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Abstract 

Groundwater represents a strategic freshwater resource for multiple sectors, 

including drinking water, agriculture production, and ecosystem services. The 

Mediterranean Basin is a well-known water-scarce region that is increasingly 

relying on groundwater use, especially during drought periods. Many areas in the 

Mediterranean region are already facing water stress due to increasing demand and 

limited resources. Climate change is likely to exacerbate these issues, as it is 

expected to lead to more frequent and severe drought conditions in some areas as 

well as irregular rainfall in others. Due to the growing availability of data and 

computational processing capabilities nowadays, deep learning models are seeing 

an increase in popularity. In this study, we attempted to create 92 location-specific 

Convolutional Neural Network (CNN) models in wells spatially distributed over 

the Iberian Peninsula to estimate groundwater levels until the end of the century. 

Our models use monthly precipitation and temperature data as input variables. 

Specifically, we considered cumulative precipitation for 3, 6, 12, 18, 24, and 36 

months to account for the recharge time lag between precipitation and groundwater 

changes. Once trained using historical precipitation and temperature records, the 

CNNs were applied to assess the influence of climate change on groundwater levels. 

For future climate projections, an ensemble of six combinations of distinct General 

Circulation Models (GCMs) and Regional Climate Models (RCMs) was considered 

under two Representative Concentration Pathways (RCPs): the RCP4.5 and 

RCP8.5. Our preliminary results revealed a more consistent decline in groundwater 

levels in the southwest region of the Iberian Peninsula under the RCP8.5 scenario, 

while a general more constant groundwater level under the RCP4.5 scenario has 

been detected towards the end of the century. 
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Chapter 1 

Introduction 

Motivation 

Climate change's influence on water supplies is a critical issue that demands 
quick response. Groundwater, the world's biggest freshwater reserve, is vital in 
delivering water to millions of people worldwide. The Iberian Peninsula is an 
excellent example of a place where groundwater is essential, particularly in arid and 
semi-arid areas. This region is also seeing increased climate change impacts, such 
as droughts and extreme weather events, which might have serious consequences 
for groundwater resources. 

Machine learning (ML) and Artificial intelligence (AI)  technologies have 
showed considerable promise in predicting and modelling complex systems, 
particularly groundwater, in recent years. A German research has previously shown 
that deep learning technology can successfully estimate groundwater levels in 
Germany using only weekly precipitation and temperature data as input. 
Nevertheless, the method's applicability to other locations is unknown. 

As a result, the purpose of this thesis is to evaluate the use of deep learning 
technology in forecasting groundwater levels in the Iberian Peninsula. We will 
make slight changes to the approach to account for the time lag between 
groundwater system response and precipitation events. This study will help us 
understand the effects of climate change on groundwater resources in the Iberian 
Peninsula, as well as the possibilities of applying ML and AI technologies to model 
and predict groundwater systems. 

This study is essential for policymakers and stakeholders because it gives vital 
insights into the effects of climate change on groundwater supplies, as well as the 
possibilities for adopting novel technology to mitigate these effects. The findings 
of this study can also be used to establish long-term water management policies for 
the region. 



4 
 

Importance of ground water  

Groundwater is a nearly universal source of typically excellent freshwater. 
These properties encourage its broad growth, which may be scaled and localized to 
meet demand without the need for extensive infrastructure. Globally, ground water 
accounts for one-third of all fresh-water withdrawals, accounting for 36%, 42%, 
and 27% of water utilized for household, agricultural, and industrial purposes, 
respectively [1]. Water availability is a major economic and social priority for most 
Mediterranean nations since they share various characteristics such as similar water 
and land resources, agricultural expansion, demographic pressure paired with 
increased tourism, and, last but not least, a climatic shift moving from semiarid to 
arid conditions [2], [3]. Groundwater is the main source of water for irrigation in 
the Iberian Peninsula [4] and it is a critical resource for the agricultural sector in the 
Mediterranean region [5]. In addition to its importance as a source of freshwater, 
groundwater also plays a vital role in the environment as a major contributor to the 
baseflow of streams and rivers in the Mediterranean region, providing a vital source 
of water for ecosystems [6]. 

The Mediterranean basin has a limited supply of water, which is mostly 
supplied by mountain runoff [7]–[9]. These comprise 20-50% of total flow, 
although in semi-arid places such as the Mediterranean basin, runoff can contribute 
50-90% [8], [10].  

According to data from the Spanish Ministry of the Environment and Rural and 
Marine Areas, the Iberian Peninsula experiences a very irregular distribution of 
water resources due to its fluctuating precipitation, which ranges from less than 200 
mm/year to more than 1,600 mm/year and even reaches 2,000 mm/year at times 
[11] Groundwater accounted for 32.2% of total water for residences and industrial 
purposes (excluding irrigation), municipal consumption, and other uses, according 
to statistics from the Spanish National Institute of Statistics [12]. This percentage 
ranges between 28.5% and 31.9%, according to the sources [13]. The disparity in 
this example is caused by the combination of survey-based data and subjective 
assessments. Groundwater contributes in the range of 17.5-29.5% of irrigation 
water, which accounts for 75% of total water usage in Spain. 

Economic expansion is frequently accompanied by significant land-use 
changes and intensive human effects. Tourism has largely replaced forestry and 
agriculture in many Mediterranean nations, particularly along the coast. Population 
pressure has increased, causing issues with fresh water supplies and trash disposal 
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[14]. Groundwater resource extraction is vital and has grown even more so in recent 
years, particularly in coastal areas of dry and semi-arid countries. The influx of salty 
marine water puts the coastal aquifers in these areas under particular danger [15].  

Climate change 

There are several scientific mechanisms through which climate change can 
affect groundwater levels. 

• One proposed mechanism is evapotranspiration, which is the combined 
loss of water to the atmosphere caused by soil evaporation and plant 
transpiration. As the Earth's temperature rises, so does the rate of 
evapotranspiration, resulting in a higher loss of water from the Earth's 
surface. This can lead to a drop in groundwater levels because water that 
would otherwise be available to recharge subsurface aquifers is lost through 
evaporation. 

• Changes in precipitation patterns are another proposed way through which 
climate change might alter groundwater levels. The volume and distribution 
of precipitation (such as rain and snow) that falls may alter as the earth's 
temperature rises. There may be a rise in precipitation in some areas, which 
might lead to an increase in groundwater levels. In some areas, there may 
be a decrease in precipitation, which might lead to a drop in groundwater 
levels. 

The scientific mechanisms by which climate change influences groundwater 
levels are complex and may differ based on the geographical region in question as 
well as the precise temperature and precipitation changes that are occurring. In 
general, climate change will result in drier conditions in many parts of the world, 
particularly in the western Mediterranean [16]. Iberia Peninsula is a hotspot of 
groundwater-impacted area by 40% of precipitation reduction [17]. 

Groundwater modelling 

Groundwater modelling is critical because it enables us to understand and 
detect changes in the groundwater system, which is a critical resource for many 
human and environmental systems. Groundwater is utilized for a variety of reasons, 
including drinking water, irrigation, industrial activities, and many more. It also 
plays an important function in the health of ecosystems and wetlands. Groundwater 
modelling can assist us in making wise decisions about how to effectively manage 
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and conserve this vital resource by simulating changes in the water table and water 
quality. Groundwater modelling has various major applications: 

• Water resources management: Groundwater modelling is used to 
understand the potential yield of wells and aquifers, predict future 
changes in the water table and water quality, and evaluate the impacts 
of different water management scenarios. 

• Contamination control: Groundwater modelling may be used to 
mimic the movement of pollutants and other contaminants, assisting in 
the identification of probable sources of pollution and evaluating the 
effectiveness of various cleaning processes. 

• Environmental impact assessments: Groundwater modelling can be 
used to evaluate the impacts of development projects, such as landfills, 
mining operations, and infrastructure projects, on the groundwater 
system. 

• Climate change impact: Groundwater modelling can also be used to 
evaluate the impacts of climate change on the groundwater system, 
which may be affected by changes in precipitation patterns, 
temperature, and sea level. 

• Water supply: Groundwater modelling can be used to predict changes 
in the water table, water quality and water recharge in order to plan 
water supply and manage water resources. 

• Hydrogeological Investigation: To understand the behavior of the 
aquifers and aquitards, it is important to conduct a hydrogeological 
investigation, which requires the use of numerical models and analytical 
solutions. 

There are several models that may be used to simulate and forecast groundwater 
activity. These models are classed depending on the model's complexity, the type 
of data utilized as input, and the unique characteristics of the groundwater system 
under study. Some examples of common groundwater models are: 

1. Analytic Element Models (AEM): These models reflect groundwater flow 
and transport processes using analytic functions. They are reasonably easy 
to use and may be applied to a wide range of groundwater systems, but their 
capacity to depict complicated groundwater systems is restricted [18]–[20]. 
Some examples are the Dupuit approximation [21], commonly used to 
simulate groundwater flow in unconfined aquifers, the Hantush model [22], 
which is used to simulate the flow of water in confined aquifers and the 
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superposition model [23] which is used to simulate the flow of water in an 
aquifer that has multiple layers with different hydraulic properties. 

2. Finite Difference Models (FDM): These models split the groundwater 
system into a grid of cells and solve for groundwater flow and transport 
inside each cell using finite difference equations. FDMs have a wide range 
of applications in groundwater systems, but they are restricted by the size 
of the grid and the precision of the finite difference approximations. Some 
examples are MODFLOW [24] which is a widely used FDM for simulating 
groundwater flow in three dimensions and FEFLOW [25] which is another 
popular FDM for groundwater modeling that is capable of simulating 
groundwater flow, solute transport, and heat transport in both saturated and 
unsaturated zones. 

3. Finite Element Models (FEM): These models, like the previous ones, split 
the groundwater system into a grid of cells, but they employ the finite 
element approach to solve for groundwater flow and transport inside each 
cell. Although FEMs are more precise than FDMs, they demand more 
computer resources and are more difficult to utilize. Some of the most 
popular FEMs are MODFLOW-2005 [26] with MT3DMS [27]. While 
MODFLOW is primarily a finite-difference model, it also has a finite-
element option that can be used in conjunction with MT3DMS for solute 
transport modelling and HYDRUS [28], which is a finite-element model 
specifically designed for simulating water flow, heat transport, and solute 
transport in unsaturated porous media. 

4. Statistical Models: These models fit a model to observed groundwater data 
using statistical approaches. They are frequently utilized when data is 
scarce and are useful for establishing probabilistic forecasts regarding 
future groundwater conditions. The most common statistical model is 
multiple regression analysis which relates two or more independent 
variables to a dependent variable. 

5. Artificial Neural Network Models (ANN): These models fit a model to 
observe groundwater data using artificial neural networks. They are 
comparable to statistical models in that they can make more accurate 
predictions and handle vast volumes of data. 

6. Hybrid Models: These models incorporate aspects from other model types, 
such as AEMs, FDMs, and ANNs, to capitalize on the benefits of each. 
Complex groundwater systems are frequently simulated using hybrid 
models. 
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Our study 

This thesis project, which was inspired by a German paper [29], investigates 
how climate change will directly influence groundwater resources in the Iberian 
Peninsula during the twenty-first century by applying a deep learning groundwater 
level prediction approach based on convolutional neural networks to 92 sites well 
distributed across the region to assess groundwater level development under various 
RCP scenarios. 

Objectives 

The main aim of this study is to test the capability of deep learning methods to 
assess the impact of climate change on groundwater levels in the Iberian Peninsula. 
Specifically, the objectives of this work are to (i) select the groundwater systems 
that are mainly controlled by climate forcing, (ii) explore the best explanatory 
variables of cumulative precipitation, reflecting different groundwater recharge 
time lags (3, 6, 9, 12, 18, 24 and 36 months), that explain better the groundwater 
level changes, and (iii) evaluate the impact of climate change on groundwater levels 
under the RCPs 4.5 and 8.5 scenarios and considering three time periods (near 
[2021-2040], mid [2041-2060] and long term [2081-2100]). 
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Chapter 2 

Literature review 

Groundwater modelling 

Being one of the world's most valuable and essential sources of water, 
groundwater resources play a direct and crucial role in many aspects of human 
existence, including agriculture, industrial development, and potable water supply 
[30], [31]. Furthermore, the evident consequences of groundwater resources on the 
environment and society cannot be overstated. The groundwater level is a clear and 
straightforward indicator of groundwater availability and accessibility. A good 
knowledge of GWL's history, current, and future conditions may give policymakers 
and practitioners in the water sector with greater insight and perception to establish 
strategies for water resource planning and management, ensuring sustainable 
socioeconomic development [30]. Yet, GWL is an integrated response to various 
climatic, topographical, and hydrogeological elements and their interconnections, 
making GWL simulation a difficult undertaking [32], [33]. 

The modelling of groundwater systems is thought to have started in the early 
20th century, with the work of people like Karl von Terzaghi, who is considered 
the father of soil mechanics, and his student Ralph B. Peck. They were among the 
first to use mathematical models to study the behaviour of groundwater and its 
interactions with soil and other subsurface materials. However, the first 
documented use of mathematical modelling of groundwater systems could be traced 
back to the late 19th century when the first analytical solutions for confined aquifers 
were proposed by French engineer H.E. Dupuit [34]. 

There are many types of models used to simulate and predict the behaviour of 
groundwater systems, and they can be broadly categorized into two groups: 
analytical and numerical models. 

Analytical models are based on mathematical equations that can be solved 
analytically or with simple mathematical techniques, to produce a closed-form 
solution. Examples of analytical models include the Dupuit-Forchheimer equation 
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[35], Theis equation [36], and Hantush-Jacob equation [22], [37]. These models are 
typically used to simulate the behaviour of confined or semi-confined aquifers and 
are relatively simple to use and understand. 

Numerical models are based on mathematical equations that are solved using 
numerical methods, such as the finite element or finite difference method. These 
models are generally more complex than analytical models, but they can be used to 
simulate a wide range of groundwater flow and transport processes. Some examples 
of numerical models are MODFLOW [24], FEFLOW [25], MODPATH [38], 
MODFLOW-NWT [39], and MT3DMS [40]. These models are widely used by 
researchers, engineers, and water resource managers to simulate and predict the 
behaviour of groundwater systems in a variety of settings. Both types of models are 
used by researchers, engineers and water resource managers, but numerical models 
are more widely used in current practices. Although these classical models are 
durable and dependable, the precision and accuracy of numerical models are limited 
by various variables, including their reliance on vast quantities of data relating to 
aquifer characteristics, porous media geology, and basement topography [41]. 
Furthermore, accurately demarcating domain boundaries, establishing an optimal 
grid size for solving the corresponding differential equations, and 
calibrating/validating the executed model have all contributed to numerical 
modelling being a demanding and sophisticated undertaking [42]. 

Machine learning history 

In recent years, there has been an increase in the application of machine 
learning in groundwater-level modelling. Several factors are driving this trend, 
including the availability of massive databases of groundwater measurements that 
can be used to train machine learning algorithms. Growing processing capacity and 
the availability of tools for applying machine learning algorithms have made it 
simpler for academics and practitioners to use these approaches to groundwater 
modelling also the awareness that, as compared to traditional modelling 
methodologies, machine learning may give more accurate and complex models of 
groundwater dynamics but when compared to physically based and numerical 
approaches, the ability of Artificial Intelligence (AI) models to simulate and predict 
groundwater level (GWL) without requiring a deep and thorough understanding of 
the underlying topographic and hydro-geophysical factors makes them desirable 
methodologies [43]. Figure 1 depicts the number of publications each year in the 
field of groundwater modelling using various AI algorithms from 2000 to 2022. 
Data was gathered from the Web of Science database using the search prompt: 
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• Topic: groundwater 
• Title: groundwater AND ("artificial intelligence" OR "machine 

learning" OR "neural network" OR "deep learning") 
• Abstract: modeling OR modelling 

In total 435 publications were found, which we tried to display by year of 
publication, and it clearly demonstrates an exponential increase in the number of 
published papers, particularly since 2020. 

Artificial intelligence for GW modelling 

Although classical models are durable and dependable, the precision and 
accuracy of numerical models are limited by various variables, including their 
reliance on vast quantities of data relating to aquifer characteristics, porous media 
geology, and basement topography [44]. Moreover, accurately demarcating domain 
boundaries, establishing an optimal grid size for solving the corresponding 
differential equations, and calibrating/validating the executed model have all 
contributed to numerical modelling being a demanding and sophisticated 
undertaking. Artificial intelligence (AI) models have been widely employed in the 
last two decades to address the shortcomings of traditional numerical models for 
GWL simulation [42]. 

In recent years, the use of data-driven models, including machine learning, has 
grown in popularity in groundwater modelling [42]. Several factors are driving this 
trend, including rising computational power, the availability of big datasets, and 
developments in monitoring devices that enable real-time, precise data collecting. 
Groundwater hydrology has benefited from machine learning and data mining 
applications [45]. When compared to physically based and numerical approaches, 

Figure 1. Arithmetical conceptualization of growth observed in groundwater research using AI based model 
during 2000-2022. 
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the ability of AI models to simulate and predict GWL without requiring deep and 
complete understanding of the underlying topographic and hydro-geophysical 
factors makes them desirable methodologies [46]. Despite all of ML's benefits, the 
constant evolution of approaches makes it difficult for academics to evaluate the 
most successful methodology and its effectiveness on GWL prediction [47]. 
Statistically in recent years, it has been revealed that mathematical models (MM) 
techniques for predicting groundwater level fluctuations have been utilized less 
frequently. Machine learning has superseded mathematical models, and the random 
forest (RF) method is the most often used technique for forecasting groundwater 
level changes [47]. 

Commonly used machine learning techniques 

Researchers have used a variety of machine learning (ML) models to predict 
changes in groundwater level (GWL), including Yang et al. [48], who used a hybrid 
ML model, Sahoo et al. [49], who used an ensemble modelling framework based 
on spectral analysis, machine learning, and uncertainty analysis, Chang et al. [50], 
who used two ANN models, Gaffoor et al. [51], who used random forest (RF), and 
Jyolsna et al. [52], who used two commonly used machine learning models: multi-
linear regression (MLR) and random forest (RF). The most frequent machine 
learning models used for constructing inferential models for water quality 
evaluation, according to relevant research published between 2001 and 2021, are 
artificial neural networks, random forest, and multiple linear regression [53]. 
Although some studies used artificial neural networks (ANN) [54], support vector 
machine (SVM) [55], and random forest (RF) [56] methods, others [57] used 
support vector machine, generalized regression neural network, convolutional 
neural network, long short-term memory (LSTM), and gated recurrent network to 
simulate GWL changes. For example, in ref. [52], multi-linear regression (MLR) 
and random forest (RF) approaches were used. 

Deep learning models are made up of three layers: an input layer, hidden layers, 
and an output layer, with a neural network used to map information into the output 
layer. CNN and LSTM are the most often used deep learning algorithms in 
hydrological research [58]. In general, the literature reports on three key categories 
of deep learning applications in groundwater: (1) comparison of the performance 
of different deep learning algorithms; (2) filling missing data values; and (3) 
enhancement of the simulation framework. Kumar et al. [59] compared deep 
learning, Extreme Learning Machine (ELM), and Gaussian Process Regression 
(GPR) to estimate groundwater level in the Konan basin, Japan, using precipitation 
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(P), river stage, temperature (T), recharge, and groundwater level as input data. 
Supreetha et al.[60] did similar research in the Udipi area of Karnataka, India, and 
discovered that the Long Short-term Memory-Lion Algorithm (LSTM-LA) 
outperformed the LSTM and Feedforward Neural Network (FNN) in groundwater 
level prediction. 

Vu et al. [61] assessed the capacity of an LSTM to forecast future GWL 
changes in northern Normandy, Italy, by filling in the 50-year GWL data at 31 
piezometers. They concluded that using deep learning to reconstruct GWL 
fluctuations is feasible, with correlation coefficient and RMSE values of 0.64-0.99 
and 0.07-1.08 m, respectively. Sun et al. (2019) [62] used deep learning and 
hydrological models to fuse GRACE satellite data with NOAH-aland surface model 
established by NASA to enhance groundwater storage prediction in India. The deep 
convolution neural network (CNN) model was used to learn the spatio-temporal 
discrepancy in GRACE and NOAH groundwater trends. According to their 
findings, CNN enhanced the GRACE-NOAH match and successfully filled data 
gaps between GRACE missions. 

In recent years, artificial neural network (ANN) methods have proven useful in 
forecasting groundwater levels [63]–[68], even when utilizing a highly transferrable 
approach with just climate input data. In a previous study [68], it has been 
demonstrated that 1D-convolutional neural networks (CNNs) are a good choice for 
groundwater level simulation because they outperform even long short-term 
memory (LSTM) models in terms of accuracy and calculation speed, and they 
demonstrated significantly higher flexibility and modelling stability when 
compared to NARX models (nonlinear autoregressive models with exogenous 
inputs). As a result, they are an accurate, quick, and dependable method of choice 
for this investigation. 

Machine Learning for Predicting Future 

Machine learning algorithms have traditionally been used to estimate 
groundwater levels based on current observations and historical data. Yet, as people 
become more aware of the effects of climate change on groundwater supplies, there 
is a rising interest in utilizing machine learning models to forecast future 
groundwater levels under various climate change scenarios. Recent research has 
demonstrated that machine learning approaches, such as deep learning models, can 
capture the intricate interactions between climatic factors and groundwater levels 
and produce solid predictions of future groundwater levels. These models may 
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account for a variety of parameters such as temperature, precipitation, land use, and 
human activities, and they can give useful insight into the possible effects of climate 
change on groundwater supplies. While there are still challenges and limitations to 
using machine learning models to predict future groundwater levels, such as data 
availability and model uncertainties, these models have the potential to improve our 
understanding of the effects of climate change on groundwater resources in the 
future and support effective groundwater management and planning. 

 
 

 



15 
 

Chapter 3 

Methodology and data 

Convolutional neural networks 

Artificial neural network (ANN) techniques have shown successful in 
forecasting groundwater levels in recent years [69]–[74], even when utilizing a 
highly transferrable approach with just climatic input factors. 1D-convolutional 
neural networks (CNNs) are an excellent choice for groundwater level simulation 
because they outperform even long short-term memory (LSTM) models in terms of 
accuracy and calculation speed, and they demonstrated significantly higher 
flexibility and modelling stability when compared to NARX models (nonlinear 
autoregressive models with exogenous inputs) [74]. As a result, they are an 
accurate, quick, and dependable method of choice for this investigation [29]. 

In this study, we use a 1D-CNN approach to build 92 site-specific models that 
have been selected through a multi-step procedure and are relatively well 
distributed across the Iberian Peninsula and are capable of predicting monthly 
groundwater levels with high accuracy using precipitation in monthly and 
accumulated 3, 6, 12, 18, 24, and 36 months as inputs in the past. CNNs are 
frequently employed for image processing and classification applications, but they 
also perform well with sequential data, such as groundwater level time series. The 
CNNs utilized in this work include a 1-D convolutional layer with a fixed kernel 
size (three) and an optimal number of filters, followed by a Max-Pooling layer and 
a Monte-Carlo dropout layer with a fixed dropout of 50% to prevent overfitting. 
This high dropout rate necessitates highly strong training for the model. Following 
that is a thick layer with an optimal number of neurons, followed by a single output 
neuron. The Adam optimizer was used for a maximum of 100 training epochs with 
an initial learning rate of 0.001 and gradient clipping was utilized to prevent 
exploding gradients. Another regularization strategy used to prevent the model from 
overfitting the training data was early halting with a patience of 15 epochs. Bayesian 
optimization was used to tune several model hyperparameters (HP) [75]: training 
batch size (16-256); input sequence length (1-52 months); the number of filters in 
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the 1D-Conv layer (1-256); and the size of the first dense layer (1–256). All models 
were built with Python 3.8 [76], the TensorFlow deep-learning framework [77], and 
its Keras API [78]. NumPy [79], Pandas [80], [81], Scikit-Learn [82], BayesOpt 
[83], Matplotlib [84], UnumPy [85], PyAstronomy [86] and SHAP [87] libraries 
were also utilized. [29]. 

Historical data 

We utilized a grided dataset of daily precipitation and temperature over Iberia 
[88], [89] for historical climate data. Precipitation acts as a proxy for groundwater 
recharge, while temperature serves as a proxy for evapotranspiration. Furthermore, 
temperature has a distinct yearly cycle, which supplies the models with vital 
information on seasonality. This dataset includes a new observational gridded 
dataset (referred to as Iberia01) for daily precipitation and temperatures measured 
at 0.1° regular (and 0.11° CORDEX-compliant rotating) resolutions throughout the 
Iberian Peninsula from 1971 to 2015. To eliminate uncertainty caused by grid cell 
size, the mean of 3 × 3 cells around the cell containing the appropriate well was 
used for each location. 

In Spain, we used data provided by the Ministry of Ecological Transition and 
Demographic Challenge, which hosts the Piezometric Monitoring Network [90], 
[91], which was downloaded with a web scraping code done in early 2020, and in 
Portugal, it is run by the National System of Hydrologic Information [92], [93] as 
part of their monitoring databases, which were downloaded by hand in early 2020. 
These were monthly minimum, maximum, and average water table depths (WTD) 
from ground surface measurements, as well as the date of measurement. Our raw 
data was compiled from 940 wells in Portugal and 2889 wells in Spain, totalling 
3829 wells. Figure 2 depicts the raw data distributions over the Iberian Peninsula 
along with their geological formations. 
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Preprocessing 

In machine learning projects, data preprocessing is one of the most important 
stages in order to understand what kind of data you are dealing with and how the 
data quality is because you are usually dealing with a large number of data sets, and 
in our case, the total of 3829 datasets are a relatively large number of data sets and 
we have no idea about the duration, start, end, frequency of measurements, and so 
on. 

Cleaning and filtering data 

We decided to remove Nan and zero values from all data sets during the 
preprocessing stage because Nan values were related to unsuccessful or no 
measurements and zero values were also related to a mistaken or incorrect 
measurement. After removing these values, we had 2872 wells in Spain and 936 
wells in Portugal, so 21 wells were eliminated due to the lack of a single valid 
measurement. We are confident that the rest of the data set contains measurements. 

Figure 2. Distribution of the raw data in whole Iberian Peninsula. 
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We used a bottom-up strategy for our analysis, as opposed to the inspired paper 
[29], which chose especially unconfined, shallow aquifers that are most likely to be 
subject to direct climate change effects. As we have added cumulative 
precipitations to account for the lag between groundwater system response and 
precipitation, we have decided to feed all datasets that we have to the model and let 
the model decide which features are most related to the system. With this 
methodology, we hope to find some deeper groundwater systems than the main 
paper [29], which only focused on the shallow layer. To that end, because deep 
learning models require large data sets to work, we chose to filter the data sets 
before feeding them into the model. As a result, we select them depending on data 
availability.  

Furthermore, we employed two parameters. The first was the number of 
measurements, while the second was the percentage of missing data. Because our 
measures vary from one in each month to every two months, and so on. So, to 
increase the number of measurements between the first and last measurements, we 
utilize this parameter to construct a subset of the data set. The thresholds we choose 
here are for the number of measurements to be equal or greater than 120 
measurements and for missing values percentage to be equal or less than 50%, and 
the combination of these two conditions resulted in 1205 wells, which we then sort 
based on the number of measurements, starting with the ones with the most 
measurements and working our way down. 

Outlier removal 

An outlier is an observation that deviates from the rest of the data. Outlier 
approaches are classified into two types: test discordance methods and labeling 
methods. The majority of outlier detection systems consider extreme value to be an 
outlier. There is no need to employ a statistical table in some circumstances of 
outlier identification methods [94]. To identify the numerous ways in which outliers 
may originate. It is necessary to examine them in greater depth. Various sources of 
variability might be encountered when taking observations. We can tell three of 
them apart [95].  

• Inherent variability: This is an indication of how observations 
fluctuate inherently across the population; such variance is a natural 
aspect of the population and is uncontrolled. Men's height 
measurements, for example, will represent the level of variability 
inherent in that demographic. 

• Measurement error: We frequently need to conduct measurements on 
individuals of a population under investigation. Inadequacies in the 
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measurement device add another degree of unpredictability to the 
underlying component. The rounding of data, or errors in recording, 
compound the measurement error: they are a component of it. This sort 
of unpredictability can be managed to some extent. 

• Execution error: Another cause of variation occurs from the 
inadequate collecting of our data. We may mistakenly choose a biased 
sample or include individuals who are not actually representative of the 
group we want to study. Again, prudent procedures may help to limit 
such fluctuation. 

In this work, we do not analyse the kind and source of outliers, but rather strive 
to exclude them from the data so that we may train our models with higher-quality 
data. Considering most common outlier removal methodologies Hampel, Quartile, 
and generalized (Extreme Studentized Deviate) ESD surpass Grubbs and Dixon 
among the most prevalent and advanced outlier detection and removal algorithms 
[94]. The main restriction of the Grubbs test is that the suspected number of outliers, 
k, must be precisely defined. If k is not provided appropriately, the results of these 
tests may be distorted. The generalized ESD test [96], on the other hand, just 
requires an upper bound for the suspected number of outliers to be stated [97]. We 
chose the default value of 10 for the maximum number of outliers provided by the 
PyAstronomy [86] python package. Figure 3 shows the result of outlier removal for 
a random well where the approach discovered and deleted one outlier. 

It is also worth noting that in this study, we decided not to do any interpolation 
on the input data because the number of missing values for a substantial number of 
piezometers was very high and occurred in the center of the time series. For 
example, a 2-year period of missing values in the middle of a 10- or 12-year period 
of timeseries data, as was the case for all surrounding wells, and secondly, because 
we are using the bottom-up methodology and feeding all of our data to the model, 
we decided not to use any interpolation to increase the reliability of the results. 

Figure 3 Generalized ESM outlier removal result for well 08.05.005. 
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Models training and selection 

After completing the preprocessing stage, we are now ready to begin the 
model's first step, which is the hyperparameter acquisition and optimization. To that 
purpose, we employed monthly water table depth (WTD) time series data of varying 
lengths, as well as meteorological data sets, as explanatory variables from 1974 to 
2015. Because the first 3 years of data were removed to generate the cumulative 
precipitation data.  

The model divides each time series into four segments to identify the optimal 
model configuration: training set, validation set, optimization set, and test set. The 
test set always utilizes the four-year period from 2012 to 2016, and for a few 
locations where the time series terminated sooner, the four-year test set period is 
shifted correspondingly. The first 80% of the remaining time series before 2012 
were utilized for training, the next 20% for early stopping (validation set), and the 
final 10% for testing during HP optimization (optimization set), each employing 
10% of the remaining time series [29]. A maximum optimization step number of 
150 was employed for each model, otherwise, it stops after 15 steps without 
improvement after a minimum of 60 steps was achieved. To lessen reliance on the 
random number generator seed, it scales the data to [-1,1] and uses an ensemble of 
10 pseudo-randomly initialized models. It uses Monte-Carlo dropout during 
simulation for each of the ten ensemble members to estimate model uncertainty 
from 100 realizations. The 95% confidence interval was then calculated from these 
100 realizations using 1.96 times the standard deviation of the resultant distribution 
for each time step. To assess simulation accuracy, the model computes various 
measures, including NSE, squared Pearson r (𝑅2), absolute and relative root mean 
squared error (RMSE/rRMSE), and absolute and relative Bias (Bias/rBias) in 
Figure 4. [29]. 
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At the end of this step, we had the results for 1103 wells, and 102 wells were 
eliminated during this stage of hyperparameter acquisition. The reason for this 
could be primarily a lack of data because the eliminated datasets were mostly at the 
bottom of the list, where we had ordered them based on the number of 
measurements. After we had all of the results for the 1103 model, we chose to filter 
them using the 𝑅2 and NSE indicators to focus on the models that are more accurate. 
To that end, we opted to filter them based on NSE greater or equal to 0 and 𝑅2 
greater or equal to 0.5, which resulted in 170 models clearing the barrier. Figure 5 
attempts to depict the region on which we decided to focus the rest of the 
investigation and Figure 6 depicts the distribution of these 170 wells around the 

Figure 5. scatter plot of NSE on Y axes and R2 in X axes of all models and the blue rectangle shows the 
selected models. 

Figure 4. Hyperparameter and test results for well 05.50.014. 
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region, with the filtered wells primarily located towards the coast, where there are 
shallower aquifer systems. The only region with no wells is the north-west section 
of the Iberian Peninsula, which may be owing to a lack of data availability in this 
area. Because we can see from the distribution of all wells in Figure 2 that there is 
no data from this region as well. The geological formation of the wells described as 
colors is also shown in Figure 6, and we can see that the majority of these wells are 
porous aquifers, which have been followed by fissured aquifers, including karst. 

 

An idealized test is created to push the model well beyond the long-term range 
of probable inputs as the next stage to evaluate if the CNN model is capable of 
producing physically reasonable results even when inputs are not within the range 
of the training data. The model was run with quadruple precipitation and a 5-degree 
Celsius temperature rise over the training set [98] (Figure 8).  

Figure 6. Distribution of the 170 filtered wells based on the NSE and R2 in the region with the color legend 
indication geological formation of the aquifer system. 
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We also used an explainable AI technique to see if the models trained 
appropriately based on our conceptual understanding of hydrogeological processes. 
We produced SHAP values to describe the effect (sign and intensity) of each input 
feature value on the model output in Figure 7. In general, our models demonstrated 
that the link between input and output was plausible. High precipitation inputs, for 
example (P, red), cause low or negative SHAP values and hence have a large 
negative effect on the model output, which conforms to our fundamental knowledge 
of the influence of recharge, which leads to increased groundwater level. Low or 
no precipitation (P, blue) has a very minor beneficial impact on WTD, but high-
temperature inputs (T, red) have a significant positive influence on the model result, 
implying reduced WTD. Again, this correlates to our basic knowledge of the 
regulating mechanisms, where high temperatures often result in high 
evapotranspiration, which results in decreased recharging or, in some situations, 
direct groundwater evaporation (Figure 7). 

 

Figure 8. Model output under an artificial extreme climate scenario in the past (1974 - 2015). 

Figure 7. SHAP Summary plot. 



24 
 

Prediction data and RCP scenarios 

We chose just two Representative Concentration Pathways (RCPs) for future 
forecasts.  

• RCP4.5: is a scenario in which emissions peak in the mid-century [2041-
2060] and then fall, resulting in moderate warming.  

• RCP8.5: in which emissions continue to climb throughout the century, 
culminating in extremely high levels of warming. 

We also employed an ensemble of 8 Euro-Cordex GCM-RCM combinations 
which are reported in Table 1 with the same resolution as historical period.  RCM 
stands for Regional Climate Model, which is a type of climate model that is used to 
simulate the climate at a regional scale. It is typically used to simulate the climate 
of a specific area, such as a country or continent, and can take into account the local 
topography, land use, and other factors that can affect the climate. 

GCM stands for Global Climate Model, which is a type of climate model that 
is used to simulate the climate at a global scale. It considers the interactions between 
the atmosphere, oceans, land surface, and cryosphere (ice and snow) to simulate the 
global climate. 

Both RCM and GCM are used to forecast future climate because they each have 
their own strengths and limitations. GCMs are able to simulate the large-scale 
patterns of climate, such as the circulation of the atmosphere and oceans, but they 
have lower resolution and may not accurately simulate the climate at a regional 
level. RCMs, on the other hand, have higher resolution and can simulate the climate 
at a regional level more accurately, but they are limited in their ability to simulate 
the large-scale patterns of climate. 

By using a combination of RCM and GCM, scientists can take advantage of the 
strengths of each model to produce more accurate and reliable projections of future 
climate. The GCM is used to provide the large-scale climate patterns and boundary 
conditions, while the RCM is used to simulate the climate at a regional level with 
higher resolution. This approach allows for a more detailed understanding of how 
the climate is expected to change in specific regions and can help inform decision-
making related to climate adaptation and mitigation.  

The data begins in January 1976 and continues through December 2100. 
Because this time was used to bias-correct the climate model data, the data from 
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1976 to 2005 should reflect the average features of the historical data, but the data 
from 2006 to 2100 are forecasts based on the RCP8.5 and 4.5 scenarios. To decrease 
uncertainty caused by grid cell size, we used the mean of 3 × 3 cells around the cell 
containing the corresponding well as input for the simulations, as we did for the 
historical era for each location.  

Table 1. Climate projections overview for both RCP scenarios. 

Abbrev Projections 

M1 'CNRM_CERFACS_CNRM_CM5_CCLM4_8_17' 

M2 'DMI_HIRHAM5_NorESM1-M' 

M3 'ICHEC_EC_EARTH_HIRHAM5' 

M4 'IPSL-INERIS_WRF381P_IPSL-CM5A-MR' 

M5 'KNMI_CNRM-CM5' 

M6 'MPI_M_MPI_ESM_LR_RCA4' 

M7 'ICHEC-EC-EARTH_RACMO22E' 

M8 'IPSL_IPSL_CM5A_MR_RCA4' 

We utilized the IPCC AR6 suggested future periods for near-term (2021-2040), 
mid-term (2041-2060), and long-term (2081–2100). We do not have data for the 
historical period specified in AR6 of the IPCC from 1850 to 1900. As a result, we 
picked the years (1986 – 2005) as our reference period. We end in 2005 since the 
prediction period for the climate models we employ begins in 2006.  

Visual filtering of the models 

In this study, we decided not to rely just on statistical indicators to choose the 
optimal CNN model but rather to adopt a hybrid strategy in which a mixture of 
several indicators will provide us with the best and most dependable models to use 
for the projection stage. 
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Our objective was to analyze all of the results together in order to determine if 
everything works well together or not and to be certain about the models and 
projection outcomes. Given that the purpose of this study is not to predict the exact 
value of groundwater table depth in a specific period in the future, but rather to 
determine whether or not there is a trend for future circumstances. To that purpose, 
we plotted all of the outcomes for each well on one page next to each other and 
checked them one by one to determine if the model performs well for all 170 filtered 
wells. Test results, simulated results for the historical era and extreme conditions 
scenario, SHAP values, simulation results for one random future model scenario, 
and well location with corresponding groundwater body name were utilized for this 
stage. Appendix 1 contains the results of the HP optimization, extreme conditions, 
and SHAP summery map for all 92 wells. 

Well 04.04.008 is an example of a well that was eliminated from the subset 
because the test results, simulation results for the historical period, and extreme 
scenario were all within acceptable ranges, but the SHAP values were not showing 
any sensible results because the model had responded for the different parameters 
in an unacceptable manner, and the future projections were unsatisfactory, so this 
model was eliminated in this step (Figure 9). 

 
 

 

 

 

 

Uncertainty 

Uncertainties in a CNN machine learning model can arise from a variety of 
factors, including poor data quality, poor model design, poor hyperparameter 
optimization, poor model generalization and poor model interpretation. A thorough 
examination of these sources of uncertainty can help to improve the model's 
performance and reliability. 
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Climate data quality varies depending on the source and processing technique, 
resulting in uncertainty in model inputs. To mitigate these uncertainties, thorough 
data preparation and quality control are required. In our case, we attempted to use 
a reliable data source first, and then, during the extraction of temperature and 
precipitation data for each well location, instead of using data only related to the 
closest well, we used the mean of the 3 by 3 cells around the closest grid point, plus 
for groundwater table depth data, we used a very specific method of Generalized 
ESM method, which was chosen based on the superiority of the given results in 
comparison to other methods Finally, in order to limit uncertainty, we did not use 
any interpolation techniques for missing measurements and worked only with in-
situ data for WTD.  

The architecture of a CNN model can impact the model's performance and 
accuracy, resulting in uncertainty in predictions. As a result, model architecture 
improvement and comparison can assist in reducing these uncertainties. The 
hyperparameter optimization, such as learning rate and batch size, can impact 
model performance and contribute to uncertainty in predictions. As a result, a 
systematic hyperparameter tuning procedure can aid in reducing these uncertainties. 
To that purpose, we used Bayesian optimization to optimize hyperparameters. This 
method uses a probabilistic model to represent the link between machine learning 
model performance and hyperparameters. Using a utility function that balances 
exploration and exploitation, the approach picks new hyperparameter combinations 
to assess. The benefits of Bayesian optimization include the fact that it requires less 
evaluations than other approaches, making it suitable for costly models, and its 
universal application to any machine learning model without the need for domain 
expertise [99].We utilized a maximum optimization step number of 150 for each 
model or stopped after 15 steps without improvement if a minimum of 60 steps was 
attained [29].  
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Overfitting can also occur in CNN models, resulting in poor generalization 
performance and uncertainty in predictions. As a result, approaches such as dropout 
and data augmentation can assist enhance the generalization performance of the 
model and minimize uncertainty. To lessen reliance on the random number 
generator seed, we scaled the data to [-1,1] and employed an ensemble of 10 

Figure 9. test result (up), simulation results for historical and extreme scenario (middle) and SHAP summery 
plot (bottom) for visual filtering step. 
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pseudo-randomly started models. We used a Monte-Carlo dropout layer for each of 
the 10 ensemble members, with a fixed dropout of 50% to prevent the model from 
overfitting. This high dropout rate compels the model to undertake highly robust 
training and to estimate model uncertainty from 100 realizations each during 
simulation. Using 1.96 times the standard deviation of the resultant distribution for 
each time step, we calculated the 95% confidence interval from these 100 
realizations [29].  

Because of their complicated structure, CNN models can be difficult to 
interpret, resulting in uncertainty in predictions. As a result, tools such as 
visualization of the learnt features and attribution methods can aid in the 
interpretation of the model's predictions and minimize uncertainty. We computed 
SHAP values to explain the effect (sign and intensity) of each input feature value 
on model output, however we only utilized them to exclude models that were 
trained improperly in terms of our conceptual knowledge of hydrogeological 
processes. 

When it comes to future predictions, the magnitude of uncertainty raised by 
future scenarios and models is too great when compared to those raised by models 
and data, and the only tool we have to consider them is to first consider different 
models that are combinations of different GCMs and RCMs to cover as much 
uncertainty as we can, and here we tried to consider 8 different models, and in the 
section of RCP scenarios, we decided to consider RCP4.5 as the best case scenario 
because the likelihood of the RCP2.6 scenario is determined by a number of factors, 
including the level of global collaboration and governmental action to reduce 
greenhouse gas emissions. However, it is worth highlighting that the RCP2.6 
scenario indicates a low emissions trajectory that necessitates quick and strong 
action to restrict warming to less than 2°C over pre-industrial levels. It is hardly a 
business-as-usual situation and attaining it will need a fundamental overhaul of our 
energy infrastructure as well as considerable measures to cut emissions from other 
sectors. RCP8.5, on the other hand, predicts a future world with high levels of 
greenhouse gas emissions. It is also known as the "business-as-usual" scenario 
because it anticipates that global emissions would continue to climb throughout the 
twenty-first century as a result of rising energy consumption, population expansion, 
and limited attempts to reduce emissions. 
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Chapter 4 

Results 

The major purpose of this study was to determine the influence of climate 
change on WTD in the Iberian Peninsula, thus we trained 92 site-specific models 
based on various factors and methods described in Chapter 3. Taking into account 
the two RCP scenarios and the 8 distinct models for each model and location, we 
obtain 16 possible projection outcomes (8 for each RCP scenario) for each well, for 
a total of 1472 results for all 92 wells. 

Figure 10 depicts the projected results for one random well as a heatmap from 
2020 to the end of 2100. This graphic allows us to see all of the models and 
situations at once. The first row depicts the RCP4.5 scenario, where we can see that, 
with the exception of M2 and M6, the reduced greenhouse gas emissions of the 
RCP4.5 scenario translate to a distinctly reduced impact on water table depth 
development, which we can see as more blue and less red colors specifically in the 
long term period [2081-2100], but in M2 and M6, we can see more intense reds and 
less blues, which translate to higher WTD and depletion of groundwater levels. 
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Looking at the second row of Figure 10, we can see the findings for RCP8.5, 
where the negative influence of climate on water table depths is more apparent, and 
this is valid for all models when compared to RCP4.5. The shifts begin in the mid-
term period [2041-2060] and intensify as we approach the long-term period [2081-
2100]. When we evaluate different models, we can observe that the M2 model 

produces more intense results than others, which is also true for the RCP4.5 
scenario in the long run. It is also worth noting that all models exhibit the greatest 
degree of impact over the long-term period [2081-2100]. 

To provide a fresh perspective on the projection findings and the uncertainty 
resulting from future scenarios and models, we attempted to present the results as 
a median line, 25th-75th percentile area, and min-max area for both scenarios in 
the same plot. To smooth the findings, we computed all of these parameters based 
on the 5-year moving average of predictions (Figure 11).  

Figure 10. Heatmap plots for water table depth (WTD). RCP4.5 results in first and RCP8.5 in second row for 
one arbitrarily selected well (594.34) heatmap plots show the simulation period for each of the projections 
under each of the considered scenarios. Columns of each plot as months during the year and rows as the year 
(top: 2100-bottom: 2020). 



32 
 

Figure 11 shows that the decoupling of two scenarios occurs after the end of 
the reference period, but the major difference in water table depth occurs after the 
mid-term period, when the median line of RCP8.5 begins to deviate from the 
median line of RCP4.5, and this deviation increases as we approach the end of the 
century (long-term). Appendix 2 contains the findings of the heatmap of WTD 
and the median, 25th-75th range, and min-max range of 5-year moving average 
WTD for all 92 wells. 

To compare the changes in WTD in each time period with respect to the 
reference period, we calculated the average of the medians under RCP8.5 related to 
each period (20 years) and showed the differences of each with respect to the 
reference period, and we plotted the results as a stacked bar chart for each well in 
meters on the map (Figure 12). 

Figure 11. Water table depth 5-year moving average of 8 model medians, 25th-75th percentiles and min-max range 
for RCP4.5 and 8.5 for well (594.34). 
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Using the information in Figure 12, we can see that the changes linked to the 
long-term period are more substantial than the changes related to the near and mid-
term periods. However, in the eastern area of Spain, long-term changes outnumber 
short-term and mid-term changes, and as we proceed to the central and western 
regions of the Iberian Peninsula, short-term and mid-term changes become more 
visible, particularly in the southern west region. 

The obtained results on Figure 13 inspired us to take a closer look at the 
changes in the long-term period under the RCP8.5 scenario, therefore we 
considered just the changes in the long-term period with regard to the reference 

period in meters and attempted to classify them based on magnitude. Looking at the 
data in Figure 13, we can see that even under RCP8.5, 5 (5.43%) of the wells have 
a recharge in WTD between 0 and 1 meter, while the remainder of the wells have a 
rise in WTD. The majority of wells have a depletion between 0 and 1 meter, which 
is 51 (55.43%). Highest depletion is 18.83 meters (well ID: 09.801.003), while 
maximum regeneration is 0.73 meters (well ID: 09.106.004). 

Figure 12. A stacked bar chart depicting the variations in WTD in meters across three distinct time periods 
under RCP8.5 in relation to the reference period. 
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Figure 14 shows the outcomes of the same plot for the RCP4.5 scenario over 
the long-term period. Within this figure 14, the regeneration of water table depth 
(indicated with green colors and upward triangles) is more common than in RCP8.5, 
and there are fewer instances of depletion as well. 

Figure 13. WTD changes in meters under RCP 8.5 in the long-term period [2081-2100] compared to the 
reference period [1986-2005]. 
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By digging deeper into the results of Figure 14, regeneration wells are more 
frequent and with higher magnitudes, which are peaked in 1.51 m as the maximum 
regeneration and in quantity, there are 11 wells (11.96%) that are gaining water 
head and in contrast, looking at the depletion (red colored with downward 
triangles), they are still forming a greater quantity of wells but in terms of quality, 
they are less intense, where the maximum depletion here is 3.2 m and the majority 
of wells (67 well - 72.83%) had a depletion depth of 0 to 1 meter. 

Furthermore, in order to better evaluate the distribution of these changes in 
WTD over time under two circumstances, we attempted to overlap the histogram 

of these changes with the same bin size and numbers in order to have a better 
understanding of the results (Figure 15). The result clearly illustrates that the 
distribution of changes under RCP4.5 is compressed around zero, but the 
distribution of changes under RCP8.5 is right skewed (positively skewed) and has 
a significantly longer tail on the right side, indicating deeper alterations (Figure 
15). 

Figure 14. WTD changes in meters under RCP4.5 in the long-term period [2081-2100] compared to the 
reference period [1986-2005]. 
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Figure 15.  Histogram of changes in WTD in long-term period with respect to reference period under RCP4.5 
and 8.5. 
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Chapter 5 

Discussion and conclusions 

 In this study, we attempted to investigate the impact of climate change on 
GWLs of the Iberian Peninsula using a deep learning model. The objective was to 
assess the impact of different Representative Concentration Pathways (RCPs) on 
GWLs of the Iberian Peninsula and provide insights into future groundwater 
conditions. We used deep learning models to predict GWLs of 92 specific wells in 
the Iberian Peninsula. We trained the deep learning model using historical GWLs, 
climate data. We used two RCP scenarios (RCP4.5 and RCP8.5) to predict future 
GWLs under different greenhouse gas emission scenarios. RCP4.5 represents a 
future where greenhouse gas emissions are reduced, and RCP8.5 represents a future 
where greenhouse gas emissions continue to rise. 

Our results showed that future GWLs are highly dependent on greenhouse gas 
emission scenarios. Under RCP8.5, we predicted more severe depletions of GWLs 
than under RCP4.5. In some cases, we predicted recharges as high as 1.5 meters 
under RCP4.5, whereas we estimated depletions under RCP8.5. These results 
clearly demonstrate that groundwater resource protection activities in RCP4.5 are 
effective and necessary. However, if the circumstances continue to be RCP8.5, we 
will most likely lose part of this valuable freshwater resource. 

Our study highlights the importance of considering the impacts of climate 
change on GWLs in groundwater resource management. The use of AI and ML 
methods can provide valuable insights into future groundwater conditions, which 
can be used to develop effective groundwater management strategies. Our results 
also demonstrate the significant impact of greenhouse gas emission scenarios on 
GWLs. Therefore, it is crucial to reduce greenhouse gas emissions to mitigate the 
impacts of climate change on groundwater resources. 
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Capabilities of deep learning 

Groundwater level (GWL) is a crucial parameter in hydrology, environmental 
management, and water resources planning. Traditionally, physically-based and 
numerical models have been used to simulate and predict GWL. However, these 
models require a deep understanding of the underlying topographic and hydro-
geophysical factors, which can be time-consuming and expensive. Therefore, 
artificial intelligence (AI) models have emerged as a desirable methodology for 
predicting GWL. AI models are capable of simulating and predicting GWL without 
requiring a comprehensive understanding of the underlying factors. This makes AI 
models more accessible and easier to use than physically based and numerical 
models. Additionally, AI models have the potential to learn and adapt from data, 
making them more accurate over time [46]. Consequently, AI models have gained 
increasing attention from researchers and practitioners for predicting GWL, and 
their use is likely to increase in the future. 

Several forms of AI, notably artificial neural network (ANN) and fuzzy logic, 
have been widely employed in engineering and science modelling in recent 
decades. Artificial intelligence's growth and uses in forecasting and monitoring 
groundwater quality and quantity are fast expanding [100]–[104]. AI has the benefit 
of lowering the time required for data sampling, and its ability to discover nonlinear 
patterns of input and output is more trustworthy than other traditional statistical 
approaches [105]. As a result, many academics have been drawn to the excellent 
precision and stability of AI structures in modelling complicated groundwater 
systems. 

Deep learning, a subset of machine learning that specializes in producing 
outputs from unstructured input data using unsupervised learning methodologies, 
has grown in popularity in groundwater level simulation [106]. When compared to 
traditional data collecting, one of the key advantages of deep learning is the capacity 
to analyze complicated and high-dimensional data in a relatively short amount of 
time with minimum manpower [107]. 

Comparing to the German study 

As compared to similar research done in Germany, our modelling findings 
demonstrate considerable declines in the GWLs of the analyzed wells. We 
discovered that in Germany, out of the 118 wells analyzed, 35 wells showed a drop 
in average change of the annual mean GWL of at least 9 cm, with 18 wells suffering 
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a decline ranging from -0.2 m to -2.1 m toward the end of the century under RCP8.5. 
This suggests that the groundwater resources in the Iberian Peninsula region are 
under severe stress as a result of the long-term effects of climate change compared 
to Germany. 

Furthermore, we discovered that the majority of wells in Iberian Peninsula (51 
out of 92 wells) had a depletion between 0 and 1 meter on average of the GWL 
median, emphasizing the severity of the situation in the region compared to 
Germany. Additionally, in the RCP8.5 scenario, the maximum depletion was 18.83 
meters, according to our simulation results. These findings have significant 
implications for groundwater resource management in the research region, 
indicating the need for improved monitoring and conservation measures to maintain 
the sustainability of these resources in the face of future climate change impacts. 

Other similar studies in the region 

Groundwater is a vital freshwater resource that is relied upon by millions of 
people around the world. However, this resource is under threat from a variety of 
factors, including anthropogenic and climate change pressures. In recent years, 
various studies have been conducted to better understand the influence of climate 
change on groundwater levels, with most focusing on catchment-scale assessments 
using different approaches. The findings of these studies indicate that climate 
change does have an impact on groundwater levels. Still, this impact is not as 
significant as anthropic factors that contribute to resource depletion and scarcity. 
These anthropic factors can include excessive pumping, overuse, and poor 
management of groundwater resources. 

According to [108], which has conducted research in the rural municipality of 
Abegondo in Galicia, the northern west part of Spain, where we don’t have any 

piezometer data available there, focusing on the sustainability of groundwater 
supplies in weathered and fractured schists. The study revealed that climate change 
might lower groundwater recharge by 6-10% by the end of the twenty-first century, 
aggravating water supply shortages during droughts, which is consistent with our 
overall, though not particular, findings. Overall, the study proposes groundwater 
management and protection actions such as land use planning and groundwater 
protection regulations based on a common consensus among all stakeholders 
involved, including local and regional authorities, agriculture planners, pig 
breeders, farmers, and water users. 
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Another research by [109] focuses on the Campina de Faro aquifer (M12) in 
southern Portugal (which we also have data available), where agricultural methods 
introduced in the 1970s resulted in high abstraction rates and salinization. Despite 
the fact that the EU Nitrates Regulation has been in effect since 1997, nitrate levels 
are still rising in some areas. The research creates a groundwater flow and mass 
transport model to examine nitrate evolution under various scenarios and 
anticipates the influence of climate change on groundwater levels. The results 
demonstrate a hydraulic relationship between M12 and the northernmost aquifers, 
and M12's reaction to excellent agricultural practices is gradual. Climate change 
might considerably influence groundwater levels, and massive drawdowns and 
hydraulic inversion would result in saltwater intrusion, rendering groundwater 
unsuitable for usage.  

As a result, in our analysis, this location is one of the hotspots in terms of both 
time and intensity. In comparison to other places, this region will see the early signs 
of climate change on groundwater beginning in the near-term period (2021-2040), 
and the potential of saltwater intrusion is especially significant due to its proximity 
to the costal line. 

The research [110] assesses the effects of climate change on the groundwater 
resources of Portugal's Serra da Estrela Mountain. The researchers predicted 
changes in hydrometeorological conditions from 1975 to 2005 using two climate 
scenarios, RCP4.5 and RCP8.5. They evaluated the effects of climate change by 
simulating daily temperature and precipitation values from climatic models and 
solving the daily hydrological water balance model with the VISUAL-BALAN 
tool. The findings indicate that the water resources in the Serra da Estrela Mountain 
basin will be extremely sensitive to expected changes in precipitation and 
temperature. Climate change will cause mean annual and monthly temperatures to 
rise considerably by the end of the twenty-first century, while precipitation will fall 
throughout the year, with the greatest relative decline occurring in the spring. 
Interflow, aquifer recharge, and streamflow will all decrease, with the greatest drop 
in mean monthly streamflows happening from March to May because of less 
rainfall and snowfall. 

We do not have a specific model from the mountain region, but in the western 
part near the coastline, we have a significant number of well-trained models that all 
indicate a unified drop between 0 and 1 meter in the long-term period. The changes 
are visible beginning in the near and mid-term periods and peaking in the long-
term. 
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The research [111] focuses on a Mediterranean region in Southeastern Spain, 
where groundwater resources are the principal supply of freshwater in dry and semi-
arid areas. The researchers examined daily precipitation and monthly water level 
data series from several places around the region to determine the crucial threshold 
value for heavy precipitation events (HPEs) that result in significant aquifer 
recharging. The researchers used wavelet and trend analysis to investigate 
variations in the temporal distribution of HPEs and their anticipated development 
using 18 downscaled climate forecasts from 2040 to 2099. The precipitation time 
series were divided into ten groups based on commonalities determined by Pearson 
correlations. The findings revealed that the critical threshold for HPEs in the study 
area is 20 mm/day, and the number of HPEs producing appreciable aquifer recharge 
has decreased significantly in the last 60 years until 2012, a trend that is expected 
to be exacerbated by climate change by the end of the twenty-first century. The 
decline in HPEs is projected to lengthen no-aquifer-recharge times, highlighting 
groundwater shortage in the region. Province of Alicante decision-makers should 
use these findings when planning economic activities to manage groundwater 
resources in a sustainable manner.  

We have several well-trained models in the Alicante province where the 
appearance of the impacts may not be adequately disclosed in the short and mid-
term periods, but it is conceivable to witness some serious declines in GWLs in the 
long run. We noticed a decrease of 0 to 1 meter in two of the three wells in this 
location near the end of the century, but there is one well where the depth of the 
depletion exceeds 3 meters. 

Limitations  

While employing deep learning models such as 1D CNN networks to predict 
and forecast groundwater levels has certain advantages, there are some limits and 
possible issues to consider.  

The quality and quantity of data provided are one of the most critical 
restrictions of utilizing any prediction model. In the case of groundwater level 
prediction, available data may be insufficient, or it may contain outliers, missing 
values, or mistakes that might impair forecast accuracy. We attempted to implement 
the outlier removal procedure using the generalized ESD test with a maximum of 
10 outliers per time series data, but it was not possible to look at all of the outliers 
one by one, and because the groundwater data are not normally distributed, the 
results cannot be 100% correct. 



42 
 

While the model described here incorporates monthly temperature and 
precipitation data, as well as cumulative precipitation from different periods, it may 
not capture all of the key characteristics that determine groundwater levels. 
Additional factors such as soil type, terrain, vegetation cover, groundwater recharge 
rates, sea level pressure, relative humidity, wind speed, global radiation, and 
potential evaporation can all impact groundwater levels but may not be included in 
the model. This necessitates using a feature selection approach such as Correlation-
based Feature Selection (CFS) [112], wrapper method [113], or embedded method 
[114]. The main problem with including several explanatory variables in the 
training of any machine learning model is the limited projection of all variables in 
future. So far, it is easier to project climate variables such as precipitation and 
temperature. However, other variables, such as relative humidity and land use 
adaptation, require further investigation to retrieve them under different future 
scenarios. This reflects the complementary of using process-based modelling 
together with the machine learning approach. When both approaches are used in 
parallel will open new horizons in investigating the direct and indirect impacts of 
climate change. Merging the flexibility of machine learning with the accuracy and 
physical process foundation of deterministic modelling will open new perspectives 
on groundwater assessment that were invisible when used separately.  

Deep learning models are well-known for their capacity to discover 
complicated patterns and correlations in massive datasets. They can, however, be 
prone to overfitting, particularly when the number of training samples is limited in 
comparison to the number of input characteristics. This might result in a model that 
does well on training data but does not generalize well to fresh data. Despite the 
fact that we utilized a Monte-Carlo dropout layer for each of the ten ensemble 
members, with a fixed dropout of 50% to keep the model from overfitting. 

Conclusion  

In the RCP8.5 scenario, our models reveal a relatively significant regional 
reduction in climate-driven groundwater levels by the end of the century. The 
results for RCP4.5, however, showed less substantial changes. Even though a drop 
of a small level (depending on the projection and area) might be critical for 
sustainable groundwater management, especially for groundwater-dependent 
ecosystems during low-flow conditions when groundwater is no longer available. 

Our results show that the eastern part of the Iberian Peninsula has more 
dominance on GWL depletion in the long-term period compared to the near and 
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mid-term periods, and as we move to central and the south-western part of the 
region, we see that the depletion is becoming more visible in the near and mid-term 
periods, implying that the impact of climate change on groundwater level is site-
specific and will be revealed earlier in the western and southern west parts of the 
Iberian Peninsula under RCP8.5. Our findings reveal that under the RCP8.5 
scenario, which is the worst-case scenario, groundwater levels would drop by 
around one meter for 55 wells out of total 92 by the end of the century, highlighting 
the resource's resilience to climate change for future human usage. As a result, it is 
necessary to put in place management strategies to limit the pumping rate and assure 
the long-term usage of this vital resource. 

Groundwater levels can be affected by climate change in both direct and 
indirect ways. With its indeterministic foundation, our model omits any process-
based conceptualization of groundwater behaviour and will focus only on the direct 
impact of climate change effects. Our modelling results clearly showed that the 
projected changes in groundwater levels in the Iberian Peninsula due to only the 
direct effects of climate change (through temperature and precipitation) are much 
smaller than any anthropogenic changes (overexploitation) experienced in the 
Iberian Peninsula currently and in the last decades. For instance, the average 
depletion of all groundwater wells by 2100 under the RCP8.5 is about 1 m, which 
is presently experienced only in one year period in many groundwater systems in 
the Iberian Peninsula due to the unstainable human use.  

The indirect impact of climate change through the overpumping for irrigation 
to mitigate the induced drought conditions is more severe than any direct impact of 
climate change on groundwater systems through precipitation and temperature. 
Nevertheless, the indirect impact, such as increased pumping owing to a shortage 
of surface water for irrigation, may have a greater influence in future as the region's 
food need grows. The region is currently experiencing severe groundwater 
depletion in many aquifers, reflecting the urgent need for more sustainable use of 
groundwater resources.  
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Appendix 1  

Provided in the portal as a separate file, including hyperparameters, extremes 
and SHAP summary plots for the 92 studied wells.  

Appendix 2  

Provided in the portal as a separate file, including water table depth (WTD) 5-
year moving average of eight model medians, 25th-75th percentiles and min-max 
range and heatmap plots for RCP4.5 and 8.5 scenarios for the 92 studied wells.  
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