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Abstract

Parasomnias are disorders that afflict a part of the population. Often can be
easily solved, others instead can lead to more serious disorders, such as REM
behavior disorder (RBD) as it can be a warning premotor for neurogenerative
diseases such as Parkinson and Dementia with Lewy bodies. The study carried
out makes it possible to analyze the various stages of sleep and subsequently extract
the features of each stage with EMG data obtained from the Sleep Medicine Center
(CMS) database. The data, however, were noisy, so they were pre-processed with
bandpass and notch filter because, due to the machines used, for each measurement
it was noted there was a peak in 45 Hz, which was removed for all subjects. The
distinction of the various stages of sleep was made by analyzing the hypnogram
provided and, in particular, in the REM stage, REM sleep without Atonia (RSWA)
scoring was calculated with the Montrèal and SINBAR method. The extracted
and selected features of each stage were input to machine learning algorithms with
the aim to automatically differentiate a patient from a healthy control subject.
Supervised learning model (SVM) has been used and has been validated with
cross-validation. Performance is relatively high with regards to identification of an
RBD subject from a healthy one (85% of accuracy), however performance impairs
when the RBD subject must be distinguished from a RSWA subject (73.68% of
accuracy).

Furthermore, with the analysis of the phasic and tonic activity, the envelope
of the tonic phase during REM sleep of the various subjects was studied, first by
removing the phasic peaks and subsequently by enveloping the remaining tonic
phase. It has been noted that in RBD subjects the envelope trend is periodically
modulated, but the reason is yet to be understood. This can be a starting point
for being able to compare the envelope trend of the other muscles to differentiate
them or find common qualities.
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Chapter 1

Healthy and unhealthy sleep

During a physiological sleep, the body condition is anabolic, in order to restore
the nervous, immune, skeletal and muscular systems. In fact whole-organism
metabolic rate during sleep is even lower than resting waking metabolic rate.
There are many hypotheses that sleep’s function is to reduce caloric use in or-
der to regain energy used during wakefulness restoring its adenosine triphosphate
(ATP) reserve, the molecule used for short-term storage and transport of energy;
in this way the brain maintains memory and cognitive function. In other words,
the brain uses actually less energy during sleep than it does when awake, especially
during non-REM sleep [2, 3]. Furthermore, during sleep, the sensory threshold in-
creases, which means that for the body to perceive a stimulus, it must be intense,
like a loud noise.

1.1 Sleep stages

Sleep occurs in repeating stages, in which the body mainly alternates between
REM sleep (REM) and non-REM sleep (NREM). The stages of sleep were first
described in 1937 by Alfred Lee Loomis and his coworkers, but their name was
”level” from A to E, representing the spectrum from wakefulness to deep sleep.
Subsequently, in 1953, REM sleep was distinct from others, and then William
Dement and Nathaniel Kleitman reclassified sleep into four NREM stages and
REM. Officially the stages were standardized in 1968 by Allan Rechtschaffen and
Anthony Kales in the famous ”R&K sleep scoring manual”, also known as ”R&K
standard” [4].

Lastly, in 2007, the new ”AASMManual for the Scoring of Sleep and Associated
Events” has been published so it could be useful for a complete study of the
polysomnography (PSG) because also arousal, respiratory and cardiac events were
added. The following stages were officially proposed:
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Chapter 1. Healthy and unhealthy sleep 1.1. Sleep stages

• Stage W (wakefulness)

• Stage N1 (NREM sleep)

• Stage N2 (NREM sleep)

• Stage N3 (NREM sleep)

• Stage R (REM sleep)

In general, during NREM sleep, the body temperature and heart rate fall [5],
and the brain uses less energy. Instead, during REM sleep, that represents a
small portion of total sleep, there are fast brain waves, eye movements, muscles
are completely relaxed, and the subject can dream. For these reasons this stage
of sleep occasionally is also called ”paradoxical sleep” [6] because the awakening
threshold is high, despite our brain is mighty active but but awakening in this
phase allows the memory of what was dreaming. The sleep cycle of alternate
NREM and REM sleep takes an average of 90 minutes, occurring 4–6 times in a
good night’s sleep [7].

1.1.1 Stage W

Wakefulness, through the reading of the electroencephalographic (EEG) signal, is
characterized by the presence of alpha waves (from 8 to 13 Hz) [8] visible in the
posterior regions of the head. The alpha rhythm is sometimes not clearly dis-
tinguishable, in fact about 10% to 20% of healthy people have little or no alpha
rhythm. In these cases, wakefulness can be found and scored through electroocu-
lohraphy (EOG), by observing the presence of one of three characteristics: eye
blinks, eye movements and irregular conjugate eye movements with normal or high
chin muscle tone. Lastly, submental electromyography (EMG) is relatively high
tone because of the high-amplitude muscle contractions and movement artifacts.

1.1.2 NREM stages

N1 sleep stage

The N1 sleep stage is also referred to as transitional sleep; the alpha activity is
often lost or less than 50%, and it is defined by the presence of low-amplitude,
mixed-frequency activity, in particular it is scored when more than 15 seconds (>
50%) of the epoch (30 s) is made of theta activity (4 to 7 Hz) [8]. Amplitudes
of EEG activity are less than 50 to 75 µV. The EOG shows slow eye movements
because the eyes begin to slowly roll and the submental EMG is lower in amplitude
than in stage W. In fact, the EMG shows less activity than in wake stage, but the
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Chapter 1. Healthy and unhealthy sleep 1.1. Sleep stages

Figure 1.1: N1 sleep stage of a healthy subject from CMS database

transition is gradual. If an arousal occurs in this stage and if the burst results in
alpha activity for greater than 50% of the record, the epoch is scored as stage W.
An example of EMG is in Figure 1.1. Physiologically the subject’s breathing gets
slow, heart rate becomes regular, blood pressure falls and the subject shows little
or no body movement, but the sleeper wakes up easily even with small external
stimuli.

N2 sleep stage

The N2 sleep stage is also called spindle or intermediate sleep. It is an intermediate
stage of sleep, but it represents up to 50% of PSG recording in adult patients. It is
characterized by predominant theta activity (4 to 7 Hz EEG activity), occasional
quick bursts of faster activity, but overall the EEG shows minimal alpha activity.
Furthermore, the duration of delta activity is the threshold for differentiating state
N3 from stage N2; indeed, if delta activity occurs for less than 20% of the epoch,
the latter is scored as stage N2, otherwise it is scored as stage N3, also called slow
wave sleep. In this stage, sleep spindles and K-complexes begin to occur. Spindles
are trains of waves with a frequency of 12-16 Hz and lasting 0.5-1.5 seconds, which
persist throughout the duration of non-REM sleep [9].

K-complexes are sharp, mono-phasic or poly-phasic slow waves, with a sharply
negative (upward) deflection followed by a slower positive (downward) deflec-
tion and usually they can be distinguished from the rest of the background. K-
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Chapter 1. Healthy and unhealthy sleep 1.1. Sleep stages

Figure 1.2: N2 sleep stage of a healthy subject from CMS database

complexes and sleep spindles are intermittent phenomena, they last at least 0.5
seconds, and may not always be present. However, their absence does not indi-
cate that sleep has turned into the N1 stage, unless arousal occurs or there is a
prominent body movement followed by slow eye movements. In general, the N2
stage sleep ends when there is a transition to W, N3 or R stages. Submental EMG
activity is tonically low, and in figure 1.2 it is possible to see it.

In N2 stage sleep there is a decrease in physiological bodily functions, in fact
blood pressure, cerebral metabolism, gastrointestinal secretions and cardiac ac-
tivity decrease compared to stage N1. The subject descends deeper into sleep,
becoming more detached from the outside.

N3 sleep stage

Stage N3 is the deepest stage of sleep, also referred to as deep sleep, delta sleep
or, most commonly, Slow Wave Sleep (SWS). Previously this stage was divided
into two sub-stages, but with the new AASM guidelines the two stages have been
merged. It is scored when more than 20% of an epoch consists of slow wave
activity, although K complexes and sleep spindles may persist in stage N3. SWS
is characterized by low frequency bands (from 0.5 to 2 Hz) with high amplitudes
(greater than 75 mV) [10]. In fact, it is properly incorrect to call it ”delta sleep”
because the frequencies are a subset of the delta wave band (from 0.5 to 4 Hz).

Physiologically a patient through SWS has the highest threshold for arousal
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Chapter 1. Healthy and unhealthy sleep 1.1. Sleep stages

Figure 1.3: N3 sleep stage of a healthy subject from CMS database

because it is the deepest and restorative sleep type, and if the patient wakes up in
this stage he may be confused and disoriented. For these reasons the muscle tone
is even lower than in stage N1 or N2, as shown figure 1.3, and the eyes may stop
moving.

R sleep stage

REM (o R) sleep stage is also called active sleep or paradoxical sleep because the
human body results active at the brain level but there is muscle atonia. REM
sleep typically occurs about 90 to 120 minutes after sleep onset in adults and it
begins with a brief period but progressively the periods become longer during the
night and it occupies 20% to 25% of the period of sleep. In R stage the human
body increases physiological activity; blood pressure and pulse rate may increase or
may show intermittent fluctuations, breathing becomes irregular and brain oxygen
consumption increases. If patients wake up in this stage of sleep, they often can
remember the dream, but if the patients have disorders associated with REM sleep
they may not remember it and especially it could lead to a pathological situation,
including different types of parasomnias, like REM sleep behavior disorder or REM
nightmares.

The EEG shows low-amplitude, mixed-frequency EEG theta waves and some
subjects also have prominent alpha frequencies, often 1 to 2 Hz slower than their
alpha rhythm when they are awake. Instead, the EOG shows rapid eye movements
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Chapter 1. Healthy and unhealthy sleep 1.2. Sleep Disorders

Figure 1.4: R sleep stage of a healthy subject from CMS database

(REMs) that are defined as conjugate (both eyes), irregular, sharply peaked eye
movements with the duration of the initial deflection usually less than 500 ms.

The most important features for stage R are in the EMG. The submental EMG
tone is at the lowest level of the whole PSG and there are particular waves as saw
tooth waves and burst of EMG activity lasting <0.25 seconds overlapped on low
tone background (Figure 1.4). It is possible to observe it well in the chin and
anterior tibialis. In few words, stage R is scored if chin EMG tone is low and K
complexes and sleep spindles are absent, even if the rapid eye movements have not
yet started. A review of brain waves during stages sleep is shown in Figure 1.5.

1.2 Sleep Disorders

1.2.1 Guidelines

The main international classification of sleep disorders is the International Classifi-
cation of Sleep Disorders (ICSD), first version published in 1990. It was developed
as a diagnostic, epidemiological and clinical resource for sleep medicine researchers
[11]. The first and subsequent versions were produced by the American Academy
of Sleep Medicine (AASM) in collaboration with the American Sleep Disorders
Association (ASDA), the European Sleep Research Society, the Japanese Society
of Sleep Research and the Latin American Sleep Society, the main international
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Chapter 1. Healthy and unhealthy sleep 1.2. Sleep Disorders

Figure 1.5: Brain waves during sleep stages [1]

sleep societies. A second edition was published in 2005 and called ICSD-2, but the
third and current edition is about 2014 and it is called ICSD-3, also released by
the AASM. The ICSD-3 lists the 83 disorders divided into 7 main categories [12]:

1. Insomnia

2. Sleep-related breathing disorders

3. Central disorders of hypersomnolence

4. Circadian rhythm sleep-wake disorders

5. Parasomnias

6. Sleep-related movement disorders

7. Other sleep disorders

1.2.2 Parasomnias

Parasomnias are defined as undesirable and abnormal behaviors, movements, emo-
tions and dreams that occur predominately or exclusively during the sleep period.
The main concept to understanding them is that the state of sleep and wakefulness
are not mutually exclusive states, hence the severals variables that determinate the
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Chapter 1. Healthy and unhealthy sleep 1.3. RBD: REM Behavior Disorder

states of wakefulness, non-REM (NREM) sleep and REM sleep may occur simul-
taneously or oscillate quickly. The parasomnias are classified according to ICSD-3
into the 3 categories [13, 14]:

• REM parasomnia, which includes nightmares and recurrent isolated sleep
paralysis, but the most common and best studied one is REM sleep behavior
disorder. The latter is the disorder that will be better explored later in this
study.

• NREM parasomnia, which includes disorders such as the so-called sleepwalk-
ing, sleepterrors and confusional arousals. The treatment is often not nec-
essary, but in rare cases the administration of drugs such as antidepressants
and benzodiazepines is possible.

• Other parasomnias, those that do not fall into the previous two categories,
such as exploding head syndrome, sleep-related hallucinations and sleep
enuresis

1.3 RBD: REM Behavior Disorder

REM sleep behavior disorder (RBD) is a parasomnia characterized by repeated
episodes of dream enactment with a partial or complete loss of normal skeletal
muscle atonia during REM sleep, termed REM sleep without atonia (RSWA).
The dream enactment behaviours exhibit an excessive motor activity ranging from
simple twitches to strong ones, that may result danger for the patient and for
sleeping partner, typically include kicking and hitting with screaming, shouting
or laughing, even if speech is often incomprehensible. The behavior is linked to
typical RBD dream contents because the patient tells of being chased, attacked
or defending their partner from attack. RBD is common in patients affected by
neurodegenerative diseases, belonging to the group of alpha-synucleinopathies, like
Parkinson’s Disease (PD), Dementia with Lewy bodies (DLB) and Multiple System
Atrophy (MSA). RBD may be idiopathic (iRBD) therefore without known cause
or symptomatic, caused by neurodegenerative disorders previously mentioned. In
particular, it occurs more likely in patients with MSA (90–100% of cases), then
DLB (70–80%) and finally in PD (25–58% of cases) [15].

1.3.1 Diagnosis of RBD

According to ICSD-3, the diagnosis requires PSG because it uses a combination of
EMG and EEG to find the features of RSWA and to observe abnormal behaviors
during REM sleep which are usually documented from a video recording during

8



Chapter 1. Healthy and unhealthy sleep 1.4. Hypnogram

Figure 1.6: R sleep stage of a RBD patient from CMS database

the PSG or informally from the bed partner. Going into detail, RSWA consists
of lasting loss over time of normal muscle atonia during REM sleep (i.e. tonic
activity) and/or intermittent (i.e. phasic activity) excessive EMG activity during
REM sleep, as shown in Figure 1.6. It is evident that the quantification of RSWA is
critical in order to diagnose RBD, therefore several methods have been developed
to evaluate motor activity during REM sleep.

Diagnostic criteria according to the International Classification of Sleep Disor-
ders mainly include [16]:

• Abnormal and injurious REM sleep behaviors during PSG;

• Presence of RSWA on PSG;

• Sleep disorder is not better explained by another disorder.

The importance of only the RSWA, without any abnormal behavioral component,
is uncertain, although there is some evidence that it can be a precursor to RBD,
a kind of prodromal form of RBD.

1.4 Hypnogram

A graphic representation of sleep-stage sequence across the night is provided by
hypnogram, a useful method to evaluate sleep continuity and to analyze the sleep
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Chapter 1. Healthy and unhealthy sleep 1.4. Hypnogram

Figure 1.7: Hypnogram of a healthy subject from CMS database

cycle. Several parameters are usually computed from the hypnogram, such as the
sleep efficiency (SE), sleep onset latency (SOL), REM sleep percentage, NREM
sleep percentage and REM latency. These are just some of the parameters taken
into consideration for the subsequent study of feature extraction, further explored
in the Machine Learning chapter. In few words, the hypnogram provides a qualita-
tive description of the sleep structure, and quantitative measures are drawn from
it. The stage scoring is done on 30s epochs and therefore the polysomnographic
recordings observed are divided into time segments.

In an average night of sleep of about 8 hours of a healthy subject, as can be
seen in Figure 1.7, deep sleep N3 (stage 3) occurs mostly in the first part of sleep
and awakenings (stage 0) are sporadic and short-lived. Another parameter to note
visually is in the second half of the night’s sleep, where the lengths of the REM
sleep segments (stage 5) are longer than those in the first half of the night; this
means that REM sleep lasts longer in the nocturnal sleep cycles near the end of
the night. Awakenings immediately after the REM stage are good awakenings,
instead those that occur in one of the other stages could be abrupt awakenings
especially if they occur in the deep stages of sleep, as N2 and N3 stages.

10



Chapter 1. Healthy and unhealthy sleep 1.4. Hypnogram

Figure 1.8: Hypnogram of a RBD subject from CMS database

1.4.1 Comparison

It is interesting to compare the various hypnograms to better understand how they
change according to the subject’s disease. In particular, this section compares the
hypnogram of a RSWA subject (Figure 1.9) and a RBD subject (Figure 1.8) with
a healthy subject (Figure 1.7). As regards the recordings, the waking state (stage
0) begins and ends at different times in the three subjects; in fact in the healthy
subject it begins and ends in the epochs 198 and 1141, while in the subjects RBD
and RSWA they begin respectively in the epochs 110 and 0, and end in epochs
1179 and 1198, but it varies from subject to subject.

As regards the stages, in unhealthy subjects it is not possible to define a se-
quence of stages of sleep because, as can be notice, the duration of each segment
is short and changes suddenly. Furthermore, in the RBD subject the length of the
REM segments is not progressive as in healthy subjects, but it is random, as is
also the frequency of stage N3. Finally, as could be expected, the RSWA subject
has particularly little stability in the REM stage, in fact many stage changes of
very short duration are noted.
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Figure 1.9: Hypnogram of a RSWA subject from CMS database
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Chapter 2

Materials and methods

2.1 The goal of the study

The main goal of this study is to use machine learning to be able to automatically
differentiate a healthy subject from a unhealthy one (RBD or RSWA) directly from
the submental EMG signal. The submental EMG signal was recorded during a
PSG, where other EMG, EEG and EOG signals were also recorded. In particular,
the study can be divided into several steps:

1. Collection, selection and analysis of data from Sleep Medicine Center database;

2. Pre-Processing: filtering of noisy data, with particular attention to visible
peaks in the PSD;

3. Scoring methods: implementation of algorithms capable of scoring the tonic
and phasic activities of the submental muscle with the SINBAR and Montreal
method;

4. Signal envelope: the envelope of the EMG signal of the tonic activity, use-
ful for understanding whether there is a typical morphology of the tonic
envelope;

5. Machine Learning: feature extraction and selection and implementation of a
learning model to able to classify healthy and unhealty patients;

6. Results: cross-validation and accuracy.

2.2 Database

The sleep database was provided by the Sleep Medicine Center (CMS) at the
Hospital “Molinette - Città della Salute e della Scienza di Torino”, Turin, Italy.

13



Chapter 2. Materials and methods 2.3. Pre-Processing

It is a collection of 29 polysomnographies labeled as healthy, RBD, RSWA data.
Data from OSAS patients were also provided but were not used for the purpose of
this study. Summarizing the subjects studied in this work:

• 10 healthy subjects

• 10 RBD subjects

• 9 RSWA subjects

Each polysomnogram has two types of files: edf and txt extensions. The header
of edf files is read by “edfreadUntilDone” function, and includes two outputs: the
record of all signals and a data structure that contains information about in-
strumentation and measurement data. The latter includes patient and recording
identification, information about the recording as the start date and start time,
the number of data records and the number of signals in each data record. In
this database each data record has 24 different signals from EMG at submentalis
muscle, EEG, ECG, body temperature, heart rate, respiration signals as airflow,
abdominal and thoracic displacements and oxygen saturation. Finally, the sam-
pling frequencies and the unit of measure are present. For this study the sampling
frequency is 256 Hz for all EMG of the submentalis muscle record. The unit of
measure used is ”µV” and if it is another unit it is changed in ”µV”.

The txt files contain polysomnography annotations to make hypnogram. The
hypnogram was made through the function ”readscoreTurin” and following AASM
rules it was divided into 30-second epochs so that the hypnogram could be made
and displayed. However, the goal was to display only the REM signal and this
was possible by resampling the hypnogram on all signal samples because the signal
taken was recorded in samples and subsequently stage 5 (REM) was taken from
the last hypnogram made. Epochs or samples were removed as appropriate to
match the number of 30-second epochs and signal length. This procedure allowed
to visualize only the REM signal of the submental muscle as a function of all the
samples recorded during the night, as shown in the Figure 1.4. The following
data processing and the algorithm software implementation were performed in
MATLAB R2021b language.

2.3 Pre-Processing

The signals of interest were noisy, in particular all of them exhibited a significant
peak in 45 Hz due to the shifted powerline frequency. To understand which filters
to implement, the power spectrum of each signal was calculated and displayed.
Welch’s PSD is estimated on the signal, from which, however, the average has
been removed to remove any trends. The Hamming window over the entire length

14



Chapter 2. Materials and methods 2.3. Pre-Processing

Figure 2.1: PSD of a submental EMG signal during REM stage of a healthy subject
from CMS database

of the signal has been chosen as the window and as regards overlapping, the number
of overlapping samples is equal to 50% of the length of the window. The number
of discrete Fourier transform (DFT) points to use in the PSD estimate is 32786
points. An example of the results is shown in Figure 2.1, the PSD is normalized
to its maximum, so it is between 0 and 1 in order to simplify the comparison with
the other PSD.

2.3.1 Bandpass filter

The power spectral density is useful to deduce that the main information of the
power density of the signal is between 10 and 100 Hz; in fact before 10 Hz the
information is low and unstable, after 100 Hz it quickly tends to 0 Hz. For these
reasons it has been decided to use a 10-100 Hz band pass filter. It is designed
through a digital Butterworth filter with an order and a cutoff frequency deter-
mined by the MATLAB function ”buttord” that is set so that guarantees no more
than 4.5 dB of passband ripple and at least 20 dB of attenuation in the stopband.
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Figure 2.2: PSD of a filtered submental EMG signal during REM stage of a healthy
subject from CMS database

2.3.2 Notch filter

The notch filter was used to limit the peak of the signal that can be seen in the
PSD in the Figure 2.1 at powerline frequency of 45 Hz. The filter was then set
with that cutoff frequency and a digital recursive filter was designed using the
MATLAB function ”Yulewalk”. It returns the transfer function coefficients of an
n-order IIR filter whose amplitude-frequency response approximately corresponds
to the input ideal values f and m, chosen with reference to an ideal notch filter.
To choose the most suitable n-order, a loop repeated 100 times was implemented
for which at each cycle the filter mask was displayed and superimposed to the
previous ones. In this way the best frequency response was chosen that was able
to filter better at the cutoff frequency without attenuating too much the adjacent
frequencies.

Finally, to filter the signal with the coefficients obtained, the ”filtfilt” function
is used since the IIR filter has a non-linear phase response and therefore there is a
phase distortion. The function performs zero-phase digital filtering by processing
the data in the forward and reverse directions. The final result of the filtering of
the previously signal is clearly observable in the Figure 2.2.
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Chapter 2. Materials and methods 2.4. Scoring methods

2.4 Scoring methods

Scoring RSWA is essential to help the diagnosis of RBD, and, as previously men-
tioned, it consists of sustained loss of the tonic activity due to the loss of normal
muscle atonia during REM sleep and/or a considerable phasic activity due to ex-
cessive EMG activity during REM sleep. Therefore, it is essential to quantify
RSWA with numbers and values in order to possibly be able to correctly diagnose
RBD. The first visual scoring method for quantifying tonic and phasic chin EMG
activities was originally developed in 1992 by Lapierre and Montplaisir, it is the so-
called Montréal method [17]. It has been useful to study idiopathic RBD (iRBD)
and RBD associated with neurodegenerative diseases, but it was never measured
in a large group of RBD patients and normal controls until the year 2010, when
the method was validated in a study managed by Montplaisir himself.

Another visual scoring method was performed by the Barcelona and Innsbruck
groups, known as SINBAR group. The group performed an EMG analysis for
the purpose of comparing RSWA assessed in 13 different body muscles and in
different combinations to find the highest rates phasic EMG activity. Highest rates
of phasic EMG activity were found in the mentalis muscle, the flexor digitorum
superficialis (FDS) muscle in the upper limb muscles and the extensor digitorum
brevis (EDB) muscle in the lower limb muscles, it was called the SINBAR montage
[18]. Using this combination of muscles, EMG activity was present in 95% of all
motor manifestations, more than two and a half times compared to using only the
mentalis muscle in fact EMG activity was only present in 35% of behaviors.

2.4.1 Montréal method

The method is used to calculate Tonic density and Phasic density of the submental
muscle. It is based on 30-second epochs and each epoch is analyzed and categorized
as tonic or atonic and phasic or aphasic. Tonic and Phasic density, instead, is
not calculated for each epoch but it is calculated on the whole signal because it
represents the percentage of 30-second epoch scored as tonic or phasic respectively.
The threshold tonic/phasic is defined as 40th percentile of the SWS sleep stage,
namely background activity.

The function implemented on MATLAB is called ”montreal tonic phasic” and
has 3 input:

• FS: sampling frequency

• BKG: background activity of EMG muscle tone

• SIGNAL: filtered REM signal

And the output are clearly two: Tonic and Phasic density.
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Tonic Density

The steps of the algorithm implemented to calculate Tonic Density are the follow-
ing:

1. Signal rectification: all negative voltages are made positive, reversed with
respect to the base line. It allows to have many benefits: a better reading of
the signal and a more precise evaluation of the exceeding of the threshold,
definitive later;

2. Signal is divided into 30-second epochs;

3. Threshold definition: the amplitude of a sample must be at least twice as
large as the BKG activity or must be greater than 10 µV. Exceeding the
threshold defines that sample’s activity as increased activity ;

4. Tonic activity definition: if more than 50% of the epoch samples exceed the
threshold, the epoch is defined as tonic;

5. Tonic density is calculated as the percentage of tonic epochs out of total
REM epochs.

REM sleep chin EMG activity was scored abnormal when tonic chin EMG density
was ≥ 30%. [19]

Phasic Density

The steps of the algorithm implemented to calculate Phasic Density are the fol-
lowing:

1. Signal rectification;

2. Signal is divided into 30-second epochs;

3. Each 30-second epoch is divided in 2-second mini-epochs;

4. Threshold definition: the amplitude of a sample must exceed at least four
times the amplitude of BKG activity to be considered supra-threshold. One
or more consecutive supra-threshold samples are termed as a single burst.

5. 10 or more consecutive sub-threshold samples are considered to belong to
two different bursts ;

6. Phasic activity definition: if the bursts into the epoch have duration between
0.1 and 10 seconds, then the epoch is scored as phasic;
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7. Phasic density is calculated as the percentage of the number of phasic epochs
out of total REM epochs.

Phasic density of chin EMG was considered abnormal when it was ≥ 15%. [19]

2.4.2 SINBAR method

As previously described, the SINBAR group found the muscles with the highest
rates of phasic EMG activity, i.e. mentalis muscle (submental muscle), flexor
digitorum superficialis (FDS) muscle and the extensor digitorum brevis (EDB)
muscle. In this study the tonic and phasic density are calculated only for the
submental muscle also with the SINBAR method. The function implemented
on MATLAB to calculate tonic and phasic density are called ”sinbar tonic” and
”sinbar phasic” respectively, and have 3 input as ”montreal tonic phasic”: FS,
BKG and the filtered signal (submentalis EMG). The output is the Tonic Density
in percentage.

Tonic Density

The steps of the algorithm implemented to calculate Tonic Density are the same
of the Montréal method, in fact the result match each other. For the completeness
of the study, the steps have been reported anyway in the following list:

1. Signal rectification: all negative voltages of the filtered signal are made pos-
itive;

2. Signal is divided into 30-second epochs;

3. The amplitude of a sample must be at least greater of two times than the
BKG activity or must be greater than 10 µV. Sample activity is termed as
increased activity when it exceeds at least one of the two thresholds;

4. The epoch is defined as tonic if more than 50% of the same epoch samples
exceed the threshold;

5. Tonic density percentage is calculated as the percentage of tonic epochs out
of total REM epochs.

The threshold score percentages for defining abnormal tonic density are the same
of the Montréal method, hence when tonic chin EMG density is ≥ 30%. [19]
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Phasic Density

The steps made of the algorithm implemented to calculate Phasic Density with
SINBAR method are the following:

1. Signal rectification;

2. Signal is divided into 30-second epochs;

3. Each 30-second epoch is divided in 3-second mini-epochs, so as to form 10
mini-epochs for each epoch;

4. Threshold definition: the amplitude of a sample must exceed at least two
times the amplitude of BKG activity to be considered supra-threshold. One
or more consecutive supra-threshold samples are termed as a single burst.

5. 10 or more consecutive sub-threshold samples are considered to belong to
two different bursts ;

6. Phasic activity definition: if the bursts into the epoch have duration between
0.1 and 5 seconds, then the epoch is scored as phasic. Bursts outside the
range were not counted because are not defined as phasic;

7. Phasic density is calculated as the percentage of the number of phasic epochs
out of total REM epochs.

The percentage cut-off value of 3-second mini-epochs with phasic chin EMG ac-
tivity is 16.3% [19]. If the phasic density exceeds this percentage, it is defined as
unhealthy.

2.5 Envelope analysis

Envelope analysis of EMG in RBD patients was made because it could contribute
to assist RBD diagnosis [20]. The envelope of EMG in this section focused in
particular on tonic activity of healthy subjects and RBD patients during REM
stage recorded during the PSG. The goal of the tonic activity envelope graph of
an RBD patient is to find characteristics about the envelope morphology in order
to be compared with the envelope morphology of a healthy subject or, more in
general, to compare different envelopes of different muscles and understand if the
trends are similar in order to facilitate the most correct diagnosis and, perhaps,
even find a faster diagnosis directly from the envelope of the tonic activity of the
muscle being examined.

To isolate tonic from phasic activity, the larger phasic bursts have been elimi-
nated in order to flatten the graph and make it as tonic as possible. The algorithm

20



Chapter 2. Materials and methods 2.6. Machine Learning model

was implemented by dividing the REM sleep EMG signal into 60-second epochs
and for each epoch the local maxima (peaks), the locations and the width of each
were found using the MATLAB function ”findpeaks”. The maximum peak width
in seconds to define whether the samples belong to the same peak is 2 seconds
because it is the most useful to characterize the signal trend. To eliminate the
peak, the position and width were used in order to identify the signal segment to
be deleted. Finally, the envelopes were plotted.

2.6 Machine Learning model

In this section, Artificial Intelligence (AI) is used to develop a Machine Learning
(ML) model of the data extracted and processed in order to be able to classify in
an automatic way. It must distinguish whether a subject is unhealthy or healthy
by analyzing the filtered EMG signal of REM sleep. The steps for the development
of the Machine Learning model are done as follows:

1. Feature extraction

2. Model training

3. Accuracy assessment

2.6.1 Feature extraction

The literature describes several features, but for this study only some of those
proposed have been chosen, those deriving from the analysis of the EMG signal
and the hypnogram, namely polysomnographic features. In total are extracted
49 features from the hypnogram and EMG signal and are divided in three differ-
ent categories: polysomnographic, muscular (EMG) in the frequency domain and
muscular (EMG) in the time domain.

The features computed on the hypnogram include the total hours of sleep
(TST), lights-off to lights-on interval in hours (TIB), ratio between TST and TIB,
proportion of N1, N2, N3 and REM sleep in TST and the average length of N1, N2,
N3 and REM segments. The features that represent information in the frequency
domain include the spectral edge frequency at 95% of REM signal (SEF95) that
indicates the highest frequency below which 95% of the REM signal power is
located and in the same way the spectral edge frequencies were calculated at
different percentages such as 25% (SEF25), 50% (SEF50) and 75% (SEF75) [21,
22]. Finally, the main features computed in the time domain are background
activity evaluation of muscle, tonic and phasic density, number of peaks and peaks
width. All features have been normalized between 0 and 1. The details of features
computed are defined in detail in Table 2.1.
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Type Name and description

PSG
Sleep Onset Latency (SOL): the amount of time required
to fall asleep (minutes)
Total Sleep Time (TST): total hours of sleep
Time in Bed (TIB): lights-off to lights-on interval (hours)
Sleep Efficiency (SE): the ratio between TST and TIB (%)
Minutes of REM Sleep (MREM): total duration of REM
Sleep (minutes)
Average Length N1 (ALN1): average length of N1 seg-
ments (minutes)
Average Length N2 (ALN2): average length of N2 seg-
ments (minutes)
Average Length SWS (ALN3): average length of SWS
segments (minutes)
Average Length REM (ALN5): average length of REM
segments (minutes)
Proportion of N1 Sleep (PN1): N1 sleep in TST (%)
Proportion of N2 Sleep (PN2): N2 sleep in TST (%)
Proportion of SWS Sleep (PN3): SWS sleep in TST (%)
Proportion of REM Sleep (PNR): REM sleep in TST (%)
Waking proportion (WP): awake time during the night (%)
Wake After Sleep Onset (WASO): the amount of time the
subject is awake during the recording (minutes)

EMG (TD)
Statistical measures: mean, standard deviation, skewness,
kurtosis, max, min
Energy: for every 30 s epoch the mean rectified amplitude is
calculated
Background activity (BKG): the 40th percentile of the
SWS sleep stage (µV)
Tonic/Phasic Density: for every 30 s epoch tonic/phasic
density is calculated using SINBAR method (%)
Envelope: number of peaks, peak amplitude, peak width

EMG (FD)
Statistical measures: mean, standard deviation, skewness,
kurtosis, max, min
SEF25, SEF50, SEF75, SEF95: frequencies below which
the total spectral power is found on the EMG signal during
REM Sleep (Hz)
SEFd: difference between SEF95 and SEF50 (Hz)
Average Power (AP): is calculated on the normalized PSD

Table 2.1: Features extracted from PSG and EMG signal. TD: time domain, FD:
frequency domain
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2.6.2 Model training

Automatic classification of RBD and RSWA patients was done by developing a
supervised learning model. Commonly these models learn from the characteris-
tics of previously labeled data - training data - and subsequently optimize their
algorithm, classify known but not labeled data - test data. Finally, if the model
performs well, then it can be used to classify unknown data. In this work, instead,
since there were few subjects, the dataset was used both as training and as a
test, in particular the cross-validation technique was used. The Machine Learning
model used for the binary classification of unhealthy subjects (RBD and RSWA)
and healthy ones is well-known Support Vector Machine (SVM) [23]. It builds a
hyperplane in a multidimensional space, which, in this case, is used for classifica-
tion. Its purpose is to obtain a separation of the classes so that it has the greatest
distance from the closest point of each of the two classes. The generalization error
of the classifier is smaller when the distance between these points is greater.

2.6.3 Performance assessment

For the validation of the model, due to the limited data available, it was decided to
use cross-validation, developing the ”Leave-one-out” algorithm. It consists in using
one subject to test the model and using all the others to train it, and iteratively
changing the test subject so that all subjects have tested the model at least once
[24]. Employing this algorithm, performance as accuracy, sensitivity and specificity
are calculated for each cycle on the single test subject and averaged over all cycles.
It is calculated also the standard deviation.
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Results

3.1 Tonic and Phasic Density

For each group of subjects (Healthy, RBD and RSWA) the background muscle
activity was calculated and used as a reference threshold in the algorithm for
calculating tonic density and phasic density, as described in the previous chapter.
The latter are calculated both with the SINBAR and with the Montréal method,
but the tonic density has been reported only once because the same algorithm is
used in both methods. In addition, the mean and standard deviation have been
also calculated for each parameter.

The pathological threshold values are for tonic activity if it exceeds 30% and
for phasic activity according to the SINBAR method if greater than 16.3% and
according to the Montréal method if it exceeds 15% [19]. As expected, in Table
3.1 it can be seen that in 10 healthy subjects only one (S8) exceeds PD SINBAR
and PD Montréal thresholds. As for the 10 RBD subjects (Table 3.2):

• Two subjects (RBD1, RBD3) are below the SINBAR threshold;

• Only one subject (RBD1) is below the Montréal threshold.

Instead, the 9 RSWA subjects are all below the threshold except for one (RSWA1)
which is above the threshold for both the SINBAR and Montréal methods, as seen
in Table 3.3.

3.2 Tonic activity envelope of the EMG signal

To graphically display the envelope of the tonic activity of the chin EMG signal,
the MATLAB function “envelope” with peak mode was used in order to plot the
upper and lower peak envelopes of the input signal. Another input is the number
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Subject BKG (µV) TD (%) PD (%) SINBAR PD (%) Montréal

S1 0,92 0,68 7,50 6,85
S2 0,98 0,00 5,20 6,22
S3 1,40 0,00 2,02 2,22
S4 2,32 0,00 5,28 4,75
S5 0,73 3,33 7,17 7,44
S6 0,55 1,43 4,00 4,06
S7 0,85 0,00 2,24 2,40
S8 0,49 2,00 16,60 18,53
S9 0,61 0,00 11,88 11,32
S10 0,86 0,00 3,90 3,67

MEAN 0,97 0,74 6,58 6,75
STD 0,54 1,16 4,55 4,95

Table 3.1: Healthy subjects from CMS Database. Background activity (BKG),
Tonic Density (TD), Phasic Density (PD) with SINBAR and Montréal method

Subject BKG (µV) TD (%) PD (%) SINBAR PD (%) Montréal

RBD1 7,94 0,00 2,89 2,52
RBD2 1,22 2,05 21,85 21,33
RBD3 2,63 0,00 14,24 15,14
RBD4 0,98 0,99 18,23 17,04
RBD5 1,04 4,27 28,63 28,49
RBD6 5,37 2,79 32,23 32,03
RBD7 2,93 25,42 37,97 41,13
RBD8 2,08 2,46 22,21 21,64
RBD9 1,95 22,93 43,89 44,33
RBD10 1,53 19,34 45,41 45,19
MEAN 2,77 8,03 26,75 26,89
STD 2,23 10,22 13,52 13,98

Table 3.2: RBD subjects from CMS Database. Background activity (BKG), Tonic
Density (TD), Phasic Density (PD) with SINBAR and Montréal method

25



Chapter 3. Results 3.3. Machine Learning

Subject BKG (µV) TD (%) PD (%) SINBAR PD (%) Montréal

RSWA1 0,55 15,53 43,29 45,63
RSWA2 1,83 0,60 6,48 6,07
RSWA3 1,83 0,00 11,04 10,56
RSWA4 0,79 2,27 14,47 14,24
RSWA5 1,34 0,00 4,77 4,24
RSWA6 0,73 0,00 8,10 7,78
RSWA7 0,79 1,63 10,49 10,92
RSWA8 3,42 0,00 6,41 5,77
RSWA9 2,87 1,44 5,54 5,52
MEAN 1,57 2,38 12,29 12,30
STD 1,02 5,00 12,04 12,91

Table 3.3: RSWA subjects from CMS Database. Background activity (BKG),
Tonic Density (TD), Phasic Density (PD) with SINBAR and Montréal method

samples of peak separation, the envelope is determined using interpolation over
local maxima separated by at least that samples. After some trials it was concluded
that the best separation is 256 samples, corresponding to 2 seconds. In this way it
does not lose information as in the case of 5 seconds and delete information that is
not useful as in the envelope with 1 second separation between peaks. It should be
noted that with the previously described algorithm the phasic peaks have almost
all been eliminated, therefore the scale on the ordinates is different and the effect
of removing the peaks is more appreciable.

Ideally the healthy subject (Figure 3.1) should have straight lines above and
below the graph. The envelopes of RBD and RSWA patients are more interesting
because it seems to have a periodic trend over time. The graphs are shown in
Figure 3.2 and Figure 3.3 respectively.

3.3 Machine Learning

Performance of the SVM classifier using Leave-One-Out cross-validation are re-
ported in Table 3.4. It can be notice that the model classifies with relatively high
accuracy a RBD subject from an healthy subject (85%) and a healthy one from
a RSWA patient (84.21%). However, performance drops when classification is be-
tween RBD and RSWA subjects with only 73.68% accuracy. It is also reported
the Mean Percentage Error (MPE). It matches to (1 - accuracy).

Nevertheless, the best performances are those of the detection of RBD from
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Figure 3.1: Chin EMG signal envelope of a healthy subject from CMS database

Figure 3.2: Chin EMG signal envelope of a RBD patient from CMS database
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Figure 3.3: Chin EMG signal envelope of a RSWA patient from CMS database

RBD RSWA RBD - RSWA

Accuracy 85% 84.21% 73.68%
Sensitivity 77.77% 75% 66.66%
Specificity 90.90% 90.90% 80%
PPV 87.50% 85.71% 75%
NPV 83.33% 83.33% 72.72%
MPE 15% 16% 26%

Table 3.4: SVM classifier performance

healthy subjects in all metrics: classification accuracy (85%), sensitivity (77.77%),
specificity (90.9%), PPV (87.5%) and NPV (83.33%). These results correspond to
the performance values obtained in literature [25] for RBD detection.

In Table 3.4 the columns are respectively: RBD detection from healthy sub-
jects, RSWA detection from healthy subjects and RBD detection from RSWA
patients.
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Discussion and Conclusion

This work proposed an algorithm capable of automatically classifying RBD based
on chin EMG. RBD evaluation is essential for neurodegenerative diseases because it
is considered an early stage in the development of the disease. The goal, therefore,
is to anticipate the diagnosis of the onset of neurodegeneration in order to decide
on a preventive curative process that can ideally prevent the onset of the disease.
Currently the diagnosis of RBD requires the use of a full PSG only after the
appearance of the first symptoms and this imposes a long process of diagnosis and
it is therefore necessary to shorten these times. One of the precursors of RBD
is RSWA; indeed, it is crucial not to allow the conversion of RSWA to RBD. It
can be detected with visual scoring using the SINBAR and Montréal methods
which evaluate tonic and phasic muscle activity through submental EMG signal.
To automate the detection of RSWA and RBD, a machine learning algorithm has
been implemented that is able to classify a healthy subject from a sick one through
characteristics based on the analysis of PSG and chin EMG signal.

The tonic and phasic densities represent the percentage of REM epochs satis-
fying the definition of tonic/phasic over all REM epochs of the signal, according to
the SINBAR and Montrèal methods. The threshold to define whether an epoch is
tonic or phasic is determined by quantifying the background activity of the mus-
cle during N3 sleep stage, the slow-wave sleep. In this study the threshold was
defined as the 40th percentile of background activity but it can change giving dif-
ferent tonic and phasic results, in this case it is a good compromise to detect both
tonic and phasic activity. In the database provided by the Sleep Disorders Center
of the Molinette hospital in Turin, no subject had supra-threshold tonic density
but this is not the case with regard to phasic density. In detail, as regards the SIN-
BAR method, 10% of healthy subjects, 80% of RBD subjects and 10% of RSWA
subjects had an supra-threshold value. Instead, as regards the Montréal method,
10% of healthy subjects, 90% of RBD subjects and 11% of RSWA subjects had an
supra-threshold value. When the background value is high it is probably affected
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by artifacts and noise and is very selective because it increases the threshold to
defining the density abnormality.

Moreover, given the importance of densities in this area, they have been used as
features for machine learning. Other features were extracted from the envelope of
the chin EMG signal during REM sleep. The envelope of the signal was calculated
only on the tonic activity around the baseline, eliminating the peaks of phasic
activity. The tonic envelope on RBD and RSWA subjects was found to have a
pseudo-sinusoidal periodic pattern, with a higher frequency in RBD subjects, but
the cause of this pattern is not yet clear to the researchers. To complete the feature
extraction, they were calculated from PSG and EMG in the frequency domain and
time domain for a total of 49 features.

The whole set of extracted features was input to a supervised distance-based
machine learning model, called SVM. Given the small number of subjects under
examination, cross-validation with the Leave-One-Out method was used. The
model proved effective in classifying RBD subjects compared to healthy subjects
with an accuracy of 85%, while it was not highly effective (73.68%) as regards
the classification of RBD subjects from RSWA subjects, because they have very
similar characteristics. With these results it can be concluded that the model has
good potential but its generalization capacity can be improved by using a database
provided with other subjects and compute more features from different sources as
EEG, ECG and EOG signal.

Limitations and further developments

First limitation of the study is the evaluation of the background because the results
of the tonic and phasic densities depend on it, the higher the threshold through
the percentile, the more specific and less sensitive the threshold will be. As far
as the envelope of the tonic signal is concerned, a possible development could
be to build the envelope of different muscles so as to compare their morphology
and understand if there is a correlation between the morphology of the muscle in
question and the disease. Furthermore, this trend could be studied more deeply
by analyzing, for example, the period, the frequency, the width and the amplitude
of the envelope. Finally, in the future works the ML model should be trained by
extracting more features from different channels and on a larger cohort so as to
be able to divide the dataset into training, validation and test and obtain more
consistent and generalizable results.
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