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ABSTRACT 

 
Competitiveness and complexity are unavoidable and frequent source of 

uncertainty affecting the normal execution of supply chain processes. At the same time, 

unplanned events or risks represent an additional matter of concern for managers, 

having the responsibility to satisfy customer’s demand, while keeping a safe financial 

status of the company. In this regard, companies are forced to adopt risk mitigation 

strategies, not only at the individual firm level, but also in a broader supply chain 

perspective aiming at enhancing resilience of the whole supply chain. The objective of 

this thesis is to develop a model demonstrating how operational events might negatively 

affect the ability of companies to comply with their financial obligations towards 

debtors. This aspect, belonging to credit risk management field, has been scarcely 

investigated by recent literature from a supply chain perspective. In addition, few 

studies have linked credit causes with operational risks that have been widely treated by 

many researchers in supply chain management. The study first presents a review of the 

literature on supply chain disruption propagation and operational risk management. 

Next, the thesis proposes a methodology to show operational risk propagation along the 

supply chain and their cascade effect on companies’ default risk. The heart of the 

methodology has its roots in the probabilistic Bayesian network approach, a powerful 

methodology that allows to represent the conditional dependence between risks and 

their probability of occurrence. This study provides managers with an accessible but 

mathematically rigorous methodology through which measuring and analyzing the 

propagation dynamics of supply chain operational risks, in order to implement 

appropriate mitigation strategies. In this sense, the methodology can support not only a 

smooth supply chain management, but also any stakeholder wishing to assess the 

riskiness of supply chain processes, even under a financial perspective. 
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INTRODUCTION 

 
 
Nowadays, the complexity of supply chains is considerably increasing, and 

multiple factors play an important role: managerial strategic decisions, increasing 

products complexity available on the markets, industry competitiveness and, of course, 

macroeconomics variables. Also, given the high level of globalization, legal regulation 

and political decisions have a non-negligible effect. Therefore, an excellent 

management of supply chain processes becomes crucial to pave the way for a 

sustainable corporate strategy over long period, while keeping a high level of 

competitiveness on the market. Supply chain complexity increases considering the 

turbulent environment in which firms operate, and a high degree of uncertainty makes 

sometimes unpredictable any future scenario. In this regard, COVID-19 pandemic has 

been a dramatic example of how uncertainty affects the normal operativity of supply 

chains and how such long-lasting event caused disruption and threats to the business 

continuity. Russian’s decision to invade Ukraine territories has caused shortage in raw 

materials procurement and energy supply in many industrial sectors over the world 

(Espinoza, 2022). This catastrophic circumstance for human lives highlights both the 

supply chain level of globalisation and the severity of unplanned events on system 

resilience. However, other types of risks, raising from operations management, can 

produce equally dramatic effects on business continuity of internal processes and 

generating supply chain disruptions. In fact, operational risks arise from three factors: 

the performance of upstream suppliers, the demand of buyers or customers, and from 

the internal management of individual (focal firms) production processes (Chen et al., 

2013; Germainet al., 2008). Over the long-time horizon, a poor management of 

operational risks can have consequences on the financial term: loss of profitability, 

credit default and even bankruptcy. According to Thun et al., (2011) and Chen et al., 

(2013), in 2005 a supplier of a major German company delivered defective products to 

its buyers, leading to extensive economical losses. The financial performance of 

companies is not only a matter of concern for an internal supply chain management but 

also for external creditors who need to evaluate both financial status and risks as a direct 

link to managers’ operational management. External stakeholders may include private 
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creditors, credit institutions (e.g., banks) or even other companies, such as suppliers, 

that provide short-term liquidity to their direct buyers, as in the case of trade-credit, one 

of the many instruments provided by the Supply Chain Finance solutions. Operational 

risks occurrence primary represents an important source of threat for the financial 

stability of firms and in particular for short-term debt: inventory management and sales, 

which are in turn dependent on other operational aspects, have a strong impact on firm’s 

net working capital (Shi and Mena, 2021). It represents the ability of firms to comply 

with their short-term debts. Therefore, the propagation of risks along the supply chain in 

multi echelons (i.e., the ripple effect) has not only disruptive consequences from an 

operational point of view (Hosseini et al., 2020) but, in the long run, it produces strong 

economic consequences by generating losses (Badurdeen et al., 2014).  

The ambition of this thesis is twofold. In the first instance, it has been shown 

how risky events do not have independent probabilities of occurrence from each other, 

but their frequency is strongly related to other events. From a financial point of view, it 

is demonstrated how the propagation of operational risk along the supply chain can have 

significant impacts on the ability of companies to meet their obligations towards 

creditors and, consequently, cause future losses to stakeholders. The modelling 

approach adopted in this study is based on Bayesian networks, a powerful mathematical 

tool that allows to draw the interrelationships between risk events and their probability 

of occurrence. From a practical point of view, a deep comprehension of these 

mechanisms can be of interest both to the management internal to the supply chain, who 

should decide whether to mitigate risks through proper mitigation strategies, and for 

external creditors, who can introduce additional parameters, related to the operational 

management, in the assessment of credit risk.  

The remainder of the thesis is organised as follow: Chapter 2 presents the 

literature review following the main keywords and topics touched by the thesis. A 

theoretical background of Bayesian networks methodology and Mathematical credit risk 

modelling is proposed in Chapter 3 to formally introduce quantitative instruments that 

have been adopted in the methodology. The core part of the thesis is Chapter 4 where 

each step adopted to develop the methodology has been detailed in seven main 

paragraphs. Finally, the purpose of Chapter 5 is to highlight the managerial and 

academic implications of the work both under a modeling approach and practical 
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applications. In addition, the methodological limitations of this study and suggestions 

for future research lines are presented. 
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1.  DISRUPTION PROPAGATION IN 

SUPPLY CHAINS 

 

 

The purpose of this chapter is to introduce the problem from a dual perspective: 

at first, to illustrate the issues related to the default risk of firms. On the other hand, to 

understand how the propagation of operational disruptions along supply chain 

negatively affects the default risk of companies operating in complex and 

interconnected networks. 

 

1.1. Default in supply chains 

 
In order to define default and credit risk it is important to assess preliminary 

financial considerations. Financing decisions (e.g., investment for a new business 

expansion, new product development, or on the short-term to run the day-to-day 

operations) represents a major issue of corporate finance. Financing through debt, 

primarily guarantees creditors the repayment of the borrowing, without the latter 

claiming ownership over the company, thus avoiding dilution effects as in the case of 

equity owners. Sources of debt financing include public debt or bonds, as they are 

publicly traded and can be held by anyone interested in entering in the contract, and 

private debt. The latter category includes term loans, which lasts for a specific period, 

and private placement, which is a bond issue that does not trade on a public market, but 

it is sold to a group of investors. Debt puts an obligation on the firm since any 

companies failing in repaying debt is in default (Berk and DeMarzo, 2014). Despite the 

commercial bank credit remains the most common form of debt-financing in supply 

chain (Wang et al., 2022), it is worth mentioning other financing modes belonging to 

the Supply Chain Finance (SCF) mechanisms that have been gaining ground during last 

decades to improve financing efficiency and to solve the typical liquidity problems of 
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small-medium sized enterprises or SMEs (Jing and Seidmann, 2013) over the short 

period. SMEs typically face problems in financing their activities, due to low credit 

rating that does not allow to obtain loans from banking institutions (Wang et al., 2022). 

The growing popularity of SCF instruments has been observed in 2019 where the 

Supply Chain Finance global market amounted to 16,500 billion of Euros, with the 42% 

of the overall amount represented by the Asian market (in particular Japan and China), 

followed by the American market with 30%. In Europe, Country leaders are France and 

Great Britain. As Supply chain finance includes several financing modes, based on the 

nature of the contractual agreement, some of the most relevant SCF solutions are briefly 

presented in below: 

• Dynamic discounting: the supplier applies a discount to goods sold to the buyer 

according to the time elapsed between the issuance of the invoice and payment. 

The shorter the credit collection time, the greater the discount (Atanasova et al., 

2020). 

• Factoring solutions: under the factoring financing mode, supplier’s credits are 

sold to a financial institution, which pays receivables to the supplier, thus 

solving short-term liquidity problems (Querci, 2021). Similarly, in the Reverse 

factoring, the supplier sells its accounting receivables to bank under buyer 

warranty (Zhao and Huchzermeier, 2018). 

• Forfaiting: this method allows exporters to get liquidity by selling accounting 

receivables at a discount to a forfaiter (bank or other institutions) [1]. 

• Inventory and Warehouse finance: loans granted by banks on the basis of stock 

or inventory level respectively received as collateral. These instruments can be 

used to finance the expansion of production capacity or for the supply of 

materials (Zhao and Huchzermeier, 2018). 

• Letter of credit: it is a letter from a bank to a supplier which guarantees that 

payment from the buyer will follow, under certain conditions, such as the 

documentation proving the shipment of goods. There are many variations of the 

letter of credit solution (Zhao and Huchzermeier, 2018). 

• Purchase order finance: this form of financing involves a loan provided by a 

lender to a supplier on the basis of the buyer’s commitment to purchase the 

goods ordered by the supplier (Bonzani et al., 2018). 
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• Trade credit: it is a business loan provided for the buyer’s purchase of goods 

from the supplier (Lee and Rhee, 2011). In other words, this instrument allows 

the buyer to delay the payment for goods delivery until the day specified in the 

policy (i.e., typically 30, 60 or 90 days as in the supplier early payment 

discount). The advantage of this instrument under the warranty perspective lies 

in the availability of buyer information held by suppliers (Figure 1.1). 

 

 

Figure 1.1 Trade credit principle adapted from [2]. 
 

• Vendor management inventory: solutions belonging to this category have been 

inspired by traditional supply chain management techniques in order to foster 

risk and information sharing between supply chain companies: inventory stocks 

of the buyer are managed directly by suppliers (Bonzani et al., 2018). Buyer’s 

inventory management policies coordinated by suppliers, information sharing on 

demand forecasting process or production plans in this case. 

Therefore, both the traditional and those showed through SCF instruments 

introduce the possibility of financing operations, investments or other supply chain 

activities with debt. For this reason, the risk exposed by borrower’s default turns out to 

be an important aspect to be accounted not only for current creditors, but also for either 

future external financing entities or other supply chain members. In general, following 

the definition presented in McNeil et al., (2005), the default risk is defined as 

“… the risk that some counterparties cannot repay their loans”. 
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In that statement, the term counterparties refer to the borrower parties. On the 

other hand, the lender assumes the credit risk, which can be formally defined as  

“… the risk of not receiving promised repayments on outstanding investments 

such as loans and bonds, because of the “default” of the borrower”. 

When the company is definitely unable to repay debt, it may attempt to 

renegotiate it with creditors or file for bankruptcy. Bankruptcy is legally regulated by 

countries laws. This ensures creditors the seizing of firm’s asset to collect unpaid credit 

(Berk and DeMarzo, 2014). In this sense, trade credit and other SCF financing 

instruments represent an additional channel for the propagation of default phenomenon 

(Wang et al., 2022) along the chain: the creditor (supplier) may suffer from the 

insolvency of the debtor (buyer), thus encountering default problems in turn suffered by 

other creditors or external lenders such as banks. Credit institutions financing various 

supply chain members need to be aware of the mechanisms of default propagation along 

the chain. Therefore, the financial status of supply chain enterprises depends not only on 

internal management, but also on the decisions and management of other supply chain 

members. Those companies in the supply chain that are heavily dependent on the 

other’s revenues are subject to the cascade failure effect of companies within the same 

network (Carruthers and Makova, 2018). The problem becomes even more complex 

when considering that some companies serve supply chain for different products: such 

“contagious” effect can propagate through several supply chains, each of them operating 

in different markets, thus leading to industry disruption. Consequently, information 

related to supplier riskiness is crucial not only for external financing channels but also 

for internal supply chain companies, so as to mitigate disruption propagation. Figure 1.2 

adopted from Carruthers and Makova (2018) shows the credit risk distribution of 

suppliers of some global companies. Seven credit risk categories have been included in 

the study, from the worst credit profile (class c) to the better one (class aaa). The size of 

the bars in blue shows the percentage of suppliers that are positioned within each credit 

band. 
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Figure 1.2 Credit rating of some Focal firms’ suppliers from Carruthers and Makova (2018). 
 

 As it can be seen from the figure above, many supply chains delivering well-

known products on the global market cannot be considered as default-free. This is 

especially true for those supply chains where the number of small enterprises is 

considerably high. Nowadays, worldwide rating agencies provide opinions about the 

capacity of companies to meet their obligations toward creditors especially for debt 

instruments traded in the second market. On the other hand, following the Basel II 

agreement, financial institutions can decide whether to use internal rating estimation 

(Rating Based Approach – RBA) to evaluate capital requirements credit risk. In IRB 

methods, risk weights are a function of an internal rating process that banks perform on 

borrowers as stated in [3]. However, most of the credit risk assessment models 

developed by agencies or banks are based on financial information such as debt level or 

profitability and do not account for other important factors such as management quality 

and competencies whose integration into classical rating models has improved their 

predictive capacity. In addition, the traditional credit rating models do not adopt a 

Supply Chain Finance perspective (Moretto et al., 2019). 

Most of the scholars attribute the causes of corporate default to external 

macroeconomic, industrial or internal financial factors. The number of corporate 

defaults is positive related to the volume of debts increase [4]. Thus, companies with 

high leverage seems to be more prone to default. As an example, Mergers and 

Acquisitions (M&A) are often debt finance. M&A which do not go through, are 

considered risky for the financial stability of the company. Another important factor is 

the industry competition, especially in those sectors where it increases the probability of 
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financing unsuccessful project with debt. Price fluctuation is another economical factor 

closely related to corporate default (Lando and Nielsen, 2008). Industry competition as 

a source of credit risk propagation has been confirmed also by Agca et al., (2022). In the 

empirical research of Sgrò et al., (2022), authors have pointed out that industry-specific 

crisis, global economic crisis and market-specific crisis are relevant macro-drivers of 

insolvency. On the other hand, debt increase, under-capitalization and wrong strategic 

choices affects insolvency from the internal management. All of the previous factors 

can have a contagious effect on other supply chain companies: the financial status of the 

company will depend also on the ability of its customers to meet payment obligations. 

Otherwise, the supplier begins to suffer financially, as receivables become uncollectible. 

This situation can lead to cascading network failure if credit firms propagate their 

financial difficulties to their neighbours. In Agca et al., (2022), authors underline how 

information sharing is an important mechanism of shock propagation along supply 

chains members. In particular, stronger supply chain relationships, measured by the 

duration of the supply chain links, amplifies shock propagation, as to confirm that 

default propagation can have devastating effects over other business continuity. In order 

to preserve business continuity, when facing supplier’s risk of default, firms can decide 

whether to change upper tiers suppliers in order to open relationships to new markets 

(Nin and Tomás, 2019). This is particularly important when dealing with customer-

supplier relationships and in the special case of SCF. An important metrics adopted to 

evaluate company’s credit risk, is the average collection period (average number of days 

to collect invoiced amounts from customers). When such ratio becomes smaller than 

one, a company will likely start delaying the payments to its suppliers. If the customer 

financial distress gets worse, all its suppliers will break ties with it, leading to the so-

called “isolation of companies in default”. Based on such analysis authors identify 

financial institutions and energy industry as the most sensitive sectors to default 

probability independently on the policy the agents followed. Berloco et al., (2021) 

underline how trade credit can increase losses along the supply chains. In a network 

company borrowing from each other, a liquidity shock of some firms may cause a 

reaction where companies are affected by the same distress: firms delay payment to its 

suppliers as a consequence of customer’s late payment and so on. Authors state that this 

is particularly likely during recessionary phases, because of the lengthening of 

payments affecting the global market. Despite the fact that default causes are often 

extremely difficult to investigate, due to the influencing role of multiple factors in 



  
15 

 

firm’s financial status, a lot of measures of credit or default risk do not introduce extra-

financial indicators into their assessments.  

The recent literature, as will be discussed in Chapter 2, has offered very few 

examples of how intra-firms operational management of the supply chain affects the 

probability of default on credit of firms.  

 

1.2. Operational risks effects on Supply chain default 

propagation 

 

As stated in the Introduction, the purpose of this thesis is to analyse the effects 

of operational risks on default occurrence of companies along the supply chain. 

However, several risk definitions are available in literature, and the management of 

risks represent a growing issue in the supply chain management framework. Most of the 

authors elaborating a definition agrees with the fact that risk is strictly linked with the 

concept of “uncertainty”, “unpredictable” or “possible occurrence”: uncertainty and 

severity of the consequences on activities are the main risk features as stated by Aven 

and Renn (2009). A definition frequently cited by authors comes from the work of 

Juttner et al., (2003), where they define supply chain risk as “the variation in the 

distribution of possible supply chain outcomes, their likelihoods, and their subjective 

values”. Again, uncertainty (likelihood) and consequences (outcomes) are included. In 

the supply chain framework, risks have been defined as everything that might 

negatively affect the inward flow of necessary resources to enable operations 

(Meulbrook, 2000), while Zsidisin (2003) defined supply risk as “the probability of an 

incident associated with inbound supply from individual supplier failures or the supply 

market occurring, in which its outcomes result in the inability of the purchasing firm to 

meet customer demand or cause threats to customer life and safety”. Risks that affect 

the regular execution of supply chain processes can have different origins. In particular, 

operational risks have been defined as risks related to the supply-demand activity 

coordination, resulting from an inadequate or failed process (Chen et al., 2013). 

Similarly, Pham and Verbano (1996) state that operational risks are relatively recurrent 

events arising from internal and partnership activities which are the set of activities 
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dealing with supply, demand and manufacturing side. Even in Singh et al., (2012) 

operational risks internal to the supply chain have been identified as risks affecting the 

production and distribution process and demand-supply matching process. To 

summarise, operational risks have to do with possible downward variations in supply, 

demand and process activities from an expected outcome. Network economies, as 

companies in supply chains are directly connected through operations. Operational risk 

events might lead to unplanned production stoppages, inability to deliver products on 

time or inventory shortages or many other undesirable issues (Figure 1.3).  

 

Figure 1.3 Survey on supply chain challenges in 2022, adopted from [5] 

 

As a consequence, they do not affect internal operativity only, but their 

consequences propagate to the rest of the supply chain. To this end, Carruthers and 

Makova (2018), through bank-sourced data, state that supply chain problems may 

initially appear as mere internal operational problems. However, they usually have 

effects over the credit side for any firm belonging to the network. This has been 

confirmed by Ko et al., (2019). They statistically tested the positive correlation between 

operational risk occurrence and a higher likelihood of credit default. Therefore, 

companies with a poor management of internal operations are more subject to potential 

credit default events. This can be particularly observed in the short run as operational 

risks directly affect the ability of firms to comply with short-term obligations. Such 

circumstance can be measured trough the net working capital, which represent the 
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excess of current assets over current liabilities. In particular it is given by the difference 

between current assets (i.e., cash and cash equivalents, inventory, account receivables) 

and current liabilities (i.e., account payables, debt short-term loans, current payments 

due on long-term debt) as stated by Brealey et al., (2011). In case of low values of net 

working capital, the company could run out of cash and face financial distress, while for 

high values the company is not efficient in turning assets into revenue. Therefore, 

company’s financial risks on the short-period, depends on the efficiency of supply chain 

operations, which in turns depend on the network structure and the product to be 

delivered on the market. For instance, in the automotive industry, products of the 

refined raw material suppliers and components suppliers, produce more standardised 

products than what done by companies in the lower tiers of the supply chain, thus 

allowing mass production and bigger inventories. This also explains the longer cycle 

times of inventories. On the other hand, raw material suppliers and components 

suppliers serve other industries as well, and the manufacturing process differs from the 

other stages of the supply network (Lind et al., 2012). Delivery and production failures 

represent an important source of risk for working capital as well, thus for borrower 

ability to repay short term debts (Mizgier et al., 2012). Even though a business is 

making a high profit, the company could face the risk of bankruptcy, if it is unable to 

generate enough cash to cover its obligations. Defining the exact threshold for low 

working capital is not straightforward. In the case of Mizgier et al., (2012) it has been 

defined as the average for the entire industry. From here it can be seen how operational 

risk management is also detrimental on the credit side. This issue becomes even more 

clear in the case of the trade credit framework where repayment times are much tighter 

with respect to long-term loan: the internal ability to produce or ship goods to the lower 

tiers of the supply chain negatively impacts current assets, as a result, encountering 

difficulties in meeting accounting payables to suppliers. Working capital as key link 

between inventory risks and financial distress has been investigated also by Shi and 

Mena (2021). In particular they state that working capital issues could, in turn, lead to 

operational disruptions for the whole network. Demand also plays an important role: a 

shutdown in local demand would imply a stop in the normal operational activities, thus 

affecting companies’ revenue and leading to inventory overstocks. In general demand 

variability limits the ability of companies to forecast volumes, leading to costs 

increasing in terms of overstock/out-of-stock. This phenomenon is frequently called 

bullwhip effect, which drives upward demand variability, thus firms in the upper layer 
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of the supply chain face a higher demand uncertainty. Over the long period, the BE is an 

example of how variability can affect firm’s ability to produce and deliver goods to 

lower tier companies, thus affecting overall revenues and rising operational costs. In 

extreme case, the Bullwhip effect is a dramatic source of bankruptcy (Lee et al., 2004; 

Mizgier et al., 2012). The pandemic revealed that a geographical diversified market has 

enhanced supply chain companies credit profile [6].  
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2. LITERATURE REVIEW 

 

 
This section investigates the main progress of literature in the field. In particular, 

relevant publications have been consulted following the main keywords touched in the 

thesis. At first, the phenomenon of credit default risk in the context of supply chains has 

been investigated in order to show the state of the literature and its contributions in risk 

propagation effects and potential relationships with operational risks. Secondly, the 

reverse process has been performed: analysis of operational risk propagation along 

supply chains to assess how the literature related them to default events. Finally, section 

2.3 of this chapter has been dedicated to Bayesian network applications in the context of 

supply chain risk management, as it has been an emerging topic in the last years and 

further application in risk management fields are expected in future. 

 

2.1. Supply chain default propagation 

 

This section presents the results on supply chain default propagation. In 

particular, the goal of this section is to understand literature contribution in supply chain 

default propagation by highlighting its objectives, results, tools adopted, and eventual 

links to supply chain operations management. 

Agca et al., (2022) investigate supply chain credit risks by statistically test the 

credit default swap market (CDS). In particular, CDS spread changes have been used to 

evaluate how the credit event propagates to firms following supplier’s credit shocks 

both in terms of favourable and undesirable events. Authors investigate propagation 

effects through multiple-tiers supply chain founding that, for adverse shocks, the 

propagation is equally strong for all the tiers regardless network topology. Among the 

main default triggers, the paper identifies firms’ growth, leverage, size, working capital, 

inventory, product differentiation, working capital and natural disasters as idiosyncratic 
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shocks. Therefore, they weakly investigate operations management as underlying 

mechanism of default. At the same time, the paper of Nin and Tomás (2019) propose an 

explanation of the failure cascade along the chain through an agent-based simulation. In 

their approach, when a company is unable to meet payments to its supplier, the 

contractual relationship immediately ceases. If the supplier succeeds in identifying an 

alternative customer, a new business relationship is generated, thus restoring the normal 

operativity and avoiding disruption. Such process goes on until financial distress do not 

affect all the network nodes. The default probability faced by network actors depends on 

a specific infectivity rate that is an industry specific exogenous parameter. However, 

there is no mention to operational management inefficiency in the simulation since 

contagious effects are evaluated through exogenous and industry specific variables. A 

simple supply chain case is presented by Ghadge et al., (2021). Authors examine the 

manufacturer-supplier relationship when subject to various exogenous financial risks 

such as foreign-exchange risk (currency conversion changes operating costs), default 

risk (insolvency to financial obligations), market risk (interest rates) and price 

fluctuation risks (hike in the price of products/materials). More in detail, authors 

develop a multi-objective optimisation model for a manufacturer-supplier network 

where the manufacturer total profit is maximised, and both the equity stake and 

financial risks of manufacturer and supplier are minimised, subject to capacity and 

demand satisfaction constraints. This multi-objective optimisation problem has been 

solved by adding to objective functions and equation constraints measures accounting 

for the aforementioned risks. As it can be seen, this analysis refers to default risks as a 

causal factor driving organisational choices in inter-companies’ relationship but there is 

no mention to operational issues in the selection method neither how they might affect 

the manufacturer-supplier relationship. The case presented by Berloco et al., (2021), 

introduce a double perspective. In the first case, firm probability of default has been 

modelled as function of internal financial stability, default history of the firm and rating 

model. From these variables, authors trained different models, such as logistic 

regression and random forest in order to learn algorithms. The second perspective 

estimates the firm probability of default as function of network features: a fragility 

indicator catching measuring the reliability of trade credit to suppliers or customers, and 

a neighbourhood indicator measuring the distance of the firm with respect to the other 

firms experienced a default event. The agent-based simulation has been proposed also 

by Gatti et al., (2005) where they demonstrated that interdependence of firms and the 
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mutual interaction between companies operating in different sectors are non-deniable 

causes of default propagation. The analysis gives just an insight in financial causes, 

such as trade credit or changes in the interest rate without any further investigation on 

operational issues. Similarly, the simulation methodology proposed by Battiston et al., 

(2007) and applied to a simple supply chain case, only investigates the consequences of 

some financial variables such as cash flow shocks or interest rate change on firm’s 

ability to meet its obligations. In the publication of Gatti et al., (2008), the bankruptcy 

of a firm can lead to an avalanche of bankruptcies along the network, either because of a 

direct interaction between the defaulted firm and its supplier (trade credit) or due to an 

indirect interaction through the banking system (high interest rates). Xu et al., (2010), 

through a multi-agent simulation, have shown that a better cooperation between supply 

chain actors reduces bankruptcy occurrence: sharing information about demand among 

members or vendor-management inventory effectively reduce default risk. In the model 

presented by the paper, bankruptcy occurs when company’s total assets are less than 

total debts. In this framework, operational variables (e.g., inventory positions, goods 

received, and quantity of orders) are used to model the interaction between companies 

in the supply chain. Although this paper introduces operational aspects, there is no 

stochastic representation of reality (i.e., risks representation), subject to variability in 

inventory levels or in other parameters affecting operational decisions. One of the few 

papers deeply analysing operational causes of corporate financial distress is presented 

by Hua et al., (2011). Indeed, the proposed agent-based simulation links different 

operational parameters on bankruptcy propagation effects along a two-tier supply chain. 

The main operational decisions that have been included are the order allocation 

strategies of downstream nodes, selling price of upstream products, production 

uncertainty of manufacturers, market demand characteristics and the number of 

retailers. The financial status of firms depends on the operational decisions of the 

upstream or downstream firms and is classified into three strands: Sound (cash flows are 

sufficient to repay debt), Financial distress (low cash flows state), and Bankruptcy (if 

assets are less than debt). More precisely, the net assets of a node along the supply chain 

are represented as the sum of cash at hand, company overstocks, company capacity 

level and long-term investments. Based on the simulation carried out by authors, 

variability and price elasticity coefficient of demand have an impact on operating cost, 

which increases the probability of bankruptcy at the retailers’ level. Supply chain 

structure has also an impact on default occurrence: as the number of downstream 
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companies increase, the bankruptcy occurrence at the upper tier is reduced. At the same 

time, reorder policies have an impact on the financial status of companies (overstock 

and stockout) as they raise operating costs. Finally, both the price of manufacturer’s 

products and the variability of product quality have negative impacts on retailers as they 

increase stockout phenomenon which increase cash flow risk. In Mizgier et al., (2012), 

an agent-based approach is proposed to model bankruptcy propagation through a five-

stage supply chain. There, firms bankrupt when cash flows are insufficient to continue 

their operations. Authors introduce several sources of variability into the system, which 

lead to different default situations: the first element is the variability of connections 

between nodes reflecting the continuous search for the most favourable supplier in 

terms of price. This leads to a change in the conformation of the network since firms 

with few suppliers higher the risk of supply and production shortages. Other included 

parameters are related to production dynamics such as the linear production of 

homogeneous goods depending on customers’ orders. Because no inventory logic is 

included, a firm’s default occurs when working capital falls below a certain threshold. 

Importantly, this paper does not model the stochasticity given by some important 

operational events: machine breakdown, delivery problems such as product wrong 

quantity delivered and so on. As confirmed by the two later authors, literature has 

weakly investigated the interrelations between operational risks and default event 

occurrence in the supply chain. This aspect has even been ignored when considering the 

perspective of operational risk management.  
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2.2. Supply chain operational risk propagation  

 

This section shows literature progress in supply chain operational risk 

management and their effect on the overall network of firms. As before, the goal of this 

section is to understand literature contribution in supply chain default propagation by 

highlighting its objectives, tools adopted, and eventual links to what previously 

discussed. 

The propagation of risks along the supply chain originating from companies’ 

internal processes has been analysed by the authors from different perspectives and 

adopting different modelisation approaches. Such uncontrollable cascade effect along 

the supply chain, caused by different typology of risks, has been called Ripple effect 

(Ivanov et al., 2014; Ivanov et al., 2019). As confirmed by authors, this phenomenon 

has been weakly investigated by literature with respect to the Bullwhip effect, for which 

several studies are available in literature (Chen et al., 2000; Pastore et al., 2019; 

Metters, 1997). For example, one of the few papers integrating both perspectives, is the 

one presented by Cao et al., (2022), where the bullwhip effect (BE) and ripple effect 

(RE) as source of disruption cascading propagation has been investigated. In particular 

authors identify, at the macro-level, that when customer demand changes, product 

design changes as well, thus resulting in supplier replacement. The BE phenomenon has 

a downstream-to-upstream propagation. At the same time, the ripple effect, in the light 

of the COVID-19 pandemic, has an inverse propagation direction (i.e., top-down 

movement) as shown in Figure 2.4. The paper identifies BE on supply chain though 

inventory levels at different nodes. The system has been studied through closed-loop 

control theory.  

 

Figure 2.4 Bullwhip and Ripple propagation effect in supply chain from Cao et al. (2022) 
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Lücker (2019) proposes a double mitigation strategy to locally mitigate ripple 

effect either based on overstock inventory or by holding additional capacity at reliable 

source. In particular a single echelon supply chain with inventory level regulated though 

the (Q, R) logic which is extended by including disruption probability and costs 

depending on the scenario. Author evaluates system resilience through the Conditional 

Value at Risk measure (CVaR). The paper confirms inventory management policies as 

an important source to mitigate ripple effects generated by demand. However, only few 

risks have been modelled: demand and inventory-related risks. In addition, due to the 

single-tier structure, risks transmission along the chain has not been modelled. 

Similarly, Xu (2020) focuses on operational risk in make to order (MTO) supply chains. 

The authors propose a benchmark methodology to minimize the ripple effect. The 

system allows the status of customer orders to be determined. The primary objective of 

the article is to give managers a tool to cope with possible late delivery and additional 

costs arising from these circumstances. Again, there is no link to the implications on 

companies’ credit-debt as a result of the occurrence of these risks. KPIs as important 

litmus test of risks occurrence along the chain provides managers fast and intuitive 

measure about supply chain performances. They have been frequently adopted in supply 

chain risk management (Cagliano et al., 2012; Li et al., 2015; Karl et al., 2018; Ríos et 

al., 2019). Looking at risk propagation, the approach of by Kinra et al., (2020) models 

disruption propagation through supplier risk exposure demonstrating the effects of high-

impact-low-frequency events and business interruption time on businesses risk 

exposure, avoiding probability estimation but rather introducing the maximum loss as 

risk measure. The output of the methodology proposed in the paper, is represented by 

KPIs, accounting for both operational and financial measures: demand per day, units 

procured from supplier per day, average inventory days, daily profits have been 

included. Authors do not provide additional financial risk measures to evaluate default 

cascade effect along the chain neither as cause of operational risks nor as consequence. 

Indeed, even if risks are evaluated in terms of performance impacts, there is no cause-

effect relationship between them. Instead, the Bullwhip effect has been empirically 

analysed by Lochan et al., (2021), where it has been used as indicator to evaluate 

vulnerability of food and non-food consumer supply chain and its exposition to 

operational risks. In particular, fluctuations in demand and late order formation as 

source of risk have been investigate by authors. The stochastic simulation model has 

been carried out considering several internal accounting and analytical documents, 
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reporting operational activities and statistics. From simulation output, it is possible to 

analyse demand effect on purchasing activity, inventory levels and ordering preparation 

time. It is interesting to observe that, in risky event certainty scenario, such factors 

caused a considerably lower revenue with respect to normal conditions as confirmed by 

publications cited above. At the same time, the impact on productivity and service 

quality is low. Risk propagation in terms of ripple effect has been modelled through 

several techniques. In Deng et al., (2019) the Tropos Goal-Risk framework (i.e., a goal-

oriented approach) was introduced to model risk propagation in the perishable products 

supply chain. The paper adopts a multi-actor perspective of the network (i.e., including 

suppliers, manufacturers etc.). Risks are transmitted along the supply chain and among 

member enterprises, thus assuming a network structure. There are five modes of risk 

propagation: risk transfer, contagion, overlap, restraint and mutation. The authors have 

developed a comprehensive mechanism for investigating risk transmission along the 

supply chain. However, there is no mention about the financial effects of these risk 

events. On the other hand, an artificial neural network (ANN) approach has been 

proposed by Yi et al., (2018) who develop a model to analyse risk propagation effects 

on supply chain nodes. In particular, authors adopt a network topology approach trough 

network indicators in order to evaluate node susceptibility to risks and resilience, either 

based on structural attributes (e.g., number of adjacent neighbourhoods with respect to a 

focal node) and global attributes (node importance measure based on structural 

similarity). After that, a principal component analysis has been carried out in order to 

establish an objective assessment of the supply chain risk transmission capabilities, 

mapping a series of indicators representing the importance of each node. Even in this 

case, neither in the theoretical part nor in the example of a 4G smartphone supply chain, 

authors highlight the interconnection between risk occurrence and the transmission 

modes. Another example is presented by Yu and Wang (2022), who propose a two-layer 

evolution model where the upper part is the social network described by hyper-network 

while the lower part supply chain risk propagation described through an activity-driven 

network. The purpose of the work is to present parameters influencing the dynamic 

evolution of supply chain networks. Instead, the intra-firm risk transmission process has 

been investigated in Levner and Ptuskin (2018) where economic losses caused by 

environmental risks as consequence of the ripple effect have been analysed through an 

entropy-based optimisation model. For each company in the network, a set of critical 

events have been collected during a certain time span: this allows to evaluate the event 



  
26 

 

likelihood through frequency. The subsequent optimisation model is based on the 

concept of entropy: the entropic approach has to do with the average amount of 

information contained in a stream of critical events. Thus, the entropy characterises risk 

knowledge: the less the entropy is, and the more knowledge about risks is present. 

Under this framework, the linear optimisation model to maximise nodes entropy has 

been proposed and a case study from the automotive industry is also presented by 

authors. There authors do not add information about the main operational risk affecting 

nodes default probability. In addition, cause-effect interconnection of risks is not 

modelled.  

As stated in the introduction of this chapter, another modeling approach that is 

taking ground during the last decades is represented by Bayesian networks. Therefore, a 

detailed analysis of the applications of Bayesian networks in supply chain risk 

management is presented in the following section 2.3. 

 

2.3. Bayesian networks in supply chain risk management 

 

Bayesian networks (BNs), or sometimes Bayesian Belief Networks (BBNs) 

show the causal probabilistic relationship between random variables, based on their 

probabilistic conditional dependence. BNs are particularly effective tools not only in 

case of contexts affected by uncertainty, but also to model complex systems having 

little historical data at hand. Their popularity has growth during the last decades, thanks 

also to the increasing computational capability that made Bayesian networks an 

accessible model for many applications in real-world problems. Their origin is rooted 

on two fundamental areas of mathematics: probability theory with special reference to 

Bayes’ Theorem and graph theory. To better understand the theoretical background, 

refer to Chapter 3.  

The Bayesian network methodology has been applied not only in supply chain 

risk modelling as it will be shown in the following paragraphs, but also in other 

contexts, quite different from the purpose of the present study: for example, in the 

medical and healthcare sector or medical diagnosis (McLachlan et al., 2020) and 

epidemiology (Harding, 2011) BNs have been adopted. Other applications include 
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economics and finance, not only for risk management purposes (Shenoy and Shenoy 

2000) but also for asset pricing purposing (Hachicha et al., 2020). Environmental 

studies and applications have introduced BNs to model, among others, the climate 

change on watersheds or to obtain a fish population viability estimation of certain areas 

(Uusitalo, 2007). Thanks to the increasing interest of researchers in this area, Bayesian 

networks have been introduced in artificial intelligence and machine learning area as 

well (Scanagatta et al., 2019). Just by looking at the subject area categorisation of 

SCOPUS, the majority of articles published with Bayesian network applications belong 

to Computer Science, followed by Engineering, Mathematics and then Medicine.  

The Bayesian networks application in supply chain risk has increased in the last 

years (Figure 2.5). The probability of occurrence of unpredictable events and their 

interrelationships well fit in the modelisation adopted by Bayesian networks. The 

variety and diversity of publication purposes on the subject is considerable: as it will be 

shown throughout the chapter, many authors have emphasized different aspects in 

supply chain risk management with Bayesian networks methodology. 

 

Figure 2.5 Number of publications for “Supply Chain Risk Bayesian Networks” per year in 
SCOPUS database. 

 

After collecting relevant excerpts and publications for this study, the author 

clustered relevant publications in macro categories, according to the main purpose of 

the paper: Bayesian networks for real application studies, Measures for resilience and 

vulnerability, Bayesian networks decision making oriented, Dynamic effect and 

simulation, Operational and green risk profile assessment and financial risks in supply 
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chain. However, some of the following publications might have some elements in 

common between different categories. It is important to underline that the clusterization 

proposed in the following paragraphs has been carried out considering at first the final 

purpose of the article and then the methodology used by authors. 

 

2.3.1. Bayesian networks for real application studies 

 

The ultimate goal of the publications presented in this section is to give the 

reader a possible application of Bayesian netoworks in real cases. Indeed, the purposes 

of papers published in this section is to show a real application study: disruptive events 

and risks have been modelled from real data sampling and observations of experts 

directly involved in the day-to-day operations.  

The work proposed by Hosseini and Ivanov (2022) introduce BNs to model the 

consequences of the recent COVID-19 pandemic on supply chain performances. The 

paper develops a three-level network by clustering risks into triggers, risk events and 

SC disruption consequences. In addition, the authors used backward and forward 

propagation analysis to understand which risks had the greatest disruptive impact on the 

overall industry. The article stresses the effects of the pandemic on the supply chain 

ecosystem, as well as the need to increase the resilience of the network. Instead, a risk 

assessment approach in the oil and gas industry through Byesian networks is presented 

by Philip et al., (2021). There, BNs are modelled with typical hazard events (i.e., 

threatening circumstance for humans and the environment) that affect such industry. 

Risks populating the Bayesian networks belong to different categories, each with a 

specific taxonomy: accident (states that could cause damage), environmental impacts 

(environmental consequences of the accidents) and impact effects, that represent both 

the final nodes and the ultimate consequence on the environment. In the work presented 

by Leerojanaprapa et al., (2013), authors propose a methodology to represent supply 

chains and risks in Bayesian networks based on expert opinions. To illustrate the 

methodology, a brief application in the medicine supply system is presented. This 

publication has been one of the first proposing BNs as a tool in supply chain risk 

management. 
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2.3.2 Measures for resilience and vulnerability  

 

Resilience, flexibility, adaptability and other features measuring the network 

ability to respond and recover from disruptions, cover an important role in research 

improvements. These have been object of study in supply chain management with 

Bayesian network modelisation.  

Hosseini and Ivanov (2019) have developed a methodology to measure the 

resilience of a supply chain when exposed to the ripple effect. As the authors point out, 

supply chain resilience can have several definitions: the ability of the system to return to 

its original state or the recovery capability of the supply chain system. The study uses 

BNs to define the resilience of a supply chain when subject to disruption events and to 

understand how these risks propagate along the network: the resilience measure is a 

percentage value given by the ratio of recovery level with respect to the loss level. The 

authors identify a further index given by the ratio between the increase in disruption risk 

given the supplier is disrupted and when the supplier is fully operational. Among 

research findings and possible applications, it is important to mention the use of such 

model as a decision support tool to select suppliers and the right selection of mitigation 

strategies. Similarly, in the work proposed by Hosseini et al., (2020), authors develop a 

metrics rooted on the concept of absorptive, adaptive and resilience capacity and a set of 

strategies whose aim is to recover SC from disruptive events. In particular, SCR is 

proposed to be measured as a union of successful mitigation and recovery strategies 

using Bayesian networks. The authors frame the supply chain in an open system context 

which differs from the traditional closed-system perspective where risks are assessed 

from the equilibrium in operation performances. In the work of Badhotiya et al., (2022), 

Bayesian networks are introduced to assess some supply chain features: anticipation (a 

stage prior to disruption), response and recovery (reactive capability to restore after 

disruption) and resilience (the resilience of the system at the time of disruption). Each of 

these characteristics is dependent on certain indicators described by scholars. To 

illustrate the study implications, three case companies have been selected. 
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2.3.3 Bayesian network decision making oriented  

 

When dealing with decision-making theory and the problem of selecting the best 

bundle of mitigation alternatives, the traditional techniques include optimization, multi-

criteria decision making (MCDM) methods, decision trees or many others. However, 

not all of them are able to catch the stochastic dependency of the variable under 

examination. In some publications, such tools have been integrated with Bayesian 

networks, while in other papers, BNs aim at prioritizing and selecting the optimal 

solution among a mix of variables. 

Hosseini and Barker (2016) propose a decision-making approach based on 

Bayesian networks supporting supplier selection and following three main perspectives: 

primary criteria (traditional criteria such as cost, product quality or service level), green 

criteria (criteria that comply with recently emissions regulations) and resilience criteria 

(criteria that measure firm’s ability to maintain or recover its steady state even when 

subject to disruptive events). These criteria, modelled by means of continuous and 

discrete random variables, represent network nodes. The ultimate goal of this 

methodology is to give a single indicator by means of the previous criteria. Another 

interesting work in this area is the one proposed by Ruskey and Rosenberg (2022). 

Authors have proposed a methodology whose purpose is to find an optimal set of 

mitigation strategies in order to minimize expected risk caused by unmet demand. Each 

node in the chain has an upgrading option (mitigation strategy) at a certain cost, to 

reduce the probability of being non-operational subject to some budget constraints. 

While the probability of failure among supply chain nodes is implemented with 

Bayesian Network, the objective of selecting the optimal bundle of mitigation strategies 

is formulated as a Binary Integer Problem (BIP). 

The Bayesian network proposed by Bounou et al., (2017) is placed in the context 

of spare parts inventory management. Unlike other works, in this case the random 

variables are exclusively those that typically characterise the inventory reordering 

policies: supply time and demand quantity. At the same time, utility nodes reproduce 

the cost associated with the action of the previous random variables. Thanks to the 

possibility of including decision nodes, the model can be used to find optimal solutions 
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in terms of costs, by minimising the risks of obsolescence and shortages and satisfying 

customer demand at the same time.  

The study developed by Qazi et al., (2015) aims at identifying the optimal mix 

of strategies to mitigate risks modelled with BNs, that typically affect a supply chain. 

For each of them, authors associate the relative cost of realisation and benefits in terms 

of risk reduction, which constitute real constraints in the optimal decision. The ultimate 

purpose of the study is to minimise the expected loss of the network through two risk 

measures appropriately introduced by the authors. The Bayesian network proposed by 

Seong and Lee (2012) is integrated with the Multi-Agent Simulation (MAS) in order to 

compare benefits derived by a decentralized supply chain system with a just-in-time or 

just-in-sequence configuration in the automotive industry. The methodology proposes 

six agents (drivers) such as Market, Factory, Manufacturing Risk or Economic 

indicators that govern an automotive supply chain. Raw data from 40 years are then 

considered and standardize to populate the Bayesian network structure. Finally, the 

multi-agent simulation is implemented to illustrate the interdependence among many 

agents within an environment: this method allows to reach optimal solutions in term of 

risk hedging and cost-effective solutions in highly complex environment. In Lockamy 

III (2018), a Bayesian network is proposed to represent the risk profile of a bundle of 

suppliers for a given focal company. Factors included in the analysis are random 

variables: country risk, business climate risk, commercial risk, logistic performance 

index, and corruption perceptions index. The set of these factors is conditionally related 

on the supplier external risk event, an index that measures the probability of supplier 

default, thus allowing their ranking process. 
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2.3.4. Dynamic effect and simulation  

 

As previously said, supply chains are dynamic systems in which the probability 

of occurrence of events frequently changes or operational conditions either external or 

internal to the network mutate after a certain period. In such circumstances it might be 

useful to integrate or update the Bayesian network methodology with a tool that is able 

to represent the role played by the time. In other words, it might be useful to represent 

the temporal evolution of the Bayesian network. 

Some authors developed risk effects and propagation through a dynamic version 

of the BN named Dynamic Bayesian networks. Hosseini et al., (2020), develop a model 

that integrates Discrete-Time-Markov Chain and Dynamic Bayesian networks to 

quantify the ripple effect in supply chains, defined by authors as the propagation of 

disruption along the network. A metric that catches the effect of such phenomenon on 

the expected utility and service level is also proposed by authors. The advantage of 

Dynamical Bayesian network is that the temporal dimension is included, unrolling the 

network on a number of steps equal to the number of time spans needed. Indeed, for 

each random variable, the evolution over time is described by a number of consecutive 

nodes, representing the state of the variable at that moment in time. This is a way to 

model stochastic process in dynamic environment. The total expected utility is 

calculated as the sum of the expected utility when the variable is in every state. The 

ripple effect is investigated also in Liu et al., (2021) where a robust Dynamic Bayesian 

network optimization model is developed to quantify the effect along the supply chain 

in the worst-case oriented estimation. Authors also presented an exact search algorithm 

to solve large-scale problems. Despite the growing complexity of Dynamic Bayesian 

networks with respect to the static version, the paper highlights its equal benefits in case 

of data scarcity. A different perspective is given by Punyamurthula and Badurdeen 

(2018) where authors focus on defining internal risk assessment at the production line 

level, using Bayesian networks and simulating the impact on operations with System 

Dynamics (SD) approach. In other words, the Bayesian network allows to identify and 

measuring risks while their impact on the production line is captured by the System 

Dynamics simulation. Zheng and Zhang (2020) propose a supply chain risk network 

model in which risks are called risk factors or risk events. Within the network, external 
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risk factors, operation parameters risk factors and supply chain risks can be identified. 

Each risk factor can take three stages: active, inactive and critical. Based on this 

scenario, the authors developed a dynamic version of the BN (Dynamic Bayesian 

Network) to model changes in system states. 

 

2.3.5. Operational and green risk profile assessment 

 

Risk profile of suppliers can be evaluated including multiple perspectives. This 

section could seem a repetition to what discussed in the previous ones, where BNs for 

decision making oriented problems have been presented. However, the purpose of the 

publications in this section is to give the reader an overview about probabilistic 

indicators by means of Bayesian networks with the objective of complying with specific 

operational aspects and/or other features such as their green profile. 

Among the first applications of Bayesian networks in this context, there is the 

work of Badurdeen et al., (2014). Authors propose a methodology divided in two steps: 

first a risk identification process and a risk classification, then a risk analysis process to 

understand the nature and the risk consequences using Bayesian networks. As last step, 

they propose a risk evaluation and treatment process in which strategies to mitigate such 

risks are proposed. The whole methodology is demonstrated with a case study from the 

aerospace industry. Following the network development, the authors present a graphical 

representation to prioritise risks based on the BN posterior probabilities. The study of 

Chhimwal et al., (2021), instead, focuses on creating risk profiles of the various Circular 

Supply Chain partners with Bayesian networks and to develop an index quantifying the 

disruption exposure of each partner. The risks are categorised into seven areas: 

Economic, Environmental, Social, Technological, Waste management, Agile 

vulnerability and Risk of cannibalisation. In addition to this, the authors measure the 

potential impacts of risks on network performance with particular regard to sales and 

costs.   

Following the emerging green supply chain management topic, we find the work 

of Rabbi et al., (2020). In this paper, authors identify and analyse a number of green 

supply chain performance indicators and they integrate them into a probabilistic model 
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using BNs. Thanks to the convergent configuration of the network, the output of this 

model is a single indicator representing the level of environmental performances 

satisfaction for the supply chain. 

 

2.3.6. Financial risks in supply chain 

 

Financial risks can be integrated with operational aspects not only to study a 

cause-effect relationship for its own sake but also to create a wider picture of the supply 

chain performances and its ability to sustain the strategy in highly competitive 

environments. Since financial aspects affect firm’s ability to run operations and, vice-

versa, sustainable operation management opens the door to financial stability, these 

perspectives should be integrated in the analysis. This paragraph is the most important 

to underline the innovation feature of this thesis and to evaluate the state of the art in 

this field. 

The purpose of the work presented by Qazi and Simsekler (2022), is to prioritize 

supply chain risks, measured in terms of Value at Risk (VaR) at a given confidence 

level. In particular, the authors suggest developing three distinct Bayesian Networks on 

the basis of best, expected and worst scenarios each with a different probability of 

occurrence. Based on the outcome of the probabilistic model and losses of each 

scenario, risks are prioritized using metrics that measure the vulnerability of the entire 

chain. Similarly, Qazi et al., (2022) propose a methodology in which risks affecting key 

performance measures of a supply chain (cost, time, volume of activity etc.) are 

modelled as random variables and linked as BNs (causal-network). Following this 

framework, some risk measures are proposed as VaR-related metrics (Risk network 

value at risk). The objective of this methodology is to prioritize risks using these metrics 

and assess the Risk Network Value at Risk across individual performance measures. 

Lockamy III and McCormack (2012) introduce a methodology to model and 

evaluate risks on supply chain by creating risk profiles for each supplier and providing 

managers with a tool to formulate mitigation strategies. Such risks are divided in 

external, operational and network risks. Each risk is modelled through a discrete 

random variable. The structure of the Bayesian network allows to obtain a unique 
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revenue impact measure for each supplier. This measure is integrated in the VaR in 

order to estimate the economic loss due to potential supplier’s disruption. The paper of 

Shi and Mena (2021) analyses risk considering performance metrics with a double 

perspective: operational and financial, in the light of the concepts of reliability and 

recoverability. The peculiarity of the paper is the introduction of time as a key variable 

in the evolution of risk effects in the supply chain. For each node, they model time by 

introducing a number of possible states equal to the number of discrete time-intervals to 

be represented. These nodes are continuous random variables. The objective of the 

excerpt is to link longitudinally operational and financial aspects, highlighting how 

financial performance influences the overall supply resilience. Garvey et al., (2015) 

show risk propagation effects on a supply chain measured with BNs. At the same time, 

they introduce specific risk measures that can be used in this setting. These measures 

aim at identifying propagation effects considering the cost of scenario occurring and the 

expected propagated cost given the scenario occurrence. In this framework, scenario 

refers to the ability to measure the combination of risks that occur in each location of 

the supply chain. For example, the Expected location risk contribution factor (ELRCF) 

measures the overall risk of a location calculated by adding the ERCF with the total 

losses of the scenario or the Risk propagation ratio that measures which nodes have 

more propagated effects on the subsequent nodes. 

 

2.4. Research gap addressed by the thesis 

 

In light of what has been investigated in the existing literature, the propagation 

effect of operational risks has been scarcely modelized. Thus, only few authors 

introduce a financial perspective to stress operationality effects over company’s default 

probability. On the other hand, papers analysing financial distress in supply chains 

almost ignored the ripple effect caused by operational inefficiencies as source of 

financial distress along the supply chain. Most of the studies in the field propose 

analyses with macroeconomic, industry-specific or financial data. Under the 

methodological perspective, Bayesian networks are becoming a popular tool in supply 

chain risk management, thanks to their modelling capabilities. So far, a fair number of 
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papers adopt this methodology to describe risk propagation phenomena along supply 

chains. However, even then few references integrate cause-and-effect perspective 

between operational and financial risks. 

This thesis intends to fill this gap, by proposing a simple Bayesian network 

approach to model operational risk propagation along supply chain companies and 

consider their effect on the default risk. A central point of this thesis is represented by 

the modelisation of the risk transmission process along different tiers of the supply 

chain which is frequently ignored by literature that usually adopt a focal firm 

perspective, without giving greater prominence to upper-tier suppliers or lower-tier 

buyers risks. Despite its limitation, this methodology intends to open the door to further 

deepening of literature on disruptive events effect on companies’ default probabilities. 

As already mentioned, this study focuses more on operational risks as other disruptive 

events such as economic shocks or natural disasters have been more investigates in 

literature. 
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3. THEORETICAL BACKGROUND 

 

 

 
This Chapter formalises the theoretical underpinnings of both Bayesian 

networks theory and Credit risk management theory. The objective of this section is to 

provide the reader with the theoretical background on both topics in order to 

consciously approach the development of the model in the following Chapter 4. To this 

end, an introduction on Graph theory and Conditional probability theory is presented at 

first. Then, an example of Bayesian networks is shown. Section 3.2 presents a general 

introduction on credit risk modelling approaches, while the risk management process 

adopted in this thesis is described in paragraph 3.2.1. 

 

3.1. Bayesian networks 

 
When studying the relationship between variables, one could be interested to 

investigate the potential influence of one variable while observing the behaviour of 

another variable. For instance, in medicine one might evaluate the probability of a 

specific disease when observing a certain symptom (Pourret et al., 2008). On the other 

hand, consider the case where more than one cause can have effects on one or more 

variables. For instance, it could be interesting to know if certain personal habits directly 

influence two different diseases in a patient (Neapolitan, 2004). More in general, every 

situation in which the presence or absence of a certain phenomenon has an influence on 

the occurrence or non-occurrence of another event can be represented through the well-

known Bayes’ theorem. However, in most real cases, the occurrence of a given event 

depends on more than one factor, thus making the structure of the problem much more 

complicated. Bayesian networks (BNs) or sometimes Bayesian belief networks (BBNs) 

are probabilistic graphical models which allow to represent knowledge in uncertain 

domain. They offer an intuitive network representation of the joint probability 
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distribution of a set of random variables with causal-effect relationship. BNs are able to 

describe complex systems even with little data at hand and the possibility to perform 

quick inference analysis thanks to the availability of commercial software. Bayesian 

networks are rooted in two fundamental branches of mathematics: conditional 

probability theory, with particular emphasis on Bayes’ theorem, and graph theory. 

However, they combine principles also from computer science and statistics (Ben-Gal, 

2007). Both elements of graph theory and conditional probability theory will be 

introduced in the paragraphs 3.1.1 and 3.1.2 respectively. 

 

3.1.1 Basics of Graph theory 

 

A Graph 𝐺 = (𝑉, 𝐸) is mathematically represented by two main elements: a set V of 

nodes 𝑣1, . . . 𝑣𝑛 and a set E of edges (or arcs) 𝑒𝑖𝑗  =  (𝑣𝑖, 𝑣𝑗  ) linking a pair of nodes. The 

overall set of edges connecting nodes is called chain. Paths are special cases of chains 

where the set of edges is oriented in the same direction of the chain. In particular, 

Bayesian Networks are a special case of graphs called direct and acyclic graphs or 

DAGs (Stephenson, 2000). Direct acyclic graphs are structures where no cycles or close 

loops are present: 

• A direct graph has ordered vertices within each edge (𝑣𝑖, 𝑣𝑗)  ≠ (𝑣𝑗  , 𝑣𝑖), thus 

arcs have a certain direction usually represented through arrows. 

• If there are no loops or cycles the graph is also acyclic. 

Once the general structure of a DAG has been discussed, it is possible to introduce 

some further taxonomy about the constituent elements of the graphs. Given an edge 

𝑒12  = (𝑣1 , 𝑣2) from 𝑣1 to 𝑣2, the former node is called parent node or predecessor 

while the latter is the successor or child node (Horný, 2014; Stephenson, 2000) with 

respect to 𝑣1. Considering a general structure of a graph, there are root nodes (i.e., 

nodes without any predecessor), while nodes with no successor are called leaf nodes. 

However, general Bayesian networks also have nodes with both successor and 

predecessors. This is the case of intermediary nodes.  

To better illustrate such differences, it is possible to refer Figure 3.1. which 

highlights both a direct and an indirect graph. While they are both acyclic, Graph A 
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does not have direct edges whereas Graph B is a direct acyclic graph. As a consequence, 

nodes A and B in Graph B are parent nodes of C, that in turn is the parent of both D and 

E. Hence, A and B are root nodes, C is an intermediary node, while D and E are leaf 

nodes. 

 

Figure 3.1. The difference between a direct and indirect acyclic graph. 

 

3.1.2 Basics of Conditional probability theory 

 
The DAG just described represents the qualitative part of the Bayesian network, 

while the quantitative part is described by variables. As previously said, network nodes 

represent random variables 𝑉 =  (𝑋1, . . . 𝑋𝑛), each with a given probability distribution, 

assumed as a discrete distribution in this framework. On the other hand, edges (or arcs) 

represent the existing dependency between variables (Ben-Gal, 2007). This means that 

if 𝑋𝑖 is the parent node of variable 𝑋𝑗, then the probability value of 𝑋𝑗 is dependent on 

𝑋𝑖. To mathematically represent the conditional dependence of two events, it is possible 

to refer to definition 3.1. 

 

Definition 3.1. Given two events A and B with probability distribution P(A) and P(B) 

such that P(B) ≠ 0, the conditional probability of event A given the event B is: 

𝑃[𝐴 | 𝐵]  =  
𝑃 [𝐴 ∩ 𝐵]

𝑃[𝐵]
                                                     (3.1) 
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From the previous definition it follows that two events are considered 

independent if the intersection space is equal to 𝑃 [𝐴 ∩  𝐵] = 𝑃[𝐴]  ∙  𝑃[𝐵] that is 

𝑃[𝐴 | 𝐵] = 𝑃[𝐴]. Traditionally, the Bayes’ theorem has been used to evaluate the 

conditional probabilities of events from known probabilities (Neapolitan, 2004). The 

Bayes theorem can be seen from theorem 3.1.  

 

Theorem 3.1. (Theorem of Bayes) Given two events A and B with probability 

distribution P(A) and P(B) such that both P(A) ≠ 0 and P(B) ≠ 0, the conditional 

probability of A given the event B is: 

𝑃[𝐴 | 𝐵]  =  
𝑃[𝐵 | 𝐴] ∙ 𝑃[𝐴]

𝑃[𝐵]
                                                     (3.2) 

 

 Where 𝑃[𝐴] is called prior probability (i.e., the probability prior to its update 

using new information) and 𝑃[𝐵] is the marginal probability. At the same time 𝑃[𝐴 | 𝐵] 

is the posterior probability (probability occurring after that its prior probability has been 

updated with new information) while 𝑃[𝐵 | 𝐴] is called likelihood [7]. Hower, most of 

the time both 𝑃[𝐴 | 𝐵] and 𝑃[𝐵 | 𝐴] are generally called conditional probabilities. 

Events 𝐴 and 𝐵 in the Bayes’ theorem can be interpreted as the Cause and the observed 

Evidence. To illustrate probabilities calculation in Bayesian networks it has been 

developed an example (Example 3.1). 

 

Example 3.1.  

Consider the Graph B of the Bayesian network presented in Figure 3.1. above, 

where random variable C is conditionally dependent on A and B. At the same time, both 

D and E are conditionally dependent on C. The probability distribution adopted in this 

framework is the Bernoulli distribution. Thus, each variable can assume two states only: 

True with probability 𝑝 and False with probability 1 − 𝑝. In other words, events A and 

B can occur with probability 𝑃[𝐴 = 𝑇𝑟𝑢𝑒] = 𝑝𝐴 and 𝑃[𝐵 = 𝑇𝑟𝑢𝑒] = 𝑝𝐵 respectively. 

The state of variable C depends on the variables A and B. It follows that, 
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𝑃[𝐶 = 𝑇𝑟𝑢𝑒] = ∑ 𝑃[𝐶 = 𝑇𝑟𝑢𝑒 | 𝐴, 𝐵]  ∙ 𝑃[𝐴] ∙ 𝑃[𝐵] 

𝐴,𝐵

 

 

The conditional probabilities given in the expressions above are usually given in 

tables called Conditional Probability Table (CPT) as shown in Table 3.1. 

 

Table 3.1. Conditional Probability Table (CPT) of C in Example 1. 
 A = T A = F 

 B = T B = F B = T B = F 

C=T 𝑃[𝐶 = 𝑇|𝐴 = 𝑇, 𝐵 = 𝑇] 𝑃[𝐶 = 𝑇|𝐴 = 𝑇, 𝐵 = 𝐹] 𝑃[𝐶 = 𝑇|𝐴 = 𝐹, 𝐵 = 𝑇] 𝑃[𝐶 = 𝑇|𝐴 = 𝐹, 𝐵 = 𝐹] 

C=F 𝑃[𝐶 = 𝐹|𝐴 = 𝑇, 𝐵 = 𝑇] 𝑃[𝐶 = 𝐹|𝐴 = 𝑇, 𝐵 = 𝐹] 𝑃[𝐶 = 𝐹|𝐴 = 𝐹, 𝐵 = 𝑇] 𝑃[𝐶 = 𝐹|𝐴 = 𝐹, 𝐵 = 𝐹] 

 

Therefore, there are four possible combinations of states assumed by A and B 

influencing C: 

𝑃[𝐶 = 𝑇𝑟𝑢𝑒] = 𝑃[𝐶 = 𝑇 | 𝐴 = 𝑇, 𝐵 = 𝑇]  ∙ 𝑃[𝐴 = 𝑇] ∙  𝑃[𝐵 = 𝑇] + 

               + 𝑃[𝐶 = 𝑇 | 𝐴 = 𝐹, 𝐵 = 𝑇]  ∙ 𝑃[𝐴 = 𝐹] ∙ 𝑃[𝐵 = 𝑇] + 

               + 𝑃[𝐶 = 𝑇 | 𝐴 = 𝑇, 𝐵 = 𝐹]  ∙ 𝑃[𝐴 = 𝑇] ∙ 𝑃[𝐵 = 𝐹] + 

           + 𝑃[𝐶 = 𝑇 | 𝐴 = 𝐹, 𝐵 = 𝐹]  ∙ 𝑃[𝐴 = 𝐹] ∙ 𝑃[𝐵 = 𝐹] 

 

Rewriting with the taxonomy adopted at the beginning of the example: 

 𝑃[𝐶 = 𝑇𝑟𝑢𝑒] = 𝑃[𝐶 = 𝑇 | 𝐴 = 𝑇, 𝐵 = 𝑇]  ∙ 𝑝𝐴  ∙ 𝑝𝐵 +

                                       + 𝑃[𝐶 = 𝑇 | 𝐴 = 𝐹, 𝐵 = 𝑇]  ∙ (1 − 𝑝𝐴)  ∙ 𝑝𝐵 +

                                       + 𝑃[𝐶 = 𝑇 | 𝐴 = 𝑇, 𝐵 = 𝐹]  ∙ 𝑝𝐴  ∙ (1 − 𝑝𝐵) +

                                       + 𝑃[𝐶 = 𝑇 | 𝐴 = 𝐹, 𝐵 = 𝐹]  ∙ (1 − 𝑝𝐴)  ∙ (1 − 𝑝𝐵). 

Similarly, for nodes D and E, the posterior probability can be evaluated as 

 

Table 3.2. Conditional Probability Table (CPT) of D in Example 1. 
 C = T C = F 

D=T 𝑃[𝐷 = 𝑇| 𝐶 = 𝑇] 𝑃[𝐷 = 𝑇| 𝐶 = 𝐹] 
D=F 𝑃[𝐷 = 𝐹| 𝐶 = 𝑇] 𝑃[𝐷 = 𝐹| 𝐶 = 𝐹] 
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𝑃[𝐷 = 𝑇] = 𝑃[𝐷 = 𝑇 | 𝐶 = 𝑇]  ∙ 𝑝𝐶 +  𝑃[𝐷 = 𝑇 | 𝐶 = 𝐹]  ∙ (1 − 𝑝𝐶). 

 

Table 3.3. Conditional Probability Table (CPT) of E in Example 1. 
 C = T C = F 

E=T 𝑃[𝐸 = 𝑇| 𝐶 = 𝑇] 𝑃[𝐸 = 𝑇| 𝐶 = 𝐹] 
E=F 𝑃[𝐸 = 𝐹| 𝐶 = 𝑇] 𝑃[𝐸 = 𝐹| 𝐶 = 𝐹] 

𝑃[𝐸 = 𝑇] = 𝑃[𝐸 = 𝑇 | 𝐶 = 𝑇]  ∙ 𝑝𝐶 + 𝑃[𝐸 = 𝑇 | 𝐶 = 𝐹]  ∙ (1 − 𝑝𝐶). 

 

3.2. Credit risk 

 
 The credit risk is the risk faced by creditors when debtors do not meet their 

contractual obligations, generated by default or caused by changes in credit quality. 

Credit risk management has been studied in different sectors, including financial 

mathematics. The mathematical models developed over time in this field are 

traditionally divided into two macro-areas: credit risk management and analysis of 

credit-risky securities. The former is used to estimate loss distribution and related risk 

measures. As one can easily guess, the latter focus on the study of financial products 

with the main purpose of securities pricing (McNeil et al., 2005). As the authors point 

out, the former can be generally defined as static models since the study is based on a 

defined time window. Analysis of credit-risky securities models use continuous-time 

models or stochastic processes. This section will present at first a general overview on 

the mathematical risk modeling approaches following the classification presented in 

McNeil et al., (2005), then the specific credit risk model used in this thesis will be 

presented in the following paragraph. 

 Among the default structural models (i.e., models that attempt to frame the 

dynamics of corporate default and the underlying causes), it is worth mentioning 

Merton’s model (Merton, 1974) which considers company’s value consisting of both 

debt and equity. Default occurs when the value of the company is less than the value of 

the debt. Thus, the firm’s equity and debt can be interpreted as European options. Under 

this framework, Merton’s model is a starting point to model credit risk and to price 

securities through Black-Scholes model. Another relevant example is the model 
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developed by KMV in the 1990s. Its contribution consists of an extension of Merton’s 

model and its implementation on a large database of companies. Other models are based 

on the concept of credit migration. The credit measures developed by rating agencies 

such as Moody’s or Standard & Poor’s allow companies to be assigned appropriate 

credit risk level. For example, in the Standard & Poor’s rating system, categories range 

from AAA (lowest probability of default) to CCC (highest probability of default). From 

this classification, credit migration models construct appropriate transition matrices that 

highlight the probability of moving from one level of credit to another within a certain 

period. Other credit risk models, called Threshold models, assume that the default 

happens when a certain random variable exceeds a give deterministic threshold. For 

example, in the Merton model, the company’s debt value B, can be seen as a threshold. 

In a mixed model, the default depends on a set of factors, such as common economic 

factors. Once the realisation of such factor occurs, the insolvencies of individual firms 

represent a direct consequence. The default dependence between firms is based on the 

set of common factors.  

 

3.2.1 Credit portfolio risk management 

 

The credit risk model of this thesis will refer to the work presented by Fontana et 

al., (2021), who describe the joint distribution of defaults portfolios where the 

individual default indicator is represented as Bernoulli random variable. In addition, the 

authors present bounds for the risk measures Value-at-Risk and Expected Shortfall. 

A credit portfolio 𝑃 of 𝑛 loans granted to 𝑛 different entities represented as a n-

dimensional vector 𝑃 = (𝑤1, 𝑤2, … , 𝑤𝑛), where each component 𝑤𝑖 ∈ [0; 1] is the 

amount granted to obligor 𝑖. To normalise the overall budget to 1, the additional 

constraint ∑ 𝑤𝑖 = 1𝑛
𝑖=1  is imposed. Consider also that every company 𝑖 included in the 

analysis has a default indicator 𝑋𝑖 modelled through a Bernoulli random variable. As 

Bernoulli random variable, the two states indicating default occurrence or non-

occurrence are highlighted in equation (3.4) 

𝑋𝑖  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) =  {
1          prob. = 𝑝
0  prob. = 1 − 𝑝

                                              (3.4) 
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Coming back at the credit portfolio 𝑃, its loss is given by the weighted sum of 

the individual 𝑖 losses. In other words, it is a linear combination of n Bernoulli 

variables. 

                 𝐿𝑃(𝑥) = ∑ 𝑤𝑖𝑋𝑖
𝑛
𝑖=1                                                           (3.5) 

Because of the previous formulation, it follows that the expected loss of the 

portfolio is given by the weighted sum of the individual expected losses. 

𝐸𝐿𝑃 = ∑ 𝑤𝑖𝐸[𝑋𝑖]𝑛
𝑖=1                                                      (3.6) 

Another important risk measure widely adopted in financial risk management is 

the Value-at-Risk or VaR. VaR is probably the most used risk measure, and it has been 

adopted worldwide during the Basel II Agreement. To formally introduce the Value-at-

Risk, consider time horizon 𝑇 and the portfolio’s loss cumulative density function 

𝐹𝐿(𝛿) = 𝑃 [ 𝐿 ≤ 𝛿]. Therefore, the Value-at-Risk of 𝑃 at 𝛼 confidence level is the 

smallest 𝛿 so that the probability that the portfolio’s loss 𝐿 exceeds 𝛿 is no larger than 

(1 −  𝛼). In other words, VaR is a quantile at a given confidence level 𝛼 of the loss 

distribution shown in equation (3.7). This sentence can be expressed as 

𝑉𝑎𝑅𝛼 = 𝑖𝑛𝑓{𝛿 ∈  ℝ ∶ 𝑃[𝐿 >  𝛿] ≤ 1 −  𝛼}                                 (3.7) 

 

Rearranging the cumulative density function in equation (3.8), we get  

 

𝑉𝑎𝑅𝛼 = 𝑖𝑛𝑓{𝛿 ∈  ℝ ∶  𝐹𝐿(𝛿) ≥ 𝛼}                                       (3.8) 

 

The usual values for the confidence level 𝛼 include 𝛼 = 90%, 𝛼 = 95% and 

𝛼 = 99%. The reason for defining the VaR as “inf” value is that for discrete random 

variables, it could not be possible to find a value 𝛿 such that 𝑃[𝐿 ≤  𝛿] ≤ 𝛼. In that 

case, the Value-at-Risk is the smallest value that gives at least the 𝛼 probability that the 

loss is smaller as shown in Example 2. 
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Example 2. 

Consider the cumulative density function in Table 3.4, where the cumulative 

probabilities are associated to each loss state of the portfolio. 

Table 3.4. Cumulative density function of example 2. 

Loss 𝑃[𝐿 ≤ 𝑥] 

0 85% 

1500 95% 

3000 99.5% 

4000 100% 

  

In this case, there is no exact value that give an 𝛼 = 99%. Therefore, the 

smallest integer giving at least a probability value equal to 𝛼 is 3000. 
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4. MODEL DEVELOPMENT: A CASE 
STUDY FROM THE AUTOMOTIVE 
INDUSTRY 

 

 
This chapter represents the core part of the thesis. At first a general introduction 

to the methodology is presented to highlights main steps and features, then a brief case 

from the automotive sector is shown. 
 

4.1. Model introduction 

 
The ultimate goal of the present work is to raise managers awareness about the 

consequences of operational disruptive events on companies’ default risk towards their 

creditors, as consequence of supply chain risks. At the same time, this methodology can 

help external creditors in assessing an adequate company’s risk profile considering not 

only the risks resulting from a vulnerable internal management, but also the risk 

propagation effects in extremely interconnected networks as supply chains. In this 

chapter, the necessary steps to develop the methodology are discussed and an 

automotive industry application, taken from scientific literature, is presented as well. 

The methodology developed in this thesis follows six main strands:  

 

• Supply chain structure and flows. 

• Risks identification. 

• Marginal and conditional probabilities. 

• Bayesian network construction. 

• Default-risk profile assessment and credit portfolio. 

• Risk mitigation strategies.  
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The first two steps of the methodology are fundamental to understand the 

structure of the problem and analysing its characteristics. In this case, data relating to 

the structure of the automotive industry, as well as the probability values, have been 

collected from the relevant literature. The Bayesian network construction process, 

which is the core part of the methodology, is based on the information gathered in the 

previous steps and it has been realised with GeNIe 4.0 Academic version software. In 

general, the collection of data relating to risk categories affecting different SC firms and 

probability values are the preliminar part of most of the Bayesian networks construction 

in supply chain risk management (Qazi et al., 2015; Garvey et al., 2015; Qazi and 

Simsekler, 2021; Shi and Mena, 2021). The objective of step 5 is to assess credit risk 

under a double perspective: estimating credit risk at each tier of the supply chain as a 

direct consequence of operational disruption and as part of a credit portfolio including 

debts from other SC companies. The latter result may be of interest to creditors that 

finance supply chain activities within the same network. To this end, several portfolio 

scenarios are presented and some risk measures to understand the riskiness of the debt, 

including Value at Risk (VaR), are proposed. The last step of the methodology includes 

the proposal of operational risk mitigation strategies that can be adopted to reduce the 

probability of risk event occurrence and, consequently, reduce the company’s default 

risk. This last step is closely linked to the supply chain industry, and it is strictly 

dependent on the strategy adopted. To this end, this thesis will just highlight the main 

benefits and implications of this phase, without proposing numerical results that could 

be modelled in future works. Also, this methodology can be seen as an operational-

credit benchmark process where a change in probability conditions due to the 

introduction of risk mitigation strategies or different internal operational conditions, 

changes both the credit risk profile of the company and that of potential credit 

portfolios. Therefore, this iterative process could help managers in selecting the best 

mitigation strategy to reduce the probability of the company’s insolvency. These steps 

have been summarised in Figure 4.1. 
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Figure 4.1. Steps adopted in the case study methodology. 

 

In this thesis, the automotive industry will be considered as exemplification of 

the methodology, because of its global importance in terms of turnover and its presence 

in the world market. Despite a non-negligible contraction during the economic crisis in 

2008-2009, the automotive market has faced an uninterrupted growth in the last 

decades, reaching 97 million of cars sold in 2017 [8]. On the other hand, the recent 

pandemic and their unavoidable consequences on the global economy leaded to 

considerable reductions in the global sales (Pfeifer, 2021). Despite disruptive events 

listed above could be considered as mere external factors driving severe internal risks, a 

great number of operational risks continuously affects internal operativity leading to 

heavy losses. These considerations must be placed in the global automotive supply 

chain environment, where thousands of companies take part in the production, assembly 

and shipping process of single modules, components and, finally, of finished products. 

Thus, the automotive industry can be considered as one of the most complex supply 

networks among different sector’s supply chains. Indeed, although a stable financing 

mode, the large number of participants makes credit risks still occurring in the 

automotive supply chain industry (Zhang et al., 2021). Some of the most well-known 

bankruptcies in this industry include the two large American auto manufacturers: 

Chrysler LLC and General Motors Corp both occurred in 2009. In addition, in 2011 

Saab Automobile filed after fighting for three years against default (Tanguy et al., 

2013). Authors have shown that the automotive industry can be placed at a level 4 

(moderately high risk) on Standard&Poors’ Business Risk Analysis rating scale. This 

assessment is the result of a high industry’s cyclicality and an intermediate 

competitiveness risk. Firms that operate in such uncertain environment require 

instruments and rigorous techniques not only to identify disruptive events that might 

affect internal organizations but also to deeply understand their consequences under the 

financial perspective dictated by both local and global risks. Hence, the importance to 
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analyse risks in such critical context and to propose mitigation strategies in order to 

higher the resilience of the global supply chain is of primary importance. The 

application of the methodology to the automotive industry was produced through a 

literature analysis of both Bayesian networks in supply chain risk management papers 

and the empirical results obtained by various authors in automotive industry risk 

assessment field. Therefore, the steps adopted in this study and detailed below can be 

adapted to different industrial contexts. 

 

4.2. Supply chain structure and flows 

 

Identifying supply chain boundaries and firms involved in the network 

represents the first stage of the proposed methodology. Mapping the structure of the 

supply chain is a primary step (Garvey et al., 2015) towards understanding the different 

nature of activities carried out in each industry thus, the risks typically encountered by 

supply chain companies. However, this step becomes even more important in order to 

understand the number of firms involved in the product creation, the type of contractual 

relationship that exists between them, their geographical location and in general their 

impact on the global and local economy. It is crucial to understand which actors have a 

primary role in delivering the final product to end-users and which of them have only a 

marginal influence: in large industries defining boundaries and firms’ connections 

might be laborious due to great variety of components flowing through the supply chain 

and the number of firms contractually involved in the daily activities even though, as in 

any mathematical model, the more complete the structure and the more powerful the 

methodology.  

Supply chains can be described as networks or graphs (Hearnshaw and Wilson, 

2013) composed by a set of nodes linked by arcs representing companies and companies 

interchanged flows respectively. Typical network flows include financial, information 

and material flows. Financial flows refer to the exchange of financial resources between 

different actors operating in the supply chain, while the information flow represents the 

transfer of information, such as the monthly demand by the consumer or a retailing 

company located in the lower tiers of the chain. Material flows represent the exchange 
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of raw materials, components and products between companies. Some authors identify 

further subsets of flows that are usually exchanged in supply chains such as money 

manpower and capital equipment (Rahman et al., 2007). For the sake of clarity, it is 

necessary to emphasise that in any product-manufacturing industry each of these flow 

categories is always present. However, each flow may connect different nodes within 

the same network: for example, an information flow between two companies located in 

two different tiers of the chain may be upward (i.e., from the bottom to the top) while 

the flow of material typically occurs from the higher chain layers (e.g., raw material 

suppliers) to lower levels in the direction of the final consumers. Therefore, depending 

on the type of flow to be represented, the network assumes different topologies 

(Hearnshaw and Wilson, 2013). In addition, Hearnshaw and Wilson (2013) pointed out 

that the flow representation changes depending on the type of flow to be shown. In fact, 

the representation of supply chain based on material flow is a directional graph, while 

the one based on the contractual relationship is non-directional, as contracts are agreed 

by both parties.  

Other authors focus their analysis with respect to a certain company of interest 

within the network. In particular, they rely on the concept of supply chain tiers residing 

upstream or downstream of a given focal firm. For example, first-tier companies are 

defined as the set of firms that directly supply information, material or financial flows to 

the focal firm. Obviously, the analysis can be extended to the suppliers of the suppliers 

(second-tier) and so on (Li et al., 2022; Mori et al., 2014). It is important to emphasise 

that such analysis gives greater prominence to the central firm, even if this perspective 

can eventually be adopted for every firm in the network, since each of them can be seen 

as a focal firm (Figure 4.2). The focal firm might be an Original Equipment 

Manufacturing (OEM) firm, which is the company supplying the product in accordance 

with third party’s specifications. In other words, it is a business that manufactures 

products in line with detailed requirements from its buyers. In general, the 

representation of the supply chain as a network of companies allows not only to better 

represent the overall structure in a hierarchical manner, but also to facilitate the 

subsequent representation of risks via Bayesian networks.  



  
51 

 

 

Figure 4.2. Supply chain material flow for DaimlerChrysler (DCX) Grand Cherokee adapted 

from of Kim et al., (2011).  

Looking inside the typical supply chain organisation, it is possible to furtherly 

identify different structures. Linear structures (i.e., structures in which every tier has one 

company performing a single activity) are generally unusual, reflecting in most cases, to 

simple products with local demand. On the other hand, convergent supply chains, are 

typical for products that require consecutive assembly processes after the production of 

single components. Finally, diverging or arborescent structures are typical for 

distribution processes, where finished products are shipped from central warehouses to 

regional repositories, much closer to the end consumer (Brandimarte and Zotteri, 2007). 

As the authors illustrate, these theoretical networks are, in reality, embedded in hybrid 

structures. In fact, the supply chain responsible for producing, assembling and 

distributing products generally combine both divergent and convergent networks: a 

divergent configuration to process final product from raw materials and a convergent 

architecture for the following final-product delivery process. As highlighted by Berloco 

et al., (2021), the structure of supply chains is not a static feature as relationships among 

firms evolve and even the firms carrying out activities change. 

The generic automotive supply chain structure includes suppliers, manufacturers 

and retailers as stated by Tuncel and Alpan (2019). Each of the thousand’s supplier is 

responsible for transferring material to manufacturers which produce individual 

components of the final product. These components are then assembled together in one 

or more stages of the chain, until reaching the ultimate car assembly phase, where the 

product is completed and ready to be distributed. Such supply chain complexity depends 
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on the great modular structure of cars (Kuys et al., 2016) which allows to produce 

components by different industrial producers and to ship them to the assembly plant 

(Baldwyn and Clark, 2006). Car’s modularity architecture has also other managerial 

implications: it allows to enhance local performances by substituting a given 

components with a better one and avoid redesigning the whole product. On the strategic 

point of view, modular architectures allow fast changes between product generations but 

also to offer product variants simultaneously in order to address different market 

segments (Cantamessa and Montagna, 2016). Obviously, these added-value activities 

may unfold along one or more tiers depending on the network design, which may vary 

from product to product. A more detailed generic structure is reported by Dehdar et al., 

(2018) where the design, raw material suppliers, part production, assembly, marketing 

and distribution and sales stages are included. Similarly, the 4-tiers supply chain 

presented in Mohammaddust et al., (2017) consists of suppliers, manufacturers, 

distribution centres and retailers serving different markets. Choi and Hong (2002) 

analyzed three supply chains from the automotive industry: Honda Accord, Acura 

CL/TL, and DaimlerChrysler (DCX) Grand Cherokee reported in Figure 4.2. For each 

the case study presented in the paper, the activities involved in the product value 

creation have been classified as raw material supplier, trader, manufacturer, and 

assembler. Finally, the structure presented by Fredriksson and Gadde (2005) of Volvo 

company for build-to-order production is composed by four main steps: components 

manufacturing and shipment (suppliers), module pre-assembly process, car assembly 

process and distribution. As can be seen from this analysis, the essential activities 

constituting the supply chain structure include suppliers and manufacturers of raw 

materials and components as an initial step. Subsequently, components are assembled in 

one or more stages until the complete car assembly. Once the production/assembly 

process is completed, the distribution process starts. The outbound logistics can be 

organised through one or more nodes. Finished products are usually shipped to 

distribution centres to serve regional/national demand. As last step, vehicles are shipped 

to dealers across the region (Boujelben et al., 2012).  

As the general structure of the automotive supply chain is extremely complex, 

only some of the most relevant stages will be considered as examples here. To this end, 

the example of Punyamurthula and Badurdeen (2018) will be taken as reference. 

Authors present a case study of a multinational manufacturing company operating in the 
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automotive sector in both North America (i.e., USA, Mexico and Canada) and China. In 

particular, the article describes the metal component manufacturing process in an US 

division. For the purpose of this thesis and based on the description provided by 

authors, it can be reasonably assumed that raw materials are shipped by a raw material 

supplier located in an upstream tier, with respect to the manufacturing company. In 

order to complete the example, this thesis assumed that the supply chain is provided 

with a parallel process (raw material supplier and manufacturing company) as a 

Mexican division. Both products from this stage are assembled in order to produce 

subsequent components in the following assembly stage. The description of the supply 

chain scenario just described is shown in Figure 4.3. 

  

Figure 4.3. The automotive supply chain with material flow adopted as example.  

 

Each supply chain node (i.e., firms) can be furtherly broken down into internal 

sub-processes. To this end, it could be useful to follow the Supply Chain Operations 

Reference Model (SCOR-Model) [9]. Its architecture is regularly updated, and the 

structure adopted by the SCOR aligns the representation of activities with business 

functions and objectives. The processes presented in the SCOR model include the 

activities most companies perform to effectively execute their supply chain such as 

order process (i.e., the set of activities associated with ordering or purchasing materials 

or services) or transform process (i.e., the set of activities associated with creating value 

to the product such as manufacturing or assembly) and others (Figure 4.4). The 

aspiration of mapping every business sub-activity involved in the product value creation 

might be extremely ambitious depending on the complexity of the supply chain and, for 

this reason, it is usually adopted for mapping the business internal structure only.   
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Figure 4.4. General description of Supply chain processes adopted in the SCOR model 

version 12.0 [10]. 

 

For ex-novo applications, it could be useful to interview industry stakeholders, 

managers and personnel (Leerojanaprapa et al., 2013) to explore network performances 

and refine the structure.  

 

4.3. Risks identification 

 
The main goal of this section is to detail, to the best of author’s knowledge in 

literature, the nature and type of risks present at the different nodes of the chain. The 

risk identification process represents an important step in the risk assessment procedure 

(Punyamurthula and Badurdeen, 2018; Qazi and Simsekler, 2021) and it has been 

carried out through an extensive literature review in the automotive supply chain risk 

assessment field with particular emphasis on operational risks. Most of the publications 

only give the focal firm perspective in order to assess internal potential risk sources 

(i.e., controllable risks through a better management of internal operations or the 

introduction of mitigation strategies) and external’s one which are not directly 

manageable but depends on upstream or downstream operations. As previously said, 

this perspective gives greater prominence to risks that might threat focal firm 

operativity, without giving a detailed description of risks affecting other network nodes. 

Indeed, risky events at the supplier level are usually categorised as external’s without 

giving further details with respect to the tier or the specific activity position in the 

network. However, such approach fails in capturing risks effects on those activities that 

are external with respect to the focal company but, that are internal to the supply 

network. In addition, risks dependency is ignored. Other publications, roughly capture 
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this alternative point of view, by listing risks with respect to upstream/downstream 

source from an inside/outside network perspective (Christopher and Peck, 2004). Only 

few authors give a detailed description of risks affecting individual nodes as stated in 

Tuncel and Alpan (2010). With the help of literature, this section summarises the main 

risk events and factors affecting each node of the automotive supply chain illustrated 

above.  

 Operational risks are potential losses arising from the day-to-day operations 

disruption as already described in Chapter 1. Risk events affecting supply chain 

activities may differ in nature depending on the activities that are performed at any 

node. However, as illustrated in the previous paragraph, some internal processes are 

present in every company regardless of the industry under investigation. The decision to 

breakdown business internal activities as well as the risks depends on the level of detail 

of the analysis: given the complex nature of the automotive supply chain, a lot of 

disruptive events have to be included for an in-depth analysis. Risk event occurrence 

can be reduced if companies adopt proper risk mitigation strategies in order to minimize 

consequences on internal and external activities and economical losses as well (Blos et 

al., 2009). These issues will be discussed in the paragraph 4.7 of this chapter, while the 

following risk classification has been made through the analysis of the different 

literature sources on automotive supply chain operational risks.  

 

Accident risk 

 Accident risks are caused by lack of business safety. Internal safety must be 

always ensured to protect human health, physical assets integrity as well as operations 

continuity. Production line accidents, exposure to toxic substances, fires, or explosions 

(Jiantong et al., 2016) are just examples of potential disruptive events that can 

negatively have consequences on firm’s internal operativity. Despite many further sub-

risk categories are available, there is no process in the supply chain that can be 

considered as accident-free. Protiviti (2006) and Guedes et al., (2015) identify “Crash of 

critical systems for the business continuity” as a source for business operation 

continuity risk. 
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Delivery process risk 

 Companies are not only contractually bounded to supply the product according 

to the technical specifications but also to deliver products on time (Wang et al., 2013) 

and in the agreed quantity. Supply chain upper-tiers activities, such as components 

producers (Lockamy and McCormack, 2012; Punyamurthula and Badurdeen, 2018) are 

the one which most of the time encounter inadequate delivery process risk (Sharma and 

Bhat 2012). A different perspective is proposed by Puspitasari and Yuwono (2022), that 

points out the threats of such risk category faced by lower tiers activities in the network, 

such as the finished-product distribution. They identify additional delivery process sub-

risks: “Incorrect product packaging”, “damage to the product occurring during 

delivery” and “delays in delivery of products to customers”. In the light of these 

observations, it can be seen that delivery process risks are not node-specific within the 

chain. Thus, under such classification, it is possible to identify late inbound supply 

delivery or wrong number of components delivered by suppliers.  

 

Demand forecasting risk 

 Changes in demand due to high volatility or seasonality rise the risk of an 

inaccurate demand forecasting. Errors in demand forecasting led to company losses as 

stated in Junaid et al., (2020), which classify this risk as downstream. In fact, an 

inaccurate demand forecasting (Jiantong et al., 2016) is a common risk faced by supply 

chain lower tiers activities as highlighted by Thun et al., (2011). Although demand-

related risks are considered by some literature source as non-operational, due to the 

exogenous factors driving demand variability, they are functional to the internal activity 

planning process. Indeed, following the definition given by Pham and Verbano (1996), 

that has been previously illustrated, operational risks deal also with supply and demand 

side. For that reason, such risk category could be placed in the in the broader 

classification of operational risks as they are an input for the internal management of 

processes.  

 

Inventory risks 

 The risk of low stock level is faced by every supply chain company, in both 

inbound and outbound logistic operations (Shi and Mena, 2021). As an example, 

Badurdeen et al., (2014) point out that the low level of incoming stock due to the 

earthquake in Japan in 2011 caused a strain on the subsequent production of automotive 
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components in that region. Honda and Toyota sales decreased by 28% and 23% 

respectively compared to July of the previous year. Under this framework, it is also 

important to stress that a high inventory can lead to excessive holding costs: the holding 

cost increases as the stock to be stored in the inventory undergoes processing. Thus, raw 

material holding cost is less relevant than the one faced by finished goods inventories 

(Chhimwal et al., 2021). Therefore, authors included the risk of “inventory management 

problem” among the operational risks. Looking at the SCOR-model for an internal 

activity classification, inventory-related risks primary affect both the “Source” and the 

“Deliver” phase. 

 

IT system risks 

Nowadays, IT systems represent a fundamental infrastructure deeply integrated 

to the manufacturing and distribution process of supply chain companies. Thus, IT 

system interruption or breakdown can be seen as an internal threat for any supply chain 

node (Thun et al., 2011). A breakdown (Blackhurst et al., 2008) could cause the 

interruption of the internal operativity, thus leading to losses, damages and breakdown 

of communication within or outside the organisation (Junaid et al., 2020). IT systems 

risks are not only influenced by an internal software or hardware fail, but also from 

cyberattacks (Schmittner et al., 2020). 

 

Machine breakdown risk 

Manufacturing disruptions is a relevant risk for manufacturing firms in the 

automotive industry (Punyamurthula and Badurdeen, 2018). Machines operating in the 

production or assembly lines are the core part of the primary stages in the automotive 

supply chain. Any machines or plants breakdown (Sharma and Bhat, 2012) would result 

in disruption of internal operations (Thun et al., 2011), leading to delays and unplanned 

costs (Junaid et al., 2020). This risk primary affects the “Make” process of the SCOR-

model classification. 

 

Manufacturing delay risk 

The delay of material flow can occur at the manufacturing process level as a 

consequence of other unplanned events, such as delay in procurement, system 

breakdown or production failures (Mohammaddust et al., 2017; Babu et al., 2021). This 

risk affects the “Make” process of the internal SCOR-model classification. 
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Punyamurthula and Badurdeen (2018) state that the manufacturing delay risk is directly 

related with the procurement delay risk. In addition, poor-quality goods from suppliers 

lead to re-work processes which in turn causes production delays (Blos et al., 2009). 

 

Operations capacity flexibility risk 

 According to Guedes et al., (2015) and Protiviti (2006), capacity risk is the 

circumstance occurring when either the production capacity is not able to meet market 

demand, or when internal resources are underutilised. On the other hand, risk arises 

even when not exploiting the whole utilisation capacity that is internally available 

(Junaid et al., 2020). For that reason, lack of flexibility of resources in the production 

process is an important source of risk (Sharma and Bhat, 2012; Jiantong et al., 2016; 

Blackhurst et al., 2008). A metrics widely adopted to evaluate operations capacity is the 

Overall Equipment Effectiveness (OEE), which is a performance measurement for 

equipment effectiveness in terms of productivity, based on three factors: Availability, 

Performance, and Quality (Tobe et al., 2018; Stamatis, 2010). As it can be seen, OEE 

includes also other metrics that have been described as different risk measure. 

 

Procurement delay risk 

Similarly to what has been discussed for the manufacturing delay risk, 

procurement delay has to do with any delays experienced by manufacturers in the 

procurement process of raw materials and components from suppliers, which in turns 

affects the regular execution of the production process (Zhang et al., 2018; 

Punyamurthula and Badurdeen, 2018). For this reason, it is related with the “Source” 

process of the SCOR-model classification, as it describes the activities of procuring and 

scheduling orders. 

 

Product quality risk 

 Supplying low quality products or components can have negative effects on 

product value as presented in Blackhurst et al., (2008). The risk of producing low 

product quality is mainly faced by upstream tiers in the supply chain (Sharma and Bhat, 

2012; Thun et al., 2011) which are in charge of components production and their 

subsequent assembly into the final product. The impact of the component poor quality 

risk is extremely important, so that it has been a key element in the supplier selection 

process, as presented in Lockamy III and McCormack, (2012). 
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Raw material shortage risk 

 Generally speaking, any production process aimed at transforming inputs in 

outputs needs raw materials. However, companies residing in the upper part of the 

supply chain might face higher raw materials shortage risks, since primary components 

and parts take place (Tuncel and Alpan, 2019; Punyamurthula and Badurdeen, 2018). 

However, different production processes are performed at any tier of the supply chain 

every production process can seek shortage in raw material supply (Badurdeen et al., 

2014). 

 

Shipment delay risk 

Canbolat et al., (2008) state that shipment delay risk is a primary matter of 

concern for managers since it frequently led to extra costs and loss of revenues. It is also 

worth mentioning that delay in shipment is an important source of intra-firm risk 

transmission (Qazi and Simsekler, 2021) as it directly delays the subsequent start of 

manufacturing processes in the following stage. For this reason, the shipment delay can 

be considered as risk “Deliver” process of the Supply-Chain Operations Reference 

(SCOR) model. 

 

Transportation risk 

Logistics is not only a primary issue for activities involved in distributions, but 

also to deliver semi-finished products between supply chain companies: transportation 

represents a crucial means to connect every node of the network. Thus, having poor 

infrastructure or lack of professionalism in the logistic sector is a matter of concern for 

managers of the whole supply chain (Sharma and Bhat, 2012).  

 

 To further illustrate the application of the methodology, based on the example 

showed in Figure 4.3. above, a subset of the aforementioned risks will be considered. 

Punyamurthula and Badurdeen (2018) state that the automotive manufacturer company 

suffer from raw material shortage and delivery issues which delays the following 

component production (i.e., manufacturing process stage delays). As previously said, 

manufacturing process delays strictly depends on equipment availability, production 

quality issues and its performances. However, since the raw material risks might not be 

directly controllable by the manufacturing company, it has been assumed as risk 
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affecting the raw material supplier (RM1) which is part of this model in the initial tier. 

A similar consideration can be done for the delivery process risk which impacts at first 

the raw material supplier and then the procurement of the manufacturer (M1). In 

addition, inventory issues have been included by the thesis as an internal risk for the 

raw material supplier and for the manufacturing company in order to model the 

subsequent losses derived by the internal operativity. As previously said, it has been 

assumed that the supply network has another path so as to model the Mexican division 

of production components. As already mentioned, such division includes a raw material 

supplier (RM2) and a manufacturing company (M2) which are affected by same kinds 

of risks with respect to RM1 and M1. The difference relays in the probability values, 

which will be described in paragraph 4.4 since they have been collected from the survey 

of Cano-Olivos et al., (2022) about Mexican automotive industry. The final stage of the 

supply network is represented by the assembly process. Again, probability values and 

network links have been collected from Ju and Pan (2016) who investigated risks in a 

Chinese assembly line. In particular, Ju and Pan (2016), state that assembly productivity 

(i.e., named efficiency) depends on both a correct materials timely delivery and 

equipment down rate as operational status of the equipment. To model losses, it has 

been added shipment delay as an internal risk for the assembly process (Figure 4.5). 

  

Figure 4.5. Risk dependency structure adopted for the example. 
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Since the main purpose of this thesis is to highlight the connection between 

operational risks and default effects, the intra-company risk-transmission process 

proposed by Hosseini and Ivanov (2019) will be assumed. Authors proposed a risk-

transmission model where the dependence among companies’ risks along the supply 

chain is given by material, components or products flows. Indeed, Hosseini and Ivanov 

(2019) model the supply chain disruption path from an upstream supplier q to the 

following tier r as the consequence of materials flow from supplier q to supplier r. 

Following the internal interrelationship of risks described above, it produces a 

conglomerate of cause-effect events, leading to default events as ultimate consequence. 

From this point of view, in this methodology the losses generated by supply chain 

companies can be interpreted as the “impact” of the operational risks. 

 

4.4. Marginal and conditional probabilities 

 
In this section, data related to the risk event occurrence for both root events (i.e., 

marginal probabilities) and the intermediate or leaf nodes (i.e., conditional probabilities) 

are presented. In particular marginal and conditional probabilities for raw material 

supplier 1 (i.e., RM1) and manufacturer 1 (i.e., M1) have been collected from the work 

of Punyamurthula and Badurdeen (2018). It is important to state that the paper models 

both delivery risks and OEE with truncated normal distribution. However, they also 

present mean as reference, which allowed to consider such value as input for the present 

model. The same consideration has been done for OEE risks. As the other branch (i.e., 

RM2 and M2) has been assumed to follow the same internal processes of RM1 and M1, 

conditional probabilities for internal and leaf nodes have been maintained the same in 

the example of Punyamurthula and Badurdeen (2018). However, since RM2 and M2 

operates in a different division, risks affecting that part of supply chain assume, 

reasonably, different probability values. To this end it has been considered the paper of 

Cano-Olivos et al., (2022) which estimates probability values for the Mexican 

automotive industry, and it will be accounted as marginal probabilities. In particular, 

delivery risks, raw material shortage and production capacity have been collected by the 

survey of Cano-Olivos et al., (2022). Operational risks for assembly process company 
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have been derived from the work of Ju and Pan (2016). To consult values of marginal 

probabilities and conditional probability tables just mentioned for the example, the 

reader can refer to Appendix A. 

The conversion of some data described above reflects the need to fit probability 

values to the Bernoulli distribution in order to populate the Bayesian network, which 

will be described in section 4.5. In fact, this modelling approach assumes the risk event 

can have two states: presence of risk event (with probability p) or absence of risk event 

(with probability 1-p). Instead, the loss occurring as consequence of firm default is 

function of the risk event occurrence to whom it is connected. Such risk event will be 

named critical risk or critical node in this framework. This means that after risk 

occurrence, the loss is sure. On the other hand, the absence of risk has no consequence 

in terms of loss. For instance, the loss function for a given node 𝑥 dependent on the risk 

event 𝐸 can be mathematically expressed as in equation (4.1): 

 

𝐿𝑥(𝐸) = {
1000                  if E = occurrs
0           if E = does not occur

                                           (4.1) 

 

However, the risky event on which the loss function depends is a random 

variable. Thus, the loss function can also be interpreted as a random variable as well.  

Of course, in real case studies, expert opinion on the interdependence of risks as 

well as the sampling of probability values remains an essential guide for a correct 

modelling approach. Other studies acquire graph structure of BN trough machine 

learning techniques or heuristic approaches such as local greedy search (Hosseini and 

Ivanov, 2021). The traditional probability estimation method adopted in literature is the 

frequency as the ratio between the event occurrence number over the total number of 

cases during a fixed timespan (Neapolitan, 2003). Given the great background 

specificity in which each supply chain is embedded, it implies that experts and 

stakeholders’ opinion directly involved in activities remains an unavoidable source of 

knowledge (Pitchforth et al., 2013). Therefore, questionnaires and interviews could 

facilitate the process of data collection. Prior probability values can be collected from 

specific performance indicators previously used to establish a correct cause-effect 
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relationship between events (Rabbi et al., 2020). In some parameter modelling 

approach, probabilities are instead entered by developing recovery timelines over the 

subsequent period following an event occurrence (Lawrence et al., 2020). Shi and Mena 

(2021) suggest using operational and financial performance measures while, again, 

relationships between risky events can be estimated through expert opinion. Qazi and 

Simsekler (2021), suggest developing three versions of the same Bayesian network 

introducing different probability values according to the worst, expected or most likely 

and best scenario. 

 

4.5. Bayesian network construction 

 
To implement the Bayesian model and to evaluate posterior probability values 

along the network, it might be useful to adopt a commercial software. Software tools 

allows not only to evaluate posterior probability values but also to perform additional 

analysis such as sensitivity and strength of influence analysis, or to run simulations. 

BUGS, Java Bayes, Hugin or BayesiaLab are some examples of online downloadable 

software. In the present study, GeNIe 4.0 Academic version software has been used. Its 

intuitive interface grants a quick usage, even in case of complex networks.  

After modelling the risk structure described paragraphs 4.3 and 4.4 and entering 

the probability values from Appendix 1, it is possible to run the model and observe its 

behaviour. The result obtained in this case can be seen in Figure 4.6.  
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Figure 4.6. Bayesian network model developed with GeNIe 4.0 Academic version. 

 

As can be seen from figure above, the square elements represent the risk event 

described as binary random variables. There, it is possible to highlight posterior 

probabilities for intermediary and leaf nodes. Arcs reflect the cause-effect relationship 

between these risks. The diamond-shaped elements show the losses associated with the 

realisation of the individual risk. They allow to assign the loss value (i.e., 1000) in case 

of critical risk event realisation and to keep a null value otherwise. In addition, risks 

have been translated with an alphanumerical code. 

Looking at the numerical results, it can be seen the delivery risk (R2) is a 

primary matter of concern for RM1 rather than the raw material shortage (R1). The 

latter will then influence the inventory risk (R3) that will affect the probability of timely 

procurement by M1 (R7). Conversely, RM2 faces a higher probability of Raw material 

shortage (R4) rather than a wrong delivery process (R5), which turns out to be 

significantly lower than in the previous case. In fact, the probability of procurement 

time delay (R11) by M2 is lower than what experienced by M1 (R7). The 

manufacturing delay risk of M1 (R8) shows a 20% probability of occurrence, similarly 
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M2 face a probability of occurrence of 19% for the same risk (R12). These values 

directly affect inventories (R10 and R14) which consequently causes a lower yield of 

the assembly process by A (R15). However, this risk is conditionally dependent from 

the equipment breakdown rate (R16) which lower the likelihood of occurrence of the 

previous risk and allows the process to recover efficiency. 

 

4.6. Default-risk profile assessment and credit portfolios 

 
On the basis of the Bayesian network discussed above, and the results presented 

in Figures 4.6, this paragraph introduce a default risk profile assessment for supply 

chain companies as well as some credit risk measures such as Value at Risk and 

expected loss that allow the creditor to choose suboptimal credit allocation solutions 

among different supply chain debtors. Indeed, this paragraph adopts the creditor 

perspective, that is not directly involved in supply chain management, but that is 

interested in introducing a measure that can account for his/her credit riskiness based on 

the management of internal activities. In order to understand how the interaction of risks 

has consequences not only within the company but it can negatively affect other supply 

chain nodes, some credit portfolio cases will be analysed. Formally speaking, the credit 

portfolio models introduced in this paragraph are those already introduced in section 

3.2.1. As such, the lender is interested in understanding how to allocate the overall 

budget by deciding whether to grant credit to a small set of companies, thus selecting 

only few of them in his/her portfolio or deciding the amount of credit to assign to each 

supply chain company (i.e., a certain percentage of the total budget). The cases of 

portfolio presented in this section allows to identify some heuristics in order to 

minimise the overall portfolio loss in terms of expected loss and Value at Risk measure. 

 In the first case, the Portfolio is composed by receivables from two companies 

not mutually influenced by their operational risks (i.e., M1 and M2). Here, weights of 

assets allocated to each security are uniformly allocated, 𝑃1  =  (𝑤𝑀1, 𝑤𝑀2)  =

 (50%, 50%). The corresponding loss distribution of such a portfolio can be seen in 

Figure 4.7.  
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Figure 4.7 Loss distribution for the first portfolio 𝑃1 scenario 

 

Analysing the distribution, it shows that the portfolio has an expected loss of 

198.8. At the same time, the Value at Risk (VaR) for this case, at a confidence value of 

both 90% and 95%, is 500. These measures show a high-risk profile for this portfolio. 

The holder of the portfolio should allocate the budget more wisely in order to minimise 

potential losses derived by debtor insolvency. Now, suppose a second case of a portfolio 

consisting of three securities, instead of two. This new portfolio will be composed by 

debts from RM1, M1 and M2. As before, also in this case the weights allocation 

strategy remains the same (i.e., weights are distributed uniformly for each security), 

𝑃2  =  (𝑤𝑅𝑀1, 𝑤𝑀1, 𝑤𝑀2)  =  (33%, 33%, 33%). The corresponding loss distribution 

for P2 is shown in Figure 4.8.  
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Figure 4.8 Loss distribution for portfolio scenario 𝑃2 

 

As can be seen from the distribution analysis, this portfolio shows worse credit 

risk than in the previous case. This assumption is confirmed by the relative risk 

measures: the expected loss accounts a value of 219.2 compared to 198.8 of P1, while 

the Value at Risk, which is again equal for both confidence intervals, reported a value of 

666.7. It is now clear that the risk profile of RM1, which has not been previously 

included, raise the loss values of the portfolio. The latter asset shows an expected loss 

value of 260. In the light of these considerations, let us assume a third scenario in which 

debit from RM1 has been replaced with another less risky security. The portfolio holder 

could adopt a credit risk mitigation strategy by substituting a risky asset with a less 

risky one, while keeping equal relative weights for each security (i.e., 33% allocated to 

each of them). At this point it is obtained a portfolio 𝑃3  =  (𝑤𝑀1, 𝑤𝑀2, 𝑤𝐴)  =

 (33%, 33%, 33%). The loss distribution is shown below (Figure 4.9). 
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Figure 4.9 Loss distribution for portfolio scenario 𝑃3 

 

The risk measures already adopted for other portfolios confirm what stated 

above: it shows less risk in terms of credit. The expected loss is now equal to 172.6, the 

Value at Risk at 90% is 333.3, while the same measure at a level of 95% is equal to 

666.7. Therefore, it has been enhanced the situation of the portfolio. Similarly, another 

strategy could update the relative weights of assets based on company’s relative 

riskiness, and not by their mere replacement. To this end, it is possible to introduce a 

heuristic for the expected loss of individual companies. A possible solution could be to 

calculate the relative weight based on the probability of default of one firm with respect 

to the other in the portfolio as shown in equation 4.1. 

 

𝑤𝑖 =
𝑃𝑖[𝐸𝑖=𝑇𝑟𝑢𝑒]

∑ 𝑃𝑘[𝐸𝑘=𝑇𝑟𝑢𝑒]𝑁
𝑘=0

                                (4.1) 

 

Where  𝑤𝑖 is the relative weight for asset 𝑖, 𝑁 is the set of assets to include in the 

portfolio and 𝑃𝑘[𝐸𝑘 = 𝑇𝑟𝑢𝑒] the probability that every risky event of firm 𝑖, 𝑘 ∈  𝑁 

occur. However, equation 4.1. would bring to misleading results since the security from 

the riskiest firm would have the highest budget allocation. Instead, the objective of the 

creditor is the opposite: the riskiest firm must have the overall lowest budget allocation. 

Such problem can be solved by substituting the expected loss with its inverse. 
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=
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𝐿𝑖
[∑

1

𝐿𝑖
 𝑁

𝑘=0 ]
−1

                     (4.2) 

 

Where  𝑤𝑖 is the relative weight for asset 𝑖, 𝑁 is the set of assets to be included 

in the portfolio with 𝐿𝑘 as expected loss for every 𝑖, 𝑘 ∈  𝑁. This study deals with 

Bernoulli distribution where the loss value occurs only in the case of a risky event and 

does not occur in the opposite case. However, equation 4.2 can be applied for every 

probability distribution either discrete or continuous including different levels of losses.  

In the light of these considerations, it is possible to review all the previous 

portfolio scenarios, by adopting the weights calculation procedure shown in equation 

4.2, in order to check the effectiveness of this heuristic. Let introduce again the case of 

portfolio 1, where the loans granted to M1 and M2 were allocated. By introducing 

equation 4.2, the weights will be then 48.5% of the overall budget to M1 and 51.47% to 

M2. In other words, the new portfolio 𝑃4  =  (𝑤𝑀1, 𝑤𝑀2) = (48.5%, 51.5%). The loss 

distribution for this scenario is shown below (Figure 4.10). 

 

 
Figure 4.10 Loss distribution for portfolio scenario 𝑃4 

 

The expected value of the loss distribution is equal to 198.65 compared to 

198.82 in the previous case. However, the VaR shows higher values with respect to 

portfolio 1: in this case, either considering a confidence interval of 90% or 95%, the 

VaR is equal to 514.7, while it was 500 in the previous case. The explanation lies in the 
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fact that Bayesian network are dealing with discrete distributions, whose relative VaR 

values require approximations to the nearest upper integer, as already illustrated in 

Chapter 3. A similar process can be adopted to evaluate portfolio 2 again, which 

included debt from RM1, M1 and M2. Using equation 4.2 it is possible to find again the 

relative weights. In this case 𝑃5  =  (𝑤𝑅𝑀1, 𝑤𝑀1, 𝑤𝑀2)  =  (27.64%, 35.11%, 37.25%). 

In Figure 4.11, the loss distribution of this portfolio is shown. 

 

 
Figure 4.11 Loss distribution for portfolio scenario 𝑃5 

 
With weights adjustments, the expected loss is now equal to 215.61 compared to 

219.2 calculated with uniform weights for each security. At the same time the Value at 

risk at 90% is equal to 627.5, while considering a confidence interval of 95% it has been 

obtained a value of 648.9. In this scenario, a clear improvement in the credit risk profile 

of the portfolio can be appreciated. This suggests that, given a portfolio, not only the 

choice of the assets themselves represents a crucial point, but also the criterion for 

allocating the quantities rise different scenarios of riskiness. Finally, the calculation of 

portfolio weights by means of equation 4.2 for the third scenario (i.e., portfolio 3). It 

should be remembered that the portfolio was previously composed by equal weights on 

M1, M2 and A. Following the calculation, it is obtained an allocation of weights as 

𝑃6  =  (𝑤𝑀1, 𝑤𝑀2, 𝑤𝐴) = (26.58%, 28.19%, 45.23%). Figure 4.12 shows the loss 

distribution. 
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Figure 4.12 Loss distribution for portfolio scenario 𝑃6 

 

It should be remembered that in the previous case (i.e., portfolio case 3), where 

all the weights have been equally allocated to each security, it has showed the lowest 

risk profiles in terms of Expected loss and Value at Risk among all the previous 

portfolios. In this case, the expected loss of 𝑃6 is equal to 163.2 compared to 172.6 of 

the previous case (𝑃3). Therefore, also for this portfolio it is possible to appreciate 

considerable improvements in terms of expected loss minimisation. The Value at Risk 

at 90% is equal to 372.5 while at 95% it is equal to 627.5. In the third scenario these 

values were equal to 333.33 and 666.7 for a confidence interval of 90% and 95% 

respectively. In general, all the portfolios for which heuristic introduced in equation 4.2 

has been applied, a better risk allocation both in terms of expected loss and of Value at 

Risk have been observed. Based on the available data about probability of loss 

associated with the occurrence of operational risks, it is possible to appreciate how 

creditors can consciously build portfolio based on the risk profile of supply chain 

companies. Both the reasoning adopted in the building process of credit portfolios and 

the heuristics for the choice of weights introduced in this paragraph, do not allow to find 

optimal solutions. In future, it might be interesting to introduce optimisation methods 

that can minimise risks on the basis of available data. For example, it could be useful to 

adopt optimization techniques to minimize Value at Risk (Larsen et al., 2002) or the 

risk measures such as Conditional Value at Risk (CVar) as suggested by Andersson et 

al., (2001). 

 

56.47%

14.53% 13.50%

7.72%
3.47% 1.99% 1.85% 0.48%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0 265.8 281.9 452.3 547.7 718.1 734.2 1000

P
ro
ba
bi
li
ty

Loss

Portfolio 6 - Loss distribution



  
72 

 

4.7. Risk mitigation strategies 
 

In supply chain management, risk mitigation strategies represent managerial actions 

aimed at minimizing the impact of risks or their probability of occurrence. Risk 

mitigation strategies can be divided in two basic categories: proactive and reactive 

strategies. The purpose of proactive strategies is to reduce the probability of occurrence 

of risks in advance with respect to a certain unplanned event. On the other hand, 

reactive strategies allow to manage the supply chain capacity following the occurrence 

of a given risk (Sharma and Bhat, 2012). This thesis will deal with the case of 

preventive strategies as they can be used by managers to evaluate the reduction in the 

probability of occurrence of risks over a certain period of time. Indeed, reactive 

strategies are not aimed at diminishing the probability of occurrence of risks but rather 

to recover the overall supply chain operativity following the occurrence of a certain 

disruptive event. In other words, these measures can either reduce the probability of 

occurrence of risks (Tuncel and Alpan, 2010; Dehdar et al., 2018) or limit their impact 

on the supply chain (Sharma and Bhat, 2012; Cano Olivos et al., 2022). In this study, 

risk mitigation strategies are intended to be the set of measures necessary to reduce the 

occurrence of operational risks in supply chains, whose impact is concretised over the 

financial status of the company. In the light of what has been discussed in previous 

chapters, the introduction of risk mitigation strategies allows not only to reduce the 

probability of occurrence of risks directly affected by the action of such strategies, but 

they can also benefit the subsequent probability of occurrence of intermediate and child 

nodes, as consequence of Bayesian network structure and conditional probabilities. In a 

real methodology development, the decision whether to mitigate a certain risk is strictly 

dependent on the type and nature of such event, as they can produce different effects 

(Çıkmak and Ungan, 2022). Despite the introduction of risk mitigation strategies to the 

example showed in this thesis is not possible, some of the strategies mostly developed 

by literature in the automotive sector can be illustrated.  

On the procurement process side, Thun and Hoenig (2009) state that multiple 

procurement sourcing allows to ensure the delivery of parts in case one of them fails in 

the supply process. Therefore, a broad portfolio of suppliers, where some of them 

guarantee a material supply in case of failure of another supplier, is an important risk 

mitigation strategy (Dehdar, et al., 2018) for manufacturing and assembly companies as 
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it allows to run internal operations and to avoid interruptions. This has been confirmed 

by Sharma and Bhat (2012) which state that dependency of firms with their suppliers 

might cause disruptions, while a closer relationship can increase efficiency. In 

particular, a flexible procurement process has the ability to adapt procurement needs in 

order to follow changes in customers behaviour. The term flexibility represents a core 

part of risk mitigation strategy, as it allows to cope with uncertainty due frequently 

changing conditions either external or internal to the supply chain (Çıkmak and Ungan, 

2022). Another important enhancement can be provided by flexibility in production 

capacity which is the ability to adjust the overall manufacturing production capacity in 

terms of resource utilisation. In this sense, information related to change in national and 

internal market as well as their continuous updating process represents a fundamental 

mitigation approach (Cano-Olivos et al., 2022) to guarantee manufacturing and 

assembly companies a match between supply and demand. Indeed, operational 

flexibility allows firms to react in case of such circumstances: this could be achieved 

through the introduction of a multifunctional workforce or the use of machinery and 

equipment interchangeably, allowing an adaptation of production processes to demand 

variability (Çıkmak and Ungan, 2022). Inventory holding is another key risk mitigation 

strategy, even if this practice is often considered undesirable and avoided by automotive 

companies (Çıkmak and Ungan, 2022). An inventory-related risk management strategy 

is the creation of buffer inventories for critical parts in order to prevent supplier delays, 

while reducing the impact of disruption. Inventory safety stocks allows to create 

redundancies (Thun and Hoenig, 2009), that are the processes of keeping additional 

stocks in order to guarantee operations continuity in case of lack of raw materials, 

defective parts or changing demand (Dehdar, et al., 2018). On the demand side, a 

standardise delivery times with companies’ customers (e.g., cars dealers, distributors or 

for suppliers, manufacturing companies) might enhance the process of order fulfilment 

and mitigate demand variability. Cano-Olivos et al., (2022) state that knowing the 

demand forecasting process as well as the planning horizon of forecast can provide 

benefits on the demand side. Flexibility can also improve the strategic process of goods 

transportation: it allows to reduce overall costs of shipping goods and raising 

transportation capabilities. Multimodal transportations represent an effective method to 

provide flexibility. This practice can be integrated by adopting different transportation 

providers and alternative routes (Çıkmak and Ungan, 2022). 
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As previously said, the case study does not allow to introduce risk mitigation 

strategies and to measure their effectiveness on the supply chain risk management 

process. However, to illustrate Bayesian network effectiveness in managing and 

monitoring mitigation strategies, an example from a methodological point of view can 

be now presented. In particular it is supposed that, following a certain risk mitigation 

strategy, from managers of RM1, the risk occurrence of delivery issues becomes 24% 

with respect to the 40% introduced in the standard scenario (Figure 4.13).  

 

 

Figure 4.13 The Bayesian network after the introduction of the mitigation strategy. 

 

The beneficial effects of this improvement are appreciable on the subsequent 

risk probability of occurrence of M1 which reports a lower probability of default: 

procurement time delay risk becomes 34% with respect to the 40% of before, while 

inventory risks occurrence was 20% but now they show a probability of 19%. In 

addition, both the assembly productivity (efficiency) risk and shipment delay 

probability at the assembly tier are now 11.72% with respect to the 12.13% before 
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introduction of the mitigation strategy. These improvements can be observed in terms of 

credit risk as well. In this regard, consider the example of portfolio 5 illustrated in 

paragraph 4.5. This portfolio was made up of credits to RM1, M1 and M2 and the 

weights related to this scenario have been calculated using equation 4.2. Since the 

operating conditions have changed, the weights mentioned above need to be evaluated 

again, by adopting the same logic as before. It follows that the new credit portfolio will 

be 𝑃7  =  (𝑤𝑅𝑀1, 𝑤𝑀1, 𝑤𝑀2)  = (21.93%, 29.42%, 48.63%). Figure 4.14 shows the loss 

distribution for this scenario. 

 

Figure 4.14 Loss distribution for portfolio scenario 𝑃7 

 

From this portfolio analysis it follows that the expected loss is now equal to 

171.10 with respect to the 215.6 shown in 𝑃5. In other words, the risk mitigation 

strategy led to a reduction in the portfolio expected loss of the 21%. At the same time 

the Value at risk at 90% is equal to 372.5 while it was 627.5 in 𝑃5. With a confidence 

interval of 95%, the VaR is now 627.5 whereas in 𝑃5 it has been obtained a value of 

648.9. Under every risk measure, the mitigation strategies showed an enhancement in 

the portfolio losses. It has been proved that even external creditors can benefits from the 

adoption of supply chain risk mitigation strategies.  

In conclusion, it can be said that this methodology could also be used to 

understand how best to deploy risk mitigation strategies in order to minimise the 

disruption effects along the supply chain. In fact, the Bayesian network structure can be 
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exploited to regularly update the probability conditions, both marginal and conditional, 

of risks occurrence and to appreciate their effects in the long run. On the other hand, the 

effect of risk mitigation strategies can also be observed on the probability of default of 

companies placed along the distribution chain, as these can guarantee, in a preventive 

manner, a smooth execution of operations, minimising the occurrence of risks. 
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5.  CONCLUSIONS  
 

 
The purpose of this last section is to summaries the main findings of this work 

and their implication on the academic and managerial perspective. Since this is a 

theoretical study, it is affected by some limitations either from a modeling perspective 

and, consequently, also from the point of view of its predictive capacity. For this reason, 

the work is open to future deepening and improvement, briefly outlined in section 5.3. 
 

5.1. Academic and practical implications of the work 
 

This work has shown how the inter-dependency between risks can have effects 

on the occurrence of other disruptive events along a multi-tier supply chain: an internal 

operation performance measure monitoring the actual impact of risks is not sufficient to 

provide an overall prediction of the company’s financial distress as risks can be 

conditionally dependent. Despite its limitation from a modeling point of view, this work 

can contribute to literature in the supply chain management field in two ways: first, it 

confirms the importance of information sharing to better understand potential risks and 

opportunities related to typical supply chain business agreements. In this sense, it 

confirms what stated in Badurdeen et al., (2014), where authors underline the need of a 

better collaboration between network companies and their suppliers in order to identify 

risks in advance and improving the reliability of supplies. This consideration is even 

more important when one considers that supply chain companies are often contractually 

bounded by supply chain financing modes as well: a greater information sharing can 

enhance the willingness of members to introduce SCF contracts, on the basis of the 

risks. Thanks to the mathematical rigorousness provided by Byesian networks, the 

methodology may indicate to managers how to focus risk mitigation efforts so as to 

guarantee operational continuity and avoiding debt-repayment insolvency events. Out of 

the supply chain, this model can be used by creditors, mostly interested in knowing the 

actual probability of default of supply chain companies given the riskiness of internal 

operations. Indeed, default measures introduced to evaluate risk profile of debtors, 

rarely consider operational aspects that can enhance the predictive ability of default 
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models. In addition, the risks measure that have been introduced to evaluate the risk of 

credit faced by external creditors (i.e., loss distributions, expected loss or Value at risk) 

are widely used in finance, thus allowing an easy adoption in case of real applications. 

Value at risk estimated within a probabilistic setting is also able to capture the overall 

risk of a supply network, which would not be caught in case of point estimations as they 

do not capture the loss distributions (Qazi and Simsekler 2022). In this sense, the thesis 

has introduced a double perspective on the supply chain risk management field: 

operational and financial risks have been integrated in a cause-effect relationship.  

Considering the modeling approach, Bayesian networks represent a powerful 

tool, that is able to catch the interdependence between risks along several nodes of the 

network, even in case of little data availability (Pitchforth and Mengersen, 2013). By 

means of conditional probabilities, BNs carries out additional information with respect 

to classical risk assessment approaches, which usually relies on the concept of 

probabilities and impacts. In fact, one of the many advantages of BNs in this thesis is 

represented by its modeling capacity in case of heterogeneous data and few information 

at hand. For this reason, they can be nimbly introduced into business practices, without 

resorting to overly laborious analysis, since most of the software currently available on 

the market allows an accessible representation of Bayesian networks. In addition, the 

risk structure developed in this thesis can be populated with different probabilities 

values depending on the nature and context of application, and regularly updated in 

order to observe real effects of supply chain risk mitigation strategies. 

 
5.2. Limitations 

 
As a natural consequence of many other studies, this methodology is affected by 

limitations. First of all, it is necessary to mention the scarcity of data available from the 

literature, business, or industry reports, which did not allow to elaborate a more 

comprehensive example, including additional risk sources. On the other hand, this 

consideration confirms the fact that the risk modelling approach, by means of Bayesian 

networks, and their consequences over the financial point of view is still an 

underdeveloped research topic. If the academic side revealed undeniable difficulties in 

the development of the case study, this limitation can be overcome when dealing with a 
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real case implementation. In fact, the probability of occurrence of risks can be easily 

calculated from expert judgement or historical data. However, the methodology assumes 

that both risks and probability values of each company in the chain are perfectly known 

and regularly updated. On the other hand, a risk mapping process accounting for 

internal company risks only represents a partial solution to the problem, as it limits the 

decision-making ability of managers in adopting the appropriate risk mitigation 

strategies. From a financial point of view, it is clear that the amount of information 

available to potential external creditors does not allow for a complete representation of 

loss distributions. The first reason, already experienced in the development of the thesis, 

lies in the fact that much of the information is confidential and therefore not released to 

stakeholder outside the company (Qazi et al., 2015). It must be also emphasized that the 

methodology is not capable to fully represent the probability of default of a company, 

even in the rare case of perfectly known probabilities. This is due to the fact that many 

other factors play a crucial role in assessing the financial risk of a corporate. In this 

regard, the model, accounts for business riskiness in terms of its operational 

management and do not consider other source of financing mode which might be 

included in case of future applications. 

 From a methodological point of view, only a few operational risks have been 

included in the work due to the difficulty in defining both conditional probability values 

and risk dependence for a specific industry. Although this methodology can be adopted 

in any industry, regardless of the structure of the supply chain, the nature and type of 

risks illustrated in the thesis is purely specific to the automotive industry context. 

Indeed, the structure of the Bayesian network, as a measure of risk interdependence, is 

related to the type of supply chain of interested and there can be no general scheme to 

draw on (Shi and Mena, 2021). As mentioned in other chapters, this thesis only 

considers the downstream ripple effect as a mode of risk transmission process, ignoring 

the upstream transmission modes, which typically affects information flows (Cao et al., 

2022). This aspect represents an important limitation of the study since risks related to 

information flows might affects supply chains with equally dramatic consequences. 

Furthermore, this study does not model upside potential risks that could improve the 

predictive ability of the model. Operational risks have been modelled using binary 

variables, thus losing much of the information that would have been gathered using 

different distributions depending on the nature of the risks (Hosseini and Barker, 2016). 
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In addition, the interaction between financial risks has been ignored. It is also necessary 

to emphasize that an optimal portfolio in terms of minimum risk has not been 

introduced. As a consequence, the introduction of heuristics in the choice of weights 

leads to sub-optimal solutions that could be improved with appropriate optimization 

approaches.  

 

5.3. Future research 

 
This section defines possible future research developments by highlighting their 

benefits under both the modeling and application point of view. Therefore, future 

research could focus on the development of other case studies, where data are collected 

by means of questionnaires and interviews to managers and databases about past risk 

occurrence. Risk mitigation strategies could be included in the methodology in order to 

test its effectiveness in predicting and monitoring risk occurrence. At the same time, it 

could be worth to introduce other risky events, out of the operational scope, in order to 

increase the representative capacity of the model. For example, Environmental risks 

(e.g., natural disasters, pandemic etc.), economic (such as price volatility, change in 

exchange rate, inflation etc.) political (related to the country legislation) can be included 

in the model. Although identifying the right dependency between these categories could 

not be an easy task, some authors have attempted to include these risks in studies of 

supply chain management (Lockamy and McCormack, 2012; Badurdeen et al., 2014; 

Lockamy III 2018; Philip et al., 2021; Badhotiya et al., 2022). At the same time, another 

future improvement of the work can include other risk transmission processes related to 

information or financial flows from downstream supply chain firms to upstream 

companies. This would allow to study other contagious modes as in the case of the 

bullwhip effect. To comply with the choice of an optimal portfolio in terms of minimum 

credit risk, future research could introduce optimization techniques in order to find 

optimal solutions rather than portfolio construction by means of heuristic techniques in 

the choice of the weights. For example, optimization techniques which include the 

minimization of the Value at Risk (Larsen et al., 2002) or through other risk measures 

such as Conditional Value at Risk (CVar) as suggested by Andersson et al., (2001). 

Under the methodological perspective, a possible future line of research could 

model risk events by means of other probability distributions, different from the 
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Bernoulli variables to model probabilities of occurrence, depending on the type of risks 

described at the beginning of paragraph 5.1. Variables with different distributions, 

either discrete or continuous, could describe more accurately the probability of 

occurrence of risk events. For example, the probability that a product delivered by the 

supplier is defective can be modelled with a Beta distribution (Hosseini and Barker, 

2016). Of course, the risk events modelling approach trough continuous random 

variables raise the difficulties of the problem: the management of conditional 

probabilities within the Bayesian network requires a discretization of the states. Another 

further improvement could include the modelling approach of a dynamic version of 

Bayesian networks (i.e., Dynamic Bayesian Networks – DBN) to model system 

behavior as both internal and external conditions change over time. Mitigation strategies 

can be included in the Bayesian network model as network decision nodes in order to 

allows managers in the subsequent selection of the proper risk mitigation strategy. To 

facilitate the integration of this methodology with typical risk management 

identification processes, it could be useful to adopt risk matrix to collect data used in the 

subsequent creation of the quantitative model (Qazi et al., 2022). Thanks to the 

availability of commercial software that can be easily introduced in real applications, it 

might be possible to adopt further statistical analyses such as sensitivity analysis or 

strength of influence. For example, the sensitivity analysis allows to analyze which 

variables have a predominant impact on another variable of interest (Hosseini and 

Ivanov 2019; Shi and Mena 2021).  
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APPENDIX A – Conditional probabilities 
table 

For each risk described in the example shown in Figure 4.6, conditional 
probabilities tables are presented. 
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