of variability in the model's 

performance across different folds. Overall, the model shows some potential for prediction, 

but further analysis and improvement may be required. 

 

7.2.6 Kernel Ridge Regression 
Table 24 shows the scores for Kernel Ridge Regression:  

Table 24: Kernel Ridge Regression performance 

Fold Number = Tool ID RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

43 0,3893 0,1515 0,2540 -0,6545 -0,0872 

53 0,5177 0,2680 0,4672 -2,4961 0,3514 

33 0,2108 0,0444 0,1924 -6,6552 -0,2775 

23 0,4670 0,2181 0,4382 -7,7742 -0,0477 

81 0,3866 0,1495 0,3437 -4,2150 -0,0949 

13 0,4723 0,2231 0,4566 -19,9167 -0,3676 

Mean 0,4073 0,1758 0,3587 -6,9520 -0,0873 

Std Dev 0,0995 0,0720 0,1053 6,2697 0,2269 

The models' performance is subpar, with negative R2 values observed in certain instances. 

The standard deviation of these metrics is quite high, implying that the models' performance 

differs significantly across different folds and tool IDs. 

 

7.2.7 Neural Networks 
Table 25 shows the scores for the Neural Networks:  

Table 25: Neural Networks performance 

Fold Number = Tool ID RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

43 0,2416 0,0584 0,2109 0,3628 0,3969 

53 0,4481 0,2008 0,3745 -1,6193 -0,4881 

33 0,1911 0,0365 0,1708 -5,2884 -4,8873 

23 0,4360 0,1901 0,3887 -6,6505 -2,1438 

81 0,3498 0,1224 0,3235 -3,2683 0,3780 

13 0,3283 0,1078 0,3017 -9,1083 -0,5756 
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Mean 0,3325 0,1193 0,2950 -4,2620 -1,2200 

Std Dev 0,0937 0,0611 0,0801 3,1519 1,8449 

The provided standard deviations for each metric across all six folds indicate that the 

machine learning model is not performing well. The model has high error rates and negative 

R2 and explained variance values, suggesting that it may not be a good fit for the data. 

 

7.2.8 Experiment 2 – Final Considerations  
From the error metric scores, following models were selected: 

• Random Forest Regression 

• K-Nearest Neighbours  

The Random Forest Regression method has the more accurate metric results, making it a 

feasible alternative for detecting Surface Roughness. Chapter 8 will cover the methodology 

employed to compare the predicted Surface Roughness obtained from the Random Forest 

Regression model against real values and a theoretical equation. 
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Chapter 8 – ML models vs Theoretical Equation 
Synopsis 
Chapter 7 provides the basis for this chapter's findings. The K-Nearest Neighbours 

algorithm demonstrated higher accuracy in Experiment 1, whereas the Random Forest 

Regression method showed greater accuracy in Experiment 2. The theoretical equation for 

Ra (Eq.14) in Table 6 will be utilized in both experiments, and its predictive capabilities 

will be compared to those of the machine learning models identified in the previous chapter. 

 Eq. 14 

 

The parameters contained in Eq. 14 are the feed rate and the Edge radius (r𝜀 = 0.397 mm) 

which is a geometric specification (Table 10) of the cutting tool used for the Experiments.  

 

8.1 Experiment 1: KNN vs Theoretical Equation  

Below it is shown the procedure to calculate the dataset containing the values for 

Ra_theoretical using the theoretical equation (Eq.14): 
tool_ids = [21,31,41,51,61,71]   
   
x_train = []   
y_train = []   
x_test = []   
y_test = []   
y_theoretical = []   
 
for i in range(len(tool_ids)):   
  train_ids = [x for j, x in enumerate(tool_ids) if j != i]   
  test_id = tool_ids[i]   
     
  train_indices = exp[exp['Tool_ID'].isin(train_ids)].index   
  test_indices = exp[exp['Tool_ID'].isin([test_id])].index   
     
  stratified_train_set = exp.loc[train_indices]    
  stratified_test_set = exp.loc[test_indices]    
     
  train = pd.DataFrame(stratified_train_set)   
  test = pd.DataFrame(stratified_test_set)   
     
  # DEFINE FEATURES AND LABELS:   
  x_train.append(train[["ap", "vc", "f", "Fx", "Fy", "Fz", "F"]])  
  x_test.append(test[["ap", "vc", "f", "Fx", "Fy", "Fz", "F"]])   
  y_train.append(train[["Ra"]])     
  y_test.append(test[["Ra"]])   
     
  f = x_test[i]["f"].values   
  Ra_theor = ((0.0321 * f**2) / 0.397) * 1000 # Ra is expressed in um     
  y_theoretical.append(Ra_theor)   
print(f"\nDataFrame {i}:\n{x_test[i]}\n\n 
Ra theoretical DataFrame {i}:\n{y_theoretical[i]}")   
y_theoretical = np.array(y_theoretical) 

𝑅𝑎 =  
0.0321 ∗  𝑓2

𝑟𝜀
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Code Snippet 16: Dataframe creation for y_theoretical 
 
The new dataframe containing the values for Ra theoretical has been created and the goal 

is to compare the actual values contained in y_test with y_theoretical, calculating error 

metrics that will be compared with the error metrics calculated in Chapter 7 for the KNN 

algorithm. 

rmse2 = np.sqrt(metrics.mean_squared_error(y_test,y_theoretical))     
mse2 = mean_squared_error(y_test,y_theoretical)     
mae2 = mean_absolute_error(y_test,y_theoretical)     
r2T = metrics.r2_score(y_test,y_theoretical)     
variance2 = metrics.explained_variance_score(y_test,y_theoretical)     
error2.loc[i] = [rmse2, mse2, mae2, r2T, variance2]    
print(error2)     

Code Snippet 17: Evaluation metrics - y_test vs y_theoretical 
 

Table 26 shows the scores for Error metrics when y_test and y_theoretical are compared: 

Table 26: Actual values vs Theoretical values performance 

Fold Number = Tool 
ID 

RMSE MSE MAE R2 
EXPLAINED 
VARIANCE 

21 0,2339 0,0547 0,1852 0,4206 0,7723 

31 0,4336 0,1880 0,3258 -2,4746 -0,5134 

41 0,1888 0,0356 0,1297 0,7192 0,7814 

51 0,2658 0,0707 0,2001 0,3089 0,3095 

61 0,3239 0,1049 0,2473 -0,3240 0,2448 

71 0,3195 0,1021 0,2752 -2,5892 -1,9983 

Mean 0,2943 0,0927 0,2272 -0,6565 -0,0673 

Std Dev 0,0780 0,0492 0,0638 1,3623 0,9654 

The prediction performance using the K-Nearest Neighbours algorithm are better than the 

ones made with the theoretical equation. Using Table 16 the performances of the two 

models can be compared. However, Experiment 1 with the theoretical equation produced 

even a reasonable model.  

The following code shows the construction of the graph where Actual values (y_test), 

Predicted values using KNN algorithm (y_pred) and Theoretical values (y_theoretical) are 

plotted to give the reader a visual interpretation. 

plt.figure()   
plt.plot(np.arange(len(y_test)), y_test, 'r', label='y_test')   
plt.plot(np.arange(len(y_pred)), y_pred, 'b', label='y_pred')   
plt.plot(np.arange(len(y_theoretica)),y_theoretical,'g’,label='y_theoretical') 
plt.scatter(np.arange(len(y_test)), y_test, color='red', s=10)   
plt.scatter(np.arange(len(y_pred)), y_pred, color='blue', s=10)   
plt.scatter(np.arange(len(y_theoretical)), y_theoretical, color='green', s=10)
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plt.legend(loc = 'upper right')   
plt.title("Tool ID Scenario {} - KNN: y_test vs y_pred vs y_theoretical".forma
t(i+1))   
plt.xlabel("Sample Index")   
plt.ylabel("Ra")   
plt.show()   

Code Snippet 18: Plots generation 

The following pictures show the plots generated from the above code:  

 

Figure 46: K fold 1 - y_test vs y_pred vs y_theoretical 

 

 

Figure 47: K fold 2 - y_test vs y_pred vs y_theoretical 
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Figure 48: K fold 3 - y_test vs y_pred vs y_theoretical 

 

 

Figure 49: K fold 4 - y_test vs y_pred vs y_theoretical 

 

 

 Figure 50: K fold 5 - y_test vs y_pred vs y_theoretical 
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Figure 51: K fold 6 - y_test vs y_pred vs y_theoretical 

 
8.2 Experiment 2: Random Forest Regression vs Theoretical Equation  

Experiment 2 follows the logic implemented in Experiment 1 and the code implemented 

for this case is not reported to avoid repetition.  

Table 27 shows the scores for Error metrics when y_test2 and y_theoretical2 are compared: 

Table 27: Actual values vs Theoretical values performance 

Fold Number = Tool 
ID RMSE MSE MAE R2 

EXPLAINED 
VARIANCE 

43 0,3938 0,1550 0,3639 -0,6928 0,7528 

53 0,3015 0,0909 0,2065 -0,1859 -0,1010 

33 0,4858 0,2360 0,4048 -39,6598 -17,1525 

23 0,3230 0,1043 0,2786 -3,1985 -1,8073 

81 0,3084 0,0951 0,2612 -2,3190 -0,5455 

13 0,3034 0,0921 0,2508 -7,6321 -6,1485 

Mean 0,3527 0,1289 0,2943 -8,9480 -4,1670 

Std Dev 0,0674 0,0528 0,0683 13,9456 6,2178 

However, for Experiment 2, the predictions made with the theoretical equation did not follow 

the same behavior as Experiment 1, producing mean errors of much larger magnitudes. 
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Figure 52: K fold 1 - y_test2 vs y_pred2 vs y_theoretical2 

 

 

Figure 53: K fold 2 - y_test2 vs y_pred2 vs y_theoretical2 

 

 

Figure 54: K fold 3 - y_test2 vs y_pred2 vs y_theoretical2 
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Figure 55: K fold 4 - y_test2 vs y_pred2 vs y_theoretical2 

 

 

Figure 56: K fold 5 - y_test2 vs y_pred2 vs y_theoretical2 

 

 

Figure 57: K fold 6 - y_test2 vs y_pred2 vs y_theoretical2 

These performances generated by the equation in Experiment 2 must be discussed in the 
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light of tool wear presence. Experiment 2 reproduced the actual production situation where 

tool wear occurs, and such disturbance has made the theoretical equation much worse in 

predicting surface roughness values. 
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Chapter 9 – Conclusions and Future Work 
Synopsis 
The final chapter provides a summary of the study, emphasizing the key steps taken. 

Additionally, it presents suggestions for future work that could build upon this study as a 

foundation. 

 

9.1 Conclusions 
The objective of this study was to analyze a dataset provided by the Competence Center in 

Manufacturing (CCM) infrastructure, located at the Aeronautics Institute of Technology 

(ITA) in Brazil. The provided dataset deals with turning operations and the goal of this 

work is to predict Surface Roughness (Ra) using Machine Learning models. Two 

machining experiments were conducted to obtain data to train the ML models. The accuracy 

of the models was further improved by using k-fold cross validation to evaluate the 

accuracy metrics obtained during different folds.  

Based on the performance of the ML algorithms, the one that performed the best for both 

experiments was chosen to determine the Surface Roughness of the steel bar. Finally, the 

predicted results generated from the ML models were compared with a theoretical equation. 

Subsequently, the predicted results generated by the ML models were compared with a 

theoretical equation. The soft computing method used to model the surface roughness 

parameter Ra exhibited excellent predictive capabilities, with evaluation metrics that 

outperformed the classical theoretical equation. Although the results were limited and basic 

due to the lack of sufficient data, the framework utilized to estimate surface roughness 

represented a crucial step towards geometry detection studies. 

The major drawback of this study was the limited amount of data used to train the model, 

which affected its overall success. This constraint could be overcome by gathering 

additional data from multiple devices, varying different parameters, and incorporating more 

types of sensors and data sources. There is significant room for improvement in this study 

One could delve deeper into the nuances of the study for perfection and rectification in 

order to obtain a cleaner and more satisfactory result. 

9.2 Suggestions for Future Works 
While the machine learning framework presented in this work provides a comprehensive 

approach for predicting surface roughness, there are several areas in which improvements 
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can be made to further enhance prediction accuracy and provide better guidance to operators 

regarding steel bar geometry defect analysis. 

Some of the key areas where further development could be beneficial include: 

• Additional areas for exploration include using the dataset generated in this study to 

further explore ML modelling: 

1. Modeling more complex surface roughness parameters such as Skewness and 

Kurtosis, which were significantly affected by cutting tool wear.  

2. Exploring the use of cutting tool wear as an input feature  

3. Utilizing available data to map different responses, such as machining forces or 

cutting tool wear. 

• Exploration of different features, responses, or manufacturing processes 

generating new experimental data: 

1. Collecting different features. Accelerometers, for example, tend to be more 

affordable and easier to install in production systems, and software to monitor 

machine signals is already commercially available, making acceleration, 

vibration, and electric current attractive features to use. 

2. Modeling different responses, such as the cutting tool wear, by collecting data 

from more complete tool-life tests; 

3. Expand the methodology to other: 

3.1  Manufacturing processes, such as milling or grinding;  

3.2  Machines to explore their difference in terms of rigidity; 

3.3  Materials, especially regarding their hardness. 
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