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Abstract

Liquid Rocket Engines (LREs) are widely used in space propulsion because of
their versatility to enable frequent thrust variation maneuvers. The performance of
these engines depends on the combustion chamber cooling system which generally
consists of small channels manufactured on the nozzle.

At the von Karman Institute for fluid dynamics (VKI) an experimental cam-
paign will take place to investigate the heat transfer in small cooling channels. The
experiments, the working fluid and working ranges, are designed in flow similarity
with the LRE cooling channels. The final aim is to investigate the effect of the
augmented roughness derived by additive laser manufacturing on the cooling per-
formances. The experimental facility,TROPIC, is a closed loop installation with
capabilities of varying independently pressure, temperature, and mass flow rate of
ethanol to meet the conditions required by the flow similarity. The test section is
made of three transparent (quartz) sides and one metallic heated wall. The heat
flux, constant and uniform, is provided by Joule effect. Since the wet surface, is not
accessible, temperature measurement is performed with shielded thermocouples
placed on the back of the electrified heated wall.

In this framework, the purpose of this thesis is to develop an inverse method
to retrieve the heat transfer coefficient and the wet surface temperature from the
transient measurement of the back wall temperature. First, the analytical 1D
transient heat equation is derived with suitable boundary conditions that represent
the experimental case. Then, an optimization routine is implemented to identify
the mixed boundary condition at the wet wall in single phase flow and at the onset
of boiling. The method is validated against FEM simulations of the single phase
heat transfer case and against a small scale experiment with an air jet impinging
on a heated surface.





Summary

I razzi a combustibile liquido sono i più utilizzati, soprattutto se la spinta deve
essere variata o se devono essere accesi e spenti più volte. Durante la combustione,
una miscela di combustibile e ossidante viene bruciata in un involucro per produrre
gas ad alta temperatura e pressione. Per ottenere una combustione stabile ed
efficiente, è necessario che la camera di combustione sia circondata da canali di
raffreddamento.

La maggior parte dei LRE ha punti di funzionamento in cui il propellente è in
condizioni supercritiche. Se, invece, le condizioni di pressione a cui operano sono
inferiori a quelle critiche, si verifica il fenomeno del boiling. La presenza di due fasi
nel sistema può portare a un raffreddamento inefficiente e quindi alla fusione della
camera di combustione. Per studiare il fenomeno in un mini canale, in similitudine
di flusso con quelli di raffreddamento in scala reale, è stato costruito un nuovo
impianto sperimentale (TROPIC), commissionato dall’Istituto von Karman (VKI),
che ha come fluido di raffreddamento l’etanolo.

Lo scopo del lavoro di tesi riguarda lo sviluppo e la validazione di un metodo
inverso da utilizzare per l’impianto TROPIC, il quale consenta di calcolare la
temperatura e il coefficiente di di scambio termico all’interfaccia tra la camera
di combustione e i canali di raffreddamento. Il metodo si basa sull’algoritmo di
ricerca diretta Nelder-Mead simplex e mira a minimizzare la norma della differenza
tra la temperatura effettiva e quella calcolata con il metodo inverso, utilizzando la
soluzione ottenuta dall’equazione del calore. Le soluzioni dell’equazione del calore
sono state ottenute sia analiticamente che numericamente. I risultati sono stati
validati da precendenti simulazioni FEM. È stato, inoltre, condotto un piccolo
esperimento per validare il metodo inverso, condotto nel laboratorio J1 del VKI.
Quest’ultimo utilizza come fluido un getto d’aria controllato e accelerato attraverso
un ugello piano.

Alla fine, vengono illustrate le conclusioni del metodo inverso e i miglioramenti
da apportare allo stesso per un successivo utilizzo ottimale sull’impianto TROPIC.
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Chapter 1

Introduction

1.1 Framworks and motivations

Liquid Rocket engines (LREs) are the most widely used especially if there is a
need to vary thrust or if they need to be turned on and off several times. Solid fuel
rockets, once activated, cannot be turned off nor can their thrust be varied at will.
Special chemical mixtures such as hydrazine, which contain fuel and comburent, are
used for space flight. Conveyed into the combustion chamber, they are activated by
an electrical discharge. Initially, various mixtures were used as fuels, but eventually
it was determined which fuels and their comburents were most suitable. The most
commonly used are the kerosene-oxygen combination (actually the most common
fuel used by modern jets), hydrogen-oxygen (both in liquid form) or strongly acidic
chemical propellants (very toxic). Oxygen and hydrogen are usually in liquid form
at cryogenic temperatures. The advantage of cryogenic propellants is that they can
also be used to cool the rocket itself. Liquid hydrogen and oxygen do not need a
primer because they detonate as soon as they come into contact.

The combustion process occurs in an enclosure when a fuel mixture is activated.
The product of combustion is high-temperature, high-pressure gases that seek an
escape route. Resisting walls make the gases rebound. These gases discharge their
energy in the opposite direction through the exhaust nozzle. If there is a bottleneck
before the exhaust nozzle, the pressure in the cylinder increases and with it the
thrust on the head. In firearms, the combustion chamber and barrel are made
of very thick special steel to resist pressure and high temperatures. In aerospace
thrusters, cooling is achieved by directing a flow of air or liquid against the outer
walls of the cylinder. Rockets, on the other hand, cannot be made with excessive
casing thicknesses.

The cooling circuit of the combustion chamber is a prerequisite for the safe and
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reliable operation of LRE. Most liquid rocket engines operate at system pressures
at which propellants is in supercritical condition, which means that there are
no distinction between a liquid and a gaseous phase. On the other hand, if the
operating pressure conditions are lower than the critical coolant pressure, boiling
occurs and results in a local breakdown of the cooling efficiency. Overheating of
the chamber wall may occur. This can negatively affect the stability of the engine’s
operation. Hence, managing the cooling performance at any operating point of the
engine is a key requirement for the design of liquid rocket engines. To investigate
the heat transfer phenomena in subcritical conditions, a new experimental facility
has been built and commissioned at the von Karman Institute (VKI) and presented
in figure 1.1. The project is called TROPIC which stands for Heat TRansfeR
PhenOmena in 3D Printed Channels.

The facility is a closed-loop installation that works with ethanol. The line is
connected to a filling tank, to the vacuum pump and to the gas nitrogen line.
A centrifugal pump and a flow regulation valve are used to impose the ethanol
mass flow rate. Before the test, the fluid temperature is set by means of the
heater. During the experiments, the fluid temperature is further increased in the
test section and then it returns to the initial conditions using the heat exchanger.
The accumulator membrane deforms to accommodate the change in fluid density
(specific volume).

The test section (see figure 1.2) is a rectangular mini-channel in flow similarity
with typical cooling channels of an LRE, using storable propellants. A thin-walled
channel floor in inconel 718 (1) is fitted to a housing (2) made of macor which is
a ceramic that is both thermally and electrically insulanting. This housing itself
provides grooves to accommodate O-ring seals and interfaces with a glass channel
section (3), which is kept in place by another brass flange (4). The length of the
channel floor section is 330 mm. Electrical power to heat the floor is provided
by two electrodes (5) connected to the DC power supply (16V/800A). The inlet
section and outlet section (6) of the setup have been manufactured using selective
laser melting (SLM). The test section is installed vertically in VKI’s facility in
order to minimize effects of buoyancy on the boiling behavior (for details Ref. [1]).

The channel has a cross section of h x w = 3 mm x 12 mm. In order to limit
heat conduction towards the corners of the channel and the quartz side walls. To
maximize the probability of boiling starting along the central axis of the channel,
only a 6 mm - wide is heated floor. The rest of the channel floor is made of macor
as shown in the figure 1.3. In the figure it is also possible to see that the macor
provides housing for the back wall temperature measurement sensor. Since the wet
wall is not accessible for direct temperature measurement, the flow heat transfer
coefficient must be estimated from the back wall temperature using an inverse
method.

2
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Figure 1.1: Three floor TROPIC facility

Figure 1.2: Test section components

3



Introduction

Figure 1.3: Test section dimensions

1.2 Thesis aims and methodology
The aim of the thesis is to develop and validate an inverse method for the
TROPIC experimental campaign. The inverse method aims to minimize the error
between the true (measured) value of temperature and the one obtained as an
output of the mathematical model. The objective function to be minimized provides
the heat transfer coefficient as an output variable. That links the effect (measured
temperature) to the cause (the heat transfer coefficient). To validate the inverse
method, h is calculated experimentally.

The mathematical model suitable for this problem is the 1D heat equation. Two
different types of solutions have been studied: analytical and numerical. Both are
obtained by having the dimensionless form, which provides that the code can be
easily adapted for each test case. Then, a numerical solution of the 2D transient
heat equation is obtained to verify that the 1D approximation is sufficient to have
an acceptable solution.

Several thermocouples mounting systems have been analyzed to limit the effect
of the insulant macor block on the wall temperature measurements. In an effort
to reach a similarity with the TROPIC facility, a simple and controlled test case
is realized. To validate the inverse method the test section is the actual inconel
718 bar and the cooling was done with a planar nozzle jet flow. The simplified
model shown in the figure 1.4 consists of a planar jet nozzle that provides air
cooling to the inconel bar. The bar is heated by a power supply with a constant
electrical value. The goal is to estimate the front wall temperature (known also

4
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Figure 1.4: A test case in similarity with the TROPIC facility

as wet temperature) and the heat transfer coefficient (h) from the back wall
temperature measurement,and to compare them with experimental values. The
back thermocouple is mounted onto a macor cylinder to mimic the TROPIC test
section. An additional thermocouple is placed on the cooled surface to determine
the heat transfer coefficient experimentally.

1.3 Thesis structure
The thesis is structured starting with an introduction to the problem at hand
(Chapter 1) and the reasons related to the choice of dimensions, materials, and test
cases.

Chapter 2 presents the mathematical formulation of the problem under consid-
eration. It starts with an explanation of the inverse method and the governing
equation of the heat flux. The Chapter presents the analytical and numerical
solutions with an indipendence study of the numerical solution from the mesh.
Then, the sensitivity of the solution to the principal variables of the heat equation
is studied. In the end, the optimization method chosen for this work is explained.

In the third Chapter, the experimental facility used to validate the inverse

5
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method is shown. It starts with a description of the experimental setup, with the
necessary calibrations and characterizations. In particular, in the characterization
of the nozzle, a hint of literature related to the heat transfer of planar jets on a
flat surface is given. Then, the procedure used for the experiment is shown. The
method used for uncertainty analysis is described at the end.

The fourth Chapter presents the analysis of the results. First of all, it discusses
the improvements made to reduce the temperature measurement errors. Then, the
1D assumption is justified: the 2D solution shows that the approximation made
to the one-dimensional (x) is consistent. The heat spread in the other directions
(y and z) can be considered negligible. At the end, the validation of the inverse
method is provided. first with previous FEM results and then with experiments
carried out in this work.

The last chapter includes conclusions drawn from the study and future prospects.

The Appendix reports the analytical results of the heat equation, unidimensional
and transient, for different BCs and ICs (A); (B) shows the calibration methods
and instructions used for the instrument calibrations; and (C) reports the main
MATLAB code used for the work.

6



Chapter 2

Problem set

Figure 2.1: Block diagram of the problem set

The methodology used in this work to develop the inverse method is shown
in figure 2.1. The inverse method seeks to use available information about the
effect of the system to reconstruct the characteristics of the source. In practice,
this is done by creating a mathematical model of the system that describes the
link between the source and the output, and by using optimization techniques to
determine the properties of the source that best fit the observed data.

In this work, the mathematical model is the heat equation, the source is the
unknown boundary condition, i.e. the flow heat transfer coefficient and the output is
the back wall temperature measurement. This chapter describes the mathematical
model, its implementation and the optimization technique.

7



Problem set

2.1 Governing equation
The heat equation is a partial differential equation that describes the temperature
variation in time and space within a homogeneous body (see [2] for more details).
With respect to the geometry shown in figure 2.2, The first law of thermodynamics

Figure 2.2: Geometrical domain of the inconel bar and reference system

in the x direction reads as follows:

qx − qx+∆x − L = ∂E

∂t
(2.1)

where qx is the heat transfer rate, E is the internal energy and L is the external
work done on the system.

The internal energy is defined as:

E = (ρS∆x)u (2.2)

where ρ is the density of the solid material, ∆x is the is a slice of the thickness
of the bar, and S is the surface. In fact ρS∆x is the mass of the system and u is
the internal energy which is proportional to the temperature gradient:

du = cdT (2.3)

where the coefficient c is the specific heat of the solid. Combining Equations 2.2
and 2.3 one could write

∂E

∂t
= ρSc∆x

∂T

∂t
(2.4)

In this statement it has been assumed that the temperature variation along the
bar is sufficiently small, so that the specific heat may be treated as a constant.
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The work transfer rate of eq. 2.1 could be written as:

−L = (S∆x)q̇ (2.5)

recognizing q̇[ W
m3 ] as the volumetric rate of internal heat generation in the solid.

The third assumption made is that qx is proportional to the local temperature dif-
ference in the x direction, qx = kS

∆x
(Tx−Tx+∆x), where k is the thermal conductivity

of the inconel bar. In the limit ∆x → 0, the assumed expression for the local heat
current in the x direction becomes:

qx = −kS
∂T

∂x
(2.6)

This is known as the Fourier law of heat conduction. Finally Eq. 2.6 can be used
to rewrite Eq. 2.1 using the Taylor series:

qx+∆x = qx + ∂qx

∂x
∆x = −S

C
k

∂T

∂x
+ ∂

∂x

A
k

∂T

∂x

B
∆x

D
(2.7)

Hence, the first law, Eq.2.1, becomes a partial differential equation for the temper-
ature function T (x, t):

∂

∂x
(k∂T

∂x
) + q̇ = ρc

∂T

∂t
(2.8)

The first term is related to the longitudinal conduction which is the net transfer of
heat. The word "net" is related to the difference between the heat that arrives by
the current and the one that leaves the bar. The term q̇ is the internal volumetric
heat generation. On the right side there is the thermal inertia which is the retarding
effect. The group ρc is the thermal inertia per unit of sample volume of the system.
If the variation of temperature along the bar is small enough that the thermal
conductivity may be treated as a constant, the one dimensional heat equation
assumes a simpler form:

∂2T

∂x2 + q̇

k
= 1

α

∂T

∂t
(2.9)

where α = k
ρc

= [m2

s
] is the thermal diffusivity of the conducting material. It

represents a measure of how fast heat moves through the material. The variables
k, ρ, c are independent from the temperature, this leads to have α as a constant.
This assumption is confirmed in Ref. [3] which shows that the thermal diffusivity
of inconel 718 varies only 4 % per kelvin degree in the range [20 - 100 °C].

The heat equation is not enough to determine the temperature profile in a
conducting solid bar. In problems where the temperature field is time dependent
the problem solver needs the initial condition (IC) and the boundary conditions
(BC) that characterize the given heat transfer configuration.

9
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For the present case, the imposed IC is a uniform temperature throughout the
bar, equal to the ambient temperature. Instead, the BC can concern the tempera-
ture (Dirichlet BC), the heat flux (Neumann BC) or the relationship between the
temperature and the heat flux (mixed or Robin BC).

In the simpler case of steady state conduction the temperature distribution
depends only on the position inside the conducting body. The heat equation does
not contain the transient term ∂T

∂t
, hence the specification of an initial condition is

not required.

Figure 2.3: Reference system on the inconel bar glued to the macor piece

Figure 2.4 shows a scheme of the conductive bar that is studied in this work.
The orange rectangle corresponds to the region of interest (see the cut section in
figure 2.3). The boundary condition at x = 2 mm, at the top of the inconel bar, is
forced convection with the air jet (ethanol flow in the TROPIC facility) defined as:

−k
∂T

∂x
= h(T∞ − TLx) (2.10)

where T∞ is the ambient temperature and instead Tx=2mm is the temperature of
the upper wall of the bar. Convective heat transfer is the process executed by the
flow which acts as a carrier for the energy that it delivers to a solid wall.

At x = 0 mm, the boundary condition is imposed on the temperature gradient,
i.e. heat flux. If the macor block is a perfect insulant material, a homogeneous
Neuman condition is considered:

−k
∂T

∂x
= 0 (2.11)

However, in this case, a non-homogeneous BC is more suitable to account for the

10
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Figure 2.4: Heat fluxes on the bar

heat losses through the macor block (kM = 1.4 W
mK

). The BC reads as:

−k
∂T

∂x
= −q

′′(t) (2.12)

with:
q

′′(t) = kM

sM

(Tx=0 − TM) (2.13)

where kM is the thermal conductivity of the macor piece, sM is the thickness of
the macor and TM is the temperature at the bottom of the macor.

Figure 2.5 shows the effect of the BC at x = 0 mm, on the temperature profile
obtained from the equation 2.9. As expected, using a non-homogeneous Neumann
boundary condition, the dimensionless temperature values are lower than in the
homogeneous condition case. This is because the input heat (the source) is in both
cases released by convection, while only in the non-homogeneous Neumann case,
the source heat is also partly lost by conduction with the macor. So somehow
having the adiabatic condition at the bottom, causes more heat to be retained by
the bar rather than dissipated. It is important to highlight that the temperature
values achieved are purely indicative.

The case shown in figure 2.5 is only indicative to justify the solutions obtained
using two different BCs. It has approximate parameters, such as: the Qsource = 55W ,
α = αIN = 3.48e−6 m2

s
, h = 2000 W

m2K
. The initial temperature is set at 18°C and

the ambient temperature is set at 17°C.

11
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Figure 2.5: Comparison of solutions between Neumann homogeneous and non-
homogeneous BCs

2.1.1 Dimensionless formulation
Eq. 2.14 summarizes the problem to be solved with its boundary and initial

conditions: 

1
α

∂T (x,t)
∂t

= ∂2T (x,t)
∂x2 + q̇s

k1
∂T
∂x

2
0,t

= 01
∂T
∂x

2
L,t

= −h
k
(T∞ − TL)

T (x,0) = T0

(2.14)

By scaling the quantities: 
x̂ = x

L

t̂ = t
tref

θ̂ = T (x)−T∞
∆T

(2.15)

the system 2.14 becomes:

1
α

∆T
tref

∂θ̂(x̂,t̂)
∂t̂

= ∆T
L2

∂2θ̂(x̂,t̂)
∂x̂2 + q̇s

k1
∂θ̂
∂x̂

2
0,t̂

= 01
∂θ̂
∂x̂

2
1,t̂

= −hL
k

θ̂(1)
θ̂(x̂,0) = θ̂0

(2.16)
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where hL
k

= Nu is the jet flow Nusselt number. Multiplying the equation by α
tref

∆T

and defining the reference time as tref = L2

α
it obtains:

∂θ̂(x̂,t̂)
∂t̂

= ∂2θ̂(x̂,t̂)
∂x̂2 + 11

∂θ̂
∂x̂

2
0,t̂

= 01
∂θ̂
∂x̂

2
1,t̂

= −Nuθ̂(1)
θ̂(x̂,0) = θ̂0

(2.17)

where ∆T = q̇s
α∗tref

k
It is worth noticing that by scaling the variables, the problem

simplifies since the source term has a unit value and the Robin condition is
homogeneous.

2.2 Analytical solution
Eq. 2.17 can be solved with the technique of separation of variables, with a solution
of the form:

θ̂(x̂, t̂) =
∞Ø

n=0
Xn(x̂)Tn(t̂) (2.18)

The first ODE in space is:

Xn(x̂) = c1cos(knx) + c2sin(knx) (2.19)

and then substituting the BCs:X ′
n(x̂) = −c1kn✘✘✘✘✘sin(knx) + c2kn = 0 =⇒ c2 = 0

−c1knsin(kn) +✘✘✘✘✘✘✘
c2kncos(kn) = −Nuc1cos(kn) =⇒ tan(kn) = Nu

kn

(2.20)

Hence the solution reads as:Xn(x̂) = c1cos(knx)
Tn(t̂) = −k2

nTn(t̂) + 1
(2.21)

Using Galerkin projection (see Ref. [4])
∞Ø

n=0
Tn(t̂)cos(knx) =

∞Ø
n=0

−k2
nTn(t̂)cos(knx) +

∞Ø
n=0

1cos(knx) (2.22)

the solution reads:

Tn(t̂) = qn

k2
n

+ bne−k2
n t̂ = cne−k2

n t̂. (2.23)
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To summarize, the scaled temperature solution becomes:

θ̂(x̂, t̂) =
∞Ø

n=0
cne−k2

n t̂cos(knx) (2.24)

and then using the IC

θ̂(x̂,0) =
∞Ø

n=0
cncos(knx)dx (2.25)

It is important to recognize that the eq. 2.25 is a Fourier series (periodic
function). The general equation (2.26) is derived from projecting the periodic
function (Fourier series) onto a space of finite functions (for the present case
between 0 and 1). This yields an algebraic system that can be solved numerically
to find the coefficients of the series (cn) used to approximate the periodic function;
now it is important to know that the cn’s coefficients are not given by the formula
as usual:

cn = 2
1

Ú 1

0
θ̂(x̂,0)cos(knx) (2.26)

The reason for this is that the kn’s are not equally spaced,as shown in table 2.1,
because they are the solutions of the second boundary condition shown in the
system 2.20.

n kn bi

1 93.7500 0
2 1.9659e+03 -0.0154
3 3.4055e+03 0.0308
4 4.9046e+03 -0.0463
5 6.4328e+03 0.0617
6 7.9759e+03 -0.0770
7 9.5275e+03 0.0924
8 1.1084e+04 -0.1078
9 1.2644e+04 0.1231
10 1.4207e+04 -0.1384

Table 2.1: the table shows the eigenvalues and their bases for 10 different modes

To verify that the series is orthogonal, we must verify that the integral of the
product of the bases bi of the first ten modes is convergent to zero.

It is demonstrated that the coefficient’s matrix is orthogonal but non-orthonormal
so it is necessary to examine 2.25 on its own. Multiplying by cos(kmx) and
integrating over [0,1] gives
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Ú 1

0
θ̂0cos(kmx)dx =

∞Ø
n=1

cn

Ú 1

0
cos(kmx)cos(knx)dx

For n /= m it is possible to haveÚ 1

0
cos(kmx))cos(knx)dx

by imposing tan(kn) = Nu
kn

for each of km and kn lead the last equation to be
identically satisfied. Therefore,when n = m, it obtains the following:Ú 1

0
θ̂0cos(knx)dx = cn

Ú 1

0
cos2(knx)dx (2.27)

that leads to

cn =
s 1

0 θ̂0cos(knx)dxs 1
0 cos2(knx)dx

= 4θ̂0
sin(kn)

sin(2kn) + 2kn

(2.28)

This is a general formula that works for all bases orthogonal and non-orthogonal.
For the same reason there is a need to rewrite the source in terms of Fourier series:

1 =
∞Ø

n=0
qncos(knx) (2.29)

qn =
s 1

0 cos(knx)s 1
0 cos2(knx)

= 4 sin(2kn)
sin(kn) + 2kn

(2.30)

This causes the equation 2.24 to become:

θ̂(x̂, t̂) =
∞Ø

n=0

3
qn

kn2 + bne−k2
n t̂
4

cos(knx) (2.31)

Where:

bn = cn − qn

k2
n

= 4 sin(2kn)
sin(kn) + 2kn

C
θ̂0 − 1

k2
n

D
(2.32)

The final solution comes from the equation 2.31 by substituting the equations
2.28 and 2.30.

The solution changes with the time as shown in figure 2.6 until it reaches the
steady state. It can be seen that by fixing the time instant as the time equal to
the end of the transient, the analytical solution match perfectly the steady state
solution; while for 5 s the transition is not yet concluded so the solutions do not
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match the stationary solution (see figure 2.6). It is visible that the solution reaches
the steady state after 30 seconds.

In the steady state case the main equation becomes:

∂2θ̂(x̂, t̂)
∂x̂2 + 1 =

✚
✚
✚

✚✚∂θ̂(x̂, t̂)
∂t̂

(2.33)

integrating twice
θ̂(x̂) = − x̂2

2 − c1x̂ + c2

Then, using the BCs it is possible to obtain the unknown coefficients (c1 and c2)

if x = 0 =⇒ c1 = 0

and
if x = 1 =⇒ c2 = − 1

Nu

3
1 + Nu

2

4
Changes in the scaled solution over time is shown in the figure 2.6.

2.2.1 Parameters sensitivity analysis
This section shows how the solution varies as some key parameters change.

Figure 2.7 shows the effect of the thermal diffusivity on the temperature history
at x̂ = 1. Specifically, if thermal diffusivity increases, the temperature solution
diffuses more rapidly in the bar and the temperature profile flattens over time
(figure 2.7a). Conversely, if thermal diffusivity decreases, heat diffusion in the bar
is less efficient and the temperature solution propagates more slowly. In figure 2.7b
it is possible to see that for lower α values the transient time is bigger.

Figure 2.8 shows the effect of the heat transfer coefficient on the θ̂ at T . In
general, as the heat transfer coefficient changes, the temperature solution varies
proportionally to the difference between the temperature of the surface and its
surroundings (jet temperature for the case study). If h increases, the inconel top
surface has a higher heat exchange with the jet, thus the surface temperature is
lower (figure 2.8b).

Figure 3.15 shows the effect of the thermal conductivity on the temperature
solution. If the material becomes more capable of conducting heat, the temperature
solution will increase more rapidly (this could be seen from the slope of the curves
shown in the figure 2.9b). Conversely, if the thermal conductivity decreases, the
temperature solution will increase more slowly. In figure 2.9b it is possible to see
that the transient time is not constant for all values of k chosen. This can also be
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Figure 2.6: Temperature changes inside the inconel bar at different times

(a) (b)

Figure 2.7: Sensitivity analysis (in time) on α[m2

s
]

explained by the fact that thermal diffusivity is, by definition, directly proportional
to thermal conductivity; in fact, when α increases the temperature values, reached
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(a) (b)

Figure 2.8: Sensitivity analysis (in time) on h[ W
m2K

]

(a) (b)

Figure 2.9: Sensitivity analysis (in time) on k[ W
mK

]

by the top surface of the inconel bar, also increases. Equally it happens when the k
increases. It is worth reminding, that in the derivation of the analytical solution of
the governing equation, the thermal conductivity is not a function of temperature.

If the jet temperature increases, the solution of the heat equation will show
an increase in temperature throughout the system (figure 2.10b). From the same
figure it is inferred that if the jet temperature decreases, the temperature of the top
surface is less because the body is cooled more. Moreover, if the jet temperature
increases the difference between the initial temperature T0 and T∞ decreases. Hence,
the value of θ̂0 decreases (see the equation 2.15), is shown in figure 2.10a. In the
same figure it is possible to see that when the solution reaches the steady state,
the T∞ does not affect the scaled temperature values.

The figure 2.11a draws the scaled temperature values (θ̂) at x̂ = 1 for different
Qsources. The initial time the temperature at the top side of the bar varies with the
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(a) (b)

Figure 2.10: Sensitivity analysis (in time) on Tamb[K]

(a) (b)

Figure 2.11: Sensitivity analysis (in time) on Qsource[W ]

change in the source since θ̂0 is inversely proportional to the value of the volumetric
source (see the equation 2.15). In the same figure it is possible to see that the
effect of Qsource on θ̂ vanishes when the solution reaches steady state, referred to
the definition of θ̂. Instead, from the figure 2.11b, the effects of Qsource on the final
temperature are clearly visible. It is logical that a larger source allows for a higher
surface temperature due to the fact that in the same time interval it gives more
heat to the inconel bar. The transient time depends on the variable in question.

The summary of the sensitivity analysis is described in table 2.2. In it, it is
clear that the parameter that most influences the solution is the ambient tempera-
ture. The table 2.2 presents how a 20% change in each of the parameters under
consideration, corresponds to a percentage changes in the solution, expressed in
terms of δT .

19



Problem set

∆[%] δT [%]
Qsource 20 0.525

T∞ 20 1.07
h 20 0.412
α 20 ∼ 0
k 20 ∼ 0

Table 2.2: Results of sensitivity study

2.3 1D numerical solution

To verify the analytical solution is correct, a numerical approximation of the heat
equation is solved. The pdepe function is a Matlab built-in FEM solver for PDE
equations (the code is reported in the Appendix C). This function solves initial-
boundary value problems in one spatial variable x and one time t.

The pdepe function uses a combination of spatial and temporal discretization
techniques to solve partial differential equations. The function approximates the
spatial derivatives of the solution using finite differences, that is, by approximating
the derivative at one point as a linear combination of solution values at neighboring
points. The accuracy of the solution depends on the size of the grid, i.e., the
number of nodes that are used. For this work, the nodes are equally spaced, i.e.
the discretization grid is uniform.

The Adams-Bashforth-Moulton method is used to discretize equations in time.
It combines two methods: the Adams-Bashforth method and the Adams-Moulton
method. The Adams-Bashforth method uses a multi-step formula to approximate
the solution at the next instant from the solution at the previous instant. The
Adams-Moulton method uses an implicit formula. Specifically, the method uses
the Adams-Bashforth formula for a number of initial instants, and then switches to
using the Adams-Moulton formula for the rest of the time. The Adams-Bashforth-
Moulton type method is very efficient at finding the solution when it varies slowly
over time. However, it can be unstable when the solution varies rapidly in time,
particularly if the time step size is too large.

Once the partial differential equations have been discretized, pdepe solves the
system of discrete equations using a numerical integration algorithm. This algo-
rithm tries to find an approximate solution for each grid point.
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The solver is designed to handle equations of the form:

c(x, t, u, ux)ut = x−m ∂

∂x
[xmf(x, t, u, ux)] + s(x, t, u, ux) (2.34)

where u(x, t) is the solution defined within a domain [xl, xr] evolving in the finite
time range [ti, tf ]. Observe that the Laplacian operator can be written in Carte-
sian (m=0), Cylindrical (m=1) or Spherical (m=2) coordinates. The coefficient
f(x, t, u, ux) is a flux term while s(x, t, u, ux) is a source term.

The boundary conditions can be described in the form:

p(x, t, u) + q(x, t)f(x, t, u, ux) = 0 (2.35)

For the present case, the BC at x = 0 mm is

∂x̂θ̂(0) = 0

implemented with ql = 1 and pl = 0 in 2.35. At x = 2 mm the BC is

∂x̂θ̂(1) = −Nu θ̂(1)

where pr = hL
λ

ur and qr = 1.

2.3.1 Mesh independence study
A mesh independence study aims at determining the accuracy of the solution with
respect to the computational grid used (mesh). It involves solving the numerical
problem with different computational grids, gradually increasing the mesh resolution,
and analyzing how the solution varies as the mesh density changes.

The goal of the mesh independence study is to establish the optimal computa-
tional grid for the numerical problem.

The process of studying mesh independence can be divided into three main
stages:

• Different computational grids with different mesh densities are generated

• For each computational grid generated, the numerical problem is solved

• The results obtained with different computational grids are compared to each
other and the discretization error is evaluated

In figure 2.12 it can be seen that the solution does not change using a mesh
with 1000 uniform grid points.
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Figure 2.12: Mesh independence study

2.3.2 Comparison with analytical solution
Figure 2.13 shows the comparison between the analytical solution and the numerical
solution obtained with 1000 grid points.

The difference is negligible. However, the computational cost of the numerical
solution is twice that of the analytical one. The analytical solution has a compu-
tational time equal to 0.260239 seconds; instead for the numerical solution it is
0.679719 seconds.

2.4 Inverse method
It is worth reminding that in this work, the inverse method is used to retrieve the
values of the heat transfer coefficient h and the thermal diffusivity α of the system.

As it is shown in figure 2.1, reasonable values for the two variables are given as
a starting guess to solve the heat equation. The optimization algorithm aims at
minimizing the objective function e defined as:

e = ||T0,t − Tback||2 (2.36)

where Tback is the temperature history measured by the back thermocouple and
T0,t is the temperature at the bottom (x=0) of the bar, found by solving the PDE.
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Figure 2.13: Comparison of both solutions with Neumann bottom boundary
conditions

Once the minimum difference is found, the loop exits with two output values: α
and h.

The same process might be done with a simple iterative process. However
this solution requires the range of the output values, which are unknown for the
case at hand. Moreover, the inverse method algorithm requires evaluating the
objective function many times to find the minimum, resulting in a large number
of iterations for the guess value. Then, for some inverse method algorithms, such
as the bisection method or the secant method, a search interval must be specified.
Using a trial-and-error non-informed iterative loop to generate a search interval
can be time-consuming and inefficient. In some cases, this process might lead to
getting stuck in local minima instead of finding the global minimum of the objective
function. For these reasons, there are more efficient and sophisticated inverse
method algorithms, such as the Nelder-Mead algorithm (or Simplex algorithm)
which is implement in the Matlab function fminsearch.

The Simplex algorithm starts with a set of points called Simplex, which contain
the starting point and other points that are randomly generated near it. The
algorithm then tries to move the Simplex toward the minimum of the objective
function by changing the positions of the points within the Simplex iteratively.

During each iteration of the algorithm, the function is evaluated at the points
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Figure 2.14: Simplex algorithm scheme (source: Simplex Image)

in the Simplex. Based on the evaluation results, the algorithm decides which point
in the Simplex should be replaced with a new point that is closer to the minimum.
This process is repeated until the algorithm finds a point that corresponds to a
sufficiently low value of the function, or until the maximum number of iterations
allowed is reached. Then the fminsearch function returns the value of the output
variables. Additional options can be specified to customize the algorithm, such as
the maximum number of iterations allowed, the tolerance for convergence, and the
termination criterion.
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Chapter 3

Experimental methods

The goal of the experiments is to validate the inverse method described in Chapter 2.
In this Chapter, the experimental setup used in the research project is described in
detail. Moreover,the measurement techniques, the calibration and characterization
of all the instrumentation used and the procedure to perform the experiments are
shown. At the end, the methodology for the experimental uncertainty quantification
is described.

3.1 Experimental setup
The selected test case is a turbulent planar air jet impinging on an inconel bar,
which is electrically heated.

The setup is shown in Figure 3.1 and schematically in Figure 3.2. It is composed
by: the planar jet nozzle (1), the inconel bar (6), the power supply (5) and the com-
pressed air line (8). The measurements are carried out with a differential pressure
transducer (Validyne) (2), a hot wire anemometer (7) and type K thermocouples
(4). The data are recorded with the National Instrument acquisition system (3).

3.1.1 Equipment
To maintain the similarity with the TROPIC experiment, the test section includes
the actual inconel 718 bar of dimensions 2x6x330 mm. Additionally, a cylinder of
macor ceramic is glued on the bottom of the inconel bar, to mimic the insulation
block of the TROPIC test section and the thermocouple mounting system (as shown
in figure 3.3 (a)). The macor cylinder has a diameter of 30 mm and a thickness
of 19 mm, and it is pierced to allow the back thermocouple to pass through and
measure the back wall temperature. This temperature value required to apply the
inverse method.
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Figure 3.1: Photo of the experimental setup

Figure 3.2: Scheme of the experimental setup

The bar is heated by two electrodes linked to the power supply (figure 3.3(b))
which provides constant power to the system. A power supply is an electronic
device that converts incoming electrical power into the form needed to the electronic
devices. The power supply has to receive an input from a source ; usually in the
form of AC (alternating current) or DC (direct current) voltage. If the input power
is AC voltage, it must be rectified into DC voltage. The pulsating DC voltage
is then smoothed out using a filter circuit, which removes the high-frequency
components of the voltage and provides a more stable DC voltage. The filtered
DC voltage is then regulated to the desired level using a voltage regulator circuit.
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This ensures that the output voltage of the power supply remains constant even if
the input voltage or load changes. The regulated DC voltage is output from the
power supply to power electronic devices or systems. The output power may be in
the form of a fixed voltage or adjustable voltage depending on the design of the
power supply. For the experiments of this work a power of 31 W is set, delivered
with a current of 30 A.

The air jet impinging on the bar is generated by a planar nozzle (Figure 3.3
(a)). The nozzle is composed by three chambers, but for the purpose of these
experiments only the central one is used. The longitudinal dimension of the nozzle
is 250 mm and the width can be modified between 0 mm and 3 mm. For these
experiments the width is set at 1.5 mm. Section 3.2 presents the characterization
of the nozzle jet. The nozzle is fed with the 7 bar compressed air line. The air
pressure is manually regulated with a valve and measured by a manometer as
shown in Figure 3.3 (c). The red handle is an on-off ball valve used in emergency
case or to stop the passage of the flow immediately. To set the pressure, the black
knob clockwise is rotated. All the other butterfly valves on the line are kept open
during the experiment to make sure that the inlet flow is regulated by the one knob
that is acted on.

Figure 3.3: (a) Inconel bar with cylinder of insulant ceramic and planar nozzle,
(b) power supply, (c)compressed air line and regulation manometer

27



Experimental methods

3.1.2 Measurement techniques
During the experiments, jet pressure and velocity are measured as well as the
surface temperature on the inconel bar.

Pressure transducer

Figure 3.4: Pressure transducer
(membrane M42) and demodulator

Figure 3.5: Calibration curve of
pressure transducer (membrane M42)

The pressure measurement device consists of a transducer and a demodulator
(Figure 3.4). A pressure transducer usually consists of a membrane that flexes
in response to the applied pressure, moving a sensing element, which is typically
a piezoelectric crystal or a strain gauge. It generates an electrical signal that is
proportional to the pressure applied to the membrane. The electrical signal is
amplified and then converted into a standardized output signal, such as a 0-10V
voltage signal. The standardized output signal is then transmitted to a control
system, where it can be used to monitor, control, or record the pressure. The
pressure sensor chosen for this experiment is a differential pressure transducer
(Validyne). This transducer uses a variable reluctance sensing element, which
consists of a coil of wire and a magnet. Due to the pressure difference a displace-
ment of the membrane happens, and the distance between the magnet and the coil
change. This changes the reluctance of the magnetic circuit, which in turn changes
the output voltage of the coil proportionally to the applied pressure and can be
measured and converted into a standardized output signal. The demodulator is an
electronic component whose function is to extract the modulated voltage signal
at the output of the transducer and convert it into an analog or digital signal,
ready to be processed by other components of the data acquisition system. In
most cases, the pressure signal that is detected by the transducer is frequency
(FM) or amplitude (AM) modulated. The demodulator then has the function of
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"demodulating" the signal, that is, in general restoring the original signal based on
the pressure change. Overall, Validyne pressure transducers are known for their
high accuracy, stability, and durability, and are used in a variety of industrial and
scientific applications.

For the present experiments, the M42 membrane was chosen, which corresponds
to a measurement range of 0-1.4 bar. The range of the diaphragm guarantees a
safety margin,to avoid rupture. Prior to use the sensor, this has been calibrated
(see the calibration curve figure 3.5) which the procedure is shown in the Appendix
(B).

The calibration curve of a pressure transducer is a graph that shows the relation
between the pressure applied to the transducer and the corresponding electrical
output signal produced. To create a calibration curve, a known reference pressure
source is applied and the electrical output is recorded and plotted against the
corresponding reference pressure, as in figure 3.5. This curve should be linear,
meaning that the output signal increases or decreases in proportion to the applied
pressure. The accuracy of the calibration curve depends on the accuracy of the
reference pressure source, the precision of the measurement equipment used to
record the transducer’s output signal, and the stability of the transducer over
time. In general, high-quality pressure transducers have a very low measurement
uncertainty, typically on the order of a few tenths of a percent of the measurement
scale.

To better quantify the accuracy of the calibration the regression coefficient
R2 is calculated. This is widely used in statistics because it provides information
about the strength of the relation between the independent and dependent variables.
A larger R2 coefficient, closer to one, means that the relation between the variables
is well defined; so the instrument is well calibrated. A positive regression coefficient
indicates that the two variables are positively related, meaning that as one variable
increases, so does the other.

The equation used to find the linear regression coefficient is:

R2 = 1 −
qn

i=1(yi − ŷi)2qn
i=1(yi − ȳi)2 (3.1)

where ŷi are values of y (pressure) calculated via the linear regression and ȳi is
the mean of the measured y. The calibration of the pressure transducer was done
very accurately in fact the regression coefficient is equal to 0.9999.

It is possible to measure the pressure through the nozzle knowing the voltage
read from the acquisition system. Once the relative pressure through the nozzle is
known, the Bernoulli’s equation, can be used to calculate the jet velocity

pe + 1
2ρu2

e = p0 + 1
2ρ✚✚u0

2 (3.2)
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where the subscript e and 0 are respectively referred to the exit of the nozzle, which
is taken as atmospheric pressure, and the inlet of it.

Figure 3.6: Velocity of the flow using Bernoulli’s equation

It is possible to know the exit flow velocity using the relative pressure as an
input of the Bernoulli’s equation (as it is shown in figure 3.6). The velocity of
the flow is also measured with another instrument, the hot wire anemometer and
compared with the values taken from the Validyne. From the ratio of the two
measures, it is possible to retrieve a discharge coefficient (DC). The real value of
velocity is given by multiplying the velocity of the Validyne with the DC.

Thermocouple

Figure 3.7: Type K sheeted thermocouples, with mineral internal insulation and
sensing diameter 1mm

The temperature is measured with type K thermocouples shown in figure 3.7.
In a Type K thermocouple, two metal alloy wires are joined at one end, while the
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other one is connected to a temperature measuring device such as a voltmeter or
data acquisition system. The temperature difference between both ends creates
a voltage, which is proportional to the temperature difference, according to the
Seebeck effect. Type K thermocouple is a temperature sensor that uses two different
metals: Nickel and Chromium at the positive leg, while of Nickel and Aluminum
at the negative one.

In general, standard type thermocouples (like Type K, Type J) have an uncer-
tainty of about 0.5-1°C at normal ambient temperatures. However, the uncertainty
can increase significantly at extreme temperatures or in the presence of electro-
magnetic disturbances. This uncertainty can be reduced by using appropriate
calibration technique and ensuring controlled environmental conditions during
measurements.

Moroever, a special sensor configuration is used: since the thermocouples are in
contact with the electrified wall, a sheeted sensor has to be used as shown in figure
3.7. The shield is composed by a thin layer of INOX and a layer of mineral electric
insulant.

The calibration of the thermocouples was performed as described in Appendix
B. In this case, the measured reference temperature is provided by a PT100 and
the termocouple output is read directly in [°C], using the calibration built-in the
acquisition system. Figure 3.8 shows one example of thermocouples calibration.

Figure 3.8: Example of calibration curves for the thermcouples used in this work
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Hot wire anemometer

The nozzle characterization has been performed with a hot wire anemometer.

Figure 3.9: Hot wire anemometer is
the sensor used to measure the veloc-
ity of a fluid

Figure 3.10: Calibration curve of
the hot wire anemometer

A hot wire anemometer is a sensor that measures the velocity of a fluid by
measuring its cooling effect on a fine wire that is heated to a high temperature
using an electrical current. The wire is typically made of a material with a high
temperature coefficient of resistance, such as tungsten, platinum, or nickel. It
causes a cooling effect when the fluid flows over it, due to the heat transfer from
the wire (hot body) to the fluid (cold one); faster velocities cause more cooling.
The cooling causes a change in the resistance of the wire, which is measured using
a Wheatstone bridge circuit. This circuit compares the instantaneous resistance
of the wire with a reference resistance, and the difference is proportional to the
velocity of the fluid. The output of the circuit is fed to an amplifier, which converts
the resistance change into a voltage signal. Then, using the calibration curve, it is
possible to retrieve the velocity of the fluid at each voltage.

Figure 3.10 shows the fourth-order calibration curve of the hot wire. The details
of the calibration procedure are given in Appendix B. When the instrument is
applied to the current case the electrical voltage signal generated by the hot wire is
first measured, and then, using the calibration curve, it is possible to retrieve the
real flow velocity. Then, the ideal velocity coming from the Bernoulli’s equation,
using the calibration curve of the Validyne. The accuracy of the measurement
depends on the quality of the anemometer’s calibration and on its stability over
time.
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Acquisition system and LabVIEW

The data acquisition system LabVIEW is used in this work, with its graphical
user interface (Figure 3.11)).

Figure 3.11: On the left, the LabVIEW Development Environment. On the right,
the chart displayed on the user interface

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a software
platform that is used for designing and implementing measurement and automation
systems. A graphical user interface (GUI) is used to create the acquisition interface
by dragging and dropping elements such as buttons, text boxes, and graphs onto a
virtual front panel. The acquisition can be done using LabVIEW’s built-in tools for
data acquisition, as well as the NI Measurement and Automation Explorer (MAX),
which allows you to configure and test data acquisition hardware. The modules
NI9205 and NI9212, depicted in figures 3.12 and 3.13, are used to collect voltage
signals from hot wire and pressure transducer, and the temperature signal from the
thermocouples. Then, the data are processed in order to extract useful information.
This can be done using LabVIEW’s built-in tools for signal processing, such as
filters, transforms, and analysis functions. Finally, LabVIEW provides tools for
visualizing and reporting data, such as graphs and charts that can be displayed on
the user interface, or reports that can be generated and saved to file.

3.1.3 Experimental procedure
At the beginning of the experiment, the compressed air supply is connected to the
nozzle central chamber. The pressure transducer has to be connected at the back
of the nozzle at the plus side (as it is shown in the scheme 3.2) because it works
using the relative pressure between the ambient (lower) and the nozzle (higher).

The inconel bar has to be connected to the electrodes of the power supply, which
provides the voltage difference between the two ends of the bar. The inconel bar has
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Figure 3.12: Acquisition system
used for the voltages of pressure trans-
ducer and hot wire

Figure 3.13: Acquisition system
used for the voltage of the thermo-
couples

an electrical resistivity equal to 12.5nΩm, enabling a certain current through the
bar. Thanks to the Joule effect the bar starts to heat up at a constant power. The
voltage value applied to the bar, and read on the power supply, is approximately
1.3 V, which means a power of 31 W with 30 A of current. A lower amperage value
would lead to a small temperature increase and a relatively higher measurement
uncertainty. On the other hand, a higher value of current is not possible because
of the safety limits set on the power supply.

The thermocouple used to measure the back wall temperature passes through
the macor and touches the bottom of the bar. A second thermocouple is placed on
the cooled wall of the inconel bar. An additional thermocouple is glued at the back
of the macor cylinder to estimate the thermal losses (as explained in figure 3.14).

Before starting the experiment, the data acquisition in LabVIEW is initiated.
Afterwards, the air supply is opened and the air pressure is regulated to the desired
value via the manometer. Once the power supply is switched on, the temperature
of the metallic bar starts to increase. The experiment lasts until the temperature
reaches its steady state because the heat transfer at the end of the transient time
does not change anymore. Figures 3.15a and 3.15b show typical temperature
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Figure 3.14: Thermocouples mounted on the setup

evolutions: it can be noticed that steady state is reached after approximately 400
seconds.

(a) (b)

Figure 3.15: Temperature history measured from thermocouples

At the beginning of the experimental experience, the data from the back temper-
ature history are not acquired accurately, because the flow from the nozzle passes
around the inconel bar. Hence, the cooling of the back side of the setup was faster
and not only related to the frontal cooling (and conduction through the bar), due
to the sped-up air from nozzle. This phenomenon is known as the bluff body
problem and it is sown in the figure 3.16.
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Figure 3.16: Flow around a finite-length cylinder (figure from [5])

A bluff body is a solid object with a blunt, non-aerodynamic shape that is placed
in the fluid stream whose velocity is to be measured. When fluid flows around a
bluff body, it creates a series of alternating vortices on the downstream side of the
body (see figure 3.16). These vortices are shed at a frequency that is proportional
to the fluid flow velocity. The alternating vortices create pressure changes around
the bluff body that can be measured using pressure sensors placed at various points
in the fluid stream. The pressure changes are proportional to the frequency of
vortex shedding and, therefore, the fluid flow velocity.

As it is shown in [6] and reported in the figure 3.16, behind the 3D body a
re-circulation region flows around the cube. This phenomenon influences the value
of temperature measured by the back thermocouple. To prevent the back of the
inconel bar from being disturbed, cork walls are inserted into the test section to
isolate the back of the bar from recirculating air.

As it is shown in figure 3.17, the cork is glued adjacent to the bar thickness to
avoid flow separation behind the heated bar.

3.2 Plane Nozzle characterization
A plane jet nozzle consists of a flat orifice designed to produce a flat jet of fluid
that can be used for different applications, such as cooling. The jet is typically
characterized by high velocities, which can range from a few meters per second to
several hundreds meters per second, depending on the pressure and flow rate of
the fluid.
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(a) (b)

Figure 3.17: Cork walls to prevent the re-circulation region

A typical planar jet flow is shown in the figure, 3.18 where: y is the coordinate

Figure 3.18: Planar jet flow from Ref. [7]

from stagnation point normal to jet axis [m]; x is the distance between nozzle
exit and solid surface [m] ;dh hydraulic diameter of the slot (dh = 2D ) [m]; D
is the width of the slot nozzle [m]; R = y

dh
is the dimensionless radial distance

from stagnation point; instead H = x
dh

is the dimensionless axial distance from the
nozzle.
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Heat transfer of impinging planar jets have been widely studied for different
industrial applications. Several correlations for the Nusselt number have been
developed. A list of experimental correlations found through a careful literature
search is cited below.

The Ref. [8] reports
Nux = 0.569Re1/2

x Pr0.276 (3.3)

where Rex is the plate Reynolds number based on jet velocity (ujx

ν
); x is the

streamwise position measured from the stagnation plane. The range of applicability
is 0.7 ≤ Pr ≤ 10.

Another empirical correlation is given by Ref. [9] which reports an equation for
Nusselt number in case of Single slot nozzle

Nu

Pr0.42 = 1.53
y

dh
+ x

dh

1.33 + 1.39
Rem (3.4)

where m = 0.695 −
è

y
dh

+ x
dh

1.33 + 3.06
é−1

. The range of validity is for 3000 ≤ Re ≤
90000, 2 ≤ y

dh
≤ 25 and 2 ≤ x

dh
≤ 10. The same paper reports that for the term:

y
dh

= 0 the correction may differ from measured ones (3.4) from 45 − 50%.

From Ref. [10] the Nu is calculated as:

Nu = Re0.76Pr0.42
5
a + b

x

dh

+ c( x

dh

)2
6

(3.5)

where a, b, c are constant coefficients that depend on the specific case. These
coefficients are:

a = [506 + 13.3R − 19.6R2 + 2.41R3 − 9.04 ∗ 10−2R4] ∗ 10−4

b = [32 − 24.3 + 6.53R2 − 0.694R3 + 2.57 ∗ 10−2R4] ∗ 10−4

c = −3.85 ∗ 10−4(1.147 + R)−0.0904
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From Ref. [11] is found that, for Re=12000, the correlation for the stagnation
point is:

Nu0 = a
Re0.5

( x
dh

)c
(3.6)

where a and c are constant coefficients shown in Table 1 of the same Ref. [11].

Ref. [12] case seems very close to the present scenario. The correlation found
by the authors is:

Nu = 0.09225Re0.7e
−0.37

1
x

dh

2
(3.7)

From Ref. [13], the following correlation is valid for 0.7 ≤ Pr ≤ 3 and is
applicable to the stagnation point

Nu0 = 0.7212ϵ0.4Re1/2Pr0.4 (3.8)

where ϵ = 1 for a plate with a uniform heat flux as boundary condition.

Figure 3.19 show the comparison for Pr = 0.7579, y
dh

= 0 and x
dh

= 3.33
It could be seen that there is a wide range of variation among the correlations,

which means that each correlation is closely related to the case at hand.

An important parameter characterizing the nozzle is the discharge coefficient
(DC). The discharge coefficient is a dimensionless factor that relates the actual
flow rate of a fluid through a pipe or an orifice to the theoretical flow rate that
would occur if the fluid behaved as an ideal fluid with no friction or turbulence.
The value of DC depends on various factors: the shape and size of the orifice, the
Reynolds number, the nature of the fluid, and the conditions of the flow. It is
typically determined experimentally and may vary from one setup to another.

The discharge coefficient can also be calculated as the ratio between the actual
velocity and the velocity of the jet (known theoretically), if it behaved like an
ideal fluid. The actual velocity derives from the hot wire measurements and the
theoretical velocity derives from the pressure measurements via the Bernoulli’s
equation.

DC = vhotwire

vV alidyne

(3.9)

The hot wire was placed in the jet core. The resulting DC is shown in the figure
3.20.
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Figure 3.19: Nusselt number in function of the Reynolds number for different
correlations

According to the literature ([7]), the jet flow is constituted by several region,
as shown in figure (3.18). The core region is an area where the jet velocity is
mostly constant. The core region has been identified experimentally with hot wire
measurements. The hot wire is moved further downstream of the nozzle, up to 60
mm. The results are shown in figure 3.21.

It is clear that the core flow region is between the exit of the nozzle and around
5 mm away from it. This is conform to the literature which declares that the core
flow region is from the exit of the nozzle to a distance less than H=6.

For high distance from the exit of the nozzle (for example see the result of the
blue line at 60 mm, in figure 3.21) the velocity heavily decays between that distance
and the previous measured distance (30 mm). The experiment is done putting the
inconel bar into the core region at a distance of 5 mm from the plane nozzle.

For a fixed upstream pressure, it is possible to see how the flow velocity increases
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Figure 3.20: Discharge coefficient at different flow velocities

with the increase of the pressure of the nozzle shown in figure 3.21.

Figure 3.21: Change of the velocity over the pressure of the nozzle, for each axial
distance from the exit of the nozzle

In order to fully characterize the nozzle, the jet temperature has to be assessed.
This value becomes significantly important in the application of the Robin boundary
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condition. To measure the actual temperature value of the nozzle jet, a thermocou-
ple is applied to the center of the nozzle (see the figure below 3.22). Measurements
are taken for different values of upstream pressure.

Figure 3.22: Experimental calculation of jet temperatures

The results of the study are shown in figure 3.23

Figure 3.23: On the right, the graph shows how the temperature of the flow
changes as its velocity changes. On the left, the change in flow pressure with the
velocity is shown

The temperature and pressure of a jet depend on several factors such as velocity,
density of the fluid and its composition. In general, when a jet expands, its
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temperature decreases and its pressure increases, because the volume of fluid
decreases; so the density of the fluid and its velocity decrease due to conservation
of mass. From the kinetic energy the decrease in jet velocity leads to a decrease in
temperature . Instead, the pressure increases because the momentum of the fluid
must be conserved. When the jet expands, its cross-sectional area increases, which
means that the same momentum must be distributed over a larger area.

3.3 Uncertainty analysis
It is important to include an uncertainty analysis on the heat transfer coefficient
value found experimentally. Uncertainty analysis is a method for assessing the
variability of the results of a measurement and for estimating the probability that
those results are accurate. It consist in defining a mathematical or statistical model
that describes the phenomenon in question and determining the uncertainties
associated with each model parameter. These uncertainties are then propagated
through the model to calculate the total uncertainty of the final result.

The measurement uncertainty of the power supply (Model EA-PSI 9000 DT)is
found from its datasheet and it is equal to ±3.2W . Analogously, for the type K
thermocouples with an uncertainty of ±0.5K.

From [14] and [15], the equation used to calculate the errors σ is:

σ =

öõõô nØ
k=1

A
∂f

∂xk

B2

σ2
xk

(3.10)

where f is the function onto which the measurement error, is propagated xk are
the variables found experimentally and σxk

is the standard deviation related to the
instrument used for the measurement. For the case in exam, the goal is to find σh

using the equation 3.11 (reported and explained also in Chapter 4)

h = q1

Tfront−T∞

(3.11)

knowing the σTfront
= σT∞ = ±0.5K; instead σq1 has to be calculated. The error of

measurement on h is

σh =

öõõôA ∂h

∂q1

B2

σ2
q1 +

A
∂h

∂Tfront

B2

σ2
Tfront

+
A

∂h

∂T∞

B2

σ2
T∞ (3.12)

In 3.12 it is also necessary to find σq1 using the equations

q1 = |qs| − |q2|
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and
q2 = kMA

sMA

(TbackMA
− TbackIN

)

(also reported in Chapter 4, equations 4.2 and 4.3). The error on q1 is

σq1 =

öõõôA∂q1

∂qs

B2

σ2
qs

+
A

∂q1

∂TbackMA

B2

σ2
TbackMA

+
A

∂q1

∂Tback

B2

σ2
Tback

(3.13)

where σqs = ±3.2W from the datasheet of the power supply. It is worth noticing
that kMA and sMA are considered known and constant, thus not influencing the
error propagation.
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Chapter 4

Results and validation of the
inverse method

This Chapter presents the results of the work performed. First, a justification
for the one-dimensional assumption is given. Then, the improvements made on
the thermocouples measurement system are shown. The validation of the inverse
method is pursued in two consecutive steps: a first validation with Finite Element
Method (FEM) simulations and a second validation with the experimental air jet
cooling results. At the end, the results from the uncertainty analysis are shown
and a new experimental correlation is proposed.

4.1 Justification of the 1D assumption
In order to prove that the problem is one-dimensional, the 2D heat equation is
solved with the Matlab model (ThermalModel).

Matlab’s ThermalModel is a set of functions used for thermal modelling and it
consists of two main parts: the definition of the thermal model and the thermal
analysis of the system. The thermal model definition involves the creation of a
one-dimensional geometry of the system in question, which includes information
on the geometry, its components materials, the distribution of power dissipation,
and any external heat fluxes.

The thermal analysis of the system involves using the thermal model to calculate
the spatial distribution of temperature within the system at a given time.

It is important to notice that the x variable is the thickness of the bar while
the direction z represents the width of the bar, and y direction is the length as
indicated in figure 4.1.

The table 4.1 shows the studied cases . The first column reports the 2 dimensions
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Figure 4.1: Geometrical domain of the reference system

2D geometry adiabatic BC Robin BC 1 Robin + 1 adiabatic BC
330mmx2mm 1a 1b 1c
6mmx2mm 2a 2b 2c

Table 4.1: Test cases for 2D analysis

under consideration: x-y and x-z plane respectively. The second and third columns
refer to the symmetric BCs applied at z or y equal to 0 and 2 mm of the inconel bar.
The final column refers to the non symmetric BCs applied to the same directions
(alternatively) of the inconel bar.

The results are shown in figures : 4.2 and 4.3. It is noted that in the 2D solution
the temperature trend is simulated for 3 points of dimension z (width of the bar).
For example, let us consider case (2), in which the reference surface is 6 mm x 2
mm. The z is referred to the 6 mm dimension and the 2D solution is obtained for
z=0, y=Lz/2 and y=Lz.

In both figures it can be seen that the one-dimensional assumption is realistic,
since there is no considerable heat propagation in other directions, except the
direction of the inconel thickness. Only in the case of figure 4.3 (case 2b). It can be
seen that a very small part of heat,considered negligible, is conducted along z. In
fact the temperature profiles taken along the length are not completely overlapping
as in the other cases (figure 4.2). Nevertheless, the variation can be considered
negligible.

This conclusion can also be reached by looking at the solution shown in figure
4.4. As it can be seen from the figure, including two Robin conditions in the 2D
solution, causes the 1D and 2D solutions at the initial time to differ more than the
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Figure 4.2: 2D solution taken at different values in the y-direction

Figure 4.3: 2D solution taken at different values in the y-direction

solutions at the final time. This means that the transient of the 2D solution is
faster than the one of the 1D simulation.
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Figure 4.4: Graphs obtained with the command Pdeplot

4.2 Temperature measurement improvements
As mentioned earlier, having a correct measurement of back temperature is critical
to the calculation of h. In the experiment under consideration, the presence of the
macor negatively affects the measurement, so improvements are made in order to
improve the accuracy of the measure. In this section the discussion is about the
modifications made to the test section and the instrument used to take measures
(thermocouple). The goal is to minimize the macor’s effect.

The experimental setup is shown in figure 4.6 and partly described in the
previous section. It is formed by the power supply, which generates the potential
difference at the ends of the bar and generates a constant heating of the bar. Two
thermocouples applied on two sides of the bar, with its acquisition system and test
section. The only new instrument is the front thermocouple (see figures 4.6 and
4.5), which is intended to measure the temperature of the front wall.
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Figure 4.5: Measurement improvements setup

In this case, the heat exchange phenomenon is not related to forced convection,
but rather to natural convection. It is demonstrated that in this case the tempera-
ture profile across the bar thickness is uniform. Hence the front thermocouple and
the back thermocouple should provide the same value of temperature. By placing
both thermocouples at the same height on the inconel bar, it is possible to check
when and how the back thermocouple measurement is affected by the macor.

Specifically, three different tests have been conducted. The difference between
them is not only the change in the geometry of the macor, but also the use of two
different thermocouple geometries. The geometry of the macor was modified by
adding an air chamber (see figure 4.8 on the left) while the two thermocouples used
for back temperature calculation differ in having a flat (see figure 4.7 on the left)
or a rounded tip (see figure 4.7 on the right).

The choice of the flat thermocouple is related to the fact that in this way the
instrument has a greater contact area with the surface on which temperature is
measured (inconel bar).

Three different tests have been done to verify the right behaviour of the back
thermocouple:
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Figure 4.6: Test section schematic setup for measurement improvements

Figure 4.7: Flat (left) or round (right) thermocouples are used to take measure-
ments of the back temperature

Figure 4.8: The insulator (macor) with (left) and without(right) air chamber

50



Results and validation of the inverse method

1. Flat therocouple back and macor without air chamber

2. Round therocouple back and macor without air chamber

3. Flat therocouple back and macor with air chamber

The results of the investigation are shown in figure 4.9

Figure 4.9: Temperature offset in the three thermocouple mounting system

The figure 4.9 shows the best configuration. It is the one having the macor
with air chamber and using the flat thermocouple to take the measure of the back
temperature. This configuration minimizes the difference between two temperatures.

Having an air chamber around an insulating piece could affect temperature
measurement. This happens because still air does not conduct heat effectively. In
addition, the insulating piece itself could slow down the thermocouple’s response
to changes in the measurement. In general, using an air chamber around the
thermocouple is preferable if greater accuracy in temperature measurements is
desired.
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Moreover, extensive tests have been conducted to verify the effect of the glue
between inconel and macor. The raw data of the experiments are shown in figures
4.10 and 4.11. The data acquired in steady state conditions are used to verify the

Figure 4.10: Offset measurements (with the test section glued to the macor)

Figure 4.11: Offset measurements (with the test section not glued to the macor)

effect of the glue on the measurements offset.

Only steady state points (shown in figure 4.11) were used to do the interpolation,
because during the transient the distance between the actual temperature and
the back thermocouple is not constant. It can be observed that the slope in the
first case is closer to one than the second one: this means that the measurement
taken with the inconel glued to the macor is more realistic than without glue.
The difference is related to fact that, in the second case, the infinitesimal air gap
between the inconel and the macor allows for worse heat transfer because of the
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Figure 4.12: Offset measurements on the test section glued to the macor

thermal resistance of air. The resulting measurements in the three configurations
are reported in figure 4.9 .

4.3 Validation of the inverse method with FEM
results

The inverse method is validated with previous FEM simulations performed with the
transient thermal solver of ANSYS. Table 4.2 shows the simulations parameters and
the material properties for the inconel bar (subscript IN) and the macor insulant
block (subscript MA). The initial temperature is T0 and the ambient temperature
is Tamb. The heat transfer coefficient for natural convection with the environment
(hnc) is taken equal to 25 W/m2K.

The simulations are performed in two steps: first of all a simpler case, where
only the inconel bar is simulated; then a second case, where the macor cylinder
is added. This is done to verify before the experiments the effect of the macor
insulant on the thermal history of the inconel bar. Table 4.3 shows the parameters
and the configuration of the four cases.

The BCs are applied as shown in figure 4.13. Natural convection condition is
added for the remaining sides of the 3D bar and of the macor insulant block. A
uniform volumetric heat source (Q) is imposed in the inconel bar to model the
power provided to the test section by Joule effect.

Several virtual probes are used to retrieve the results of interest from the FEM
simulations. The position of the probes is shown in figure 4.14. The heat losses
towards the macor are measured by a probe (show in the figure 4.14) at the interface
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parameters values
T0 [°C] 21.65

Tamb [°C] 21.65
ρMA[ kg

m3 ] 2515
kMA[ W

m2K
] 1.4

cMA[ J
kgK

] 789.3
ρIN [ kg

m3 ] 7390
kIN [ W

m2K
] 12

cIN [ J
kgK

] 435
hnc[ W

m2K
] 25

Table 4.2: FEM simulation parameters

configuration hfc[W/m2K] Q[W/m3]
Case 1 Inconel 25 1.667e6

Case 2 Inconel 4000 1.667e8

Case 3 Inconel + Macor 153 1.667e6

Case 4 Inconel + Macor 2000 1.667e8

Table 4.3: Configuration for FEM simulations

Figure 4.13: BC scheme applied to the model used for the FEM simulations

between the macor and the inconel bar. The temperature of the bar is monitored
at the top (the wall side cooled by the flow) and at the bottom (the wall side in
contact with the macor).

Figure 4.15 shows the comparison between the inverse method and the FEM
results, when only the inconel bar is simulated: case 1 and case 2. The comparison
proves the correct implementation of the inverse method in term of θ̂ versus t̂.
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Figure 4.14: Probes for heat transfer and temperature values used in the FEM
simulations

(a) (b)

Figure 4.15: ANSYS results Cases 1 (b) and 2 (a) of the 4.3 with NH BC

Figure 4.16 show the comparison between the FEM results and the inverse
method for the cases 3 and 4. The difference in θ̂back between the two figures
consists in the fact that the simulations are done with different source values. The
inverse method is run with both homogeneous (H) and non homogeneous (NH)
boundary conditions at the bottom side of the inconel bar. Table 4.4 shows how
the heat transfer coefficient, predicted by the inverse method, varies as the bottom
boundary condition changes. As visible, in the case where h has a larger value
(forced convection), a homogeneous BC is acceptable. The errors are calculated by
taking as reference the value of h considered in the FEM simulation.

Figures 4.16 show that the transient time predicted by the FEM is greater than
the numerical one obtained from solving the PDE and applying the inverse method.
This is due to the presence of the macor, which increases the thermal inertia of
the system. For this reason, the inverse method is used to optimize both h and α
of the system. The table 4.3 shows how the value of α, provided by the inverse
method, is between the one of inconel and the one of macor, when the simulation
is done taking into account both materials. The same conclusion is shown in figure
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(a) (b)

Figure 4.16: ANSYS results Cases 3(a) and 4(b) of the table 4.3 with NH BC

ANSYS hNH Error % αNH hH Error % αH

Case 1 25.91 3.53 3.34e−6 25.38 1.5 3.36e−6

Case 2 4099.5 2.4 4.15e−6 4150.4 3.62 4.09e−6

Case 3 130.5 14 2.08e−6 165.25 6.2 1.47e−6

Case 4 1936.0 3.2 1.23e−6 2125.9 5.92 1.104e−6

Table 4.4: Comparison between Neumann non-homogeneus bottom BC and the
homogenus one

4.17. This means that the measurement is affected by the presence of the insulating
material. This conclusion can also be derived from the cases in figure 4.17: for the
cases with inconel only (1 and 2) the thermal diffusivity comes from the inverse
method is equal to that of inconel. While for the simulations with the macor (3
and 4) the value is included in between the α of both materials. In the first two
cases the inverse method fits the numerical solution obtained from the FEM results
perfectly, unlike the other two cases.

Figures 4.18 and 4.20 show the value of the object function in Eq. 2.36 for the
cases 3 and 4 respectively at each iteration of the optimization algorithm. This is
done using MATLAB ’optimiset’ command, which is an options structure that is
passed to the optimization function fminsearch. It can be noted that after less
than 5 iterations for case 3, the minimum value of the objective function (L2 norm)
has been found and has a value of 5.8524 K.

Moreover, figures 4.19 and 4.21 show the output variables (α̂ = α
αref

and ĥ = h
href

)
at the end of the optimization process with αref = 2.8∗10−6 m2

s
and href = 1500 W

m2K
.

Both simulations start from dimensionless and unitary values (α̂ = ĥ = 1). For
case 4, at the end of the iterations the value of h is slightly higher than expected
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Figure 4.17: α values from table 4.3

Figure 4.18: Case 4: Object func-
tion value at each iteration. Ini-
tial guess values h = 1500 W

m2K
and

α = 2.8 ∗ 10−6 m2

s

Figure 4.19: Case 4: Final values
(shown in the table 4.3) obtained from
the optimization process

(value of the bar over the unity), while α is lower than the initial value. Keeping
the same initial guess for the output variables, from the figure 4.21 it is visible
that the input h value is much lower than the initial guess value, unlike α, which is
about the same as the one imposed as input. This means that the h value is far
from the real one imposed in the FEM simulations. In fact, for this case figure
4.20 shows an higher error of the optimization function and it is visible that the
error becomes minimal at about the 20th iteration. Instead in figure 4.18, since
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the initial guess on h is close to the real value imposed in the FEM simulations,
the error is lower and it drops to almost zero after less than 5 iterations.

Figure 4.20: Case 3: Object func-
tion value at each iteration. Ini-
tial guess values h = 1500 W

m2K
and

α = 2.8 ∗ 10−6 m2

s

Figure 4.21: Case 3: Final values
(shown in the table 4.3) obtained from
the optimization process

Comparing the thermal diffusivity results,the α values obtained from case 3
deviate 40% from the inconel value and 66% from the macor value. The case 4 has
an α value far from that of the inconel by 64 % and from the one of the macor by
75%.
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4.4 Validation of the Inverse Method with exper-
iments

To validate the inverse method, the actual value of h has been calculated from the
experimental apparatus as shown in equation 4.1.

h = q1

Tw − T∞
(4.1)

Moreover, T∞ is the jet temperature and Tw is the front (cooled) temperature
of the inconel bar. The thermocouples arrangement is shown in figure 4.22. To
calculate the heat transfer coefficient between the inconel bar and the jet flow it is
crucial to evaluate the heat transferred from the bar to the jet flow (q1). This can
be done using the electrical analogy:

q1 = |qs| − |q2| (4.2)

where q2 is the heat lost towards the macor and qs is the heat generated by the
Joule effect. The value of q2 is calculated as:

q2 = kMA

sMA

(TbackMA
− TbackIN

) (4.3)

referring to the position of the thermocouples illustrated in Figure 4.22.
The source power P is calculated as:

P = IR2 (4.4)

where I is the current imposed with the power supply and R is the electrical
resistance of the inconel bar calculated with the second Ohm law. The value of qs

is then obtained dividing the power by the surface of the inconel bar (33 cm x 6
mm).

It is worth noticing that this method cannot be used in the TROPIC facility
because it is not physically possible to insert a thermocouple that measures the wet
wall temperature of the inconel bar. This method served only to have experimental
values to validate the inverse method.

Comparing the transient time of the raw values of back (4.23) and front (4.24)
temperature signals, it is visible that Tfront is not affected by the presence of macor,
unlike Tback. Moreover, it is possible to see that for low values of flow velocity,
the transient time is larger (blue lines). Also, for low velocities the final wall
temperature is higher, due to the fact that the heat transfer coefficient is lower.
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Figure 4.22: Thermocouples arrangement to find h using direct method

Figure 4.23: Back temperature val-
ues from the experimental test cases

Figure 4.24: Front temperature val-
ues from the experimental test cases

Figure 4.25: Scaled temperature over scaled time for experimental result of h
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Table 4.5 shows the comparison between the h found from the experiments
and the results obtained applying the inverse method to the experimental Tback

temperature.
The results obtained for u = 40m/s and u = 63m/s are shown in figure 4.25.

Different values of flow velocity yield different heat transfer coefficients. Again, the
transient of the experimental solution is slower than the numerical one because
the measurements are affected by the presence of the insulator. Also for the
experimental cases it is possible to obtain the values of α calculated by the inverse
method and shown in figure 4.26

Figure 4.26: α values obtained from the experimental results after applying the
inverse method

u [m/s] h: Experiment h: Inverse method Error [%]
40 1672.67 1658.1 0.87
50 1811.5 1818.8 0.401
58 1812.7 1860.9 2.59
63 1973.7 2028.9 2.72
71 1948.2 1893.8 2.79

Table 4.5: Experimental results against the inverse method results in h
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Figure 4.27: Experimental h in function of u with 68% CI error bars, in comparison
with inverse method prediction

A summary of the comparison between the experimental h and the inverse
method output is shown in figure 4.27. The uncertainty on the experimental values
is given with 68% confidence interval (CI), assuming a normal distribution of the
propagated error. It is visible that only for the first two points the value found by
the inverse method is within the uncertainty interval. A 95% confidence interval of
the normal distribution yields the results shown in figure 4.28.

The reason why at 3 bar (which correspond to 71 m/s) the value of h is lower
than it should be as it is shown in the experimental values. The heat flux q2 passing
through the macor is more negative than it should be (see the figure 4.29), due to
the fact that the Tmacor measured experimentally turns out to be higher (eq. 4.3).
If the conductive heat turns out to be greater in absolute value, then a greater
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Figure 4.28: Experimental h in function of u with 95% CI error bars, in comparison
with inverse method prediction

value is subtracted from the source. Hence, the convective heat flux q1 turns out to
be less (in equation 4.2) as it is shown in the figure 4.30. This justifies the fact that
the experimental value of h and consequently the value obtained by the inverse
method (applied to the experimental results), turn out to be less than desired.
This concept has not been investigated, since the purpose of the thesis regards the
validation of the inverse method. Nevertheless, the point in question is included in
the uncertainty related to the instrument as it is shown in figure 4.28.

According to the correlations listed in Chapter 3 and related to the planar jet
nozzle, the relationship between Nu and Re is nonlinear, and it is a function of the
Reynolds number and the Prandtl number. Figure 4.31 shows that the relation
between Re and Nu, found by regression, is a power with exponent 0.2788. Since
Pr does not change in these experiments, it is considered as in typical experimental
Nu correlations with the power of 0.4. Thus the final experimental correction is
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Figure 4.29: Experimental differ-
ence between the back and macor tem-
perature

Figure 4.30: Convective heat flux
4.2

written in equation 4.5
Nu = 19.55Pr0.4Re0.2788 (4.5)

This result is different from the literature values shown in the figure 3.19
proving that the experimental correlations are closely dependent on the case under
consideration.

Figure 4.31: Experimental correlation between Re and Nu for the planar jet case
under consideration
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Chapter 5

Conclusion and future work

The purpose of this thesis is to develop and validate an inverse method to calculate
the heat transfer coefficient between a wall heated by Joule effect and cooled by
an impinging jet. The goal is to reproduce in smaller scale the test section of the
TROPIC facility at VKI. The design of this test section refers to the cooling system
of a combustion chamber of a liquid rocket engine with cooling channels made by
additive manufacturing. In the VKI experiments the cooling channel consists of
an electrically heated wall and cooled by turbulent ethanol flow. Moreover, the
presence of a thick block of insulant material, behind the electrified wall, affects
the measurement of the back wall temperature, as studied and proved during this
work. This arrangement prevents to evaluate the flow heat transfer coefficient with
direct measurement and requires the inverse method developed in this work.

To this end, the 1D transient heat equation is solved both analytically and
numerically in dimensionless form. The analytical solution is derived using the
method of separation of variables and the solution of the ODE in space is found
using the Galerkin projection. The numerical solution featured an implicit time
scheme and a second order central scheme for space discretization. A Simplex
optimization method is applied to minimize the L2 norm between the value of
the inconel back wall temperature, accessible experimentally in the TROPIC test
section, and the value obtained by solving the equation. A preliminary sensitivity
study showed that the value of h depends on the heat source value, but not on the
heat flux. The solution is very sensitive to the ambient temperature because this
influences the velocity of the flow and consequently h. In fact the most sensitive
parameter is T∞ as it is shown in table 2.2.

An initial validation of the inverse method is based on transient thermal FEM
simulations. The geometry is a simplified version of the experimental test section to
assess prior to the experiments the effect of the macor on the thermal history of the
inconel bar. The simulations showed that in the cases where macor is present (see
figure 4.15) the thermal inertia of the system increases, so it is necessary to include
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the value of thermal diffusivity in the optimizer. The first step of the experimental
campaign is to understand the effect of the macor on the temperature measurements.
It has been shown that having the back thermocouple surrounded by an air chamber
allows for a better measurement. In fact, the offset between the Tback and the
Tfront in a situation of natural convection is smaller. It has also been shown that
having the macor glued to the bar allows a more realistic result given the absence
of the insulating air layer. Then validation is achieved with experimental results.
The experimental test case is a planar air jet (7000 ≤ Re ≤ 13000) impinging on
the inconel wall, featuring the same dimensions and material of the TROPIC test
section. The local heat transfer coefficient is measured at the jet stagnation point
and the inconel bar is heated by Joule effect with constant voltage input.

Future work on the inverse method includes adding bounding values for α. This
is because, as the experimental results show, it makes no physical sense to have a
α value less than the thermal diffusivity of the macor (shown in figure 4.26).

The next step will be to apply the method to VKI’s TROPIC facility. In this case,
obtaining experimental validation of the method (i.e., calculating h experimentally)
is impossible. So it was necessary to validate the method for a simpler case. For
the application of the method to TROPIC experiments, the way the results are
acquired, filtered and used by the inverse method could be improved.
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Appendix A

Analytical solution
development

To find the final analytical solution different steps are used. Here it is possible
to find the analytical transient 1D solution of the heat equation with different
boundary and initial conditions used to reach the final solution (used in the in the
Chapter 2 (2)) with one Robin boundary condition and one Neumann homogeneous
boundary condition.

A.1 1D PDE homogeneus with no source term
and homogeneus Neumann BC’s in the unit
domain and IC=f(x)

The system to solve is 

∂T (x,t)
∂t

= ∂2T
∂x21

∂T
∂x

2
0,t

= 01
∂T
∂x

2
1,t

= 0
T (x,0) = x

(A.1)

Instead of having the Dirichlet boundary conditions fixed to zero, in this problem
the boundaries are insulated that means no flux boundary conditions. Assuming
that the solution is separable

u(x, t) = X(x)T (t)
deriving the heat equation in time

∂T (x, t)
∂t

= X(x)Ṫ (t)
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and in space
∂2T

∂x2 = X ′′(x)T (t)

substituting this two derivatives to the solution will give

X(x)Ṫ (t) = X ′′(x)T (t)

that means
Ṫ (t)
T (t) = X ′′(x)

X(x) = λ

As can be seen, the heat equation (PDE) can be solved with two different ODEs in
time and space. Starting from the resolution of the ODE in space, there are three
different ways to solve it, depending on the value of λ. It is noted that the relevant
case is only the case where λ = −k2

n. Thus we have

X(x) = c1sin(knx) + c2cos(knx) (A.2)

Imposing the boundary conditions show that if x = 0 c1 = 0 and if x =
1 sin(knx) = 0. This condition leads to kn = nπ. Now, wanting to solve the second
ODE in time, we deduce that

T (t) = c3e
−k2

nt

giving the solution
T (x, t) =

∞Ø
n=0

ane−k2
ntcos(knx)

where c2c2 = an. Using the initial condition gives

u(x,0) = x =
∞Ø

n=0
ancos(knx) = a0

2 +
∞Ø

n=1
ancos(knx)

It is possible to recognize that we have a Fourier cosine series and coefficients a0
and an are chosen such that

a0 = 2
Ú 1

0
(x)dx = 1

and
an = 2

Ú 1

0
xcos(knx)dx = 2[knsin(kn) + cos(kn) − 1]

k2
n

The solution of the PDE is

T (x, t) = 1
2 + 2

∞Ø
n=1

(−1)n − 1
k2

n

e−k2
ntcos(knx)
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A.2 1D PDE homogeneus with no source term
and non homogeneus Neumann BC’s in non
unit domain with IC

Instead, solving the problem in which the bottom wall is insulated while the top
wall is subject to a constant, non-time-dependent heat exchange (meaning heat
flux) with the fluid. The system to solve is:

∂T (x,t)
∂t

= ∂2T
∂x21

∂T
∂x

2
0,t

= 01
∂T
∂x

2
L,t

= −
qheatflux

k

T (x,0) = T0

(A.3)

first of all, it is necessary to make the BCs homogeneous by applying the following
transformation:

T (x, t) = v(x, t) + a(x2 + 2T ) + bx (A.4)

This transformation is correct because it causes the starting equation (heat equation)
to remain unchanged i.e.

∂T

∂t
= ∂v

∂t
+ 2a

and
∂2T

∂x2 = ∂2v

∂x2 + 2a

so substituting the two expressions for the main equation

∂T

∂t
+✚✚2a = ∂2T

∂x2 +✚✚2a

Deriving the transform A.4 drives to

∂T (x, t)
∂x

= ∂v(x, t)
∂x

+ 2ax + b

and substituting the BCs

(1) ∂T (0, t)
∂x

= ∂v(0, t)
∂x

+ b = 0 −→ b = 0

and

(2) ∂T (L, t)
∂x

= ∂v(L, t)
∂x

+ 2aL = −
qheatflux

k
−→ a = −

qheatflux

2Lk
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The transform A.4 becomes

T (x, t) = v(x, t) −
qheatflux

2Lk
(x2 + 2t) (A.5)

Then wanting to calculate the new initial conditions for the transformed system

v(x,0) = T (x,0) +
qheatflux

2Lk
(x2) = T0 +

qheatflux

2Lk
(x2)

So the starting system, with non-homogeneous BCs, becomes

∂v(x,t)
∂t

= ∂2v
∂x21

∂v
∂x

2
0,t

= 01
∂v
∂x

2
L,t

= 0
v(x,0) = T0 + q

2Lk
x2.

(A.6)

The resolution of the transformed system is like that of the previous case. The
solution of the first ODE is X(x) = c2cos(knx) where this time kn = nπ

L
. The

solution of the second ODE in time is the same T (t) = c3e
−k2

nt as it is said before
the solution of the transformed system is

v(x, t) = a0

2 +
∞Ø

n=1
ane−k2

ntcos(knx)

coefficients this time, are different due to a different IC. In fact

v(x,0) = T0 + q

2Lk
x2 = a0

2 +
∞Ø

n=1
ancos(knx)

This leads to have

a0 = 2
L

=
Ú L

0
(T0 + q

2Lk
x2)dx = 6T0k + Lqhf

3k

and
an = 2

L
=
Ú L

0
(T0 + q

2Lk
x2)cos(knx) = 2qhf

Lkk2
n

(−1)n

By substituting the coefficients found, the solution of the transformed system can
be obtained

v(x, t) = a0

2 +
∞Ø

n=1
ane−k2

ntcos(knx)

To obtain the solution of the starting system, it is enough to apply the transforma-
tion A.5 which leads to

T (x, t) = v(x, t) − qhf

2Lk
(x2 + 2t)
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A.3 1D PDE non-homogeneus with no source
term and non homogeneus Neumann BC’s
in non unit domain with a constant IC

In this case the thermal diffusivity is taken into account and the heat equation is
no longer linear 

∂T (x,t)
∂t

= α∂2T
∂x21

∂T
∂x

2
0,t

= 01
∂T
∂x

2
L,t

= − qhf

k

T (x,0) = T0

(A.7)

In this case the transform becomes

u2(x, t) = T (x, t) − u1(x, t) (A.8)

where
u1(x, t) =

− qhf

k

2L
x2 +

c2(− qhf

k
)t

L
= −qhf

kL

A
x2

2 + c2t

B
(A.9)

Wanting to obtain the transformed system and starting from the IC

u1(x,0) = −qhf

kL
x2

this lead to have
u2(x,0) = T0 + qhf

kL
x2

and the system A.7 changes into

∂u2(x,t)
∂t

= α∂2u2
∂x21

∂u2
∂x

2
0,t

= 01
∂u2
∂x

2
L,t

= 0
u2(x,0) = T0 − u1(x,0) = T0 − qhf

kL
x2

(A.10)

In this case the spatial ODE remains the same (X(x) = c1cos(knx)), while the
temporal ODE is transformed as follows

Ṫn(t) = −αk2
nTn(t)

Then applying the Fourier cosine series transformation,
∞Ø

n=0
Ṫn(t)cos(knx) =

∞Ø
n=0

−αk2
nTn(t)cos(knx)
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and calling the term −αk2
n = λn the solution of the second ODE is

u2(x, t) = a0

2 +
∞Ø

n=1
ane−λ2

ntcos(knx) (A.11)

Again to find the value of the coefficients it is important to consider the IC

u2(x,0) = T0 + qhf

kL
x2 = a0

2 +
∞Ø

n=1
ancos(knx)

Where
a0 = 2

L

Ú L

0
(T0 + q

2Lk
x2)dx = 6T0k + Lqhf

3k
and

an = 2
L

=
Ú L

0
(T0 + q

2Lk
x2)cos(knx) = 2qhf

Lkk2
n

(−1)n

The solution of the transformed system A.10 will become A.11. Now to return
to the equation of the original system A.7 the application of the equation A.8 is
important. The solution takes the form

T (x, t) = −qhf

kL

A
x2

2 + c2t

B
+ a0

2 +
∞Ø

n=1
ane−λ2

ntcos(knx)

A.4 1D PDE non-homogeneus with a constant
source term, one homogeneus Neumann BC,
one homogeneus Dirichlet BC in non unit
domain with a constant IC

In this case, it is considered to have a thermally insulated base while the upper
surface of inconel has a constant temperature equal to zero. The system to solve is

∂T (x,t)
∂t

= α∂2T
∂x2 + α q̇s

λ1
∂T
∂x

2
0,t

= 0
(T )L,t = 0
T (x,0) = T0

(A.12)

It is noted that by doing the dimensional study for the heat equation, the heat
source q̇s is volumetric with dimensions W/m3. This case is similar to the previous
one, the only difficulty consist in the expression of the source term as a Fourier
series. The solution of the PDE with separable variables is of the type

T (x, t) =
∞Ø

n=0
Xn(x)Tn(t) (A.13)
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This leads to a new form for the main equation of the heat transfer which becomes
∞Ø

n=0
XnṪn =

∞Ø
n=0

αX ′′
nTn +

∞Ø
n=0

α
q̇s

λ

As mentioned above, two ODEs must be solved. Starting with the spatial one

X ′′
n

Xn

= −k2
n

where the general solution is

Xn(x) = c1sin(knx) + c2cos(knx)

Substituting the BCs it is possible to have

X ′
n(0) = c1kn = 0 −→ c1 = 0

Xn(L) = c2cos(knL) = 0 −→ kn = nπ

2L

The solution of the first PDE is

Xn(x) = c2cos(knx) (A.14)

Instead, this time the solution in the temporal ODE must take into account the
source

Ṫn(t) = −c2Tn(t) + qn

where c2 = αk2
n, qn is the value of the Fourier transform for the source that could

have the form

qn = 2
L

Ú L

0

q̇sα

λ
cos(knx)dx = 2αq̇s

Lknλ
(sin(knL))

This case is a constant coefficient Linear Differential Equations with a constant
input witch leads to this type of solution

Tn(t) =
3

qn

c2 + bne−c2t
4

(A.15)

Now substituting the A.14 and A.15 in A.13 and calling cn = qn

c2 + bn the solution
become

T (x, t) =
∞Ø

n=0
cne−c2tcos(knx)

Where cn could be find from the IC

T (x,0) = T0 =
∞Ø

n=0
cncos(knx)

77



Analytical solution development

and then
cn = 2

L

Ú L

0
T0cos(knx) = 2T0sin(knL)

Lkn

Steady state solution

To verify that the analytical solution is correct, it has to converge to the
stationary solution at the end of the transient. This also served to calculate the
duration of the transient. The steady state solution is found from the main heat
equation

✓
✓
✓1

α
ut = uxx + q̇s

λ

Deriving twice
u(x) + q̇s

λ

x2

2 + c1x + c2 = 0 (A.16)

Substituting the BCs

x = 0
✓
✓
✓q̇sx

λ
+ c1 = 0 −→ c1 = 0

and
x = L u(L) + q̇sL

2

2λ
+ c2 = 0 −→ c2 = −u(L) − q̇sL

2

2λ

Then the steady state solution will be as A.16 with new coefficients

u(x) = u(L) + q̇sL
2

2λ
(L2 − x2)

A.5 pdpede Solution process
To solve PDEs with pdepe function is important to define the equation coefficients
c,f and s, the initial conditions, the boundary conditions and a mesh of point you
would like to use to evaluate the solution on. The solution works in this way:

sol = pdepe(m, @heatpde, @heatic, @heatbc, xs, ts) (A.17)

where @heatpde is the function handle that defines the main equation being solved.
The @heatic is the function handle in which used for the initial condition and is
depending only on spatial variable; this means that at the initial time t = t0 for all
the space points, the solution components satisfy the initial condition of the form:

u(x, t0) = u0 (A.18)
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The @heatbc is the function handle which works as mentioned in the equations
(2.35). Note that over two coefficients p(x, t, u) and q(x, t) only p could depend on
the solution u. This function using two coefficients q and p for both side: left and
right.
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Appendix B

Calibration of instruments

B.1 Hot wire calibration
The static calibration has the purpose to compare the voltage with the pressure
from the jet. The first thing to do is to connect the probe to the anemometer and
follow the power-up procedure specific to each model ( VKI’s Guidelines for the
instrument shown in the figure B.1 was used for this case). Then, being in the ’hot
wire’ condition, it is possible to set the anemometer once its resistance is also set
to zero.

Figure B.1: Oscilloscope(a) and anemometer (b)

The calibration nozzle is used to calibrate the probe (hot wire) because it has
a special geometry that allows the maximum output pressure to match the 10
V, maximum voltage of the validyne. Noting this, for each upstream pressure,
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Figure B.2: Calibration nozzle

a voltage from the validyne was obtained. Hence, using the calibration curve of
the pressure transducer, a precise value of pressure corresponds to each voltage.
Knowing the pressure and assuming that the flow is incompressible, it is possible
to apply Bernoulli’s equation between the inlet and the outlet of the nozzle. This
leads to calculate the value of the exit velocity (all the setup it is shown in the
figure B.2).

The calibration curve (shown in the figure B.3) is a third-order polynomial
between the exit velocity, found from Bernoulli’s equation and the recorded voltage
of the hot wire acquired by exposing the probe to the flow. Once the probe is
calibrated, it can no longer be disconnected.

B.2 Validyne calibration
Calibration of the pressure transducer (validyne) is done using a special calibrator
(component (a) in the figure B.4), which is connected to the validyne (b), which
is linked to an interface (LabVIEW (d)), via a demodulator (c). The use of the
calibrator allowed a known pressure to be applied to the validyne. Therefore,
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Figure B.3: Hot wire calibration curve

Figure B.4: Instruments used for the validyne calibration

the calibration is done by matching a range of pressure values,the range of the
potential difference between 0 and 10 Volts. Specifically, the first two values
set were the extremes of the range. These are found by adjusting the clock and
zero (two clockwise valves) on the demodulator. Hence, the minimum pressure
value applicable by the calibrator (0 bar) is linked to 0 V; while the maximum
pressure value (acceptable by the validyne membrane) is linked to the value of 10
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V. Having accurately set the zero and the maximum allowable value and using
different pressures (within the range) via the calibrator, it is possible to record the
corresponding volts read on LabVIEW. In this way, the calibration curve can be
obtained (see B.5).

Figure B.5: Validyne calibration curve

B.3 Thermocouples calibration
Thermocouple calibration is done using the oil bath (see figure B.6 on the right
side). This system allows a certain temperature to be set analogically. Then it is
very important to wait for the time needed to stabilize a certain temperature, and
then insert a probe called PT100 (figure B.6 on the left side) to make sure that the
value shown on the oil bath screen is consistent with the value read by the probe.
Thermocouples are inserted to be calibrated. Not only the temperature read by the
PT100 is noted, but also the temperature read by the thermocouples. The same
process is performed for different temperature values. Then the calibration curve is
obtained by linearly interpolating the temperature values read by the probe PT100
and those for the individual thermocouple. The calibration is successful if the line
obtained corresponds to the bisector (as shown in the figure B.7).
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Figure B.6: Instruments used for thermocouple calibration
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Figure B.7: Thermocouples calibration curve
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MATLAB code

In this chapter the main codes used is reported.

1D Analytical solution

1 L = 2*10^ -3; % thickness [m]
2 tend = 1400; % numerical time [s]
3 x = linspace (0,L ,1400) ’; % space vector
4 t = linspace (0.1 , tend ,1400) ’; % time vector
5 T0 = 20+273.15 ; % ambient temperature
6 lambda = 12; % thermal conductivity of

the matherial [W/m*K]
7 alpha = 3*10^ -6; % thermal diffusivity [m^2/s

]
8 Q = 31 ; % heat source [W]
9 Vol = 3.96*10^ -6; % volume of the bar [m^3]

10 qs = Q/( Vol); % volumetric heat source
11 h= 2000; % heat transfer coefficient

[W/m^2 K]
12

13 trif = (L^2)/alpha; % time reference
14 DeltaT = qs*trif*alpha/ lambda ;
15 Nu = h*L/ lambda ; % Nusselt number
16 T_inf = 16+273.15; % Jet temperature [K]
17 theta0 = (T0 -T_inf)/ DeltaT ; % scaled initial temperature
18

19 x_adim = x./L; % scaled space variable
20 t_adim = t./( trif); % scaled time variable
21
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22 fun=@(xkn) tan(xkn) -(Nu/xkn); % function used to find the
eighenvalues

23 soluz = @(xx ,tt) 0*xx.*tt;
24 for n =1:100
25 x0 = (pi*(n -1)) + eps;
26 kn = fsolve (fun ,x0);
27 qn = 4*(( sin(kn))/( sin (2* kn)+(2* kn)));
28 cn = (4* theta0 *( sin(kn)))/( sin (2* kn)+(2* kn));
29 bn = cn -(qn/(kn ^2));
30 usol=@(xx ,tt) ((qn/(kn ^2))+(bn*exp (-(kn ^2) .*tt))).* cos

(kn*xx);
31 soluz = @(xx ,tt) soluz(xx ,tt)+usol(xx ,tt);
32 end
33 % soluz in the temperature solution in fuction of time and

space :T(x,t)
34 theta = (-( x_adim .^2) /2) +(1/ Nu) +(0.5) ; % scaled

steady state solution
35 T = DeltaT *soluz(x_adim , t_adim (end))+T_inf; % Solution

for each x and final time
36 T_steady = DeltaT *theta +T_inf; % Steady

state temperature

1D Numerical solution with Experimental/Ansys case

1

2 global h0 % heat transfer coefficient
[W/m^2 K]

3 global T0 % inital temperature of the
body [K]

4 global lambda % thermal conductivity of
macor [W/mK]

5 global T_inf % temperature of the jet or
of the surroundings [K]

6 global q % heat flux through the
Macor [W/m^2]

7 global time % simulation time
8 global alpha % thermal diffusivity [m^/s]
9 global Q_source % heat source [W]

10 global Tback_history % back temperature from the
experimental case

11 global m % Symmetry constant for
cartesia coord

12 global L % thickness [m]
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13 global tend % numerical time
14 global y % mesh in space
15

16 %%% Germetry ’s data
17

18 Vol = (2*10^ -3) *(33*10^ -2) *(6*10^ -3); % bar volume [m
^3]

19 Q_source = (31/( Vol));
20 lambda = 12;
21 L = 0.002;
22 tend = 100;
23 y = linspace (0,L,tend) ’;
24 m = 0;
25

26 %%%% ANSYS DATA
27

28 aa = importdata ("10 _03_h2000 \ Inconel Top.txt "); % read the
file related to the test

29 T_front = aa.data (: ,3) +273.15; % Top
experimental temperature

30 ee = importdata ("10 _03_h2000 \ Inconel Bottom .txt ");
31 Tback_history = ee.data (: ,3) +273.15;
32 T_inf = 16+273.15;
33 T0 = Tback_history (1 ,1);
34 cc = importdata ("10 _03_h2000 \ Heatflux .txt ");
35 q = -cc.data (: ,5);
36 time = cc.data (: ,2);
37

38 %%%% Inverse method
39

40 x0 = [2 1]; % inital
guess vector

41 options = optimset (’PlotFcns ’,@optimplotfval ); % error
plot

42 % options = optimset (’PlotFcns ’, @optimplotx ); % plot of
changing output values

43 [x,e] = fminsearch (@func ,x0 , options ) % inverse
method function

44

45 function [e] = func(x)
46 global h0
47 global alpha
48 global time
49 global Tback_history
50 global m
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51 global L
52 global tend
53 global y
54

55 h0 = x(1) *1000;
56 alpha = x(2) *(3.6e -06);
57 sol = pdepe(m,@heatpde ,@heatic ,@heatbc ,y,time); %

numerical solution
58 e = norm(sol (: ,1) -Tback_history ,2); % norm

of the difference
59 end

Functions used from the pdepe solver are

1

2 %%% describing the main equation
3 function [c,f,s] = heatpde (y,time ,u,dudy)
4

5 global lambda
6 global alpha
7 global Q_source
8 c = 1/ alpha;
9 f = dudy;

10 qs = Q_source ;
11 s = qs/( lambda );
12

13 end
14

15 %%% describing the boundary conditions
16 function [pl ,ql ,pr ,qr] = heatbc (yl ,ul ,yr ,ur ,time)
17 global h0
18 global lambda
19 global T_inf
20 global q
21 global time
22

23 %%% Top BC
24 pr = ((h0)*(ur - (T_inf))) ; % Robin boundary

condition
25 qr = lambda ;
26

27 %%% bottom BC
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28 for i=1: size(q)
29 pl = -q(i); % Neumann non - homogeneus
30 %pl = 0; % Neumann homogeneus
31 end
32 ql = lambda ;
33 end
34

35 %%% describing the initial conditions
36 function u0 = heatic (y)
37 global T0
38 u0 = T0;
39 end

2D Numerical solution

1 Ly = 2*10^ -3; % tickness of the bar [m]
2 Lz = 33*10^ -2; % third dimension [m]

used alternatively
3 Lx = 6*10^ -3; % second dimension [m]

used alternatively
4 alpha = 7*10^ -7 ; % thermal diffusivity of

the material [m^2/s]
5 lambda = 12; % thermal conductivity of

the matherial [W/m*K]
6 T_inf = 16+273.15; % Jet temperature [K]
7 T0 = 20+273.15; % Ambient temerature [K]
8 h = 2000; % heat flux coefficient [

W/m^2 K]
9 Q = 31 ; % heat source [W]

10 Vol = 3.96*10^ -6; % volume of the bar [m^3]
11 qs = Q/( Vol); % volumetric heat source

[W/m^3]
12

13

14 thermalmodel = createpde (" thermal "," transient - axisymmetric ")
; % call the model

15 g = decsg ([3 4 0 0.006 0.006 0 0 0 0.002 0.002] ’);
% create a geometry for 6 mmx2mm

16 g = decsg ([3 4 0 0.33 0.33 0 0 0 0.002 0.002] ’);
% create a geometry for 33 cmx2mm
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17 geometryFromEdges ( thermalmodel ,g);
18

19 % % %Plot the geometry .
20 figure (1)
21 pdegplot ( thermalmodel ,’EdgeLabels ’,’on’," FaceAlpha " ,0.5);
22 grid on
23 title ’INCONEL 718 Geometry ’;
24

25 %%% thermal properties
26 thermalProperties ( thermalmodel ," ThermalConductivity " ,12 ,...
27 " MassDensity " ,8442 ,...
28 " SpecificHeat " ,402);
29

30 %%%%% boundary conditions
31

32 coeff = h/ lambda ;
33 upBC = @(~, state) -coeff .*( state.u - T_inf); % Top Robin BC
34

35 %%% Case a
36

37 % thermalBC ( thermalmodel ," Edge ",3," HeatFlux ",upBC);
38 % thermalBC ( thermalmodel ," Edge ",[1,2,4],’ HeatFlux ’,0,’

Vectorized ’,’on ’);
39

40 %%%% Case b
41 % coeff2 = 25/ lambda ;
42 % sideBC = @(~, state) -coeff2 .*( state.u - T0);
43 %
44 % thermalBC ( thermalmodel ," Edge ",3," HeatFlux ",upBC);
45 % thermalBC ( thermalmodel ," Edge " ,[2 ,4] ," HeatFlux ", sideBC );
46 % thermalBC ( thermalmodel ," Edge ",1,’ HeatFlux ’,0,’ Vectorized

’,’on ’);
47

48 %%% Case c
49 % coeff2 = 25/ lambda ;
50 % sideBC = @(~, state) -coeff2 .*( state.u - T0);
51 %
52 % thermalBC ( thermalmodel ," Edge ",3," HeatFlux ",upBC);
53 % thermalBC ( thermalmodel ," Edge ",2," HeatFlux ", sideBC );
54 % thermalBC ( thermalmodel ," Edge ",[1,2],’ HeatFlux ’,0,’

Vectorized ’,’on ’);
55

56 %%%% initial conditions
57 thermalIC ( thermalmodel ,T0); % uniform room themperature in

the rod is T0
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58

59 % % % constant internal source
60 internalHeatSource ( thermalmodel ,qs/lambda ," Face ",1);
61 %%% mesh definition
62 msh = generateMesh ( thermalmodel ," Hmax",Ly /3);
63 tfinal = 1400;
64 tlist = linspace (0, tfinal ,1400) ;
65 x = linspace (0,Lx , length (tlist));
66 y = linspace (0,Ly , length (tlist));
67 result = solve( thermalmodel ,tlist);
68 T = ( result . Temperature ); % solve and find the

solution T(x,y,t)
69

70

71 %%%%%% PLOT
72 figure (1)
73 colorbar
74 pdeplot ( thermalmodel ," XYData ",T(: ,1) ," ColorMap ",’hot ’,"

XYGrid "," off ")
75 title( sprintf (" Temperature at %g s",tlist (1)))
76 xlabel (’Length [m]’,’interpreter ’,’latex ’)
77 ylabel (’Thickness [m]’,’interpreter ’,’latex ’)
78 xlim ([0 0.35]) ;
79 ylim ([0 0.002]) ;
80

81 figure (2)
82 colorbar
83 pdeplot ( thermalmodel ," XYData ",T(:, end) ," ColorMap ",’hot ’,"

XYGrid "," off ")
84 title( sprintf (" Temperature at %g s",tlist(end)))
85 xlabel (’Length [m]’,’interpreter ’,’latex ’)
86 ylabel (’Thickness [m]’,’interpreter ’,’latex ’)
87 xlim ([0 0.35]) ;
88 ylim ([0 0.002]) ;
89

90 Y=y; % for each y
91 X = (0)*ones(size(Y)); % want the solution on

1 x. this case x=0
92 Tintrp = interpolateTemperature (result ,X,Y ,1: length (tlist));
93

94 figure (3)
95 colormap hot
96 imagesc (tlist ,flip(y),Tintrp (: ,: ,:) ’)
97 colorbar
98 grid on
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99 xlabel (’time [s]’)
100 ylabel (’Thickness [m]’)
101 title(’2D solution x=0’)
102 hold off
103

104 X1 = (Lx /2)*ones(size(Y)); % want the solution
on 1 x. this case x=Lx/2

105 Tintrp1 = interpolateTemperature (result ,X1 ,Y ,1: length (tlist)
);

106

107 figure (4)
108 colormap hot
109 imagesc (tlist ,flip(y),Tintrp1 (: ,: ,:) ’)
110 colorbar
111 grid on
112 xlabel (’time [s]’)
113 ylabel (’Thickness [m]’)
114 title(’2D solution x=Lx/2’)
115 hold off
116

117 X2 = (Lx)*ones(size(Y)); %want the solution on
1 x. this case x=Lx

118 Tintrp2 = interpolateTemperature (result ,X2 ,Y ,1: length (tlist)
);

119

120 figure (5)
121 colormap hot
122 imagesc (tlist ,flip(y),Tintrp2 (: ,: ,:) ’)
123 colorbar
124 grid on
125 xlabel (’time [s]’)
126 ylabel (’Thickness [m]’)
127 title(’2D solution x=Lx’)
128 hold off
129

130

131 % time t=end (primo dopo t=0)
132 Tprint1_3 = interpolateTemperature (result ,X,Y ,1400) ; %

questo xk a length (t) =10000
133 Tprint2_3 = interpolateTemperature (result ,X1 ,Y ,1400) ;
134 Tprint3_3 = interpolateTemperature (result ,X2 ,Y ,1400) ;
135 figure (6)
136 plot(Y/Ly , Tprint1_3 (: ,: ,:)/T_inf ,’--r’,’Marker ’,’v’,’

MarkerIndices ’ ,1:53: length (Y))
137 hold on
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138 grid on
139 plot(Y/Ly , Tprint2_3 (: ,: ,:)/T_inf ,’b’)
140 plot(Y/Ly , Tprint3_3 (: ,: ,:)/T_inf ,’k:’,’Marker ’,’o’,’

MarkerIndices ’ ,1:133: length (Y))
141 plot(Y/Ly ,sol (1400 ,:)/T_inf ,’g’)
142 plot(Y/Ly , T_steady /T_inf ,’-.k’)
143 legend (’2D x=0 m’,’2D x=Lx/2’,’2D x=Lx’,’1D’,’Steady ’)
144 xlabel (’$y/L_y$ ’,’Interpreter ’,’latex ’)
145 ylabel (’$T/T_{jet}$’,’Interpreter ’,’latex ’)
146 title(’Case 1b’)
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