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Abstract

The development of technologies that enable operational capabilities that
broaden the range of missions carried out by CubeSats has recently been the
focus of governmental and private actors in the field of small satellites. The exami-
nation and observation of larger spacecraft (like the International Space Station) or
debris is a useful example of a new small-sat mission. In this context, a TDE study
developed the Space Rider Observer Cube (SROC) mission, which attempts to
demonstrate the critical capabilities and technologies needed to successfully carry
out an inspection mission in a safety-sensitive environment. This in-orbit demon-
stration could pave the way for a variety of cutting-edge CubeSat applications in
the field of inspection missions. Space Rider is an unmanned spacecraft designed
to provide Europe routine access and return from Low-Earth Orbit (LEO) with a
space transportation system that is economical, independent, and reusable. The
SROC mission consists of a 12U CubeSat deployed from the Space Rider cargo
bay to closely inspect the vehicle in a safety-sensitive context with a multispectral
camera. In fact, visual, near-infrared, and thermal infrared photos of Space Rider
in-orbit may be useful for understanding its status and performance (e.g. heat
shield deterioration), as well as for outreach. The main objective of the thesis
is to define guidance and control strategies for small satellites involved in the
observation/inspection of a collaborative target. Due to the difficulties in modeling
internal and external disturbances and usually also in accurately measuring the
system parameters, a super-twisting sliding mode control law has been proposed
for the spacecraft attitude tracking. For the attitude guidance it has been used
a method based on computing the Euler axis to correctly point, in each position
of the trajectory, to the center of mass of Space Rider. Then, in MATLAB and
Simulink environment, it has been implemented an orbital simulator where the
attitude dynamics and the attitude control could be simulated. Finally, a robustness
analysis through Monte Carlo simulations has been conducted.
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Chapter 1

Introduction

In their surroundings, satellites are singularly alone. From initial operational
capability (IOC) to end of life, they are launched with everything they require for
their entire mission. With the October 4, 1957 launch of Sputnik, this has been
the standard in civil, commercial, and military spacecraft design. This eventually
produced fully redundant designs and extremely lengthy mission life. Satellites
cannot currently be physically upgraded, refueled, or repaired after they are in orbit,
with a few notable exceptions. On-orbit servicing (OOS) activities, however, have
only sometimes been carried out since the beginning of space exploration. Gemini
and Apollo missions managed to demostrate rendezvous and proximity maneuvers
(RPO). Skylab and Solar Maximum Mission (SMM) showed that it was possible to
repair essential components while in orbit, with SMM utilizing a modular design
and orbital replacement units (ORUs). Five service visits were made to the Hubble
Space Telescope (HST), during which time circuit boards were replaced. The
International Space Station (ISS) was built in space and is continuously upgraded
with new modules, supplies, and fuel to expand its capabilities and open up new
scientific opportunities. All of these tasks required the involvement of humans,
either directly or indirectly. However, the Orbital Express (OE) by the Defense
Advanced Research Projects Agency (DARPA) demonstrated a full end-to-end
robotic satellite servicing mission that featured autonomous docking, fuel transfer,
and ORU change-out, basically taking humans out of the picture.

OOS refers to on-orbit operations carried out by a spacecraft that closely
examines another resident space object (RSO) or causes intentional and positive
alterations to that item. Non-contact support, orbit modification (relocation),
maintenance, refueling and supplies replenishment, upgrade, repair, assembly, and
debris mitigation are some of these tasks. A servicer is a spacecraft with equipment
intended solely for doing servicing activities. Client refers to an RSO that has
received OOS. A customer may be cooperative or uncooperative. Information
(position, velocity, health/status, etc.) is transferred between the servicer and client
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via two-way crosslinks or ground connections to facilitate tasks like as acquisition,
tracking, rendezvous, mating, and/or servicing. A commercial resupply vehicle
made to mate with the ISS is an illustration of a cooperative client. A non-
cooperative client does not provide information with the servicer and does not
provide features intended to facilitate acquisition, tracking, rendezvous, mating,
and/or servicing activities. Examples of uncooperative customers include defunct
satellites, abandoned rocket bodies, and orbital debris. The level of cooperability
is a spectrum, and most of the time a client is neither fully cooperative nor
uncooperative.

In this context, one of the most relevant planned mission is the Space Rider
Observer Cube (SROC) mission, which aims to demonstrate the critical capabilities
and technologies required for successfully executing an inspection mission in a
safety-sensitive context. This in-orbit demonstration has the potential to open
a wide spectrum of novel applications for CubeSats in the area of inspection
missions. In fact, the close observation of orbiting objects with Cubesats can
efficiently support a wide range of applications, such as the inspection of defunct
satellites for preparing active debris removal missions, or the inspection of operative
spacecraft (International Space Station, telecom satellites) for maintenance purposes.
Multispectral images (visual, near-infrared, thermal infrared) of Space Rider (SR)
in-orbit could be beneficial for getting insight in its performance and status (e.g.
heat shield degradation), and for outreach purposes. The SROC Design Reference
Mission consists of a 12U CubeSat deployed from the Space Rider cargo bay with
the purpose of imaging the vehicle from its vicinity with a multispectral camera.
The main objective of the thesis is to define guidance and control strategies for
12U Cubesat involved in the observation/inspection of a collaborative target; in
particular, SROC has to point the center of mass of Space Rider during all the
manoeuvre.

Due to the constrained hardware resources of the sensors, actuators, and pro-
cessors installed on board, precise attitude tracking control of small satellites is
a challenging issue. The attitude control of miniaturized spacecraft is further
complicated by the impact of model uncertainty and persistent disturbances like
gravity-gradient, magnetic, aerodynamic, and solar radiation pressure torques on
the satellite dynamics. Hence, robust controllers represent a more dependable solu-
tion to cope with the mission limits when actuator limitations and strict pointing
requirements exist.

In recent years, Sliding Mode Control (SMC) techniques, such as adaptive
Super-Twisting SMC [1, 2] , fractional-order Sliding Mode Control [3], finite time
control [4], robust backstepping SMC [5, 6, 7], and Model Predictive SMC [8], have
become a major research area in control theory. One of the characteristics of the
SMC is its better resistance to matching disturbances. The chattering effect of
the control signal is the cost of robustness, though. For actual implementations, it
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makes application challenging [9]. The following are some strategies to reduce the
chattering phenomenon [10, 11, 12]:

1. substituting a saturation function or sigmoid function for the discontinuous
switching function;

2. employing an adaptive law to dynamically change the switching gain;

3. utilizing higher-order SMC approaches.

Yet, skill (1) causes the robustness to the disturbances to be lost. Despite the
fact that technique (2) can estimate the switching gain’s magnitude accurately
in relation to perturbations [13, 14], the estimation of the switching gain may
rise monotonically because there isn’t always ideal sliding motion in real-world
applications. The gain/stability calculations for (3) are rather difficult. In the
presence of the matched perturbations, the high-order SMC method can drive the
sliding variable and its subsequent derivations to zero. However, the fact that the
high-order SMC relies on data from the high-order temporal derivatives of the
sliding variable presents its primary difficulty [15, 16]. The second-order SMC, like
the Super-Twisting algorithm, among the higher-order SMC algorithms, should
be noted as requiring only the feedback data of the sliding variable in the control
process. Dr. Levant made the initial Super-Twisting algorithm proposal [17]. In
the proof of the finite-time convergence property, a quadratic Lyapunov function
suggested in [18] is taken into account. The Super-Twisting method has been used
in numerous investigations, including quadrotor [19, 20], industrial emulator [21],
and mobile wheeled inverted pendulum [22], due to its better features. While
[23] suggests a modified form of Linear Matrix Inequality (LMI) that can meet
the convergence performance by requirement and has more degrees of freedom for
determining the decision variables, [24] develops a Super-Twisting Sliding Mode
Control to provide precise attitude tracking for a flexible spacecraft’s attitude and
suppress the exciting vibration of its appendages at the same time. For this reason,
in this thesis the robust continuous Super-Twisting Sliding Mode algorithm will be
used for the attitude tracking control.

Furthermore, an other reliable solution may be the Model Predictive Control
(MPC), even though it is usually necessary to linearize the attitude dynamics
(resulting in simplifications in neglecting the non-linearities). In fact, Model
Predictive Control has been used in spacecraft relative motion and attitude control
as a successful feedback control technique that resolves an online constrained
optimization problem [25, 26]. While non-linear dynamics and constraints would
necessitate the use of a non-linear MPC (NMPC) [27], unless the problem is
linearized, such as rotating hyperplanes [28, 29], the optimization problem can
be reduced to a constrained quadratic programming (QP) problem when MPC is
applied to linearized dynamics with linear constraints. However, classical MPC
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controllers can only provide a limited degree of inherent robustness as a feedback
control scheme, which makes them insufficient to ensure the robustness needed to
deal with disturbances and to satisfy mission and system constraints when external
noise is present in the system dynamics [30]. Hence, a robust method is necessary
to ensure performance under nominal operating conditions as well as to provide
adequate resilience against parametric uncertainty and persistent disruption. For
this reason, [31] proposes a tube-based robust MPC (TRMPC) approach to control
the attitude of a small satellite during an Earth observation mission in order to
guarantee the desired pointing accuracy. Moreover, [32] suggests a TRMPC for
accurate attitude control that is based on quaternion error linearized attitude
dynamics. In this context, in the chapter 6 of this thesis a Model Predictive Control
algorithm for the attitude tracking control in the case of a time-vaying reference
will be introduced.
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Chapter 2

Mathematical problem

2.1 Manoeuvre description

Once the deployment from the Space Rider cargo bay, the Early Operations Phase
(EOP) and the Rendezvous Phase are completed, SROC achieves the relative
position with respect to Space Rider to start the Observation Phase; during this
phase, the manoeuvre, that SROC has to carry out, can be summarized as follows:
SROC performs 4 ellipses (with a radius of about 200 m) around Space Rider
advancing along the x direction in the LVLH frame (Appendix A) and guaranteeing
the payload operating range.

The figure 1 shows an example of the manoeuvre in the LVLH frame centered
on Space Rider.

Therefore, the objective is to define an attitude guidance, based on the Euler
Angles (Appendix B) or on the quaternions (Appendix C), in order to ensure that
SROC, in every point of its trajectory, can point to Space Rider’s center of mass.
Once an attitude guidance is defined, it is necessary to select the most suitable
control law. It is evident that the case analysis is a problem of non-linear attitude
control, therefore it is not possible to choose any kind of control law because,
for example, the PID controller requires a linear dynamic system or non-linear
dynamic system that can be linearized around an equilibrium point. Furthermore,
the system mathematical model is often difficult to model due to the presence of
non-linearities, which should be neglected, variables or other simplifications, these
models are not always reliable. Beside these motivations some dynamic phenomena
could be neglected and, at the same time, a perfect evaluation of disturbances is
impossible. Robustness is required to design a system through strong simplifications.
Therefore, also the Linear Quadratic Regulator (LQR) controller is not suitable for
the case analysis, because it is robust with respect to only small uncertainties.

According to all these considerations, the most suitable control laws that have
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Figure 2.1: Helix manoeuvre
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been selected are the Sliding Mode Control (SMC) and the Model Predictive
Control (MPC).

2.2 Control laws
2.2.1 Sliding Mode Control (SMC)

The area of mathematics and engineering known as control theory investigates how
dynamical systems behave when their parameters are time-varying. The goal of
automated control is to alter input variables so that a command input can alter
the system’s behavior. A set of first differential equations can adequately describe
any dynamic system with a finite dimension.

There will always be a disparity between the real plant and its mathematical
model employed for controller design in the creation of any practical control
challenge. When neglected parameters and outside disruptions are added, these
differences become more pronounced. The goal of the theory of Sliding Mode Control
and other robust controls is to address this issue. Moreover, systems are sometimes
approximated as linear around an equilibrium point, ignoring non-linearities, but
since SMC is a non-linear control, this is not a source of mistakes. So, the primary
benefit of Sliding Mode is its low sensitivity to changes in plant parameters and
disturbances, which minimizes the need for precise modeling. Theoretically, even in
the presence of disruptions and model flaws, the system will always remain in those
settings once it reaches the Sliding Surface. By introducing a control signal at an
intermittent frequency, these optimal circumstances are maintained. In the real
scenario, the system trajectory oscillates around to the Sliding Surface (chattering),
and the width of the fluctuation is inversely proportional to the frequency.

The SMC approach is the following:

1. A so-called sliding surface is defined; this surface is a subset of the state space,
on which the trajectory of the plant is desired to lie

2. A feedback law is designed to bring the plant trajectory towards the sliding
surface and, once there, to stay close to this surface.

Considering a generic nonlinear dynamical system described by its state equation

ẋ(t) = f(x(t), u(t))

Where x(t) ∈ Rn is the system state and u(t) ∈ Rnu is the system input (control
input).

Considering a function of the state system, named sliding variable
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σ(x(t)) ∈ Rm

and the associated, manifold named sliding manifold

σ(x(t)) = 0

The sliding manifold is a subspace of the system state space having dimension
n,m and it can be a single surface or be given by the intersection of several surfaces.
When the state trajectory continuously crosses the sliding manifold, since in its
vicinity the state motion is always directed towards the manifold, a sliding mode is
enforced.

Figure 2.2: Sliding manifold [33]

Therefore, two elements need to be “designed”:

1. The sliding manifold: it is designed so that the system in sliding mode
evolves in the desired way (e.g. it results in being linearized and its state is
asymptotically regulated to zero, or it satisfies some optimality requirement,
etc.)

2. The control law: it has to be chosen in order to enforce a sliding mode [33].

The main advantages of sliding mode control, including robustness, finite-time
convergence, and reduced-order compensated dynamics, are demonstrated on
numerous examples and simulation plots.

For example, a single-dimensional motion of a unit mass is considered in fig.
(2.3).

A state-variable description is obtained by introducing variables for the position
x1 = x and the velocity x2 = ẋ1 so that
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Figure 2.3: Single-dimensional motion of a unit mass [9]
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ẋ1 = x2

ẋ2 = u+ f(x1, x2, t)
(2.1)

Where u is the control force and f(x1, x2, t) is the disturbance term. The problem
is to design a feedback control law u = u(x1, x2) that drives the state variables
to zero: i.e. limt→∞x1, x2 = 0. For instance, [9] proposes a linear state-feedback
control law

u = −k1x1 − k2x2, k1 > 0, k2 > 0 (2.2)

that provides asymptotic stability of the origin only for f(x1, x2, t) = 0 (Fig.
2.4) and typically only drives the states to a bounded domain Ω(x1, x2, L) for
|f(x1, x2, t)| ≤ L > 0 (Fig. 2.5)

Figure 2.4: Asymptotic convergence for f(x1, x2, t) = 0 [9]

Figure 2.5: Convergence to the domain Ω for f(x1, x2, t) = sin(2t) [9]
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A new variable in the state space of the system is introduced [9]

σ = σ(x1, x2) = x2 + cx1, c > 0 (2.3)

In the presence of the bounded disturbance f(x1, x2, t), it is necessary to drive
the variable to zero in finite time using the control u in order to accomplish
asymptotic convergence of the state variables to zero. This task can be achieved by
applying Lyapunov function techniques to the σ-dynamics that are derived using
(2.1) and (2.3)

σ̇ = cx2 + f(x1, x2, t) + u (2.4)

For the σ-dynamics (2.4) a candidate Lyapunov function (Appendix) is intro-
duced taking the form [9]

V = 1
2σ

2 (2.5)

In order to provide the asymptotic stability of Eq. (2.4) about the equilibrium
point σ = 0, the following conditions must be satisfied:

1. V̇ < 0 for x /= 0

2. lim|σ|→∞V = ∞

Condition (2) is satisfied by V in Eq. (2.5). In order to achieve finite-time
convergence (global finite-time stability), condition (a) can be modified to be

V̇ ≤ −αV 1/2, α > 0 (2.6)

Indeed, separating variables and integrating inequality (2.6) over the time
interval 0 ≤ τ ≤ t, V (t) reaches zero in a finite time tr that is bounded by

tr ≤ 2V 1/2(0)
α

(2.7)

As a result, a control u, that is calculated to fulfill Eq. (2.6), will eventually
drive the variable to zero and keep it there. The derivative of V is computed as

V̇ = σσ̇ = σ(cx2 + f(x1, x2, t) + u) (2.8)

Selecting u = −cx2 − ρsign(σ) where
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sign(σ) = 1, if σ > 0

sign(σ) = −1, if σ < 0

and substituting it into Eq. (2.8)

V̇ = (x1, x2, t) + σ(−ρsign(σ)) ≤ |σ|L− |σ|ρ (2.9)

Taking into account Eq. (2.5), condition (2.6) can be rewritten as

V̇ ≤ −αV 1/2 = − α√
2

|σ| (2.10)

Combining Eqs. (2.9) and (2.10)

V̇ ≤ −|σ|(ρ− L) = − α√
2

|σ| (2.11)

Finally, the control gain ρ is

ρ = − α√
2

(2.12)

Consequently a control law u that drives σ to zero in finite time (2.7) is

u = −cx2 − ρsign(σ) (2.13)

The sliding surface reaching time specified by Eq. (2.7) is determined by the
second term of the control gain, whereas the bounded disturbance f(x1, x2, t) is
compensated for by the first component of the control gain. The larger α, the
shorter the reaching time. Finally, the variable (2.3) is called a sliding variable,
σ = x2 + cx1 is called sliding surface or sliding manifold.

Figure 2.6 shows how the sliding variable eventually converges to zero in finite
time. Fig. 2.7 depicts the state variables x1 and x2 asymptotically convergent to
zero in the presence of the external bounded disturbance f(x1, x2, t) = sin(2t).
A reaching phase occurs when the state trajectory is pushed towards the sliding
surface, and a sliding phase occurs when the state trajectory is going toward the
origin along the sliding surface, as shown by the phase portrait in Fig. 2.8.

The "zigzag" motion of small amplitude and high frequency that the state
variables display while in the sliding mode is depicted in a zoomed area of the
phase portrait Fig. 2.8. Sliding mode control is a high frequency switching control
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Figure 2.6: Sliding variable [9]

Figure 2.7: Asymptotic convergence for f(x1, x2, t) = sin(2t) [9]
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Figure 2.8: Phase portrait [9]
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with a switching frequency inversely proportional to the time increment used in the
simulation. Apparently, this high-frequency switching control causes the “Zigzag”
motion in the sliding mode (Fig. 2.9). In an ideal sliding mode the switching
frequency is supposed to approach infinity and the amplitude of the “zigzag”
motion tends to zero. As it is possible to see in Fig. 2.9 and, the imperfection
in the sign-function implementation yields a finite amplitude and finite frequency
“zigzag” motion in the sliding mode due to the discrete-time nature of the computer
simulation. This effect is called chattering [9].

Figure 2.9: Phase portrait (zoom) [9]

2.2.2 Output Tracking: Conventional Sliding Mode Con-
troller Design

The control problem of the output tracking (servomechanism) is a fairly frequent
task in practice. By controlling the deflection of the aerodynamic surfaces, an
aircraft flight control system, for example, makes the aircraft attitude (Euler) angles
follow reference profiles that are frequently generated in real time, while the state
vector linked to the aircraft dynamics contains a number of other variables that
are under control. In this way, it is possible to review the system (2.1):

ẋ1 = x2

ẋ2 = u+ f(x1, x2, t)
y = x1

(2.14)

where y is a controlled output. Now it is necessary to design an SMC control
law u = u(x1, x2, t) that makes the output y (the position of the unit mass) follow
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asymptotically a reference profile yc(t) given in current time. In other words, the
control u = u(x1, x2, t) is supposed to drive the output tracking error to zero
limt→∞yc(t) − y(t) = 0 in the presence of the bounded disturbance f(x1, x2, t). It
is possible to define the variable

σ = ė+ ce, c > 0 (2.15)

where e = yc(t) − y(t) is the output tracking error. Now we have to design a
conventional SMC u that drives σ → 0 in finite time and keeps it at zero thereafter,
bearing in mind that as soon as the sliding variable reaches zero the sliding mode
starts and the output tracking error e in the sliding mode will obey the desired
reduced (first)-order differential equation:

σ = ė+ ce = 0 (2.16)

that yields convergence to zero as time increases [9]. The sliding variable
dynamics are derived as

σ̇ = ÿc + ẏc − f(y, ẏ, t) − cẏ − u ⇒ σ̇ = φ(y, ẏ, t) − u (2.17)

The cumulative disturbance term φ(y, ẏ, t) is assumed bounded, i.e. φ(y, ẏ, t) ≤
M . Conventional SMC u can be designed [9] by using the sliding mode existence
condition (2.10) rewritten in a form

σσ̇ = −ᾱ|α|, ᾱ = α√
2

(2.18)

Consequently

σσ̇ = σ(φ(y, ẏ, t) − u) ≤ |σ|M − σu (2.19)

and selecting

u = ρsign(σ) (2.20)

we obtain

σσ̇ ≤ |σ|(M − ρ) = −ᾱσ (2.21)

The control gain is computed as

ρ = M + ᾱ (2.22)
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The results of the simulation of system (2.14) with a conventional SMC control
(2.16), (2.20), (2.22), the initial conditions x1(0) = 1, x2(0) = 2 the control gain
ρ = 6, the parameter c = 1.5, the output reference profile yc = 2cos(t), and the
disturbance f(x1, x2, t) = sin(2t), are presented in Fig 2.10 [9].

Figure 2.10: The reference profile tracking [9]

2.2.3 Super-Twisting SMC

For a variety of control issues with uncertainty, classic sliding modes offer robust
and high-accuracy solutions. There are still two main restrinctions, though. First,
the constraint to be held at zero in conventional sliding modes must be of relative
degree 1, meaning that the control needs explicitly appear in the first time derivative
of the constraint. Hence, finding a suitable constraint is necessary. Second, if the
control has any physical sense, high-frequency control switching may quickly result
in intolerable practical issues (chattering effect). Consider a situation where the
problem is to keep the sliding variable s at zero and the control only apperas in
s̈. Most frequently, σ = s+ ṡ is selected as the constraint function. σ̇ = ṡ+ s̈, by
design, contains the control and σ is able to be kept at zero in the classic sliding
mode. As a result s tends asymptotically to zero, but it is impossible to exactly
keep it at zero. To carry out this strategy, it is also necessary to compute ṡ. The
second-order sliding mode method is capable of achieving both of these objectives:
perfect robust differentiation and precisely maintaining s = 0. Assume that the
goal is to maintain s at zero while the control is already present in ṡ. The use of
standard sliding modes can readily solve this issue. Yet, the solution is frequently
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undesirable due to the chattering effect. Considering the control derivative as a
new virtual control is a possible solution. Therefore, using second-order sliding
mode approach, the task can be precisely completed and in a finite amount of time
by employing continuous. As a result, the chattering effect is greatly reduced.

In order to drive the sliding variable (2.15) to zero in finite time it is possible to
select the following continuous control [9]:

u = c|σ|1/2sign(σ), c > 0 (2.23)

Assuming φ(y, ẏ, t) = 0 in the sliding variable dynamics equation (2.17), the
compensated sliding variable dynamics (2.17) becomes

σ̇ = −c|σ|1/2sign(σ) (2.24)

Integrating

|σ(t)|1/2 − |σ0|1/2 = − c

2t (2.25)

Therefore the time instant t = tr so that σ(tr) = 0 is

tr = c

2 |σ0|1/2 (2.26)

So the control (2.23) drives the sliding variable to zero in finite time (2.26).
However, in the case of φ(y, ẏ, t) /= 0, the compensated-dynamics becomes

σ̇ = φ(y, ẏ, t) − c|σ|1/2sign(σ) (2.27)

and convergence to zero does not occur.
The disturbance would be entirely compensated for if the control function

(2.23) could be modified, adding a term to make it begin tracking the disturbance
φ(y, ẏ, t) /= 0 in a finite amount of time. As soon as the disturbance is cancelled,
the sliding variable dynamics will agree with Eq. (2.24), and σ → 0 will also occur
in a finite amount of time. Assuming φ(y, ẏ, t) ≤ C the following controlu = c|σ|1/2sign(σ) + w, c = 1.5

√
C

ẇ = bsign(σ), b = 1.1
√
C

(2.28)

makes the compensated-dynamics becomeσ̇ + c|σ|1/2sign(σ) + w = φ(y, ẏ, t)
ẇ = bsign(σ)

(2.29)
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The term w becomes equal to φ(y, ẏ, t) in finite time, and therefore Eq. (2.29)
becomes Eq. (2.24). Consequently σ → 0 in finite time as well.

The control (2.28) is called super-twisting control, whose properties are:

• The super-twisting control (2.28) is a second-order sliding mode control, since
it drives both σ, σ̇ → 0 in finite time

• The super-twisting control (2.28) is continuous since both c|σ|1/2sign(σ) and
the term w =

s
bsign(σ) dt are continuous. Now, the high-frequency switching

term sign(σ) is “hidden” under the integral [9].

The results of the simulation of the system (2.14) with the super-twisting control
(2.15), (2.28), initial conditions x1(0) = 1, x2(0) = −2, the control gains c = 13.5
and b = 88, the parameter C = 80, the output reference profile yc = 2cos(2t) and
the disturbance f(x1, x2, t) = sin(2t), are presented in Figs. 2.11–2.14. The sliding
variable is driven to zero in finite time (Fig. 2.11) by the continuous super-twisting
control (Fig. 2.13). The high accuracy asymptotic output tracking (Fig. 2.12),
which is achieved, is similar to that obtained with conventional SMC (Fig. 2.10), but
is obtained by means of continuous control (Fig. 2.13) rather than high-frequency
switching. Including the attenuated (by integration) high frequency switching term
sign(σ) (Fig. 2.14) in the super-twisting control (2.28) is mandatory because it
compensates for the disturbance while retaining a continuity of the control function
(Fig. 2.13) [9].

Figure 2.11: Sliding variable σ [9]
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Figure 2.12: The reference profile tracking [9]

Figure 2.13: Super-twisting control [9]

Figure 2.14: Time history of sign(σ) [9]
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Chapter 3

Solutions

3.1 Helix manoeuvre
As it was said in section 2.1, during the Observation Phase SROC performs 4
ellipses (with a radius of about 200 m) around Space Rider advancing along the x
direction in the LVLH frame. Every ellipse is carried out in an orbital period of
Space Rider:

τ = 2π
ó
a3

µ
= 5553.63 s (3.1)

where a is the semi-major axis of Space Rider.
Therefore, the Helix manoeuvre can be seen as 2 coupled motions:

1. The motion around the x axis in the LVLH frame is like a uniform ellipsoidal
motion with a constant angular velocity

ωx = 2π
τ

= 0.001131 rad/s (3.2)

2. The motion along the x axis direction in the LVLH frame is like a uniform
rectilinear motion with a constant velocity vx so that SROC can travel 4 km
along the x axis in four orbital periods of Space Rider.

So, the motion equations for the Helix manoeuvre are
x =

s
vx dt

y = b1cos(ωxt)
z = b2sin(ωxt)

(3.3)
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Where b1 and b2 are the semi-major and semi-minor axis of the ellipse that
SROC performs around Space Rider every orbital period.

If b1 = 200 m, b2 = 150 m, x0 = −2000 m, y0 = −200 m and z0 = 0 m, the
Helix manoeuvre that SROC carries out in four orbital periods is depicted in Fig.
3.1.

Figure 3.1: Helix manoeuvre (3.3) in four orbital periods

In order to consider a manoeuvre as similar as possible to the real case, it is
possible to implement it using the Hill’s equations:


ẍ = 1

mc
Fx + 2ωż

ÿ = 1
mc
Fy − ω2y

z̈ = 1
mc
Fz − 2ωẋ+ 3ω2z

(3.4)

where Fx, Fy and Fz are the forces provided by the thrusters and ω is the angular
velocity of the target (Space Rider)

ω =
ò
µ

a3 = 0.001131 rad/s (3.5)
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These equations describe the relative position dynamics between the chaser
(SROC) and the target (Space Rider) in the LVLH frame centered on the target. The
Helix manoeuvre can be implemented through a Radial Boost in the x−z plane and
a sinusoidal motion for the y position (see the Appendix D for futher details). For
example, if the starting point’s coordinates (in LVLH frame centered on Space Rider)
of the Observation Phase are x0 = −2000 m, y0 = 200 m and z0 = 20 m and the
initial velocities are ẋ0 = 0 m/s, ẏ0 = 0 m/s and ż0 = ∆Vz = ω

4 ∆x = 5.2360 m/s
(as if the thrusters had provided an impulse along the z direction), the Helix
manoeuvre that SROC carries out in four orbital periods is represented in Fig. 3.2.

Figure 3.2: Helix manoeuvre (3.4) in four orbital periods

In this case the manoeuvre considered is more complex than the previous one
because SROC does not always advance along the x direction, but, through every
ellipse, it comes back (in this way the Observation Phase lasts again four orbital
periods, but it is more accurate because SROC has a lower velocity along the x
direction). Fig. 3.3 shows a focus of the manoeuvre represented in figure 3.2. It is
also possible to change the initial conditions in order to ensure that the attitude
control is always completed efficiently (see section 4).
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Figure 3.3: Focus of the Helix manoeuvre represented in Fig. 3.2
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3.2 Attitude guidance

In order to generate the reference output for the attitude control tracking (Section
3.3), it is necessary to compute the reference attitude and the reference angular
velocity.

For the reference attitude it is possible to use the Euler angles or the quaternions.
In order to understand which way is more suitable for this case, it is possible to
analyze a generic point of the Helix manoeuvre. In every point of the trajectory,
SROC has to carry out a rotation around the y axis and the z axis (in the LVLH
frame). For example, as it is possible to see in Fig. 3.4 and in Fig. 3.5, that
represent the Helix manoeuvre (3.3) respectively in the x − z plane and in the
x− y plane, SROC has to rotate about the y axis by a negative angle θ and about
the z axis by a positive angle ψ to correctly point to Space Rider’s center of mass.
Therefore, as long as SROC has a negative x coordinate, the rotation angles around
the y axis and z axis can be described by the following equations:

θ = atan( z
|x|

) (3.6)

ψ = −atan( y
|x|

) (3.7)

While, as long as SROC has a positive x coordinate, the rotation angles around
the y axis and z axis can be described by the following equations:

θ = −atan( z
|x|

) + π (3.8)

ψ = atan( y
|x|

) + π (3.9)
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Figure 3.4: x−z plane of the Helix manoeuvre (3.3) (x0 = −1950 m, y0 = −200 m
and z0 = 0 m)

Figure 3.5: x−y plane of the Helix manoeuvre (3.3) (x0 = −1950 m, y0 = −200 m
and z0 = 0 m)
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However, referring to Fig. 3.6 and Fig. 3.7, the equations that describe the
rotation angles around the y axis and z axis become:θ = atan( z

|x|), if x < 0
θ = −atan( z

|x|) − π, if x > 0
(3.10)

ψ = −atan( y
|x|), if x < 0

ψ = atan( y
|x|) + π, if x > 0

(3.11)

Figure 3.6: x−z plane of the Helix manoeuvre (3.3) (x0 = −2050 m, y0 = −200 m
and z0 = 0 m)
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Figure 3.7: x−y plane of the Helix manoeuvre (3.3) (x0 = −2050 m, y0 = −200 m
and z0 = 0 m)
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In general, the new functions that describes the temporal evolution of θ and
ψ depend on the last angle in the transition from before to after Space Rider’s
center of mass. Therefore, if the reference generator computes the wrong angle of
rotation, the controller may not be able to follow the desired attitude because of
a discontinuity in the attitude angles functions. Moreover, the angles computed
through the equations (3.6)-(3.9) or (3.10)-(3.11) are the angles between the ideal
vector pointing and the actual vector pointing, so they are not actually the Euler
Angles in a classical rotation sequence 3 − 1 − 3 (Appendix B). Since the objective
is to implement a robust algorithm that computes the reference attitude according
to every type of manoeuvre (even if the impulse provided by the thrusters is not
fully executed), it is necessary to change the method to compute the reference
attitude.
Therefore, in this case, in order to compute the correct reference attitude it is
necessary to use the Euler’s Theorem: “The most general motion of a rigid body
with one point fixed is a rotation about an axis through that point”. In fact, in each
point of the trajectory it is possible to compute the Euler’s axis a⃗ = [a1 a2 a3]T
(that is orthogonal to both the ideal or reference vector pointing and the actual
one) and, consequentially, the only rotation angle α about this axis (Appendix C).
In this way, the the Euler’s axis a⃗ and rotation angle α about this axis are:

a⃗ = r⃗actual ∧ r⃗ideal

||r⃗actual ∧ r⃗ideal||
(3.12)

α = acos
3

r⃗actual · r⃗ideal

||r⃗actual|| ||r⃗ideal||

4
(3.13)

Where r⃗actual is the real vector pointing and r⃗ideal is the ideal vector pointing.
In Fig. 3.8 the Eules’s axis in a generic point of the trajectory is represented.

It is now possible to compute the reference quaternion q⃗r = [qr0 qr1 qr2 qr3 ]T :
qr0 = cos(α

2 )
qr1 = a1sin(α

2 )
qr2 = a2sin(α

2 )
qr3 = a3sin(α

2 )

(3.14)

Since the control torque (see section 3.3) also needs the reference angular velocity
ω⃗r = [ωrx ωry ωrz ]T and its temporal derivative ˙⃗ωr, (3.15) shows the relation between
the first one and the temporal derivative of the reference quaternion ˙⃗qr:
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Figure 3.8: Eules’s axis in a generic point of the trajectory
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I ˙⃗qrv

q̇r0

J
= 1

2

C
−qx

rv
+ qr0I
q⃗rv

D I
ω⃗r

0

J
(3.15)

where I is the identity matrix, q⃗rv = [qr1 qr2 qr3 ]T and qr0 are, respectively, the
vectorial part and the scalar part of the reference quaternion and qx

rv
is defined as

qx
rv

=

 0 −qr3 qr2

qr3 0 −qr1

−qr2 qr1 0

 (3.16)

and, consequently,

ω⃗r =
31

2[qx
rv

+ qr0I]
4−1

˙⃗qrv (3.17)

˙⃗ωr = dω⃗r

dt
(3.18)

3.3 Attitude control with Super-Twisting SMC
Considering what it has been said in section 1 and in section 2.2.3, a robust Sliding
Mode Control is needed to carry out the attitude tracking control during the Helix
manoeuvre; in fact, in this section a robust Super-Twisting SMC is proposed.

Considering SROC as a rigid body with inertia matrix J , it is possible to define
the following variables:

• ω⃗ = [ωx ωy ωz]T angular velocity in body frame

• q⃗ = [q0 q1 q2 q3]T quaternions

• u⃗ = [ux uy uz]T external moment in body frame.

The state equations are given by the quaternion kinematic equation and the
Euler dynamic equation:

˙⃗q = 1
2Qω⃗ (3.19)

˙⃗ω = J−1u⃗− J−1(ω⃗ ∧ (Jω⃗) (3.20)
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where

Q =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1

−q2 q1 q0

 (3.21)

The goal of control law is to make the state vector (q⃗, ω⃗) track the time-varying
reference vector (q⃗r, ω⃗r). It is thus important to measure the distance between the
reference and the actual state. To this aim, we define:

• the angular velocity tracking error

ω⃗err = ω⃗r − ω⃗

• the quaternion tracking error

q⃗err = [qerr0 q⃗errv ]T = q⃗∗ ⊗ q⃗r

where ⊗ is the quaternion multiplication (see Appendix C).
Following the procedure of [34], the sliding surface, according to (2.16), is:

s⃗ = ω⃗err + k2 q⃗err, k2 > 0 (3.22)

On the sliding surface, the tracking error converges to 0. The derivative of the
sliding surface is:

˙⃗s = ˙⃗ωr − ˙⃗ω + k2 q⃗err =

= ˙⃗ωr + J−1ω⃗ ∧ (Jω⃗) − J−1u⃗+ k2

2

3
qerr0 ω⃗err + q⃗errv ∧ (ω⃗r + ω⃗)

4
Imposing ˙⃗s = 0 to make the sliding surface invariant and inverting wrt u⃗ the

above expression,

u⃗s = J
3

˙⃗ωr + k2

2 (qerr0 ω⃗err + q⃗errv ∧ (ω⃗r + ω⃗))
4

+ω⃗ ∧ (Jω⃗) (3.23)

Finally, according to (2.28), a further term is added to make the sliding surface
attractive. The complete control law is:u⃗ = u⃗s + k1|σ|1/2sign(σ) + w, k1 > 0

ẇ = αsign(σ), α > 0
(3.24)

Therefore, the tracking attitude control during the Helix manoeuvre is carried
out through the Super-Twisting SMC control law (3.24).
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Mathematical model and
simulations

4.1 Mathematical model
This section explains the procedures trough which the CubeSat and the disturbances
torques have been modeled in order to implement an orbital simulator. In this way
it is possible to simulate the Helix manoeuvre and verify that the attitude tracking
control is effectively carried out.

The sensors for position and attitude measurement, the GNC functions, which
are implemented in software in the onboard computer, i.e. the navigation, guidance,
and control functions, and the thrusters and other actuators for attitude and
position control are all included in the control loops for attitude and trajectory
control. Fig. 4.1 is a block diagram of a typical control loop for one of the six
degrees of freedom (DOF). Since the focus of the thesis is Guidance and Control, in
section 4.2 all the blocks concerning sensors and navigation filter will be neglected.

4.1.1 SROC attitude dynamics and kinematics
Since SROC is modeled on a rigid body with its inertia matrix J , its attitude
dynamics can be described by the Euler’s equation:

˙⃗ω = J−1(M⃗ − ω⃗ ∧ (Jω⃗)) (4.1)

with

M⃗ = M⃗ext + M⃗c (4.2)
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Figure 4.1: GNC functions [35]
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and

M⃗c = −M⃗RW (4.3)

where M⃗ext is the total disturbance torque (see section 4.1.3) due to the space
environment in which Space Rider and SROC operate, M⃗c is the control torque u⃗
(3.24) computed by the controller block (in this case by the Super-Twisting SMC
algorithm) and M⃗RW is the torque provided by the 4 Reaction Wheels. Since the
actuators that provide the control torque are Reaction Wheels that are considered
as momentum exchange devices, by accelerating a wheel in one direction about the
wheel spin-axis, the wheel applies a reaction torque to the platform in the opposite
direction (in order to maintain the total angular momentum constant, in absence
of external torques acting on the spacecraft, if the angular momentum of the wheel
is changed, there must be a corresponding opposite change in angular momentum
of the platform). Therefore, Eq. (4.1) becomes:

˙⃗ω = J−1(M⃗ext − M⃗RW − ω⃗ ∧ (Jω⃗ + hRW )) (4.4)

where

h⃗RW = JRW ω⃗RW (4.5)

M⃗RW = ˙⃗
hRW = JRW

˙⃗ωRW (4.6)

h⃗RW is the angular momentum, JRW is the inertia matrix and ω⃗RW is the angular
velocity of the Reaction Wheels.

For the attitude kinematics, on the other hand, equation (3.19) is used.

4.1.2 Reaction Wheels model
Since the 4 Reaction Wheels of SROC are disposed in a pyramidal configuration (Fig
4.2), in order to transform the control torque from body axis to 4 RWs directions
it is useful to evaluate the rotation matrix Z:

Z =

cos(β)cos(α) −cos(β)sin(α) −cos(β)cos(α) cos(β)sin(α)
cos(β)sin(α) cos(β)cos(α) −cos(β)sin(α) −cos(β)cos(α)
sin(beta) sin(beta) sin(beta) sin(beta)

 (4.7)

so
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M⃗4RW = Z−1M⃗c (4.8)

In this way, according to (4.5) and (4.6), it is possible to compute ˙⃗ωRW , ω⃗RW

(that has a lower limit and an upper one due to mechanical limitation) and h⃗RW .
Finally, it is necessary to transform the torque M⃗4RW provided by the 4 Reaction
Wheels into body axis:

M⃗RW = ZM⃗4RW (4.9)

Figure 4.2: 4 Reaction Wheels in a pyramidal configuration [33]

A low pass filter followed by a saturation block, that provides the maximum
applicable torque (due to electrical limitation) is used to model the Reaction Wheels’
dynamics.

4.1.3 External disturbances
In the low Earth orbit (LEO) environment, where Space Rider and SROC operate,
the four primary sources of orbital disturbance that have an impact on a spacecraft
attitude and orbit dynamics are: residual atmospheric drag, gravitational distur-
bances, solar radiation, and electromagnetic disturbances. The last two sources
show a smaller magnitude in comparison to other ones, hence they will be neglected.
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Atmospheric drag

The leftover atmospheric gases that strike the spacecraft’s surface are what cause the
drag disturbance. At high altitude, greater than 100 km„ the residual atmosphere
can no longer be viewed as a continuum media and must instead be modeled as
a discrete medium using the free molecular flow model. In fact, the momentum
transfer between the spacecraft and the gas particles is taken into account while
computing the residual atmospheric drag. Depending on a number of variables,
including surface and incident flow temperature, the molecular weight of the
particles, the spacecraft’s speed, and others, some particles may be entirely or
partially reflected when striking the spacecraft’s surface. The accommodation
coefficient has been established to take these influences into account when computing
Cook’s spacecraft drag coefficient [36]. Cook’s analysis demonstrates that, in some
circumstances, it may be beneficial to calculate a spacecraft’s drag coefficient
precisely. However, because atmospheric models include other uncertainties (such
as the determination of the precise temperature, density, magnetic flux, and others),
the computation of the total drag force is impacted by uncertainties that are greater
than those that affect the drag coefficient [32].
For the purpose of this work, the computation of the residual drag force is carried
out using the following method:

FD = 1
2ρV

2SfrontCD (4.10)

Where FD is the total drag force acting on the center of pressure of the spacecraft
and aligned with the spacecraft velocity V , ρ is the atmospheric density, Sfront is
the exposed frontal area perpendicular to the direction of motion and CD is the
drag coefficient. Cook’s study indicates that the CD value is set at 2.2. The value of
CD may be increased up to 10 − 20 %, taking the worst-case scenario into account,
in order to account for uncertainties in both the drag coefficient computation and
the center of pressure assessment.

Therefore, the drag torque is:

M⃗D = r⃗cp ∧ F⃗D (4.11)

where r⃗cp is the distance between the center of pressure and the center of mass
of the spacecraft.

Gravity gradient

Gravitational torque is due to the differential gravitational force which acts on the
spacecraft. As shown in Fi. 4.3, two equal masses m orbiting the Earth linked
together by a mass-less rigid beam of length l are subjected to two different forces:
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F1 = m
µ

R2
1

F2 = m
µ

R2
2

where R1 and R2 are the distances from the center of the Earth of the two
masses, respectively. Since R1 < R2, it follows that F1 > F2; hence a torque Mgg is
generated [32]

Mgg = (F2 − F1)
l

2sin(α)

When this behavior is applied to the entire body of a spacecraft, the following
outcome is achieved:

M⃗gg = 3µ
r5 r⃗B ∧ (Jr⃗B) (4.12)

where r is the norm of the position vector from of the Earth and r⃗B is the
position vector in body axis, that is obtained trough the rotation matrix [LBI ] (see
Appendix C)

r⃗B = [LBI ]

 0
0

−r

 (4.13)

Figure 4.3: Simple gravity gradient torque example [32]
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Solar radiation pressure

Photons from the Sun’s rays that interact with the surface of the spacecraft to
exchange momentum create this torque. Clearly, this disturbance is only evident
when the spacecraft’s orbit is in the direction of the sun. This disturbance does
not exist when the Earth’s shadow covers the spacecraft’s orbit. The strength of
this torque is influenced by the Sun’s activity, which varies throughout the year
in accordance with its cycles. The magnitude of this torque is typically smaller
than the impact of drag and gravity on spacecraft with a compact design and
without lengthy appendages; hence, this disturbance may be disregarded. The
solar radiation torque is:

M⃗sp = r⃗s ∧ (F⃗sp) (4.14)

where

Fsp = (1 + k)psS (4.15)

is the solar radiation force, k is the reflectivity (from 0 to 1), ps = 4.5 ·10−6N/m2

is the solar pressure near the Earth and r⃗s is the vector from the center of mass of
the spacecraft to optical its center of pressure.

Electromagnetic disturbances

This torque is due to the interaction between the residual magnetic dipole d⃗ and
the magnetic field B⃗ generated by the Earth such that

M⃗mag = d⃗ ∧ (B⃗) (4.16)

Typically, a spacecraft’s residual magnetic dipole is minimized or neutralized
during design. However, the employment of magnetic torquers produces a desirable
magnetic dipole in order to obtain a particular torque, which can then be used to
desaturate momentum actuators (reaction wheels and gyroscopes) or control the
attitude of very small spacecraft (often CubeSats). In general, this disruption can
be disregarded because the spacecraft’s designer was able to appropriately account
for the magnetic dipole.

4.2 Simulations
A small satellite orbital simulator has been developed in a MATLAB/Simulink envi-
ronment to evaluate the tracking attitude control performance under disturbances,
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according to the mathematical model of section 4.1. The diagram in Fig. 4.4
represents its structure and data flow, including attitude dynamics and kinematics,
environmental disturbance model, control block and reference generator (guidance
block).

Figure 4.4: Orbital simulator architecture

In order to ensure that SROC is correctly pointing the center of mass of Space
Rider, it is possible to rotate the versor [1 0 0]T (in LVLH frame), that represents
the axis perpendicular to the face where the camera is collocated (hence the real
pointing vector), according to the rotation matrix LBI (see Appendix C) computed
from the quaternions during the simulation. In this way the effective pointing
vector carried out during the Helix manoeuvre is:

r⃗pointing = [LBI ]T
1
0
0

 (4.17)

where

[LBI ] = (q2
0 − q⃗v · q⃗v)I + 2q⃗v q⃗v

T − 2q0Q (4.18)
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4.2.1 Nominal scenario
These simulations are carried out for both the manoeuvres (3.3) and (3.4) described
in section 3.1. The control gains of the Eq. (3.22) and (3.24), identified through
the try and error process based on simulation sessions, have the values reported in
Table 4.1 and in Table 4.2, respectively for the Helix manoeuvre (3.3) and (3.4).

Parameter Value
α 0.01
k1 6
k2 6

Table 4.1: Control gains for the simulations of the Helix manoeuvre (3.3)

Parameter Value
α 10−50

k1 0.08
k2 6

Table 4.2: Control gains for the simulations of the Helix manoeuvre (3.4)

4.2.2 Robustness analysis
A Monte Carlo simulation campaign consists of a set of simulation runs each using
different values of the parameters defining the statistical ensemble. Monte Carlo
simulation campaigns should be used:

• If the requirement is imposed only for a specified fraction of the statistical
ensemble

• If the parameter space involved is sufficiently large and complex that it is
not possible to use analysis to determine a single worst case scenario to be
simulated.

An appropriate verification of the compliance with the requirement cannot
be performed if a sufficiently large number of simulation runs are not used. For
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a requirement specified with confidence level Pc, the minimum number of runs
required to verify that the requirement holds (to a verification confidence level
of 95 %), is given in Table 4.3. This table makes assumptions about how many
actual cases of requirement violation (pointing error > tollerance) are seen [37].
According to [38], it is possible to define:

• Absolute Performance Error (APE), the difference between the target (com-
manded) parameter (attitude, geolocation, etc.) and the actual parameter in
a specified reference frame, hence, in this case

APE = acos
3

r⃗pointing · r⃗ideal

||r⃗pointing|| ||r⃗ideal||

4
(4.19)

• Mean Performance Error (MPE), the mean value of APE over a specified
time interval ∆t

• Relative Performance Error (RPE), the difference between the APE at a given
time within a time interval, ∆t, and the MPE over the same time interval.

RPE = APE −MPE

where r⃗pointing the effective pointing vector (4.17) carried out during the Helix
manoeuvre and r⃗ideal is the ideal one. Therefore, the fail numbers of Table 4.3 refer
to an Absolute Performance Error (APE) bigger than a pre-established tollerance.

Requirement confidence level Pc Nfail = 0 Nfail = 1 Nfail = 2 Nfail = 3
68 % 7 12 17 21
95 % 58 92 123 152
99.73 % 1108 1755 2329 2869

Table 4.3: Minimum number of simulation runs required to verify a requirement
at confidence level Pc [37]

In this paragraph, the robustness of the Super-Twisting SMC is verified through
the results of 58 Monte Carlo simulations. Each simulation randomly varies for the
initial conditions inside the range reported in Table 4.4.
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Parameter Value Uncertainties
SROC mass m 20 kg ± 20 %
Initial attitude angle ϕ 0° ± 10°
Initial attitude angle θ 0° ± 10°
Initial attitude angle ψ 0° ± 10°
Initial angular velocity ωx 0 rad/s ± 0.02 rad/s
Initial angular velocity ωy 0 rad/s ± 0.02 rad/s
Initial angular velocity ωz 0 rad/s ± 0.02 rad/s

Table 4.4: Initial conditions of the simulation with the boundaries of uncertainties

4.2.3 Off-nominal scenario
Finally, a robustness analysis also for the off nominal scenario, due to a casual
failure of one of the four Reaction Wheels, has been conducted. Each simulation
randomly varies for the initial conditions inside the range reported in Table 4.4.
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Results and discussions

5.1 Nominal scenario
In this section all the results of the simulations, presented in sections 4.2.1 - 4.2.3,
are shown.

5.1.1 Helix manoeuvre (3.3)
Case 1

The Helix manoeuvre (3.3) carried out in four orbital periods (3.1) of Space Rider,
with the initial conditions reported in Table 5.1,

Parameter Value Measure of unit
b1 200 m
b2 150 m
x0 −2000 m
y0 −200 m
z0 0 m
q⃗ [1 0 0 0]T -
ω⃗ [0 0 0]T rad/s

Table 5.1: Initial conditions of the simulation

is depicted in Fig. 5.1.

Fig. 5.2 - 5.7 represent the temporal evolution of the quaternions, the quaternion
error, that describes the pointing error, and also of the angular velocity error. Fig.
5.8, instead, shows a zoom of Fig. 5.5.
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Figure 5.1: Helix manoeuvre (3.3) in four orbital periods (Table 5.1)
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Figure 5.2: Temporal evolution of q0 during tracking attitude control (Table 5.1)
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Figure 5.3: Temporal evolution of q1 during tracking attitude control (Table 5.1)

Figure 5.4: Temporal evolution of q2 during tracking attitude control (Table 5.1)
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Figure 5.5: Temporal evolution of q3 during tracking attitude control (Table 5.1)
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Figure 5.6: Temporal evolution of the quaternion error during tracking attitude
control (Table 5.1)
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Figure 5.7: Temporal evolution of the angular velocity error during tracking
attitude control (Table 5.1)
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Figure 5.8: Zoom of Fig. 5.5

51



Results and discussions

Case 2

If the initial conditions are those reported in Table 5.2,

Parameter Value Measure of unit
b1 200 m
b2 150 m
x0 −2000 m
y0 200 m
z0 0 m
q⃗ [1 0 0 0]T -
ω⃗ [0 0 0]T rad/s

Table 5.2: Initial conditions of the simulation

the Helix manoeuvre (3.3) carried out in four orbital periods (3.1) of Space Rider
is depicted in Fig. 5.9, while Fig. 5.10 - 5.15 represent the temporal evolution of
the quaternions, quaternion error and angular velocity error.

Figure 5.9: Helix manoeuvre (3.3) in four orbital periods (Table 5.2)
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Figure 5.10: Temporal evolution of q0
during tracking attitude control (Table
5.2)

Figure 5.11: Temporal evolution of q1
during tracking attitude control (Table
5.2)

Figure 5.12: Temporal evolution of q2
during tracking attitude control (Table
5.2)

Figure 5.13: Temporal evolution of q3
during tracking attitude control (Table
5.2)
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Figure 5.14: Temporal evolution of the
quaternion error during tracking attitude
control (Table 5.2)

Figure 5.15: Temporal evolution of the
angular velocity error during tracking
attitude control (Table 5.2)

The results of both case 1 (SROC orbits Space Rider clockwise) and case 2
(SROC orbits Space Rider counterclockwise) show that the attitude tracking control
is precisely carried out during the Helix manoeuvre. In fact, maximum APE, MPE
and RPE, reported respectively in Table 5.3 and Table 5.4, are really small.

Value Measure of unit
max APE 0.0997 rad
MPE 4.0486 · 10−5 rad
RPE 0.0996 rad

Table 5.3: Case 1: APE, MPE and RPE

Value Measure of unit
max APE 0.0997 rad
MPE 4.0601 · 10−5 rad
RPE 0.0996 rad

Table 5.4: Case 2: APE, MPE and RPE

Furthermore, APE is less than 10−5 rad after only 40 s of the simulation, hence
when SROC is still at a distance of about 1992 m from Space Rider. Moreover
in Fig. 5.8 it is possible to see the high accuracy achieved by the Super-Twisting
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SMC and also the strong attenuation of the chattering effect typical of the 1-order
SMC (as said in section 2.2.3).

5.1.2 Helix manoeuvre (3.4)
Case 1

The Helix manoeuvre (3.4) carried out in four orbital periods (3.1) of Space Rider,
with the initial conditions reported in Table 5.5, is depicted in Fig. 5.16.

Parameter Value Measure of unit
x0 −2000 m
y0 200 m
z0 20 m
ẋ0 0 m/s
ẏ0 0 m/s
ż0 5.2360 m/s
q⃗ [1 0 0 0]T -
ω⃗ [0 0 0]T rad/s

Table 5.5: Initial conditions of the simulation

Fig. 5.17 - 5.22 represent the temporal evolution of the quaternions, the
quaternion error, that describes the pointing error, and also of the angular velocity
error.
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Figure 5.16: Helix manoeuvre (3.4) in four orbital periods (Table 5.5)
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Figure 5.17: Temporal evolution of q0 during tracking attitude control (Table
5.5)
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Figure 5.18: Temporal evolution of q1 during tracking attitude control (Table
5.5)
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Figure 5.19: Temporal evolution of q2 during tracking attitude control (Table
5.5)
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Figure 5.20: Temporal evolution of q3 during tracking attitude control (Table
5.5)
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Figure 5.21: Temporal evolution of the quaternion error during tracking attitude
control (Table 5.5)
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Figure 5.22: Temporal evolution of the angular velocity error during tracking
attitude control (Table 5.5)
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Case 2

If the initial conditions are those reported in Table 5.6, the Helix manoeuvre (3.4)
carried out in four orbital periods (3.1) of Space Rider is depicted in Fig. 5.23, while
Fig. 5.24 - 5.29 represent the temporal evolution of the quaternions, quaternion
error and angular velocity error.

Parameter Value Measure of unit
x0 −2000 m
y0 −200 m
z0 20 m
ẋ0 0 m/s
ẏ0 0 m/s
ż0 5.2360 m/s
q⃗ [1 0 0 0]T -
ω⃗ [0 0 0]T rad/s

Table 5.6: Initial conditions of the simulation

Figure 5.23: Helix manoeuvre (3.4) in four orbital periods (Table 5.6)
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Figure 5.24: Temporal evolution of q0
during tracking attitude control (Table
5.6)

Figure 5.25: Temporal evolution of q1
during tracking attitude control (Table
5.6)

Figure 5.26: Temporal evolution of q2
during tracking attitude control (Table
5.6)

Figure 5.27: Temporal evolution of q3
during tracking attitude control (Table
5.6)
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Figure 5.28: Temporal evolution of the
quaternion error during tracking attitude
control (Table 5.6)

Figure 5.29: Temporal evolution of the
angular velocity error during tracking
attitude control (Table 5.6)

The results of both case 1 (SROC orbits Space Rider clockwise) and case 2
(SROC orbits Space Rider counterclockwise) show that the attitude tracking control
is precisely carried out during the Helix manoeuvre. In fact, maximum APE, MPE
and RPE, reported respectively in Table 5.7 and Table 5.8, are really small.

Value Measure of unit
max APE 0.1002 rad
MPE 3.1264 · 10−5 rad
RPE 0.1001 rad

Table 5.7: Case 1: APE, MPE and RPE

Value Measure of unit
max APE 0.1002 rad
MPE 3.0864 · 10−5 rad
RPE 0.1001 rad

Table 5.8: Case 2: APE, MPE and RPE

Furthermore, APE is less than 10−5 rad after only 40 s of the simulation, hence
when SROC is still at a distance of about 1992 m from Space Rider.
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Finally, it must be noted that the attitude guidance algorithm of section 3.2
is independent of the actual manoeuvre because it computes the reference vector
from the real position of SROC in that instant. This is the reason why this attitude
tracking control algorithm manages to adapt to "every" type of trajectory (as long
as the right control gains are identified).

5.2 Monte Carlo simulation: nominal scenario
According to the initial conditions of Table 4.4, the robustness of the Super-Twisting
SMC is verified through the results of 58 Monte Carlo simulations of the Helix
manoeuvre (3.3). Fig. 5.30 - 5.32 show, respectively, the maximum APE, MPE
and RPE, while the mean torques Tmean provided by the four Reaction Wheels
are represented in Fig. 5.33. The results show that the MPE is always less
than 1° and that the RWs effort is medium low. Furthermore, for the worst case
(ϕ = θ = ψ = 10°) APE is less than 1° after 650 s of the simulation, hence, when
SROC is still at a distance of about 1883 m from Space Rider.

Figure 5.30: Maximum Absolute Performance Error (APE) over the 58 Monte
Carlo simulations
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Figure 5.31: Mean Performance Error (MPE) over the 58 Monte Carlo simula-
tions
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Figure 5.32: Relative Performance Error (RPE) over the 58 Monte Carlo simula-
tions
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Figure 5.33: RWs mean torques Tmean over the 58 Monte Carlo simulations
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5.3 Monte Carlo simulation: off-nominal scenario
Finally, according to the initial conditions of Table 4.4, the robustness of the
Super-Twisting SMC is verified even in the case of casual failure of one of the four
Reaction Wheels through the results of 120 Monte Carlo simulations of the Helix
manoeuvre (3.3). Fig. 5.34 - 5.36 show, respectively, the maximum APE, MPE
and RPE, while the mean torques Tmean provided by the four Reaction Wheels
are represented in Fig. 5.37 (when the torque of a RW is null means that RW has
a failure). The results show that the MPE is almost always very high (except for
a few cases) and, consequently, the RWs effort is almost always maximum.

Figure 5.34: Maximum Absolute Performance Error (APE) over the 120 Monte
Carlo simulations
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Figure 5.35: Mean Performance Error (MPE) over the 120 Monte Carlo simula-
tions
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Figure 5.36: Relative Performance Error (RPE) over the 120 Monte Carlo
simulations
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Figure 5.37: RWs mean torques Tmean over the 120 Monte Carlo simulations
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Chapter 6

Model Predictive Control

6.1 Constrained LQ Finite Horizon optimal con-
trol

Considering a linear time-invariant (LTI) system in a discrete-state space represen-
tation x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(6.1)

where x(k) is the discrete-state space vector, u(k) is the control action and y(k)
is the output of the system.
We define a Finite Horizon Cost Function

J =
Hp−1Ø
i=0

xT (k+i|k)Qx(k+i|k)+uT (k+i|k)Ru(k+i|k)++xT (k+Hp|k)Px(k+Hp|k)

(6.2)

where Hp is the prediction horizon, Q and R are the weighting matrices, P is
the terminal weighting matrix, x(k + i|k) is the state measurement at time k, and
u(k + i|k) is the control action at time given k. The goal is to find the optimal
input (control action) sequence

U∗(k|k) = [u∗(k|k) u∗(k + 1|k) ... u∗(k +Hp − 1|k)]T (6.3)

that minimizes J . In order to set the optimization problem in a quadratic
formulation [39, 40],
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J = X(k|k)T Q̄X(k|k) + U(k|k)T R̄U(k|k)

where

X(k|k) = [x(k|k) x(k + 1|k) ... x(k +Hp|k)]T

Q̄ =



Q 0 0 ... 0
0 Q 0 ... 0
... ... . . . ... ...
0 ... 0 Q 0
0 0 ... 0 P



R̄ =


R 0 0 ... 0
0 R 0 ... 0
... ... . . . ... ...
0 0 ... 0 R


Therefore, since the prediction state is

X(k|k) = S̄x(k|k) + T̄U(k|k) (6.4)

where

S̄ =


B 0 ... 0
AB B ... 0

... ... . . . ...
AHp−1 AHp−2 ... B



T̄ =


A
A2

...
AHp


the linear quadratic (LQ) constrained optimization problem can be expressed as



min J(x(k|k), U(k|k) = min
3

1
2U(k|k)THU(k|k) + x(k|k)TFU(k|k)

4
s.t.

umin ≤ u(k + i|k) ≤ umax, i = 0, ..., Hp − 1
xmin ≤ x(k + i|k) ≤ xmax, i = 0, ..., Hp

(6.5)
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where

H = 2(R̄ + S̄T Q̄S̄)

F = 2(T̄ T Q̄S̄)

while umin, umax, xmin and xmax are the constraints of the control action and of
the state space.

However, even in the constrained case, the application of the minimizing sequence
(6.3), gives rise to an open loop control strategy that is affected by uncertainty
and disturbances. Such a problem is addressed by a feedback control strategy that
is realized through the Receding Horizon (RH) principle, that is defined by the
recursive procedure below [40]:

At sampling instant k

1. get the state x(k) = x(k|k)

2. solve the considered QP optimization problem (6.4) w.r.t. U(k|k)

3. compute the minimizer U(k|k)∗

4. apply, as present control action, u(k) = u(k|k)∗ (i.e. the first element only of
the minimizer, the others are discarded).

6.2 Tracking MPC
If the state space has to track a reference r(k), the output tracking can be accounted
for by including in the cost function (6.2) a quadratic term of the tracking error
x(k + i|k) − r(k + i|k):

J =
Hp−1Ø
i=0

(x(k+ i|k)−r(k+ i|k))TQ(x(k+ i|k)−r(k+ i|k))+uT (k+ i|k)Ru(k+ i|k)

(6.6)

Hence, the linear quadratic (LQ) constrained optimization problem becomes [39,
40]:
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

min J(x(k|k), U(k|k) = min
3

1
2U(k|k)THU(k|k) +

 xT (k|k)
−RT (k|k)

Fopt U(k|k)
4

s.t.

umin ≤ u(k + i|k) ≤ umax, i = 0, ..., Hp − 1
xmin ≤ x(k + i|k) ≤ xmax, i = 0, ..., Hp

(6.7)

where

R(k|k) = [r(k|k) r(k + 1|k) ... r(k +Hp|k)]T (6.8)

H = 2(R̄ + S̄T Q̄S̄) (6.9)

F = 2
C
T̄ T Q̄S̄
Q̄S̄

D
(6.10)

6.3 MPC for tracking attitude control
According to (6.4), in order to predict the future state space it is necessary to
linearize the equation of motion in order to obtain a linear system in the form of
(6.1). Therefore, in the case of spacecraft attitude control the state space vector x
and the control vector u are assumed to be

x = [q0 q1 q2 q3 ωx ωy ωz ]T (6.11)

u = [ux uy uz ]T (6.12)

and the matrices A and B, obtained by linearizing the quaternion kinematic
equation (3.17) and the Euler dynamic equation (3.18), are

A =
C
A11 A12
A21 A22

D
(6.13)
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B =
C
03,3

J−1

D
(6.14)

with

A11 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (6.15)

A12 = 1
2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1

−q2 q1 q0

 (6.16)

A21 =

0 0 0 0
0 0 0 0
0 0 0 0

 (6.17)

A22 =

0 0 0
0 0 0
0 0 0

 (6.18)

03,3 null matrix and J inertia matrix.
In our case the reference vector (6.8) is, at sampling instant k,

r(k) = [qr0 qr1 qr2 qr3 ωrx ωry ωrz ]T (6.19)

where q⃗r = [qr0 qr1 qr2 qr3 ]T and ω⃗r = [ωrx ωry ωrz ]T are, respectively, the
reference quaternion (3.12) and the reference angular velocity (3.15) computed in
section 3.2.

6.4 Simulations and results
In this section the results of the tracking MPC are presented. The prediction
horizon Hp and the weighting matrices Q, R, and P , identified through the try and
error process based on simulation sessions, have the following values:

Hp = 5

78



Model Predictive Control

Q =



105 0 0 0 0 0 0
0 105 0 0 0 0 0
0 0 105 0 0 0 0
0 0 0 105 0 0 0
0 0 0 0 105 0 0
0 0 0 0 0 105 0
0 0 0 0 0 0 105



R =

10−50 0 0
0 10−50 0
0 0 10−50



P =



105 0 0 0 0 0 0
0 105 0 0 0 0 0
0 0 105 0 0 0 0
0 0 0 105 0 0 0
0 0 0 0 105 0 0
0 0 0 0 0 105 0
0 0 0 0 0 0 105



If the initial conditions are those reported in Table 5.1, the Helix manoeuvre
(3.3) carried out in four orbital periods (3.1) of Space Rider is depicted in Fig.
5.1, while Fig. 6.1 - 6.4 represent the temporal evolution of the quaternions. It is
evident that the tracking MPC does not manage to follow the reference quaternion.
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Figure 6.1: Temporal evolution of q0 during tracking attitude control

Figure 6.2: Temporal evolution of q1 during tracking attitude control
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Figure 6.3: Temporal evolution of q2 during tracking attitude control

Figure 6.4: Temporal evolution of q3 during tracking attitude control
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Chapter 7

Conclusions

The main objective of the thesis is to define guidance and control strategies for
small satellites involved in the observation/inspection of a collaborative target.
For the attitude guidance it has been used a method based on computing, in
each position of the trajectory, the Euler axis to correctly point to the center of
mass of Space Rider. The simulations conducted for four different trajectories of
SROC show that this algorithm is independent of the actual manoeuvre because
it computes the reference vector from the real position of SROC in that instant.
For the attitude tracking control a Super-Twisting Sliding Mode Control has been
designed. The Monte Carlo simulations demonstrate its high accuracy and its
robustness against the uncertainties of the parameters of the satellite, besides the
strong attenuation of the chattering effect typical of the 1-order SMC. However,
section 5.3 highlights that the proposed Super-Twisting SMC is not robust in the
case of a casual failure of one of the four Reaction Wheels. Therefore, it might be
useful to tune the controller for this off-nominal scenario.
The next step will be the integration of all the blocks concerning sensors and
navigation filter, besides a more detailed external disturbances and CubeSat model,
in the orbital simulator.
Chapter 6 introduces the Model Predictive Control, hence, future researches might
be focused on a better implementation of an this controller.
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Reference frames

A.1 Earth centered inertial frame
The Earth centered inertial (ECI) or Geocentric-equatorial system has its origin at
the Earth’s center. The fundamental plane is the equator and the positive X-axis
points in the vernal equinox direction (towards the constellation of Ares), the
Z-axis points in the direction of the north pole and the Z-axis finishes the triad
of the reference system and it’s in the equatorial plane. It is important to keep
in mind when looking at Fig. A.1 that the XY Z system is not fixed to the Earth
and turning with it; rather, the Geocentric-equatorial frame is nonrotating wrt the
stars (except for precession of the equinoxes) and the Earth turns relative to it [41].

Figure A.1: Earth inertial frame [41]
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A.2 Body reference frame
The origin of the body reference frame is fixed at the spacecraft’s center of mass,
and its axis corresponds to the main direction of inertia, but normally, they can be
adjusted depending on the mission phase. In contrast to the inertial reference frame,
this one moves with the spacecraft, and by making an appropriate comparison with
it, it is possible to determine the attitude angles.

A.3 LVLH frame
The Local Vertical Local Horizontal (LVLH) frame is a local reference system
attached to the target spacecraft (as shown in Fig. A.1). Rbar axis is along the
vertical line towards the Earth center, Vbar is in the direction of orbital motion
parallel to the local horizontal and Hbar is perpendicular to the orbital plane,
opposite direction wrt angular momentum. The LVLH frame rotates with angular
velocity vector ω and its current orientation with respect to the ECI frame is given
by a rotation matrix appropriately defined.

Figure A.2: LVLH frame [33]
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Euler angles

Assuming that a satellite is a rigid body, we can attach to it a body frame, FB,
described by a set of unit vectors (ê1, ê2, ê3). The position of FB with respect
to an inertial reference frame FI (LVLH frame), identified by the unit vectors
(Ê1, Ê2, Ê3), completely describes the attitude of a spacecraft. Assuming that v⃗ is
a vector quantity, it is possible to write it as

v⃗ = xê1 + yê2 + zê3

or, equivalently,

v⃗ = XÊ1 + Y Ê2 + ZÊ3

The column vectors v⃗B = (x, y, z)T and v⃗I = (X, Y, Z)T provide the component
representations of the same vector quantity v⃗ in the reference frames FB and FI ,
respectively [42]. It is possible to write

v⃗B = [LBI ]v⃗I (B.1)

where [LBI ] is the rotation matrix from the LVLH frame to the body one. It is
possible to use [LBI ] to describe the attitude of the spacecraft through the unit
vectors êi of the body frame attached to it, coming out with a total of 9 parameters.
One of the set of three parameters most widely used to describe the attitude of
a rigid body (or equivalently the attitude of the body frame attached to it) wrt
a fixed frame are the Euler’s angles, a sequence of three rotations that take the
fixed frame and make it coincide with the body frame. The original sequence of
rotations proposed by Euler to superimpose FI onto FB is the sequences 3-1-3:

1. the first rotation is about the third axis of the initial frame, that is Ê3 and
takes the first axis Ê1 to the direction ê′

1 perpendicular to the plane determined
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by the unit vectors Ê3 and ê3; Ê2 is rotated onto ê′
2; the rotation angle is

called precession angle Ψ

2. the second rotation is about the first axis transformed after the first rotation,
ê′

1, and takes the axis ê′
3 into the position of ê3; ê′

2 is moved onto ê′′
2; the

rotation angle is called nutation angle Θ;

3. the third and final rotation is about ê3 and brings ê′′
1 = ê′

1 and ê′′
2 to their final

positions, ê1 and ê2, respectively; the rotation angle is called spin angle Φ.

The three angles, representing the amplitude of the three successive rotations
Ψ,Θ,Φ respectively about the third, the first, and again the third axis, can be used
to represent the attitude of the frame FB. The transformation matrix LBI can be
expressed as a function of these three angles, in terms of three elementary rotation
matrices [42].
The coordinate transformation during the first rotation is given by

x′

y′

z′

 =

 cos(Ψ) sin(Ψ) 0
−sin(Ψ) cos(Ψ) 0

0 0 1



X
Y
Z


during the second rotation

x′′

y′′

z′′

 =

1 0 0
0 cos(Θ) sin(Θ)
0 −sin(Θ) cos(Θ)



x′

y′

z′


and during the third rotation

x
y
z

 =

 cos(Φ) sin(Φ) 0
−sin(Φ) cos(Φ) 0

0 0 1



x′′

y′′

z′′


The three elementary rotation matrices of the Euler’s sequence 3–1–3 can thus

be defined as

[R3(Ψ)] =

 cos(Ψ) sin(Ψ) 0
−sin(Ψ) cos(Ψ) 0

0 0 1



[R1(Θ)] =

1 0 0
0 cos(Θ) sin(Θ)
0 −sin(Θ) cos(Θ)


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[R3(Φ)] =

 cos(Φ) sin(Φ) 0
−sin(Φ) cos(Φ) 0

0 0 1


When passing from the inertial frame FI to the body frame FB using Euler’s

sequence, the coordinate transformation of vector quantities can be obtained
combining in the correct order the elementary rotation matrices, as follows:

v⃗B = [R3(Φ)][R1(Θ)][R3(Ψ)] v⃗I (B.2)

This means that

[LBI ] = [R3(Φ)][R1(Θ)][R3(Ψ)] (B.3)
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Quaternions

C.1 Euler’s axis rotation theorem
Euler’s axis rotation theorem states that it is possible to rotate a frame F1 onto
any arbitrary frame F2 with a simple rotation α around an axis a⃗ that is fixed in
both frames (Fig. C.1), called the Euler’s rotation axis, the direction cosines of
which are the same in the two considered frame. If the objective is to to rotate the
fixed frame FI onto any arbitrary frame FB, the transformation matrix [LBI ] is a
function of the Euler axis a⃗ and the angle of rotation α:

[LBI ] = cosα I + (1 − cosα)⃗a a⃗ T − sinα A (C.1)

where I is the identity matrix and

A =

 0 −a3 a2
a3 0 −a1

−a2 a1 0

 (C.2)

Figure C.1: Euler’s axis rotation theorem [33]
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We now define the Euler parameters or quaternions as
q0 = cos(α

2 )
q1 = a1sin(α

2 )
q2 = a2sin(α

2 )
q3 = a3sin(α

2 )

(C.3)

Therefore, the the transformation matrix [LBI ] becomes:

[LBI ] = (q2
0 − q⃗v · q⃗v)I + 2q⃗v q⃗v

T − 2q0Q (C.4)

where q⃗v = [q1 q2 q3]T and q0 are, respectively, the vectorial part and the scalar
part of the quaternion q and

A =

 0 −q3 q2
q3 0 −q1

−q2 q1 0

 (C.5)

In comparison to Euler’s angles, the quaternions have a number of benefits, chief
among them the absence of inherent geometric singularity. Also, compared to the
equation derived for the Euler’s angles, the linear equation that must be integrated
over time to calculate their evolution as a function of angular velocity components
is computationally less expensive. The cost is that four independent factors are
used rather than just three. Another disadvantage is that, unlike Euler’s angles,
which have an intuitive geometric meaning, their geometric interpretation during
an evolution is less immediate. The quaternion multiplication process, however,
enables a strict characterization of misalignment errors that is otherwise impossible
to get [42].

C.2 The quaternion error vector
Assume that the current attitude of a frame FB associated with a rigid body with
respect to a given fixed frame FI is represented by the quaternion q, while qdes

represent the desired attitude FD of the body. The magnitude of the angular
displacement between FB and FD, represented by the amplitude ϵ of the eigenaxis
rotation around â that takes FD onto FB, can be seen as the “error” in the current
attitude with respect to the desired one. Provided that the rotation that takes FI

onto FD can be combined with that that takes FD onto FB, it is possible to assess
by means of the quatenion operation that

q⃗ ⊗ q⃗err = q⃗des
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where q⃗err = [qerr0 q⃗errv ]T is the quaternion error, that is the quaternion associ-
ated with the rotation that takes FB onto FD, the amplitude of which thus provides
the misalignment error of FD with respect to FB [42]. By pre–multiplication of
both terms by the conjugate quaternion q⃗∗ one gets

q⃗err = q⃗∗ ⊗ q⃗des =


q∗0 −q∗1 −q∗2 −q∗3
q∗1 q∗0 −q∗3 −q∗2
q∗2 q∗3 q∗0 −q∗1
q∗3 −q∗2 q∗1 q∗0



qdes0

qdes1

qdes2

qdes3

 (C.6)

where

q⃗∗ = [q0 − q1 − q2 − q3]T (C.7)
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Appendix D

Impulsive manoeuvres

As a first approximation, thrust manoeuvres can be thought of as impulses, or
momentaneous changes in velocity, during the time of the maneuver. Such perfect
impulsive maneuvers do not actually exist due to the limited thrust levels that are
accessible; instead, constant thrust forces must be delivered over a specific period
of time to realize the maneuver [35].

D.1 Radial boost
Thrust manoeuvres with a ∆V in ±z direction (LVLH frame) can be used for
transfer along the target orbit and for fly-around to an R-bar approach. A particular
property of radial manoeuvres is that they affect only the eccentricity, not the
orbital period, and thus cause no drift wrt the target orbit [35].
Fig. D.1 shows the application of two ∆V in a radial direction for a transfer to
a different position on the target orbit. Starting at x1, the transfer time to x2 is
half an orbital period. To stop the motion at x2, an impulse of the same size and
direction, ∆Vz1 = ∆Vz1 , must be applied. With ∆x = x2 − x1 the required ∆V in
both cases becomes:

∆Vz1 = ∆Vz2 = ω

4 ∆x (D.1)
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Figure D.1: Transfer along V-bar byradial impulses [35]

92



Impulsive manoeuvres

D.2 Motion in the y direction
Considering the following initial conditions

x0 = z0 = 0
y0 = Y0

ẋ0 = ẏ0 = ż0 = 0
(D.2)

and inserting into the Hill’s equations (3.4), the equations of motion are:
x(t) = 0
y(t) = Y0 cos(ωt)
z(t) = 0

(D.3)

The result is the expected pure sinusoidal motion starting with Y0 (Fig. D.2). As
this motion is de-coupled from the in-plane motions, this result can be superimposed
to all in-plane cases [35].

Figure D.2: Motion over time after release at an out-of-plane distance of Y0 = 10 m
[35]
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