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Abstract 

The Fourth Industrial Revolution, also known as Industry 4.0, is rapidly transform-

ing industrial manufacturing processes by introducing advanced automation, in-

telligent edge technology and data driven AI tools to the workflow. In this context, 

collaborative robotics is emerging as an attractive technology to optimise produc-

tion efficiencies. They exploit advanced actuation and sensing technologies to en-

able collaborative robots work safely in close proximity with their human co-work-

ers. Such flexibility is allowing even middle and small-scale enterprises to imple-

ment automation despite the typically reduced footprint and layout of their small-

scale manufacturing lines. This has led to an increase in demand for human-robot 

collaboration (HRC) technology which is able to promote effective and safe inter-

action between humans and robots. One of the approaches involves the collection 

of human-centric data to extract information which is useful in improving robot 

self-awareness as well as the actions being performed by the operator carrying 

out the task. Motion capture (MoCap) technology, and in particular hand motion 

data, can be used to extract task related information, although the lack of available 

datasets is impeding advancement in this field. Research questions which remain 

unanswered include the identification of MoCap technology which is well suited 

to tracking hand motions in constrained environments (industry), and also the def-

inition of the optimum (minimum) number of sensors able to reliable classify tasks. 

This thesis aims to address some of these open questions by collecting a compre-

hensive hand MoCap database for task classification in the context of HRC for In-

dustry 4.0 and investigating the performance of some AI-based classification strat-

egies for hand motion analytics.  

The open-access database developed, HANDMI4 (hand motion capture data for 

industry 4.0), includes hand grasp configurations and industry-relevant dynamic 

movement acquired with two different MoCap technology: camera-based and 

data glove. From this dataset a set of statistical and costume features were evalu-

ated and labelled according to the task being carried out (four different tasks are 
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investigated). The features were then used to train different artificial intelligence 

(AI) networks, including support vector machine, random forest, and neural net-

work strategies.  

The results obtained show that the neural network-based classifier outperformed 

the other AI networks for the camera-based data achieving an accuracy rate of 

95%, while for the data glove a result of 95.7% accuracy was obtained using the 

random forest approach. Another significant result is the identification of the palm 

and the middle finger as the most significant anatomical segments for the task 

classification in terms of hand motion artefacts in an industrial context.  

The availability of the HANDMI4 database as an open access tool will foster further 

research and development in the field of hand motion recognition for HRC. This 

research has significant implications for the development of HRC technologies in 

smart manufacturing, as it represents an essential step towards creating a safe 

and efficient workspace where humans and robots can collaborate seamlessly. 

In conclusion, this thesis provides a comprehensive solution for hand motion 

recognition in the context of HRC in industry 4.0. The results demonstrate the po-

tential impact of hand motion recognition in HRC and the usage of neural network-

based AI classifiers to achieve high accuracy rates. The ultimate goal is to develop 

intelligent systems that can promote safe and efficient human-robot collabora-

tion.  
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1 Introduction 

Human-Robot Collaboration (HRC) is becoming an increasingly important aspect 

of the manufacturing landscape, especially with the advent of the Fourth Industrial 

Revolution, also known as Industry 4.0. This new era of manufacturing is charac-

terized by the integration of advanced technologies such as artificial intelligence 

and robotics, which offer a new level of flexibility, efficiency, and safety. To fully 

realize the potential of HRC, it is essential to provide the robot with some form of 

autonomy. Especially in the context of the new collaborative robotics, where ro-

bots and human co-workers share the same working volume, have accurate and 

reliable methods to recognize and interpret human motions is paramount. 

In particular, hand motion recognition is a crucial component of HRC, as it enables 

robots to interpret and respond to the actions of their human collaborators. There 

are various technics to capture and recognise human hand, including camera 

based MoCap and data glove technology. Camera-based MoCap involves tracking 

markers (usually via triangulation) placed on specific landmarks of the hand and 

reconstruct the movement of each marker within the global coordinate of the 

cameras. While smart gloves use wearable sensors (e.g. accelerometers or flexible 

resistors) to track the orientation (or the joint’s angle) of the hand’s components. 

Both techniques have their own strengths and weaknesses, and each has the po-

tential to provide valuable information for motion recognition in HRC. 

The aim of this thesis is to create an open-access database for Industry 4.0, using 

both technologies, which will be used to train an AI network for task recognition 

providing a comprehensive solution for motion recognition in HRC and a thorough 

depiction of human motions in a variety of industrial tasks.  

At this end inertial measurement unit (IMU) based data glove (Tyndall smart 

glove), capable of tracking the hand pose via 12 9-axis IMUs, and a camera-based 

MoCap system equipped with 12 cameras from Optitrack (10 Primex13 and 2 

Primex41, Optitrack, Natural Point Inc.) have been selected. Both technologies 

have in fact reached maturity and are currently being implemented in the smart 
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industry ecosystem. Participants have been recorded while performing several 

static grasps, to cover the grasp taxonomy, and four different industry tasks: pick 

and place, object inspection, tool assisted assembly and hand assembly.  

Such database, called HANDMI4, is now available on open access repository. From 

the industrial section of such database, a selected pool of statistical and costumed 

features were extracted and labelled to create an AI compatible dataset. Few ma-

chine learning-based classifier were trained and tested on HANDMI4, with a task 

classification accuracy reaching 90%. 

The results of this research will contribute to the advancement of the field of HRC, 

and the open-access nature of the database will ensure that it can be utilized and 

built upon by future researchers and practitioners. This thesis provides valuable 

insights into the performance and limitations of the proposed solution and high-

light the potential for future research and development in the field of motion 

recognition for Industry 4.0. 

The remainder of the thesis is organized as follows. Section 2 provides the state 

of art of MoCap technologies. Section 3 illustrates the materials and the set up for 

the database creation. Section 4 concentrates on the methodology used for the 

data collection, the database organization and the AI classification, while the re-

sults are shown in Section 5 and then discuss in Section 6. An overview of possible 

future work is presented in Section 7. 

Pubblications  

(1) Francesca Mongelli (2023). HANDMI4 (HAND Motion capture data for Indus-

try 4.0) [Dataset]. http://doi.org/10.21227/c6t8-ge47 

(2) Mongelli , F., Menolotto, M., O'Flynn, B., & Demarchi, D. (n.d.). “Open Access 

Database of Industry 4.0 Tasks for the Development of AI-based Classifier.” 

in SmartSystemIntegration (SSI), Bruges,Belgium. 2023 (Submitted) 
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2 State of Art 
 

2.1 Hand  

The hand is one of the most important tools we use to explore and interact with 

the surroundings. It has evolved to enable fine dexterity for object manipulation 

and sensing to perceived life-crucial physical phenomena, which we have used to 

shape our environments for thousands of years. We have a plethora of tools de-

signed specifically to exploit the characteristics of our hand to interact with the 

surroundings [14]. The development of fine manipulation and hand dexterity was 

a crucial factor for the increase of the brain size and cortical surface during our 

evolution, promoting cognitive capability for tool usage [15].    

2.1.1 Hand’s Anatomy  

The human hand has 27 bones, which are controlled by 17 intrinsic muscles lo-

cated within the hand and 18 extrinsic muscles located in the forearm. The hand 

contains several muscles and tendons, the former are the structures that may con-

tract allowing the bones of the hand to move while the latter connect the muscles 

of the hand to the bone, allowing movement. Finally, there are the ligaments, fi-

brous structures that serve to hold the hand’s joints together. This complex system 

can execute very fine and complex tasks for this reason, it has been a great source 

of inspiration for engineers and scientists in the development of tools, human-like 

robotic and prosthetic hands, who have developed several models to describe 

hand cinematic and hand motion skills [16]. 

The hand has three major types of bones including phalanges (14 bones in total), 

metacarpal bones (5 bones) and carpal bones (8 bones). Each finger is composed 

by three phalangeal segments (bones): distal-, middle- and proximal-phalange; ex-

cept for the thumb which is composed by two phalangeal segments (as shown in 

Figure 1). The thumb is generally positioned at a different angle respect with the 

other fingers; in humans and most of the apes, it is rotated at the carpometacarpal 

joint, making it opposable to the other fingers and useful for grub firmly cylindrical 

Commented [MM1]: I suggest to put a reference to the 
Cortical Homunculus here. Find one from an anatomy book. 
The one I gave you would be fine. 

Commented [MM2]: I’m not sure I understand this. What 
is it? 

Commented [MF3R2]: I meant to say that the evolution 
of human skill lies in product between hand and brain, so un-
derstanding of the tool (brain) and skill in using it (hand). But 
I know that written like this is very unclear. 

Commented [MM4]: I would first specify how many natu-
ral joints there are in the hand, maybe also saying something 
about the fact that is difficult to give a precise number of 
DoF, since virtually all the bones’ junctions act as joints.  
For the carpal bones you don’t need to specify the number 
of joints, but you can say how many they are and that virtu-
ally every connections can be seeing as a small DoF. 
 
Any information about the actual DoF are pure speculations 
based on conventions or approximations. In fact, many pa-
pers talk about 22DoF, other 23DoF, and again 24 or 25DoF. 
 



State of Art 

13  
 

and spherical objects and for picking up small objects in tandem with the other 

fingers [17]. 

2.1.2  Biomechanical models for the hand  

Kinematics is the field of study that studies the movement of bodies. It is used in 

mechanics and biomechanics to examine orientation, velocities, and accelerations 

(linear and angular) of rigid bodies without taking into account the forces that 

caused motion. In this part, we examine different kinematic models, which will be 

used to determine the orientation (also called pose) of each rigid segment on the 

hand (e.g., bones). In theory, a full and comprehensive kinematics model of the 

hand should detail all potential hand configurations. In practice however, the kin-

ematic description of soft systems requires a very high level of complexity, which 

poses severe limitations from a computational prospective. For this reason, some 

simplifications are adopted in the field. The number of joints, their corresponding 

Figure 1.  Representation of human hand with its joint and bones [10]  

(CMC or TM) 
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degrees of freedom (DoFs) and ranges of motion (RoM) are limited, and generally 

differs from one model to the other for only few elements.  The joints that we 

normally find for hand models (shown in Figure 1) in biomechanics are:  

• Distal interphalangeal joint (DIP): it controls the relative pose between dis-

tal phalanges (DP) and PP. It has 1 DoF; 

• Proximal interphalangeal joint (PIP): it controls the relative pose between 

MP and PP. It has 1 DoF;   

• Metacarpophalangeal joint (MCP): the joint that connects the proximal 

phalange (PP) with the metacarpal one (MC). It has 2 DoF (abduction-ad-

duction and flexion-extension) 

• Interphalangeal joint (IP): the joint that constrains the pose of DP to the PP 

in the thumb. It has 1 DoF; 

• Metacarpal phalangeal joint (MCP): the joint that control the flexion-ex-

tension of the thumb. It has 1 DoF; 

• Trapeziometacarpal or Carpometacarpal joint (TM or CMC): the joint that 

control the flexion-extension, abduction-adduction, and the axial rotation 

of the thumb. It has 3 DoF; 

It is simple to appreciate how complicated the human hand is, yet it is much more 

difficult to model. The hand may perform a wide range of movements and stances, 

but in order to study it thoroughly, you must first narrow down the number of 

DoFs. This 'number' varies depending on the sort of application for which the 

model is required. For example, in real-time applications, it would be ideal to re-

duce the number of DoFs to minimize the computing cost of the process, but if 

extreme precision is required, you must increase them by striking a balance. Fol-

lowing are examples of several models with varying degrees of freedom (DoFs). 

2.1.2.1 Cobos’ Model (6 and 9 DoF) 

Cobos et al. [8], introduced a novel approach to cinematically describe the hand 

by hugely simplifying the model shown in Figure 2. They start from the traditional 
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24 DoF model and compare the possible hand configuration of such model (plot-

ted using a Cyberglove [18]) with two new models, one with 6 DoF and the other 

with 9 DoF. Showing how the new models diverged from the original by a modest 

margin (10% for the former and 5%-10% for the latter).  

They achieved this reduction in DoFs by keeping only those fingers strictly neces-

sary for task determination, thus considering only thumb, index, and little fingers, 

emphasizing how the remaining two fingers are less capable of independent 

movements, but rather they rely on the others. This offers several advantages 

from a computational point of view, as fewer DoFs to process and analyse can be 

crucial for real-time acquisitions where the model error is acceptable compared 

to the final goal. 

Figure 2. Circular (on the left) and prismatic (on the right) grasping reconstruction. a) Original 
Gesture b) Hand model reconstructed by 9 elements c) Hand Model reconstructed by 6 ele-

ments [8] 
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2.1.2.2 Morecki’s Model (22 DoF) 

Morecki et al. [19] created a solution similar to the previous one employing a 

model with 22 DoFs for palm and fingers, and additional 3 DoFs located in the wrist 

and forearm. Their simplification is based on removing all joints with a range of 

motion minor than 5 degrees. In contrast to Cobos' model, the movements of the 

index and middle CMC are ignored because they do not significantly contribute to 

the mobility of those fingers. Instead, the CMC of the ring and the little are free to 

rotate (numbers 15 and 19 in Figure 3).  

 

2.1.2.3 15 DoF’s models  

Several research works have been focusing on reducing the number of DoF of the 

hand model while keeping hand movements as accurate as possible. Among them, 

[20] and [5] have reduced the amount of DoFs by considering the hand's primary 

components and synergies. Observing actions like grabbing, for example, reveals 

that only a limited number of coordination patterns (synergies) that govern both 

joint mobility and strain of several fingers are required.  Such constraints may be 

connected to biomechanical factors (synchronizations) between various motor 

neurons. Furthermore, statistical modelling of coordination patterns reveals that 

Figure 3. Representation of Morecki's model [11] 
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a small number of so-called eigenpostures, or principal components (PCs), is ade-

quate to reconstruct a vast number of hand motions. Moreover, a PC range was 

identified: lower-order PCs account for coarse movements such as closing and 

opening the hand, whereas higher-order PCs account for finer movements. The 

model chosen by the mentioned studies is depicted in Figure 4 after various sim-

plifications and assertions. 

2.1.2.4 23 DoF’s model  

As evidenced so far from the literature, the number of DoFs chosen for the hand 

biomechanical model is directly proportional to the level of complexity of the tasks 

such model is meant to describe. The final hand model presented has been used 

to develop wearable devices with hand gesture recognition for telemedicine ap-

plications [21] and to create a glove with tactical feedback for hand tracking [11]. 

Figure 5 depicts a 21 DoF model with 4 DoFs for each finger (2 DoFs in MCP and 1 

DoF in PIP and DIP) except for the thumb, which has 5 DoFs (2 DoFs in TM, 2 DoFs 

Figure 4. 15 DoF model's with the description of the DoF used [5]. 
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in MCP and 1 in IP).  It's easy to observe how fine hand modelling is required in 

such applications as the level of dexterity involved is high.  

2.2 Motion Capture  

When attempting to define human motion, the first element of valuable infor-

mation is the kinematics, or how the body moves in space in terms of position, 

velocity, and acceleration. Over the years, research in the field of motion analysis 

has largely improved, exploiting the  progressive downsizing of the sensing tech-

nology, in combination with more powerful and sophisticated tracking algorithms, 

gradually reducing measurement errors [22]. 

From hereafter, we will refer to human body MoCap as the ability of a sensing 

technology to detect the position/orientation of one or many rigid bodies, usually 

body segments (e.g. a finger can be schematized as three rigid bodies (distal, mid-

dle and proximal phalangeal) connected by two joints with 1 DoF each), to some 

global coordinates, or the relative position/orientation of one rigid body to an-

other one (or to the global coordinates). 

MoCap technologies can be divided into two categories: optical systems, which 

primarily use cameras that can operate at different spectrum ranges, and non-

optical systems, which exploits sensors that use other physical principals to track 

Figure 5. A 21 DoF’s model [7] 
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motion. The first, in general capture human body motion by using two or more 

cameras to triangulate the location and/or orientation (or pose) of specific body 

landmarks, known as 'anatomical land markers', relative to the cameras’ coordi-

nate system. The non-optical method uses, for instance, the intensity (or the ori-

entation) of magnetic fields generated by inductive coils placed on the rigid body 

under observation, or again the displacement of microscopic spring loaded masses 

(accelerometers or gyroscopes), and so on [23].  

A table explaining the pros and cons of each system (Table 1) is provided at the 

end of the chapter.  

2.2.1 Camera based system. 

MoCap systems that uses cameras can either directly track the object under ex-

amination or track specific markers placed on the object. The last option usually 

improves contrast and tracking performance in general. Weather such markers are 

actively producing light of passively reflecting light, the camera systems are 

equipped with image sensors designed to detect a specific range of the light spec-

trum. In the case of passive markers, the camera itself also mount the emitting 

source of light (generally infrared (IR) LED).  

The cameras work thanks to the principle of triangulation, shown in Figure 7, that 

is a method of determining the 3D position of a point in space by using the images 

of that point taken from two or more cameras. The principle behind camera trian-

gulation is based on the fact that the object or point is viewed from different an-

gles, the images captured by each camera will be slightly different due to the 

change in perspective. To determine the 3D position of a point, the two or more 

camera positions and their respective images of the point are used to create two 

or more lines of sight, also known as rays. The point in 3D space that these rays 

intersect is the 3D position of the point being observed. This intersection point can 

be calculated using principles of trigonometry and linear algebra. 
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In order to perform camera triangulation, the cameras must be calibrated, which 

is the first step in the process of data acquisition (Figure 6).  

The first step is the camera system calibration. With this, the relative distance be-

tween each camera is determined, which is ten used by the triangulation algorithm 

to establish the position of each marker with respect to the camera coordinate 

system. To achieve such calibration, a reference object, which mounts markers 

placed at a known distance from each other (usually called wand), is waved in front 

of the cameras repeatedly throughout the capturing volume. Here the ground 

plane is also established, together with origin of the camera coordinate system. 

Secondly, the body segment of the subject under examination is prepared by plac-

ing the markers (spherical or semi-spherical objects with different sizes, from 

Figure 6. Optical motion capture process 

Figure 7. The principle of camera triangulation.[4] 
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some centimetres to few millimetres) on specific points of interest. Such points 

can be body landmarks or just distributed around the body segment so that in any 

orientation at least three markers are visible by at least two cameras. In fact, three 

markers are sufficient to effectively determine the plane containing the body seg-

ment. In the next step, using the MoCap software, each marker is either associated 

with a specific body landmark either as single marker or clustered together as part 

of the same rigid body. Finally, the motion data acquisition is carried out. After the 

data acquisition, there are typically several post-processing steps, which usually 

help the motion tracking algorithm to resolve the markers trajectories, filtering 

noise, avoiding outliers or marker mislabelling. 

The optoelectronic system is able to reconstruct the orientation of the body seg-

ment and the 3D position of each individual marker, or the rigid body (markers 

cluster). The spatial resolution of a camera system is determined by the size of the 

measuring field. A wider field reduces the spatial resolution of each individual 

camera. The maximum resolution of a CMOS image sensor depends on the dis-

tance of the object being observed, the field of view (FOV), and the number of 

pixels in the axis being considered, reported in the equation (1.  

 

 
𝑀𝑎𝑥𝑅𝑒𝑠𝑌 =

𝐷 ∙ tan−1(𝐹𝑂𝑉𝑌/2)

𝑁𝑝𝑖𝑥𝑒𝑙𝑌
 (1) 

For example, an image sensor with a resolution of 1024x1280 pixels and an optical 

system allowing for a FOV of 56 degrees at a distance of 1 meter can resolve a 

maximum of 2.93 mm per pixel in the Y-axis.  

This formula represents the maximum resolution for a single camera. Using multi-

ple cameras can improve the overall resolution of the system, with each camera 

contributing to the final image (Equation(2). However, the resolution of each indi-

vidual camera will still be limited by the field of view and distance to the object 

being observed. As a rough estimation, we can assume the resolution of a system 

with N cameras be:  
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𝑅𝑒𝑠𝑌 ≅

𝑀𝑎𝑥𝑅𝑒𝑠𝑌

𝑁
 (2) 

The main limitation of these systems is occlusion, i.e., an object placed between 

the marker and the camera, which prevents the camera from having a clean line 

of sight of the object under examination, effectively preventing its tracking. This 

problem can be mitigated by increasing the number of cameras and their position-

ing around the tracking volume.  

2.2.1.1 Passive Markers  

Passive markers (examples shown in Figure 8) are spherical or semi-spherical ob-

jects covered with high reflecting material (usually in the IR spectrum). They can 

be applied directly onto the points of interest using adhesive materials (i.e., dou-

ble-sided tape, glue, etc.). They are more frequently employed in controlled envi-

ronment, such as laboratories and recording studios. 

 

2.2.1.2 Active Markers 

Active markers are composed by light emitting source, mostly a LED, and a power 

supply enclosed in a compact unit (Figure 9). They are less frequently used than 

passive markers, but they represent the best solution for outdoor measurements, 

where the environmental light and reflections are not as controlled as in the la-

boratory. Two are the advantages of active markers: they are more visible in envi-

ronment with uncontrolled lighting and lot of natural reflections and makes mark-

ers mislabelling less likely. 

Figure 8. Different size of passive markers [3] 
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In fact, active markers can be set to different wavelengths or different blinking 

frequencies, or be multiplexed one at a time, highlighting only certain areas or 

activating only in front of certain cameras. The disadvantage of multiplexed mark-

ers is that the sampling rate is divided by the number of markers used thus sacri-

ficing the frame rate.   

2.2.1.3 Marker-less 

A marker-less MoCap example is shown in Figure 10. It is rarely employed in clini-

cal settings due to large measurement errors; nonetheless, it is widely used in the 

film industry. The main reasons are that it works using the visible spectrum of the 

light and without any markers on the subject. Here as well multiple cameras are 

used to better estimate the figure's 3D silhouette. The entire effort is focused on 

Figure 10. An example of marker less MoCap [1] 

Figure 9. An example of active markers [2] 
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processing the acquired frames and is based on image segmentation and identifi-

cation of human poses that can match some pre-existing model [24, 25]. 

2.2.2 Non camera-based systems  

2.2.2.1 Electro-mechanical 

Electromechanical systems for tracking are based on the use of sensors, which can 

detect changes in position and orientation, and then translate those changes into 

electrical signals that can be processed and used to control mechanical devices. 

The most commonly used sensors in electromechanical tracking systems are opti-

cal sensors and potentiometer. 

Optical sensors use light to detect changes in position and orientation. These sen-

sors work by projecting a beam of light onto a target, and then measuring the re-

flected light using photodetectors. The position and orientation of the target can 

be determined based on the position of the reflected light relative to the original 

beam. The principle behind a potentiometric sensor is based on the relationship 

between resistance and position. A potentiometer consists of a resistive element 

and a wiper arm that moves along the element. As the wiper arm moves, the re-

sistance between the wiper and the end terminals changes. The position of the 

wiper arm can be measured based on the resistance between the wiper and the 

end terminals [6]. 

Their field of application is restricted as they are bulky and heavy structures that 

restrict movements.  A visual example is given in Figure 11. 

Figure 11. Electromechanical systems. On the left an example of optical fibre while on the right a 
potentiometer one [6]. 
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2.2.2.2 Magnetic 

Electromagnetic tracking is a method for measuring the position and orientation 

of an object or system using electromagnetic fields. The principle behind electro-

magnetic tracking is based on the use of electromagnetic sensors, which can de-

tect changes in position and orientation and translate those changes into electrical 

signals that can be processed to determine the position and orientation of the ob-

ject or system being tracked. 

In an electromagnetic tracking system, a transmitter generates a magnetic field, 

while one or more sensors detect the field and calculate the position and orienta-

tion of the object or system based on the strength and direction of the magnetic 

field. The sensors typically consist of a coil or series of coils that generate electrical 

signals in response to changes in the magnetic field. The value that electromag-

netic tracking measures is the position and orientation of the object or system 

being tracked. This information is typically expressed in terms of the x, y, and z 

coordinates of the object or system, as well as its pitch, yaw, and roll angles. 

The intensity of the magnetic field in an electromagnetic tracking system can vary 

depending on the application and the design of the system. Typically, the field 

strength ranges from a few mT to several Tesla. The field strength required for a 

given application depends on factors such as the distance between the transmitter 

and sensor, the size and shape of the object or system being tracked, and the re-

quired accuracy and precision of the tracking system. 

The performance of electromagnetic systems depends on the cost of the system 

and the resolution in general depends on the distance of the sensors from the 

source, which is why it is a popular system for hand tracking [26, 27] cause you can 

keep the hand near the source and perform fine tracking [9]. For the same reason, 

it is not comfortable for a gait analysis. However, there are some limitations to 

electromagnetic tracking. For example, the accuracy and precision of the system 

can be affected by the presence of other magnetic fields in the environment, such 

as those generated by electronic equipment or the Earth's magnetic field.  
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A visual example is reported in Figure 12. 

 

2.2.2.3 Inertial  

Inertial tracking is a method for measuring the position and orientation of an ob-

ject or system using inertial sensors, such as accelerometers and gyroscopes. (Fig-

ure 13) The principle behind inertial tracking is based on the fact that when an 

object moves, it experiences changes in acceleration and rotation, which can be 

measured by inertial sensors. By integrating these measurements over time, the 

position and orientation of the object can be determined.  

In an inertial tracking system, accelerometers measure changes in acceleration 

along the x, y, and z axes, while gyroscopes measure changes in rotation around 

Figure 13. The Tyndall data glove, with IMU inside, use in the data acquisition of this 
study. 

Figure 12. An example of magnetic tracking system [9] 
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these axes. The values that inertial tracking measures include linear acceleration 

and rotational velocity, as well as the object's position and orientation over time. 

They can be implemented using different types of sensors, such as micro-electro-

mechanical systems (MEMS) accelerometers and gyroscopes. In particular, a linear 

accelerometer measures linear acceleration by detecting the displacement of a 

proof mass relative to a fixed frame, while an angular accelerometer or gyroscope 

measures angular velocity (i.e., rate of change of angle) by detecting the Coriolis 

force that acts on a vibrating proof mass (Figure 14). MEMS sensors have revolu-

tionized everyday life by enabling the creation of small and low-power sensors 

that can be integrated into wearable devices and other mobile platforms. Thanks 

to their compact size and low power consumption, MEMS sensors have made it 

possible to incorporate sophisticated sensing capabilities into a wide range of 

products, including fitness trackers, smartphones, and IoT devices. This has led to 

new opportunities for monitoring and understanding the world around us and has 

opened up new possibilities for the development of innovative and disruptive 

technologies. 

One advantage of inertial tracking is that it does not require external references, 

such as cameras or electromagnetic fields, to operate. This makes it suitable for 

use in environments where other tracking methods may not be practical or effec-

tive, such as in outdoor environments or in areas with limited space. 

Figure 14. An example of MEMS sensor. [12] 
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However, there are some limitations to inertial tracking. For example, the accuracy 

and precision of the system can be affected by sensor drift, noise, and bias, which 

can accumulate over time and result in errors in position and orientation calcula-

tions. In addition, inertial tracking is generally most accurate over short periods of 

time and can suffer from long-term drift, which may require periodic recalibration 

to maintain accuracy. 

So, within each inertial sensor the information provided by the different sensors 

is integrated using a filter (more info in the lists below), which weights the esti-

mates provided by the sensors differently providing information on the orienta-

tion of the inertial sensor as a whole. 

For the sake of clarity here’s a list of some of the most common pose estimation 

algorithms: 

1. Complementary Filter: This is a simple algorithm that fuses accelerometer 

and gyroscope data to estimate the roll and pitch angles of an object. It 

uses a low-pass filter to integrate the accelerometer data and a high-pass 

filter to integrate the gyroscope data and combines the two to produce a 

more accurate estimate of the object's orientation. 

2. Kalman Filter: The Kalman filter is a more advanced algorithm that uses a 

statistical model of the system dynamics and measurement noise to esti-

mate the state of the system. It can be used to estimate the roll, pitch, and 

yaw angles of an object based on data from accelerometers and gyro-

scopes and is particularly useful for reducing errors caused by sensor drift. 

3. Extended Kalman Filter (EKF): The EKF is an extension of the Kalman filter 

that can handle nonlinear system models. It is commonly used in applica-

tions where the dynamics of the system are nonlinear, such as in robotics 

and navigation systems. 

4. Unscented Kalman Filter (UKF): The UKF is a further extension of the Kal-

man filter that uses a nonlinear transformation of the state variables to 

better model the system dynamics. It is particularly useful in applications 
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where the system dynamics are highly nonlinear, such as in robotics and 

aerospace. 

5. The Gauss-Newton filter: is a nonlinear optimization algorithm used for 

estimating the pose of an object based on sensor data from an IMU. It min-

imizes the difference between the predicted sensor measurements and 

the actual sensor measurements, using a least-squares approach. It's par-

ticularly useful for highly nonlinear systems but can be computationally ex-

pensive. It's often used in combination with other algorithms, such as the 

Kalman filter or complementary filter. 

2.2.3 Features of each technique 

Here is a table showing the advantages and disadvantages of the different sys-

tems.  

Table 1. Pros and Cons of the systems analysed above. 

 Method Pros Cons 

C
A

M
ER

A
 –

 B
A

SE
D

 

Optical – Pas-
sive 

• Precision (<1mm) 

• Wireless 

• No power supplied 
needed. 
 

• Occlusion 

• Position only 

• Manual clean-up after 
captures. 

• Post processing latency 

• Limited measurement 
space 

Optical – Active 

• Precision (<1mm) 

• Wireless 

• Better than passive at 
finding correspond-
ences. 

• Higher range than pas-
sive 

• Position only 

• Occlusion 

• Post-processing latency 

• Sample rate divided 
among sensor 

Optical – 
Marker less 

• Flexible 

• No sensor needed. 

• Wireless – outdoor 
 

• High noise 

• Occlusion 

• High sensitivity to light-
ing 

N
O

N
 C

A
M

ER
A

 

– 
B

A
SE

D
 

Electro- 
mechanical 

• Truly real-time (500 
Hz) 

• High accuracy 

• Inexpensive 

• No occlusion 

• Restriction of move-

ment 

• Needs to match body 

proportion. 

• No global position 
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Magnetic 

• Measure position and 
orientation in 3D 

• Low encumbrance 

• Cost 

• Good performance 

close to emitter 

• Accuracy affected by 

metal objects. 

• Operate on only one 

side of the source. 

• Low range 

• Calibration 

Inertial 

• Wide area 

• Inexpensive 

• Orientation very accu-

rate 

• Minimal interference 

• Encumbrance 

• Position poor 

• Calibration 

• Inaccurate over time 

• Drift 
 

2.3 Data Gloves 

With the term data glove, we refer to sensing devices that can be worn like gloves, 

which provide some form of information regarding the hand pose by streaming 

data either via wires of wirelessly. Over the last 40 years, data gloves have been 

developed to facilitate human-computer interaction based on hand and finger 

movement. Despite the ongoing development of applications that take advantage 

of data gloves, such as virtual reality [28], teleoperation [29], remote control of 

robotics [30], and video games [31], these have yet to enter the mainstream. One 

reason for this could be that does not obstruct finger movements and adaptation 

to satisfy completely, but also non-functional specifications such as wearability 

that does not obstruct finger movements and adaptation to different hand sizes 

[13]. 

It is noteworthy to notice how the terminology regarding data glove is wide in the 

literature, with manes that can refer to gloves able to track pose but also to trans-

mit haptic feedback, such as: "cyber gloves", "haptic gloves", "virtual gloves", 

"data gloves", "smart gloves" or "sensory gloves". In general, "date glove" defines 

a glove capable of acquiring finger and hand movement or pose for motion track-

ing purposes, using some sensing technology embedded in the glove. Similarly, 

"haptic gloves" are generally referred to devices able to provide tactile feedback 

via some actuators placed on specific locations. In this work, we will use the gen-

eral term "smart glove" to refer to such devices in a broad sense.  
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2.3.1 Glove types  

Smart gloves on the market are typically divided into two categories: exoskeleton 

and fabric, though looking at the Figure 15, it is clear how other significant ele-

ments can identify different types of gloves, such as open structure, the material 

and so on. 

Figure 15. Pictures some examples of smart gloves. [13] 



State of Art 

32  
 

2.3.2 Capability 

Smart gloves are versatile devices that have applications in a wide range of fields, 

including virtual and augmented reality, rehabilitation and physical therapy, sign 

language translation, robotics, and gesture recognition. These fields rely on the 

two main functions of hand and finger tracking and haptic feedback. 

The latter is used to simulate touch through the use of the glove and can provide 

two sorts of feedback: kinesthetics and haptic. Kinesthetics feedback simulates 

movement by replicating force and resistance via electrical or mechanical actua-

tors that provoke sensations such as weight or inertia. When attempting to ac-

complish this, it is critical to have good force resolution and so that even minor 

changes may be detected and a low latency for the real time. The goal of haptic 

feedback is to recreate the perception of touch, such as surface roughness, shape, 

pressure, or temperature. 

Data gloves, on the other hand, use sensors embedded in the glove to measure 

the orientation of the fingers and hand, from which important information can be 

extracted, such as the joint angles between two bone segments, the relative ac-

celeration between two fingers, or qualitative information to analyse a subject's 

range of motion. The Tyndall Smart Glove, which is explicitly described in section 

3.2, is utilised in this study. It is an open structure data glove which uses IMUs to 

track fingers, the palm, and the wrist, allowing the evaluation of the hand and fin-

gers pose.  

2.3.3 Wearability 

The wearability of smart gloves is one of the most crucial factors to consider. 

Wearability refers to the ease and comfort of wearing the glove for an extended 

period of time, as well as its ability to perform its intended functions effectively. 

This concept is particularly important because the glove must be comfortable 

enough to wear for an extended period of time, while also allowing the user to 

perform their intended tasks. This means that the glove should fit well, be made 

from breathable materials, and not impede the movement of the wearer's hands. 
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Washability is also an important factor to consider when designing a smart glove, 

particularly if the glove is intended for long-term use or use in a clinical or indus-

trial setting. Ideally, the smart glove should be designed to allow for easy cleaning 

and maintenance, without damaging the electronic components or sensors. In ad-

dition, the sensors and other electronic components within the smart glove must 

be designed in a way that does not interfere with the glove's wearability. For ex-

ample, they should not add unnecessary bulk or weight to the glove, and they 

should not be positioned in a way that creates discomfort or limits movement. 

The device's size, weight, and energy consumption are critical features to examine. 

The size should be adaptable to any hand, which means that the device is either 

modular (composed of parts that can adapt to different lengths) or made in mul-

tiple sizes. The weight of these gadgets should be between 50 and 300 g on aver-

age to allow for seamless operation without fatiguing the operator. Finally, in 

terms of battery life, it is important to guarantee adequate battery autonomy ac-

cording to the duration of the task under examination; the autonomy of these de-

vices ranges between 2 and 10 hours on average, depending on battery capacity 

and energy consumption of the device [13].  

2.4 Open Access Database  

The availability of open access databases for Human Activity Recognition (HAR) 

has seen a substantial growth in recent years due to the increasing prevalence of 

wearable sensors and other MoCap technology. Wearable sensors, such as smart-

watches, fitness trackers, and clothing with embedded sensors, generate a large 

amount of data that can be used to classify a wide range of tasks, including physi-

cal activities, sleep patterns, and falls. Such open access databases are becoming 

increasingly attractive for researchers and practitioners in several fields, such as 

human computer interaction, biomechanics, and rehabilitation [32, 33]. 

One of the key developments in the field is the use of machine learning algorithms 

for task classification. These algorithms can be trained on large amounts of data 

generated by wearable sensors, allowing for accurate classification of tasks. Some 

of the most commonly used algorithms include support vector machines (SVMs), 
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decision trees, and deep neural networks. The classification performance of these 

algorithms are linked to the availability of large databases, which provide the nec-

essary data for training and testing [32, 34].  

In addition to machine learning algorithms, cloud-based platforms have become 

increasingly important in the field of open access databases for task classification. 

These platforms allow for easy sharing and collaboration among researchers, as 

well as providing access to large amounts of data. The use of cloud-based plat-

forms also enables researchers to store and analyse data from a variety of weara-

ble sensors, making it possible to compare results across different devices and ap-

plications [34]. 

Another important aspect of the state of the art of open access databases for task 

classification is the growing focus on the ethical and privacy implications of col-

lecting and using data from wearable sensors. There are concerns about the use 

of personal data, particularly in the fields of healthcare and rehabilitation, where 

sensitive information is often collected. To address these concerns, many open 

access databases have implemented strict privacy policies and secure storage 

methods to protect the privacy [35]. 

Overall, the creation of open access databases is increasing, with new MoCap tech-

nologies and approaches being developed and tested. Such trend towards making 

datasets open access is likely to continue, particularly as wearable sensors become 

more pervasive and the demand for data grows. As the field continues to evolve, 

it will be important to balance the benefits of open access databases with the need 

to protect personal data and ensure ethical use of this information. 

Here an overview of the existing open access database for the hand motion track-

ing [36]:  
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Table 2. Overview of available open access dataset in the context of hand gesture. 
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2009 HCI gestures [37] [38] mat 1 5 
IMU 

(96 Hz) 

2010 

KIT Whole-
Body Human 
Motion 
Database 

[39] [40] 
xml, c3d, 

avi 
224 43 RGB 

2012 
OPPORTUNITY 
Activity Recog-
nition Dataset  

[41] [42] txt 12 24 
IMU 

(100 Hz) 

2013 Hand Gesture [43] [44] mat 2 11 
IMU 

(32 Hz) 

2015 
Skoda Mini 
Checkpoint  

[37] [45] mat 1 10 
IMU 

(98 Hz) 

2015 

UTD Multi-
modal Human 
Action Dataset 
(UTD-MHAD) 

[46] [47] mat, avi 8 27 
IMU (50 

Hz), depth 
camera 

 

2.5 AI classifier  

In recent years, HRC has received considerable attention as an emerging technol-

ogy in academia and industry. In HRC assembly, for example, robots are frequently 

required to dynamically change their pre-planned trajectories and control param-

eters in order to interact with humans in a shared workspace. In contrast, today's 

industrial robots are still controlled by pre-generated rigid algorithms that cannot 

support successful HRC that requires real-time adaptability. Human motion pre-

diction, for example, is critical for both collision avoidance and proactive aid of 

robots to people, in addition to multi-modal robot control and in-situ operator 

support, in response to the requirement for greater adaptability. Deep Learning 

(DL) and Machine Learning (ML) have been shown to be effective for classification, 

recognition, and detection of context awareness. 
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There are three subfamilies of learning approaches we can identify in the litera-

ture: supervised, unsupervised, and reinforcement.  A graphical representation is 

offered in Figure 16. [48]. 

Supervised Learning (SL) is a type of ML in which a model is trained on a labelled 

dataset, where the correct output is already provided. The algorithm then learns 

to make predictions by finding relationships between the input and output varia-

bles.  Examples of supervised learning include linear regression, k-nearest neigh-

bours, decision trees, and neural networks.  

Unsupervised Learning (UL) is a type of ML in which the algorithm is not provided 

with labelled data. Instead, the algorithm must find patterns and structure in the 

data on its own. The goal of unsupervised learning is to discover hidden structures 

or patterns in the data without any prior knowledge of the output. Examples of 

unsupervised learning include k-means clustering, principal component analysis, 

autoencoders, and hierarchical clustering. 

Reinforcement learning (RL) is a type of ML in which an agent learns to make de-

cisions by interacting with its environment and receiving rewards or punishments. 

The agent learns to take actions that maximize the cumulative reward over time. 

Reinforcement learning is different from supervised and unsupervised learning in 

that it focuses on decision-making rather than prediction. The agent is trained to 

take actions in order to maximize a reward signal. Examples of reinforcement 

learning include Q-learning, SARSA, and deep reinforcement learning. 

In this thesis the goal is to classify tasks previously recorded with MoCap tech-

niques, it was therefore decided to explore the various methods of supervised 

learning having already labelled data. 
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2.5.1 Typologies of SL  

There are two main algorithmic strategies for SL: classification and regression. In 

classification, the output variable is categorical, and the algorithm tries to learn 

which category a new example belongs to, based on the input variables. In regres-

sion, the output variable is continuous, and the algorithm tries to learn the rela-

tionship between the input variables and the output variable, so that it can predict 

the value of the output for new examples. SL is widely used in many applications, 

such as image recognition, speech recognition, natural language processing, and 

predictive analytics. The performance of SL algorithms depends on the quality of 

the training data, the choice of features, and the choice of algorithm. 

There are several SL methods that are commonly used for task recognition, includ-

ing: 

Figure 16. AI taxonomy 
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▪ Convolutional Neural Networks (CNNs): is a type of DL algorithm that is com-

monly used for image and video classification tasks. It is called "convolu-

tional" because it uses convolutional layers, which apply a convolution op-

eration to the input data. The basic building blocks of a CNN are convolu-

tional layers, activation layers, pooling layers, and fully connected layers. In 

a classification task, the CNN's output is a probability distribution over the 

classes. The CNN is trained to minimize a loss function, such as cross-en-

tropy, that measures the difference between the predicted probability dis-

tribution and the actual class labels. The backpropagation algorithm is used 

to update the model parameters and minimize the loss. Overall, CNNs are a 

powerful tool for task classification and have achieved state-of-the-art re-

sults on many benchmark datasets in computer vision and related domains 

[49-51]. 

▪ Recurrent Neural Networks (RNNs): is a type of deep learning algorithm that 

is commonly used for tasks involving sequential data, such as speech recogni-

tion, natural language processing, and time series prediction. Unlike feedfor-

ward neural networks, RNNs have a loop that allows information to be passed 

from one step of the sequence to the next. For task classification, an RNN can 

be used to classify sequences of data, such as speech signals or text. They take 

in a sequence of input data, processes it step by step, and outputs a probabil-

ity distribution over the classes at each time step or at the final time step. 

They are also capable of handling variable-length sequences, which is im-

portant for many real-world applications [52, 53].  

▪ Support Vector Machines (SVMs): are a type of machine learning algorithm 

that are commonly used for classification tasks. The goal of an SVM is to find 

the optimal boundary that separates the classes in the feature space. This 

boundary is called a hyperplane and is defined by a weight vector and a bias 

term. The hyperplane is chosen so as to maximize the margin, which is the 

distance between the hyperplane and the closest data points from each class. 
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These closest data points are called support vectors and are the key to deter-

mining the hyperplane. SVMs are well-suited to classification tasks where the 

data is linearly separable or can be transformed into a feature space where it 

is linearly separable. They are also effective when there are only a few training 

examples, as they are less prone to overfitting than other methods that rely 

on complex models. 

▪ Random Forests (RF): These are a type of ensemble learning method that can 

be used for both classification and regression tasks. The basic idea behind ran-

dom forests is to create a collection of decision trees and combine their pre-

dictions to obtain a final prediction. A decision tree is a tree-like structure 

where each node represents a test on one of the input features, and the 

branches represent the possible outcomes of the test. The leaves of the tree 

contain the class predictions. To create a random forest, multiple decision 

trees are trained on randomly selected subsets of the training data and fea-

tures. The final prediction is obtained by taking a majority vote of the predic-

tions made by each tree. Random forests are well-suited to classification tasks 

where the data has complex relationships between the input features and the 

classes, and where interpretability of the model is important. They are also 

effective when there are many input features, as they can automatically han-

dle feature selection [54, 55]. 
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3 Materials 
 

3.1 Camera-based Equipment  

The MoCap system used in this study consists of 12 Optitrack cameras (Natu-

ralPoint, Inc. DBA Optitrack, Corvallis, Oregon, US) of which ten are PrimeX13 and 

two PrimeX41, their main features are described in Table 3 and a visual example 

is depicted in Figure 17.  

Table 3. Camera-based specs' system [56].  

Features PrimeX13 PrimeX41 

Resolution 1280 x 1024 2048 x 2048 
Native Frame Rate 240 Hz 180 Hz 
Latency 4.2 ms 5.5 ms 
3D Accuracy ± 0.20 mm ± 0.10 mm 
Passive Marker Range 16 m 30 m 
Stock Lens 56 x 46 FOV (5.5mm) 51 x 51 FOV (12 mm) 
LED Ring 10 LEDs 20 LEDs 
Size (6.86 x 6.86 x 5.46) cm (12.6 x 12.6x 13.2) cm 
Weight 0.32 Kg 1.36 Kg 
Cost $2.499 $6.499 

The data was collected at a frame rate of 240 Hz and exposure time (time interval 

in which the light is let to hit the image sensor) of 20µs. Such Exposure time was 

Figure 17. PrimeX13 camera on the left and PrimeX41 on the right 
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chosen as a good compromise between ensuring highly reflective objects (in our 

case the reflective markers) were clearly captured and preventing small reflections 

and other noise sources to be part of the data acquisition.  

To track each anatomical segment of the hand, an existing biomechanical model 

implemented on the MoCap software, Motive (by Optitrack [57]), was used. For 

this model 10 reflective markers were placed on the hand, specifically 5 markers 

of 9mm diameter placed on the palm section, placed on a black non-reflective 

glove, and 5 markers of 6mm diameter were placed on each nail. The use of 

smaller markers on the nails minimises the overlap of reflected signals during the 

data acquisition, hence minimising marker mislabelling.  

To incorporate the forearm in the model, 4 markers of 14mm diameter were 

placed on an elasticated binding and then wrapped around the subject's forearm 

as shown in Figure 18 below.  

3.2 Smart Glove Equipment  

The Tyndall smart glove contains twelve 9-axis IMUs (each with a 3-axis accelerom-

eter, 3-axis gyroscope, and 3-axis magnetometer) strategically located to account 

for the degrees of freedom of each finger joint of the hand - two per finger, one 

on the palm’s back, and one on the wrist, a visual example is given in Figure 19 

[58]. To monitor orientation and biomechanical characteristics, IMUs are placed 

on the flexible connection and on the phalange of each finger segment. The MPU-

Figure 18. Placement of markers on the hand 
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9250 sensor has a high-sensitivity tri-axis angular rate sensor (gyroscope) with a 

full-scale range of from ±250 to ±2000dps, a tri-axis accelerometer with a pro-

grammable full scale range from ±2g to ±16g, and a tri-axis compass with a full 

scale range of 1200μT. In this research, we decided to use only three fingers out 

of five (thumb, index, and middle) to improve device wearability and minimise the 

discomfort caused by the interaction between the glove and the object manipu-

lated during the trial.  

3.3 Lab setup 

To minimize subject movement artefacts impacting on the model accuracy, the 

entire data acquisition was performed with the subject in a seated position. The 

centre of the motion capture volume incorporates a table, with minimal frame, 

and a chair. This setup simulates as closely as possible a classic industrial working 

setting [59]. The twelve cameras of the MoCap system were placed all around the 

motion capture volume, which for the purposes of this experiment was considered 

to be one cubic meter with base of this volume at the table’s top level (Figure 21). 

The final arrangement of the cameras is the result of many empirical experiments 

carried out to optimise the experimental setup so as to minimize object obstruc-

tion and optimize image resolution. Initially, the cameras were placed on a rigid 

Figure 19. Tyndall Smart glove 
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rig made of aluminium profiles, pointing towards the centre of the structure itself 

(the capturing volume), shown in Figure 20.  

Figure 20. Final lab setup for the study, in the red cube the shooting volume (1mx1m) 

Figure 21. Aluminium cage for initial cameras disposition. 
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However, this technique did not prove effective due to the close proximity with 

the cameras. In fact, each camera comprises a ring of LED lights around the optics, 

which is seen as an object to mask, effectively reducing the capturing volume avail-

able. As a result, it was decided to proceed with a semicircle layout, as illustrated 

in Figure 21, with a radius of around 1.5m and all cameras facing towards the cen-

tre of the table. 

3.4 3D printer objects and Power point instructions developed. 

To correctly simulate each different grasp of the human hand, standardised ob-

jects with different shape and size were designed and 3D manufactured to simu-

late the industrial environment under consideration. The computer aided design 

software used was Solidworks (Dassault Systèmes, MA, US), while the 3D printer 

was a fused deposition modelling printer. The material selected for the objects 

Figure 22. Projects in Solidworks (above) and printed objects (below) 
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was black polylactic acid (PLA), so to minimise any type of reflection and reduce 

the problem of mislabelling during the camera-based acquisition. Also, both tools 

(screwdriver and wrench) for the final task were 3D designed and printed, to avoid 

ferromagnetic interferences with the magnetometer inside the data glove. An 

overview of the objects used during the acquisition is given in Figure 22 above.  

In addition, as shown in Figure 23, a PowerPoint presentation showing the differ-

ent grasps and tasks was created. This was used to instruct the participants during 

the data acquisition. This to improve task repeatability and speed of the process.  

 

 

Figure 23. PowerPoint instructions created for the process. (a) example of Taxonomy's slide, (b) 
example of Industry's slide, (c) overall picture of the presentation. 
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4 Method  
 

4.1 Database Creation 

4.1.1  Data acquisition  

Twenty subjects with ages ranging between 23 and 56 years old were recruited 

from the Tyndall National Institute. Before starting the data acquisition, each sub-

ject was briefed regarding the study and was given the opportunity to ask ques-

tions and to sign the required consent form under the terms of the ethics approval 

obtained to carry out the experiment with human subjects. Subsequently, the par-

ticipant was asked to supply relevant demographic information, which is listed in 

Table 4, as well as to remove any metallic object (e.g., wristwatch, rings and ear-

rings) that could cause reflections or could interfere with the magnetometers of 

the data glove sensors.  

The data acquisition always commenced with the camera-based system, for which 

the subject was prepared by applying reflective markers as explained above (see 

Section 3.1). Once the entire set of defined tasks have been completed, a second 

round of activities is repeated, this time using the data glove as the data capture 

system. To communicate with and receive the data directly from the glove, a ded-

icated script in Matlab was created, which included the creation of a TCP/IP con-

nection between the gloves integrated WiFi radio and the laptop and to carry out 

the data parsing. A second script1 was created to generate joint angles from the 

quaternions transmitted from the glove, creating a .csv file for each data capture. 

Table 4. Demographics information of participants 

Subject Hand Sex Age range Subject Hand Sex Age range 

00 R M 20 – 29 10 R M 20 – 29 
01 R F 30 – 39 11 L M 30 – 39 
02 L F 20 – 29 12 R M 50 – 59 
03 R F 30 – 39 13 R F 30 – 39 
04 R M 30 – 39 14 R M 30 – 39 
05 R F 30 – 39 15 R M 30 – 39 
06 R F 30 – 39 16 R F 20 – 29 

 
1 View Appendix B. 
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07 R M 30 – 39 17 R M 30 – 39 
08 R M 20 – 29 18 R F 20 – 29 
09 R M 30 – 39 19 R M 30 – 39 

For each MoCap technology the data acquisition was performed with the subject 

seated in front a small desk, which represent the centre of the capturing volume 

cameras as described previously. Each data acquisition includes analysis of 20 dif-

ferent tasks that each subject has to repeat three times; in Figure 24 below is de-

picts an overview of the data acquisition flowchart. 

4.1.2 Tasks explanation 

Although the study focuses on the creation of a database of hand motion data to 

be used for task classification in industry for HRC-related applications, it was 

deemed appropriate to include a range of static hand grasps to foster a broader 

usage of the dataset.  

4.1.2.1 Cutkosky Grasp Taxonomy 

The Cutkosky Grasp Taxonomy is used to describe the different ways in which ob-

jects can be held by a hand, either human or robotic [60]. The categorization of 

grasps is based on the number of fingers used and their position relative to the 

object being grasped. It is useful for researchers and practitioners in fields such as 

Figure 24. Workflow of the data acquisition process 
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robotics, biomechanics, and human-robot interaction to understand the different 

types of grasps and their relative strengths and limitations. For example, certain 

grasps may be more stable or stronger than others, making them more appropri-

ate for certain tasks. For this first part, therefore, we decided to include all 16 

grasps identified by Cutkosky and to follow the order defined by him in principle 

shown in Figure 25. 

This entire first section of the taxonomy was designed to be static for both tech-

nologies. Each task was recorded for a duration of at least 5 seconds and repeated 

three times. For each repetition the participant was asked to place the object on 

the table and pick it up again; this was to ensure high variability in the dataset as 

even if the grasp was made by the same subject, the grasping action can differ and 

hence guarantee more variability in the data set.  

4.1.2.2 Industry 4.0 Task 

For the Industry 4.0 activities, four tasks that are classically performed in a HRC 

scenario have been simulated.  

Figure 25. Cutkosky Grasp Taxonomy Task 
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A. Pick and place: two boxes are placed at opposite sides on the table, the 

box on the left contains 4 objects and the box on the right is empty. The 

subject picks up each object one by one and place them on the box on the 

right side.  

B. Object handover: A 3D printed cube with geometrical shapes engraved on 

each side is placed on the table. The subject is asked to pick it up to count 

how many different shapes there are on the cube. This simulates the action 

of inspecting a component for quality assessment, typical in industrial pro-

duction.  

C. Hand assembly: The subject is asked to put together the pieces of a jigsaw 

puzzle which has been disassembled and the pieces placed on the table in 

a random arrangement. 

D. Tool assisted assembly: The subject is asked to assemble two rectangular 

components with two bolts and two nuts. To do so, the subject uses a set 

of tools (screwdriver and wrench). 

Figure 26. Industry tasks. (A) The two boxes used for pick-and-place. (B) The cubic object to 
observe during object inspection (C) A seven-piece puzzle to be assembled during the hand 

assembly task. (D) Assembly components and tools for the last task. 
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While for the acquisition of the static grasp configurations each acquisition time 

was set to approximately 30 seconds, for the industrial tasks no time limit was set. 

Figure 26 shows the objects used to perform the four industrial activities. 

In fact, the execution time to completion of such activities can vary from subject 

to subject. Participants were instructed to commence and complete each task by 

placing their hand in a resting position on the table, so to identify the start and the 

end of the task easier during the data post-processing. 

Once again, the tasks were performed three times, with the exception of the last 

activity (Tool Assisted assembly), which was repeated four times to allow for at 

least two repetitions per mode (unscrewing/screwing).  

4.1.3 Data processing  

Two different tools were used for data processing depending on the technology, 

Motive was used for the camera-based method and Matlab was used for the data 

glove analytics. 

4.1.3.1 Camera-based analytics 

The data, in the case of the camera-based method, were processed with Motive 

software (Optitrack), the same software with which they were acquired (Figure 

27). However, for both methods, the data cleaning followed the following steps: 

1. Data trimming: for the taxonomy part, it was decided to consider only 240 

frames (1 sec of acquisition) as, being a static part, they are sufficient to 

characterise the task. For the manufacturing part, on the other hand, the 

acquisition time was dictated by the time in which the participant per-

formed the task; where the data was too corrupted by occlusions or arte-

facts, it was decided to cut the take so that the best 3600 frames (15 sec-

onds of acquisition) remained. 

2. Data gap filling: allows gaps resulting from camera occlusions to be filled 

using interpolation algorithms. In this case, a model-based algorithm was 

chosen to reconstruct gaps in a track by selecting a morphologically similar 

track. For example, in the case of a hand, if there was a gap in the track of 
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the thumb marker, it is likely that the marker on the thumb's metacarpal 

bone had a similar signal, especially for small gaps. The pattern-based re-

construction algorithm took a signal indicated by the user as a reference 

and reconstructed the gap based on the selected signal. This allowed for 

precise and efficient reconstruction of gaps, improving the quality of the 

acquired data. Where not possible due to a lack of similar traces, cubic in-

terpolation was used. Gap filling was only performed where the gap-size 

did not exceed 20 frames (83 ms) in the case of taxonomy and 100 frames 

in the case of industry (0.42 sec).   

3. Labelling: although the model created by Motive is effective for tracking 

the hand, if movements are too fast or the markers disappear from the line 

of sight for few frames, the markers could be mislabelled.  Therefore, each 

track was inspected, and markers relabelled manually if required. 

4. Smoothing: a 4th-order Butterworth filter with cut-off frequency of 5Hz 

was applied to eliminate all fast oscillations and make the signal smoother 

on all takes. 

Figure 27. Motive Software interface. (A) Builder, where to create the hand model. (B) Gaps where to fill the gap. 
(C) Curves where to do the smoothing. (D) Labels where adjust the labels. (E) Hand model made with the Builder 

Commented [MM41]: This is a bit counterintuitive. Why a 
static movement has a shorter gap allowance and a dynamic 
one a bigger one?? 

Commented [MM42]: It seems a bit low. Wasn’t 10Hz? 
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4.1.3.2 Smart glove 

For the glove, the post-processing work was limited to applying a 4th-order But-

terworth filter at the frequency @ 15Hz through a Matlab script (see Appendix A).  

4.2 Features identification  

From the acquired database a number of features, manually labelled according to 

the task being performed, were extracted and evaluated to train the different AI-

based classifiers. Such features have been evaluated for both MoCap technologies, 

with few differences according to the typology of data available (pose data for the 

data glove and position data for camera). A Matlab script2 was designed to auto-

matically calculate the selected features for each subject and label them according 

to each industrial task. 

Table 5 and Table 6 describe the statistic and morphological features respectively, 

with the theoretical bases for clarity.  

Table 5. Statistic features extract for each file.  

Feature Formulas Description 

Mean Value 𝑋 =
∑ 𝑥𝑖

𝑁
 

Measure of central tendency that 
provides an estimate of the average 

value (𝑋) in set of data with N sam-
ples. 

Standard Devia-
tion 𝜎 = √

∑ (𝑥𝑖 − 𝑋)2𝑁
𝑖

𝑁 − 1 
 

Measure of the spread or variability 
of a data set with N samples. It is 
the square root of the variance and 
is used to indicate how much the 
data points in a data set deviate 

from the mean value (𝑋). 

Median 

 Measure of central tendency that 
represents the middle value of a 
data set when the data points are 
arranged in order.  

Interquartile 
Range (IQR) 

Measure of variability that provides 
an estimate of the spread of a data 
set. It is calculated as the difference 
between 75th (Q3) percentile and 
25th percentile (Q1) of a data set. 

 
2 View Appendix B  

IQR 
Q3 Q1 

Min Max 

Median 
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Covariance 
𝐶𝑜𝑣 (𝑋, 𝑌)

=  
∑(𝑥𝑖 − 𝑋) ∗ (𝑦𝑖 − 𝑌)

𝑁
 

Measure that provides information 
about the relationship between two 
variables. A positive covariance indi-
cates that the two variables tend to 
increase or decrease together, while 
a negative one indicates that one 
variable tends to increase while the 
other decreases.  

Entropy 𝐸 = 𝑝(𝑥)log 
1

𝑝(𝑥)
 

Measure of the uncertainty or ran-
domness of a data set. The entropy 
of a data set is calculated as the sum 
of the probabilities of each event 
multiplied, p(x), by the logarithm of 
the probability of the event. A 
higher entropy indicates that there 
is more uncertainty in the data set, 
while a lower entropy indicates that 
the data set is more predictable. 

Shape Factor 
(SF) 

𝑥𝑆𝐹 =
𝑥𝑟𝑚𝑠

1
𝑁 ∑ |𝑥𝑖|𝑁

𝑖

 

Measure of the skewness of a data 
set. A positive SF indicates a positive 
skewness, where the data is more 
heavily weighted towards the right 
side of the distribution, while a neg-
ative SF indicates a negative skew-
ness, where the data is more heavily 
weighted towards the left side of 
the distribution. 

 

Table 6. Morphological feature calculated for each subject. 

Feature Description 

Peak to Peak 
Measure that provides the difference between the maxi-

mum and minimum values in a signal. 

Find Peaks 
It’s a function that return the position of the peak in a spe-
cific window of observation, in this case we consider only 

the peaks that exceed 60% of the max peak. 

No of Peaks Count the number of peaks every window of observation. 
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4.2.1 Features Database creation. 

The evaluation of the features was performed over 5-second time windows for 

both MoCap methods. Subsequently, the features were organized into tables to 

create two databases of sizes 745x173 and 833x137 for the glove and the camera-

based method, respectively.  

Each row of these databases corresponds to a 5-second window of the signal, 

while the columns contain the features calculated for that time window. The last 

column of each row contains the label of the reference task, necessary for the 

classification phase.  

It is important to note that the features calculated for both technologies are the 

same, the difference in the column numbers for the data glove is due to the ab-

sence of the little and ring finger, and the consequent absence of the features re-

lated to them. This detail was taken into account when creating the feature data-

base for the data glove, which is slightly smaller in size compared to the camera 

database.  

4.3 AI classification  

In the field of Artificial Intelligence, there is no unique and optimal solution, as 

solutions vary depending on the specifics of the final application. For this reason, 

we examined three different approaches to identify the most suitable solution for 

our specific case, taking into account the strengths and weaknesses of each ap-

proach. 

4.3.1 Approach A: Basic Accuracy 

Initially, the datasets were considered in their entirety, without dividing training 

sets and test sets. This was to get an idea of the basic accuracy of the datasets 

created. 

Cross-validation is a technique that allows a model to be able to generalise, hence, 

to be able to classify well even a datum that does not belong to the training set. In 

particular, k-fold cross validation was used. This means dividing the dataset into k 

equal parts and training the model on k-1 parts by testing it on the remaining part. 
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After this process is repeated k times, the final performance is obtained by aver-

aging the performance of each iteration.  

This technique was applied to these datasets firstly to avoid overfitting, which oc-

curs when a machine learning model is trained “too well” on the training data. 

Overfitting usually results in poor classification performances on new and unseen 

data. Secondly to better understand the performance of the tested predictive 

models. Specifically, for both datasets, a cross-validation with k = 10 was used, so 

with 20 subjects each fold consisted of 2 subjects.  A visual example is given Figure 

28. 

Hyper-parameterization is the process of selecting the values of hyper-parame-

ters, which are the parameters of a machine learning model that are not learned 

during training but are set a priori. Examples of hyper-parameters include the 

learning rate that determines the step size at each iteration while moving toward 

a minimum of a loss function, the number of hidden layers in a neural network, or 

the number of trees in a random forest. 

The selection of hyper-parameters is a critical step in the machine learning pro-

cess, as it can have a significant impact on the performance of the model. In this 

first approach, no hyper parameterisation was carried out in order to assess only 

the basic accuracy of the models tested. 

Figure 28. A scheme of 10-fold cross validation applied in Approach A, where the grey box is for 
training and the yellow one for validation. 
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Feature selection is the process of selecting a subset of relevant features from a 

larger set of features in a dataset, with the goal of improving the performance of 

a machine learning model. The selection of relevant features can be important for 

several reasons, e.g., improving the performance, reducing the complexity (less 

features can bring more interpretability) and/or the computational cost of the 

model. Among the most important feature selection algorithms are: Chi-square 

Test (CHI2), Analysis of Variance (ANOVA) or Maximum Relevance and Minimum 

Redundancy (MRMR). In this approach, no feature selection was performed in or-

der to preserve basic accuracy. 

Subsequently, models commonly used in the literature were implemented in the 

classification case. Specifically, the methods that were explored are SVM, Bagging 

Tree, and Wide Neural Network. Results will be shown in section 5.2.1 

4.3.2 Approach B: Manual k-fold cross-validation 

In the previous approach, the dataset was automatically divided into folds for the 

cross-validation process, but in this way, there was no control over the distribution 

of subjects in the different folds. 

There are two left-handed people in the dataset, and although the left-

handed/right-handed ratio in the dataset is consistent with the distribution in na-

ture (1/10 [61]), it is not optimal in the classification case as they represent a small 

cohort. It was therefore of interest to us to proceed with a manual k-fold cross-

validation to see if left-handedness had a negative influence on model perfor-

mance.  

A Matlab script was used to split the subjects into three folds. In this case, similar 

to the "classic" cross-validation approach, k iterations were performed, with one 

fold held back for validation in each iteration. In this way, the data was manually 

split for each iteration, with one part used for training and the other for validation. 

Then, to recreate the first split, folds 2 and 3 were combined and used for training 

while fold 1 was kept aside to validate the performance of the networks on the 

created training. This process was repeated for the next two permutations. For 
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clarity, a representative diagram of how the various groups were created is shown 

in Figure 29.   

For both technologies, the following training method was adopted for each 'split': 

Step 1. Training without feature selection;  

Step 2. Training of the networks by performing feature selection of the best 

18 features according to the ANOVA method; 

Step 3. Training of the networks by performing feature selection of the best 

18 features according to CHI2 method; 

Step 4. Performance validation with the validation fold.  

To select the networks on which to carry out the process described above, the 

Matlab Classification learner toolbox was used, thanks to which it was possible to 

obtain an overview of the networks that performed best on each of the technolo-

gies. For both, the three networks with the best performance were chosen. Spe-

cifically for the data recorded with the camera-based method, the methods of: 

Ensemble, SVM and Neural Network. While for the data recorded with the data 

glove: Ensemble, Trees, and Naive Bayes. 

Thus, at the end of each training procedure, performances were obtained, but just 

as in classic k-fold validation, averaging the results obtained in the various splits. 

Figure 29. Manual 3-fold cross validation. The subjects framed in red are the left-handers. While the 
ochre rectangle is the validation fold and the grey the training ones. 
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In this manual 3-fold cross-validation the final results (shown in section 5.2.2) were 

obtained by averaging the performances of each split. 

4.3.3 Approach C: Balanced Dataset 

In the two previous approaches, an overlooked limitation was the issue of imbal-

anced classes. In fact, some tasks have many more samples compared to others, 

as the time to completion differs. This problem was not taken into consideration 

previously, as the focus was on other limitations, such as the left-hand unbalanc-

ing. However, in the latest approach, we aimed to highlight the performance of 

the trained networks using a balanced dataset and automatic k-fold cross-valida-

tion. Since some classes have significantly more data than others, the resample 

function of the Pandas library in Python was used to address the class imbalance 

issue. This function works by randomly duplicating instances from the minority 

class or deleting instances from the majority class until the classes are balanced. 

By doing so, the classifier is less likely to be biased towards the majority class, 

which improves the overall accuracy of the model. 

Prior to training, a feature selection process was conducted to identify the most 

important features for classification. The goal was to reduce the dimensionality of 

the datasets and only retain the most influential features for each task. The top 15 

Importance of input parameters 

Figure 30. The 15 top features choose for Glove classification. 
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features were selected based on their ability to differentiate the tasks in both the 

data glove and motion capture databases (respectively Figure 30 and Figure 31) 

To optimize the performance of the classification networks, the hyper parameters 

of each network were optimized using the Classifier Learner toolbox in MATLAB. 

This toolbox allows for the optimization of a wide range of hyper parameters, in-

cluding regularization, the number of hidden layers, and the number of neurons 

in each hidden layer. By optimizing these parameters, the networks are able to 

generalize better to unseen data, improving their overall performance. 

Three different classification networks were trained on both databases, in partic-

ular: SVM, Random Forest and Neural Network. The performance of each network 

was evaluated using a 10-fold cross-validation, which helps to avoid overfitting 

and provides a more reliable estimate of the network's generalization perfor-

mance. The networks were then tested on the remaining 20% of the data, which 

was held out during the training phase. The results of the study are reported in 

the section 0, and include a comparison of the performance of the classification 

networks on both the camera-based and data glove MoCap databases.   

Importance of input parameters 

Figure 31. The 15 top features choose for Camera classification. 
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5 Results 
5.1 Database  

The creation of the HANDMI4 (Motion capture database for Industry 4.0) dataset 

is the first significant outcome of this work [62]. The bulk of the database includes 

5.63 GB of data, divided into folders according to the diagram shown in Figure 32. 

The initial macro division is based on the data collecting technique (Camera or 

Glove), followed by the static and dynamic tasks (Taxonomy or Industry tasks), and 

lastly the subdivision between the 20 subjects with the related . csv files within. 

A label code3 was designed to improve navigation within the database's content, 

and as a result, the files have a unique name, making it easier to identify and pro-

cess. Each label contains the following elements: 

Table 7. File's labelling code 

Label Code Description 

ID  000 3-digit numeric participant identifier 

Technology  GLV/OPT 3 letters which refer to the MoCap technology used 

Task TAX/IND 3 letters which refer to task performed 

i-Task 00 2-digit numeric for the type of task 

j-Repetition 00 2-digit numeric for the number of repetition (starting 
form 00) 

 
3 Appendix C 

Figure 32. HANDMI4 partition 
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As an example, in the label 000GLVTAX0201: 000 identifies the first participant, 

GLV stands for data glove, TAX refers to the Cutkosky’s taxonomy, 02 refers to the 

second grasp of the Cutkosky’s taxonomy, 01 means that this is the second repe-

tition. 

The content of the individual files, on the other hand, varies depending on the 

technology utilised (data glove or camera), this is because the two methods use 

distinct sensors and provide different types of results. 

Indeed, in the case of the glove, the embedded IMUs provide information on ac-

celerometers, magnetometers, and gyroscopes, from which the linear and angular 

motion may be calculated. Each .csv file contained in the glove section has the 

specific variables obtained through the acquisition on the first line. Additional in-

formation can be found in Table 8.  

Table 8. Labelling code for .csv file in GLOVE, where Q = X, Y, Z; F= Index, Middle, Ring, Little, 
Thumb and ## equal to AA (Abduction/Adduction) or FE (Flexion/Extension) 

Label code  Description 

Prox Proximal phalanx of the finger 

Inter Middle phalanx of the finger 

Dist Distal phalanx of the finger 

Acc_Q Acceleration along the component Q 

Gyro_Q Angular acceleration along the component Q 

Mag_Q Magnetometer along the component Q 

Jerk_Acc_Q Linear jerk along the component Q 

Jerk_Gyro_Q Angular jerk values along the component Q 

PIP_F Proximal Interphalangeal joint for the finger F 

MCP_##_F Metacarpophalangeal joint for the finger F in the range ## 

 

In the case of cameras, on the other hand, the position in 3D space of each hand 

segment was provided. The camera system software also generates automatically 

the quaternions, which are a four-dimensional extension of complex numbers and 

are used to represent rotations and orientations in three-dimensional space. Each 

.csv file contained in the camera section has the variables obtained through the 

acquisition on the first line; Additional information can be found in Table 9. 
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Table 9. Labelling code for .csv file in CAMERA, where # = 0, 1, 2, 3 (in the notation a quaternion 
q is defined as follow: q= q1 i + q2 j + q3 k +q0), V = X, Y, Z and F= Palm, Thumb, Index, Middle, 

Ring, Little, Forearm. 

Label code  Description 

Prox Proximal phalanx of the finger 

Inter Middle phalanx of the finger 

Dist Distal phalanx of the finger 

Pos_V Position along the component V 

F_q# Quaternion # for the part F 

The database also includes a text file providing instructions for handling and navi-

gating the data. In the event of a partial download, similar metadata is included in 

the database's primary directories.  

5.2 AI classification  

For the sake of clarity, the results will be described according to the three ap-

proaches detailed in the methods section.  

5.2.1 Approach A: Basic Accuracy 

No hyper-parametrisation and feature selection was carried out on this first ap-

proach. The following tables show the performances of the three AI-classifier, for 

the camera (Table 10) and the glove (Table 11).  

Table 10. Classification results for camera dataset. 

 

Table 11. Classification results for glove dataset. 

Method Accuracy [%] 
Recall 

(macro avg) 
Prediction speed 

[obs/sec] 
Training time 

[sec]  

SVM 90.9 89.2 ~ 1500 7.316 

Ensemble 87.1 84.0 ~ 1300 35.27 

Neural Net 89.2 87.2 ~ 3600 30.61 

Method Accuracy [%] 
Recall 

(macro avg) 
Prediction speed 

[obs/sec] 
Training time 

[sec]  

SVM 85.1 81.1 ~ 8800 6.47 

Ensemble 86.5 83.3 ~1500 28.19 

Neural Net 85.0 80.8 ~17000 8.59 
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Below in Figure 33 and Figure 34 the confusion matrix for each method is provided 

to offer a visual overview of the prediction rate of the classifiers. 

5.2.2 Approach B: Manual k-fold cross-validation 

As outlined in Section 4.3.2, a manual 3-fold cross-validation approach was em-

ployed to assess the impact of the two left-handed variables in our dataset. The 

tables below present the average accuracy scores for both technologies, with 

three different scenarios: no feature selection, feature selection with CHI2 algo-

rithm, and feature selection using the ANOVA algorithm.  

Table 12. Classification results for camera dataset without feature selection. 

Method 
Accuracy_val 

[%] 
Accuracy_test 

[%] 

Prediction 
speed 

[obs/sec] 

Training time 
[sec] 

SVM 93.97 75.80 1967 90.92 

Ensemble 87.03 72.47 607 197.09 

NN 92.87 78.40 3300 126.70 

Figure 33. Confusion matrices for the chosen network in the camera dataset 
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Table 13. Classification results for camera dataset with 18/173 features selected with CHI2. 

Method 
Accuracy_val 

[%] 
Accuracy_test 

[%] 

Prediction 
speed 

[obs/sec] 

Training time 
[sec] 

SVM 87.33 68.23 3733 148.04 

Ensemble 85.93 69.40 881 182.39 

NN 83.17 69.83 11633 207.99 

 

Table 14. Classification results for camera dataset with 18/173 features selected with ANOVA. 

Method 
Accuracy_val 

[%] 
Accuracy_test 

[%] 

Prediction 
speed 

[obs/sec] 

Training time 
[sec] 

SVM 88.50 63.83 4400 65.51 

Ensemble 85.13 71.53 147 151.02 

NN 80.80 66.67 8700 126.52 

 

 

Figure 34. Confusion matrices for the chosen network in the glove dataset 
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Table 15. Classification results for glove dataset without feature selection. 

 

Table 16. Classification results for glove dataset with 18/173 features selected with CHI2. 

Method 
Accuracy_val 

[%] 
Accuracy_test 

[%] 

Prediction 
speed 

[obs/sec] 

Training time 
[sec] 

SVM 88.43 75.80 633 110.52 

Ensemble 81.23 72.77 1753 79.80 

NN 78.90 66.13 13000 54.35 
 

Table 17. Classification results for glove dataset with 18/173 features selected with ANOVA. 

Method 
Accuracy_val 

[%] 
Accuracy_test 

[%] 

Prediction 
speed 

[obs/sec] 

Training time 
[sec] 

SVM 87.20 77.87 600 114.38 

Ensemble 83.00 76.23 683 76.65 

NN 80.13 72.13 6007 54.10 

 

5.2.3 Approach C: Balanced Dataset 

In this section, we present the results obtained showing the dataset balanced with 

respect to the majority class. For each method, we selected the top 15 features 

that had the greatest impact in the classification. We used k=10 cross-validation, 

setting aside 20% of the total dataset for testing. Additionally, we provide the con-

fusion matrices for each selected test and validation method. 

Table 18. Classification results for glove dataset. 

Method 
Accuracy 

val [%] 
Accuracy 
test [%] 

Recall_test 
(macro avg) 

Prediction 
speed 

[obs/sec] 

Training 
time [sec] 

SVM 96.5 93.7 93.7 5800 1417.0 

Ensemble 95.5 95.7 95.6 2700 297.02 

NN 97.2 94.5 94.4 6800 1108.3 

Method 
Accuracy_val 

[%] 
Accuracy_test 

[%] 

Prediction 
speed 

[obs/sec] 

Training time 
[sec] 

SVM 89.70 77.87 1203 172.03 

Ensemble 71.90 71.33 1589 126.96 

NN 80.07 67.97 5767 30.28 
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The tables and figures that follows below are for the camera dataset. 

Figure 36. Confusion matrix of validation and test for the Random Forest net. 

Figure 37. Confusion matrix of validation and test for the SVM net. 

Figure 35. Confusion matrix of validation and test for the Neural Network net. 
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Table 19. Classification results for camera dataset. 

Method 
Accuracy 

val [%] 
Accuracy 
test [%] 

Recall 
test 

(macro avg) 

Prediction 
speed 

[obs/sec] 

Training 
time [sec] 

SVM 94.8 92.1 92.0 4900 735.01 

Ensemble 93.9 93.8 93.7 2800 361.19 

NN 95.3 95.0 95.0 9200 1227.5 

Figure 39. Confusion matrix of validation and test for the Neural Network net. 

Figure 40. Confusion matrix of validation and test for the Random Forest net. 

Figure 38. Confusion matrix of validation and test for the SVM net 
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This final table below include all the accuracy of the various approach to have an overall 

vision.  

Table 20. The table shows the overall accuracy [%] of the different approach. Specifically, B1 re-
fers to the second approach without feature selection, B2 18 features selected with CHI2, and B3 

18 features selected with ANOVA. 

Approach Technology SVM RF NN 

A Camera 90.9 87.1 89.2 

Glove 85.1 86.5 85.0 

B1 Camera 75.8 72.5 78.4 

Glove 77.9 71.3 68.0 

B2 Camera 68.2 69.4 69.8 

Glove 75.8 72.8 66.1 

B3 Camera 63.8 71.5 66.7 

Glove 77.9 76.2 72.1 

C Camera 92.1 93.8 95.0 

Glove 93.7 95.7 94.5 
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6 Discussion 
 

6.1 HANDMI4 Dataset  

In terms of the number of subjects and data quantity, the hand motion capture 

dataset created during this thesis work is well positioned with respect to similar 

datasets developed in the field (see Table 2). Moreover, our dataset presents a 

more usable and comprehensive set of data, including data collected from two 

different MoCap technologies (cameras and data glove) and, in addition to indus-

try-related dynamic tasks, the inclusion of the full taxonomy of static grasps, ena-

bling its usage in many fields of application. 

The grasp taxonomy aspect of the database can be used, for example, for biome-

chanical and/or anatomical studies, to refine and improve the design of handed 

tools or wearable devices. As for the industry and manufacturing task aspects of 

the database, such data represent a singularity in the field as, at the moment, the 

majority of the datasets in the literature focus on daily hand gestures, like open a 

bottle or drink a glass of water, so movement that are not useful in an industry 

environment and as a consequence in a study that want to focus on industry task.  

In an industrial context, the use of wearable technologies, such as gloves with em-

bedded sensors, can enable teleoperation of robots just by tracking the hand ges-

tures and interpreting relevant motions and gestures. This can offer a huge ad-

vantage in those scenarios where robots need to rapidly change and adapt their 

defined assembly operations, to manufacture either customised products or 

change their tasks within modular production lines to optimise efficiencies accord-

ing to batch size under production. In fact, with data gloves, human co-workers 

can control the autonomous behaviour of the robot and take full control of the 

robot if needed. This simplifies the human-machine interaction and can help in 

improving the efficiency and productivity of the collaborative work performed. 

Thanks to rapid developments in the field of wearable sensing technologies and 

low latency communication (e.g., LoRa system and 5G), it is plausible to foresee a 
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future in which the use of these devices will increase, and become even more in-

tegrated into the industrial environment, enabling improvements in safety, qual-

ity, productivity and worker wellbeing.  

Although the true power of HANDMI4 lies in the hidden layers of information that 

can be extracted from the motion data, such as the importance of tracking certain 

part of the hand, as it has been demonstrated in this work, some criticalities have 

been identified during and after the data acquisition. These include: 

• Different duration of the acquisition time for the different tasks. Although 

some tasks require more time to be performed, having the exact same 

amount of frames per tasks could ensure a more balanced database for AI 

processing. In its current form, the database is currently unbalanced (more 

data frames for specific tasks) which impacts on the classification perfor-

mance, as highlighted in the result session.  

• Unbalanced number of left-handed subjects vs right-handed ones. Despite 

the fact that the ratio in the database is consistent with the natural distri-

bution of left-handed population (1/10) in the general population, if the 

number of left-handed are not present in a significant number they can 

affect significantly on the training process, or can be labelled as outliers, 

effectively decreasing the quantity and variability of the data in general. 

• Presence of not-a-number (NaN) in the database. During the database cre-

ation phase, we have decided to not alter the original raw data produced 

by the different MoCap devices. These however can produce NaN every 

time there is an obstruction on a marker, particularly in the case of the 

camera-based MoCap data acquisition system. Once again, this has an im-

pact in the overall balance of the database. 

Overall, HANDMI4 represents a powerful resource for researchers working on AI-

based task classification and biomechanics. By making HANDMI4 openly available 

and providing explicit instructions on how the data were collected and organised, 
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other academics could be encouraged to use, implement, and expand the dataset 

which is freely available to the research community [62]. 

6.2 AI Classifier  

In this work, we implemented several AI-based classification strategies, as each 

technique have pros and cons that can largely have more or less impact in term of 

performances according to the final application (e.g., safety, robot autonomy, 

etc.). To ensure this consideration in the accuracy assessment of each classifica-

tion strategies, we thoroughly analysed our dataset to identify its strengths and 

limitations before delving into each approach. 

Prior to carrying out such an analysis, it is important to highlight that the features 

used for the classification were extracted using the same methodology for each 

signal, regardless of the method used. We selected a 5-second window to evaluate 

our time series features, to ensure adequate task-related variation of the data. 

This could per se represent a limitation. In fact, some of the recorded tasks have a 

duration varying between 15-20 seconds, reducing the number of features pro-

duced to 3-4 per acquisition. Moreover, such an approach might be not suitable 

for task classification in real time applications. Reducing the window in this way 

could reduce the time required to produce a classification, but could also decrease 

the variability of the data, hence their task-related characteristics. Another ap-

proach might involve the use of a sliding window, which consider past events in 

the evaluation of the feature. For instance, a 5-second window could consider 1 

second of new data and 4 seconds of old data. This could produce features every 

second and ensure enough variation of the morphology of the data to be captured 

by the feature evaluation, particularly important for peaks-related features. 

Besides windowing, the types of extracted features also played a role in classifica-

tion. This study focused on statistical features and features related to signal mor-

phology, such as peak’s height and number of peaks (see section 4.2). However, it 

is important to note that other types of features, such as those related to time-

Commented [BO46]: Where? 

Commented [BO47]: In terms of what? 

Commented [BO48]: Rephrase this - I don’t really under-
stand what you mean 



Discussion 

72  
 

frequency representations or wavelet analysis, could potentially improve classifi-

cation accuracy. Therefore, exploring a wider range of features and different space 

domain would be a valuable direction for further research. 

6.2.1 Approach A: Basic Accuracy 

This first approach aimed to evaluate at a very basic level the overall consistency 

and effectiveness of the database as a training tool for the different classification 

methods, keeping hyper-parameter tuning and feature selection out of the pro-

cess. By using the k-fold cross-validation technique with k=10, we were able to 

train and validate the models on multiple subsets of the data, which provided a 

reliable assessment of the classification performance for each method.  

One limitation of this approach was the lack of control in the distribution of left-

handed subjects within the subdivisions of the dataset during the k-fold validation, 

which could have affected the accuracy value. Therefore, in subsequent ap-

proaches, we ensured that the training and testing sets were properly balanced to 

account for the presence of left-handed individuals. 

Despite this limitation, our analysis of the results (section 5.2.1) showed that the 

best-performing classification technique varied depending on the data acquisition 

method. In the case of the camera-based approach, the SVM algorithm achieved 

the highest accuracy, while in the case of the glove-based approach, a random 

forest algorithm performed best. 

Moreover, we observed that the confusion matrix for the glove-based approach 

had a higher misclassification rate compared to the camera-based approach. This 

could be attributed to the fact that the signals were acquired only for three fingers 

(thumb, index, and middle) in the glove-based approach, while the camera-based 

approach provided information about the whole hand. As a result, the glove-based 

approach may have been more susceptible to misclassification due to the limited 

input information. 

Overall, this initial approach provided us with valuable insights into the behaviour 

of different classification methods and highlighted the strengths and weaknesses 
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of the different approaches. With this knowledge, we were able to refine our train-

ing in subsequent analyses, leading to improved classification accuracy. Further-

more, the results of this first step demonstrated adequacy of the structure and 

quality of the dataset, which, with further analysis and refinement of the training 

process, could lead to excellent results in the field of human-robot collaboration. 

6.2.2 Approach B: Manual 3-Fold Cross Validation 

In this approach, a k-fold cross-validation was manually performed to ensure an 

adequate distribution of left-handed subjects between training and testing sub-

sets. The results obtained in section 5.2.2 showed a test accuracy that was approx-

imately 10 percentage points lower than the validation accuracy. This discrepancy 

may have been due to overfitting of the training model as described previously. 

To mitigate for overfitting, various techniques were investigated to avoid overfit-

ting, including regularization when a penalty is added to the loss function, dropout 

that randomly drops out neurons during training to prevent overfitting in deep 

learning models, and early stopping to stop training a model when the perfor-

mance on a validation set starts to degrade, could be applied in future works.  It is 

also important to note that the reported results were the final ones of the cross-

validation process, i.e., the ones averaged over the three iterations. The individual 

results from the various process steps showed lower accuracy when both left-

handed subjects were in the training set but were in line with the accuracy of the 

previous approach when the two subjects were divided between training and test-

ing data sets. However, even when the two subjects are divided into training and 

testing, it does not represent an ideal condition for the classifier, as it is forced to 

learn from just a single example, which is highly not robust.  

Furthermore, in this approach, the impact of feature selection on the results was 

also tested. To apply this method in industry, it is crucial to understand where the 

information lies in both technologies to refine acquisition methods with fewer sen-

sors, making it more portable, wearable, and cost effective for the different indus-

trial applications. As seen in the results, the highest accuracies were obtained 

when all features were selected, which was not surprising since the classifier had 
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more information to infer the output. However, eliminating approximately 90% of 

the features and input information resulted in only a few percentage points lost in 

accuracy. This is particularly significant for the test set, indicating the substantial 

impact of just few critical features (e.g., linear and angular palm acceleration, MCP 

of the middle, PIP of the index, and linear jerk of the palm). This should be further 

investigated in future works by trying classifiers with different features and fea-

tures selections.  

Moreover, the results showed that, for both technologies, the 18 features selected 

using the ANOVA method performed better than those selected using the CHI2 

method, demonstrating ANOVA as the more efficient feature selection method in 

our case. However, it is important to note that the optimal feature selection 

method may vary depending on the dataset, especially on the type of data, and 

further investigation is needed to determine the best method for other datasets.  

In conclusion, this approach showed promising results in classifying left and right-

handed movements using two different technologies. However, there is still room 

for improvement, particularly in mitigating overfitting and balancing the dataset. 

Further investigation is also needed to determine the optimal feature selection 

method and improve the method's generalizability to other datasets and indus-

tries.  

6.2.3 Approach C: Balanced Dataset  

In the final approach to the data analysis, the aim was to address the limitations 

of the previous approaches which have been used for classification. One major 

issue identified was the imbalance in the dataset, where some classes had signifi-

cantly fewer instances compared to others. This imbalance can cause a biased 

model towards the more populous classes and result in poor performance in clas-

sifying the minority classes. To overcome this problem, the dataset was balanced 

by adding instances to the minor classes to make them equal in size to the most 

populous class, as described in detail in section 4.3.3.  
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The results of this approach demonstrated that a balanced dataset improved the 

performance of the classification model. This improvement was particularly evi-

dent in the confusion matrix, which showed a significant reduction in the number 

of misclassified instances.  

In addition to balancing the dataset, this final approach investigated also used a 

different feature selection method compared to the previous approaches. ANOVA 

and CHI2 are two commonly used feature selection methods that select features 

based on their correlation with the target variable. These methods eliminate 

highly correlated features, which can lead to a reduction in the number of features 

used in the model. However, in some cases, highly correlated features can contain 

complementary information that is useful for classification.  

Therefore, in this approach, instead of using ANOVA or CHI2, the top 15 features 

with the highest weight in the classification were selected thanks to a preliminary 

training that allowed to see which features weighted more on the classification. 

This approach ensured that the most relevant features for classification were in-

cluded, regardless of their correlation with the target variable. Furthermore, this 

approach also aimed to minimize the number of features used in the model, which 

is beneficial for the system's efficiency.  

Overall, this latest approach addressed the limitations of the previous approaches 

and yielded better results in classifying the dataset in term of the overall accuracy. 

Balancing the dataset and using a different feature selection method improved the 

performance of the classification model, and selecting the top features ensured 

that the most relevant information was included while minimizing the system's 

complexity. 

6.2.4 Summary analysis of Results 

Overall, these results, regardless of the approach used, demonstrated the enor-

mous potential of the HANDMI4 dataset. This is particularly significant within the 

field of AI, where there are numerous approaches to tackling any particular prob-
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lem. The approaches outlined in this work are just a small selection of the possi-

bilities available. One of the primary strengths of the HANDMI4 dataset is its ver-

satility, which allows it to be used for a variety of applications, such as biomechan-

ical studies, fatigue, AI classification or ergonomic studies. Additionally, the high 

level of accuracy for the different approaches in this study indicates that there 

may be other techniques that could be applied to the dataset to yield even better 

results.  The potential for developing devices incorporating edge-AI (e.g., tiny-ML) 

which can support industrial activities with minimal impact on the worker is very 

significant. By reducing the sensing components required, such a system could 

make significant contributions to enhancing efficiency, reducing costs, and mini-

mizing environmental impact of any manufacturing process. However, developing 

such a system requires significant effort and prototyping, and there are still many 

challenges and unsolved research problems in this space that must be addressed 

(e.g., ergonomics, usability). In light of these challenges, continued research in this 

area is essential.   
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7 Conclusions and future works 
 

The aim of this thesis was to investigate the use of motion capture technologies 

for hand motion tracking and test a potential usage as industry task classification 

in the context of collaborative robotics in industry 4.0. To this end, a comprehen-

sive hand motion-capture dataset, called HANDMI4, incorporating a wide taxon-

omy of hand grasp activity examples and a variety of classic industry-related task 

activities, was created. This database is now available for download on an open 

repository [62], as is the data acquisition protocol developed to enable future re-

search in this topic. As a use case for such database, a series of AI-based classifiers 

were trained and a selected group of statistical and morphological features ex-

tracted from the database itself. Data collection and classification performance 

suggested a potential benefit in using MoCap technology to improve the level of 

autonomy of collaborative robots to make them more proactive and safer in con-

junction with the tasks being performed by the operator. 

The primary achievement of this work, the creation and dissemination of 

HANDMI4, represents a powerful research tool in the field of Industry 4.0 and 

other application domains. Moreover, the open accessibility and the dissemina-

tion of the data acquisition protocol could enable other researchers to increase 

the amount of data of HANDMI4, effectively improving its value in a variety of AI 

applications. The current cohort of 20 subjects well positions the database in 

terms of the amount of data in comparison with similar datasets in the field. One 

potential area for dataset augmentation is in respect of the limited variability of 

subject-related characteristics. For instance, including more left handed subjects 

in the dataset, including a significant number of subjects across a variety of age 

ranges, and incorporating subjects with a broader range of manual-labour skills 

could massively improve the robustness of the dataset as an AI-algorithms training 

tool. This could also open up new avenues of research or attract other potential 

usage of such database, such as in biomechanical modelling or the design of bio-

mimetic end-effectors. 
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As for the data acquisition protocol, we have also identified the reduced number 

of cameras as one of the reasons for the limitation in the tracking capability of the 

MoCap camera-system. Increasing the number of cameras and distributing the lo-

cation of the cameras all around the periphery of the data capture volume could 

improve the tracking performance. The implementation of multi modal data ac-

quisition solutions might be necessary in order to ensure an adequate level of 

tracking, especially for those tasks where the hand naturally folds or where objects 

being manipulated obstructs the markers. To this end, the use of smaller markers 

or active markers, or the manufacturing of light transparent objects (e.g., Plexiglas 

bench and tools) could offer a solution to the issue of such obstructions. Although 

this would confine the data acquisition to an in lab environment, as the aforemen-

tioned solutions are hardly implementable in a real life manufacturing scenario. 

Additionally, smaller markers can increase wearability of the measurement sys-

tems used and consequently the ergonomics for the subject can be improved from 

a useability and human factors perspective. This might also enable the tracking of 

each single hand segment (e.g., distal, intermediate, and proximal phalange), elim-

inating the need for software based hand models, which represent only an esti-

mation of the actual hand pose, with obvious limitation in pose accuracy. 

As for the wearable device measurement system being used, the hardware design 

of the data glove was found to have a critical role in ensuring an adequate adhe-

sion of the sensors to the hand’s segment, as well as in its wearability. In the cur-

rent design, these two elements are in opposition. The open design of the Tyndall 

smart glove (hardware parts fastened to the hand via thin Velcro straps rather 

than mounted on a glove) has in fact the advantage of improving breathability of 

the hand skin and washability of the device but could reduce its adhesion to the 

fingers, introducing motion artefacts which may impact on system accuracy. Dif-

ferent data glove designs could be tested in future iterations to address these is-

sues. For instance, a potential solution might be to use a textile glove that meets 

the fit criteria described above and also integrates the necessary sensors within it.   
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The second main achievement of this work was the application of HANDMI4 for 

AI-based task classification. In particular, the resulted identification of the features 

that play an important role in the classification and where this information can be 

extracted more effectively from the MoCap system. In fact, the results have shown 

that for both technologies, the majority of useful information for classification is 

contained within the middle finger and palm. This implies that a 12-IMU system or 

a 12-camera system, such as the one used in this study, may not be necessary. 

Instead, a simplified system incorporating just one or two sensors placed on these 

anatomical parts could be sufficient. This would be a significant breakthrough in 

the field of HRC due to the portability and deployablity of such a system. By using 

fewer sensors, the overall system could be made more portable, cost-effective, 

and user-friendly, which would enable a broader range of applications. Moreover, 

using fewer sensors could simplify the data processing and classification tasks, re-

ducing the complexity of the system and improving its accuracy. However, it 

should be noted that while using fewer sensors may be beneficial, it could also 

result in a loss of some useful information. Thus, it is important to carefully con-

sider the trade-off between the number of sensors and the amount of useful in-

formation that can be obtained from them.  

Another area of focus for future work in this space might be the integration of the 

different MoCap and IMU based systems used in this work with other technologies 

such as virtual reality, which can create new possibilities for applications in fields 

such as gaming, teleoperation, and rehabilitation.  

Overall, the future work should endeavour to create a system that is more versa-

tile, efficient, and user-friendly, opening up new avenues for research and appli-

cations in hand movements’ analysis. 
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Appendix A 
 
 
% Glove data analysis: joints evaluation 
% Tyndall National Institute 
% 19/09/2022 Francesca Mongelli, Matteo Menolotto 
 
clc 
close all 
clear all 
 
% read the data from the .mat file 
subject = 'sub25\';     % puts the value of the subject that want to analysed 
fileList = dir(strcat('Data_Collection\Glove\',subject)); 
for rec=3:size(fileList,1) 
    Glove = load(strcat('Data_Collection\Glove\',subject, fileList(rec).name)); 
 
% Evaluate Jerk 
Acc = Glove.Acc; 
Gyro = Glove.Gyro; 
Mag = Glove.Mag; 
for i=1:size(Acc,2) 
    Jerk_Acc(:,i) = diff(Acc(:,i)); 
    Jerk_Gyro(:,i) = diff(Gyro(:,i)); 
end 
Jerk_Acc(size(Acc,1),:) = NaN; 
Jerk_Gyro(size(Gyro,1),:) = NaN; 
 
% Get Glove quaternions and assign to the correct hand part 
Quat = Glove.Quaternion; 
Quat_Index_Prox = quaternion(Quat(:,9:12)); 
Quat_Index_Inter = quaternion(Quat(:,13:16)); 
Quat_Middle_Prox = quaternion(Quat(:,33:36)); 
Quat_Middle_Inter = quaternion(Quat(:,37:40)); 
Quat_Ring_Prox = quaternion(Quat(:,21:24)); 
Quat_Ring_Inter = quaternion(Quat(:,25:28)); 
Quat_Little_Prox = quaternion(Quat(45:48)); 
Quat_Little_Inter = quaternion(Quat(:,49:52)); 
Quat_Thumb_Prox = quaternion(Quat(:,5:8)); 
Quat_Thumb_Inter= quaternion(Quat(:,57:60)); 
Quat_Forearm = quaternion(Quat(:,65:68)); 
Quat_Palm = quaternion(Quat(:,1:4)); 
 
%% PIPs Flexion-Extension 
% PIP extraction 
PIP_Index_quat = conj(Quat_Index_Prox).*Quat_Index_Inter; 
PIP_Index_eul = eulerd(PIP_Index_quat,'ZYX','frame'); 
PIP_Index = PIP_Index_eul(:,3); 
% address the 180 deg over-wrap 
for i=1:numel(PIP_Index) 
    if PIP_Index(i)<-120 
        PIP_Index(i) = PIP_Index(i)+360; 
    end  
end 
PIP_Middle_quat = conj(Quat_Middle_Prox).*Quat_Middle_Inter; 
PIP_Middle_eul = eulerd(PIP_Middle_quat,'ZYX','frame'); 
PIP_Middle = PIP_Middle_eul(:,3); 
% address the 180 deg over-wrap 
for i=1:numel(PIP_Middle) 
    if PIP_Middle(i)<-120 
        PIP_Middle(i) = PIP_Middle(i)+360; 
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    end  
end 
PIP_Ring_quat = conj(Quat_Ring_Prox).*Quat_Ring_Inter; 
PIP_Ring_eul = eulerd(PIP_Ring_quat,'ZYX','frame'); 
PIP_Ring = PIP_Ring_eul(:,3); 
% address the 180 deg over-wrap 
for i=1:numel(PIP_Ring) 
    if PIP_Ring(i)<-120 
        PIP_Ring(i) = PIP_Ring(i)+360; 
    end  
end 
PIP_Little_quat = conj(Quat_Little_Prox).*Quat_Little_Inter; 
PIP_Little_eul = eulerd(PIP_Little_quat,'ZYX','frame'); 
PIP_Little = PIP_Little_eul(:,3); 
% address the 180 deg over-wrap 
for i=1:numel(PIP_Little) 
    if PIP_Little(i)<-120 
        PIP_Little(i) = PIP_Little(i)+360; 
    end  
end  
PIP_Thumb_quat = conj(Quat_Thumb_Prox).*Quat_Thumb_Inter; 
PIP_Thumb_eul = eulerd(PIP_Thumb_quat,'ZYX','frame'); 
PIP_Thumb = PIP_Thumb_eul(:,3); 
% address the 180 deg over-wrap 
for i=1:numel(PIP_Thumb) 
    if PIP_Thumb(i)<-120 
        PIP_Thumb(i) = PIP_Thumb(i)+360; 
    end  
end  
 
% smoothing (Uncomment if angle jerk evaluation is needed) 
PIP_Index = medfilt1(PIP_Index,100); 
PIP_Middle = medfilt1(PIP_Middle,100); 
PIP_Ring = medfilt1(PIP_Ring,100); 
PIP_Little = medfilt1(PIP_Little,100); 
PIP_Thumb = medfilt1(PIP_Thumb,100); 
 
%% MCPs Flexion-Extension 
MCP_Index_quat = conj(Quat_Palm).*Quat_Index_Prox; 
MCP_Index_eul = eulerd(MCP_Index_quat,'ZYX','frame'); 
MCP_FE_Index = MCP_Index_eul(:,3); 
MCP_Middle_quat = conj(Quat_Palm).*Quat_Middle_Prox; 
MCP_Middle_eul = eulerd(MCP_Middle_quat,'ZYX','frame'); 
MCP_FE_Middle = MCP_Middle_eul(:,3); 
MCP_Ring_quat = conj(Quat_Palm).*Quat_Ring_Prox; 
MCP_Ring_eul = eulerd(MCP_Ring_quat,'ZYX','frame'); 
MCP_FE_Ring = MCP_Ring_eul(:,3); 
MCP_Little_quat = conj(Quat_Palm).*Quat_Little_Prox; 
MCP_Little_eul = eulerd(MCP_Little_quat,'ZYX','frame'); 
MCP_FE_Little = MCP_Little_eul(:,3); 
MCP_Thumb_quat = conj(Quat_Palm).*Quat_Thumb_Prox; 
MCP_Thumb_eul = eulerd(MCP_Thumb_quat,'ZYX','frame'); 
MCP_FE_Thumb = MCP_Thumb_eul(:,3); 
 
% smoothing (Uncomment if angle jerk evaluation is needed) 
MCP_FE_Index = medfilt1(MCP_FE_Index,100); 
MCP_FE_Middle = medfilt1(MCP_FE_Middle,100); 
MCP_FE_Ring = medfilt1(MCP_FE_Ring,100); 
MCP_FE_Little = medfilt1(MCP_FE_Little,100); 
MCP_FE_Thumb = medfilt1(MCP_FE_Thumb,100); 
 
%% MCPs Abduction-Adduction 
MCP_AA_Index = MCP_Index_eul(:,1); 



Appendix A 

86  
 

MCP_AA_Middle = MCP_Middle_eul(:,1); 
MCP_AA_Ring = MCP_Ring_eul(:,1); 
MCP_AA_Little = MCP_Little_eul(:,1); 
MCP_AA_Thumb = MCP_Thumb_eul(:,1); 
 
% smoothing (Uncomment if angle jerk evaluation is needed) 
MCP_AA_Index = medfilt1(MCP_AA_Index,100); 
MCP_AA_Middle = medfilt1(MCP_AA_Middle,100); 
MCP_AA_Ring = medfilt1(MCP_AA_Ring,100); 
MCP_AA_Little = medfilt1(MCP_AA_Little,100); 
MCP_AA_Thumb = medfilt1(MCP_AA_Thumb,100); 
%  
 
%% Thumb CMC Internal-External Rotation 
MCP_IER_Thumb= MCP_Thumb_eul(:,2); 
 
% smoothing (Uncomment if angle jerk evaluation is needed) 
MCP_IER_Thumb = medfilt1(MCP_IER_Thumb,100); 
 
%% Wrist Flexion-Extension & Abduction-Adduction 
Wrist_quat = conj(Quat_Forearm).*Quat_Palm; 
Wrist_eul = eulerd(MCP_Index_quat,'ZYX','frame'); 
Wrist_FE = Wrist_eul(:,3); 
Wrist_AA= Wrist_eul(:,1); 
 
% smoothing (Uncomment if angle jerk evaluation is needed) 
Wrist_FE = medfilt1(Wrist_FE,100); 
Wrist_AA = medfilt1(Wrist_AA,100); 
 
%% Creation of the csv file 
%data_time = datetime('now','TimeZone','local','Format','yyyyMMdd_hhmmss'); % 
get date  
T = table(Acc, Gyro, Mag, Jerk_Acc, Jerk_Gyro, ... 
    PIP_Index, PIP_Middle, PIP_Ring, PIP_Little, PIP_Thumb, ... 
    MCP_FE_Index, MCP_FE_Middle, MCP_FE_Ring, MCP_FE_Little, MCP_FE_Thumb, ... 
    MCP_AA_Index, MCP_AA_Middle, MCP_AA_Ring, MCP_AA_Little, MCP_AA_Thumb, ... 
    MCP_IER_Thumb, Wrist_FE, Wrist_AA); 
filepath = strcat('Data_Classification\Database\',subject); % here the filepath 
of the new folder 
[status,msg] = mkdir(filepath);                             % create the folder 
for a specific subject 
filename = erase(fileList(rec).name,".mat");                % delete from the 
filename the extension .mat 
writetable(T,strcat(filepath,sprintf('Glove_data_%s.csv',filename)),'Writ-
eRowNames',true)   
 
clear Acc Gyro Mag Jerk_Acc Jerk_Gyro PIP_Index  PIP_Middle  PIP_Ring  ... 
    PIP_Little PIP_Thumb MCP_FE_Index  MCP_FE_Middle  MCP_FE_Ring  ... 
    MCP_FE_Little  MCP_FE_Thumb  MCP_AA_Index  MCP_AA_Middle  MCP_AA_Ring ... 
    MCP_AA_Little  MCP_AA_Thumb MCP_IER_Thumb  Wrist_FE  Wrist_AA ... 
     
end 
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%% Task Identification Using Hand Tracking Technology 
% Francesca Mongelli, Matteo Menolotto - Tyndall National Institute 
% 10/01/2023 
%% 
clc 
clear all 
close all 
 
%% Constants declaration 
Tasks = ["Pick_Place" "Object_Handover" "Hand_Assembly" "Tool_Assistance_Assem-
bly"]; 
SampTime = 190;         % Sample time  
sec = 5;                 % 5 seconds time window (950 frames) 
windowWidth = SampTime*sec;  % 5 seconds time window (950 frames) 
Time_wind = windowWidth/SampTime; 
varNames = {'mean_PIP_Thumb','mean_PIP_Index','mean_PIP_Middle',... 
            'mean_MCP_FE_Thumb','mean_MCP_FE_Index','mean_MCP_FE_Middle',... 
            'mean_MCP_AA_Thumb','mean_MCP_AA_Index','mean_MCP_AA_Middle', 

'mean_MCP_IER_Thumb','mean_FE_Wrist','mean_AA_Wrist','mean_Lin_Acc_Palm'
,'mean_Ang_Acc_Palm','mean_Lin_Jerk_Palm','mean_Ang_Jerk_Palm',... 

            'std_PIP_Thumb','std_PIP_Index','std_PIP_Middle',... 
            'std_MCP_FE_Thumb','std_MCP_FE_Index','std_MCP_FE_Middle',... 
            'std_MCP_AA_Thumb','std_MCP_AA_Index','std_MCP_AA_Middle',... 

'std_MCP_IER_Thumb','std_FE_Wrist','std_AA_Wrist','std_Lin_Acc_Palm',... 
            'std_Ang_Acc_Palm','std_Lin_Jerk_Palm','std_Ang_Jerk_Palm',... 
            'median_PIP_Thumb','median_PIP_Index','median_PIP_Middle',... 
            'median_MCP_FE_Thumb','median_MCP_FE_Index','median_MCP_FE_Middle', 
 'median_MCP_AA_Thumb','median_MCP_AA_Index','median_MCP_AA_Middle',... 
            'median_MCP_IER_Thumb','median_FE_Wrist','median_AA_Wrist','me-
dian_Lin_Acc_Palm', 'median_Ang_Acc_Palm','median_Lin_Jerk_Palm','me-
dian_Ang_Jerk_Palm','iqr_PIP_Thumb','iqr_PIP_Index','iqr_PIP_Mid-
dle','iqr_MCP_FE_Thumb','iqr_MCP_FE_Index','iqr_MCP_FE_Middle',... 
            'iqr_MCP_AA_Thumb','iqr_MCP_AA_Index','iqr_MCP_AA_Middle', 
 'iqr_MCP_IER_Thumb','iqr_FE_Wrist','iqr_AA_Wrist','iqr_Lin_Acc_Palm',... 
            'iqr_Ang_Acc_Palm','iqr_Lin_Jerk_Palm','iqr_Ang_Jerk_Palm',... 
            'cov_PIP_Thumb','cov_PIP_Index','cov_PIP_Middle',... 
            'cov_MCP_FE_Thumb','cov_MCP_FE_Index','cov_MCP_FE_Middle',... 
            'cov_MCP_AA_Thumb','cov_MCP_AA_Index','cov_MCP_AA_Middle',... 
'cov_MCP_IER_Thumb','cov_FE_Wrist','cov_AA_Wrist','cov_Lin_Acc_Palm',... 
            'cov_Ang_Acc_Palm','cov_Lin_Jerk_Palm','cov_Ang_Jerk_Palm',... 
            'entropy_PIP_Thumb','entropy_PIP_Index','entropy_PIP_Middle',... 
            'entropy_MCP_FE_Thumb','entropy_MCP_FE_Index','entropy_MCP_FE_Mid-
dle', 'entropy_MCP_AA_Thumb','entropy_MCP_AA_Index','entropy_MCP_AA_Middle',... 
            'entropy_MCP_IER_Thumb','entropy_FE_Wrist','entropy_AA_Wrist',... 
            'entropy_Lin_Acc_Palm','entropy_Ang_Acc_Palm','en-
tropy_Lin_Jerk_Palm','entropy_Ang_Jerk_Palm',... 
            'SF_PIP_Thumb','SF_PIP_Index','SF_PIP_Middle',... 
            'SF_MCP_FE_Thumb','SF_MCP_FE_Index','SF_MCP_FE_Middle',... 
            'SF_MCP_AA_Thumb','SF_MCP_AA_Index','SF_MCP_AA_Middle',... 
            'SF_MCP_IER_Thumb','SF_FE_Wrist','SF_AA_Wrist','SF_Lin_Acc_Palm',... 
            'SF_Ang_Acc_Palm','SF_Lin_Jerk_Palm','SF_Ang_Jerk_Palm',... 
            'P2P_PIP_Thumb','P2P_PIP_Index','P2P_PIP_Middle',... 
            'P2P_MCP_FE_Thumb','P2P_MCP_FE_Index','P2P_MCP_FE_Middle',... 
            'P2P_MCP_AA_Thumb','P2P_MCP_AA_Index','P2P_MCP_AA_Middle',... 
'P2P_MCP_IER_Thumb','P2P_FE_Wrist','P2P_AA_Wrist','P2P_Lin_Acc_Palm',... 
            'P2P_Ang_Acc_Palm','P2P_Lin_Jerk_Palm','P2P_Ang_Jerk_Palm',... 
            'peaks_PIP_Thumb','peaks_PIP_Index','peaks_PIP_Middle',... 
            'peaks_MCP_FE_Thumb','peaks_MCP_FE_Index','peaks_MCP_FE_Middle',... 
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'peaks_FE_Wrist','peaks_Lin_Acc_Palm','peaks_Ang_Acc_Palm','Task_name'}; 
 
%% Import all the tasks (csv) of a subject 
for subjects = 1:20 
    Task_list = dir(strcat(['\\FS1\Docs4\francesca.mongelli\My Documents  
\Database\Database_Features_Prep\GLOVE\sub'],num2str(subjects),'\*.csv')); 
    for file=1:numel(Task_list) 
        Task = readtable(strcat('Database_Features_Prep\GLOVE\sub',num2str(sub-
jects),'\',Task_list(file).name));                
        Data_Acquisition{file} = Task; 
    end 
 
    %% Feature Extraction (Joint angles) 
    for file=1:numel(Task_list) 
        time = 0:1/SampTime:(size(Data_Acquisition{file},1)-1)/SampTime; 
        for i=0:floor(size(Data_Acquisition{file},1)/windowWidth)-1 
            % MEAN VALUE 
            mean_PIP_Thumb(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,1}, 'omitnan'); 
            mean_PIP_Index(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,2}, 'omitnan'); 
            mean_PIP_Middle(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,3}, 'omitnan'); 
            mean_MCP_FE_Thumb(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,6}, 'omitnan'); 
            mean_MCP_FE_Index(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,7}, 'omitnan'); 
            mean_MCP_FE_Middle(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,8}, 'omitnan'); 
            mean_MCP_AA_Thumb(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,11}, 'omitnan'); 
            mean_MCP_AA_Index(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,12}, 'omitnan'); 
            mean_MCP_AA_Middle(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,13}, 'omitnan'); 
            mean_MCP_IER_Thumb(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,16}, 'omitnan'); 
            mean_FE_Wrist(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,17}, 'omitnan'); 
            mean_AA_Wrist(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,18}, 'omitnan'); 
            mean_Ang_Acc_Palm(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,19}, 'omitnan'); 
            mean_Lin_Acc_Palm(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,20}, 'omitnan'); 
            mean_Lin_Jerk_Palm(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,21}, 'omitnan'); 
            mean_Ang_Jerk_Palm(i+1,file)=mean(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,22}, 'omitnan'); 
             
            % STANDARD DEVIATION - Manual Handling 
            std_PIP_Thumb(i+1,file)=std(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,1}, 'omitnan'); 
            std_PIP_Index(i+1,file)=std(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,2}, 'omitnan'); 
            std_PIP_Middle(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,3}, 'omitnan'); 
            std_MCP_FE_Thumb(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,6}, 'omitnan'); 
            std_MCP_FE_Index(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,7}, 'omitnan'); 
            std_MCP_FE_Middle(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,8}, 'omitnan'); 
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            std_MCP_AA_Thumb(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,11}, 'omitnan'); 
            std_MCP_AA_Index(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,12}, 'omitnan'); 
            std_MCP_AA_Middle(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,13}, 'omitnan'); 
            std_MCP_IER_Thumb(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,16}, 'omitnan'); 
            std_FE_Wrist(i+1,file)=std(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,17}, 'omitnan'); 
            std_AA_Wrist(i+1,file)=std(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,18}, 'omitnan'); 
            std_Ang_Acc_Palm(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,19}, 'omitnan'); 
            std_Lin_Acc_Palm(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,20}, 'omitnan'); 
            std_Lin_Jerk_Palm(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,21}, 'omitnan'); 
            std_Ang_Jerk_Palm(i+1,file)=std(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,22}, 'omitnan'); 
             
            % MEDIAN 
            median_PIP_Thumb(i+1,file)=median(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,1}, 'omitnan'); 
            median_PIP_Index(i+1,file)=median(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,2}, 'omitnan'); 
            median_PIP_Middle(i+1,file)=median(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,3}, 'omitnan'); 
            median_MCP_FE_Thumb(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,6}, 'omitnan'); 
            median_MCP_FE_Index(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,7}, 'omitnan'); 
            median_MCP_FE_Middle(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,8}, 'omitnan'); 
            median_MCP_AA_Thumb(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,11}, 'omitnan'); 
            median_MCP_AA_Index(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,12}, 'omitnan'); 
            median_MCP_AA_Middle(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,13}, 'omitnan'); 
            median_MCP_IER_Thumb(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,16}, 'omitnan'); 
            median_FE_Wrist(i+1,file)=median(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,17}, 'omitnan'); 
            median_AA_Wrist(i+1,file)=median(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,18}, 'omitnan'); 
            median_Ang_Acc_Palm(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,19}, 'omitnan'); 
            median_Lin_Acc_Palm(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,20}, 'omitnan'); 
            median_Lin_Jerk_Palm(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,21}, 'omitnan'); 
            median_Ang_Jerk_Palm(i+1,file)=median(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,22}, 'omitnan'); 
             
            % INTERQUARTILE RANGE 
            iqr_PIP_Thumb(i+1,file)=iqr(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,1}); 
            iqr_PIP_Index(i+1,file)=iqr(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,2}); 
            iqr_PIP_Middle(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,3}); 
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            iqr_MCP_FE_Thumb(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,6}); 
            iqr_MCP_FE_Index(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,7}); 
            iqr_MCP_FE_Middle(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,8}); 
            iqr_MCP_AA_Thumb(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,11}); 
            iqr_MCP_AA_Index(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,12}); 
            iqr_MCP_AA_Middle(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,13}); 
            iqr_MCP_IER_Thumb(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,16}); 
            iqr_FE_Wrist(i+1,file)=iqr(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,17}); 
            iqr_AA_Wrist(i+1,file)=iqr(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,18}); 
            iqr_Ang_Acc_Palm(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,19}); 
            iqr_Lin_Acc_Palm(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,20}); 
            iqr_Lin_Jerk_Palm(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,21}); 
            iqr_Ang_Jerk_Palm(i+1,file)=iqr(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,22}); 
             
            % COVARIANCE 
            cov_PIP_Thumb(i+1,file)=cov(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,1}, 'omitrows'); 
            cov_PIP_Index(i+1,file)=cov(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,2}, 'omitrows'); 
            cov_PIP_Middle(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,3}, 'omitrows'); 
            cov_MCP_FE_Thumb(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,6}, 'omitrows'); 
            cov_MCP_FE_Index(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,7}, 'omitrows'); 
            cov_MCP_FE_Middle(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,8}, 'omitrows'); 
            cov_MCP_AA_Thumb(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,11}, 'omitrows'); 
            cov_MCP_AA_Index(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,12}, 'omitrows'); 
            cov_MCP_AA_Middle(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,13}, 'omitrows'); 
            cov_MCP_IER_Thumb(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,16}, 'omitrows'); 
            cov_FE_Wrist(i+1,file)=cov(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,17}, 'omitrows'); 
            cov_AA_Wrist(i+1,file)=cov(Data_Acquisition{file}{(i*windowWidth)+1 
: (i*windowWidth)+windowWidth,18}, 'omitrows'); 
            cov_Ang_Acc_Palm(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,19}, 'omitrows'); 
            cov_Lin_Acc_Palm(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,20}, 'omitrows'); 
            cov_Lin_Jerk_Palm(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,21}, 'omitrows'); 
            cov_Ang_Jerk_Palm(i+1,file)=cov(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,22}, 'omitrows'); 
             
            % ENTROPY 
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            entropy_PIP_Thumb(i+1,file)=entropy(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,1}); 
            entropy_PIP_Index(i+1,file)=entropy(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,2}); 
            entropy_PIP_Middle(i+1,file)=entropy(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,3}); 
            entropy_MCP_FE_Thumb(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,6}); 
            entropy_MCP_FE_Index(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,7}); 
            entropy_MCP_FE_Middle(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,8}); 
            entropy_MCP_AA_Thumb(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,11}); 
            entropy_MCP_AA_Index(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,12}); 
            entropy_MCP_AA_Middle(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,13}); 
            entropy_MCP_IER_Thumb(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,16}); 
            entropy_FE_Wrist(i+1,file)=entropy(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,17}); 
            entropy_AA_Wrist(i+1,file)=entropy(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,18}); 
            entropy_Ang_Acc_Palm(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,19}); 
            entropy_Lin_Acc_Palm(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,20}); 
            entropy_Lin_Jerk_Palm(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,21}); 
            entropy_Ang_Jerk_Palm(i+1,file)=entropy(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,22}); 
             
            % SHAPE FOCTOR 
            SF_PIP_Thumb(i+1,file) = 
sqrt(mean_PIP_Thumb(i+1,file))/mean_PIP_Thumb(i+1,file); 
            SF_PIP_Index(i+1,file) = sqrt(mean_PIP_Index(i+1,file))/mean_PIP_In-
dex(i+1,file); 
            SF_PIP_Middle(i+1,file) = sqrt(mean_PIP_Mid-
dle(i+1,file))/mean_PIP_Middle(i+1,file); 
            SF_MCP_FE_Thumb(i+1,file) = 
sqrt(mean_MCP_FE_Thumb(i+1,file))/mean_MCP_FE_Thumb(i+1,file); 
            SF_MCP_FE_Index(i+1,file) = sqrt(mean_MCP_FE_In-
dex(i+1,file))/mean_MCP_FE_Index(i+1,file); 
            SF_MCP_FE_Middle(i+1,file) = sqrt(mean_MCP_FE_Mid-
dle(i+1,file))/mean_MCP_FE_Middle(i+1,file); 
            SF_MCP_AA_Thumb(i+1,file) = 
sqrt(mean_MCP_AA_Thumb(i+1,file))/mean_MCP_AA_Thumb(i+1,file); 
            SF_MCP_AA_Index(i+1,file) = sqrt(mean_MCP_AA_In-
dex(i+1,file))/mean_MCP_AA_Index(i+1,file); 
            SF_MCP_AA_Middle(i+1,file) = sqrt(mean_MCP_AA_Mid-
dle(i+1,file))/mean_MCP_AA_Middle(i+1,file); 
            SF_MCP_IER_Thumb(i+1,file) = 
sqrt(mean_MCP_IER_Thumb(i+1,file))/mean_MCP_IER_Thumb(i+1,file); 
            SF_FE_Wrist(i+1,file) = 
sqrt(mean_FE_Wrist(i+1,file))/mean_FE_Wrist(i+1,file); 
            SF_AA_Wrist(i+1,file) = 
sqrt(mean_AA_Wrist(i+1,file))/mean_AA_Wrist(i+1,file); 
            SF_Lin_Acc_Palm(i+1,file) = 
sqrt(mean_Lin_Acc_Palm(i+1,file))/mean_Lin_Acc_Palm(i+1,file); 
            SF_Ang_Acc_Palm(i+1,file) = 
sqrt(mean_Ang_Acc_Palm(i+1,file))/mean_Ang_Acc_Palm(i+1,file);     
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            SF_Lin_Jerk_Palm(i+1,file) = 
sqrt(mean_Lin_Jerk_Palm(i+1,file))/mean_Lin_Jerk_Palm(i+1,file); 
            SF_Ang_Jerk_Palm(i+1,file) = 
sqrt(mean_Ang_Jerk_Palm(i+1,file))/mean_Ang_Jerk_Palm(i+1,file);  
     
            % PEAK to PEAK 
            P2P_PIP_Thumb(i+1,file) = peak2peak(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,1}); 
            P2P_PIP_Index(i+1,file) = peak2peak(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,2}); 
            P2P_PIP_Middle(i+1,file) = peak2peak(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,3}); 
            P2P_MCP_FE_Thumb(i+1,file) = peak2peak(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,6}); 
            P2P_MCP_FE_Index(i+1,file) = peak2peak(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,7}); 
            P2P_MCP_FE_Middle(i+1,file) = peak2peak(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,8}); 
            P2P_MCP_AA_Thumb(i+1,file) = peak2peak(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,11}); 
            P2P_MCP_AA_Index(i+1,file) = peak2peak(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,12}); 
            P2P_MCP_AA_Middle(i+1,file) = peak2peak(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,13}); 
            P2P_MCP_IER_Thumb(i+1,file) = peak2peak(Data_Acquisi-
tion{file}{(i*windowWidth)+1 : (i*windowWidth)+windowWidth,16}); 
            P2P_FE_Wrist(i+1,file) = peak2peak(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,17}); 
            P2P_AA_Wrist(i+1,file) = peak2peak(Data_Acquisition{file}{(i*window-
Width)+1 : (i*windowWidth)+windowWidth,18}); 
            P2P_Ang_Acc_Palm(i+1,file)=peak2peak(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,19}); 
            P2P_Lin_Acc_Palm(i+1,file)=peak2peak(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,20}); 
            P2P_Lin_Jerk_Palm(i+1,file)=peak2peak(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,21}); 
            P2P_Ang_Jerk_Palm(i+1,file)=peak2peak(Data_Acquisition{file}{(i*win-
dowWidth)+1 : (i*windowWidth)+windowWidth,22});            
        end     
 
 
    %% Peak-related Features 
    % Find Peaks that exceed 60% of the max peak and are at least 0.5 
    % second apart  
    frac = 0.6;  % 60% 
    MinDistance = 0.5; % 0.5 second 
 
    [y_PIP_Thumb, x_PIP_Thumb] = findpeaks(Data_Acquisi-
tion{file}{:,1},time,'MinPeakHeight', ... 
        max(Data_Acquisition{file}{:,1})*frac,'MinPeakDistance', MinDistance); 
    [y_PIP_Index, x_PIP_Index] = findpeaks(Data_Acquisi-
tion{file}{:,2},time,'MinPeakHeight', ... 
        max(Data_Acquisition{file}{:,2})*frac,'MinPeakDistance', MinDistance); 
    [y_PIP_Middle, x_PIP_Middle] = findpeaks(Data_Acquisi-
tion{file}{:,3},time,'MinPeakHeight', ... 
        max(Data_Acquisition{file}{:,3})*frac,'MinPeakDistance', MinDistance); 
    [y_MCP_FE_Thumb, x_MCP_FE_Thumb] = findpeaks(Data_Acquisi-
tion{file}{:,6},time,'MinPeakHeight', ... 
        max(Data_Acquisition{file}{:,6})*frac,'MinPeakDistance', MinDistance); 
    [y_MCP_FE_Index, x_MCP_FE_Index] = findpeaks(Data_Acquisi-
tion{file}{:,7},time,'MinPeakHeight', ... 
        max(Data_Acquisition{file}{:,7})*frac,'MinPeakDistance', MinDistance); 
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    [y_MCP_FE_Middle, x_MCP_FE_Middle] = findpeaks(Data_Acquisi-
tion{file}{:,8},time,'MinPeakHeight', ... 
        max(Data_Acquisition{file}{:,8})*frac,'MinPeakDistance', MinDistance); 
    [y_FE_Wrist, x_FE_Wrist] = findpeaks(Data_Acquisi-
tion{file}{:,17},time,'MinPeakHeight', ... 
        max(Data_Acquisition{file}{:,17})*frac,'MinPeakDistance', MinDistance); 
    [y_Lin_Acc_Palm, x_Lin_Acc_Palm] = findpeaks(Data_Acquisi-
tion{file}{:,20},time,'MinPeakHeight', ... 
        max(Data_Acquisition{file}{:,20})*frac,'MinPeakDistance', MinDistance); 
    [y_Ang_Acc_Palm, x_Ang_Acc_Palm] = findpeaks(Data_Acquisi-
tion{file}{:,19},time,'MinPeakHeight', ... 
        max(Data_Acquisition{file}{:,19})*frac,'MinPeakDistance', MinDistance); 
 
%% Count number of peaks every windowWidth 
    for i=1:floor(size(Data_Acquisition{file},1)/windowWidth) 
        par_peaks_PIP_Thumb(i,:) = x_PIP_Thumb <= (i*(windowWidth/SampTime));% 
this produces a binary array 
        par_peaks_PIP_Index(i,:) = x_PIP_Index <= (i*(windowWidth/SampTime));  
        par_peaks_PIP_Middle(i,:) = x_PIP_Middle <= (i*(windowWidth/SampTime));  
%         par_peaks_PIP_Ring(i,:) = x_PIP_Ring <= (i*(windowWidth/SampTime));  
%         par_peaks_PIP_Little(i,:) = x_PIP_Little <= (i*(window-
Width/SampTime));  
        par_peaks_MCP_FE_Thumb(i,:) = x_MCP_FE_Thumb <= (i*(window-
Width/SampTime));  
        par_peaks_MCP_FE_Index(i,:) = x_MCP_FE_Index <= (i*(window-
Width/SampTime));  
        par_peaks_MCP_FE_Middle(i,:) = x_MCP_FE_Middle <= (i*(window-
Width/SampTime));  
%         par_peaks_MCP_FE_Ring(i,:) = x_MCP_FE_Ring <= (i*(window-
Width/SampTime));  
%         par_peaks_MCP_FE_Little(i,:) = x_MCP_FE_Little <= (i*(window-
Width/SampTime));  
        par_peaks_FE_Wrist(i,:) = x_FE_Wrist <= (i*(windowWidth/SampTime));  
        par_peaks_Lin_Acc_Palm(i,:) = x_Lin_Acc_Palm <= (i*(window-
Width/SampTime));  
        par_peaks_Ang_Acc_Palm(i,:) = x_Ang_Acc_Palm <= (i*(window-
Width/SampTime));  
        if i==1 
            peaks_PIP_Thumb(i,file)=sum(par_peaks_PIP_Thumb(i,:)); 
            peaks_PIP_Index(i,file)=sum(par_peaks_PIP_Index(i,:)); 
            peaks_PIP_Middle(i,file)=sum(par_peaks_PIP_Middle(i,:)); 
%             peaks_PIP_Ring(i,file)=sum(par_peaks_PIP_Ring(i,:)); 
%             peaks_PIP_Little(i,file)=sum(par_peaks_PIP_Little(i,:)); 
            peaks_MCP_FE_Thumb(i,file)=sum(par_peaks_MCP_FE_Thumb(i,:)); 
            peaks_MCP_FE_Index(i,file)=sum(par_peaks_MCP_FE_Index(i,:)); 
            peaks_MCP_FE_Middle(i,file)=sum(par_peaks_MCP_FE_Middle(i,:)); 
%             peaks_MCP_FE_Ring(i,file)=sum(par_peaks_MCP_FE_Ring(i,:)); 
%             peaks_MCP_FE_Little(i,file)=sum(par_peaks_MCP_FE_Little(i,:)); 
            peaks_FE_Wrist(i,file)=sum(par_peaks_FE_Wrist(i,:));  
            peaks_Lin_Acc_Palm(i,file)=sum(par_peaks_Lin_Acc_Palm(i,:)); 
            peaks_Ang_Acc_Palm(i,file)=sum(par_peaks_Ang_Acc_Palm(i,:));  
        else 
            peaks_PIP_Thumb(i,file)=sum(par_peaks_PIP_Thumb(i,:)) - 
sum(peaks_PIP_Thumb(1:i-1,file)); 
            peaks_PIP_Index(i,file)=sum(par_peaks_PIP_Index(i,:)) - 
sum(peaks_PIP_Index(1:i-1,file)); 
            peaks_PIP_Middle(i,file)=sum(par_peaks_PIP_Middle(i,:)) - 
sum(peaks_PIP_Middle(1:i-1,file)); 
%             peaks_PIP_Ring(i,file)=sum(par_peaks_PIP_Ring(i,:)) - 
sum(peaks_PIP_Ring(1:i-1,file)); 
%             peaks_PIP_Little(i,file)=sum(par_peaks_PIP_Little(i,:)) - 
sum(peaks_PIP_Little(1:i-1,file)); 



Appendix B 

94  
 

            peaks_MCP_FE_Thumb(i,file)=sum(par_peaks_MCP_FE_Thumb(i,:)) - 
sum(peaks_MCP_FE_Thumb(1:i-1,file)); 
            peaks_MCP_FE_Index(i,file)=sum(par_peaks_MCP_FE_Index(i,:)) - 
sum(peaks_MCP_FE_Index(1:i-1,file)); 
            peaks_MCP_FE_Middle(i,file)=sum(par_peaks_MCP_FE_Middle(i,:)) - 
sum(peaks_MCP_FE_Middle(1:i-1,file)); 
%             peaks_MCP_FE_Ring(i,file)=sum(par_peaks_MCP_FE_Ring(i,:)) - 
sum(peaks_MCP_FE_Ring(1:i-1,file)); 
%             peaks_MCP_FE_Little(i,file)=sum(par_peaks_MCP_FE_Little(i,:)) - 
sum(peaks_MCP_FE_Little(1:i-1,file)); 
            peaks_FE_Wrist(i,file)=sum(par_peaks_FE_Wrist(i,:)) - 
sum(peaks_FE_Wrist(1:i-1,file)); 
            peaks_Lin_Acc_Palm(i,file)=sum(par_peaks_Lin_Acc_Palm(i,:)) - 
sum(peaks_Lin_Acc_Palm(1:i-1,file)); 
            peaks_Ang_Acc_Palm(i,file)=sum(par_peaks_Ang_Acc_Palm(i,:)) - 
sum(peaks_Ang_Acc_Palm(1:i-1,file)); 
        end 
    end 
    clear par_peaks_PIP_Thumb par_peaks_PIP_Index par_peaks_PIP_Middle 
par_peaks_PIP_Ring par_peaks_PIP_Little 
    clear par_peaks_MCP_FE_Thumb par_peaks_MCP_FE_Index par_peaks_MCP_FE_Middle 
par_peaks_MCP_FE_Ring par_peaks_MCP_FE_Little 
    clear par_peaks_FE_Wrist par_peaks_Lin_Acc_Palm par_peaks_Ang_Acc_Palm 
 
 
    %% Results     
    Task_name = {Task_list(file).name(1:end-9)} + strings(i,1); 
    Features = table(mean_PIP_Thumb(1:i,file), mean_PIP_Index(1:i,file), 
mean_PIP_Middle(1:i,file), ... 
            mean_MCP_FE_Thumb(1:i,file), mean_MCP_FE_Index(1:i,file), 
mean_MCP_FE_Middle(1:i,file), ... 
            mean_MCP_AA_Thumb(1:i,file), mean_MCP_AA_Index(1:i,file), 
mean_MCP_AA_Middle(1:i,file), ... 
            mean_MCP_IER_Thumb(1:i,file), mean_FE_Wrist(1:i,file), 
mean_AA_Wrist(1:i,file), ... 
            mean_Lin_Acc_Palm(1:i,file), mean_Ang_Acc_Palm(1:i,file), 
mean_Lin_Jerk_Palm(1:i,file), mean_Ang_Jerk_Palm(1:i,file), ... 
            std_PIP_Thumb(1:i,file), std_PIP_Index(1:i,file), std_PIP_Mid-
dle(1:i,file), ... 
            std_MCP_FE_Thumb(1:i,file), std_MCP_FE_Index(1:i,file), 
std_MCP_FE_Middle(1:i,file), ... 
            std_MCP_AA_Thumb(1:i,file), std_MCP_AA_Index(1:i,file), 
std_MCP_AA_Middle(1:i,file), ... 
            std_MCP_IER_Thumb(1:i,file), std_FE_Wrist(1:i,file), 
std_AA_Wrist(1:i,file), std_Lin_Acc_Palm(1:i,file), std_Ang_Acc_Palm(1:i,file), 
std_Lin_Jerk_Palm(1:i,file), std_Ang_Jerk_Palm(1:i,file),... 
            median_PIP_Thumb(1:i,file), median_PIP_Index(1:i,file), me-
dian_PIP_Middle(1:i,file), ... 
            median_MCP_FE_Thumb(1:i,file), median_MCP_FE_Index(1:i,file), me-
dian_MCP_FE_Middle(1:i,file), ... 
            median_MCP_AA_Thumb(1:i,file), median_MCP_AA_Index(1:i,file), me-
dian_MCP_AA_Middle(1:i,file), ... 
            median_MCP_IER_Thumb(1:i,file), median_FE_Wrist(1:i,file), me-
dian_AA_Wrist(1:i,file), median_Lin_Acc_Palm(1:i,file), me-
dian_Ang_Acc_Palm(1:i,file), median_Lin_Jerk_Palm(1:i,file), me-
dian_Ang_Jerk_Palm(1:i,file),... 
            iqr_PIP_Thumb(1:i,file), iqr_PIP_Index(1:i,file), iqr_PIP_Mid-
dle(1:i,file), ... 
            iqr_MCP_FE_Thumb(1:i,file), iqr_MCP_FE_Index(1:i,file), 
iqr_MCP_FE_Middle(1:i,file), ... 
            iqr_MCP_AA_Thumb(1:i,file), iqr_MCP_AA_Index(1:i,file), 
iqr_MCP_AA_Middle(1:i,file), ... 
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            iqr_MCP_IER_Thumb(1:i,file), iqr_FE_Wrist(1:i,file), 
iqr_AA_Wrist(1:i,file), iqr_Lin_Acc_Palm(1:i,file), iqr_Ang_Acc_Palm(1:i,file), 
iqr_Lin_Jerk_Palm(1:i,file), iqr_Ang_Jerk_Palm(1:i,file),... 
            cov_PIP_Thumb(1:i,file), cov_PIP_Index(1:i,file), cov_PIP_Mid-
dle(1:i,file), ... 
            cov_MCP_FE_Thumb(1:i,file), cov_MCP_FE_Index(1:i,file), 
cov_MCP_FE_Middle(1:i,file), ... 
            cov_MCP_AA_Thumb(1:i,file), cov_MCP_AA_Index(1:i,file), 
cov_MCP_AA_Middle(1:i,file), ... 
            cov_MCP_IER_Thumb(1:i,file), cov_FE_Wrist(1:i,file), 
cov_AA_Wrist(1:i,file), cov_Lin_Acc_Palm(1:i,file), cov_Ang_Acc_Palm(1:i,file), 
cov_Lin_Jerk_Palm(1:i,file), cov_Ang_Jerk_Palm(1:i,file),... 
            entropy_PIP_Thumb(1:i,file), entropy_PIP_Index(1:i,file), en-
tropy_PIP_Middle(1:i,file), ... 
            entropy_MCP_FE_Thumb(1:i,file), entropy_MCP_FE_Index(1:i,file), en-
tropy_MCP_FE_Middle(1:i,file), ... 
            entropy_MCP_AA_Thumb(1:i,file), entropy_MCP_AA_Index(1:i,file), en-
tropy_MCP_AA_Middle(1:i,file), ... 
            entropy_MCP_IER_Thumb(1:i,file), entropy_FE_Wrist(1:i,file), en-
tropy_AA_Wrist(1:i,file), entropy_Lin_Acc_Palm(1:i,file), en-
tropy_Ang_Acc_Palm(1:i,file), entropy_Lin_Jerk_Palm(1:i,file), en-
tropy_Ang_Jerk_Palm(1:i,file),... 
            SF_PIP_Thumb(1:i,file), SF_PIP_Index(1:i,file), SF_PIP_Mid-
dle(1:i,file), ... 
            SF_MCP_FE_Thumb(1:i,file), SF_MCP_FE_Index(1:i,file), SF_MCP_FE_Mid-
dle(1:i,file), ... 
            SF_MCP_AA_Thumb(1:i,file), SF_MCP_AA_Index(1:i,file), SF_MCP_AA_Mid-
dle(1:i,file), ... 
            SF_MCP_IER_Thumb(1:i,file), SF_FE_Wrist(1:i,file), 
SF_AA_Wrist(1:i,file), SF_Lin_Acc_Palm(1:i,file), SF_Ang_Acc_Palm(1:i,file), 
SF_Lin_Jerk_Palm(1:i,file), SF_Ang_Jerk_Palm(1:i,file),... 
            P2P_PIP_Thumb(1:i,file), P2P_PIP_Index(1:i,file), P2P_PIP_Mid-
dle(1:i,file), ... 
            P2P_MCP_FE_Thumb(1:i,file), P2P_MCP_FE_Index(1:i,file), 
P2P_MCP_FE_Middle(1:i,file), ... 
            P2P_MCP_AA_Thumb(1:i,file), P2P_MCP_AA_Index(1:i,file), 
P2P_MCP_AA_Middle(1:i,file), ... 
            P2P_MCP_IER_Thumb(1:i,file), P2P_FE_Wrist(1:i,file), 
P2P_AA_Wrist(1:i,file), P2P_Lin_Acc_Palm(1:i,file), P2P_Ang_Acc_Palm(1:i,file), 
P2P_Lin_Jerk_Palm(1:i,file), P2P_Ang_Jerk_Palm(1:i,file),... 
            peaks_PIP_Thumb(1:i,file), peaks_PIP_Index(1:i,file), peaks_PIP_Mid-
dle(1:i,file), ... 
            peaks_MCP_FE_Thumb(1:i,file), peaks_MCP_FE_Index(1:i,file), 
peaks_MCP_FE_Middle(1:i,file), ... 
            peaks_FE_Wrist(1:i,file), peaks_Lin_Acc_Palm(1:i,file), 
peaks_Ang_Acc_Palm(1:i,file), ... 
            Task_name,'VariableNames',varNames); 
         
    % Write tables 
    writetable (Features, strcat('Database_Features\GLOVE\Sub',num2str(sub-
jects),'\',Task_list(file).name));     
    end 
    clear mean_PIP_Thumb mean_PIP_Index mean_PIP_Middle mean_MCP_FE_Thumb 
mean_MCP_FE_Index mean_MCP_FE_Middle ... 
            mean_MCP_AA_Thumb mean_MCP_AA_Index mean_MCP_AA_Middle 
mean_MCP_IER_Thumb mean_FE_Wrist mean_AA_Wrist ... 
            mean_Lin_Acc_Palm mean_Ang_Acc_Palm mean_Lin_Jerk_Palm 
mean_Ang_Jerk_Palm ... 
            std_PIP_Thumb std_PIP_Index std_PIP_Middle std_MCP_FE_Thumb 
std_MCP_FE_Index std_MCP_FE_Middle ... 
            std_MCP_AA_Thumb std_MCP_AA_Index std_MCP_AA_Middle 
std_MCP_IER_Thumb std_FE_Wrist std_AA_Wrist ... 
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            std_Lin_Acc_Palm std_Ang_Acc_Palm std_Lin_Jerk_Palm 
std_Ang_Jerk_Palm... 
            median_PIP_Thumb median_PIP_Index median_PIP_Middle ... 
            median_MCP_FE_Thumb median_MCP_FE_Index median_MCP_FE_Middle ... 
            median_MCP_AA_Thumb median_MCP_AA_Index median_MCP_AA_Middle ... 
            median_MCP_IER_Thumb median_FE_Wrist median_AA_Wrist me-
dian_Lin_Acc_Palm median_Ang_Acc_Palm median_Lin_Jerk_Palm me-
dian_Ang_Jerk_Palm... 
            iqr_PIP_Thumb iqr_PIP_Index iqr_PIP_Middle ... 
            iqr_MCP_FE_Thumb iqr_MCP_FE_Index iqr_MCP_FE_Middle ... 
            iqr_MCP_AA_Thumb iqr_MCP_AA_Index iqr_MCP_AA_Middle ... 
            iqr_MCP_IER_Thumb iqr_FE_Wrist iqr_AA_Wrist iqr_Lin_Acc_Palm 
iqr_Ang_Acc_Palm iqr_Lin_Jerk_Palm iqr_Ang_Jerk_Palm... 
            cov_PIP_Thumb cov_PIP_Index cov_PIP_Middle ... 
            cov_MCP_FE_Thumb cov_MCP_FE_Index cov_MCP_FE_Middle ... 
            cov_MCP_AA_Thumb cov_MCP_AA_Index cov_MCP_AA_Middle ... 
            cov_MCP_IER_Thumb cov_FE_Wrist cov_AA_Wrist cov_Lin_Acc_Palm 
cov_Ang_Acc_Palm cov_Lin_Jerk_Palm cov_Ang_Jerk_Palm... 
            entropy_PIP_Thumb entropy_PIP_Index entropy_PIP_Middle ... 
            entropy_MCP_FE_Thumb entropy_MCP_FE_Index entropy_MCP_FE_Middle ... 
            entropy_MCP_AA_Thumb entropy_MCP_AA_Index entropy_MCP_AA_Middle ... 
            entropy_MCP_IER_Thumb entropy_FE_Wrist entropy_AA_Wrist en-
tropy_Lin_Acc_Palm entropy_Ang_Acc_Palm entropy_Lin_Jerk_Palm en-
tropy_Ang_Jerk_Palm... 
            SF_PIP_Thumb SF_PIP_Index SF_PIP_Middle ... 
            SF_MCP_FE_Thumb SF_MCP_FE_Index SF_MCP_FE_Middle ... 
            SF_MCP_AA_Thumb SF_MCP_AA_Index SF_MCP_AA_Middle ... 
            SF_MCP_IER_Thumb SF_FE_Wrist SF_AA_Wrist SF_Lin_Acc_Palm 
SF_Ang_Acc_Palm SF_Lin_Jerk_Palm SF_Ang_Jerk_Palm... 
            P2P_PIP_Thumb P2P_PIP_Index P2P_PIP_Middle ... 
            P2P_MCP_FE_Thumb P2P_MCP_FE_Index P2P_MCP_FE_Middle ... 
            P2P_MCP_AA_Thumb P2P_MCP_AA_Index P2P_MCP_AA_Middle ... 
            P2P_MCP_IER_Thumb P2P_FE_Wrist P2P_AA_Wrist P2P_Lin_Acc_Palm 
P2P_Ang_Acc_Palm P2P_Lin_Jerk_Palm P2P_Ang_Jerk_Palm... 
            peaks_PIP_Thumb peaks_PIP_Index peaks_PIP_Middle ... 
            peaks_MCP_FE_Thumb peaks_MCP_FE_Index peaks_MCP_FE_Middle ... 
            peaks_FE_Wrist peaks_Lin_Acc_Palm peaks_Ang_Acc_Palm 
end 

 

 


