
Corso di Laurea Magistrale in
INGEGNERIA GESTIONALE

Classe delle Lauree LM-31

Tesi di Laurea Magistrale

Branch-and-Price and
Heuristic Algorithms for

the Service Network Design
and Hub Location Problem

Relatori:

Prof. Rosario SCATAMACCHIA

Prof. Dr. Marco LÜBBECKE

Alexander HELBER, M.Sc.

Candidato:

Alessio BUFANO

Anno Accademico 2021/2022

Abstract

The design of freight transport networks is becoming an even more relevant com-
ponent in the context of the worldwide increasing popularity of e-commerce and
increasing export volumes. The focus of this thesis is on a combined transport
problem where multiple itineraries are possible for commodities with the same
origin and destination locations. The problem targets both the strategic positioning
of transshipment warehouses – the so-called hubs – and the tactical planning of
freight transport. The aim is to achieve the best trade-off between operational
costs and service performance. We consider, among others, important real-world
conditions on the routing of goods: modular capacities on transfer links between
hubs, maximum delivery times of goods, and limits on the number of transship-
ments. Overall, the whole combination of these problem characteristics has never
been treated in the previous literature. For the considered problem, we propose
two mathematical formulations and a Branch-and-Price algorithm. Besides, we
introduce various heuristic approaches to obtain good-quality solutions with limited
computational time. Extensive computational experiments show the effectiveness
of the proposed algorithms in solving realistic instances, enabling strategic network
design in real-world applications.

Keywords: Combined Freight Transport, Service Network Design, Hub Location,
Mixed Integer Linear Programming, Branch-and-Price, Heuristic

Acknowledgements

First of all, I would like to thank the Polytechnic of Turin and the RWTH Aachen
University for the special opportunity they gave me to write this thesis. After all,
we did a good work, even though I lived three very intense and stressful months
and I met a lot of difficulties. But maybe it is proper this, that made me proud.

Thank you, Marco, for having accepted me as abroad student and having al-
ways suggested the right things.
Thank you, Alex, for having always been there present to help me in the most
difficult moments, redirecting me on the right way.
Thank you, Judith, for having been a solar person to talk with. I really think the
Operations Research Chair would not be the same without you.
Thank you, Ben, for having helped me when the cluster had problems.

Finally, thank you, Rosario, for having always believed in me, and having supported
me in the final crucial moments.

Directly from my heart
∼ Alessio

ii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms ix

1 Introduction 1

2 Combinatorial Optimization fundamentals 4
2.1 Operations Research recalls . 4

2.1.1 Introduction to Linear Programming models 4
2.1.2 The concept of duality . 6
2.1.3 The Branch-and-Bound method 6

2.2 Column Generation and Branch-and-Price 8
2.2.1 The Column Generation method 8
2.2.2 Dantzig-Wolfe Decomposition 11
2.2.3 Branch-and-Price . 12

2.3 Heuristic methods . 14
2.3.1 Heuristic algorithms . 14
2.3.2 Matheuristics . 15

3 Presentation of the Problem 16
3.1 Background and Description of the Problem 16

3.1.1 Problem Background . 16
3.1.2 Problem Description . 18

3.2 Literature Review of SNDHLP . 24
3.3 Mathematical Notation of the Problem 27
3.4 A Mixed Integer Linear Programming Model Formulation 28
3.5 An Extended Model Formulation 32
3.6 Comparison between the two model formulations 34

iv

4 Solution Approaches 36
4.1 A Branch-and-Price approach . 36

4.1.1 Master Problem . 37
4.1.2 Auxiliary Problem . 37
4.1.3 Restricted Master Problem 38
4.1.4 Pricing Problem . 39
4.1.5 Branching Rules . 41

4.2 Heuristic methods . 42
4.2.1 Most Accessed Hubs Heuristic 43
4.2.2 Greatest Demand Requests Heuristic 44
4.2.3 Additive Greatest Demand Requests Heuristic 45
4.2.4 Shortest Access Arcs Heuristic 47
4.2.5 A Matheuristic approach . 48

5 Computational Results 50
5.1 Introduction on the solver environments 50
5.2 Presentation of the problem instances 51

5.2.1 Instances datasets . 51
5.2.2 Real-world instances . 51
5.2.3 Setup of instances parameters 53

5.3 Organization of the Experiments 55
5.4 Preliminary Experiments . 57

5.4.1 Heuristic Experiments . 57
5.4.2 Matheuristic Experiments 59
5.4.3 Branch-and-Price Experiments 61
5.4.4 Early Branching Branch-and-Price Experiments 63
5.4.5 Arc-based Model Experiments 65

5.5 Final Comparison Experiments . 67
5.5.1 Branch-and-Price Experiments 67
5.5.2 Matheuristic Experiments 69
5.5.3 Arc-based Model Experiments 71
5.5.4 Unsplittable Requests Instances Experiments 73
5.5.5 Relaxed Arc-based Model Experiments 75

6 Conclusions 77

A SNDHLP model creation 80
A.1 SNDHLP instance reader . 80
A.2 SNDHLP instance sets generator 84
A.3 Arc-based SNDHLP . 89
A.4 Path-based SNDHLP . 97

v

B Heuristics 103
B.1 Most Accessed Hubs Heuristic . 105
B.2 Greatest Demand Requests Heuristic 105
B.3 Additive Greatest Demand Requests Heuristic 106
B.4 Shortest Access Arcs Heuristic . 106

C Branch-and-Price algorithm 107
C.1 Restricted Master Problem . 107
C.2 Pricing Problem . 109

D Matheuristic Approach 116

Bibliography 120

vi

List of Tables

3.1 Analogies and differences of the problem characteristics with similar
problems of the past literature . 26

5.1 Comparison among the different heuristic methods experiments . . 58
5.2 Comparison of the perturbation of two heuristic methods 60
5.3 Comparison of different RMP solution for the B&P algorithm . . . 62
5.4 Results of early branching on the B&P algorithm 64
5.5 Comparison of SCIP and Gurobi MIP solvers on the arc-based

SNDHLP . 66
5.6 Results of final Branch-and-Price Experiments 68
5.7 Results of final Matheuristic Experiments 70
5.8 Results of final Experiments on the arc-based model solved with

Gurobi . 72
5.9 Results of Unsplittable Requests Instances Experiments 74
5.10 Results of Experiments on the arc-based model without time and

transshipments constraints . 76

vii

List of Figures

3.1 Examples of Direct and Combined Transport Paths 21
3.2 Allowed and Not-Allowed Paths including hubs with the same loca-

tions of customers . 22
3.3 Allowed Arcs in Combined Transport Paths 23

5.1 Map of Station Locations in the Nord-WestFalen region 52

viii

Acronyms

B&B
Branch-and-Bound

B&P
Branch-and-Price

B&P&C
Branch-and-Price-and-Cut

CG
Column Generation

DB
Dual Bound

DW
Dantzig-Wolfe

HLP
Hub Location Problem

ILP
Integer Linear Programming

LB
Lower Bound

LP
Linear Programming

ix

MILP
Mixed Integer Linear Programming

MP
Master Problem

PB
Primal Bound

PP
Pricing Problem

RMP
Restricted Master Problem

SNDHLP
Service Network Design and Hub Location Problem

SNDP
Service Network Design Problem

T.L.
Time Limit

UB
Upper Bound

x

Chapter 1

Introduction

The goal of this thesis is to deepen a real-world topic of raising interest over the last
years. We actually live in a world where we need only to type some words and click
a button to order what we desire or effectively necessitate: the online commerce is
in a stable and unceasing expansion. Moreover, the constant growth of the world
population and the increasing welfare are strictly related with a greater demand
of food, goods and services. These lead to broadening importation, and clearly
exportation. Every day, all over the world, roads, rails, air and maritime routes
are plenty of trucks, vans, trains, aircraft, cargo ships, and many other vehicles
that transport commodities from a location to another.
In this context, it is fundamental to design the freight transport network and to
eventually choose a good location for warehouses where goods can be transshipped.
The positive outcomes of this planning are diverse:

• To speed up the delivery process.

• To boost firms’ performance, by means of efficient use of resources and high
service levels.

• To improve customers’ satisfaction levels.

• To avoid additional storing-time costs or economic penalties for shipping
companies.

• To reduce the environmental pollution.

• To prevent freight damages.

In particular, a very sensitive part of the whole process is represented by the
transshipment at collection and sorting points – the so-called hubs. But this is
what distinguishes direct transport from combined one. Indeed, whereas in direct

1

Introduction

transport – as the name itself suggests – the demand travels directly from an origin
to a destination, in the latter the main part of the transportation is performed by
the transfer vehicles operating an internal network of hubs, and only the initial and
the final legs of the trip are carried out by the vehicles on the access links to/from
the transshipment network. Actually, the operations management is a complicated
process, which is more crucial when the distances among the locations are larger.

Hence, the object of the study is a real-world combined transport Service Network
Design and Hub Location Problem (which is denoted as SNDHLP) that simultane-
ously deals with the planning of demand units itineraries and the strategic locations
of the hub facilities. The problem must serve a given set of transport requests.
Each request consists of a certain number of demand units to be transported from
the customers’ origins to the customers’ destinations. Each customer location
may be the origin and/or the destination of more than one request, but all the
commodities with the same origin and the same destination constitute one request.
The problem is constrained to many real-world conditions:

• In a combined transport, the requests’ commodities must be transshipped
at hub facilities, which means that the direct transport from an origin to a
destination is forbidden.

• Requests are splittable, or, in other words, the demand units with the same
origin and destination locations are not obliged to follow the same routing
itinerary.

• There is a fixed limited number of hubs that must be opened, without any
cost.

• Each customer location can be served by multiple hubs: these constitute the
set of allowed hubs of the customer. The related links between customers
and allowed hubs – or vice versa – are called access arcs, and have a cost for
kilometer and demand unit.

• The first hub in which the request’s demand units are transshipped must be
an allowed start-hub for the origin of any given customer and similarly the last
hub must be an allowed end-hub for the destination of any given customer.

• The links between hubs are called transfer arcs, and have a modular capacity –
which means that the capacity of each link is equal to a multiple of a given
module (see Pióro and Medhi (2004)). This modular capacity need to be
provided by operating integer amounts of identical vehicles having a specific
transportation capacity – the given module. Hence, these links have a cost for
kilometer and vehicle used.

2

Introduction

• There is a limited number of transshipments at hubs – the so-called hops – for
a single request.

• Every request must be delivered within a maximum travel time, including also
the transshipments.

In conclusion, the problem is to decide the itineraries of the requests, the selection
of hubs to be opened, and the number of vehicles operating on each transfer arc.
The objective is to minimize the overall delivery costs of requests, which include
both the costs for operating vehicles among the hubs’ connections and the costs
for using the access arcs.

Our practical contribution to the studied problem is the presentation of different ap-
proaches to solve the introduced problem. The main characteristic of this problem
is its non-polynomial size. Hence, it is necessary to implement a Branch-and-Price
algorithm to solve the instances of large size. Furthermore, to help the Branch-and-
Price tool, some non-exact techniques are proposed: various heuristic based on our
assumptions over clever ways to prioritize the hubs. In addition, a matheuristic
algorithm tries to improve the solution space. The obtained results are comforting,
as we can plan and design with a good tolerance real-world situations in only some
hours.

The remaining part of the thesis is structured as follows. Chapter 2 presents
a recall of the theoretical concepts the work is based on. Chapter 3 introduces the
problem, and presents the relevant literature review of similar problems. In the
Chapter, we also present two mathematical formulations of the considered problem.
The proposed solution approaches are discussed in Chapter 4. Then, in Chapter 5
we present and discuss the results of the computational experiments to evaluate
the effectiveness of the adopted solution methods. Finally, Chapter 6 concludes the
work with some remarks on the results obtained and some suggestions for possible
future developments.
Further, the developed code for the creation of the models of our problem and their
resolution with the proposed approaches is reported in Appendix A, B, C, and D.

3

Chapter 2

Combinatorial Optimization
fundamentals

The aim of this chapter is to introduce the reader the theoretical concepts on which
the thesis work is based on. In particular, in Section 2.1 some basic concepts of
Operations Research are recalled. Then, in Section 2.2 we present an overview on
Column Generation and Branch-and-Price algorithms. Finally, Section 2.3 recalls
the heuristic methods for optimization problems.

2.1 Operations Research recalls
This section briefly recalls some basic concepts that we employ in this work. It
presents a rapid overview on the foundation of the Operations Research, starting
from the introduction to the linear programming models and arriving to the
Branch-and-Bound method.

2.1.1 Introduction to Linear Programming models
A linear programming (LP) model is a mathematical model whose requirements
are represented by linear relationships. The aim of an LP model is to maximize or
minimize an objective function, represented by a linear expression of the problem
variables, which is subject to linear inequalities and non-negativity constraints of
the variables. In general, a linear program is expressed in the canonical form:

min cT x

s.t. Ax ≤ b (2.1)
x ≥ 0

4

Combinatorial Optimization fundamentals

The above expression represents a minimization problem of a linear function cT x
derived from the set of non-negative variables x ∈ Rn

+, each with a cost – or a
profit in case of maximization problems – cj ∈ cT . The variables are subject to a
set of linear constraints, each represented by a linear inequality aT

j x ≤ bj, where
aT

j ∈ A and bj ∈ b are respectively the array of coefficients and the right-hand side
coefficient of the related j-th constraint.
The feasible domain of an LP model can be geometrically interpreted as a polyhe-
dron P = {x | Ax ≤ b , x ≥ 0}, that is a convex set defined as the intersection
of finite half spaces, each of which is defined by a linear inequality. Hence, every
x ∈ P is a feasible solution of the problem.
The fundamental theorem of linear optimization is a consequence: if a linear model
max

î
cT x | x ∈ P

ï
is feasible (P /= ∅) and is not unbounded from below (or from

above in case of maximization problems), it must have an optimal solution x⋆ of
finite objective value z⋆ = cT x⋆, and x⋆ is an extreme point (vertex) of P .
An equivalent reformulation of any LP model is the standard form, obtained by
adding a slack variable sj ≥ 0 in each constraint, to transform them into linear
equalities Ax = b. The standard form does not change the solution space, although
it helps to introduce the concept of basic solution1. Indeed, x ∈ Rn

+ is called a basic
feasible solution of an LP problem if and only if there is a basis B with ABxB = b
and xN = 0, where xB ≥ 0, and this corresponds to exactly one vertex of P .
The solving method for many LPs is the simplex algorithm (see Dantzig and
Thapa (1997)), which starts from a basic solution, and checks if there are some non-
basic variables with a negative reduced cost that can replace a variable in the current
basis. The reason is that the reduced cost of a variable rj = cj − zj = cj − λjaj

represents the amount by which the objective function coefficient would have im-
proved if the variable entered the basis. In particular, λj are the simplex multipliers
associated with the j-th constraint. There are some pivoting rules to choose both
the entering non-basic variable and the leaving basic variable. In any case, the
simplex algorithm iterates until the optimality condition for a basic feasible solution
is fulfilled: all the variables’ reduced costs are non-negative (rj ≥ 0 ∀ j).

In integer linear programming (ILP) or mixed integer linear programming (MILP)
models, all or some of the variables are required to be integer x ∈ Zn

+. In these
cases the smallest polyhedron P that contains H is called convex hull conv(H) and
comprises only vertices with integer coordinates. Thus, solving an LP over conv(H)
automatically gives an integer solution.

1A basis B = (B1, ..., Bm) is an ordered subset of m indices of linear independent columns
AB1 , ..., ABm

of A ∈ Rm×(m+s) – where m + s = n – whereas all the other s column indices are a
non-basis N = (N1, ..., Ns)

5

Combinatorial Optimization fundamentals

2.1.2 The concept of duality
Another milestone in linear programming is the concept of duality. Indeed, for each
LP primal problem min

î
cT x | Ax ≥ b , x ≥ 0

ï
is always possible to write its

corresponding dual problem by associating with every primal constraint aT
j x ⪌ bj

a dual variable λj – that is ≥ 0, free or ≤ 0 according to the constraint sense, and
with every primal variable xj ⋛ 0 or free a dual constraint λT Aj ⪋ cj – where λT

is the row array comprising all the λj . The sense of the dual constraint is opposite
to the sign of the primal variable – so a dual constraint of minority is related to
positive primal variable, and vice versa, whereas an equality constraint corresponds
to a primal free variable. The related dual objective function is max λT b.

The strength of this concept is resumed by two theorems:

Weak Duality given a primal minimization problem with a feasible solution x
and its corresponding dual problem with feasible solution λ, then cT x ≥ λT b.
A direct consequence is the infeasibility criterion of a LP problem, because
when one of the two problems has an unbounded objective function, the other
one does not have feasible solutions.

Strong Duality if the primal LP has a feasible optimal solution x⋆, then the dual
LP has a feasible optimal solution λ⋆, and the respective optimal objective
values coincide: cT x⋆ = λ⋆T b.

What clearly emerges from these two theorems is that the primal optimality and
the dual feasibility are the same concept: dual variables corresponding to primal
active constraints take the role of basic variables.

2.1.3 The Branch-and-Bound method
A method to solve a generic MILP model min

î
cT x | x ∈ H

ï
is the Branch-and-

Bound (denoted as B&B). This method solves optimization problems by breaking
them down into smaller sub-problems and using a bounding procedure to prune the
search space S ⊆ H and eliminate sub-problems that cannot contain the optimal
solution.
The search space S is a rooted tree of candidate solutions, and exploring branches
of this tree means to check against upper and lower estimated bounds on the
optimal solution, and discard a node of the tree (i.e., a sub-problem) if it cannot
produce a better solution than the best one found so far. Hence, the B&B depends
on efficient estimation of the lower and upper bounds of branches, and it performs
an exhaustive search if there are no bounds available.

6

Combinatorial Optimization fundamentals

The first step of the B&B algorithm is to solve the continuous relaxation of
the MILP, obtaining the corresponding linear problem LP0, which is the so-called
root node of the search tree. If an optimal solution of LP0 is integer, it also
corresponds to an optimal solution of the problem x⋆ and the algorithm ends.
Although if it is not integer, the branching starts by selecting a fractional variable
in the LP0 solution and then splitting the root node into two or more sub-problems
which both have an additional constraint for the selected variable.
For instance, in a binary branching, in one of the two sub-problems the branching
variable is bounded from below by its integer rounding up, whereas in the other
sub-problem the variable is bounded from above by its integer rounding down.
Then, every sub-problem LPt is solved, and eventually the branching procedure is
repeated. In particular, if the sub-problem has an integer solution value better than
the current best integer solution of the problem, that value becomes the current
primal bound PB of the problem (which is an upper bound for minimization
problems and a lower bound for maximization ones).
However, not all the nodes are explored, thanks to the pruning of unpromising
subtrees. In order to close the current node t and not to generate its subtrees, the
prune can be by infeasibility, by integrality or by bound. Actually, the procedure
evaluates its LPt and closes the node if the problem is infeasible (also its children
will be infeasible), if it has an integer solution (no more branching variables), or
if its dual bound is no better than the current primal bound (also its subtrees
will not produce a better solution). The reason of the prune by bound is that
the value of any integer feasible solution with value z of a mixed integer problem
min

î
cT x | Ax ≥ b , x ∈ Zn

+ ×Qq
+
ï

gives a primal bound on the optimal solution
z⋆, i.e., z ≥ z⋆. Whereas optimizing over any relaxation of the MILP gives a dual
bound on the optimal solution z⋆, i.e., z ≤ z⋆ (the signs of inequalities are inverted
in case of maximization MILPs). Hence, if the found dual bound of LPt is worse
than the current best primal bound, there cannot be obtained improvements in its
children.

7

Combinatorial Optimization fundamentals

2.2 Column Generation and Branch-and-Price
2.2.1 The Column Generation method
As pointed out by Nemhauser (2012), column generation (denoted as CG) refers
to linear programming algorithms designed to solve problems in which there is a
huge number of variables compared to the number of constraints, and the simplex
algorithm step of determining whether the current basic solution is optimal or
finding a variable to enter the basis is done by solving an optimization problem
rather than by enumeration. Indeed, the main idea of CG is to start solving the
considered program with only a subset of its variables. Then, iteratively, variables
with potentialities to improve the objective function are added to the problem.
This dynamic variables’ addition occurs via the insertion of the column-coefficients
into its constraint matrix, hence the name of the method.
The hope when applying a CG algorithm is that only a very small fraction of the
variables’ columns will be generated. This hope is supported by the observation
that for large problems a considerable majority of the columns is irrelevant for
solving the problem. As a matter of fact, most columns will be non-basic and have
their corresponding variable equal to zero in any optimal solution. Thus, there is
no difference if they are or not in the model because the optimal solution can be
found without them.
Desrosiers and Lübbecke (2005) state that the column generation algorithm is the
primal simplex algorithm with a minor but essential difference in the pricing step:
rather than explicitly calculating the reduced costs of variables, the former solves
an auxiliary optimization program that implicitly searches for a variable of negative
reduced cost, or proves that none exists. In particular, the algorithm considers
two problems: the restricted master problem and the sub-problem. The restricted
master problem (denoted as RMP) is the original problem that considers only a
subset of variables, whereas the sub-problem is a new problem created to identify
an improving variable to be added to the RMP.
The original linear program containing many variables – indexed by the set X –
to solve is called master problem (denoted as MP), and it is assumed feasible and
with finite objective value:

z⋆
MP := min

Ø
x ∈ X

cxλx

s.t.
Ø

x ∈ X
axλx ≤ b (2.2)

λx ≥ 0 ∀ x ∈ X

The first step of the algorithm is to choose a small subset of variables X ′ ⊂ X and
build the so-called restricted master problem, which is assumed feasible from the

8

Combinatorial Optimization fundamentals

choice of the restricted subset:

zRMP := min
Ø

x ∈ X ′
cxλx

s.t.
Ø

x ∈ X ′
aixλx ≤ bi ∀ i ∈ {1, ..., m} (2.3)

λx ≥ 0 ∀ x ∈ X ′ ⊂ X

Let π be the non-negative dual vector associated with the inequality constraints
of the master (2.2), the sub-problem called pricing problem (denoted as PP)
implicitly computes reduced cost c(π) amongst all cx = cx − πT ax of all the
variables λx ∀ x ∈ X :

c(π) := min
x∈X

cx −
mØ

i=1
πiaix

s.t. cx = c(x) (2.4)
aix = ai(x) ∀ i ∈ {1, ..., m}

Solving the sub-problem (2.4) leads to two possible scenarios:

• If cx ≥ 0 ∀ x ∈ X , then c(π) ≥ 0, which proves the optimality of the
master problem (2.2) and in particular, the optimal solution of the MP is
found by solving the RMP z⋆

MP = zRMP because λ⋆
x = λx ∀ x ∈ X ′ and

λ⋆
x = 0 ∀ x ∈ X \ X ′.

• Otherwise, if cx < 0, a new variable λx, where x ∈ X \ X ′, with a negative
reduced cost will be added to the RMP (2.3) by adding x to X ′. As a
consequence, the RMP will be re-optimized with added column ax of cost cx

to obtain a new λ and a new π to be passed to the PP.

Furthermore, Desrosiers and Lübbecke (2005) pointed out another important
property of the column generation algorithm: the use of bounds. Actually, the
RMP is a restriction of the MP, thus zRMP iteratively approaches z⋆

MP from above
and so it represents an upper bound for the optimal value. Additionally, the
presence of a lower bound allows to evaluate the current solution quality. It is
possible to establish the master problem lower bound – the so-called Lagrangian
bound – from the value κ ≥ q

x∈X λx. Indeed, the objective value of the RMP
cannot be reduced by more than κ times the smallest reduced cost c⋆(π):

zRMP + κc⋆(π) ≤ z⋆
MP ≤ zRMP (2.5)

The above condition (2.5) proves the optimality of the master problem when there
are no more variables with negative reduced cost (as c⋆(π) = 0).

9

Combinatorial Optimization fundamentals

The pricing problem offers large opportunities for speeding up the overall CG
process, since it is usually solved very often. Indeed, it is better to perform the
so-called heuristic pricing, where there are specific choices about the subset of
variables on which computing the reduced costs and how variables are picked from
that subset, in order to solve the PP to optimality only in the last CG iteration to
prove the optimality of the MP.

The CG iterative process can be resumed by the following sketch:

Algorithm 1.1: Column Generation Algorithm

input : RMP with feasible subset X ′ ⊂ X , PP
output : Optimal primal-dual solutions λ⋆

MP, π⋆ and optimum z⋆
MP for the

MP
1 repeat
2 Solve the RMP to obtain an optimal primal-dual solutions λRMP, π of

cost cRMP

3 Solve the PP to obtain the minimum reduced cost c(π) with
corresponding x ∈ X

4 Generate the variable λx to add to the RMP with encoding
C
cx

ax

D
via

X ′ ← X ′ ∪ {x}
5 until c(π) ≥ 0
6 return λRMP, π and zRMP

10

Combinatorial Optimization fundamentals

2.2.2 Dantzig-Wolfe Decomposition
An extension of the CG algorithm is the Dantzig-Wolfe decomposition: an algorithm
for solving linear programming problems with special structure. Actually, this is
a mathematical reformulation to express some constraints under an alternative
geometric interpretation, deriving the master and the pricing problem from it rather
than by direct construction.
Indeed, the DW decomposition relies on the Minkowski-Weyl theorem (see Schri-
jver (1986)). The latter affirms that there are two equivalent representations
of a polyhedron: the half-spaces one X = {x ∈ Rn | Dx ≥ d} and the vertex
one through the polyhedron’s extreme points {xp}p ∈ P and extreme rays {xr}r ∈ R.
Hence, this theorem warrants that each x ∈ X can be represented as a convex
combination of extreme points plus a non-negative combination of extreme rays of
the polyhedron:

x =
Ø

p ∈ P

xpλp +
Ø

r ∈ R

xrλr,
Ø

p ∈ P

λp = 1, λ ∈ R|P |+|R|
+ (2.6)

In particular, given an LP problem, the DW decomposition groups its constraints
in two subsets, reformulates one of them with the Minkowski-Weyl theorem, and
performs a substitution in the other and in the objective function. Thus, from the
LP compact problem z⋆ := min

î
cT x | Ax ≥ b , Dx ≥ d , x ∈ Rn

+

ï
, applying the

reformulation on D =
î
Dx ≥ d , x ∈ Rn

+

ï
, the equivalent extensive formulation is:

z⋆ := min
Ø

p ∈ P

(cT xp)λp +
Ø

r ∈ R

(cT xr)λr

s.t.
Ø

p ∈ P

(Axp)λp +
Ø

r ∈ R

(Axr)λr ≥ b

Ø
p ∈ P

λp = 1 (2.7)

λp ≥ 0 ∀ p ∈ P

λr ≥ 0 ∀ r ∈ RØ
p ∈ P

xpλp +
Ø

r ∈ R

xrλr = x

Then, from the master problem (2.7), it is possible to derive the RMP expressed
with the relative small subsets P ′ ⊂ P and R′ ⊂ R and obtain its primal solution
λ of cost zRMP with the dual values πb, associated with the substituted constraint,
and π0, referred to the convexity constraint qp ∈ P λp = 1. The dual values
are used to find the negative reduced cost variables in the pricing problem c⋆ :=
minx ∈ D cx(πb, π0) = min {minp ∈ P cp , minr ∈ R cr} with cp = cp−πT

b ap−π0 ∀ p ∈ P
and cr = cr − πT

b ar ∀ r ∈ R.

11

Combinatorial Optimization fundamentals

Thus, the DW reformulation pricing problem is:

c⋆ := −π0 + min
î
(cT − πT A)x | x ∈ D

ï
(2.8)

Also in this case, the CG terminates when c⋆ ≥ 0 as there are no more negative
reduced cost columns. Otherwise, if c⋆ ≤ 0 and finite, the (2.8) solution is an
extreme point xp and the new column

è
cT xp, (Axp)T , 1

éT
is added to the RMP.

Whereas if c⋆ = −∞ it is possible to identify an extreme ray xr as solution to
(cT − πT A)x = 0 and add the relative column

è
cT xr, (Axr)T , 0

éT
to the RMP.

However, the bounds condition (2.5) is modified removing the κ factor, because the
latter is 1 in case of finite negative solution to (2.8) or does not matter if c⋆ = −∞.

Furthermore, it is possible to extend the DW decomposition to integer linear
programs or mixed integer linear programs. The difference with LPs is that vari-
ables are in Zn

+ – and not in Rn
+ – so the Minkowski-Weyl theorem is applied on

the convexification of the reformulated domain. Indeed, in MILPs each x ∈ D
can be represented as a convex combination of extreme points plus a non-negative
combination of extreme rays of the domain’s convex hull conv(D).

Moreover, the DW decomposition can be applied to the dual problem. This
is often used for reformulating MILPs with two linked sets of variables, as these
problems deal with complicating variables instead of complicating constraints. This
reformulation is named Benders decomposition and is a "row generation" as it itera-
tively generates new inequalities to add to the master problem (see Benders (1962)).
The strategy is to divide the variables of the original problem into two subsets so
that a first-stage master problem is solved over the first set of variables, and the
values for the second set of variables are determined in a second-stage sub-problem
for a given first-stage solution. Next, if the pricing problem determines that the
fixed first-stage decisions are infeasible, a new row is generated and added to the
MP, which is re-solved until no more inequalities can be generated.

2.2.3 Branch-and-Price
As stated by Savelsbergh (2001), the Branch-and-Price is a generalization of the
LP-based Branch-and-Bound specifically designed to handle MILPs containing
many variables. The Branch-and-Price (denoted as B&P) method can be seen as
a hybrid between column generation and Branch-and-Bound, as its basic idea is
to apply CG at every explored node of the B&B search tree. Indeed, at the start
of the algorithm some columns are left out of the LP relaxation because most of
them will have their associated variable equal to zero in an optimal solution. Then,
identically to CG, to check the optimality of an LP solution, the pricing problem

12

Combinatorial Optimization fundamentals

is solved to try to find columns with a negative reduced cost. If such columns
are identified, the LP is re-optimized. Otherwise, the branching occurs when no
profitable columns are found and the LP solution is not integer.
Moreover, Barnhart et al. (1998) highlighted some difficulties in the B&P appli-
cation due to the so-called tailing-off effect of the column generation: the large
number of iterations needed to prove the optimality of the LP solution, which
can potentially happen at every node of the search tree. Fortunately, the B&B
framework has some inherent flexibility that can be exploited, and so instead of
solving the LP to optimality, the CG could be prematurely ended to work with
bounds on the final LP value. Actually, this is the reason most B&P algorithms
are problem-specific since the problem must be formulated in such a way so that
effective branching rules can be established. However, it is crucial that the pricing
problems are aware of the branching decisions to avoid the generation or regenera-
tion of columns which violate them.
In particular, the inequality (2.5) offers a large opportunity for speeding up the
B&P process, by means of the so-called early branching: a technique that typically
goes along with the computation in each pricing iteration of a Lagrangian bound
LB = zRMP + κc⋆(π), which represents the lower bound of the current Branch-and-
Bound node. Hence, when in a B&B node the Lagrangian gap LG = LB−zRMP

LB
is

lower than a certain stop-early threshold, the pricing iterations are stopped on that
node and the Branch-and-Price proceeds analyzing the next node of the search tree
– if exists.

Besides, an efficient extension of the B&P algorithm is the Branch-and-Price-
and-Cut (denoted as B&P&C), that involves the use of cutting planes. Gilmore
and Gomory (1961) introduced cutting planes as valid linear inequalities added to
the problem in order to iteratively refine a feasible set or the objective function.
Such procedures are commonly used to find optimal integer solutions to MILPs.
Indeed, by solving the linear relaxation of the given feasible MILP, there will always
be an optimal extreme point. But if the latter is not integer, there is guaranteed
to exist a linear inequality that separates the optimum from the convex hull of the
true feasible set. Such an inequality is a cutting plane that can be added to the
relaxed LP.
In the B&P&C context, cutting planes Fx ≤ f can be directly included in the
original problem with a consequent change only in the PP’s objective function
(as there is a corresponding dual value α). Alternatively, cutting planes can be
enforced only in the pricing problem by simply reducing its domain from D to
XF = {x ∈ D | Fx ≤ f}, and this can even lead to a stronger dual bound.

13

Combinatorial Optimization fundamentals

2.3 Heuristic methods
This last section of the chapter presents an overview on the resolution methods which
differ from the previously introduced in this chapter, that are exact approaches
leading to optimal solutions.

2.3.1 Heuristic algorithms
The term "heuristic" is derived from the Greek word "heurisko" which means "I
find, discover". Actually, heuristics – also known as heuristic techniques – refer to
any method of problem-solving that relies on practical approaches that may not
be perfect, rational, or optimal but can still achieve an immediate estimation. As
highlighted by Pearl (1984), heuristic strategies are based on prior experiences with
similar problems. Typically, these methods both yield the desired outcome and
expedite the process of finding a suitable solution in impractical situations, but
sometimes, they can lead to systematic errors.
In particular, in the context of mathematical programming, a heuristic algorithm
is a procedure that determines feasible near-optimal solutions to an optimization
problem, which is an NP-hard problem by itself. The corresponding trade-off is that
the algorithm may sacrifice optimality, completeness, accuracy, or precision in favor
of speed (see Eiselt and Sandblom (2000)). Nonetheless, heuristics are extensively
used for various reasons, such as for problems that do not have a precise solution
or whose formulation is unknown, when the computation required for a problem is
complex, or for calculating bounds on an optimal solution in Branch-and-Bound
solution processes.
Optimization heuristics are divided into two main categories based on the organi-
zation of the solution domain:

Construction Methods These are also known as greedy algorithms. They op-
erate in phases, with each step optimizing the choice in an attempt to find
the overall optimal solution for the problem. A well-known example of these
methods is used in the famous "travelling salesman problem", by visiting the
closest unvisited city at each step of the journey.

Local Search Methods These techniques use an iterative approach: beginning
with an initial solution, they explore the current solution’s neighborhood
and eventually replace it with a better one. A common example of this
heuristic strategy is represented by swapping positions of jobs to be processed
in manufacturing systems, with the goal of minimizing the completion time.

Nevertheless heuristic algorithms do not represent a universal result, they are
beneficial tools when it is not possible to utilize exact methods. Indeed, the use

14

Combinatorial Optimization fundamentals

of these techniques has become important in solving current complex real-world
problems in different field of applications. The reason is that they can provide
adaptable strategies for solving complex problems with the benefit of being easily
implemented and requiring less computational power. Besides, throughout the
years, these algorithms have advanced, leading to the creation of hybrid systems
that incorporate selected aspects from different types of heuristics.

2.3.2 Matheuristics
A strong application of heuristic techniques is represented by the so-called matheuris-
tics. Boschetti and Maniezzo (2022) describe matheuristics as optimization algo-
rithms, not specific to any particular problem, which use mathematical programming
techniques to generate heuristic solutions. The elements that are specific to a
problem are only incorporated in the lower-level mathematical programming, local
search, or constructive components. Actually, as highlighted by Martina Fischetti
and Matteo Fischetti (2016), the hallmark of matheuristics is the central role played
by the mathematical programming model, around which the overall heuristic is
built. They utilize some of the features that are derived from the mathematical
model of the problem of interest in part of the algorithm. However, creating an
effective heuristic is a skill that cannot be constrained by precise guidelines. The
latter concept is especially accurate with matheuristics, which are not a fixed
paradigm but rather a conceptual framework for designing heuristics that are
mathematically sound.
As observed in Matteo Fischetti and Lodi (2011), an early demonstration of the
effectiveness of the matheuristic concept is the general-purpose local branching
strategy (see Lodi and Matteo Fischetti (2003)). The latter technique shares
similarities with local search heuristics, but instead of using specific neighborhoods,
it introduces general linear inequalities to the MIP model. Although it is an
exact method, it is intended to enhance the heuristic behavior of the MIP solver
by alternating strategic branchings to define solution neighborhoods and tactical
branchings to explore them. The outcome is a high-quality solution early in the
computation process. Therefore, it is reasonable to solve heuristically auxiliary
MIPs, instead of LP relaxations.
This local branching strategy can be considered as a precursor of matheuristics.
Indeed, given the reference solution x of a MIP with a non-empty set of binary vari-
ables B /= ∅, it aims to improve the solution by a specific not-too-far neighborhood
N :

△ (x , x) =
Ø

j ∈ B :xj=0
xj +

Ø
j ∈ B :xj=1

(1− xj) ≤ N (2.9)

15

Chapter 3

Presentation of the Problem

In this chapter we introduce the practical literature background from which our
problem object of study is derived: the service network design models and the
hub location problems. Then, we describe our Service Network Design and Hub
Location Problem (which will be denoted as SNDHLP from now on), contrasting
and comparing it with similar problems already studied in the literature over the
years. The mathematical notation of the SNDHLP is described in Section 3.3.
Moreover, in Sections 3.4 and 3.5, we present the mathematical statements of our
problem, formalizing the two possible approaches treated in our work. Finally, the
last Section 3.6 compares these two formulations.

3.1 Background and Description of the Problem

3.1.1 Problem Background
The Service Network Design and Hub Location Problem takes into account two
main decision aspects: the strategic decision for facility locations and the tactical
planning of the freight transportation. The main focus of these decisions is the
firm’s efficiency in terms of profitability and service performance. The Cambridge
English Dictionary (2023) provides multiple definition for the term "service" de-
pending on the context. The most accurate description of service for our problem is
referred to the union of some of them. From our point of view, a service is the act
of doing a helpful activity for someone else, which involves dealing with customers
and providing a particular thing people may necessitate. Specifically, the service of
our interest is the freight transport, which is the physical process of transporting
commodities and merchandising goods and cargo, by using one or more way of
shipment (McLeod and Curtis (2020)).

16

Presentation of the Problem

In general, network design models are widely used to represent strategic plan-
ning issues in transportation systems and not only – telecommunications, logistics,
and production-distribuition systems, etc. In particular, as stated by Crainic (2000),
a service network design problem (SNDP) is typically developed to assist the set
of main tactical issues and decisions relevant for the transportation of goods: the
selection and scheduling of the services to operate, the specification of the termi-
nal operations, and the routing of freight. The focus is both on ensuring firm’s
profitability and answering service demand, especially for transportation systems
where it is not possible to perform a tailored service for each customer and there
are one or more vehicles which move goods of different origins and destinations
in the network. This complex management of operations becomes all the more
important the larger the distance between locations.

Furthermore, in multimodal transportation systems are frequently used hub net-
works to route commodities between many origins and destinations. Contr-
eras (2021) defines hub networks as hierarchical structure where there are an
access-level network, which connects the origin and destination nodes to hubs, and
a hub-level network connecting hub nodes between them. In these networks, hubs
are usually central facilities which work as sorting, transshipment, and consolidation
points for commodities. Hence, instead of sending flows directly from origin to
destination, hub facilities connect numerous origin-destination pairs by using a few
links, in order to reduce set-up costs and enable economies of scale on routing costs
through the flows’ consolidation.
Among the hub network design problems, the hub location problem (HLP) aims to
find the location of hubs and the allocation of demand nodes to these located hub
nodes (Morton O’Kelly (1986)). Alumur et al. (2012) underline that in most of the
studies in the HLPs’ literature, some assumptions are taken in consideration to
simplify the decisions: fully-interconnected hubs, as the hub arcs network connect-
ing the hub nodes is assumed to define a complete graph on the set of hub nodes
(presence of a direct hub link between every hubs’ pair), no set-up costs for hubs
and their links, and frequently origin-destination routes including hubs to avoid
direct connections between customers pairs.
In addition, Contreras (2021) draws attention to how the arc selection decisions in
the HLP hinges on the possible allocation strategies of origin/destination nodes to
hubs:

• Multiple assignments, which is the simplest case as origins and destinations
can be connected to more than one hub facilities. This allows a larger flexibility
in the hub networks but could increase network design costs for the activation
of the access arcs. The latter is not the case of freight transportation, as the
access arcs correspond to already existing physical infrastructures and have
no set-up costs. However, this allocation strategy might still be prohibitively

17

Presentation of the Problem

expensive because it requires the presence of available vehicles to operate over
multiple connections. So the choice strictly depends on the specific application.

• Single assignments, in which an origin or destination node is associated to
only one hub facility, and so all the goods with same origin or destination are
routed via the same access arc. This strategy is quite common and very useful
in telecommunications or in small quantities’ transportation where there are
consolidated commodities to send to the same sorting point.

• n-allocation strategy, that represents the generalization and the trade-off of
the other two assignments methods, as in this case the origin or destination
node can be linked to at most n hubs.

3.1.2 Problem Description
The reason why in Section 3.1.1 we present the service network design problem and
the hub location problem is that the problem we are dealing with is simultaneously
concerned about decisions on the hubs’ locations and on the tactical planning of
request routing. Indeed, in the context of freight transportation, our attention is
directed towards the intermodal transport of goods.
As reported by the Logistische Informations Systeme AG (2023), intermodal
transport refers to a transport chain in which two or more modes of transport are
used, whereby the transported goods themselves are not transhipped, but only
the loading unit changes the mode of transport. The distinguishing features of
intermodal transport are related to its potentialities of saving costs and gaining
efficiency, from an environment-friendliness’ perspective too. Indeed, this method
improves security, reduces damage and loss, and permits freight to be transported
faster.
In particular, the focus of our problem is on a special type of intermodal transport:
the combined transport, which has the additional characteristics that the main part
of the transportation is performed by the transfer vehicles between the internal
hubs network, and only the initial and the final leg of the trip are carried out by the
vehicles on the access links to/from the transshipment network. Actually, we study
a real-world integrated tactical Service Network Design and Hub Location Problem
for combined transport. Consequently, the problem has a greater complexity than
the other two single cases of SNDP and HLP, but at the same time provides more
efficient solutions.
In our SNDHLP, there is a given set of transport requests. Each of them consists
of a certain number of demand units that must be transported from a customer
origin location to a customer destination location. Each customer location may be
the origin and/or the destination of more than one request, but all the demand
units with the same origin and the same destination constitute one request. In

18

Presentation of the Problem

order to perform what a combined transport is, the requests’ demand units must
be transshipped at hubs. Indeed, we are taking into consideration the common
HLP’s assumption that commodities have to be routed via at least one hub, and
so the direct connection origin-destination is forbidden.
In the initial stage all hubs are closed, but there is a fixed limited number of hubs
that must be opened, without any set-up costs for opening. The decision which
hubs to activate and use is part of the problem. The allocation strategy adopted
for origin/destination links to the hubs network is the multiple assignments one,
in order to allow, if the hubs are open, the customer to send goods over multiple
routes, also for the same single request. In fact, requests are splittable, which means
that the demand units of a request are not obliged to follow the same routing path,
but they might be divided over several routing itineraries. Besides, the request’s
different itineraries may have also different start and/or end in the hubs’ network.
In particular, for each customer, we can define the set of allowed hubs, comprising
all the hubs for which there is a direct link connecting the hub to the customer. If
this link starts from the customer, the specific hub is an allowed start-hub for the
customer, whereas if it starts from the hub, the latter is an allowed end-hub for
the customer. We assume that, among the allowed hubs of a customer, there is
also its own location as both an allowed start-hub and an allowed end-hub, with a
relative costless link. These direct links from/to customers to/from their allowed
hubs are called access arcs, as they provide the access to the hubs’ network, and
do not have any capacity limit. Further, the links between any two hubs in the
hubs’ network are called intra-hubs arcs or transfer arcs. These have a modular
capacity that needs to be provided by operating identical vehicles – every with the
same transportation capacity.
The only condition the transshipment in the hubs must satisfy is that the first
hub in which the request’s commodities are transshipped is an allowed start-hub
for the origin customer, and specularly the last hub is an allowed end-hub for
the destination customer. As we consider the multiple assignments’ strategy for
non-hub nodes, there might be more allowed start-hubs or end-hubs for each request,
and they can also coincide in some routes – the same hub is both start-hub and
end-hub (and this represents the simplest case of combined transport).
However, to simplify the problem, there are some necessary assumptions to take
into account:

• The transfer-links’ capacities are non-restrictive and so, at any point in time,
unlimited number of vehicles may use transfer-links without affecting the total
travel time of the other vehicles.

• Hubs have non-restrictive transshipment capacities: the same hub can manage
an unlimited number of transshipped requests without any waiting time. Thus,
scheduling aspects such requests’ departure timing are not part of the problem.

19

Presentation of the Problem

• Requests may also start or end at the same location of potential hubs, as long
as each origin and destination customer has its own location as allowed hub.
This implies that the HLP’s assumption of minimum one hub routes is not
treated in a strong way, as routes must contain at least one hub, but this can
be represented by a hub having the same location of a customer. To clarify,
the reason of this assumption is to obtain most rational and logical results for
short distances’ origin-destination pairs.

• The number of transshipments at hubs – where a transshipment at hub is
named hop – for a request is bounded to at most four for the real-world
applications of our SNDHLP2. This implicitly indicates that the maximal
possible length of paths is of five arcs, whereas the minimal is of two (for
the previous assumption). The limit of number of hops is again necessary to
guarantee reasonable solutions, and avoid long and non-realistic intra-hubs
itineraries.

• Every request must be delivered within a maximum transport time, which
includes also the transshipments. In this case, the motivation is associated
with ensuring adequate service performance.

• The equipment is homogenous: there are only one type of demand unit and
vehicle. This justifies why all the transfer vehicles have the same limited
capacity, and so determining the number of vehicles to be used over a certain
transfer-link is part of the problem.

All these assumptions and the previously described considerations are reported
graphically in Figures 3.1 and 3.2, and then compactly resumed in Figure 3.3, with
a focus on the actual allowed and not allowed arcs in a possible routing itinerary
for an example of request between a customers origin-destination pair.

In conclusion, the problem final goals are to determine the requests’ itineraries,
to select the hub facilities to be opened, and to compute the number of vehicles
operating on each intra-hubs arc. The objective is to minimize the overall requests’
combined delivery costs, which include both the costs for operating vehicles in the
hubs network and of the costs for using the access arcs.

2In any case, where necessary in the models’ mathematical formalization, we will always talk
about number of hops without explicitly imposing this number to 4

20

Presentation of the Problem

Figure 3.1: Examples of Direct and Combined Transport Paths

21

Presentation of the Problem

Figure 3.2: Allowed and Not-Allowed Paths including hubs with the same locations
of customers

22

Presentation of the Problem

Figure 3.3: Allowed Arcs in Combined Transport Paths

23

Presentation of the Problem

3.2 Literature Review of SNDHLP

From Morton O’Kelly (1986), who was the first to describe an HLP, several re-
searchers have studied the themes of service network design or hub location problem
presenting various solution approaches, even if in the majority of the cases they
treated only one of the two topics.
Our SNDHLP gives special prominence to the article by Irnich et al. (2016), who
analyze the application of a Branch-and-Price-and-Cut algorithm to a SNDHLP
which have assumptions similar to ours. Indeed, our model is partially derived
from that article, but distinguishes from it as it does not consider the presence
of fixed hubs and is not as restrictive in the number of allowed hubs for each
customer – they consider in average a maximum of 2.5 potential start- or end-hubs.
Another difference is that our problem prohibits the direct transport. Moreover,
we differentiate in the solution approaches: we apply the Column Generation only
with the Branch-and-Price without any cutting planes, although they also included
different types of cuts, and we try to solve the problem with heuristics too.
Regarding the other articles which studied a similar topic, we present a short
overview of them (considering only the ones which have as direct application trans-
portation systems). Among these, the majority of them consider, as our SNDHLP,
a p-median constraint for the hub location problem, while in the remaining ar-
ticles there are fixed opening costs for the hubs. In the latter group, the Yoon
and Current (2008) direct transport problem embedding a multi-commodity flow
model with variable arc capacities was solved via a dual-based heuristic approach.
However, their main focus was on small transportation, and so they do not take
into account the hops’ constraint and the delivery time limit.
Alongside Irnich et al. and Yoon and Current, the number of studies in the literature
of SNDHLP which allowed the direct transportation is very restricted. Special
relevance assumed the paper by Zhang et al. (2013) because it considered also the
costs for CO2 emissions and had a bi-level heuristic resolution: the upper level
searches for an optimal subset of hubs to open, whereas the lower one performs a
shortest-path algorithm for the multi-commodity flow assignment over a multimodal
network. In addition, they only target the case of unsplittable requests with hub
fixed opening costs.
On the other hand, among the past studies that prohibit the direct transport,
Campbell (2009) was the first to introduce the time-limit constraint for the delivery
of the request’s units, even if he did not use any custom algorithm for solving
the problem. The main distinguishing factor with us is in the absence of modular
transfer arcs capacities. Alumur et al. (2012) took into account the possibility of
distinct transportation modes on each transfer arc, with the decision on the design
of the hub network that increases in complexity, and an efficient matheuristic was
developed to find solutions. However, this increased complexity obliged the authors

24

Presentation of the Problem

to choose a single assignment allocation strategy and not to split requests. A
similar heuristic approach for a multimodal transport problem with fixed costs for
opening hub facilities was embraced by Serper and Alumur (2016), who proposed a
variable neighborhood search algorithm to determine hubs’ locations and capacities,
transportation modes to serve at hubs, allocation of non-hub nodes to hubs, and
the number of vehicles of each type to operate on the hub network to route the
demand between origin-destination pairs, but without any time in route limit.
Finally, another interesting study by de Camargo et al. (2017) applied the Benders
decomposition technique with special selection/stabilization cuts for the incomplete
hub location problem with and without hop-constraints. Besides, they modeled
the problem by a Leontief substitution system approach with tight linear bounds
that can explicitly incorporate hops constraints for each origin-destination pair of
demands. However, the main difference with us is again in the absence of modular
intra-hubs arcs capacities.

In conclusion, we can state that our SNDHLP presents a combination of character-
istics that has never been treated in this form in the past literature of these topics.
In general, the most common assumption is the multiple allocation strategy, even
if some studies do not mention it. Whereas, the main distinguishing characteristic
of our study from the previous ones is represented by the use of both modular
transfer arcs’ capacities and maximum delivery time limit. This combination was
only present in the Irnich et al. (2016)’s paper. However, in contrast with the
latter, we do not allow fixed hubs and direct transport, and we investigate heuristic
approaches instead of cutting planes. About the maximum number of hops, this
feature was introduced originally by Morton O’Kelly (1986) who allowed only paths
with one or two hubs. At the beginning, this was a very easy consideration for sim-
ple models, but over the years enlarging the permitted hops to some other numbers
was very rare. Regarding the resolution approaches in the literature of the problem,
there are several and range from classical enumeration solver to diverse heuristic
algorithms, and from Benders decomposition to Branch-and-Price-and-Cut.
The content of this section is resumed in Table 3.1.

25

Presentation of the Problem

Yo
on

Se
rp

er
O

ur
Ir

ni
ch

an
d

Zh
an

g
C

am
pb

el
l

A
lu

m
ur

an
d

de
C

am
ar

go
O

’K
el

ly
SN

D
H

LP
et

al
.

C
ur

re
nt

et
al

.
(2

00
9)

et
al

.
A

lu
m

ur
et

al
.

(1
98

6)
(2

01
6)

(2
00

8)
(2

01
3)

(2
01

2)
(2

01
6)

(2
01

7)

N
et

w
or

k
D

es
ig

n
✓

✓
✓

✓
✓

✓
✓

✓

H
ub

fix
ed

p
-m

ed
ia

n,
L

oc
at

io
n

p
-m

ed
ia

n
p
-m

ed
ia

n
op

en
in

g
p
-m

ed
ia

n
fix

ed
fix

ed
p
-m

ed
ia

n
p
-m

ed
ia

n
C

on
st

ra
in

t
co

st
s

co
st

s
co

st
s

F
ix

ed
H

ub
s

✓
✓

L
im

it
ed

N
um

b
er

of
H

op
s

4
4

6
2

M
ax

im
um

D
el

iv
er

y
T

im
e

✓
✓

✓
✓

✓

Sp
lit

ta
bl

e
R

eq
ue

st
s

✓
✓

✓
✓

✓

U
ns

pl
it

ta
bl

e
R

eq
ue

st
s

✓
✓

✓
✓

✓
✓

✓
✓

P
os

si
bi

lit
y

of
D

ir
ec

t
T

ra
ns

p
or

t
✓

✓
✓

A
rc

m
od

ul
ar

m
od

ul
ar

bi
na

ry
bi

na
ry

bi
na

ry
di

ffe
re

nt
di

ffe
re

nt
di

ffe
re

nt
no

ne
C

ap
ac

it
ie

s
ve

hi
cl

es
ve

hi
cl

es
ve

hi
cl

es

A
ss

ig
nm

en
t

A
llo

ca
ti

on
St

ra
te

gy
m

ul
ti

pl
e

m
ul

tip
le

m
ul

tip
le

si
ng

le
m

ul
tip

le
si

ng
le

si
ng

le
si

ng
le

no
ne

B
ra

nc
h-

B
ra

nc
h-

B
en

de
rs

So
lv

in
g

an
d-

P
ri

ce
an

d-
P

ri
ce

-
D

ua
l-b

as
ed

B
i-l

ev
el

M
IP

M
at

-
M

at
-

D
ec

om
po

-
M

IP
A

pp
ro

ac
h

an
d

an
d-

C
ut

H
eu

ri
st

ic
H

eu
ri

st
ic

So
lv

er
he

ur
is

tic
he

ur
is

ti
c

si
tio

n
So

lv
er

H
eu

ri
st

ic
s

Table 3.1: Analogies and differences of the problem characteristics with similar
problems of the past literature

26

Presentation of the Problem

3.3 Mathematical Notation of the Problem
We now formalize in mathematical terms what we have delineated in Section 3.1.2.
Let G = (V, A) be a digraph3 where V is the node set and A is the arc set. The
set of nodes V = {C ∪H} comprises both the set of customer nodes C that are
the requests’ origins or destinations and the set of hubs H in which requests are
temporarily stored during the delivery process. Each request r ∈ R ⊆ {C × C}
contains dr demand units. These must be delivered within a maximum transport
time T r, and without exceeding the allowed maximum number of transshipments
at hubs nHOPS.
Moreover, from the hub set we can define for each customer k ∈ C the set of its
allowed hubs Hk =

î
H+

k ∪H−
k

ï
⊆ H. In particular, we need to introduce the set

δ+(k) containing the outgoing arcs from the node k, and the set δ−(k) comprising the
ingoing arcs in the node k. The set of allowed hubs of a costumer has two constitut-
ing subsets: H+

k = {i ∈ {(k, i) ∈ δ+(k)} ∀ i ∈ H}, which contains all the allowed
start-hubs for the specific customer k, and H−

k = {i ∈ {(i, k) ∈ δ−(k)} ∀ i ∈ H},
which contains all the allowed end-hubs for the customer k. Then, for a spe-
cific request r = (k1, k2) can be characterized the two sets of allowed start-hubs
H+r = H+

k1 and allowed end-hubs H−r = H−
k2 . In particular, the number of hubs

that must be opened for serving all the customer locations is nH.
Further, the arc set A contains all the arcs that connect one node to another, and
each arc has a length la, expressed in kilometers, and a travel time ta, expressed in
minutes – strictly related to the arc length. Precisely, we can describe the two sub-
sets of A: the transfer arcs At = {H ×H} between any two hubs, with costs per kilo-
meter and vehicle used ct, and the access arcs As = {(k, i), (i, k) ∀ k ∈ C, i ∈ Hk},
with costs per kilometer and demand unit transported cs. The latter set includes
the arcs which connect the origins and destinations to the hubs network, and so
all the direct links that go from an origin to its allowed start-hubs or that arrive
to a destination from its allowed end-hubs. The intra-hubs vehicles have a given
transportation capacity K, and the final number of vehicles over a transfer link is
clearly a direct consequence of this value.

3In graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices
connected by directed edges (see Bang-Jensen and Gutin (2001)).

27

Presentation of the Problem

3.4 A Mixed Integer Linear Programming Model
Formulation

The compact formulation of our SNDHLP is an arc-based model. This is a
polynomial-sized model which contains for each request a set of variables associated
to each arc of the request digraph. Thus, we define a feasible combined transport
route for a request r = (k1, k2) as an elementary set of arcs (a1, . . . , an), where
2 ≤ n ≤ nHOPS + 1, connecting the origin k1 to the destination k2, and passing at
most through nHOPS hubs and at least through one. In the specific eventuality of
only one hub routes, this is both an allowed start-hub and an allowed end-hub for the
request i ∈ {H+r ∩H−r}. Besides, all these feasible routes satisfy the condition of
having a total transport time lower than the maximal allowed T r. Another necessary
– but implicit in the graph construction – condition is that the first and the last arcs
of a request itinerary are access arcs, whereas the eventual arcs in the middle are
transfer arcs a1 ∈

î
k1 ×H+

k1

ï
, an ∈

î
H−

k2 × k2
ï

, aj ∈ At ∀ j ∈ {2, . . . , n− 1}.
The unsplittable requests’ compact model contains three types of decision variables:
binary variables hi to specify if the hub i ∈ H is opened. General integer variables
va count the number of vehicles that use the intra-hubs arc a ∈ At. Binary variables
xr

a indicate the fraction of the demand units of request r ∈ R which are transported
via the arc a ∈ A.

28

Presentation of the Problem

The mathematical model of the arc-based SNDHLP for the unsplittable requests’
case is formalized as follows:

min
Ø

a ∈ At

ctlava +
Ø

r ∈ R

Ø
a ∈ As

csladrxr
a (3.1)

s.t.
Ø

a ∈ δ+(k1)
xr

a = 1 ∀ r = (k1, k2) ∈ R (3.2)
Ø

a ∈ δ−(k2)
xr

a = 1 ∀ r = (k1, k2) ∈ R (3.3)
Ø

a ∈ δ+(i)
xr

a −
Ø

a ∈ δ−(i)
xr

a = 0 ∀ i ∈ H , r ∈ R (3.4)
Ø

r ∈ R

drxr
a ≤ Kva ∀ a ∈ At (3.5)Ø

i ∈ H

hi = nH (3.6)Ø
a ∈ δ−

i

xr
a ≤ hi ∀ i ∈ H , r ∈ R (3.7)

Ø
a ∈ A

xr
a ≤ nHOPS + 1 ∀ r ∈ R (3.8)Ø

a ∈ A

taxr
a ≤ T r ∀ r ∈ R (3.9)

hi ∈ {0, 1} ∀ i ∈ H (3.10)
va ∈ N0 ∀ a ∈ At (3.11)
xr

a ∈ {0, 1} ∀ r ∈ R , a ∈ A (3.12)

The objective function (3.1) seeks to minimize the total costs incurred by the
demand units’ transportation over access arcs and by operating vehicles on the
intra-hubs links. The three conditions (3.2), (3.3), and (3.4) ensure that every de-
mand unit of a request is transported. In particular for each request r = (k1, k2) ∈ R,
these three linear equalities correspond to a graph’s flow conservation constraints

q
a ∈ δ+(v) xr

a −
q

a ∈ δ−(v) xr
a =


1 if v = k1

−1 if v = k2

0 otherwise
∀ v ∈ V ,

which computes the difference between the sum of outgoing arcs and the sum of
ingoing arcs from/to a specific node. Then, the complete delivery of a request is
obtained by setting the flow conservation value equal to 1 if a node is the origin of
the request, to −1 if it is the request’s destination, or to 0 in all the other cases.
Constraint (3.5) computes the used capacity and determines the number of nec-
essary vehicles per intra-hubs arc. Constraint (3.6) guarantees that the required
number of hubs is opened, whereas condition (3.7) forces the opening of a hub if a

29

Presentation of the Problem

request itinerary passes through it. The two constraints (3.8) and (3.9) explicitly
impose a limitation for the number of transshipments and a time limit for the
specific request transport. However, the latter two constraints can also be removed
to solve a relaxed version of the problem. Finally, the last three constraints (3.10),
(3.11) and (3.12) define the domains of the variables.
The above model is for the unsplittable requests’ case and so guarantees the trans-
portation of all the demand units of the same request over the same route.

In order to split the requests’ routing it is necessary to first modify the con-
straint (3.12) as follows: xr

a ∈ [0, 1] ∀ r ∈ R , a ∈ A. In fact, this changes the
domain of request arcs variables, transforming them from binary to continuous
in the {0, 1} interval. Then, we need to introduce other three variables: binary
variables er

a indicating if a part of the request r is transported over the arc a or not,
integer variables sr

i counting the number of transshipments of the part of request r
up to the hub i, and continuous variables wr

i representing the transport time of
the part of request t until the hub i. These three additional variables are auxiliary
to the three decision ones, to warrant the accomplishment of the two constraints of
maximum transport time and number of hops of each part of the single requests.
In order to satisfy them is sufficient to add to the model three new constraints
related to the maximum delivery time and three related to the allowed number of
shipments, and then to remove the previous (3.9) and (3.8). Besides, the model
comprises a new constraint that links the continuous request arcs variables to the
new binary ones and this is the one that actually permits to track the eventual
different routes of each request and make them satisfy the constraints of time and
transshipments.
Thus, the splittable requests arc-based model can be formalized as follows:

min
Ø

a ∈ At

ctlava +
Ø

r ∈ R

Ø
a ∈ As

csladrxr
a (3.13)

s.t.
Ø

a ∈ δ+(k1)
xr

a = 1 ∀ r = (k1, k2) ∈ R (3.14)
Ø

a ∈ δ−(k2)
xr

a = 1 ∀ r = (k1, k2) ∈ R (3.15)
Ø

a ∈ δ+(i)
xr

a −
Ø

a ∈ δ−(i)
xr

a = 0 ∀ i ∈ H , r ∈ R (3.16)
Ø

r ∈ R

drxr
a ≤ Kva ∀ a ∈ At (3.17)Ø

i ∈ H

hi = nH (3.18)Ø
a ∈ δ−

i

xr
a ≤ hi ∀ i ∈ H , r ∈ R (3.19)

30

Presentation of the Problem

xr
a ≤ er

a ∀ r ∈ R , a ∈ A (3.20)
sr

i ≥ er
a ∀ r = (k1, k2) ∈ R , a = (k1, i) ∈ δ+(k1)

(3.21)
er

a + sr
i ≤ sr

j + nHOPS(1− er
a) ∀ r ∈ R , a = (i, j) ∈ At

(3.22)
sr

j ≤ nHOPS ∀ r ∈ R , j ∈ H−r (3.23)
wr

i ≥ taer
a ∀ r = (k1, k2) ∈ R , a = (k1, i) ∈ δ+(k1)

(3.24)
taer

a + wr
i ≤ wr

j + T r(1− er
a) ∀ r ∈ R , a = (i, j) ∈ At

(3.25)
taer

a + wr
j ≤ T r ∀ r = (k1, k2) ∈ R , a = (j, k2) ∈ δ−(k2)

(3.26)
hi ∈ {0, 1} ∀ i ∈ H (3.27)
va ∈ N0 ∀ a ∈ At (3.28)
xr

a ∈ [0, 1] ∀ r ∈ R , a ∈ A (3.29)
sr

i ∈ N0 ∀ i ∈ H (3.30)
wr

i ∈ R+ ∀ a ∈ At (3.31)
er

a ∈ {0, 1} ∀ r ∈ R , a ∈ A (3.32)

The objective function (3.13) seeks to minimize the total costs incurred by the
demand units’ transportation over access arcs and by operating vehicles on the intra-
hubs links. The three conditions (3.14), (3.15), and (3.16) ensure that every demand
unit of a request is transported. In particular for each request r = (k1, k2) ∈ R,
these three linear equalities correspond to a graph’s flow conservation constraints,
equal to 1 if the node is the origin of the request, to −1 if it is the destination of
the request, or to 0 in all the other cases.
Constraint (3.17) computes the used capacity and determines the number of
necessary vehicles per intra-hubs arc. Constraint (3.18) guarantees that the required
number of hubs is opened, whereas condition (3.19) forces the opening of a hub if
a request itinerary passes through it. The constraint (3.20) is the linking condition
between continuous and binary request arc variables. The three constraints (3.21),
(3.22) and (3.23) define the maximal number of transshipments condition by
imposing a limitation to the relative hops-counting variable of the start, middle
and end hubs of a request. Similarly, the three conditions (3.24), (3.25) and (3.26)
limit the relative time-counting variable of the start, middle and end hubs of a
request, representing the maximal allowed time constraint. However, the latter six
constraints can also be removed to solve a relaxed version of the problem. Finally,
the last six constraints (3.27)-(3.32) express the domains of the variables.

31

Presentation of the Problem

3.5 An Extended Model Formulation

Our SNDHLP can be formalized in mathematical terms with a path-based model
too. The latter represents the extended formulation of the SNDHLP. Indeed, the
path-based model can be seen as a reformulation of the arc-based one derived
from a Dantzig-Wolfe decomposition that generates the paths variables from a
combination of the arcs ones, according to the flow conservation constraints. Hence,
in this case, there are request paths variables substituting the request arcs ones,
whereas the general structure of constraints remains quite the same. However, the
two conditions of limited delivery time and maximum number of hops are implicit
in the model formulation.
Again, let G = (V, A) be a digraph with arcs set A and nodes set V = {C ∪H},
comprising both the set of customer C the set of hubs H. The intra-hubs vehicles
have a given transportation capacity K, and the number of hubs to open is nH. Each
request r = (k1, k2) ∈ R ⊆ {C × C} contains dr demand units, and is characterized
by the two sets of allowed start-hubs H+r = H+

k1 and allowed end-hubs H−r = H−
k2 .

The arc set A is the union of two subsets: the transfer arcs At = {H ×H} between
any two hubs, with costs per kilometer and vehicle used ct, and the access arcs
As = {(k, i), (i, k) ∀ k ∈ C, i ∈ Hk}, with costs per kilometer and demand unit
transported cs. Each arc a ∈ A has length la in kilometers. The request maximal
time in route is T r, whereas the maximum number hops is defined by the value
nHOPS.
For this alternative formulation, we define a feasible combined transport path for
a request r = (k1, k2) as a simple path from the origin k1 to the destination k2,
passing at most through nHOPS hubs and at least through one – and in the specific
eventuality of only one hub, it is both an allowed start-hub and an allowed end-hub
for the request i ∈ {H+r ∩H−r}. Further, the set of feasible paths for the request
r is represented by P r = {(a1, . . . , an) | a1 ∈

î
k1 ×H+

k1

ï
, an ∈

î
H−

k2 × k2
ï

,

aj ∈ At ∀ j ∈ {2, . . . , n− 1} , 2 ≤ n ≤ nHOP S + 1}. All these feasible paths have
a total time in route lower than (equal to) the maximal allowed T r.
Additionally, let Pi and Pa be the two sets that comprise the feasible paths of
all the requests which pass through hub i and arc a respectively. From these, we
characterize: P r

i = Pi ∩ P r as the set of feasible paths of request r containing the
hub i, and P r

a = Pa ∩ P r as the set of feasible paths of request r containing the arc
a.
The extended model contains three types of decision variables: binary variables
hi indicating if the hub i ∈ H is opened. General integer variables va addressing
the number of vehicles that use the intra-hubs arc a ∈ At. Continuous variables
yr

p ∈ [0, 1] determine the fraction of the demand units of request r ∈ R which are
transported via path p ∈ P r.

32

Presentation of the Problem

Given these definitions, our path-based SNDHLP can be modeled as follows:

min
Ø

a ∈ At

ctlava +
Ø

r ∈ R

Ø
p ∈ P r

Ø
a ∈p ∩ As

csladryr
p (3.33)

s.t.
Ø

i ∈ H

hi = nH (3.34)Ø
p ∈ P r

yr
p = 1 ∀ r ∈ R (3.35)

Ø
r ∈ R

Ø
p ∈ P r

a

dryr
p ≤ Kva ∀ a ∈ At (3.36)

Ø
p ∈ P r

i

yr
p ≤ hi ∀ i ∈ H , r ∈ R (3.37)

hi ∈ {0, 1} ∀ i ∈ H (3.38)
va ∈ N0 ∀ a ∈ At (3.39)
yr

p ∈ [0, 1] ∀ r ∈ R , p ∈ P r (3.40)

Again, this is the splittable requests’ case, where the objective function (3.33) aims
to minimize the total costs incurred by the demand units’ transportation over
access arcs and by operating vehicles on the intra-hubs links. Constraint (3.34)
makes sure that the required number of hubs is opened. By condition (3.35) is
guaranteed that every demand unit of a request is transported. Constraint (3.36)
computes the used capacity and determines the number of necessary vehicles per
intra-hubs arc. Condition (3.37) forces the opening of a hub if a request path
passes through it. Finally, the last three constraints (3.38), (3.39) and (3.40) define
the variables’ domain, and by changing the domain of (3.40) to the binary one we
target the case of unsplittable requests.

33

Presentation of the Problem

3.6 Comparison between the two model formula-
tions

As we have seen in Section 3.4, the arc-based model of SNDHLP is a polynomial-
sized model whose resolution does not require the implementation of pricing
procedures. On the other hand, in Section 3.5 is pointed out that the path-based
SNDHLP is a non-polynomial-sized model – except in case of a limited number
of locations. The latter can be seen as an extended formulation of the arc-based
one obtained from a Dantzig-Wolfe decomposition which reformulates the various
combination of the arcs variables constituting a route for a specific request – in
accordance with the flow conservation condition – into paths variables.
The main difference between the two models is in the number of variables, that is the
reason of the relative polynomial and non-polynomial sizes of the two approaches:

Arc-based SNDHLP The number of the variables characterizing the compact
model is of the order of O(n4), where n is the number of locations. Indeed, if
every customer location is the origin of a request going to each other customer
location, we deal with a total number of requests equal to n ∗ (n− 1). Then, if
we assume that all the locations represent also potential hubs, in the "worst"
case of a fully interconnected hubs network, there will be n ∗ (n− 1) transfer
arcs. Moreover, we have a certain number of access arcs equal to m, depending
on how many allowed hubs each customer has.
Thus, we have a total number of arcs equal to n ∗ (n − 1) + m for each
request. As a consequence, the total number of request arcs variables is
n2 ∗ ((n− 1)2 + m) ≲ n4. This implies the polynomial size of the arc-based
model for realistic instances, towards the explicit enumeration of all the arcs
variables xr

a.

Path-based SNDHLP The number of variables of the extended formulation is of
the order of O(nn). We take into account both the two previous description’s
hypotheses of all n locations as potential hubs and fully interconnected hubs
network. The number of paths is given by (mk1 + mk2) ∗

1
n

nHOPS

2
for a single

request – where mk1 and mk2 are respectively the number of allowed start-hubs
for the customer origin location and of allowed end-hubs for the customer
destination location, both lower than n.

Hence, we have n ∗ (n − 1) ∗ (mk1 + mk2)ü ûú ý
≲n

∗
A

n

nHOPS

B
ü ûú ý
≲nnHOP S

≲ n(3+nHOPS) as total

number of requests paths variables. This means that the explicit paths’ enu-
meration resolution is tractable in polynomial time only if n is a very small

34

Presentation of the Problem

number. However, this does not mirror a real-world situation of the organiza-
tion of freight transportation, and makes it necessary the adoption of different
solution approaches for models with larger number of locations.

In conclusion, apart from minor changes in the model construction due to the
inner differences between arcs and paths variables, the main distinction in the two
formulations is in the final number of the treated variables for each request.
This number is hugely exponential in the path-based formulation, as the number
of request paths is bounded from above by 2 ∗ n ∗

1
n

nHOPS

2
, and corresponds to a

model prohibitively solvable by explicit enumeration methods. For this reason, the
path-based SNDHLP represents the principal object of interest of our study, in
order to implement and test the effectiveness of distinct solution approaches.
Opposite, the number of variables is very reduced in the arc-based case: we deal
with a number of arcs for each request bounded from above by 2 ∗ n2, in case of
fully interconnected graph. This enables the use of the arc-based SNDHLP as
a benchmark for the optimality or close-to-optimality resolution. Furthermore,
without imposing the two constraints of limited transport time and maximum
number of transshipments, it is also possible to easily solve a relaxation of the
compact model, which tries to explore longer routes too.

35

Chapter 4

Solution Approaches

In this chapter we delineate the diverse solution approaches used to search for an
optimal solution to our SNDHLP. We start presenting in Section 4.1 the specific
column generation applied through the Branch-and-Price and its features. The
following Section 4.2 is dedicated to the different heuristic techniques applied.

4.1 A Branch-and-Price approach
This section shows the column generation algorithm applied for solving the path-
based model. Firstly, we introduce the master problem. Then, we present the
auxiliary problem used to obtain a feasible starting solution for the initialization of
the restricted master problem. Finally, we describe our pricing problem and how
the Branch-and-Price process works.

36

Solution Approaches

4.1.1 Master Problem
In the final part of Section 3.6, we underline the non-tractability, for a realistic
number of locations, of the path-based SNDHLP by a generic MILP solver. Indeed,
the path-based model represents our master problem on which applying the column
generation algorithm. We recall that it is formulated as follows:

z⋆
MP := min

Ø
a ∈ At

ctlava +
Ø

r ∈ R

Ø
p ∈ P r

Ø
a ∈p ∩ As

csladryr
p

s.t.
Ø

i ∈ H

hi = nHØ
p ∈ P r

yr
p = 1 ∀ r ∈ R

Ø
r ∈ R

Ø
p ∈ P r

a

dryr
p ≤ Kva ∀ a ∈ At (4.1)

Ø
p ∈ P r

i

yr
p ≤ hi ∀ i ∈ H , r ∈ R

hi ∈ {0, 1} ∀ i ∈ H

va ∈ N0 ∀ a ∈ At

yr
p ∈ [0, 1] ∀ r ∈ R , p ∈ P r

In particular, the set of variables which makes not possible the explicit enumeration
resolution is P r, because it contains an exponential number of paths for every
single request.
As explained in Section 2.2.1, in order to apply a column generation algorithm
to a MILP problem, it is necessary to define a restriction on the master problem
variables, as in an optimal solution the majority of them will be in the non-basis
and have value 0. Hence, it naturally follows that the restriction must be applied
on the set of the request paths variables P r.
The first crucial assumption we make is that we never want the CG algorithm
comes across an infeasible solution during the solving process. This implies that
the restricted master problem needs to have a starting feasible solution. In fact,
this will consequently ensure that in every iteration of the column generation there
will be at least one feasible optimal solution – the starting one.

4.1.2 Auxiliary Problem
In order to obtain an always feasible restricted master problem, we need to define
an auxiliary problem. Undoubtedly, to get this feasible starting solution, we require
a restriction on the set of the request paths variables which does not exclude the
necessary ones for that solution.
The unique way to obtain for each request r this feasible restricted set P r ′ ⊂ P r

37

Solution Approaches

is to solve an auxiliary integer linear problem which, first of all, guarantees the
feasibility of the SNDHLP, but also provides a feasible set of open hubs H ′ ⊂ H
– if it exists. The only infeasibility condition of our SNDHLP is associated with
the problem’s p-median constraint: a too small number of hubs to be opened nH
might not accomplish the service of all the requests. Hence, if this number is not
sufficient to open at least one allowed hub for each customer location, the SNDHLP
is infeasible. We remark that this case of infeasibility is a direct consequence of
our obligation of combined transport for each request.
Actually, the auxiliary problem looks for a combination of hubs to open which
ensures that every customer has at least one of its allowed hub opened, because
in the worst possible situation all the requests starting from or arriving to that
customer location will have only one hub as allowed start-hub or end-hub – if a
combination exists.
The auxiliary problem is formulated as follows:

min 0
s.t.

Ø
i ∈ H

hi = nH (4.2)Ø
i ∈ Hk

hi ≥ 1 ∀ k ∈ C (4.3)

hi ∈ {0, 1} ∀ i ∈ H

As it is a feasibility-verification problem, the auxiliary problem does not need any
objective function. The linear equality (4.2) is the same constraint of the SNDHLP
model to open a given number of hubs. By condition (4.3) we guarantee the
feasibility of the SNDHLP – and obviously of this auxiliary problem too – imposing
the opening of an allowed hub for each customer.
The result of the auxiliary problem is one of the possible open hubs’ combination –
if at least one exists – which constitutes the new set H ′.

4.1.3 Restricted Master Problem
Once a possible combination of open hubs H ′ is obtained from the auxiliary problem,
we have all the necessary tools to define a restriction on the master variables and
initialize the restricted master problem.
The restricted set P r ′ definition for each request r = (k1, k2) ∈ R is carried out by
removing all the hub nodes not present in H ′ from the specific request digraph, and
then selecting the five cheapest feasible simple paths from k1 to k2 of maximum
length nHOPS + 1 and maximum time in route T r. Specifically, the total cost of
each path is computed as expressed by the next equation:

TCp =
Ø

a ∈ p ∩ As

csla +
Ø

a ∈ p ∩ At

ct

K
la (4.4)

38

Solution Approaches

It is important to underline that this cost represents in any case an approximated
estimation of the real final cost a path might have, for two reasons: the first is that
the cost of transfer arcs does not consider the number of vehicles passing through
that arc, but simply we divide everything for their capacity K. Further, in case of
splittable requests, the whole cost eventually represents only a percentage of the
final cost, as we do not know how many demand units will be routed on this path
and if it will be used or not.
After having defined all the restricted request paths sets for every request, also the
two sets P r

i and P r
a – comprising the request paths which contain the specific hub

i and arc a – will be restricted as they are the result of an intersection with P r.
Then, we can formalize the restricted master problem:

zRMP := min
Ø

a ∈ At

ctlava +
Ø

r ∈ R

Ø
p ∈ P r ′

Ø
a ∈p ∩ As

csladryr
p

s.t.
Ø

i ∈ H

hi = nHØ
p ∈ P r ′

yr
p = 1 ∀ r ∈ R

Ø
r ∈ R

Ø
p ∈ P r

a
′
dryr

p ≤ Kva ∀ a ∈ At (4.5)

Ø
p ∈ P r

i
′
yr

p ≤ hi ∀ i ∈ H , r ∈ R

hi ∈ {0, 1} ∀ i ∈ H

va ∈ N0 ∀ a ∈ At

yr
p ∈ [0, 1] ∀ r ∈ R , p ∈ P r ′

As it is clearly visible from the above model, the difference with the master problem
(4.1) is in the set characterizing the constraints of full request delivery, number of
transfer vehicles, and obliged opening of a hub when a path passes through it.

4.1.4 Pricing Problem
Once the restricted master problem (4.5) has been formulated, we can certainly
solve it with the classical enumeration method of all the paths, as it has a very
small number of variables. However, the optimal solution of the RMP zRMP has a
very low probability to be an optimal solution of the master problem too. Rather,
as we have seen in the inequality (2.5), this value represents surely an upper bound
for the final optimal solution z⋆

MP. In order to reduce this upper bound, we need to
define the pricing problem useful for adding the missing columns to the restricted
problem and solving its continuous relaxation.
The simplest way to generate new columns associated with request paths variables

39

Solution Approaches

is to solve a classical shortest past problem, intensely studied in the Operations
Research literature. Although, the pricing problem cannot be only a shortest path
problem, because it must take into account also the two constraints of maximum
travel time and maximum number of hops. Therefore, our pricing problem is a
resources-constrained shortest path problem which, for each request r, seeks for
the path with the most negative reduced cost.
To compute the reduced cost, we need the dual values referred to the primal
constraints:

• βr is the dual variable associated with the full delivery of the request r demand
units constraint (3.35) of the path-based SNDHLP.

• γa is the dual referred to the master constraint (3.36) computing the number
of necessary vehicles per each transfer arc a.

• σr
i is the dual variable linked to the path-based condition (3.37) that opens a

hub i if a path of the request r pass through it.

Both γa and σr
i are negative, as they are associated with lower or equal inequalities,

because from the dual problem’s perspective it is not convenient to open an extra
hub or use an extra vehicle, whereas βr is free – because referred to a linear equality
– but generally positive, as it is better to over-serve a request rather than not.
Hence, the reduced cost of each path is given by:

cp =
Ø

a ∈ p ∩ As

csd
rla −

Ø
a ∈ p ∩ At

drγa −
Ø

i ∈ p ∩ H

σr
i − βr (4.6)

Finally, we can formalize the mathematical model of the pricing problem PPr for
each request r = (k1, k2):

min
Ø

a ∈ p ∩ As

csd
rla −

Ø
a ∈ p ∩ At

drγa −
Ø

i ∈ p ∩ H

σr
i − βr (4.7)

s.t.
Ø

a ∈ δ+(v)
xr

a −
Ø

a ∈ δ−(v)
xr

a =


1 if v = k1

−1 if v = k2

0 otherwise
∀ v ∈ V (4.8)

Ø
a ∈ A

xr
a ≤ nHOPS + 1 ∀ r ∈ R (4.9)Ø

a ∈ As

tslaxa +
Ø

a ∈ At

ttlaxa ≤ T r ∀ r ∈ R (4.10)

xa ∈ {0, 1} ∀ a ∈ A

The objective function (4.7) looks for the minimum reduced cost of the path p.
The condition (4.8) express the flow conservation to guarantee that the chosen arcs

40

Solution Approaches

constitute a path. The two inequalities (4.9) and (4.10) represent the maximum
resources constraints.
The pricing problem is solved for each request at every iteration of the algorithm,
until for all the requests there are no more variables having a negative reduced –
which means we have found an optimal solution of the continuous relaxation of the
restricted master problem.

4.1.5 Branching Rules
After having introduced the auxiliary problem and the pricing problem, we can
now delineate how our column generation algorithm proceeds:

1. solve the auxiliary problem to find a combination of feasible open hubs H ′ ⊂ H

2. for each request r, remove all the hubs i ∈ H \H ′ from the request graph

3. generate, for each request r, all the simple paths derived from the request
graph, and then define the restricted set of request paths’ variables P r ′ ⊂ P r

by selecting the five paths with the cheapest approximate total cost

4. formulate the restricted master problem, through P r ′

5. start a loop:

• solve the RMP, and obtain an upper bound zRMP for the optimal solution
• for each request r, define and solve its pricing problem
• add in the RMP the column related to the found path if it has a negative

reduced cost
• if the minimum reduced cost of each request is non-negative, stop the

loop. Otherwise, restart from solving the RMP

In the column generation process, there is no guarantee that all the paths of an
optimal solution to the original problem are generated. Hence, in order to speed up
the process and ensure its complete correctness, we implement a Branch-and-Price
algorithm where we explicitly consider a branching rule for the pricing problem.
In each pricing iteration, we look for the upper bounds of the variables, and we
forbid the hubs and transfer arcs having a local upper bound lower than 1 in the
relative branch node. This avoids the generation of paths which do not match the
Branch-and-Bound decisions. In particular, we define the set of forbidden hubs
HF = {i | UBi < 1}, and the set of forbidden transfer arcs At

F = {a | UBa < 1}.
Then, we remove the arcs and hubs comprised in these two sets from the request
graph and, as a consequence, we guarantee that all the generated columns are in
accordance with the branching decisions.

41

Solution Approaches

4.2 Heuristic methods
In this section we present a group of different solution approaches for the path-based
SNDHLP, which might lead to a non-optimal solution, but have a very fast solving
time. The heuristics implemented rely on the prioritization of the hubs variables
based on a specific criterion, but without affecting the feasibility of the SNDHLP
in any case – if the problem is originally feasible.
Besides, all these heuristic techniques could substitute the Auxiliary Problem seen
in Section 4.1.2 to determine the starting set of open hubs for the RMP of the
B&P algorithm. Indeed, they are all based on the Auxiliary Problem, but comprise
an objective function necessary for the hubs prioritization and eventually some
additional constraints useful to that objective function.

42

Solution Approaches

4.2.1 Most Accessed Hubs Heuristic
The first heuristic approach is named "Most Accessed Hubs Heuristic": it prioritizes
the hubs according to the number of ingoing access arcs they have – which is equal
to the number of the outgoing ones, according to the model construction. The
motivation is that if a hub has a greater number of access arcs, probably has a
greater possibility of being present in an optimal solution, because it serves more
customer locations and so is more important.
Firstly, we can formalize the Most Accessed Hubs Heuristic auxiliary problem in
mathematical terms:

max
Ø

i ∈ H

ni
numACCESShi (4.11)

s.t.
Ø

i ∈ H

hi = nH (4.12)Ø
i ∈ Hk

hi ≥ 1 ∀ k ∈ C (4.13)

ni
numACCESS =

Ø
a ∈ δ−(i)

xa ∀ a ∈ As , i ∈ H (4.14)

xa = 1 ∀ a ∈ As (4.15)
hi ∈ {0, 1} ∀ i ∈ H

The objective function (4.11) seeks to maximize the resulting sum of the opened
hubs. This sum is a direct consequence of the equality (4.14) which imposes the
multiplicative factor of each hub ni

numACCESS equal to the sum of its ingoing arcs,
that are all assumed to be 1 from constraint (4.15). The conditions (4.12) and
(4.13) are the same of the auxiliary problem of the column generation algorithm
that ensure the opening of nH hubs and the feasibility of the SNDHLP by imposing
that each customer location has at least one allowed hub open.
The solution of the previous problem is a set of open hubs HMostAccessed ⊂ H.
Hence, in order to implement the heuristic resolution of the path-based SNDHLP,
we remove from the original hubs set H all the hubs that are not included in
HMostAccessed or, in other words, we operate the substitution of the original H with
the new set HMostAccessed, and we define the corresponding new hubs graph. Then,
for each request we generate all the feasible paths from the new request graph,
and we obtain a new path-based model. The latter can be considered a compact
formulation because the number of paths variables is limited by the heuristic
auxiliary problem solution. On the other hand, the drawback is that we have no
warranty that this heuristic solution is an optimal one, or how much it is far from
the optimality.

43

Solution Approaches

4.2.2 Greatest Demand Requests Heuristic
The next heuristic approach studied is named "Greatest Demand Requests Heuristic".
As its name suggests, this heuristic method initially sorts the requests by their
ascending number of demand units. Then, the number associated with the hub
priority is equal to the ranking of the greatest request for which the hub is an
allowed start-hub or end-hub. Alternatively from the first heuristic approach, this
is an attempt to verify if there might be a correlation between the dimension of
the requests and the importance of the hubs in the optimal routing solution, i.e.
try to open first the hubs linked to most demanding customer locations.
The Greatest Demand Requests Heuristic auxiliary problem is mathematically
expressed by:

max
Ø

i ∈ H

ni
maxRANKhi (4.16)

s.t.
Ø

i ∈ H

hi = nH (4.17)Ø
i ∈ Hk

hi ≥ 1 ∀ k ∈ C (4.18)

ni
maxRANK = max

î
j | i ∈

î
H+r ∪H−r

ï
, rj ∈ RS

ï
∀ i ∈ H

(4.19)
RS =

î
(r1, . . . , rn∗(n−1)) | a ≤ b ⇔ dra ≤ drb

ï
(4.20)

hi ∈ {0, 1} ∀ i ∈ H

The objective function (4.16) addresses the maximization of the resulting sum of the
opened hubs. This sum is a direct consequence of the equality (4.19) which defines
the hub multiplicative factor ni

maxRANK as the last position of the pre-prioritized
request RS for which this is an allowed start-hub or end-hub. The requests are
sorted ascending by their demand units dimension – as expressed in condition
(4.20). The constraints (4.17) and (4.18) are the same of the auxiliary problem
of the column generation algorithm that ensure the opening of nH hubs and the
feasibility of the SNDHLP by imposing that each customer location has at least
one allowed hub open.
The solution of the previous problem is a set of open hubs HGreatestDemand ⊂ H.
Thus, in order to implement the heuristic solving of the path-based of SNDHLP,
we remove from the original hubs set H all the hubs that are not comprised in
HGreatestDemand or, in other words, we substitute the original H with the new set
HGreatestDemand, and we define the corresponding new hubs graph. Then, for each
request we generate all the feasible paths from the new request graph, and we obtain
a new path-based model. The latter can be considered a compact formulation
because the number of paths variables is limited by the heuristic auxiliary problem
solution.

44

Solution Approaches

4.2.3 Additive Greatest Demand Requests Heuristic
The third heuristic method is named "Additive Greatest Demand Requests Heuris-
tic". Indeed, it is similar to the previous method presented in Section 4.2.2, and
again, it initially sorts the requests by their ascending number of demand units.
But, the hub priority is represented by the sum of all the rankings corresponding to
the requests for which the hub is an allowed start-hub or end-hub. This heuristic
can be seen as an alternative approach to the second one to verify if there might
be a correlation between the dimension of the requests and the importance of the
hubs in an optimal routing solution. However, distinctly from the second approach
which wants to open first the hubs connected to the most demanding customer
locations, this tries to consider all the requests assigning an overall score to the
hub.
The formulation of the Additive Greatest Demand Requests Heuristic auxiliary
problem is:

max
Ø

i ∈ H

ni
sumRANKhi (4.21)

s.t.
Ø

i ∈ H

hi = nH (4.22)Ø
i ∈ Hk

hi ≥ 1 ∀ k ∈ C (4.23)

ni
sumRANK =

Ø
r ∈ R

nr
i ∀ i ∈ H (4.24)

nr
i =

{j | rj ∈ RS} if i ∈ {H+r ∪H−r}
0 otherwise

∀ r ∈ R, i ∈ H

(4.25)
RS =

î
(r1, . . . , rn∗(n−1)) | a ≤ b ⇔ dra ≤ drb

ï
(4.26)

hi ∈ {0, 1} ∀ i ∈ H

The objective function (4.21) aims to maximize the resulting sum of the opened
hubs. This sum is a direct consequence of the equality (4.24) which computes
the multiplicative factor of each hub ni

sumRANKING as the sum of the factors
nr

i associated with the pre-sorted requests RS by their ascending demand units
dimension – as expressed in condition (4.26). Specifically, the requests’ factors are
retrieved from the condition (4.25): if the hub is an allowed start-hub or end-hub
for the request, this factor is equal to the position of the request in the sorted
set nr

i = j, otherwise it is 0. The constraints (4.22) and (4.23) are the same of
the auxiliary problem of the column generation algorithm that ensure the opening
of nH hubs and the feasibility of the SNDHLP by imposing that each customer
location has at least one allowed hub open.

45

Solution Approaches

The solution of the previous problem is a set of open hubs HAdditiveDemands ⊂ H.
Hence, in order to implement the heuristic resolution of the path-based SNDHLP,
we remove from the original hubs set H all the hubs that are not comprised in
HAdditiveDemands or, in other words, we operate the substitution of the original H
with the new set HAdditiveDemands, and we define the corresponding new hubs graph.
Then, for each request we generate all the feasible paths from the new request
graph, and we obtain a new path-based model.

46

Solution Approaches

4.2.4 Shortest Access Arcs Heuristic
The last heuristic resolution algorithm is named "Shortest Access Arcs Heuristic".
This method gives more priority to the hubs according to the average length of
their outgoing access arcs – the latter value is equal to the average length of the
ingoing access arcs, for how the SNDHLP instances are built. The rationale of the
heuristic is to investigate an eventual correlation between the choice of opening a
hub in an optimal solution and its average distance from customer locations.
The auxiliary problem of the Shortest Access Arcs Heuristic is formulated as follows:

min
Ø

i ∈ H

ni
avgDISThi (4.27)

s.t.
Ø

i ∈ H

hi = nH (4.28)Ø
i ∈ Hk

hi ≥ 1 ∀ k ∈ C (4.29)

ni
avgDIST =


ni

totalDIST

ni
numACCESS if ni

numACCESS > 0
M otherwise

∀ i ∈ H (4.30)

ni
totalDIST =

Ø
a ∈ δ+(i)

la ∀ a ∈ As , i ∈ H (4.31)

ni
numACCESS =

Ø
a ∈ δ+(i)

xa ∀ a ∈ As , i ∈ H (4.32)

xa = 1 ∀ a ∈ As (4.33)
hi ∈ {0, 1} ∀ i ∈ H

The objective function (4.27) seeks to minimize the resulting negative sum of
the opened hubs. This sum is a direct consequence of the equality (4.30) which
derives the multiplicative factor of each hub ni

avgDIST as the ratio between the
total distance of all the outgoing access arcs of the hub ni

totalDIST and the relative
number ni

numACCESS. But, if the latter value is 0, the average distance is imposed
to be M , where M is a very big integer number. The two factors are obtained
respectively from the conditions (4.31) and (4.32), thanks also to the assumption
that all the access arcs are equal to 1 of the constraint (4.33). The constraints
(4.28) and (4.29) are the same of the auxiliary problem of the column generation
algorithm that ensure the opening of nH hubs and the feasibility of the SNDHLP
by imposing that each customer location has at least one allowed hub open.
The solution of the previous problem is a set of open hubs HShortestAccess ⊂ H.
Hence, in order to implement the heuristic resolution of the path-based SNDHLP,
we remove from the original hubs set H all the hubs that are not included in
HShortestAccess or, in other words, we operate the substitution of the original H with
the new set HShortestAccess, and we define the corresponding new hubs graph.

47

Solution Approaches

4.2.5 A Matheuristic approach
The last solution approach adopted is a matheuristic, which consists in the per-
turbation of the path-based solution obtained from a heuristic method. The goal
is to try to improve this current optimal value through a local search method, by
imposing new constraints derived from the previous heuristic solution.
Actually, we do not want to distort too much the heuristic value. Hence, given
the heuristic solution z⋆

HEUR and the values of its variables of hubs hiHEUR ∈
HheuristicApproach and transfer arcs’ vehicles vaHEUR, the two new constraints for the
path-based model are:

• Imposition of remaining open hubs as a percentage of the heuristic set of open
hubs: given the latter set, we establish that the 75% of them (rounded down
to the lower integer) must remain open in the new perturbed solution.

• Limitation in the perturbed solution of the number of heuristic transfer arcs’
vehicles to the 150% of their current heuristic value. But only if the latter
value is greater than 0, because otherwise we would implicitly impose an upper
bound equal to 0 on the vehicles of that transfer arcs, excluding consequently
all the possible request paths containing it.

Thus, the formulation of the matheuristic approach to perturb the path-based
model is the following:

min
Ø

a ∈ At

ctlava +
Ø

r ∈ R

Ø
p ∈ P r

Ø
a ∈p ∩ As

csladryr
p

s.t.
Ø

i ∈ H

hi = nHØ
p ∈ P r

yr
p = 1 ∀ r ∈ R

Ø
r ∈ R

Ø
p ∈ P r

a

dryr
p ≤ Kva ∀ a ∈ AtØ

p ∈ P r
i

yr
p ≤ hi ∀ i ∈ H , r ∈ R

Ø
i ∈ HheuristicApproach

hi ≥ ⌊0.75 ∗ nH⌋ (4.34)

va ≤ ⌊1.5 ∗ vaHEUR⌋ ∀ a ∈ At if vaHEUR > 0 (4.35)
hi ∈ {0, 1} ∀ i ∈ H

va ∈ N0 ∀ a ∈ At

yr
p ∈ [0, 1] ∀ r ∈ R , p ∈ P r

As it is easily understandable, in this matheuristic path-based model, the only new
conditions are (4.34) – which enforces the opening of the 75% of the heuristic hubs

48

Solution Approaches

– and the (4.35), which expresses the maximal number of vehicles for the specific
transfer arc whose value was already greater than 0.
This matheuristic model is solved through the Branch-and-Price algorithm. In
particular, it is eventually possible to perturb a previous SNDHLP model multiple
times. This means that we can create a new matheuristic model as this, also after
having already perturbed the heuristic solution the first time – or for a certain
number of times. Specifically, each matheuristic perturbation takes as input a
SNDHLP model already solved and its solution, imposes the two new constraints
and applies the Branch-and-Price algorithm. Indeed, these two new constraints
will have an influence not only on the problem final objective value, but also on
the dual values used by the B&P.
In the end, by solving this, single or multiple, perturbed problem we find a new
optimal value z⋆

P ERT URBED which hopefully improves the starting heuristic solution,
namely z⋆

P ERT URBED < z⋆
HEUR.

49

Chapter 5

Computational Results

This chapter presents the results of the computational experiments performed on
various instances. In Section 5.1 we introduce the solver and the environments used
to test the instances. The details about instances: datasets of origin, generation
of problem parameters, and instances of major interest are explained in Section
5.2. Then, next Sections are reserved to the exposition of the organization of our
experiments and the related results.

5.1 Introduction on the solver environments
The solution algorithms have been implemented in Python and principally used
the PySCIPopt library for the model generation and the solution tools of SNDHLP
instances. This library refers to one of the fastest non-commercial solvers for MILPs:
SCIP. The latter is a framework for constraint integer programming and Branch-
and-Price. Additionally, other two relevant Python libraries for the solution of our
problem are networkx, which presents useful tools for the graphs’ management, and
cspy, that implements a method for solving a resource constrained shortest path
problem.
The first experiments were performed on a standard PC with an Intel® Core AMD
A9-9410 CPU at 2,9 GHz and 4 GB of RAM. The main testing phase was run on
the cluster of the RWTH Aachen University’s Operations Research Department,
which comprises a total of 56 machines with 16 GB of RAM and 8 machines with
128 GB of RAM, all of them equipped with Quad Core Processor Intel® Xeon®

L5630 CPU at 2.13GHz.

50

Computational Results

5.2 Presentation of the problem instances
5.2.1 Instances datasets
To assess the effectiveness of various methods for solving our SNDHLP, three popular
datasets are utilized as examples. One such dataset, retrieved from Krishnamoorthy
et al. (2000), is the AP (Australia Post) that contains 200 postcode districts in
Australia, along with their locations and pairwise travel demands. The studies in
Hub Location and Network Design from M.E. O’Kelly et al. (2023) provide us the
CAB (Civil Aeronautics Board) dataset, which includes 100 nodes representing
passenger interactions between cities in the United States. Finally, the TR (Turkish
Postal) dataset consists of 81 cities within the Turkish postal system and includes
pairwise distances and travel demands (see Çetiner et al. (2010)). To create smaller
datasets, we simply select the first n nodes from the CAB, TR, and AP datasets,
generating instances from 10 to 50 locations with a step of 5 nodes. Then, for the
specific experiments other different cut and selection methods have been applied
on the three datasets to generate a greater number of instances to test.

5.2.2 Real-world instances
In order to understand the sizes of the instances to be tested, we made some
researches on real-world applications of the general service network design problems
and hub location problems. We concluded that there is not a universally recognized
realistic size for these problems.
Then, we decided to contextualize our study to the place where the thesis problem
has been studied for the majority of the time: RWTH Aachen University, and so the
Nord-WestFalen region of Germany. We analyzed some transport applications, and
we took into account the network of links present on the Arriva DB company for
public transportation website. As we can see from Figure 5.1, there are exactly 35
different stations distributed over the Nord-WestFalen region, some of them closer
than others, but which can be considered a real-world application for our SNDHLP.
Hence, the most relevant computational experiments are the ones performed on
the 35-locations instances. Besides, we consider numerous testing instances also in
the neighborhood of 35: smaller instances of 25 and 30 locations, and larger cases
of 40 locations with the perspective of a possible future expansion of the system.

51

https://www.asta.rwth-aachen.de/service/infos-zum-semesterticket/

Computational Results

Figure 5.1: Map of Station Locations in the Nord-WestFalen region

52

Computational Results

5.2.3 Setup of instances parameters
All our experiments have been conducted with a specific model construction. First
of all, we consider fully interconnected internal networks of hubs – which means
n ∗ (n− 1) arcs totally – and the situation where all the locations have both the
role of customers and of hubs. Besides, every customer location is both the origin
and the destination for all the requests starting/arriving there – total of n ∗ (n− 1)
requests.
Then, we decided that each allowed hub of a customer has to be both an allowed
start-hub and an allowed end-hub. Among the allowed hubs of each customer
location there is the same hub location. Apart from that, each customer has a
number of allowed start-hubs – and so of allowed end-hubs – equal to m, where m is
the integer part of the value of a certain multiplicative factor times the total number
of locations. Specifically, we set this multiplicative factor to 0.3 if the number of
locations is lower or equal to 20, to 0.25 if lower than 40 and 0.2 otherwise. Then,
we select the m closest locations to the specific customer, and we put the hubs of
those locations in the allowed start-hubs and allowed end-hubs sets of the customer.

Additionally, in our experiments it was necessary to set appropriate problem
parameters, in order to have reasonable solutions. The parameters to be set are:
number of hubs to open, maximum number of transshipments, maximum transport
time for a request, capacity of transfer vehicles, relationships between intra-hubs
arcs costs and access arcs costs. Indeed, we want to avoid uncommon solution
structures if these are not set properly. For this reason, we conduced many prelimi-
nary tests, changing these values, to figure out the best combination possible.
In the end, we set these values taking into account for every instance its aver-
age demand of all the requests (avgDemand), its average distance among all the
locations pairwise (avgDistance), and its number of customers locations n:
Number of Hubs nH we set this fixed value of hubs to open equal to the integer

part of the function n0.6, that guarantees a gradual growth of the open hubs
with the greater size of instances.

Number of Transshipments nHOPS this value is related to the number of hubs:

nHOPS =


3 if nH ≤ 6
4 if 7 ≤ nH ≤ 10
5 otherwise

This guarantees a reasonable number of hops in any case, and in particular is
limited to 3 only for small instances, whereas is equal to 4 in the realistic and
semi-realistic instances.

Request Maximum Transport Time T r this was the most critical value to be
set, because we do not know the optimal paths a priori. Hence, we set it as

53

Computational Results

5 ∗ avgDistance + 1.5 ∗ distanceOD, where distanceOD is the direct distance
between a customer origin location and a customer destination location. This
equality should consider the general structure of the hubs network and not
forbid promising paths just for a matter of time. In addition, it is important
to underline that we consider an average speed of 80km/h over access links to
internal network of hubs and of 120km/h in transfer links.

Transfer Vehicles Capacity K this is the value that actually determines the
final number of vehicles and the distribution they have in terms of overwhelmed
intra-hubs arcs or well-distributed vehicles. The best preliminary results where
the ones where we fix this to 5 ∗ avgDemand.

Relationship between Costs of Access cs and Intra-Hubs Arcs ct This re-
lies on the hypotheses done on the speed over arcs and on the vehicles’ capacity
too. Thus, we impose that the access arcs cost must be equal to twice the
ratio between the cost of transfer arcs and the transfer vehicles capacities
cs = 2 ∗ ct

K
.

54

Computational Results

5.3 Organization of the Experiments
The computational experiments have been organized in the following way: after
some first generic tests of the different solution approaches to set the appropri-
ate values for the problem parameters, we decided to select the best resolution
combination to fast the process and obtain better results as close to optimality as
possible.
In order to obtain this combination, the experiments have been divided in five
initial phases and a final comparison one:

Heuristic Experiments to find which is the best heuristic approach proposed,
we solve the complete path-based model having as open hubs the ones obtained
from the feasible solutions of the four different heuristic methods presented in
Sections 4.2.1-4.2.4 and of the auxiliary problem presented in Section 4.1.2.
The goal is to figure out which of the heuristics gives the best objective value.

Matheuristic Experiments to find the best trade-off between the local branch-
ing improvements and the number of perturbations of the heuristic solutions.
Hence, from the two best heuristics delineated in the first testing phase, we
apply the matheuristic shown in Section 4.2.5 with Branch-and-Price for 10
consecutive times or until no more improvements are found. The objective is
to find an appropriate number of perturbations, as a compromise between the
percentage of solution improvements over the different perturbations and the
relative solving time.

Branch-and-Price Experiments to find the best and the fast possible combi-
nation of solving features which improve the column generation algorithm.
Indeed, we test the Branch-and-Price algorithm presented in Section 4.1.5 in
three different ways:

• Solving the restricted master problem with the set of hubs of the best
heuristic method defined by the heuristic experiments, and then apply
the B&P.

• Solving the RMP with the set of hubs of the best heuristic method and
then perturbing it for a number of times equal to the one delineated in
the matheuristic experiments. Then, this multiple-perturbed problem
represents the starting RMP of the B&P algorithm.

• Solving the restricted master problem with the set of hubs of the auxiliary
problem (4.1.2), but imposing the objective value of the RMP as primal
bound for the Branch-and-Price algorithm, and then try to see if there is
any improvement in terms of solving time or final solution value, compared
to the normal B&P.

55

Computational Results

Hence, here the goal is to find which one of these three represent the best
combination of features Branch-and-Price, or if it could seem reasonable to
combine them too.

Early Branching Branch-and-Price Experiments to figure out if this addi-
tional tool can help to fast the solving process of the Branch-and-Price, taking
into account the best combination of features obtained in the previous testing
phase. In particular, the early branching B&P consists in the computa-
tion in each pricing iteration of the current B&B node’s Lagrangian gap
LG = LB−zRMP

LB
– where LB is the node lower bound. When this value is lower

than the fixed early-branching threshold of 0.05, the pricing iterations are
stopped on that B&B node and the Branch-and-Price proceeds to the next
node of the search tree.

Arc-based Experiments to grasp the efficacy of the SCIP open source solver
compared to the commercial solver Gurobi in solving the polynomial-time
arc-based model.

Final Comparison Experiments to compare the best results of the previous
phases with the benchmark of the arc-based model, and then understand the
effectiveness of our proposed solution approaches.

In particular, the first five experiments phases are performed on a limited number
of instances, because they serve only as skimming for the sixth phase, and with a
time limit of only one hour.

56

Computational Results

5.4 Preliminary Experiments
This section is dedicated to the first five phases of experiments: heuristics, matheuris-
tics, Branch-and-Price with different features, and the arc-based SNDHLP solved
with SCIP and Gurobi. They have been carried out all on forty-three different
instances targeting only the case of splittable requests, and with a time limit of
only 1 hour. In particular, the instances are taken in equal number from the three
datasets: AP, CAB and TR, considering the ones from 10 to 50 locations. These
represent a total of twenty-seven instances. In addition, other sixteen instances
are obtained by cutting the 50-locations instance of the Turkish dataset in four
different ways, each for retrieving a new instance of 20, 25, 30 or 35 locations.
Hence, in the end, we tested three instances of 10, 15, 40, 45, and 50 locations, and
seven instances of 20, 25, 30, and 35 locations.

5.4.1 Heuristic Experiments
The heuristic tests have been carried out considering the auxiliary problem and
the four heuristic approaches presented in the previous chapter:

• Auxiliary problem – named "Auxiliary" in Table 5.1, which verifies the feasibil-
ity of the SNDHLP and eventually has as result a random feasible combination
of open hubs (see Section 4.1.2).

• Most Accessed Hubs Heuristic – denoted as "MostAccHubs" in Table 5.1, that
prioritizes the hubs on the basis of how many customers they serve (see Section
4.2.1).

• Greatest Demand Requests Heuristic – called "GrDemReq" in Table 5.1, which
gives more relevance to the hubs connected with the customer having the
greatest demand units to send or receive (see Section 4.2.2).

• Additive Greatest Demand Requests Heuristic – denoted as "AddGrDemReq"
in Table 5.1, that chooses the hubs after having assigned them a multiplicative
factor on the basis of the inverse demand-size ranking of each request served
by them (see Section 4.2.3).

• Shortest Access Arcs Heuristic – called "ShAccArcs" in Table 5.1, which orders
the hubs by the shortest average distance from the customers served (see
Section 4.2.4).

57

Computational Results

heuristic #locations gap (%) time (s) #nodes

Auxiliary 10 0.00 0.57 65
MostAccHubs 10 0.00 0.44 28

GrDemReq 10 0.00 0.43 39
AddGrDemReq 10 0.00 0.42 47

ShAccArcs 10 0.00 0.49 86

Auxiliary 15 0.00 2421.30 210345
MostAccHubs 15 0.00 1933.11 218982

GrDemReq 15 0.00 2273.06 269229
AddGrDemReq 15 0.00 1302.82 164401

ShAccArcs 15 0.00 1076.54 125010

Auxiliary 20 0.42 T.L. (in 5 over 7) 116812
MostAccHubs 20 0.87 T.L. (in 6 over 7) 98676

GrDemReq 20 0.48 T.L. (in 5 over 7) 121009
AddGrDemReq 20 0.32 T.L. (in 6 over 7) 87537

ShAccArcs 20 0.17 T.L. (in 3 over 7) 124576

Auxiliary 25 1.12 T.L. 23098
MostAccHubs 25 0.94 T.L. 19169

GrDemReq 25 0.99 T.L. 31314
AddGrDemReq 25 0.83 T.L. 21437

ShAccArcs 25 1.19 T.L. 43721

Auxiliary 30 0.74 T.L. 14314
MostAccHubs 30 0.64 T.L. 8357

GrDemReq 30 0.81 T.L. 18655
AddGrDemReq 30 0.66 T.L. 8468

ShAccArcs 30 0.78 T.L. 16012

Auxiliary 35 ∞ T.L. 1
MostAccHubs 35 ∞ T.L. 1

GrDemReq 35 25.08 T.L. 1
AddGrDemReq 35 88.43 T.L. 1

ShAccArcs 35 48.29 T.L. 1

Auxiliary 40 ∞ T.L. 1
MostAccHubs 40 ∞ T.L. 1

GrDemReq 40 8.14 T.L. 1
(in 1 over 3)

AddGrDemReq 40 ∞ T.L. 1
ShAccArcs 40 37.43 T.L. 1

(in 1 over 3)

Auxiliary 45 ∞ T.L. 1
MostAccHubs 45 ∞ T.L. 1

GrDemReq 45 ∞ T.L. 1
AddGrDemReq 45 ∞ T.L. 1

ShAccArcs 45 ∞ T.L. 1

Auxiliary 50 ∞ T.L. 1
MostAccHubs 50 ∞ T.L. 1

GrDemReq 50 ∞ T.L. 1
AddGrDemReq 50 0.32 T.L. 1

(in 1 over 3)
ShAccArcs 50 ∞ T.L. 1

Table 5.1: Comparison among the different heuristic methods experiments

58

Computational Results

Table 5.1 presents the average results for the instances with a certain number of
locations – "#locations" column – referred to the tested heuristic method ("heuristic"
column). It reports the primal-dual gap, the solution time – reported as "T.L."
when the time limit is reached – and the number of branching nodes explored.
In general all the heuristics have good computational results for instances with
a number of locations lower or equal to 30: almost all the solutions have a gap
lower than 1%. However, from the real-world case on, it becomes difficult to find
accurate solutions in only one hour, and so they are not so reliable and comparable
– because, as the "nodes" column shows, they only solve the root node.
To choose which is the best heuristic method among the proposed ones, we essentially
based on the objective value – which is not reported in the table. Actually, the
approach that gives better solutions in the majority of the cases was the "Additive
Greatest Demand Requests Heuristic". The result was not so surprising, because
the goal of that heuristic technique was to prioritize the hubs after a previous
prioritization of the requests. We obtain good results from the "Most Accessed
Hubs" heuristic too. Whereas the other three non-exact approaches returned in
most cases a set of hubs which is not so accurate, and that consequently leads to
worse objective values.

5.4.2 Matheuristic Experiments
In the previous section, we have seen how the Additive Greatest Demand Heuristic
is the best non-exact solution approach proposed. For this reason, we decided to see
how much this already good solution can be improved by means of a matheuristic
method which perturbs the solution space by imposing two new constraints on the
previous values of variables (see Section 4.2.5).
In particular, we apply this matheuristic technique through the Branch-and-Price
tool, which allows to use the present SNDHLP heuristic model as starting restricted
master problem, and then add the useful variables considering the "normal" path-
based constraints plus the two new constraints on the opening of at least the 75%
of the already open hubs and the limitation in the number of transfer vehicles
on the intra-hubs arcs, which clearly have an influence in the computation of the
dual values of the variables constituting a possible path to be added. The number
of perturbations possible is equal to 10, but with a check on the values of two
consecutive perturbed solution values, because if these are equal, it has no more
sense to continue running the algorithm.
Furthermore, we decided to test the matheuristic approach also on the second best
non-exact method of resolution: the Most Accessed Hubs Heuristic. The motivation
was to see if by applying the perturbations on this heuristic, in the end there are
better improvements in the solution, or similar final solution value to the approach
applied on the other heuristic technique.

59

Computational Results

he
ur

is
tic

#
lo

ca
tio

ns
ga

p
tim

e
fin

al
he

ur
is

tic
he

ur
is

tic
he

ur
is

tic
#

no
de

s
(%

)
(s

)
af

te
r

fin
al

ru
n

im
pr

ov
em

en
t

im
pr

ov
em

en
t

im
pr

ov
em

en
t

in
fin

al
ru

n
#

pe
rt

ur
ba

tio
ns

af
te

r
3

ru
ns

af
te

r
1

ru
n

(%
)

(%
)

(%
)

A
dd

G
rD

em
R

eq
10

0.
00

87
.2

1
2

8.
41

–
8.

41
52

M
os

tA
cc

H
ub

s
10

0.
00

12
5.

97
3

22
.8

7
22

.8
7

18
.1

7
54

A
dd

G
rD

em
R

eq
15

3.
13

T
.L

.
5

20
.3

5
19

.0
6

15
.6

9
12

62
M

os
tA

cc
H

ub
s

15
3.

18
T

.L
.

5
21

.8
7

20
.1

6
16

.1
1

11
98

A
dd

G
rD

em
R

eq
20

2.
41

T
.L

.
6

22
.7

6
22

.1
2

20
.7

4
26

3
M

os
tA

cc
H

ub
s

20
2.

59
T

.L
.

7
21

.8
0

20
.3

1
18

.6
6

28
8

A
dd

G
rD

em
R

eq
25

2.
98

T
.L

.
5

20
.8

1
19

.9
8

17
.6

1
79

M
os

tA
cc

H
ub

s
25

2.
97

T
.L

.
7

21
.5

8
20

.0
2

17
.9

8
65

A
dd

G
rD

em
R

eq
30

2.
57

T
.L

.
4

21
.0

5
20

.8
7

17
.3

2
14

M
os

tA
cc

H
ub

s
30

2.
19

T
.L

.
5

22
.0

0
21

.4
5

18
.3

5
32

A
dd

G
rD

em
R

eq
35

∞
T

.L
.

–
–

–
–

1
M

os
tA

cc
H

ub
s

35
∞

T
.L

.
–

–
–

–
1

A
dd

G
rD

em
R

eq
40

∞
T

.L
.

–
–

–
–

1
M

os
tA

cc
H

ub
s

40
∞

T
.L

.
–

–
–

–
1

A
dd

G
rD

em
R

eq
45

∞
T

.L
.

–
–

–
–

1
M

os
tA

cc
H

ub
s

45
∞

T
.L

.
–

–
–

–
1

A
dd

G
rD

em
R

eq
50

∞
T

.L
.

–
–

–
–

1
M

os
tA

cc
H

ub
s

50
∞

T
.L

.
–

–
–

–
1

Table 5.2: Comparison of the perturbation of two heuristic methods

60

Computational Results

The crucial parameter of Table 5.2 – necessary to understand which is the best
trade-off in number of matheuristic perturbations and solution improvements – is
the improvement of the matheuristic objective value with respect to the heuristic
objective value, obtained by simply dividing their difference per the heuristic objec-
tive value. In particular, we compute this improvement in three different moments:
after the first matheuristic iteration (column "heuristic improvement after 1 run"),
after the third perturbation (column "heuristic improvement after 3 runs"), and
after the final iteration (column "heuristic improvement after final run"). Besides,
we report the final number of perturbations (column "final #perturbations").
The results delineated how a greater number of perturbations is not related with
more significant improvements in the solution value. Indeed, the difference between
the 3-runs heuristic improvement and the final heuristic improvement is very small
and never greater than 1.5%. This means that we can limit the number of perturba-
tions to three, without any particular problem. Further, also the difference between
the 3-runs improvement and the first heuristic improvement is not so marked, but
for sure a bigger number of perturbations can improve the solving process – even
though it costs more solving time.

5.4.3 Branch-and-Price Experiments
In the previous two sections, we have analyzed the non-exact solution approaches,
and we have found out that the best heuristic is the Additive Greatest Demand
Requests one and the best number of perturbations in the matheuristic method
is three. Now the goal is to use these results to improve the Branch-and-Price
algorithm, and find the best and the fast possible combination of solving features.
Indeed, in Table 5.3 we report the test of the Branch-and-Price algorithm presented
in Section 4.1.5 with three different ways of solving the RMP:

• Solving the restricted master problem with the set of hubs of the Additive
Greatest Demand Requests heuristic, and then we apply the B&P algorithm –
this is indicated as "RMPheur" in the "RMP solver" column.

• Solving the RMP with the set of hubs of the Additive Greatest Demand
Requests heuristic method and then perturbing it for at maximum three times.
Then this multiple-perturbed problem represents the starting RMP of the
Branch-and-Price – denoted as "RMPmatheur" in the "RMP solver" column.

• Solving the RMP with the set of hubs of the auxiliary problem (see Section
4.1.2), but using the value of the objective function of the RMP as primal
bound for the Branch-and-Price algorithm – method named "AuxPrBound" in
the "RMP solver" column – in order to figure out if there is any improvement for
what concerns the computational time and the final solution value, compared
to the normal B&P.

61

Computational Results

R
M

P
so

lv
er

#
lo

ca
tio

ns
he

ur
is

tic
ga

p
tim

e
tim

e
fo

r
tim

e
fo

r
tim

e
fo

r
#

no
de

s
#

pr
ic

in
g-

im
pr

ov
em

en
t

(%
)

(s
)

ga
p

≤
3%

ga
p

≤
5%

ga
p

≤
10

%
It

er
at

io
ns

(%
)

(s
)

(s
)

(s
)

R
M

P
he

ur
10

29
.7

6
0.

00
11

8.
01

62
.3

0
45

.7
1

27
.3

5
10

3
29

5
R

M
P

m
at

he
ur

10
29

.7
6

0.
00

20
0.

74
31

.5
3

26
.6

0
20

.3
1

90
16

8
A

ux
P

rB
ou

nd
10

–
0.

00
21

7.
55

69
.8

8
65

.3
7

63
.3

7
11

0
28

7

R
M

P
he

ur
15

18
.2

3
2.

01
T

.L
.

71
2.

13
44

2.
80

29
2.

87
74

4
18

34
R

M
P

m
at

he
ur

15
19

.6
4

1.
63

T
.L

.
28

6.
90

49
.7

7
38

.5
6

68
4

11
79

A
ux

P
rB

ou
nd

15
–

0.
12

T
.L

.
26

5.
80

95
.4

7
92

.3
8

80
7

18
87

R
M

P
he

ur
20

18
.9

8
4.

36
T

.L
.

11
43

.2
5

70
9.

40
54

7.
83

11
5

54
5

(in
5

ov
er

7)
(in

6
ov

er
7)

R
M

P
m

at
he

ur
20

21
.7

2
2.

68
T

.L
.

23
8.

45
16

4.
85

14
7.

28
13

5
38

6
(in

6
ov

er
7)

A
ux

P
rB

ou
nd

20
–

4.
31

T
.L

.
10

13
.1

7
54

8.
99

51
1.

53
11

6
44

2
(in

5
ov

er
7)

(in
6

ov
er

7)

R
M

P
he

ur
25

16
.6

1
2.

29
T

.L
.

21
56

.4
0

21
36

.8
8

19
63

.2
9

13
18

4
R

M
P

m
at

he
ur

25
17

.7
2

2.
09

T
.L

.
86

2.
04

80
2.

57
75

7.
48

24
14

1
A

ux
P

rB
ou

nd
25

–
4.

08
T

.L
.

21
41

.1
4

21
41

.1
4

19
99

.2
2

10
17

7
(in

5
ov

er
7)

(in
5

ov
er

7)
(in

6
ov

er
7)

R
M

P
he

ur
30

4.
98

∞
T

.L
.

–
–

–
1

52
R

M
P

m
at

he
ur

30
6.

69
∞

T
.L

.
–

–
–

1
39

A
ux

P
rB

ou
nd

30
–

∞
T

.L
.

–
–

–
1

54

R
M

P
he

ur
35

5.
01

∞
T

.L
.

–
–

–
1

38
R

M
P

m
at

he
ur

35
5.

27
∞

T
.L

.
–

–
–

1
25

A
ux

P
rB

ou
nd

35
–

∞
T

.L
.

–
–

–
1

34

R
M

P
he

ur
40

0.
41

∞
T

.L
.

–
–

–
1

23
R

M
P

m
at

he
ur

40
2.

53
∞

T
.L

.
–

–
–

1
12

A
ux

P
rB

ou
nd

40
–

∞
T

.L
.

–
–

–
1

22

R
M

P
he

ur
45

0.
00

∞
T

.L
.

–
–

–
1

16
R

M
P

m
at

he
ur

45
1.

41
∞

T
.L

.
–

–
–

1
10

A
ux

P
rB

ou
nd

45
–

∞
T

.L
.

–
–

–
1

15

R
M

P
he

ur
50

0.
00

∞
T

.L
.

–
–

–
1

12
R

M
P

m
at

he
ur

50
1.

91
∞

T
.L

.
–

–
–

1
6

A
ux

P
rB

ou
nd

50
–

∞
T

.L
.

–
–

–
1

11

Table 5.3: Comparison of different RMP solution for the B&P algorithm
62

Computational Results

In Table 5.3 the goal was to find out which one of the three different initialization
of the RMP represents the best combination of features for the final Branch-and-
Price, or if it could seem reasonable to combine them too. For this reason, it was
important to compare the heuristic improvement of the heuristic and matheuristic
method, and the solving times necessary to reach a certain percentage of primal-dual
gap. It is important to remark that in the matheuristic case this time has to take
into account a richer starting RMP at the beginning, but a previous longer solving
time than the other two methods – which is not specified in the table. In particular,
due to the huge size of the problem, we consider reasonable and acceptable solutions
the ones with a primal-dual gap lower or equal than 10%. Hence, we compute the
time to arrive to this gap, and the time to reach the gap of 5% and then of 3% –
columns "time for gap ≤ 10%", "time for gap ≤ 5%", and "time for gap ≤ 3%" –
to see the speed of the process in approaching the close-to-optimality values.
In general, we noticed the shortest times in the case of the matheuristic restricted
master problem. However, this can surely be considered a good starting point, but
– as explained before – it is a direct consequence of the more complete starting
RMP, which already comprises promising variables to the final problem solution.
Considering the other two methods, none seemed to clearly show a "superiority",
because they both have a positive aspect: the one a more accurate RMP, and the
other a primal bound limit. For this reason, we decide that the best combination
of features for initializing the RMP is the Additive Greatest Demand Requests
heuristic resolution plus the imposition of its objective value as primal bound for
the next B&P steps.

5.4.4 Early Branching Branch-and-Price Experiments
This forth skimming experimental phase served to test the early branching tool
in the Branch-and-Price algorithm. As explained in Section 2.2.3, the inequality
(2.5) offers a large opportunity for speeding up the B&P process, by means of
the so-called early branching. Actually this consists in the computation in each
pricing iteration of a Lagrangian bound LB, which represents the lower bound
of the current Branch-and-Bound node. After having reviewed the trend of the
Lagrangian gap LG = LB−zRMP

LB
over different pricing iterations of different instances,

we decide to set the early-branching threshold to 0.05. Hence, when in a B&B
node the Lagrangian gap is lower than this threshold, the pricing iterations are
stopped on that node and the Branch-and-Price proceeds analyzing the next node
of the search tree.
Specifically, we tested the early branching tool both on the heuristic resolution of
the RMP and on the matheuristic initialization of the RMP, imposing their primal
bound as objective limit for the next B&P. Then we compute solving times for the
three gaps of 3, 5 and 10 % to compare them with the same values of Table 5.3.

63

Computational Results

R
M

P
so

lv
er

#
lo

ca
tio

ns
he

ur
is

tic
ga

p
ti

m
e

tim
e

fo
r

tim
e

fo
r

ti
m

e
fo

r
#

no
de

s
#

pr
ic

in
g-

im
pr

ov
em

en
t

(%
)

(s
)

ga
p

≤
3%

ga
p

≤
5%

ga
p

≤
10

%
It

er
at

io
ns

(%
)

(s
)

(s
)

(s
)

R
M

P
he

ur
10

31
.7

2
0.

00
11

2.
23

52
.4

5
24

.2
0

13
.7

6
13

1
24

8
R

M
P

m
at

he
ur

10
31

.7
2

0.
00

25
5.

62
41

.2
5

2.
23

1.
70

94
15

3

R
M

P
he

ur
15

19
.2

3
1.

62
T

.L
.

34
2.

23
25

6.
72

23
4.

20
46

2
10

97
R

M
P

m
at

he
ur

15
19

.6
4

1.
73

T
.L

.
35

0.
21

25
.3

5
15

.5
6

31
8

55
7

R
M

P
he

ur
20

20
.1

1
2.

74
T

.L
.

23
96

.5
1

14
70

.4
3

41
7.

43
12

3
41

7
R

M
P

m
at

he
ur

20
21

.7
2

2.
86

T
.L

.
11

00
.6

5
23

3.
23

10
0.

14
10

3
26

4

R
M

P
he

ur
25

19
.8

4
2.

21
T

.L
.

34
71

.6
4

29
04

.5
2

14
37

.1
0

22
13

1
R

M
P

m
at

he
ur

25
20

.5
1

2.
24

T
.L

.
18

23
.8

5
12

33
.7

8
91

6.
12

29
66

R
M

P
he

ur
30

5.
08

∞
T

.L
.

–
–

–
1

47
R

M
P

m
at

he
ur

30
6.

37
∞

T
.L

.
–

–
–

1
42

R
M

P
he

ur
35

4.
76

∞
T

.L
.

–
–

–
1

65
R

M
P

m
at

he
ur

35
5.

10
∞

T
.L

.
–

–
–

1
25

R
M

P
he

ur
40

0.
58

∞
T

.L
.

–
–

–
1

51
R

M
P

m
at

he
ur

40
2.

39
∞

T
.L

.
–

–
–

1
12

R
M

P
he

ur
45

0.
06

∞
T

.L
.

–
–

–
1

16
R

M
P

m
at

he
ur

45
1.

41
∞

T
.L

.
–

–
–

1
10

R
M

P
he

ur
50

0.
00

∞
T

.L
.

–
–

–
1

12
R

M
P

m
at

he
ur

50
0.

97
∞

T
.L

.
–

–
–

1
6

Table 5.4: Results of early branching on the B&P algorithm

64

Computational Results

In the previous Table 5.4, it is quite clear how both the final primal-dual gap
values and the solving times to reach the three gap thresholds of 3, 5 and 10 % are
generally better than the same ones in Table 5.3. So, we can easily conclude that
the final B&P has to include the early branching tool. In addition, the values of the
heuristic RMP are closer to those of the matheuristic approach. Thus, in the end,
the best and fast combination of features for the Branch-and-Price algorithm is
the resolution of the RMP with the Additive Greatest Demand Requests Heuristic,
the imposition of the RMP primal bound as objective limit, and the use of the
early-branching threshold of 0.05.

5.4.5 Arc-based Model Experiments
This last skimming phase is to compare the solutions of the commercial solver
Gurobi with the open source SCIP, and then choose how to solve the same instances
for having the benchmark in the final testing phase. However, differently from the
other four skimming experiments, here we set a time limit of 2 hours.

As it was easily imaginable, the Table 5.5 confirms us how Gurobi – as com-
mercial solver – is way better than SCIP both in terms of solving speed and final
primal-dual gap. Besides, it is also capable to solve close-to-optimality instances of
larger size by enumeration compared to SCIP, which cannot solve instances with
more than 20 locations. As a consequence, it will be used as benchmark solver for
the final experimental phase.

65

Computational Results

M
IP

so
lv

er
#

lo
ca

tio
ns

ga
p

tim
e

tim
e

fo
r

tim
e

fo
r

tim
e

fo
r

#
no

de
s

(%
)

(s
)

ga
p

≤
3%

ga
p

≤
5%

ga
p

≤
10

%
(s

)
(s

)
(s

)

SC
IP

10
0.

00
12

2.
37

62
.1

8
50

.0
7

34
.2

9
38

G
ur

ob
i

10
0.

00
27

.4
6

10
.7

3
4.

52
2.

94
62

SC
IP

15
2.

52
T

.L
.

47
35

.8
8

29
32

.7
7

76
5.

02
13

17
G

ur
ob

i
15

0.
00

11
16

.7
2

97
.7

3
50

.9
3

42
.2

1
13

24

SC
IP

20
5.

25
T

.L
.

–
–

74
16

.7
3

13
G

ur
ob

i
20

0.
00

52
03

.2
6

50
6.

62
25

7.
71

17
6.

63
19

77

SC
IP

25
∞

T
.L

.
–

–
–

1
G

ur
ob

i
25

0.
57

T
.L

.
52

2.
57

49
5.

29
30

2.
98

13
89

3

SC
IP

30
∞

T
.L

.
–

–
–

1
G

ur
ob

i
30

0.
79

T
.L

.
20

98
.3

9
13

42
.8

4
11

02
.3

5
15

56
2

SC
IP

35
∞

T
.L

.
–

–
–

1
G

ur
ob

i
35

∞
T

.L
.

–
–

–
1

SC
IP

40
∞

T
.L

.
–

–
–

1
G

ur
ob

i
40

∞
T

.L
.

–
–

–
1

SC
IP

45
∞

T
.L

.
–

–
–

1
G

ur
ob

i
45

∞
T

.L
.

–
–

–
1

SC
IP

50
∞

T
.L

.
–

–
–

1
G

ur
ob

i
50

∞
T

.L
.

–
–

–
1

Table 5.5: Comparison of SCIP and Gurobi MIP solvers on the arc-based SNDHLP

66

Computational Results

5.5 Final Comparison Experiments
This section is dedicated to the last phase of our computational experiments, in
which we took into account the best methods of the preliminary skimming phases,
and we compared them. In particular, we considered as our main solution approach
the Branch-and-Price with the RMP solved through the Additive Greatest Demand
Heuristic and no perturbations, but including the primal bound limit and the
early branching tool that speeds up the solving process. This is compared with
the arc-based SNDHLP solved with Gurobi and the 3-perturbations matheuristic
method applied over the Additive Greatest Demand Heuristic resolution of the
path-based model. Further, Section 5.5.4 is reserved to some experiments on the
same instances, but targeting the unsplittable requests case, to see if there are any
differences with the splittable ones.
All these experiments have been performed over a total of ninety-eight instances: a
total of sixty-eight referred to the real-world case and its neighborhood (seventeen
instances for each problem with 25, 30, 35 or 40 locations), and a total of thirty
instances related to the small ones and possible expansion of the system (six for each
instance of 10, 15, 20, 45, and 50 locations). We used all the three datasets: AP,
CAB, and TR, for each group of instances. Besides, seven different cutting methods
of the AP and CAB datasets have been used for retrieving fourteen new realistic
and neighborhood instances. Another different selection method applied also on the
instance of the TR dataset derived three new small and possible-system-expansion
instances.
The time limit imposed was of one day and a half – 36 hours – for the B&P and
the matheuristics experiments (12 hours for every perturbation), and of 4 hours for
the Gurobi arc-based model. For all the experiments we set a gap limit of 0.1%.
Finally, in Section 5.5.5 we decided to relax the arc-based model not taking into
account the two constraints of maximum transport time and limited number of
hops to see if the solution structure changes compared to the complete model.

5.5.1 Branch-and-Price Experiments
The final Branch-and-Price experiments consider the best combination of tools
possible both to obtain solutions as close-to-optimality as possible and to speed up
the solving process. Indeed, as Sections 5.4.3 and 5.4.4 show, the best B&P:

• solves the restricted master problem using the sets of hubs derived from the
Additive Greatest Demand Heuristic problem

• imposes the objective value of the RMP solution as primal bound limit

• uses the early branching procedure in the pricing iterations

67

Computational Results

#
lo

ca
tio

ns
ga

p
tim

e
tim

e
fo

r
tim

e
fo

r
tim

e
fo

r
#

no
de

s
#

pr
ic

in
g-

(%
)

(m
in

)
ga

p
≤

3%
ga

p
≤

5%
ga

p
≤

10
%

It
er

at
io

ns
(m

in
)

(m
in

)
(m

in
)

10
0.

05
80

.6
1

0.
38

0.
26

0.
08

20
7

39
8

15
0.

39
T

.L
.

12
.1

5
5.

74
1.

86
16

05
3

19
68

6
(in

4
ov

er
6)

20
0.

45
T

.L
.

63
.9

5
24

.8
6

9.
34

81
47

13
66

4

25
2.

96
T

.L
.

74
3.

33
28

2.
88

91
.5

6
45

5
97

4
(in

9
ov

er
17

)
(in

14
ov

er
17

)

30
6.

81
T

.L
.

–
30

8.
67

15
2.

48
77

33
4

(in
5

ov
er

17
)

(in
13

ov
er

17
)

35
6.

57
T

.L
.

–
79

0.
50

68
8.

88
6

12
7

(in
2

ov
er

17
)

(in
13

ov
er

17
)

40
12

.7
9

T
.L

.
–

–
14

67
.3

2
2

11
8

(in
4

ov
er

17
)

45
26

.1
1

T
.L

.
–

–
–

1
11

2

50
83

.2
3

T
.L

.
–

–
–

1
49

Table 5.6: Results of final Branch-and-Price Experiments

68

Computational Results

From Table 5.6, first of all we can see how after one day and a half we can solve
the realistic instances of 35 locations with a tolerance of about 6.5%. This is a very
positive result, which is furthermore enforced by the average solving time of less
than 12 hours for reaching the 10% gap threshold.
Considering the close-to-reality cases, the results are even more promising for the
25 and 30 locations cases – they only require respectively 1 hour and a half and
2 hours and a half for the 10% threshold, and in 12 hours, the instances with 25
locations are solved very close-to-optimality. The bigger case of 40 locations still
requires a day to obtain acceptable solution value (and only in a small number
of tested instances). Obviously, this situation worsens the greater the number of
locations is.

5.5.2 Matheuristic Experiments
The final experimental phase of the matheuristic approach considers 3 as reasonable
number of perturbations – as seen in Section 5.4.2. The solution method initially
solves the complete path-based SNDHLP via the Additive Greatest Demand Re-
quests Heuristic, whose objective value is used as next primal bound limit. Then,
it sets a time limit of 12 hours for each of the three iterations which applies the
local branching technique described in Section 4.2.5 through the Branch-and-Price
algorithm including the early branching procedure in the pricing iterations.

From Table 5.7, we evince that in general the matheuristic is less performing
than the Branch-and-Price algorithm. Indeed, in the final perturbation it obtains
similar results to the final B&P experiments (see Table 5.6) in terms of speed
to reach the three gap thresholds of 3, 5 and 10 %, but this means that there
have already been about 24 hours of resolution before that moment. Besides, the
objective values are generally greater than the B&P solutions ones.

69

Computational Results

#
lo

ca
tio

ns
fir

st
he

ur
is

ti
c

fin
al

he
ur

is
tic

ga
p

tim
e

tim
e

fo
r

ti
m

e
fo

r
tim

e
fo

r
#

no
de

s
im

pr
ov

em
en

t
im

pr
ov

em
en

t
(%

)
(s

)
ga

p
≤

3%
ga

p
≤

5%
ga

p
≤

10
%

(%
)

(%
)

(s
)

(s
)

(s
)

10
16

.3
1

19
.8

2
0,

00
16

9.
67

16
.7

6
5.

71
1.

23
10

4

15
14

.9
4

15
.5

9
0.

38
T

.L
.

12
8.

22
16

.5
3

14
.9

5
18

97

20
22

.3
6

25
.0

4
0.

83
T

.L
.

13
3.

56
10

4.
29

89
.1

2
25

1

25
32

.2
9

37
.5

8
1.

67
T

.L
.

80
45

.7
8

53
62

.1
3

40
59

.6
2

46

30
26

.9
9

30
.1

8
8.

91
T

.L
.

–
–

12
25

4.
84

21
(in

9
ov

er
17

)

35
7.

70
8.

01
23

.7
9

T
.L

.
–

–
–

2

40
0.

00
0.

23
41

.4
6

T
.L

.
–

–
–

1

45
0.

00
0.

00
88

.6
1

T
.L

.
–

–
–

1

50
0.

00
0.

00
93

.2
3

T
.L

.
–

–
–

1

Table 5.7: Results of final Matheuristic Experiments

70

Computational Results

5.5.3 Arc-based Model Experiments
The benchmark for the B&P experiments was the arc-based model solved through
Gurobi. Given the huge power of the solver and the function of benchmark, we set
a time limit of only 4 hours, in order to rapidly had comparable outputs. Besides,
apart from the three gap thresholds present in all the other tables, we also report the
solving time necessary to arrive to the gap of only 1% – column "time for gap ≤ 1%".

What clearly emerges from the Table 5.8 is the very fast solving time for reaching
the gap thresholds: in the real-world case of 35 locations, only about 70 minutes
are required to obtain a tolerance of 1% – and a bit less than 1 hour for the 3%
gap – with a final primal-dual gap of only 0.35% in 4 hours. The results are better
for the semi-realistic instances with 25 and 30 locations, and a bit worse for the 40
locations case – with an average final gap in the neighborhood of 1%. However,
given the huge number of variables, Gurobi too runs out of memory and is not able
to compute any solutions for the instances with 45 or more locations.

71

Computational Results

#
lo

ca
tio

ns
ga

p
tim

e
tim

e
fo

r
tim

e
fo

r
tim

e
fo

r
tim

e
fo

r
#

no
de

s
(%

)
(s

)
ga

p
≤

1%
ga

p
≤

3%
ga

p
≤

5%
ga

p
≤

10
%

(s
)

(s
)

(s
)

(s
)

10
0.

00
22

.1
9

9.
63

8.
75

3.
66

2.
94

79

15
0.

00
60

7.
26

14
8.

31
77

.2
1

60
.3

4
42

.2
1

28
91

20
0.

00
56

71
.7

6
31

9.
62

22
4.

06
16

2.
51

12
5.

63
60

79

25
0.

27
T

.L
.

74
2.

78
42

8.
29

38
5.

68
30

4.
74

13
93

2
(in

11
ov

er
17

)

30
0.

38
T

.L
.

24
61

.5
4

13
39

.8
3

12
62

.2
4

12
02

.0
8

16
87

6

35
0.

35
T

.L
.

43
20

.2
9

34
17

.0
4

31
15

.4
3

30
47

.2
3

83
2

40
0.

94
T

.L
.

10
34

2.
81

87
18

.4
5

85
52

.1
3

81
95

.0
7

14
3

(in
12

ov
er

17
)

45
∞

T
.L

.
–

–
–

–
1

50
∞

T
.L

.
–

–
–

–
1

Table 5.8: Results of final Experiments on the arc-based model solved with Gurobi

72

Computational Results

5.5.4 Unsplittable Requests Instances Experiments
After all the experiments targeting only the splittable requests case, one of these
final tests considered instances with unsplittable requests ones. The reason why the
majority of the tests has been performed on the splittable requests instances is the
inner greater complexity of these. Thus, if the solution approaches worked on them,
they would have worked also on the unsplittable requests instances. We decided to
test also the latter ones comparing the Gurobi MIP solver of the arc-based SNDHLP
– named "arc-based" in Table 5.9 – and our final Branch-and-Price approach ex-
plained in Section 5.5.1 – denoted "path-based" in Table 5.9. In this way, we tested
both the two model formulations, to see whether there are any performance changes.

Generally, Table 5.9 shows a bit worse performance compared to the same in-
stances of the splittable requests case. The result is partially surprising. Indeed,
for what said before, we expected better or similar performance. However, this
difference is not so significant, even if the Gurobi solver is not able to solve any
real-world instance in 4 hours. Further, obviously, the objective value of all the
instances is greater than the splittable case ones, as there is only a path – or a
combination of arcs – possible for each request.

73

Computational Results

m
od

el
#

lo
ca

tio
ns

ga
p

tim
e

ti
m

e
fo

r
tim

e
fo

r
tim

e
fo

r
tim

e
fo

r
#

no
de

s
#

pr
ic

in
g-

(%
)

(s
)

ga
p

≤
1%

ga
p

≤
3%

ga
p

≤
5%

ga
p

≤
10

%
It

er
at

io
ns

(s
)

(s
)

(s
)

(s
)

ar
c-

ba
se

d
10

0.
00

15
.1

9
9.

80
8.

75
3.

66
2.

94
62

–
pa

th
-b

as
ed

10
0,

00
11

9.
67

87
.9

5
56

.7
6

32
.6

6
21

.4
5

18
9

39
5

ar
c-

ba
se

d
15

0.
00

51
0.

43
26

4.
37

71
.3

5
35

.3
3

23
.1

4
34

87
–

pa
th

-b
as

ed
15

0.
43

T
.L

.
20

86
.5

3
92

8.
25

82
3.

21
22

8.
35

27
75

7
53

90
2

ar
c-

ba
se

d
20

0.
00

69
59

.3
6

37
6.

31
20

1.
42

16
2.

55
10

3.
60

23
46

0
–

pa
th

-b
as

ed
20

0.
58

T
.L

.
92

04
.1

3
51

63
.5

6
24

04
.2

9
40

9.
12

99
14

14
73

2

ar
c-

ba
se

d
25

0.
21

T
.L

.
69

5.
46

59
3.

07
53

5.
79

42
8.

32
26

58
6

–
pa

th
-b

as
ed

25
3.

45
T

.L
.

–
57

47
8.

38
15

45
2.

13
36

99
.8

7
46

4
15

30

ar
c-

ba
se

d
30

0.
37

T
.L

.
19

56
.8

0
13

92
.8

9
13

47
.3

7
12

56
.6

4
11

59
1

–
pa

th
-b

as
ed

30
8.

55
T

.L
.

–
–

–
91

54
.2

3
54

23
6

ar
c-

ba
se

d
35

∞
T

.L
.

–
–

–
–

1
–

pa
th

-b
as

ed
35

6.
83

T
.L

.
–

–
–

13
93

5.
68

37
12

7

ar
c-

ba
se

d
40

∞
T

.L
.

–
–

–
–

1
–

pa
th

-b
as

ed
40

15
.6

9
T

.L
.

–
–

–
–

2
16

4

ar
c-

ba
se

d
45

∞
T

.L
.

–
–

–
–

1
–

pa
th

-b
as

ed
45

36
.1

8
T

.L
.

–
–

–
–

1
10

4

ar
c-

ba
se

d
50

∞
T

.L
.

–
–

–
–

1
–

pa
th

-b
as

ed
50

83
.2

3
T

.L
.

–
–

–
–

1
47

Table 5.9: Results of Unsplittable Requests Instances Experiments

74

Computational Results

5.5.5 Relaxed Arc-based Model Experiments
In this last testing phase, we decided also to relax the arc-based model and do
not consider the two constraints of maximum transport time and limited number
of transshipments. The reason is to understand how much these two constraints
influence the solutions and the speed of the solving process, and then to see how
differently the solutions are structured in terms of "paths" and used transfer vehicles.
Table 5.10 highlights the improvements in terms of both solving times necessary
to reach the gap thresholds and final primal-dual gap, compared to the complete
arc-based SNDHLP seen in Table 5.8. In addition, in this case, Gurobi does not
run out of memory and can solve the 45-locations instances and one of the six
instances with 50 locations.
The motivation of these improvements is quite easy to figure out: there is a lower
number of variables and constraints to consider in the model and so it solves
faster. Indeed, there are no more the binary request arcs variables er

a, and the
ones indicating transport time and number of hops up to the hub i – respectively
variables wr

i and sr
i .

The relaxed splittable requests arc-based SNDHLP model looks like the complete
unsplittable requests arc-based one without the two constraints (3.8) and (3.9),
and with continuous requests arcs variables, instead of binary.
We recall that the model can be formalized in mathematical terms as follows:

min
Ø

a ∈ At

ctlava +
Ø

r ∈ R

Ø
a ∈ As

csladrxr
a

s.t.
Ø

a ∈ δ+(k1)
xr

a = 1 ∀ r = (k1, k2) ∈ R

Ø
a ∈ δ−(k2)

xr
a = 1 ∀ r = (k1, k2) ∈ R

Ø
a ∈ δ+(i)

xr
a −

Ø
a ∈ δ−(i)

xr
a = 0 ∀ i ∈ H , r ∈ R

Ø
r ∈ R

drxr
a ≤ Kva ∀ a ∈ At (5.11)Ø

i ∈ H

hi = nHØ
a ∈ δ−

i

xr
a ≤ hi ∀ i ∈ H , r ∈ R

hi ∈ {0, 1} ∀ i ∈ H

va ∈ N0 ∀ a ∈ At

xr
a ∈ [0, 1] ∀ r ∈ R , a ∈ A

75

Computational Results

#
lo

ca
tio

ns
ga

p
tim

e
tim

e
fo

r
tim

e
fo

r
tim

e
fo

r
tim

e
fo

r
#

no
de

s
(%

)
(s

)
ga

p
≤

1%
ga

p
≤

3%
ga

p
≤

5%
ga

p
≤

10
%

(s
)

(s
)

(s
)

(s
)

10
0.

00
6.

19
5.

63
3.

75
2.

66
1.

14
12

3

15
0.

00
36

3.
06

13
6.

82
26

.4
3

25
.2

1
22

.3
2

34
52

20
0.

00
27

84
.9

2
86

.5
3

28
.2

5
28

.1
4

24
.3

3
84

57

25
0.

11
T

.L
.

18
9.

69
10

4.
25

92
.5

1
64

.8
0

23
94

5
(in

12
ov

er
17

)

30
0.

26
T

.L
.

20
4.

13
12

3.
98

11
5.

24
87

.3
7

40
57

4

35
0.

29
T

.L
.

25
6.

64
13

7.
45

13
5.

43
12

7.
28

65
86

40
0.

45
T

.L
.

54
1.

80
47

8.
38

45
2.

13
35

9.
12

25
14

45
1.

43
T

.L
.

20
76

.5
1

20
07

.1
4

18
76

.8
5

17
98

.0
0

15
72

(in
4

ov
er

6)

50
∞

T
.L

.
–

–
–

–
1

(in
5

ov
er

6)

Table 5.10: Results of Experiments on the arc-based model without time and
transshipments constraints

76

Chapter 6

Conclusions

In this thesis we have studied a particular version of a Service Network Design and
Hub Location Problem for combined transport with the opportunity of multiple
itineraries for shipping goods with the same starting and ending points. We take
into account many important real-world constraints that affect the routing of
commodities, such as capacity restrictions on links among the hubs, deadlines for
delivery, and limits on the number of transshipments that can occur. The problem
involves determining the optimal placement of hubs as well as planning the actual
transportation of the freight. Our final goal is to strike a balance between service
quality and operational expenses.
To solve the problem, we developed a Branch-and-Price algorithm that employs
various features and a tailored heuristic initialization approach. In addition, we
built up different customized heuristic solution techniques, which try to exploit
different critical aspects of the problem and a matheuristic method.

We tested our algorithms using data from realistic instances, and our results
show that they can accurately find close-to-optimality solutions, even for large
instances, which makes it practical for planning purposes.
Specifically, the B&P algorithm is able to solve real-world sized instances with
35 locations in about 12 hours with a tolerance of only 5% – which is very low
considering the size of the problem. These outcomes are even more promising for
close-to-reality cases where the solution times decrease by more than twice – they
require about 5 hours – and within the same computational time the final solutions
are closer to the optimal value. The effectiveness of our algorithm decreases with
even larger instances, but it still finds not-so-bad solutions within longer computa-
tional times.
The comparison of our B&P algorithm with the commercial solver Gurobi – that is
not able to perform a Branch-and-Price method and can only solve the polynomial-
sized arc-based model – offers interesting insights. As a commercial solver, it is

77

Conclusions

very fast compared to the open-source SCIP tools on which our B&P is based, and
obtains the same results in about one hour, and better ones in some minutes more.
However, the Gurobi solver runs out of memory when the number of locations
increases and is not able even to start solving them, because of the huge number of
variables. On the other hand, our B&P is always able to provide a solution to the
problem, for large non-realistic instances too. A common characteristic is the slow
convergence between primal and dual bounds, as the solution time to reach very
good primal-dual gaps is very small, but then the two solvers require many hours
to reach the value 0.0 and very often do not reach it.

About the other solution approaches proposed, they have been very helpful in
the definition of the final improved version of our Branch-and-Price. Besides, the
various heuristic methods proposed help us understand what is the most relevant
parameter for the choice of the hubs to open: the demand of the requests, and not
the number of customers served by a hub or the distances between customer and
hub locations. In particular, to choose a proper set of hubs to open it is very useful
to prioritize the requests on the basis of their demand sizes. Then, the ranking of
each request is used to give a weighted score to the hubs which serve the related
customers, and in the end the hubs with the greatest score are opened.
Another interesting characteristic observed is the structure of the paths present
in the solutions. Indeed, when the number of locations is small, the number of
2-legs-of-trip paths is about the 30% of the total, whereas for realistic and larger-
than-realistic instances, this percentage value goes down to about 20%. Besides,
the structure of paths changes also in relation to the ratio between the costs of
access arcs cs and transfer arcs ct. When the former is significantly smaller than the
latter divided by the capacity of transfer vehicles, there is a complete predominance
of 2-legs-of-trips paths, whereas they are very rare in the opposite case.

In conclusion, possible challenging future developments of this work are repre-
sented by the extension of the model targeting other realistic situations such as
limited capacities, stocking costs and waiting times in hubs stations, or the use of
different types of vehicles. Then the exploitation of economies of scale for common
routes and most used hubs might become interesting tools to reduce the costs.
From the algorithmic point of view, the Branch-and-Price can be improved with the
implementation of a heuristic pricing and then the use of tailored cutting planes.
These engaging improvements can have a positive outcome on the performance of
our solver, that might become more comparable to the commercial solver Gurobi.
Finally, it would be interesting to investigate the use of our proposed algorithms for
similar problems and to extend our study to other related real-world applications.

78

Appendix A

SNDHLP model creation

A.1 SNDHLP instance reader
In this section we present the general function for reading a generic instance from
the used datasets, and then set the problem parameters for the SNDHLP model.

1 #t h i s method i s f o r read ing a g e n e r i c f i l e o f an in s t anc e o f
SNDHLP

2 de f readSNDHLPfromFile (f i leName) :
3 f i l e = open (fi leName , " r ") . r e a d l i n e s ()
4

5 #c r e a t e the s e t o f customers (the number o f customers i s on the
f i r s t l i n e o f the f i l e) and hubs

6 numberCustomers = i n t (f i l e [0])
7 d i g i t s = len (f i l e [0]) #t h i s i s the number o f d i g i t s + 1 in

the customers number
8 addingNodeCustomer = 10 #t h i s i s u s e f u l to c r e a t e the

corre spond ing customer node i n t
9 f o r n in range (d i g i t s) :

10 addingNodeCustomer ∗= 10
11 #a f t e r the f o r c y c l e i t would be at l e a s t 1000 (in case o f l e s s

than 10 customers) , o therw i se i t would be 10000 (f o r 10 to 99
customers) , 100000 (f o r 100 to 999 customers) and so on

12 #to sum up the " dup l i ca t ed " customers o f the hub h i s 100h (with
the " s t r i n g " "100" be f o r e the hub number)

13

14 numberHubs = numberCustomers
15 i f (f i l e [1] != "ALL\n") : #i f t h i s l i n e i s "ALL" , i t means that

a l l the customers can a l s o be hubs (in a l l our i n s t a n c e s t h i s
l i n e i s equal to "ALL")

16 numberHubs = i n t (f i l e [1])
17 customers = s e t ()

80

SNDHLP model creation

18 hubs = s e t ()
19 f o r i in range (numberCustomers) :
20 customerNode = i + 1 + addingNodeCustomer #to generate

the " dup l i ca t ed " customer r e f e r r e d to the same hub l o c a t i o n
21 customers . add (customerNode)
22 hubs . add (i +1)
23

24 #c r e a t e the two s e t s o f intraHubs a r c s (a l l l i n k s between any two
hubs) and o f acce s sArcs (by tak ing in both d i r e c t i o n s a s p e c i f i c

percentage o f c l o s e s t hubs to the customer + the customer−l o c a t i o n
hub)

25 intraHubsArcs = {}
26 acces sArcsPercentage = 0 .3 i f numberCustomers<=20 e l s e (0 . 25

i f numberCustomers<40 e l s e 0 . 2)
27 numAccessArcs = i n t (acces sArcsPercentage ∗numberCustomers)
28 acce s sArcs = {}
29 f o r i in range (numberCustomers) :
30 customerNode = i + 1 + addingNodeCustomer
31 acce s sArcs [tup l e ([customerNode , i +1])] = 0 .0
32 acce s sArcs [tup l e ([i +1,customerNode])] = 0 .0
33 l = i + 2 #because we have to sk ip the f i r s t 2 l i n e s o f

the f i l e s
34 d i s tanceL ine = l i s t (f i l e [l] . s p l i t ())
35 closeHubs = {}
36 f o r j in range (numberCustomers) :
37 i f i != j :
38 d i s t = round (f l o a t (d i s t anceL ine [j]) , 2)
39 intraHubsArcs [tup l e ([i +1, j +1])] = d i s t
40 closeHubs [j +1] = d i s t
41 #here we c r e a t e the s e t o f acce s sArcs tak ing the numAccessArcs

c l o s e s t hubs to the customer and then adding them in both
d i r e c t i o n

42 c lo se s tHubs = sor t ed (closeHubs . i tems () , key=lambda x : x
[1])

43 f o r c in range (numAccessArcs) :
44 acce s sArcs [tup l e ([customerNode , c lo se s tHubs [c] [0]])] =

c lose s tHubs [c] [1]
45 acce s sArcs [tup l e ([c lo se s tHubs [c] [0] , customerNode])] =

c lose s tHubs [c] [1]
46

47 #c r e a t e s the r eque s t s d i c t i o n a r y
48 r eque s t s = {}
49 f o r i in range (numberCustomers) :
50 l = i + numberCustomers + 2 #because we have to sk ip the

f i r s t 2 l i n e s o f the f i l e s + a l l the l i n e s o f the d i s t a n c e s ’
matrix = #nodes

51 demandLine = l i s t (f i l e [l] . s p l i t ())
52 f o r j in range (numberCustomers) :
53 dem = round (f l o a t (demandLine [j]) , 2)

81

SNDHLP model creation

54 i f dem > 0 :
55 r eque s t s [tup l e ([i+1+addingNodeCustomer , j+1+

addingNodeCustomer])] = dem
56

57 re turn customers , hubs , accessArcs , intraHubsArcs , r eques t s ,
numberHubs

58

59 #t h i s method obta ins the average d i s t ance and the average demand
o f a s p e c i f i c i n s t ance o f SNDHLP

60 de f getInstanceData (f i leName) :
61 f i l e = open (fi leName , " r ") . r e a d l i n e s ()
62 numberCustomers = i n t (f i l e [0])
63

64 #computing the t o t a l d i s t a n c e s between a l l the customers
65 t o t a l D i s t a n c e = 0 .0
66 f o r i in range (numberCustomers) :
67 l = i + 2 #sk ip the f i r s t 2 l i n e s o f the f i l e s
68 d i s tanceL ine = l i s t (f i l e [l] . s p l i t ())
69 f o r j in range (numberCustomers) :
70 t o t a l D i s t a n c e += round (f l o a t (d i s tanceL ine [j]) , 2)
71

72 #computing the t o t a l demands between a l l customer p a i r s
73 totalDemands = 0 .0
74 f o r i in range (numberCustomers) :
75 l = i + numberCustomers + 2 #sk ip the f i r s t 2 l i n e s + the

l i n e s o f the d i s t a n c e s
76 demandLine = l i s t (f i l e [l] . s p l i t ())
77 f o r j in range (numberCustomers) :
78 totalDemands += round (f l o a t (demandLine [j]) , 2)
79

80 #computing the average d i s t anc e and demand f o r our s p e c i f i c
i n s t anc e

81 avgDistance = round (f l o a t (t o t a l D i s t a n c e /(numberCustomers ∗(
numberCustomers −1))) , 2)

82 avgDemand = round (f l o a t (totalDemands /(numberCustomers ∗(
numberCustomers −1))) , 2)

83 re turn avgDistance , avgDemand , numberCustomers
84

85 #t h i s method s e t the time l i m i t and the gap l i m i t f o r the problem
86 de f setTimeAndGapLimits (master , timeLimit , gapLimit) :
87 i f t imeLimit i s not None :
88 master . setRealParam (" l i m i t s / time " , t imeLimit)
89 i f gapLimit i s not None :
90 master . setRealParam (" l i m i t s /gap " , gapLimit)
91

92 #the next method s e t s the problem parameters and l i m i t s f o r the
c o n s t r a i n t s :

82

SNDHLP model creation

93 #d e f i n i n g the number o f hubs to be opened and the maximum number
o f hops on the b a s i s o f the number o f customers , and the v e h i c l e s
capac i ty and the c o s t s o f a r c s on the b a s i s o f the average demand
o f reques t s , whereas the max t ranspor t time depends on the average

d i s t a n c e s
94 de f setProblemParameters (avgDistance , avgDemand , numberCustomers)

:
95

96 numHubs = i n t (numberCustomers ∗∗0 . 6)
97 numHops = 3 i f numHubs<=6 e l s e (4 i f numHubs<=10 e l s e 5)
98 maxTransportTime = 5∗ avgDistance
99 veh i c l eCapac i ty = max(1 , 5∗ i n t (avgDemand))

100 intraHubsCost = 200
101 acces sCost = round (2∗(intraHubsCost / veh i c l eCapac i ty) , 2)
102 re turn numHubs , numHops , maxTransportTime , veh ic l eCapac i ty ,

intraHubsCost , acces sCost

83

SNDHLP model creation

A.2 SNDHLP instance sets generator
In this section we present the general functions necessary to define an instance for
the SNDHLP model.

1 from d a t a c l a s s e s import d a t a c l a s s
2 import networkx as nx
3 from typing import Tuple
4

5 #t h i s method c r e a t e s a graph from the s t a r t i n g s e t s o f hubs and
t h e i r r e l a t i v e l i n k s

6 de f createHubsGraph (hubs , intraHubsArcs) :
7 hubsGraph = nx . DiGraph (n_res=2)
8 hubsGraph . add_nodes_from (hubs)
9 f o r (arc , d i s t) in intraHubsArcs . i tems () :

10 arcTime = d i s t ∗0 .5
11 #the int ra −hubs arc time i s the time in minutes nece s sa ry to

cover the d i s t anc e between the two hubs , and i t i s assumed equal
to h a l f the d i s t ance (c o n s i d e r i n g the low t r a f f i c c o n d i t i o n s in
the hubs ’ network , and an average speed o f 120km/h f o r t r a n s f e r
v e h i c l e s)

12 hubsGraph . add_edge (arc [0] , arc [1] , r e s_cost =[1 , arcTime] ,
d i s t anc e=d i s t , weight =0.0)

13 re turn hubsGraph
14

15 #t h i s c r e a t e s the graph f o r a s p e c i f i c r eque s t by adding to the
hubsGraph the two customers nodes and t h e i r r e l a t i v e acce s sArcs
with the check that the added " outgoing " acce s sArcs go only from
the customer o r i g i n to a hub and that the added " ingo ing "
acce s sArcs go only from a hub to the customer d e s t i n a t i o n

16 de f createRequestGraph (hubsGraph , o r i g i n , d e s t i na t i on , hubs ,
acce s sArcs) :

17 requestGraph = hubsGraph . copy ()
18 f o r (arc , d i s t) in acce s sArcs . i tems () :
19 arcTime = d i s t ∗0 .75
20 #the ac c e s s arc time i s the time in minutes nece s sa ry to cover

the d i s t anc e between the customer and the hub (or v i c e v e r s a) , and
i t i s assumed equal to 0 .75 t imes the d i s t anc e (assuming more
t r a f f i c c o n d i t i o n s than the int rahubs a r c s and an average speed o f
80km/h f o r v e h i c l e s)

21 i f o r i g i n == arc [0] and arc [1] in hubs :
22 requestGraph . add_edge (arc [0] , arc [1] , r e s_cost =[1 ,

arcTime] , d i s t anc e=d i s t , weight=d i s t)
23 e l i f d e s t i n a t i o n == arc [1] and arc [0] in hubs :
24 requestGraph . add_edge (arc [0] , arc [1] , r e s_cost =[1 ,

arcTime] , d i s t anc e=d i s t , weight=d i s t)
25 re turn requestGraph

84

SNDHLP model creation

26

27 @datac lass
28 c l a s s Path :
29 nodes : l i s t [i n t] # the l i s t o f nodes in the path
30 hubs : l i s t [i n t] # the l i s t o f nodes that are hubs in the path

(a l l the nodes a part from the o r i g i n and the d e s t i n a t i o n)
31 a r c s : l i s t [Tuple [int , i n t]] # the l i s t o f a r c s in the path
32 intraHubsArcs : l i s t [Tuple [int , i n t]] # the l i s t o f " middle "

a r c s between hubs in the path (i f the re are)
33 extremeArcs : l i s t [Tuple [int , i n t]] # the f i r s t and the l a s t

arc o f the path
34 l ength : i n t # the l enght o f the path = number o f a r c s in the

path = len (a r c s) = len (nodes) − 1
35 t o t a l D i s t a n c e : f l o a t # the t o t a l d i s t anc e in k i l omet e r s o f

the path
36 totalTime : f l o a t # the t o t a l time in minutes f o r cover ing the

e n t i r e path by a standard v e h i c l e
37 approximateTotalCost : f l o a t # the t o t a l co s t o f the path f o r

a s i n g l e demand uni t = (d i s tance1 s tArc + dis tanceLastArc) ∗
co s t a c c e s sArc s + distanceIntraHubsArc ∗ intraHubsCostArcs /
veh i c l eCapac i ty

38 pathStr ing : s t r # t h i s i s j u s t the conver s i on to s t r i n g o f
the l i s t o f nodes , that i s u s e f u l f o r the problem model

39

40 #t h i s i s the i n i t i a l i z a t i o n o f an ob j e c t o f t h i s c l a s s when i t i s
g iven a path and i t s graph + the a r c s ’ c o s t s and the capac i ty o f

v e h i c l e s through int ra −hubs a r c s
41 de f __init__(s e l f , path , graph , accessCost , intraHubsCost ,

veh i c l eCapac i ty) :
42 s e l f . nodes = path
43 s e l f . l ength = len (path) − 1
44 s e l f . hubs = path [1 : s e l f . l ength]
45 s e l f . a r c s = l i s t (nx . u t i l s . pa i rw i s e (path))
46 s e l f . intraHubsArcs = s e l f . a r c s [1 : s e l f . length −1]
47 s e l f . extremeArcs = [s e l f . a r c s [0] , s e l f . a r c s [s e l f . length

−1]]
48 s e l f . t o ta lD i s tance , s e l f . totalTime , s e l f .

approximateTotalCost = getPathAttr ibutes (graph , s e l f , accessCost ,
intraHubsCost , veh i c l eCapac i ty)

49 s e l f . pathStr ing = s t r (path)
50

51 #t h i s method re tu rn s the t o t a l d i s tance , the t o t a l time and the
t o t a l approximate co s t o f a path

52 de f getPathAttr ibutes (graph , path , accessCost , intraHubsCost ,
veh i c l eCapac i ty) :

53 d i s t anc e = 0 .0
54 time = 0 .0
55 co s t = 0 .0
56 f o r arc in path . intraHubsArcs :

85

SNDHLP model creation

57 arcDis tance = graph [arc [0]] [arc [1]] [" d i s t anc e "]
58 d i s t anc e += arcDis tance
59 time += arcDis tance ∗0 .5
60 co s t += intraHubsCost ∗ arcDis tance / veh i c l eCapac i ty
61 f o r arc in path . extremeArcs :
62 arcDis tance = graph [arc [0]] [arc [1]] [" d i s t anc e "]
63 d i s t anc e += arcDis tance
64 time += arcDis tance ∗0 .75
65 co s t += acces sCost ∗ arcDis tance
66

67 t o t a l D i s t a n c e = round (d i s tance , 2)
68 totalTime = round (time , 2)
69 t o ta lCos t = round (cost , 2)
70 re turn to ta lD i s tance , totalTime , to ta lCos t
71

72 #to c r e a t e the d i f f e r e n t subse t s o f the paths , the ba s i c idea i s
s imple : g iven a reque s t r with o r i g i n r [0] and d e s t i n a t i o n r [1] ,
the s e t o f f e a s i b l e paths Pr i s der ived from a l l the acce s sArcs
that s t a r t from r [0] or a r r i v e in r [1] with a l l the p o s s i b l e in t ra
−hubs l i n k s

73 de f ge tFeas ib l ePaths (hubsGraph , o r i g i n , d e s t i na t i on , hubs ,
accessArcs , accessCost , intraHubsArcs , intraHubsCost ,
veh ic l eCapac i ty , maxPathLength , requestMaxTransportTime) :

74 #here by c r e a t i n g the requestGraph we guarantee the combined
t ranspor t : avo id ing d i r e c t t ranspor t o r i g i n −des t ina t i on , as in any

case a f e a s i b l e path pas s e s through at l e a s t one hub (that can
a l s o be a same l o c a t i o n hub) , and we a l s o guarantee in a l l the
paths the presence o f a l i n k between the extreme hub and the
o r i g i n / d e s t i n a t i o n (accessArc) because a l l the paths have
n e c e s s a r i l y the f i r s t and the the l a s t arc that i s an accessArc (
the re are no other a r c s from o r i g i n or to de s t i na t i on , as we are
adding them r i g h t now)

75 requestGraph = createRequestGraph (hubsGraph , o r i g i n ,
de s t i na t i on , hubs , acce s sArcs)

76

77 #t h i s gene ra t e s a l l the paths with maximum length maxPathLength
f o r a request , each expres sed as a sequence o f nodes

78 requestPaths = l i s t (nx . a l l_simple_paths (requestGraph , o r i g i n ,
d e s t i na t i on , maxPathLength))

79

80 #as customers l o c a t i o n s in the reque s t are o f the type "100h "
where h i s the number o f the cor re spond ing hub , we remove the
f i r s t occurrence o f "100" (f o r avoid problems with ca s e s l i k e
100100)

81 originHub = i n t (s t r (o r i g i n) . r e p l a c e (" 100 " , " " , 1)) #t h i s g i v e s
the cor re spond ing same l o c a t i o n hub o f the o r i g i n customer o f the
r eque s t

86

SNDHLP model creation

82 dest inat ionHub = i n t (s t r (d e s t i n a t i o n) . r e p l a c e (" 100 " , " " , 1)) #
t h i s g i v e s the cor respond ing same l o c a t i o n hub o f the d e s t i n a t i o n
customer o f the r eque s t

83

84 #however in that l i s t the re are some " wrong " paths that has to be
removed because

85 #− they conta in in t h e i r " middle a r c s " an hub that c o i n c i d e s
with the o r i g i n or the d e s t i n a t i o n customer

86 #− they have more than 3 nodes and the second node c o i n c i d e s
with the d e s t i n a t i o n or the second−to−l a s t node c o i n c i d e s with the

o r i g i n
87 #and in both ca s e s i t has no sense that i t cont inues exp l o r i ng /

has a l r eady exp lored other hubs a f t e r / be f o r e the o r i g i n or
d e s t i n a t i o n hub i f they are not in the second or second−to−l a s t
p o s i t i o n (but t h i s i s due to the nece s sa ry d u p l i c a t i o n o f the
customers done during the problem setup)

88 pathsToRemove = []
89 f o r path in requestPaths :
90 i f or iginHub in path [2 : l en (path) −2] or dest inat ionHub in

path [2 : l en (path) −2]:
91 pathsToRemove . append (path)
92 e l i f l en (path)>3 and (path [1] == dest inat ionHub or path [

l en (path) −2] == originHub) :
93 pathsToRemove . append (path)
94

95 #the next 7 l i n e s c r e a t e the s e t Pr o f a l l f e a s i b l e paths f o r a
r eque s t without the wrong paths to remove

96 r eque s tFeas ib l ePaths = []
97 f o r path in requestPaths :
98 i f path not in pathsToRemove :
99 newPath = Path (path , requestGraph , accessCost ,

intraHubsCost , veh i c l eCapac i ty)
100 i f newPath . totalTime <= requestMaxTransportTime : #

t h i s checks i f the t o t a l time o f the path i s lower than the
maximal a l lowed

101 r eque s tFeas ib l ePaths . append (newPath)
102

103 re turn reque s tFeas ib l ePaths
104

105 #t h i s c r e a t e s the s e t Pr i : a d i c t i o n a r y where the key i s the hub
i and the value i s a l i s t o f a l l the paths conta in ing that hub

106 de f getHubsFeas ib lePaths (reques tFeas ib l ePaths , hubs) :
107 requestHubFeas ib lePaths = d i c t ()
108 f o r hub in hubs :
109 hubFeas iblePaths = []
110 f o r path in r eque s tFeas ib l ePaths :
111 i f hub in path . nodes :
112 hubFeas iblePaths . append (path)
113 i f l en (hubFeas iblePaths) > 0 :

87

SNDHLP model creation

114 requestHubFeas ib lePaths [hub] = hubFeas iblePaths
115 re turn requestHubFeas ib lePaths
116

117 #t h i s c r e a t e s the s e t Pra : a d i c t i o n a r y where the key i s the arc
a and the value i s a l i s t o f a l l the paths conta in ing a

118 de f getArcsFeas ib l ePaths (reques tFeas ib l ePaths , intraHubsArcs) :
119 reques tArcFeas ib l ePaths = d i c t ()
120 f o r arc in intraHubsArcs . keys () :
121 arcFeas ib l ePaths = []
122 f o r path in r eque s tFeas ib l ePaths :
123 i f arc in path . a r c s :
124 arcFeas ib l ePaths . append (path)
125 i f l en (a rcFeas ib l ePaths) > 0 :
126 reques tArcFeas ib l ePaths [arc] = arcFeas ib l ePaths
127 re turn reques tArcFeas ib l ePaths

88

SNDHLP model creation

A.3 Arc-based SNDHLP

This section presents the creation of the arc-based model.

1 from d a t a c l a s s e s import d a t a c l a s s
2 from pysc ipopt import Model , quicksum
3 from c o l l e c t i o n s import d e f a u l t d i c t
4 from instanceReaderSNDHLP import readSNDHLPfromFile
5 from SNDHLPmodelFunctions import ∗
6

7 @datac lass
8 c l a s s sndhlpArcBasedInstance :
9 customers : s e t [i n t] # subset o f v e r t i c e s (s imply r e f e r r e d to

by an i n t e g e r id) that can be only o r i g i n or d e s t i n a t i o n
10 hubs : s e t [i n t] # subset o f v e r t i c e s that are hubs
11 acce s sArcs : d i c t [Tuple [int , i n t] , f l o a t] # d i c t i o n a r y

r e p r e s e n t i n g the subset o f a r c s whose key i s an arc a (i d e n t i f i e d
by a tup l e with the two nodes) which connects an o r i g i n or a
d e s t i n a t i o n to the hubs ’ network and whose value i s i t s l ength

12 intraHubsArcs : d i c t [Tuple [int , i n t] , f l o a t] # dic tonary
r e p r e s e n t i n g the subset o f a r c s whose key i s an intraHub arc a (
i d e n t i f i e d by a tup l e with the two hubs) which l i n k s two hubs and
whose value i s i t s l ength

13 r eque s t s : d i c t [Tuple [int , i n t] , f l o a t] # d i c t i o n a r y mapping
customer p a i r s to demand va lues

14 requestsGraph : d i c t [Tuple [int , i n t] , nx . DiGraph] # d i c t i o n a r y
mapping customer p a i r s to t h e i r r eques t s p e c i f i c graph

15 acces sCost : f l o a t # cos t per k i l omete r and demand uni t f o r
the subset o f acce s sArcs

16 intraHubsCost : f l o a t # cos t per k i l omete r and v e h i c l e f o r the
subset o f intraHubsArcs

17 veh i c l eCapac i ty : f l o a t # given capac i ty o f the means o f
t r a n s p o r t a t i o n

18 numberHubs : i n t # given number o f hubs that have to be used
19 numberHops : i n t # maximal number o f t ranssh ipments at hubs
20 requestsMaxTransportTime : d i c t [Tuple [int , i n t] , f l o a t] #

d i c t i o n a r y mapping customer p a i r s to t h e i r maximum time al lowed
f o r d e l i v e r a r eques t

21

22 #t h i s c r e a t e s an arc−based SNDHLP in s tance
23 de f createArcBasedSNDHLPinstance (fi leName , accessCost ,

intraHubsCost , veh ic l eCapac i ty , numHubs , numHops , maxTransportTime
) :

24 #here we c r e a t e the u s e f u l s e t s by read ing a g e n e r i c i n s t anc e
f i l e

25 customers , hubs , accessArcs , intraHubsArcs , r eques t s ,
numberHubs = readSNDHLPfromFile (f i leName)

89

SNDHLP model creation

26 #t h i s i s to check i f the input i s okay with the content o f the
f i l e and even tua l l y c o r r e c t i t by imposing the f i l e input

27 i f (numHubs > numberHubs) :
28 numHubs = numberHubs
29

30 #here we c r e a t e the graph with hubs and t h e i r l i nk s , and then two
d i c t i o n a r i e s mapping customer p a i r s to t h e i r s p e c i f i c r eque s t

graph and maximum transpor t time
31 hubsGraph = createHubsGraph (hubs , intraHubsArcs)
32 requestsGraph = d i c t ()
33 requestsMaxTransportTime = d i c t ()
34 f o r r in r eque s t s . keys () :
35 requestsGraph [r] = createRequestGraph (hubsGraph , r [0] , r

[1] , hubs , acce s sArcs)
36 originHub = i n t (s t r (r [0]) . r e p l a c e (" 100 " , " " , 1))
37 dest inat ionHub = i n t (s t r (r [1]) . r e p l a c e (" 100 " , " " , 1))
38 requestsMaxTransportTime [r] = maxTransportTime + 1.5∗

intraHubsArcs . get ((originHub , dest inat ionHub))
39

40 #here we c r e a t e the SNDHLP object , u s e f u l f o r the model c r e a t i o n
41 sndhlp = sndhlpArcBasedInstance (customers , hubs , accessArcs ,

intraHubsArcs , r eques t s , requestsGraph , accessCost , intraHubsCost ,
veh ic l eCapac i ty , numHubs , numHops , requestsMaxTransportTime)

42 re turn sndhlp
43

44 @datac lass
45 #c l a s s o f the r e l axed arc−based model (without the max time and

number o f hops c o n s t r a i n t s)
46 c l a s s arcBasedModel :
47 master : Model
48 h : d i c t #hub v a r i a b l e s
49 x : d e f a u l t d i c t (d i c t) #reques t a r c s v a r i a b l e s r e p r e s e n t i n g the

percentage o f the r eques t r t ranspor ted by arc a (d i c t i o n a r i e s
that f o r each reque s t have a d i c t i o n a r y mapping reque s t to an arc)

50 v : d i c t #number o f v e h i c l e s per t r a n s f e r arc v a r i a b l e s
51 numHubsCons : any #c o n s t r a i n t f o r opening a f i x e d number o f

hubs
52 de l i ve rFu l lReques t sCons s : d e f a u l t d i c t (d i c t) #c o n s t r a i n t f o r

the f u l l d e l i v e r y o f the r eque s t s ’ demand
53 numVehiclesConss : d i c t #c o n s t r a i n t f o r guarantee ing the

presence o f a l l the nece s sa ry v e h i c l e s through an intrahubs arc
54 openHubConss : d e f a u l t d i c t (d i c t) #c o n s t r a i n t f o r opening a

s p e c i f i c hub i f an a r c s ’ route pas s e s through i t
55

56 @datac lass
57 #c l a s s o f the arc−based model with u n s p l i t t a b l e r eque s t s (

s u b c l a s s o f the c l a s s arcBasedModel)
58 c l a s s unspl i t tableRequestsArcBasedModel (arcBasedModel) :

90

SNDHLP model creation

59 numHopsConss : d i c t #c o n s t r a i n t f o r the maximum number o f
t ranssh ipments

60 maxTransportTimeConss : d i c t #c o n s t r a i n t f o r the maximum
transpor t time

61

62 @datac lass
63 #c l a s s o f the arc−based model with s p l i t t a b l e r eque s t s (s u b c l a s s

o f the c l a s s arcBasedModel)
64 c l a s s sp l i t tab leRequestsArcBasedModel (arcBasedModel) :
65 e : d e f a u l t d i c t (d i c t) #binary reque s t a r c s v a r i a b l e s

i n d i c a t i n g wheter or not the r eque s t r i s t ranspor ted over arc a
66 s : d e f a u l t d i c t (d i c t) #v a r i a b l e s count ing number o f sh ip s o f

the part o f r eque s t r up to the hub i
67 w: d e f a u l t d i c t (d i c t) #v a r i a b l e s r e p r e s e n t i n g the t ranspo r t

time o f the part o f r eques t r u n t i l the hub i
68 startHubsNumHopsConss : d e f a u l t d i c t (d i c t) #c o n s t r a i n t f o r

maximum number o f t ranssh ipments in the f i r s t l e g o f t r i p
69 transferArcsNumHopsConss : d e f a u l t d i c t (d i c t) #c o n s t r a i n t f o r

maximum number o f t ranssh ipments in the hubs network
70 endHubsNumHopsConss : d e f a u l t d i c t (d i c t) #c o n s t r a i n t f o r

maximum number o f t ranssh ipments in the l a s t l e g o f t r i p (the
ac tua l max number o f transshipments , but i t depends on the
prev ious two)

71 startHubsTransportTimeConss : d e f a u l t d i c t (d i c t) #c o n s t r a i n t
f o r maximum transpor t time in the f i r s t l e g o f t r i p

72 transferArcsTransportTimeConss : d e f a u l t d i c t (d i c t) #c o n s t r a i n t
f o r maximum transpor t time in the hubs network

73 endHubsTransportTimeConss : d e f a u l t d i c t (d i c t) #c o n s t r a i n t f o r
maximum transpor t time in the l a s t l e g o f t r i p (the ac tua l max
t ranspor t time , but i t depends on the prev ious two)

74

75 #t h i s c r e a t e s the SNDHLP model o f the compact arc−based problem
76 de f createArcBasedSNDHLPmodel (sndhlp , s p l i t t a b l e R e q u e s t s) :
77 modelName = " UnsplittableRequestsArcBasedSNDHLP "
78 xVarType = "B"
79 i f s p l i t t a b l e R e q u e s t s :
80 modelName = " splittableRequestsArcBasedSNDHLP "
81 xVarType = "C"
82

83 #here we c r e a t e the model
84 master = Model (modelName)
85 #i n i t i a l i z e c on t a i n e r s f o r the master v a r i a b l e s
86 h = {}
87 x = d e f a u l t d i c t (d i c t)
88 v = {}
89 #i n i t i a l i z e c on t a i n e r s f o r the master c o n s t r a i n t s
90 numHubsCons = None
91 de l i ve rFu l lReques t sCons s = d e f a u l t d i c t (d i c t)
92 numVehiclesConss = {}

91

SNDHLP model creation

93 openHubConss = d e f a u l t d i c t (d i c t)
94

95 #c r e a t e hub v a r i a b l e s
96 f o r i in sndhlp . hubs :
97 h [i] = master . addVar (vtype="B" , name=f "h({ i }) ")
98

99 #c r e a t e r eques t a r c s v a r i a b l e s
100 f o r r in sndhlp . r eque s t s . keys () :
101 f o r a in l i s t (sndhlp . requestsGraph . get (r) . edges) :
102 x [r] [a] = master . addVar (vtype=xVarType , name=f " x ({ r

} ,{ a }) ")
103

104 #c r e a t e number o f v e h i c l e s per arc v a r i a b l e s
105 f o r a in sndhlp . intraHubsArcs . keys () :
106 v [a] = master . addVar (vtype=" I " , name=f " v ({ a }) ")
107

108 #c o n s t r a i n t o f number o f hubs
109 numHubsCons = master . addCons (
110 quicksum (h [i] f o r i in sndhlp . hubs) == sndhlp . numberHubs ,
111 name="numHubsCons ")
112

113 #c o n s t r a i n t o f sum of s p l i t r eque s t s to guarantee the f u l l
d e l i v e r y o f the demand

114 f o r r in sndhlp . r eque s t s . keys () :
115 f o r node in l i s t (sndhlp . requestsGraph . get (r) . nodes) :
116 #we compute the a r c s ’ f low in the node given by the d i f f e r e n c e

between outgoing a r c s and ingo ing a r c s
117 outgoingArcs = quicksum (x [r] [(node , succ)] f o r succ

in l i s t (sndhlp . requestsGraph . get (r) . s u c c e s s o r s (node)))
118 ingo ingArcs = quicksum (x [r] [(pred , node)] f o r pred in

l i s t (sndhlp . requestsGraph . get (r) . p r e d e c e s s o r s (node)))
119 arcsFlow = outgoingArcs − ingo ingArcs
120 #t h i s a r c s ’ f low must be equal to 0 i f the node i s an hub , to 1

i f i t i s the customer o r i g i n , and to −1 i f i t i s the customer
d e s t i n a t i o n

121 arcsFlowValue = 0 .0
122 i f node == r [0] :
123 arcsFlowValue = 1 .0
124 e l i f node == r [1] :
125 arcsFlowValue = −1.0
126 de l i ve rFu l lReques t sCons s [r] [node] = master . addCons (
127 arcsFlow == arcsFlowValue ,
128 name=f " de l iverFul lRequestsCons_ { r }_{node} ")
129

130 #c o n s t r a i n t o f number o f v e h i c l e s per int ra −hubs a r c s
131 f o r a in sndhlp . intraHubsArcs . keys () :
132 r eques tPar t s = quicksum (sndhlp . r eque s t s . get (r) ∗x [r] [a]

f o r r in sndhlp . r eque s t s . keys ())
133 numVehiclesConss [a] = master . addCons (

92

SNDHLP model creation

134 r eques tPar t s <= (sndhlp . veh i c l eCapac i ty ∗v [a]) ,
135 name=f " numVehiclesCons_{a} ")
136

137 #c o n s t r a i n t o f open hub i f an a r c s ’ route pas s e s through i t
138 f o r i in sndhlp . hubs :
139 f o r r in sndhlp . r eque s t s . keys () :
140 openHubConss [i] [r] = master . addCons (
141 −h [i] + quicksum (x [r] [(pred , i)] f o r pred in l i s t

(sndhlp . requestsGraph . get (r) . p r e d e c e s s o r s (i))) <= 0 ,
142 name=f " openHubCons_{ i }_{ r } ")
143

144 #o b j e c t i v e func t i on :
145 t r a n s f e r V e h i c l e s C o s t s = quicksum (sndhlp . intraHubsCost ∗ sndhlp .

intraHubsArcs . get (a) ∗v [a] f o r a in sndhlp . intraHubsArcs . keys ())
146 externalHubsNetworkCosts = quicksum (sndhlp . acces sCost ∗ sndhlp .

acce s sArcs . get (a) ∗ sndhlp . r eque s t s . get (r) ∗x [r] [a] f o r r in sndhlp .
r eque s t s . keys () f o r a in sndhlp . acce s sArcs . keys () i f (a [0]== r [0]
or a [1]== r [1]))

147 ob j e c t i veFunct i on = t r a n s f e r V e h i c l e s C o s t s +
externalHubsNetworkCosts

148 master . s e tOb j e c t i v e (ob j e c t i veFunct i on)
149

150 arcBasedSNDHLP = arcBasedModel (master , h , x , v , numHubsCons ,
de l ive rFu l lReques t sConss , numVehiclesConss , openHubConss)

151

152 i f s p l i t t a b l e R e q u e s t s :
153 splittableRequestsArcBasedSNDHLP =

createSplittableRequestsArcBasedSNDHLPmodel (sndhlp , arcBasedSNDHLP
)

154 re turn splittableRequestsArcBasedSNDHLP
155 e l s e :
156 unsplittableRequestsArcBasedSNDHLP =

createUnsplittableRequestsArcBasedSNDHLPmodel (sndhlp ,
arcBasedSNDHLP)

157 re turn unsplittableRequestsArcBasedSNDHLP
158

159 #t h i s method adds the c o n s t r a i n t s o f the arc−based model f o r
u n s p l i t t a b l e r eque s t s

160 de f createUnsplittableRequestsArcBasedSNDHLPmodel (sndhlp ,
arcBasedSNDHLP) :

161 #i n i t i a l i z e c on t a i n e r s f o r u n s p l i t t a b l e r eque s t s c o n s t r a i n t s
162 numHopsConss = {}
163 maxTransportTimeConss = {}
164

165 #c o n s t r a i n t o f maximum number o f t ranssh ipments per r eques t
166 f o r r in sndhlp . r eque s t s . keys () :
167 numHopsConss [r] = arcBasedSNDHLP . master . addCons (
168 quicksum (arcBasedSNDHLP . x [r] [a] f o r a in sndhlp .

requestsGraph . get (r) . edges) <= sndhlp . numberHops + 1 ,

93

SNDHLP model creation

169 name=f " maxTransshipmentsCons_{ r } "
170)
171

172 #c o n s t r a i n t o f maximum time o f t ranspo r t per r eque s t
173 f o r r in sndhlp . r eque s t s . keys () :
174 maxTransportTimeConss [r] = arcBasedSNDHLP . master . addCons (
175 quicksum (sndhlp . requestsGraph . get (r) [a [0]] [a [1]] ["

re s_cost "] [1] ∗ arcBasedSNDHLP . x [r] [a] f o r a in sndhlp . requestsGraph
. get (r) . edges) <= sndhlp . requestsMaxTransportTime . get (r) ,

176 name=f " maxTransportTimeCons_{ r } "
177)
178

179 unsplittableRequestsArcBasedSNDHLP =
unspl i t tableRequestsArcBasedModel (arcBasedSNDHLP , numHopsConss ,
maxTransportTimeConss)

180 re turn unsplittableRequestsArcBasedSNDHLP
181

182 #t h i s method adds the v a r i a b l e s and the c o n s t r a i n t s o f the arc−
based model f o r s p l i t t a b l e r eque s t s

183 de f createSplittableRequestsArcBasedSNDHLPmodel (sndhlp ,
arcBasedSNDHLP) :

184 #i n i t i a l i z e c on t a i n e r s f o r the s p l i t t a b l e r eque s t s v a r i a b l e s
185 e = d e f a u l t d i c t (d i c t)
186 s = d e f a u l t d i c t (d i c t)
187 w = d e f a u l t d i c t (d i c t)
188 #i n i t i a l i z e c on t a i n e r s f o r the s p l i t t a b l e r eque s t s c o n s t r a i n t s
189 startHubsNumHopsConss = d e f a u l t d i c t (d i c t)
190 transferArcsNumHopsConss = d e f a u l t d i c t (d i c t)
191 endHubsNumHopsConss = d e f a u l t d i c t (d i c t)
192 startHubsTransportTimeConss = d e f a u l t d i c t (d i c t)
193 transferArcsTransportTimeConss = d e f a u l t d i c t (d i c t)
194 endHubsTransportTimeConss = d e f a u l t d i c t (d i c t)
195

196 #c r e a t e cor re spond ing binary reque s t a r c s v a r i a b l e s e [r] [a] , with
the r e l a t i v e l i n k i n g c o n s t r a i n t x [r] [a] <= e [r] [a]

197 f o r r in sndhlp . r eque s t s . keys () :
198 f o r a in l i s t (sndhlp . requestsGraph . get (r) . edges) :
199 e [r] [a] = arcBasedSNDHLP . master . addVar (vtype="B" ,

name=f " e ({ r } ,{ a }) ")
200 arcBasedSNDHLP . master . addCons (arcBasedSNDHLP . x [r] [a]

<= e [r] [a] , name=f " arcsVariablesCons_ { r }_{a} ")
201

202 #c r e a t e the v a r i a b l e s f o r managing the c o n s t r a i n t s o f number o f
t ranssh ipments and t ranspor t time in the hubs

203 f o r r in sndhlp . r eque s t s . keys () :
204 f o r i in sndhlp . hubs :
205 s [r] [i] = arcBasedSNDHLP . master . addVar (vtype=" I " ,

name=f " s ({ r } ,{ i }) ")

94

SNDHLP model creation

206 w[r] [i] = arcBasedSNDHLP . master . addVar (vtype="C" ,
name=f "w({ r } ,{ i }) ")

207

208 #c o n s t r a i n t s o f maximum number o f t ranssh ipments per r eque s t
209 f o r r in sndhlp . r eque s t s . keys () :
210 f o r a in sndhlp . acce s sArcs . keys () :
211 i f a [0]== r [0] :
212 startHubsNumHopsConss [r] [a [1]] = arcBasedSNDHLP .

master . addCons (
213 s [r] [a [1]] >= e [r] [a] ,
214 name=f " startHubMaxTransshipmentsCons_{ r }_{a

[1] } "
215)
216 i f a [1]== r [1] :
217 endHubsNumHopsConss [r] [a [0]] = arcBasedSNDHLP .

master . addCons (
218 s [r] [a [0]] <= sndhlp . numberHops ,
219 name=f " endHubMaxTransshipmentsCons_{ r }_{a [0] }

"
220)
221 f o r a in sndhlp . intraHubsArcs . keys () :
222 transferArcsNumHopsConss [r] [a] = arcBasedSNDHLP .

master . addCons (
223 s [r] [a [0]] + e [r] [a] <= s [r] [a [1]] + sndhlp .

numberHops ∗(1 − e [r] [a]) ,
224 name=f " transferArcMaxTransshipmentsCons_{ r }_{a} "
225)
226

227 #c o n s t r a i n t s o f maximum time o f t ranspor t per r eque s t
228 f o r r in sndhlp . r eque s t s . keys () :
229 f o r a in sndhlp . acce s sArcs . keys () :
230 i f a [0]== r [0] :
231 startHubsTransportTimeConss [r] [a [1]] =

arcBasedSNDHLP . master . addCons (
232 w[r] [a [1]] >= e [r] [a] ∗ sndhlp . requestsGraph .

get (r) [a [0]] [a [1]] [" re s_cost "] [1] ,
233 name=f " startHubMaxTransportTimeCons_{ r }_{a

[1] } "
234)
235 i f a [1]== r [1] :
236 endHubsTransportTimeConss [r] [a [0]] =

arcBasedSNDHLP . master . addCons (
237 w[r] [a [0]] + e [r] [a] ∗ sndhlp . requestsGraph . get

(r) [a [0]] [a [1]] [" r e s_cost "] [1] <= sndhlp . requestsMaxTransportTime .
get (r) ,

238 name=f " endHubMaxTransportTimeCons_{ r }_{a [0] } "
239)
240 f o r a in sndhlp . intraHubsArcs . keys () :

95

SNDHLP model creation

241 arcTime = sndhlp . requestsGraph . get (r) [a [0]] [a [1]] ["
re s_cost "] [1]

242 transferArcsTransportTimeConss [r] [a] = arcBasedSNDHLP
. master . addCons (

243 w[r] [a [0]] + e [r] [a] ∗ arcTime <= w[r] [a [1]] +
sndhlp . requestsMaxTransportTime . get (r) ∗(1 − e [r] [a]) ,

244 name=f " transferArcMaxTransportTimeCons_{ r }_{a} "
245)
246

247 splittableRequestsArcBasedSNDHLP =
spl i t tab leRequestsArcBasedModel (arcBasedSNDHLP , e , s , w,
startHubsNumHopsConss , transferArcsNumHopsConss ,
endHubsNumHopsConss , startHubsTransportTimeConss ,
transferArcsTransportTimeConss , endHubsTransportTimeConss)

248 re turn splittableRequestsArcBasedSNDHLP

96

SNDHLP model creation

A.4 Path-based SNDHLP
This section displays the code of the path-based formulation. Note that in the
method createPathBasedSNDHLPinstance are presented some tools that will
be useful also for the following appendix codes.

1 from d a t a c l a s s e s import d a t a c l a s s
2 from pysc ipopt import Model , quicksum
3 from c o l l e c t i o n s import d e f a u l t d i c t
4 from instanceReaderSNDHLP import readSNDHLPfromFile
5 from SNDHLPmodelFunctions import ∗
6

7 @datac lass
8 c l a s s sndhlpPathBasedInstance :
9 customers : s e t [i n t] # subset o f v e r t i c e s (s imply r e f e r r e d to

by an i n t e g e r id) that can be only o r i g i n or d e s t i n a t i o n
10 hubs : s e t [i n t] # subset o f v e r t i c e s that are hubs
11 acce s sArcs : d i c t [Tuple [int , i n t] , f l o a t] # d i c t i o n a r y

r e p r e s e n t i n g the subset o f a r c s whose key i s an arc a (i d e n t i f i e d
by a tup l e with the two nodes) which connects an o r i g i n or a
d e s t i n a t i o n to the hubs ’ network and whose value i s i t s l ength

12 intraHubsArcs : d i c t [Tuple [int , i n t] , f l o a t] # dic tonary
r e p r e s e n t i n g the subset o f a r c s whose key i s an intraHub arc a (
i d e n t i f i e d by a tup l e with the two hubs) which l i n k s two hubs and
whose value i s i t s l ength

13 r eque s t s : d i c t [Tuple [int , i n t] , f l o a t] # d i c t i o n a r y mapping
customer p a i r s to demand va lues

14 r eque s t sFea s ib l ePath s : d i c t [Tuple [int , i n t] , l i s t [Path]] #
d i c t i o n a r y mapping customer p a i r s to a l l p o s s i b l e paths from the
customer o r i g i n to the d e s t i n a t i o n customer

15 requestsHubFeas ib lePaths : d i c t [Tuple [int , i n t] , d i c t [int ,
l i s t [Path]]] # d i c t i o n a r y mapping customer p a i r s to the
d i c t i o n a r y o f a l l p o s s i b l e paths conta in ing the s p e c i f i c hub i (
t h i s second d i c t i o n a r y maps each hub i to a l l p o s s i b l e paths
conta in ing i t)

16 r eques t sArcFeas ib l ePaths : d i c t [Tuple [int , i n t] , d i c t [Tuple [
int , i n t] , l i s t [Path]]] # d i c t i o n a r y mapping customer p a i r s to
the d i c t i o n a r y o f a l l p o s s i b l e paths conta in ing the s p e c i f i c arc a

(t h i s second d i c t i o n a r y maps each arc a to a l l p o s s i b l e paths
conta in ing i t)

17 acces sCost : f l o a t # cos t per k i l omete r and demand uni t f o r
the subset o f acce s sArcs

18 intraHubsCost : f l o a t # cos t per k i l omete r and v e h i c l e f o r the
subset o f intraHubsArcs

19 veh i c l eCapac i ty : f l o a t # given capac i ty o f the means o f
t r a n s p o r t a t i o n

20 numberHubs : i n t # given number o f hubs that have to be used

97

SNDHLP model creation

21 numberHops : i n t # maximal number o f t ranssh ipments at hubs
22 requestsMaxTransportTime : d i c t [Tuple [int , i n t] , f l o a t] #

d i c t i o n a r y mapping customer p a i r s to t h e i r maximum time al lowed
f o r d e l i v e r a r eques t

23

24 #t h i s c r e a t e s a complete path−based SNDHLP in s tance
25 de f createPathBasedSNDHLPinstance (fi leName , accessCost ,

intraHubsCost , veh ic l eCapac i ty , numHubs , numPaths , numHops ,
maxTransportTime , heur i s t i cApproach , CGmodel) :

26 #here we c r e a t e the u s e f u l s e t s by read ing a g e n e r i c i n s t anc e
f i l e

27 customers , hubs , accessArcs , intraHubsArcs , r eques t s ,
numberHubs = readSNDHLPfromFile (f i leName)

28 #t h i s i s to check i f the input i s okay with the content o f the
f i l e and even tua l l y c o r r e c t i t by imposing the f i l e input

29 i f (numHubs > numberHubs) :
30 numHubs = numberHubs
31

32 #here we c r e a t e the graph with hubs and t h e i r l i n k s and the "
subgraph " that have only the s t a r t i n g open hubs generated from the

a u x i l i a r y method or from the h e u r i s t i c approach
33 hubsGraph = createHubsGraph (hubs , intraHubsArcs)
34 i f CGmodel or heur i s t i cApproach != " " :
35 heurist icOpenHubs = getHeurist icOpenHubs (fi leName ,

numHubs , heur i s t i cApproach) #to have the s t a r t i n g open hubs o f a
p o s s i b l e f e a s i b l e s o l u t i o n s o f the model , g iven the s p e c i f i e d
h e u r i s t i c approach

36 heuristicOpenHubsGraph = generateOpenHubsGraph (hubsGraph ,
heurist icOpenHubs)

37

38 requestsMaxTransportTime = d i c t () #d i c t i o n a r y f o r the maximum
transpor t time o f each reque s t

39 #then we c r e a t e f o r each reque s t the s e t o f f e a s i b l e paths , and
the 2 s e t s o f f e a s i b l e paths that conta in a s p e c i f i c hub or arc

40 r eque s t sFea s ib l ePath s = d i c t ()
41 requestsHubFeas ib lePaths = d i c t ()
42 r eques t sArcFeas ib l ePaths = d i c t ()
43 f o r r in r eque s t s . keys () :
44 #as customers in the reque s t are o f the type "100h " where h i s

the number o f the cor re spond ing hub , we remove the f i r s t
occur rence o f "100" (f o r avoid problems with ca s e s l i k e 100100)

45 originHub = i n t (s t r (r [0]) . r e p l a c e (" 100 " , " " , 1)) #t h i s
g i v e s the corre spond ing same l o c a t i o n hub o f the o r i g i n customer
o f the r eque s t

46 dest inat ionHub = i n t (s t r (r [1]) . r e p l a c e (" 100 " , " " , 1)) #
t h i s g i v e s the cor respond ing same l o c a t i o n hub o f the d e s t i n a t i o n
customer o f the r eque s t

98

SNDHLP model creation

47 requestMaxTransportTime = maxTransportTime + 1.5∗
intraHubsArcs . get ((originHub , dest inat ionHub)) #maximum transpor t
time o f the r eque s t

48 requestsMaxTransportTime [r] = requestMaxTransportTime
49

50 maxPathLength = numHops + 1
51 #i f CGmodel i s " Fa l se " then the 1 s t input i s hubsGraph and the 4

th one i s hubs , and we are gene ra t ing a l l the p o s s i b l e f e a s i b l e
paths with maximum length equal to numHops+1 o f a s p e c i f i c r eque s t
. However , i f the input value heur i s t i cApproach i s not an empty
s t r i ng , then the 1 s t and 4th input are the heuristicOpenHubsGraph
and heurist icOpenGraph generated by the app l i ed h e u r i s t i c approach
, and we generate a l l the p o s s i b l e f e a s i b l e paths with that
maximum length conta in ing only those open hubs .

52 #e l s e i f i t i s " True " we want to obta in a s t a r t i n g f e a s i b l e
s o l u t i o n f o r the column genera t i on algorithm , and these input are
heuristicOpenHubsGraph and heuristicOpenHubs , so we are gene ra t ing
a subset o f the cheapest f e a s i b l e paths conta in ing only the

s t a r t i n g opened hubs
53 i f CGmodel == False :
54 i f heur i s t i cApproach == " " :
55 rFeas ib l ePaths = getFeas ib l ePaths (hubsGraph , r

[0] , r [1] , hubs , accessArcs , accessCost , intraHubsArcs ,
intraHubsCost , veh ic l eCapac i ty , maxPathLength ,
requestMaxTransportTime)

56 e l s e :
57 rFeas ib l ePaths = getFeas ib l ePaths (

heuristicOpenHubsGraph , r [0] , r [1] , heuristicOpenHubs , accessArcs ,
accessCost , intraHubsArcs , intraHubsCost , veh ic l eCapac i ty ,

maxPathLength , requestMaxTransportTime)
58 e l s e :
59 rFeas ib l ePaths = getFeas ib l ePaths (

heuristicOpenHubsGraph , r [0] , r [1] , heuristicOpenHubs , accessArcs ,
accessCost , intraHubsArcs , intraHubsCost , veh ic l eCapac i ty ,

maxPathLength , requestMaxTransportTime)
60 rCheapestPaths = getCheapestPaths (rFeas ib l ePaths ,

numPaths) #to obta in the subset o f the r eque s t cheapest f e a s i b l e
paths

61 rFeas ib l ePaths = rCheapestPaths . copy ()
62

63 rHubFeasiblePaths = getHubsFeas ib lePaths (rFeas ib lePaths ,
hubs)

64 rArcFeas ib lePaths = getArcsFeas ib l ePaths (rFeas ib l ePaths ,
intraHubsArcs)

65 r eque s t sFea s ib l ePath s [r] = rFeas ib l ePaths
66 requestsHubFeas ib lePaths [r] = rHubFeasiblePaths
67 r eques t sArcFeas ib l ePaths [r] = rArcFeas ib lePaths
68

69 #here we c r e a t e the SNDHLP object , u s e f u l f o r the model c r e a t i o n

99

SNDHLP model creation

70 sndhlp = sndhlpPathBasedInstance (customers , hubs , accessArcs ,
intraHubsArcs , r eques t s , r eques t sFeas ib l ePaths ,

requestsHubFeas ib lePaths , request sArcFeas ib l ePaths , accessCost ,
intraHubsCost , veh ic l eCapac i ty , numHubs , numHops ,
requestsMaxTransportTime)

71 re turn sndhlp
72

73 @datac lass
74 c l a s s pathBasedModel :
75 master : Model
76 y : d e f a u l t d i c t (d i c t) #reques t paths v a r i a b l e s r e p r e s e n t i n g

the percentage o f the r eque s t r t ranspor ted by path p (
d i c t i o n a r i e s that f o r each reque s t have a d i c t i o n a r y mapping
reque s t to a path)

77 h : d i c t #hub v a r i a b l e s
78 v : d i c t #number o f v e h i c l e s per t r a n s f e r arc v a r i a b l e s
79 numHubsCons : any #c o n s t r a i n t f o r opening a f i x e d number o f

hubs
80 de l i ve rFu l lReques t sCons s : d e f a u l t d i c t (d i c t) #c o n s t r a i n t f o r

the f u l l d e l i v e r y o f the r eque s t s ’ demand
81 numVehiclesConss : d i c t #c o n s t r a i n t f o r guarantee ing the

presence o f a l l the nece s sa ry v e h i c l e s through an intrahubs arc
82 openHubConss : d e f a u l t d i c t (d i c t) #c o n s t r a i n t f o r opening a

s p e c i f i c hub i f a path pas s e s through i t
83

84 #t h i s c r e a t e s the SNDHLP model o f the path−based master problem
85 de f createPathBasedSNDHLPmodel (sndhlp , s p l i t t a b l e R e q u e s t s) :
86 modelName = " UnsplittableRequestsPathBasedSNDHLP "
87 yVarType = " I "
88 i f s p l i t t a b l e R e q u e s t s :
89 modelName = " splittableRequestsPathBasedSNDHLP "
90 yVarType = "C"
91

92 master = Model (modelName)
93

94 #i n i t i a l i z e c on t a i n e r s f o r the master v a r i a b l e s
95 h = {}
96 y = d e f a u l t d i c t (d i c t)
97 v = {}
98 #i n i t i a l i z e c on t a i n e r s f o r the master c o n s t r a i n t s
99 numHubsCons = None

100 de l i ve rFu l lReques t sCons s = {}
101 numVehiclesConss = {}
102 openHubConss = d e f a u l t d i c t (d i c t)
103

104 #c r e a t e hub v a r i a b l e s
105 f o r i in sndhlp . hubs :
106 h [i] = master . addVar (vtype="B" , name=f "h({ i }) ")
107

100

SNDHLP model creation

108 #c r e a t e r eques t paths va r i ab l e s , i f the input s p l i t t a b l e R e q u e s t s
i s True they w i l l be cont inuous otherwi se binary

109 f o r r in sndhlp . r eque s t s . keys () :
110 f o r p in sndhlp . r eque s t sFea s ib l ePath s . get (r) :
111 y [r] [p . pathStr ing] = master . addVar (vtype=yVarType ,

name=f " y ({ r } , {p . pathStr ing }) ")
112

113 #c r e a t e number o f v e h i c l e s per arc v a r i a b l e s
114 f o r a in sndhlp . intraHubsArcs . keys () :
115 v [a] = master . addVar (vtype=" I " , name=f " v ({ a }) ")
116

117 #c o n s t r a i n t o f number o f hubs
118 numHubsCons = master . addCons (
119 quicksum (h [i] f o r i in sndhlp . hubs) == sndhlp . numberHubs ,
120 name="numHubsCons " ,
121 s epara te=False ,
122 mod i f i ab l e=True)
123

124 #c o n s t r a i n t o f sum of r eque s t s par t s equal to 1 to guarantee the
f u l l d e l i v e r y o f the demand

125 f o r r in sndhlp . r eque s t s . keys () :
126 de l i ve rFu l lReques t sCons s [r] = master . addCons (
127 quicksum (y [r] [p . pathStr ing] f o r p in sndhlp .

r eque s t sFea s ib l ePath s . get (r)) == 1 .0 ,
128 name=f " de l iverFul lRequestsCons_ { r } " ,
129 s epara te=False ,
130 mod i f i ab l e=True)
131

132 #c o n s t r a i n t o f number o f v e h i c l e s per int ra −hubs a r c s
133 f o r a in sndhlp . intraHubsArcs . keys () :
134 r eques tPar t s = quicksum (sndhlp . r eque s t s . get (r) ∗y [r] [p .

pathStr ing] f o r r in sndhlp . r eque s t s . keys () i f sndhlp .
r eques t sArcFeas ib l ePaths . get (r) . get (a) i s not None f o r p in sndhlp
. r eques t sArcFeas ib l ePaths . get (r) . get (a))

135 numVehiclesConss [a] = master . addCons (
136 r eques tPar t s <= (sndhlp . veh i c l eCapac i ty ∗v [a]) ,
137 name=f " numVehiclesCons_{a} " ,
138 s epara te=False ,
139 mod i f i ab l e=True)
140

141 #c o n s t r a i n t o f open hub i f a path pas s e s through i t
142 f o r i in sndhlp . hubs :
143 f o r r in sndhlp . r eque s t s . keys () :
144 i f sndhlp . requestsHubFeas ib lePaths . get (r) . get (i) i s

not None :
145 openHubConss [i] [r] = master . addCons (
146 −h [i] + quicksum (y [r] [p . pathStr ing] f o r p in

sndhlp . requestsHubFeas ib lePaths . get (r) . get (i)) <= 0 ,
147 name=f " openHubCons_{ i }_{ r } " ,

101

SNDHLP model creation

148 s epara te=False ,
149 mod i f i ab l e=True)
150 e l s e :
151 openHubConss [i] [r] = master . addCons (
152 −h [i] + quicksum (0 f o r p in range (0)) <= 0 ,
153 name=f " openHubCons_{ i }_{ r } " ,
154 s epara te=False ,
155 mod i f i ab l e=True)
156

157 #o b j e c t i v e func t i on :
158 t r a n s f e r V e h i c l e s C o s t s = quicksum (sndhlp . intraHubsCost ∗ sndhlp .

intraHubsArcs . get (a) ∗v [a] f o r a in sndhlp . intraHubsArcs . keys ())
159 externalHubsNetworkCosts = quicksum (sndhlp . acces sCost ∗ sndhlp .

acce s sArcs . get (a) ∗ sndhlp . r eque s t s . get (r) ∗y [r] [p . pathStr ing] f o r r
in sndhlp . r eque s t s . keys () f o r p in sndhlp . r eque s t sFea s ib l ePath s .
get (r) f o r a in p . extremeArcs)

160 ob j e c t i veFunct i on = t r a n s f e r V e h i c l e s C o s t s +
externalHubsNetworkCosts

161 master . s e tOb j e c t i v e (ob j e c t i veFunct i on)
162

163 pathModel = pathBasedModel (master , y , h , v , numHubsCons ,
de l ive rFu l lReques t sConss , numVehiclesConss , openHubConss)

164 re turn pathModel

102

Appendix B

Heuristics

Every heuristic method and the auxiliary problem for creating the hubs set of the
RMP is based on the following model. In the next sections, we will present the
code for obtaining the relative objective function of the specific heuristic approach.

1 from pysc ipopt import Model , quicksum
2 from instanceReaderSNDHLP import readSNDHLPfromFile
3

4 #t h i s method c r e a t e s a model to s e l e c t the most promis ing s e t o f
hubs , based on the h e u r i s t i c approach chosen or on the a u x i l i a r y
problem , and i s even tua l l y u s e f u l to obta in the s t a r t i n g open hubs

o f the SNDHLP model f o r apply ing the column genera t i on a lgor i thm
5 de f createSNDHLPheuristicModel (f i leName , numHubs ,

heur i s t i cApproach) :
6 #read data from in s tance f i l e and check the input numHubs value
7 customers , hubs , accessArcs , intraHubsArcs , r eques t s ,

numberHubs = readSNDHLPfromFile (f i leName)
8 i f (numHubs > numberHubs) :
9 numHubs = numberHubs

10

11 model = Model (heur i s t i cApproach + "SNDHLP") #name based on
the input heur i s t i cApproach

12

13 #c r e a t e hub v a r i a b l e s
14 h = {}
15 f o r i in hubs :
16 h [i] = model . addVar (vtype="B" , name="h(% i) " % (i))
17

18 #c o n s t r a i n t o f number o f hubs
19 model . addCons (quicksum (h [i] f o r i in hubs) == numHubs)
20

21 #c o n s t r a i n t o f open customer a l lowed hubs f o r each customer
22 f o r customer in customers :

103

Heuristics

23 model . addCons (quicksum (h [i] f o r i in
getCustomerAllowedHubs (customer , acce s sArcs)) >= 1)

24

25 #o b j e c t i v e func t i on
26 ob j e c t i veFunct i on = quicksum (h [i] ∗ setHubObjValue (i ,

accessArcs , r eques t s , heur i s t i cApproach) f o r i in hubs)
27 model . s e tOb j e c t i v e (− ob j ec t i veFunct i on) #the minus i s because

they are maximization problems (a part from the Shortes tAccessArcs
one)

28

29 re turn model
30

31 #t h i s method re tu rn s the s e t o f a l l the hubs l i nked with a
s p e c i f i c customer through an ac c e s s arc (customer a l lowed hubs)

32 de f getCustomerAllowedHubs (customer , acce s sArcs) :
33 customerHubs = s e t ()
34 f o r arc in acce s sArcs . keys () :
35 i f arc [0] == customer :
36 customerHubs . add (arc [1])
37 e l i f arc [1] == customer :
38 customerHubs . add (arc [0])
39 re turn customerHubs
40

41 #t h i s method s e t s the cor re spond ing value in the o b j e c t i v e
func t i on o f the hub var i ab l e , based on the name o f the input
heur i s t i cApproach (i f the name i s wrong , i t imposes the value to 0

as i f i t was s o l v i n g the a u x i l i a r y problem)
42 de f setHubObjValue (hub , accessArcs , r eques t s , heur i s t i cApproach) :
43 objValue = 0
44 i f heur i s t i cApproach == " MostAccessedHubs " :
45 objValue = getNumIngoingAccessArcs (hub , acce s sArcs)
46 e l i f heur i s t i cApproach == " GreatestDemandRequests " :
47 objValue = getHubDemandsPriority (hub , reques t s ,

acce s sArcs)
48 e l i f heur i s t i cApproach == " AdditiveGreatestDemandRequests " :
49 objValue = getHubAdditiveDemandsPriority (hub , reques t s ,

acce s sArcs)
50 e l i f heur i s t i cApproach == " Shortes tAccessArcs " :
51 objValue = − getHubDistancePr ior i ty (hub , acce s sArcs) #

t h i s i s the only minimizat ion problem o f the four and so the minus
52 re turn objValue

104

Heuristics

B.1 Most Accessed Hubs Heuristic

1 #t h i s method g i v e s the number o f ingo ing ac c e s s a r c s in the hub
2 de f getNumIngoingAccessArcs (hub , acce s sArcs) :
3 numArcs = 0
4 f o r arc in acce s sArcs . keys () :
5 i f arc [1] == hub :
6 numArcs += 1
7 re turn numArcs

B.2 Greatest Demand Requests Heuristic

1 #t h i s method re tu rn s the o b j e c t i v e va lue o f a s p e c i f i c hub
der ived from the descending number o f r eque s t s ’ demand un i t s . The
hub p r i o r i t y w i l l be 0 or the number o f the l a s t occurence in
which that hub i s an ac c e s s hub f o r the r eques t

2 de f getHubDemandsPriority (hub , reques t s , acce s sArcs) :
3 hubPr ior i ty = 0
4 sor tedRequest s = d i c t (so r t ed (r eque s t s . i tems () , key=lambda x : x

[1])) #s o r t i n g r eque s t s f o r ascending number o f demand un i t s
5 r e q u e s t P r i o r i t y = 0
6 f o r r in sortedRequest s . keys () :
7 r e q u e s t P r i o r i t y += 1
8 f o r arc in acce s sArcs . keys () :
9 i f arc [0] == r [0] or arc [1] == r [1] :

10 i f hub in arc :
11 hubPr ior i ty = r e q u e s t P r i o r i t y
12 re turn hubPr ior i ty

105

Heuristics

B.3 Additive Greatest Demand Requests Heuris-
tic

1 #t h i s method i s s i m i l a r to the prev ious one , as i t r e tu rn s the
o b j e c t i v e value o f a s p e c i f i c hub der ived from the descending
number o f r eque s t s ’ demand units , but in t h i s case , t h i s va lue
w i l l be 0 or the sum of every number o f the corre spond ing
occurence in which that hub i s an ac c e s s hub f o r the r eque s t

2 de f getHubAdditiveDemandsPriority (hub , reques t s , acce s sArcs) :
3 hubAddi t ivePr io r i ty = 0
4 sor tedRequest s = d i c t (so r t ed (r eque s t s . i tems () , key=lambda x : x

[1])) #s o r t i n g r eque s t s f o r ascending number o f demand un i t s
5 r e q u e s t P r i o r i t y = 0
6 f o r r in sortedRequest s . keys () :
7 r e q u e s t P r i o r i t y += 1
8 f o r arc in acce s sArcs . keys () :
9 i f arc [0] == r [0] or arc [1] == r [1] :

10 i f hub in arc :
11 hubAddi t ivePr io r i ty += r e q u e s t P r i o r i t y
12 re turn hubAddi t ivePr io r i ty

B.4 Shortest Access Arcs Heuristic

1 #t h i s method g i v e s the o b j e c t i v e va lue o f a s p e c i f i c hub der ived
from the weighted d i s t a n c e s from the customer nodes . Indeed , t h i s
va lue w i l l be 10^9 (big M) or the average l ength o f the outgoing
ac c e s s a r c s from the hub (equal to the r a t i o between the sum of
d i s t a n c e s o f each outgoing ac c e s s arc and the number o f outgoing
ac c e s s a r c s o f the hub)

2 de f getHubDistancePr ior i ty (hub , acce s sArcs) :
3 hubDis tancePr io r i ty = 1 .0 e10 #big i n t e g e r number as

i n i t i a l i z a t i o n
4 numArcs = 0
5 hubArcsDistance = 0 .0
6 f o r (arc , d i s t anc e) in acce s sArcs . i tems () :
7 i f arc [0] == hub :
8 numArcs += 1
9 hubArcsDistance += d i s t anc e

10 i f numArcs != 0 :
11 hubDis tancePr io r i ty = f l o a t (hubArcsDistance /numArcs)
12 re turn hubDis tancePr io r i ty

106

Appendix C

Branch-and-Price algorithm

In this chapter is presented the code useful for the Branch-and-Price algorithm.

C.1 Restricted Master Problem
Here is reported the methods that obtain the restriction on the feasible requests
paths sets. They are used in the method createPathBasedSNDHLPinstance
presented in appendix A.4 when the parameter CGmodel is True. After having
created the openHubsGraph from the method generateOpenHubsGraph, that
takes as input parameter the heuristicOpenHubs from method getHeuristicOpen-
Hubs, we create only paths from that graph, and then we restrict the number of
these to a maximum of 5.

1 #t h i s method obta ins , i f the SNDHLP i s f e a s i b l e , one o f the
p o s s i b l e s e t s o f open hubs by s o l v i n g the a u x i l i a r y SNDHLP model (
the eventua l h e u r i s t i c method f o r the o b j e c t i v e func t i on i s g iven
in input)

2 de f getHeurist icOpenHubs (fi leName , numHubs , heur i s t i cApproach) :
3 openHubs = s e t ()
4 heur i s t i cMode l = createSNDHLPheuristicModel (f i leName , numHubs

, heur i s t i cApproach)
5 heur i s t i cMode l . opt imize ()
6 i f h eur i s t i cMode l . ge tStatus () != " i n f e a s i b l e " :
7 f o r var in l i s t (heur i s t i cMode l . getVars ()) :
8 i f h eur i s t i cMode l . getVal (var) == 1 . 0 :
9 strHub = s t r (var) . r e p l a c e ("h(" , " ")

10 hub = i n t (strHub . r e p l a c e (") " , " "))
11 openHubs . add (hub)
12 re turn openHubs
13

107

Branch-and-Price algorithm

14 #t h i s method c r e a t e s a new graph from the o r i g i n a l hubs graph
that conta in s only the hubs that are open in a p o s s i b l e f e a s i b l e
s o l u t i o n

15 de f generateOpenHubsGraph (hubsGraph , openHubs) :
16 openHubsGraph = hubsGraph . copy ()
17 closedHubs = []
18 f o r hub in hubsGraph . nodes :
19 i f hub not in openHubs :
20 closedHubs . append (hub)
21 openHubsGraph . remove_nodes_from (closedHubs)
22 re turn openHubsGraph
23

24 #t h i s method g i v e s the n cheapest f e a s i b l e paths o f a s p e c i f i c
r eque s t (where n i s the input parameter numPaths)

25 de f getCheapestPaths (reques tFeas ib l ePaths , numPaths) :
26 cheapestPaths = []
27 r eque s tFeas ib l ePaths . s o r t (key=lambda p : p .

approximateTotalCost) #s o r t the l i s t by the approximate t o t a l co s t
o f the paths

28 j = 0
29 f o r path in r eque s tFeas ib l ePaths :
30 cheapestPaths . append (path)
31 j += 1
32 i f j == numPaths :
33 break
34 re turn cheapestPaths

108

Branch-and-Price algorithm

C.2 Pricing Problem
The pricing problem is solved, thanks to an auxiliary Python library called cspy
which automatically solves the resources-constrained shortest path problem. Note
that to implement the pricing procedure, it is necessary to include the Pricer class
in the master problem before its optimization.

1 from d a t a c l a s s e s import d a t a c l a s s
2 from c o l l e c t i o n s import d e f a u l t d i c t
3 from pysc ipopt import Pr icer , SCIP_RESULT
4 from cspy import B i D i r e c t i o n a l
5 import networkx as nx
6 from SNDHLPmodelFunctions import Path , sndhlpPathBasedInstance ,

createRequestGraph
7

8 #the f o l l o w i n g method c r e a t e s the p r i c e r i n c l ud ing i t in the
model and i n i t i a l i z i n g i t s v a r i a b l e s and c o n s t r a i n t s to the ones
o f the model

9 de f p r i c e r I n i t i a l i z a t i o n (pathBasedModel , sndhlp ,
s p l i t t a b l e R e q u e s t s) :

10

11 hubsGraph = createHubsGraph (sndhlp . hubs , sndhlp . intraHubsArcs
)

12 #c r e a t i n g and in c l ud ing in the master problem the p r i c e r from the
PricerSNDHLP c l a s s

13 p r i c e r = PricerSNDHLP(sndhlp , hubsGraph , s p l i t t a b l e R e q u e s t s)
14 pathBasedModel . master . i n c l u d e P r i c e r (p r i c e r , " PricerSNDHLP " , "

P r i c e r to i d e n t i f y new paths " , de lay=True)
15

16 #master v a r i a b l e s
17 p r i c e r . y = pathBasedModel . y
18 p r i c e r . h = pathBasedModel . h
19 p r i c e r . v = pathBasedModel . v
20 #master c o n s t r a i n t s that can be modi f i ed during the p r i c i n g

i t e r a t i o n s
21 p r i c e r . numHubsCons = pathBasedModel . numHubsCons
22 p r i c e r . de l i v e rFu l lReques t sCons s = pathBasedModel .

de l i v e rFu l lReques t sCons s
23 p r i c e r . numVehiclesConss = pathBasedModel . numVehiclesConss
24 p r i c e r . openHubConss = pathBasedModel . openHubConss
25

26 EPS = 1.0 e−6 #de f ined i n f i n i t e s i m a l va lue to compare to the
reduced co s t o f a p o s s i b l e new v a r i a b l e in order to avoid rounding

problems i f compared with 0
27

28 @datac lass
29 c l a s s PricerSNDHLP(Pr i c e r) :

109

Branch-and-Price algorithm

30 sndhlp : sndhlpPathBasedInstance
31 hubsGraph : nx . DiGraph
32 yVarType : s t r
33

34 de f __init__(s e l f , sndhlp , hubsGraph , s p l i t t a b l e R e q u e s t s) :
35 s e l f . sndhlp = sndhlp
36 s e l f . hubsGraph = hubsGraph
37 i f s p l i t t a b l e R e q u e s t s :
38 s e l f . yVarType = "C"
39 e l s e :
40 s e l f . yVarType = " I "
41

42 s e l f . p r i c i n g I t e r a t i o n s = 0 #v a r i a b l e count ing how many
i t e r a t i o n s the p r i c i n g does

43

44 #master v a r i a b l e s
45 s e l f . y = d e f a u l t d i c t (d i c t)
46 s e l f . h = {}
47 s e l f . v = {}
48 #master c o n s t r a i n t s
49 s e l f . numHubsCons = None
50 s e l f . de l i v e rFu l lReques t sCons s = {}
51 s e l f . numVehiclesConss = {}
52 s e l f . openHubConss = d e f a u l t d i c t (d i c t)
53

54 #branching r u l e s
55 s e l f . forbiddenHubs = []
56 s e l f . forb iddenIntraHubsArcs = []
57

58 #e a r l y branching t o o l s
59 s e l f . lowerbound = None #u s e f u l to compute the l ag rang ian

gap nece s sa ry f o r the e a r l y branching procedure
60 s e l f . ear lyBranchingNodes = s e t () #s e t o f the B&B nodes

that do not need anymore p r i c i n g i t e r a t i o n s because t h e i r
l ag rang ian gap i s lower than the e a r l y branching th re sho ld

61 s e l f . ear lyBranchingThreshold = 0.05 #thre sho ld f o r the
e a r l y branching implementation , to compare with the node
lag rang ian gap

62

63 #method f o r adding a column with a negat ive reduced co s t to the
master problem by adding the new v a r i a b l e and modifying i t s
r e l a t i v e c o n s t r a i n t s

64 de f addColumn(s e l f , path , request , reqDemand , requestGraph) :
65 #value o f the new v a r i a b l e in the o b j e c t i v e func t i on
66 extremeArcsCost = sum(reqDemand∗ s e l f . sndhlp . acces sCost ∗

requestGraph [arc [0]] [arc [1]] [" d i s t ance "] f o r arc in path .
extremeArcs)

67 #c r e a t e the new v a r i a b l e to add to the master problem

110

Branch-and-Price algorithm

68 s e l f . y [r eque s t] [path . pathStr ing] = s e l f . model . addVar (name
=f " y ({ reque s t } , {path . pathStr ing }) " , vtype=s e l f . yVarType , obj=
extremeArcsCost , pr icedVar=True)

69

70 #adding the new v a r i a b l e c r ea ted to the master problem
c o n s t r a i n t s

71 s e l f . model . addConsCoeff (s e l f . de l i v e rFu l lReques t sCons s [
r eque s t] , s e l f . y [r eque s t] [path . pathStr ing] , 1)

72 f o r a in path . intraHubsArcs :
73 s e l f . model . addConsCoeff (s e l f . numVehiclesConss [a] ,

s e l f . y [r eque s t] [path . pathStr ing] , reqDemand)
74 f o r i in path . hubs :
75 s e l f . model . addConsCoeff (s e l f . openHubConss [i] [r eque s t

] , s e l f . y [r eque s t] [path . pathStr ing] , 1)
76

77 re turn { " r e s u l t " : SCIP_RESULT.SUCCESS}
78

79 #method f o r per forming a p r i c i n g i t e r a t i o n
80 de f per formPr ic ing (s e l f) :
81 s e l f . p r i c i n g I t e r a t i o n s += 1
82

83 #e a r l y branching e x i t cond i t i on : when the cur rent node i s in the
set , the p r i c i n g i s not performed and SCIP s k i p s to the next B&B
node to be analyzed

84 currentNode = s e l f . model . getCurrentNode () . getNumber ()
85 i f currentNode in s e l f . ear lyBranchingNodes :
86 re turn { " r e s u l t " : SCIP_RESULT.DIDNOTRUN, " s t o p e a r l y " :

True}
87

88 #e a r l y branching i n i t i a l i z a t i o n : we r e t r i e v e the o b j e c t i v e va lue
o f the cur rent B&B node , and then we c r e a t e the r e l a t i v e node
lower bound by i n i t i a l l y imposing i t equal to the node o b j e c t i v e
value

89 zRMP = s e l f . model . getLPObjVal ()
90 s e l f . lowerbound = zRMP
91

92 #p r i c i n g problem f o r each reque s t during the same p r i c i n g
i t e r a t i o n

93 f o r (request , reqDemand) in s e l f . sndhlp . r eque s t s . i tems () :
94 #these are the 2 r e s o u r c e s c o n s t r a i n t s f o r minimum and maximum

number o f hops and time to d e l i v e r y f o r the r eque s t
95 min_res = [0 , 0] #minimum r e s o u r c e s s e t both to 0 f o r

s i m p l i c i t y (d i r e c t t r an s p o r t a t i o n i s not p o s s i b l e thanks to the
problem cons t ruc t i on)

96 max_res = [(s e l f . sndhlp . numberHops + 1 + 2) , s e l f .
sndhlp . requestsMaxTransportTime [r eque s t]] #f i x the maximum number
o f a r c s (equal to number o f hops p lus one (+2 f o r the 2 extra a r c s
from " Source " and to " Sink ")) and t ranspor t time

97

111

Branch-and-Price algorithm

98 o r i g i n = reques t [0]
99 d e s t i n a t i o n = reques t [1]

100 #the requestGraph i s the " o r i g i n a l " hubsGraph + or i g in ,
d e s t i n a t i o n and t h e i r l i n k s to t h e i r a l lowed hubs (acce s sArcs)

101 requestGraph = createRequestGraph (s e l f . hubsGraph ,
o r i g i n , de s t i na t i on , s e l f . sndhlp . hubs , s e l f . sndhlp . acce s sArcs)

102

103 #the pricerRequestGraph i s a graph der ived from the requestGraph
but with " dynamic " weights r e l a t e d to dual va lue s o f pr imal
con s t r a i n t s , and the two extra nodes " Source " and " Sink " nece s sa ry

f o r the cspy search a lgor i thm
104 pricerRequestGraph = s e l f . setPr icerRequestGraph (

o r i g i n , de s t i na t i on , reqDemand)
105

106 #t h i s cspy a lgor i thm s o l v e s the s h o r t e s t path problem with
r e s o u r c e s c o n s t r a i n t s and f i n d s the cheapest path that r e s p e c t s
those c o n s t r a i n t s

107 a lgor i thm = B i D i r e c t i o n a l (pricerRequestGraph , max_res
, min_res)

108 a lgor i thm . run ()
109 i f a lgor i thm . path i s not None :
110 pathLength = i n t (a lgor i thm . consumed_resources [0])
111 pathCost = algor i thm . to ta l_cos t
112 p = algor i thm . path [1 : pathLength]
113

114 path = Path (p , requestGraph , s e l f . sndhlp .
accessCost , s e l f . sndhlp . intraHubsCost , s e l f . sndhlp . veh i c l eCapac i ty
)

115 #we compute the reduced co s t o f the found path to check i f i t i s
negat ive and even tua l l y add the column to the master problem and
update the d i c t i o n a r i e s o f f e a s i b l e paths , and sum t h i s to the
lower bound

116 reducedCost = pathCost − s e l f . model .
g e tDua l so lL inear (s e l f . de l i v e rFu l lReques t sCons s [r eque s t])

117 i f reducedCost < −EPS:
118 s e l f . addColumn(path , request , reqDemand ,

requestGraph)
119 s e l f . updateFeas ib lePaths (path , r eque s t)
120 s e l f . lowerbound += reducedCost
121

122 #a f t e r a l l the r eque s t s have been analyzed in the p r i c i n g
i t e r a t i o n , we compute the l ag rang ian bound equal to the lower
bound (which was modi f i ed over a l l the r eque s t s) , and the
corre spond ing lag rang ian gap equal to the r a t i o between the
d i f f e r e n c e o f the cur rent node o b j e c t i v e value and the lag rang ian
bound , and the lag rang ian bound i t s e l f

123 LAGRANGE_BOUND = s e l f . lowerbound
124 lagrangeGap = round (((zRMP−LAGRANGE_BOUND) /LAGRANGE_BOUND

) , 4)

112

Branch-and-Price algorithm

125 #then i f the l ag rang ian gap i s lower than the ear lyBranching
thresho ld , we add the cur rent node to the r e l a t i v e d i c t i o n a r y o f
e a r l y branching nodes

126 i f (lagrangeGap >= 0 . 0) and (lagrangeGap < s e l f .
ear lyBranchingThreshold) :

127 s e l f . ear lyBranchingNodes . add (currentNode)
128 re turn { " r e s u l t " : SCIP_RESULT.SUCCESS, " lowerbound " :

LAGRANGE_BOUND, " s t o p e a r l y " : True}
129 e l s e :
130 re turn { " r e s u l t " : SCIP_RESULT.SUCCESS, " lowerbound " :

LAGRANGE_BOUND}
131

132 #t h i s method s e t s the r eque s t graph f o r the p r i c e r with i t s arc
that have a cur rent co s t based on the cur rent va lue s o f v a r i a b l e s

133 de f setPr icerRequestGraph (s e l f , o r i g i n , d e s t i na t i on ,
requestDemand) :

134 r eque s t = (o r i g i n , d e s t i n a t i o n)
135

136 #f o r each int ra −hubs arc we compute i t s cur rent co s t equal to the
negat ive sum of the dual co s t f o r us ing i t s hub f o r a s p e c i f i c

r eque s t and the dual co s t o f us ing a v e h i c l e t imes the r eques t
demand

137 requestGraph = s e l f . hubsGraph . copy ()
138 f o r hub in requestGraph . nodes :
139 f o r pred in l i s t (requestGraph . p r e d e c e s s o r s (hub)) :
140 dualIntraHubsArcVehic lesCost = s e l f . model .

g e tDua l so lL inear (s e l f . numVehiclesConss [(pred , hub)])
141 dualHubUsageCost = s e l f . model . g e tDua l so lL inear (

s e l f . openHubConss [hub] [r eque s t])
142 arcWeight = − dualHubUsageCost −

dualIntraHubsArcVehic lesCost ∗requestDemand
143 requestGraph [pred] [hub] [" weight "] = max(arcWeight

, 0)
144

145 #f o r each ac c e s s arc we c r e a t e the edge in the reque s t graph
which has a cur rent co s t equal to d i s t anc e t imes a c c e s s arc co s t
per k i l omete r t imes the r eques t demand , and i f the arc s t a r t s from

the o r i g i n (and so a r r i v e s in a hub) we have to subt rac t the dual
hub usage co s t

146 f o r (arc , d i s t anc e) in s e l f . sndhlp . acce s sArcs . i tems () :
147 i f arc [0] == o r i g i n or arc [1] == d e s t i n a t i o n :
148 arcTime = d i s t anc e ∗0 .75 #time in minutes to cover

the d i s t anc e between the customer and the hub (assumed equal to
0 .75 t imes the d i s t anc e)

149 arcWeight = d i s t ance ∗ s e l f . sndhlp . acces sCost ∗
requestDemand

150 i f o r i g i n == arc [0] :
151 arcWeight −= s e l f . model . g e tDua l so lL inear (s e l f

. openHubConss [arc [1]] [r eque s t])

113

Branch-and-Price algorithm

152 requestGraph . add_edge (arc [0] , arc [1] , r e s_cost
=[1 , arcTime] , weight=max(arcWeight , 0) , d i s t anc e=d i s t anc e)

153

154 #then we add the 2 extra edges " Source"− o r i g i n and de s t ina t i on −"
Sink " with no weight , no d i s t ance and no r e sou r c e consumptions (a
part from the presence o f the arc in the path) , because the cspy
s o l v i n g method f o r the s h o r t e s t path problem r e q u i r e s the presence

o f the nodes " Source " and " Sink " to work
155 requestGraph . add_edge (" Source " , o r i g i n , re s_cost =[1 , 0] ,

weight =0, d i s t ance =0)
156 requestGraph . add_edge (de s t i na t i on , " Sink " , re s_cost =[1 ,

0] , weight =0, d i s t anc e =0)
157

158 #now we inc lude the branching ru l e s , removing from the reque s t
graphs the hubs and the t r a n s f e r a r c s that are forbidden , in order

not to generate paths i n c l ud in g them
159 s e l f . setForbiddenIntraHubsArcs ()
160 s e l f . setForbiddenHubs ()
161 f o r arc in s e l f . forb iddenIntraHubsArcs :
162 requestGraph . remove_edge (arc [0] , arc [1])
163 f o r hub in s e l f . forbiddenHubs :
164 requestGraph . remove_node (hub)
165 re turn requestGraph
166

167 #t h i s method updates the d i c t i o n a t i e s o f f e a s i b l e paths o f the
r eque s t when a new v a r i a b l e i s added to the master problem

168 de f updateFeas ib lePaths (s e l f , path , r eque s t) :
169 s e l f . sndhlp . r eque s t sFea s ib l ePath s . get (r eques t) . append (

path)
170 f o r arc in path . intraHubsArcs :
171 i f s e l f . sndhlp . r eques t sArcFeas ib l ePaths . get (r eque s t) .

get (arc) i s not None :
172 s e l f . sndhlp . r eques t sArcFeas ib l ePaths . get (r eques t)

. get (arc) . append (path)
173 e l s e :
174 s e l f . sndhlp . r eques t sArcFeas ib l ePaths . get (r eques t)

[arc] = [path]
175 f o r hub in path . hubs :
176 i f s e l f . sndhlp . requestsHubFeas ib lePaths . get (r eque s t) .

get (hub) i s not None :
177 s e l f . sndhlp . requestsHubFeas ib lePaths . get (r eques t)

. get (hub) . append (path)
178 e l s e :
179 s e l f . sndhlp . requestsHubFeas ib lePaths . get (r eques t)

[hub] = [path]
180

181 #t h i s i s the inner methods o f the SCIP Pr i c e r to launch the
p r i c i n g problem

182 de f p r i c e r r e d c o s t (s e l f) :

114

Branch-and-Price algorithm

183 re turn s e l f . per formPr ic ing ()
184

185 #t h i s i s the inner method o f the SCIP Pr i c e r to trans form the
master problem c o n s t r a i n t s

186 de f p r i c e r i n i t (s e l f) :
187 s e l f . numHubsCons = s e l f . model . getTransformedCons (s e l f .

numHubsCons)
188 f o r (req , cons) in s e l f . de l i v e rFu l lReques t sCons s . i tems () :
189 s e l f . de l i v e rFu l lReques t sCons s [req] = s e l f . model .

getTransformedCons (cons)
190 f o r (arc , cons) in s e l f . numVehiclesConss . i tems () :
191 s e l f . numVehiclesConss [arc] = s e l f . model .

getTransformedCons (cons)
192 f o r hub in s e l f . openHubConss . keys () :
193 f o r (req , cons) in s e l f . openHubConss [hub] . i tems () :
194 s e l f . openHubConss [hub] [req] = s e l f . model .

getTransformedCons (cons)
195

196 #t h i s method i s nece s sa ry to in c lude the branching r u l e s in the
column genera t i on algorithm , by f o rb idd ing the hubs which upper
bound i s not 1

197 de f setForbiddenHubs (s e l f) :
198 s e l f . forbiddenHubs = []
199 f o r hub in s e l f . sndhlp . hubs :
200 i f s e l f . model . isLT (s e l f . h [hub] . getUbLocal () , 1) :
201 s e l f . forbiddenHubs . append (hub)
202

203 #t h i s method i s nece s sa ry to in c lude the branching r u l e s in the
column genera t i on algorithm , by f o rb idd ing the t r a n s f e r a r c s which

upper bound i s not 1
204 de f setForbiddenIntraHubsArcs (s e l f) :
205 s e l f . forb iddenIntraHubsArcs = []
206 f o r arc in s e l f . sndhlp . intraHubsArcs :
207 i f s e l f . model . isLT (s e l f . v [arc] . getUbLocal () , 1) :
208 s e l f . forb iddenIntraHubsArcs . append (arc)

115

Appendix D

Matheuristic Approach

In this chapter we present the code of the matheuristic approach. It exploits the
B&P algorithm to perturb once or multiple times the solution space.

1 from pysc ipopt import SCIP_PARAMSETTING
2 from SNDHLPgeneration import ∗
3 from pricingSNDHLP import ∗
4

5 #t h i s method perturb the prev ious s o l u t i o n space , apply ing the
matheur i s t i c approach

6 de f newPerturbation (heur i s t i cObjValue , oldObjValue ,
oldPathBasedModel , oldSNDHLP , numHubs , s p l i t t a b l e R e q u e s t s ,
timeLimit , gapLimit) :

7

8 newPerturbedPathBasedModel = createPathBasedSNDHLPmodel (
oldSNDHLP , s p l i t t a b l e R e q u e s t s)

9 #new c o n s t r a i n t to perturb the cur rent open hubs , imposing that
the 75% of them must remain open (rounding down to the prev ious
lower i n t e g e r)

10 perturbedHubsCons = newPerturbedPathBasedModel . master . addCons
(

11 quicksum (newPerturbedPathBasedModel . h [i] f o r i in
oldSNDHLP . hubs i f oldPathBasedModel . master . getVal (
oldPathBasedModel . h [i]) ==1) >= i n t (0 . 75∗numHubs) ,

12 name=" perturbedHubsCons " ,
13 s epara te=False ,
14 mod i f i ab l e=True)
15

16 #new c o n s t r a i n t s to perturb the cur rent number o f v e h i c l e s per
int ra −hubs arcs , imposing a maximum number o f v e h i c l e s

17 maximumNumVehiclesConss = {}
18 f o r a in oldSNDHLP . intraHubsArcs . keys () :

116

Matheuristic Approach

19 arcCurrentVeh i c l e s = oldPathBasedModel . master . getVal (
oldPathBasedModel . v [a])

20 i f a r cCurrentVeh i c l e s > 0 :
21 maximumNumVehiclesConss [a] =

newPerturbedPathBasedModel . master . addCons (
22 newPerturbedPathBasedModel . v [a] <= 1.5∗

arcCurrentVehic l e s ,
23 name=f " maximumVehiclesCons_{a} " ,
24 s epara te=False ,
25 mod i f i ab l e=True)
26

27 newPerturbedPathBasedModel . master . s e tOb j l im i t (oldObjValue)
28

29 #s e t s o l v e r parameters
30 newPerturbedPathBasedModel . master . s e t P r e s o l v e (

SCIP_PARAMSETTING.OFF)
31 newPerturbedPathBasedModel . master . setIntParam (" p r e s o l v i n g /

maxrestart s " , 0)
32 newPerturbedPathBasedModel . master . s e tSepa ra t ing (

SCIP_PARAMSETTING.OFF)
33 setTimeAndGapLimits (newPerturbedPathBasedModel . master ,

timeLimit , gapLimit)
34

35 #c a l l the method f o r the i n i t i a l i z a t i o n o f the p r i c e r v a r i a b l e s
and con s t r a i n t s , and consequent i n c l u s i o n in the master problem

36 p r i c e r I n i t i a l i z a t i o n (newPerturbedPathBasedModel , oldSNDHLP ,
s p l i t t a b l e R e q u e s t s)

37 newPerturbedPathBasedModel . master . opt imize ()
38

39 newObjValue = round (newPerturbedPathBasedModel . master .
getPrimalbound () , 2)

40 newSolvingTime = round (newPerturbedPathBasedModel . master .
getSolvingTime () , 2)

41 newGap = 100∗ newPerturbedPathBasedModel . master . getGap ()
42 newHeurist icSolut ionImprovement = 100∗ round (((

heur i s t i cObjVa lue − newObjValue) / heur i s t i cObjVa lue) , 4)
43 newPerturbedSolutionImprovement = 100∗ round (((oldObjValue −

newObjValue) / oldObjValue) , 4)
44

45 re turn newObjValue , newSolvingTime , newGap ,
newHeurist icSolut ionImprovement , newPerturbedSolutionImprovement ,
newPerturbedPathBasedModel , oldSNDHLP

46

47 #to try to perturb once or mu l t ip l e t imes the optimal s o l u t i o n
obtained from an h e u r i s t i c method by imposing in the path−based
model new c o n s t r a i n t s based on the va lue s in the h e u r i s t i c
s o l u t i o n

117

Matheuristic Approach

48 de f testMult ip lePerturbat ionsHeur ist icSNDHLP (fi leName , accessCost
, intraHubsCost , veh i c l eCapac i ty , numHubs , numPaths , numHops ,
maxTransportTime , s p l i t t a b l e R e q u e s t s , timeLimit , gapLimit ,
heur i s t i cApproach , numPerturbations) :

49

50 heur i s t i cObjValue , heur i s t i cSo lv ingTime , heur i s t icGap ,
heurist icPathBasedModel , sndhlp = testHeuristicSNDHLP (fi leName ,
accessCost , intraHubsCost , veh ic l eCapac i ty , numHubs , numPaths ,
numHops , maxTransportTime , s p l i t t a b l e R e q u e s t s , t imeLimit /50 ,
gapLimit , heur i s t i cApproach)

51 tota lSo lv ingTime = heur i s t i cSo lv ingT ime
52 pe r tu rba t i on s = d i c t ()
53 pe r tu rba t i on s [0] = [heur i s t i cObjValue , heur i s t i cSo lv ingTime ,

0 . 0 , 0 . 0 , heurist icPathBasedModel , sndhlp]
54

55 #launch the pe r tu rba t i on s loop f o r a s p e c i f i c number o f t imes
56 f o r i in range (1 , numPerturbations+1) :
57 j = i −1
58 #r e t r i e v e the o ld per turbat i on e lements
59 oldObjValue , oldPathBasedModel , oldSNDHLP = per tu rba t i on s

[j] [0] , p e r tu rba t i on s [j] [4] , p e r tu rba t i on s [j] [5]
60 #compute the new per turbat i on e lements and save them in the

d i c t i o n a r y o f pe r tu rba t i on s
61 newObjValue , newSolvingTime , newGap ,

newHeurist icSolut ionImprovement , newPerturbedSolutionImprovement ,
newPerturbedPathBasedModel , newSNDHLP = newPerturbation (
heur i s t i cObjValue , oldObjValue , oldPathBasedModel , oldSNDHLP ,
numHubs , s p l i t t a b l e R e q u e s t s , timeLimit , gapLimit)

62 pe r tu rba t i on s [i] = [newObjValue , newSolvingTime , newGap ,
newHeurist icSolut ionImprovement , newPerturbedSolutionImprovement ,
newPerturbedPathBasedModel , newSNDHLP]

63 tota lSo lv ingTime += newSolvingTime
64 #e x i t cond i t i on in case o f no more improvements p o s s i b l e
65 i f newObjValue == oldObjValue :
66 numPerturbations = i
67 break
68

69 f i r s tPerturbedObjValue , f i r s tHeur i s t i cSo lu t i on Improvement ,
f i rstPerturbedPathBasedModel = pe r tu rba t i on s [1] [0] , p e r tu rba t i on s
[1] [3] , p e r tu rba t i on s [1] [5]

70 f ina lPerturbedObjValue , f inalGap ,
f ina lHeur i s t i cSo lu t i on Improvement , f inalPerturbedPathBasedModel =
pe r tu rba t i on s [numPerturbations] [0] , p e r tu rba t i on s [numPerturbations
] [2] , p e r tu rba t i on s [numPerturbations] [3] , p e r tu rba t i on s [
numPerturbations] [5]

71

118

Matheuristic Approach

72 re turn heur i s t i cObjValue , f i r s tPerturbedObjValue ,
f ina lPerturbedObjValue , f i r s tHeur i s t i cSo lu t i on Improvement ,
f ina lHeur i s t i cSo lu t i on Improvement , tota lSo lv ingTime , f inalGap ,
f inalPerturbedPathBasedModel , f i rstPerturbedPathBasedModel ,
p e r tu rba t i on s

119

Bibliography

AG, Logistische Informations Systeme (2023). Definition of Intermodal Transport.
url: https://www.lis.eu/en/lexikon/intermodal-transport/ (visited on
01/31/2023) (cit. on p. 18).

Alumur, Sibel A., Bahar Y. Kara, and Oya E. Karasan (2012). «Multimodal hub
location and hub network design». In: Omega 40(6), pp. 927–939. issn: 0305-0483.
doi: 10.1016/j.omega.2012.02.005 (cit. on pp. 17, 24).

Bang-Jensen, J. and G. Gutin (2001). Digraphs: Theory, Algorithms, and Appli-
cations. Monographs in Mathematics. Springer. isbn: 9781852332686 (cit. on
p. 27).

Barnhart, Cynthia, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savels-
bergh, and Pamela H. Vance (1998). «Branch-and-Price: Column Generation for
Solving Huge Integer Programs». In: Operations Research 46(3), pp. 316–329.
issn: 0030364X, 15265463 (cit. on p. 13).

Benders, Jacobus F. (1962). «Partitioning procedures for solving mixed-variables
programming problems». In: Numerische Mathematik 4, pp. 238–252. doi:
10.1007/BF01386316 (cit. on p. 12).

Boschetti, Marco Antonio and Vittorio Maniezzo (2022). «Matheuristics: using
mathematics for heuristic design». In: 4OR 20(2), pp. 173–208. doi: 10.1007/
s10288-022-00510-8 (cit. on p. 15).

Campbell, James F. (2009). «Hub location for time definite transportation». In:
Computers And Operations Research 36(12), pp. 3107–3116. issn: 0305-0548.
doi: 10.1016/j.cor.2009.01.009 (cit. on p. 24).

Çetiner, Selim, Canan Sepil, and Haldun Süral (Dec. 2010). «Hubbing and routing
in postal delivery systems». In: Annals of Operations Research 181, pp. 109–124.
doi: 10.1007/s10479-010-0705-2 (cit. on p. 51).

Contreras, Ivan (2021). «Hub Network Design». In: Network Design with Applica-
tions to Transportation and Logistics. Ed. by Teodor Gabriel Crainic, Michel
Gendreau, and Bernard Gendron. Springer Books. Springer. Chap. 18, pp. 567–
598. doi: 10.1007/978-3-030-64018-7 (cit. on p. 17).

120

https://www.lis.eu/en/lexikon/intermodal-transport/
https://doi.org/10.1016/j.omega.2012.02.005
https://doi.org/10.1007/BF01386316
https://doi.org/10.1007/s10288-022-00510-8
https://doi.org/10.1007/s10288-022-00510-8
https://doi.org/10.1016/j.cor.2009.01.009
https://doi.org/10.1007/s10479-010-0705-2
https://doi.org/10.1007/978-3-030-64018-7

BIBLIOGRAPHY

Crainic, Teodor Gabriel (2000). «Service network design in freight transportation».
In: European Journal of Operational Research 122(2), pp. 272–288. issn: 0377-
2217. doi: 10.1016/S0377-2217(99)00233-7 (cit. on p. 17).

Dantzig, George B. and Mukund N. Thapa (1997). «Linear Programming 1». In:
The Simplex Method. Springer Series in Operations Research and Financial
Engineering. Springer, pp. 63–111. doi: 10.1007/b97672 (cit. on p. 5).

de Camargo, Ricardo S., Gilberto de Miranda, Morton E. O’Kelly, and James F.
Campbell (2017). «Formulations and decomposition methods for the incomplete
hub location network design problem with and without hop-constraints». In:
Applied Mathematical Modelling 51, pp. 274–301. issn: 0307-904X. doi: 10.
1016/j.apm.2017.06.035 (cit. on p. 25).

Desrosiers, Jacques and Marco E. Lübbecke (2005). «A Primer in Column Gen-
eration». In: Column Generation. Ed. by Guy Desaulniers, Jacques Desrosiers,
and Marius M. Solomon. Springer US, pp. 1–32. isbn: 978-0-387-25486-9. doi:
10.1007/0-387-25486-2_1 (cit. on pp. 8, 9).

Dictionary, Cambridge English (2023). Definition of Service. url: https://dictio
nary.cambridge.org/dictionary/english/service (visited on 01/28/2023)
(cit. on p. 16).

Eiselt, Horst A. and Carl-Louis Sandblom (2000). «Integer Programming and
Network Models». In: Springer Berlin, Heidelberg. doi: 10.1007/978-3-662-
04197-0 (cit. on p. 14).

Fischetti, Martina and Matteo Fischetti (2016). «Matheuristics». In: Handbook of
Heuristics. Ed. by Rafael Martí, Pardalos Panos, and Mauricio G.C. Resende.
Springer International Publishing, pp. 1–33. doi: 10.1007/978-3-319-07153-
4_14-1 (cit. on p. 15).

Fischetti, Matteo and Andrea Lodi (2011). «Heuristics in Mixed Integer Pro-
gramming». In: Wiley Encyclopedia of Operations Research and Management
Science. Ed. by J.J. Cochran. John Wiley & Sons, Ltd, pp. 738–747. doi:
10.1002/9780470400531.eorms0376 (cit. on p. 15).

Gilmore, Paul C. and Ralph E. Gomory (1961). «A Linear Programming Approach
to the Cutting Stock Problem». In: Operations Research 9, pp. 849–859. doi:
10.1287/opre.9.6.849 (cit. on p. 13).

Irnich, Stefan, Ann-Kathrin Rothenbächer, and Michael Drexl (2016). «Branch-
and-price-and-cut for a service network design and hub location problem». In:
European Journal of Operational Research 255(3), pp. 935–947. issn: 0377-2217.
doi: 10.1016/j.ejor.2016.05.058 (cit. on pp. 24, 25).

Krishnamoorthy, Mohan, Jamie Ebery, Andreas Ernst, and Natashia Boland (2000).
«The capacitated multiple allocation hub location problem: Formulations and
algorithms». In: European Journal of Operational Research 120(3), pp. 614–631.
issn: 0377-2217. doi: 10.1016/S0377-2217(98)00395-6 (cit. on p. 51).

121

https://doi.org/10.1016/S0377-2217(99)00233-7
https://doi.org/10.1007/b97672
https://doi.org/10.1016/j.apm.2017.06.035
https://doi.org/10.1016/j.apm.2017.06.035
https://doi.org/10.1007/0-387-25486-2_1
https://dictionary.cambridge.org/dictionary/english/service
https://dictionary.cambridge.org/dictionary/english/service
https://doi.org/10.1007/978-3-662-04197-0
https://doi.org/10.1007/978-3-662-04197-0
https://doi.org/10.1007/978-3-319-07153-4_14-1
https://doi.org/10.1007/978-3-319-07153-4_14-1
https://doi.org/10.1002/9780470400531.eorms0376
https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1016/j.ejor.2016.05.058
https://doi.org/10.1016/S0377-2217(98)00395-6

BIBLIOGRAPHY

Lodi, Andrea and Matteo Fischetti (2003). «Local Branching». In: Mathematical
Programming 98, pp. 23–47. doi: 10.1007/s10107-003-0395-5 (cit. on p. 15).

McLeod, Sam and Carey Curtis (2020). «Understanding and Planning for Freight
Movement in Cities: Practices and Challenges». In: Planning Practice & Research
35(2), pp. 201–219. doi: 10.1080/02697459.2020.1732660 (cit. on p. 16).

Nemhauser, George (2012). «Column generation for linear and integer program-
ming». In: Optimization Stories. Martin Grotschel, pp. 65–73 (cit. on p. 8).

O’Kelly, M.E., J.F. Campbell, G. Miranda, and Y. Park (2023). Studies in Hub
Location and Network Design. url: https://www.researchgate.net/projec
t/Studies-in-Hub-Location-and-Network-Design (visited on 02/03/2023)
(cit. on p. 51).

O’Kelly, Morton (1986). «The Location of Interacting Hub Facilities». In: Trans-
portation Science 20, pp. 92–106. doi: 10.1287/trsc.20.2.92 (cit. on pp. 17,
24, 25).

Pearl, Judea (1984). Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley Longman Publishing Co., Inc. isbn: 978-0-201-05594-8
(cit. on p. 14).

Pióro, Michał and Deepankar Medhi (2004). «Application of Optimization Tech-
niques for Protection and Restoration Design». In: Routing, Flow, and Capacity
Design in Communication and Computer Networks. The Morgan Kaufmann
Series in Networking. Morgan Kaufmann: San Francisco, pp. 403–454. doi:
10.1016/B978-0-12-557189-0.70006-1 (cit. on p. 2).

Savelsbergh, Martin W. P. (2001). «Branch and Price: Integer Programming with
Column Generation». In: Encyclopedia of Optimization. Ed. by Christodoulos A.
Floudas and Panos M. Pardalos. Springer US, pp. 218–221. isbn: 978-0-306-
48332-5. doi: 10.1007/0-306-48332-7_47 (cit. on p. 12).

Schrijver, Alexander (1986). «Fundamental concepts and results on polyhedra,
linear inequalities, and linear programming». In: Theory of Linear and Integer
Programming. John Wiley & Sons, Chichester, pp. 85–98 (cit. on p. 11).

Serper, Elif Zeynep and Sibel A. Alumur (2016). «The design of capacitated inter-
modal hub networks with different vehicle types». In: Transportation Research
Part B: Methodological 86, pp. 51–65. issn: 0191-2615. doi: 10.1016/j.trb.
2016.01.011 (cit. on p. 25).

Yoon, M-G and John Current (2008). «The Hub Location and Network Design
Problem with Fixed and Variable Arc Costs: Formulation and Dual-Based
Solution Heuristic». In: Journal of the Operational Research Society 59, pp. 80–
89. doi: 10.1057/palgrave.jors.2602307 (cit. on p. 24).

Zhang, Mo, Bart Wiegmans, and Lori Tavasszy (2013). «Optimization of multimodal
networks including environmental costs: A model and findings for transport
policy». In: Computers in Industry 64(2), pp. 136–145. issn: 0166-3615. doi:
10.1016/j.compind.2012.11.008 (cit. on p. 24).

122

https://doi.org/10.1007/s10107-003-0395-5
https://doi.org/10.1080/02697459.2020.1732660
https://www.researchgate.net/project/Studies-in-Hub-Location-and-Network-Design
https://www.researchgate.net/project/Studies-in-Hub-Location-and-Network-Design
https://doi.org/10.1287/trsc.20.2.92
https://doi.org/10.1016/B978-0-12-557189-0.70006-1
https://doi.org/10.1007/0-306-48332-7_47
https://doi.org/10.1016/j.trb.2016.01.011
https://doi.org/10.1016/j.trb.2016.01.011
https://doi.org/10.1057/palgrave.jors.2602307
https://doi.org/10.1016/j.compind.2012.11.008

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Combinatorial Optimization fundamentals
	Operations Research recalls
	Introduction to Linear Programming models
	The concept of duality
	The Branch-and-Bound method

	Column Generation and Branch-and-Price
	The Column Generation method
	Dantzig-Wolfe Decomposition
	Branch-and-Price

	Heuristic methods
	Heuristic algorithms
	Matheuristics

	Presentation of the Problem
	Background and Description of the Problem
	Problem Background
	Problem Description

	Literature Review of SNDHLP
	Mathematical Notation of the Problem
	A Mixed Integer Linear Programming Model Formulation
	An Extended Model Formulation
	Comparison between the two model formulations

	Solution Approaches
	A Branch-and-Price approach
	Master Problem
	Auxiliary Problem
	Restricted Master Problem
	Pricing Problem
	Branching Rules

	Heuristic methods
	Most Accessed Hubs Heuristic
	Greatest Demand Requests Heuristic
	Additive Greatest Demand Requests Heuristic
	Shortest Access Arcs Heuristic
	A Matheuristic approach

	Computational Results
	Introduction on the solver environments
	Presentation of the problem instances
	Instances datasets
	Real-world instances
	Setup of instances parameters

	Organization of the Experiments
	Preliminary Experiments
	Heuristic Experiments
	Matheuristic Experiments
	Branch-and-Price Experiments
	Early Branching Branch-and-Price Experiments
	Arc-based Model Experiments

	Final Comparison Experiments
	Branch-and-Price Experiments
	Matheuristic Experiments
	Arc-based Model Experiments
	Unsplittable Requests Instances Experiments
	Relaxed Arc-based Model Experiments

	Conclusions
	SNDHLP model creation
	SNDHLP instance reader
	SNDHLP instance sets generator
	Arc-based SNDHLP
	Path-based SNDHLP

	Heuristics
	Most Accessed Hubs Heuristic
	Greatest Demand Requests Heuristic
	Additive Greatest Demand Requests Heuristic
	Shortest Access Arcs Heuristic

	Branch-and-Price algorithm
	Restricted Master Problem
	Pricing Problem

	Matheuristic Approach
	Bibliography

