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Abstract

The linguistic assessment of the developmental age is an extremely delicate task
to perform as the problem is influenced by several factors, and a diagnosis based
on quantitative data could help the standardisation process of clinical assessment.
Currently, assessment operations rely heavily on the individual practitioner’s expe-
rience, and it is in this context that the project carried out through a collaboration
between the Turin Polytechnic and the Paideia Foundation comes to life. The
aim of the study is to create automatic computer programs for the extraction
of quantitative parameters to help standardise the assessment of language and
motor-oral skills of children of developmental age. The problem was approached
based on the theory of dynamic systems, whereby the skills analysed in children
were seen as the result of the sum of several components, seeking to overcome the
dichotomy between the motor and phonological approaches, which will be seen
as two aspects that run together with the child’s linguistic production as well
as its speech and psychomotor assessment. The dataset used for the study was
collected by the Paideia Foundation and comprised 147 children, 125 of whom
came from three different schools in Turin, to which were added 22 clinical cases
under analysis at the foundation itself. The children were video-recorded by means
of a PC frontal camera while performing some language production exercises, for
the talktiz project, carried out by the foundation for language assessment. For
the purpose of identifying children with language disorders through an oral-motor
analysis, a facial mesh was applied to all of the children being analysed using the
MediaPipe framework (created by Google), from which relevant measures were
then retrieved. The second phase of the project focused instead on extracting
information from the audio signal to distinguish clinical cases from normative cases
and thanks to openSMILE software, 6373 features were extracted, that were used
in the training of a classifier based on machine learning techniques. Three different
classifiers were analysed for our purposes:

• K-nearest neighborhood (K-NN)

• Support vector machines (SVM)

• Feed forward neural network (FFNN)

Classifications were carried out taking only audio features into account, precisely
because attempting to correlate audio and video features for the type of dataset
being analysed was found to degrade the performance of the classifier.
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Chapter 1

Communicative analysis of
the developmental age

Language disorders are one of the most studied problems in the field of childhood
language rehabilitation. Even today, it is difficult to have a single international
classification, and this is caused both by the difficulty of understanding the nature
of the disorders themselves and by the lack of a standardised and quantitative
assessment process. Even though numerous studies have been done in an effort
to identify the root reasons of linguistic problems, these factors are still unknown.
Which is why multi factorial influences are hypothesised that are difficult to identify.
At the basis of language disorders we have both cognitive and motor-praxic aspects
but following the theory of dynamic systems [1] they can also be influenced by
inadequate interactions between the child and the environment.

1.1 Typical evolution of motor-linguistic skills
1.1.1 Motor and communication development
The acquisition of motor patterns occurs throughout the early stages of language
development. Specific movements will then manifest in one of two ways:

• Gross-motor skills: used to perform extended movements in space

• Fine-motor skills: used to perform precision movements

Three separate systems have an impact on how these motor skills develop:
central nervous system, biomechanics of the neuromuscular system, Environmental
characteristics. Cognitive, neurological, and biological elements all affect how motor
patterns and related skills evolve. These factors can influence the development of
those automatic movements that emerge over time.
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1.1.2 Building verbal and expressive skills

Motor and linguistic abilities are both used in communication, which is the process
of interaction that permits information to be passed. Humans have a phono-
articulatory apparatus made up of breathing-related structures, which is necessary
for sound production. Where air that has exited from the lungs flows down the
trachea is the larynx, which contains the vocal folds. The muscles of the vocal folds
vibrate to produce sound waves, which subsequently travel to the supra-laryngeal
cavities. After passing the pharynx, the air encounters the soft palate, a structure
made of flexible muscle tissue that allows air to pass through the mouth and
nasal cavities during respiration. During phonation, it can be raised or lowered
to regulate the airflow from the nasal cavities. Finally, the presence of the tongue
and lips modifies sound produced.

Figure 1.1: Sagittal diagram of the phonatory apparatus
[2]

As the product of the coordination of several abilities a child learns during
development, language is a complicated adaptive system that is influenced by
the environment, emotional factors, motor factors, and metacognitive factors.
Furthermore, articulatory performance features are a crucial part of language
development.

2
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Figure 1.2: Correlation between motor development, executive functions (FE)
and verbal expression skills

[1]

Without the acquisition of fine-motor skills, the development of linguistic abilities
cannot proceed, which is why linguistic analysis and joint analysis are conducted
concurrently. To produce a precise communication output, the child must also be
able to organise movements according to sequences and patterns. Nevertheless,
there are a number of other factors that might have an effect on the assessment of
language competence including:

• Emotional state

• Context

• Process control

• Cognitive aspects

• Neurological aspects connecting eyes-hands-mouth

• Motor organisation

3
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1.2 Atypical evolution of motor-linguistic skills
The most common childhood language disorders are:

• Dyspraxia

• Specific Language Disorder (SLD)

1.2.1 Verbal Dyspraxia
Because of its poorly defined diagnostic criteria and unclear aetiology, verbal
dyspraxia is still a difficult illness to assess. In the literature, dyspraxia is frequently
described using the terms:

• Development verbal dyspraxia (DVD)

• Development apraxia of speech (DAS)

• Childhood apraxia of speech (CAS)

The use of the CAS term is intended to emphasise severe deficits of the phonatory
apparatus. The name DAS puts the focus on the verbal and articulatory production.
The term DVD refers to a language-based developmental verbal expression problem.
Some characteristics of dyspraxia are easily identifiable in:

• Difficulty in voluntary articulatory control to carry out verbal expression

• Difficulties in planning and managing sequential movements

A typical child with verbal dyspraxia has higher linguistic abilities for recreating
ambient sounds, iconic or emotional expressions. Compared to a normally able
child, the dyspraxic child has difficulty producing speech spontaneously or on
demand. The dyspraxic child’s linguistic output is inconsistent because he is
unable to locate and maintain sites of articulation (groping). Similar to stuttering,
language production may be slowed down as a result of the groping. Verbal
dyspraxia is different from oral dyspraxia even though they may in some cases
coincide. There is a noticeable deficit in the sequential processes in the case of
verbal dyspraxia without oral dyspraxia, while on the other hand, there is a lack in
the development of the phonatory apparatus, which affects verbal production. The
word "DVD" refers to one of the most severe forms of dyspraxia, which includes
voluntary automatic dissociation, hypo-fluent speech, problems with articulatory
programming, phonological errors, inappropriate co-articulation, and hypo-fluent
speech. Children who have Down syndrome or Williams syndrome, for example,
may also have "DVD". Distinctive features of DVD are:

4



Communicative analysis of the developmental age

• Low motor coordination

• Deficits in verbal production capacity

• Difficulty in the production of syllables, sounds and words

• Disturbance in prosody, suprasegmental and metalinguistic traits

• Perceptual phonetic difficulties Disorders in reading and writing skills

1.2.2 Specific language disorders (SLD)
They are a range of disorders in one or more language development areas that have
been identified in children with an IQ of at least 80. Children with SLD present
problems in several areas such as phonetics, phonology, semantics, morphology
and syntax. It is critical to know which phase of the SLD one is in since early
intervention in this condition may also be essential for successful rehabilitation and
recovery:

• Emergency phase (18-36 months) specific development does not occur or occurs
in an immediately atypical manner

• Structuring phase (36 months-5 years) stabilisation of SLD in differential
disturbances

• Transformation phase (4-5 years) secondary neuropsychological and psy-
chopathological disorders occur

• Secondary disturbance structuring phase,it presents itself until adolescence
with the predominance of learning and psychopathological disorders

Familiarity is one of the possible causes of SLD. According to recent research,
some characteristics on chromosomes 16q and 19q may play a role in language
disorders, particularly in cases with isolated phonological disorder. Between the
first and second year of life, the presence of recurrent and fluctuating otitis might
be considered a source of impairment in the proper discrimination of sounds,
resulting in insufficient acquisition of the rules of language itself. There are different
classifications of SLD, the international classification given by the World Health
Association and the classification according to the American Psychiatric Association
are among the most famous. According to the worldwide ICD-10 classification, SLD
is a condition in which the development of typical language abilities is interrupted
without any neurological delay abnormal physiological processes or external causes.
We can distinguish three subgroups of SLD:

• Specific articulation disorder

5



Communicative analysis of the developmental age

• Expressive Language Disorder

• Receptive language disorder
The subdivision of the American Psychiatric Association is based on the distinction
between phonation disorder and more specific types of disorders, such as language
expression disorder and mixed disorder of expression and reception. Language
difficulties cannot be the only factors included in the definition of SLI. Due to the
heterogeneity of this illness, multiple cognitive processes are compromised. The
development of motor abilities is influenced by genes linked to communication issues.
Additionally, there is a strong relationship between linguistic and metacognitive
skills. The difficulty in learning sequential movement is frequently thought to be
associated with the language difficulties of children with SLI. Balance tests and the
use of fine motor skills are typically quite difficult for children with this disorder.

1.3 Evaluation of the child: state of the art
There are various formal and specialised evaluation examinations available for the
Italian-speaking population. Although this is one of the limits of the evaluation
itself as the test is susceptible to being influenced by various external influences,
the most accurate assessment is still conducted in the presence of spontaneous
language. When children are playing or engaging in other activities, it is customary
to record their conversations. The average length of the utterances, accounting for
articles, prepositions, pronouns, verbs, and nouns, is typically obtained from the
recordings as a point of reference. A minimum of 50 utterances are analysed in
order to assess how linguistic production can change over time as it transitions from
telegraphic language to ever-more-complex lexical ones. Playtime observation of
the child has consequences for analysing the growth of symbolic abilities connected
to the linguistic domain. The video recording also provides information on the
child’s gestural production. It was discovered through McNeill’s studies in 1992 [1]
that gesture and word are based on a common communicative process, which is
why a "neurogestural" model is frequently utilised. In the "neurogestural" paradigm
of communication, actions within Broca’s region are arranged into gestural images.
The assessment of SLI is made using standardised tests appropriate for various
age groups. These tests assess linguistic production, verbal, and morphosyntactic
understanding by looking for free morphemes associated with morphological deficits.
Other predictive indices for evaluation are:

• Absence of lallazione from 5 to 10 months (vocal expression present in the
child after 6 months that causes the repetition of chanted syllables)

• Absence of deictic (indicative) or referential gestures, i.e. referring to a specific
referent
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• Failure to acquire patterns of action

• The capacity for symbolic play has not developed (24-30 months)

• Deficiency in understanding non-contextual orders

• Presence of idiosyncrasies after 30 months

The diagnosis of SLI is hindered by the ability to interpret the data provided
and the few instruments available, which is why the data must be correlated with
the results of the tests used for assessment. SLI in children is detected after the
age of three, and two groups of children are identified:

• Late bloomers with delayed language development catching up within a year

• Late talkers who differ from normatives in the area of language (comprehen-
sion and production)

The child’s IQ must be at least 80 for a diagnosis of SLD, and the language as-
sessment must be at least 1-2 standard deviations below average. The greatest
technique to accurately assess patients is using a multisystemic approach to diag-
nosis. In the first age range being studied (between 3 and 4 years), it is critical to
evaluate the child’s exposure to both parental and environmental language. The
greatest technique to accurately assess patients is using a multisystemic approach
to diagnosis.
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Chapter 2

Oral-motor analysis:methods
and processes

The dataset used for the study considers a sample of 147 normative and clinical
children. The children were observed while participating in language-production
activities created by the Foundation’s internal talktiz programme. The kids were
asked to describe particular images created by this computer programme (see.
Figure (2.1)):

Figure 2.1: Examples of the talktiz software’s images that children are required
to describe

Before the video files were used, the children were assessed by health personnel,
obtaining a sample of 125 normative children from three different schools in Turin
and 22 clinical children from patients treated by the foundation itself. Video and
audio signals of varying lengths [6min-20min] were acquired via the front camera
of a PC with a resolution of 720p. The choice of the acquisition medium was made
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with consideration for the value of spontaneous production in the clinical evaluation
in order to minimise potential disruptions from an audio-video recording device
that was more effective but might have drawn the child’s attention more during the
exercise, invalidating the clinical evaluation. The dataset considered has several
inherent problems, which are not limited only to the equipment used to make the
acquisitions. The video files often present data from which it is difficult with the
methods used to extract clinically significant parameters since it was preferred to
leave the children as free as possible in their movements.

2.1 Face detection
In the implemented programs, the first operation performed was face detection
within the videos. The choice of the face detection algorithm took into account
two main factors:

1. Computational cost

2. Accuracy

The detection of faces and the localisation of their position within the image
requires independence from

• Position

• Orientation

• Scale

• Facial expression

Face detection can be influenced by external factors such as lighting or the com-
plexity of the background being analysed. The algorithms can be distinguished
into:

• Feature-based techniques: exploit low-level features to give a definition to
the human face

• Image-based techniques: the problem is considered as a generic pattern
recognition problem, whereby the image of a face is recognised from some
training examples

Three different face detection algorithms were examined: the Viola-Jones algorithm
and two others that exploit Python’s Dlib and MediaPipe toolkit, respectively. All
toolkit that are used for research in this thesis are configured in the mode of use
only CPU, without a GPU (NVIDIA Cuda).

10



Oral-motor analysis:methods and processes

2.1.1 Viola-Jones algorithm
The Viola-Jones algorithm is based on a classifier trained using multiple instances
of the class to be identified (positive samples) and a series of images without
the class under consideration (negative samples). During training, features are
extracted from the samples and only those useful for classification are selected.
This algorithm is an image-based method whereby the classifier under analysis
associates a specific detected pattern with the face or non-face class. The basic
idea is that faces have common properties, whereas images that do not represent
faces are highly irregular. The Viola-Jones classifier is based on three different
contributions:

• Extraction and evaluation of Haar-like features

• Classification by boosting

• Multiscale detection

Prior to being sent to the classifier, the image was also converted grayscale, and
the adaptive equalisation of the histogram was utilised to increase local contrast.
Before applying the classifier, the integral image is calculated (see. Fig.2.2). The
value of each pixel is the sum of all pixels above and to the left including the target
pixel and then calculates the sum of the pixels in the orange rectangle following
the formula D − B − C + A. The Integral Image is computed in order to reduce
computational cost.

Figure 2.2: Calculation of an Integral Image
[3]

During face detection, a window of variable size is scrolled over the image and
the features in the window are extracted to determine whether there is a face in the
window or not. The classifier used is trained for face detection in a frontal position
and also exploits the AdaBoost technique to improve performance. AdaBoost has
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the task of constructing a complex non-linear classifier from a linear combination
of (M) simpler weak classifiers (see. Fig.2.3).

HM(x) =

MØ
m=1

αmhm(x)

MØ
m=1

αm

(2.1)

In the equation (2.1) x is a pattern to be classified, hm(x) ∈ {−1, +1} are the weak

classifiers, αm ≥ 0 are the weights,
MØ

m=1
αm is the normalisation factor.

Figure 2.3: AdaBoost example of classification; a) Samples to be classified; b)
Implementation of the first weak classifier; c) Blue samples wrongly classified
are given a higher weight; d) Implementation of the second classifier; e) Orange
samples not correctly classified are given a higher weight; f) Implementation of the
third classifier; g) Combination of the three weak classifiers

[3]
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Each weak classifier represents a stage of the stronger classifier. When an image
region enters the classifiers cascade, it is evaluated starting with the first stage if it
gets a positive evaluation from the first classifier then it will be sent as input to
the second classifier

Figure 2.4: Cascade of classifiers
[3]

In the Viola-Jones algorithm, basic features called Haar-like features are used.
Each feature is placed in a sub-region of a sub-window of the image with different
dimensions. Haar features are used in image processing to classify the intensity of
pixels, and they are typically represented as rectangular regions of the image. The
classifier consists of two or three rectangular, which detect features continuously
within the window.

Figure 2.5: Haar features
[4]
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2.1.2 Dlib toolkit algorithm
This classifier is based on the Histogram of Oriented Gradient technique used
successfully for object detection. The object to be detected is represented as
a feature vector which identifying specific regions of space. The calculation is
performed for all regions of the image, varying the scale. The HOG-based classifier
is first trained through the use of positive samples from the training data, from
which the HOG descriptors are extracted. Next, negative samples containing no
face are used and HOG descriptors are also extracted from these samples.

Figure 2.6: Calculation of the histogram of oriented gradients (HOG). Each cell’s
gradient orientation is determined, and the histograms are all combined to produce
the global HOG descriptor.

[4]

A sliding window is applied to each image, in each window extracting the HOG
descriptors. This technique counts the occurrences of the gradient orientation in a
localised portion of the image. A histogram is generated for the regions under image
analysis using the magnitude and orientation of the gradient as characteristics.
HOG descriptors are based on the structure and shape of the object and extract
information on the magnitude and angle of the gradient from which the histogram
is derived. To apply the analysis using HOG, the image is first divided into several
connected components called Cells. For each Cell, the gradient is calculated pixel
by pixel, producing the histogram. We then obtain the image descriptor from the
linear combination of all cells in the image. Prior to feature extraction the image
has undergone a process of Gamma normalisation, this action aims to eliminate the
impact of highlights and shadows in local regions of the image [5]. In Equation
2.2, I(x, y) denotes the pixel intensity in grayscale, γ represents the constant for
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gamma normalisation, for which a typical value is 0.5. Equation 2.3 shows the
calculation of the first-order gradient including both magnitude and angle.

I (x, y) = I0 (x, y)γ (2.2)

Grad (x, y) =
ò1

(I (x + 1, y) − I (x − 1, y))2 + (I (x, y − 1) − I(x, y + 1)
22

Ang (x, y) = arccos
A

I (x + 1, y) − I (x − 1, y)
Grad (x, y)

B (2.3)

After feature extraction, a support vector machine (SVM) with a linear kernel is
applied as classifier.

2.1.3 Mediapipe toolkit algorithm
The face detection algorithm in the MediaPipe toolkit, is based on BlazeFace,
which is a computationally light and high-performance face detector, so that it can
also be adapted to devices with mobile GPU. BlazeFace is based on the structure
of a convolutional neural network called MobileNetV2 [6] [7]. MobileNetV2 uses
depthwise separable convolution as network building blocks. Version V2 introduces
two new features compared to version V1:

• Linear bottlenecks between the layers
• Shortcut connections between the bottlenecks

Figure 2.7: MobileNetV2 architecture
[8]
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The model’s intermediate inputs and outputs are encoded by bottlenecks. Shortcuts
then allow for faster training and better accuracy. The BlazeFace model produces
six facial coordinates as key points (for the eyes, ears, mouth and nose) the use of
these six key points is to estimate the rotation of the face, to reduce the need for
invariance with respect to translation and rotation.

Figure 2.8: Face detection result by MediaPipe, in red are identified the six key
points used to estimate the rotation of the face

[9]

The model used focuses on identifying the face in the frontal position in order
to refer to a smaller scale of objects, and therefore has lower computational require-
ments. The BlazeFace model is a SSD (single shot detection) object identification
model that is based on predefined, fixed-size bounding rectangles called anchors.
For each anchor, parameters such as offset centre and dimensions are set. The
anchors are defined at different resolutions to fit with the scale range of the object.
The SSD-based approach discretises the box output space into a set of predefined
boxes of different proportions and scales. For each of these defined boxes, the
network establishes scores for the presence or absence of each object category.
The network also combines the predictions of several feature maps with different
resolutions, to handle objects of different sizes. This is a faster and more accurate
algorithm than the previous state-of-the-art (YOLO). Using a set of convolutional
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filters applied to feature maps, the SSD model predicts a score and box offsets for
a defined set of bounding boxes [10]. The algorithm only needs an input image
and ground truth boxes for each object during training. In Figure 2.9 there is an
example of convolutional evaluation of a small set (e.g. 4) of predefined boxes at
different aspect ratios, at each position in different feature maps and at different
scales. For each box, we predict both shape offsets and confidences for all object
categories.

Figure 2.9: SSD framework. (a) The image and the ground truth boxes for
every object. We assess a small set of default boxes with various aspect ratios at
each position in a number of feature maps with various scales (for example, 8x8
and 4x4 in (b) and (c)).. We forecast the shape offsets and confidences for all item
categories for each default box (c1, c2, ... , cp). At training time, we begin by
matching default boxes to the boxes from the ground truth

[11]

2.2 Mesh creation and adaptation
The definition of a facial mesh for the extraction of several key parameters was
the second step in the extraction of the oral-motor features. The physiological
measures used were determined after an examination of the scientific literature on
the issue and in response to requests from the Foundation’s clinical personnel. Two
potential implementation solutions for the construction of a facial mesh have been
investigated for our objectives. The first is based on the well-known CANDIDE
model [12]. The second facial mesh tested was created via Google’s MediaPipe
toolkit.
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2.2.1 CANDIDE model
To achieve a rapid and computationally efficient reconstruction, the CANDIDE
model parametrizes facial features using a small number of polygons, roughly 100.
The CANDIDE model is based on the concept of Action Units (global and local),
which are the fundamental movements of single muscles or groups of muscles. The
global action units govern the rotation around the three axes, meanwhile the local
action units control the facial expressions. The original CANDIDE model had
75 vertices and 100 triangles but it is no longer in use. The CANDIDE-3 model,
introduced in the 1990s, is currently the most common. This model originally had
113 vertices and 168 surfaces, however in version 3.1.4, the number of surfaces has
increased from 168 to 184. For this research, we employed version 3.1.6 of the
CANDIDE model, removing some triangular surfaces connected to the forehead
which were not useful for the acquisition of parameters. As a result, the final model
has 113 vertices and 175 faces.

Figure 2.10: CANDIDE face mesh model
[13]

When using the CANDIDE facial mesh, we start with a neutral state of the face
that corresponds to the model’s vertices and surfaces. To align the constructed
facial mesh to the face in the image, we must adapt the mesh’s coordinates defined
in a 3D space to some 2D markers found on the face. The shape predictor provided
by the Python Dlib toolkit was used to obtain the 2D position of 68 important
points on the face.
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Figure 2.11: 68 markers from Dlib’s shape predictor

All techniques to extract key points on the face attempt to identify specific
regions such as:

• Mouth

• Eyebrows

• Eyes

• Nose

• Jaw

The Dlib toolkit’s facial landmark detector [14] is based on a series of training
images in which the face markers have been manually identified by specifying
their (x, y) coordinates. The prior probability on the distance was then calculated
for each pair of input pixels and combined with the gradient boosting approach
to generate a sparse pixel set for use as input. A sequence of regression trees
are trained using the dataset with the goal of identifying the positions of face
landmarks in real time directly from the intensities of the pixels themselves. Some
of the action units available in the CANDIDE 3.1.6 model were considered in the
subsequent steps, to adjust the mesh to the typical movements of the face. The
aim of these action units is to mimic the facial deformations, modifying the mesh
for each frame to match the expressions on the face. In particular, 14 animation
units were chosen, 9 of which match to those in the CANDIDE 3.1.6 model and
the remaining 5 to asymmetric facial movements. The facial mesh, whose points
are given in 3D space, is projected for each frame using the given equations [13]:

s = aP

A
S0 +

i=nØ
i=1

wiSi

B
+ t (2.4)

Where s is the projected shape, a is the scaling factor, P are the first two rows of
a rotation matrix that rotates the 3D mesh [13]. S0 is the neutral shape wi are
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some Si weights, Si are the blendshapes,which include the animation unites. All
six degrees of freedom, three translational and three rotational, known as Euler’s
angles, must be known in order to represent a rigid body in three dimensions. To
project the three-dimensional points given by the facial mesh in two dimensions,
add the 14 parameters that correspond to the animation units to the six that
represent the rigid body. First, the three-dimensional positions of the mesh in the
neutral state are computed, which correspond to the 68 markers predicted by the
Dlib model. The mean is subtracted from 2D and 3D measurements,and the initial
parameters are computed.

• The scale factor of the mesh

• The translation vector (t) between the 3D and 2D indices
After obtaining the initial parameters, the mesh was projected and adapted using
the Gauss-Newton least squares reduction method. Model fit is obtained by reducing
the difference between the projected shape and the localised reference points. In
this situation, the Equation 2.4 represents the function to be reduced using the
Gauss technique. Using the Rodrigues formula,we pass from the original rotation
vector to the rotation matrix.

R = I + (sin (θ)) K + (1 − cos (θ)) K2 (2.5)

Where R is the rotation matrix, θ is the rotation’s angle, I is the identity matrix
and K is the unit vector’s matrix expression, which denotes the rotational axis. We
take the first two rows of the rotation matrix, which define the rotation in 2D space.
The outcomes of applying the function for the Gauss-Newton algorithm are known
as residuals r = (r1, ..., rm), which are functions of n variables β = (β1, ...., βn).
To minimize the sum of squares (Equation 2.6), the algorithm uses an iterative
approach:

S(β) =
mØ

i=1
r2

i (β) (2.6)

This equation is a cost function, which is used to valuate the alignment between
the mesh and the face. A threshold value is specified below which the cost function
is considered acceptable and the CANDIDE model is declared properly adapted to
the face. To use the algorithm, we must compute the Hessian matrix (Equation
2.7) and gradient (Equation 2.8) using the following equations:

Hjk = 2
mØ

i=1

A
∂ri

∂βj

∂ri

∂βk

+ ri
∂2ri

∂βj∂βk

B
(2.7)

gj = 2
mØ

i=1
ri

δri

δβj

(2.8)
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Defining the Hessian matrix and the gradient as Jacobian functions:

Hjk ≈ 2
mØ

i=1
JijJik (2.9)

gj = 2
mØ

i=1
riJij (2.10)

The terms with second derivatives are ignored while computing the Hessian. The
descent direction is now calculated as:

∆ = − g

H
(2.11)

Performing the minimization while knowing the direction yields the stride length
(α). Finally, for each iteration, the parameters are calculated as:

x = x + α∆ (2.12)

Where x are the variables of Equation 2.4. Figure (2.12) shows the results of
mesh adaptation.

Figure 2.12: Face mesh adaptation of CANDIDE model
[9]
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2.2.2 MediaPipe face mesh
Using the MediaPipe toolkit solution, 468 3D markers on the face can be estimated
in real-time, in addition to 10 extra markers for irises. The system uses machine
learning (ML) techniques to estimate the surface of the face and has been optimised
to function on mobile devices. No depth sensor is necessary for the estimation; only
an input camera is required. In order to create the face mesh, MediaPipe employs
a simple statistical shape analysis technique known as Procustean analysis. The
ideal rotation and orthogonal linear transformation for the overlap of two objects
can be discovered using this statistical shape analysis. Procustean superposition is
obtained by suitably translating, scaling, and rotating the objects. Two deep neural
network models are used to operate the mesh definition pipeline. The first model
is the same used in during the face detection step, whereas the second operates
on the face position and uses a regression model to predict the approximate 3D
surface. This last model was trained utilising the transfer learning technique. Using
the transfer learning method, it is possible to apply the information obtained
solving one problem to another that is somewhat related. The network takes video
frames as input and returns both the location of the 3D face markers and the
likelihood that a face is actually present in the frame. Bootstrapping was used
to estimate a population parameter from data through repeated sampling. In this
instance, the facial markers are sampled multiple times, and the extracted samples
are then re-incorporated into the population of points that represent the face.
Therefore, even after numerous extractions, the likelihood of selecting that sample
from the data population remains constant. Instead of producing a single point
estimate, the bootstrap technique is based on the idea of providing a distribution
of estimates. The mesh prediction model has a relatively simple residual neural
network architecture, with the greatest sampling taking place in the network’s
initial layers, which are also where the most complex operations are concentrated.
On the other hand, the deeper layer neurons’s aim is to distinguish between the
features of the mouth and eyes [15]. In addition to the model already mentioned,
another model called Attention is used, which seeks to replicate human cognitive
attention [16]. The gradient descent technique is used to select the data that the
network should "pay attention" to. By more precisely predicting the points around
the lips, eyes, and irises, the Attention is used to force the network to focus on
those parts of the face that are considered to be semantically significant. The
flexible weights that make up the Attention model have the advantage of being
able to change as the algorithm is running. The face detection technique provides
256 × 256 images to the network as input.
The model is divided into many sub-models and a 64 × 64 feature map is extracted.
The 64 × 64 feature map is utilised as input to one sub-model, which is used to
predict all 478 face mesh landmarks.
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The other sub-models predict the markers from the 24 x 24 ROI that are ob-
tained from the Attention model.

Figure 2.13: Attention Mesh model
[16]

The lips and the two eyes are ROI extracted from Attention. Once a resolution
of roughly 6 × 6 is achieved, the eye sub-models also predict the iris. There are two
stages to training the attention network, the different models are first independently
trained after an ideal crop is created taking into account the ground truth. The
network is then retrained to fit the sub-models to the regions of interest using
the image crops the model gives. By using techniques like affine transformations,
differentiable interpolations, or 2D Gaussian kernels, the Attention mechanism
samples a grid of 2D points and extracts features. The 24 × 24 feature regions are
extracted from the 64 × 64 feature map using a spatial transformer module. A
transform matrix regulates the spatial transformer.

Θ =
C

sx shx tx

shy sy ty

D
(2.13)

The output of the sub-model defining the facial mesh can also be used to determine
the parameters of this transformation matrix.
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Figure 2.14: Spatial transformer of Attention technique
[16]

An orthogonal 3D metric space with right-handed coordinates is defined in the
MediaPipe face mesh pipeline. A virtual perspective camera is placed inside this
area and is virtually placed at the origin of the area, pointing away from the Z
axis. The input frames are assumed to have been observed by this camera with
programmable parameters, if those parameters are used as closely to the camera’s
actual values as possible, higher results will result.

Figure 2.15: The orthogonal 3D metric space with right-handed coordinates
[17]
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The model is originally defined in a neutral position termed Canonical Face
Model, same like with the CANDIDE face mesh. The scale of the Canonical face
model, which is typically 1cm, determines the metric units of 3D space. The Θ
transformation matrix of the face posture is a linear map that enables the change
from the canonical model of the face to the set of reference points computed on
each frame. A pipeline containing the fundamental processes to obtain the mesh
points in 3D space is displayed below.

Figure 2.16: Pipeline of the process to get face landmarks positions

The MediaPipe mesh application’s results

Figure 2.17: MediaPipe mesh adaptation on a face
[9]
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2.3 Clinical features extraction
Several indicators that were obtained through the application of face meshing
were thought by clinicians to be crucial in separating children into clinical and
normative groups. After reviewing the scientific literature on the evaluation of
facial movements in activities including speech and non-speech, other factors were
considered vital. The child’s face has to be in a frontal position in order to
collect the parameters. In fact, it was found that the head’s rotation frequently
manifested as an artefact on the signals, to the point that they were clinically
useless. The location of the head in space was determined using six facial markers
(see. Fig.2.18).

Figure 2.18: Markers used to make the head position are indicated in blue
[9]

The focal length of the acquisition camera must be known in order to perform
the estimation. Since it was hard to determine the precise focal length values for
each acquisition PC, an educated guess was chosen instead.
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Figure 2.19: Field of view, focal length, and sensor size relationships
[18]

Trigonometric relationships are used to determine how the field of view relates
to the size of the image and the focal length

f = w

2 cot
3

α

2

4
(2.14)

Because you always require a specific face size for a distance that is appropriate
for this type of device, webcams for PC and mobile phones typically have fairly
comparable fields of view. These webcams typically have a field of view between
50° and 70°. for this reason, the focal length is between:

0.7w ≤ f ≤ w (2.15)

In our case, using empirical evidence, it was decided to choose a focal length equal
to:

f = w (2.16)

After determining the focal length, we defined the camera matrix under the
assumption that the camera’s optical centre was precisely in the centre of our
image.

CM =

f 0 (h−1)
2

0 f (w−1)
2

0 0 1

 (2.17)
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Where CM is the camera matrix, f is the focal length, h is the height of the
image and w is the width of the image. The camera distortion settings weren’t
established because no calibration was done, thus they were set to 0. The calculated
parameters were used to solve the pose computation problem. The goal of this
task is to determine the rotation and translation of the points in image space (2D)
and the corresponding 3D that minimises projection error. We define the reference
system of the camera (see. Fig 2.20)

Figure 2.20: Reference system for pose estimation
[19]

Using the perspective projection model (Π) and the intrinsic camera parameters
A, the coordinates of the points in the word frame Xw are projected into the image
plane [u, v]. u

v
1

 = AΠcTw


Xw

Yw

Zw

1

 (2.18)
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1
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 (2.19)

Consequently, the points in the camera’s coordinate system are
Xc

Yc

Zc

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r22 r33 tz

0 0 0 1



Xw

Yw

Zw

1

 (2.20)
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Tw is the 3D matrix of translation and rotation of the camera, (fx, fy) is the
focal length and (cx, cy) is the optical center. The projection approach is based on
the iterative Levenberg-Marquardt [20] minimization method (it solves non-linear
least squares problems similarly to the Gauss-Newton method). The discrete
linear transformation (DLT) approach is used to find the initial solution before
the rotation and translation vectors are calculated. The rotation vector was then
converted into a rotation matrix using Rodriguez’s formula. Consequently, using a
QR decomposition, the angles of rotation around the three axes were determined.
A limiting value was set using empirical experiments to determine the position of
the head and identify frames where the child is not looking directly at the camera
(see. Fig.2.21).

Figure 2.21: Head pose estimation

The extracted features were separated into the following categories: shape/ge-
ometry features, symmetry features, range of motion features, and speed of motion
features. Distance measurements would change if there were movements in our
reference system’s z-direction, which stands in for the depth. To solve this issue,
all distances determined between different face markers were normalised in relation
to a distance that was assumed to be constant during the acquisition, namely the
inner canthal distance.
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Figure 2.22: Measurement normalisation distance on a MediaPipe face mesh
[9]

Some parameters were derived for all collected features and are summarised in
the following table.

Table 2.1: Features extracted from signals

Features

maximum
minimum
maximum index
minimum index
mean
median
range(maximum-minimum)
standard deviation
variance
kurtosis
skewness
25 percentile
75 percentile
range 75p-25p
range 75p-50p
range 50p-25p
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2.3.1 Features defining the range of motion
Distance between lower and upper lip: The calculation of the mouth’s
opening and closing during linguistic and non-linguistic production exercises is one
of the most essential aspects of the child’s language evaluation. Two landmarks
were acquired on the lower and upper lips in order to do these measurements, and
their normalised relative distance was measured during the entirety of the task.

Figure 2.23: Identification of lip markers. In red are the markers used for opening
and closing mouth measurements

[9]

Jaw movements: Jaw movements were recorded in relation to a point of
reference on the tip of the nose. The average position of the three markers on each
side was computed, three markers from the left jaw and three from the right jaw
[21].

Figure 2.24: Tracking of jaw movements. a) markers on each side of jaw. b)
distances between the tip of the nose and the mean of the three markers to measure
jaw movements

[9]
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Mouth width: The distance between the two labial commissures was used to
assess the width of the mouth.

Figure 2.25: Measure of the mouth width
[9]

2.3.2 Features to evaluate speed of motion

These collected parameters are excellent for determining how quickly the patient can
repeat syllables. In fact, they play a crucial role in oral diadochokinetic (DDK) tasks.
The first derivative to the mouth opening and width were accounted for measuring
speed. This method allowed for the assessment of the velocity of lip movements along
the vertical and horizontal axes. The literature has suggested that the maximum
and minimum values of these characteristics serve as differentiating factors for
individuals with language difficulties caused by improper syllable articulation.

2.3.3 Features of symmetry

Measurements were obtained symmetrically on the face in addition to the semi-areas
of the mouth to look for any asymmetries in the face, (see. Fig 2.27). Calculations
were made to determine the separation between the lateral corner of the eye and
the labial commissure (left/right). Additionally measured was the separation of
the upper and lower eyelids (left/right).
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Figure 2.26: Face symmetries. a) Distances between Lateral angle of the eye
and lateral commissure of the mouth (left/right); b)Distances between the eyelids
(left/right)

[9]

Mouth area: The left and right halves of the mouth were taken into considera-
tion while calculating the mouth area.The total area was calculated as the sum of
the areas of the two triangles, representing the left and right areas of the mouth.

Figure 2.27: Area of the mouth. in red is shown the area of the right mouth and
in blue the area of the left mouth

[9]
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2.3.4 Features of shape and geometry
When performing the task, the roundness of the lips was used as a shape indicator.
The computation was done by estimating the eccentricity of an ellipse with the
mouth opening and its width as axis.

ei =


ò

1 − W 2
i

O2
i

, Wi < Oiò
1 − O2

i

W 2
i
, Wi > Oi

(2.21)

Significant features included the mean value and the difference between the mini-
mum and maximum value of eccentricity [22].

2.4 Signal filtering
All collected measures were filtered using an 8-pole low-pass Butterworth filter [23]
with a cutoff frequency of 10 Hz to remove high-frequency noise caused by mesh
fitting on the face.

Figure 2.28: Signal filtering; a) Spectrum of original signals, b) Butterworth
filter, c) Filtered signal spectrum
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Chapter 3

Speech analysis

It was chosen to extract the audio signals from the recordings in order to evaluate
their information content for a more precise and detailed analysis. In earlier
studies, machine learning techniques were also employed to identify children with
SLI or dyspraxia from voice recordings made during particular tasks [24][25]. The
goal of the thesis work, at this stage, is to develop a computer programme that
can distinguish between clinical children with speech impairments and normative
children, using data collected in a non-laboratory setting. Three steps were carried
out in order to conduct the classification under the working conditions mandated
by the experimental setup:

• Preprocessing

• Feature extraction

• Feature selection

The features retrieved from the signals are both time and frequency dependent,
with formants frequently used instead of frequencies to analyse speech. The sound’s
resonant or distinctive frequency, known as the formant, is the frequency value
at which the amplitude reaches a peak. The human voice is made up of many
formants because of the resonances of the Ear-Nose-Throat (ENT) cavities.
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3.1 Preprocesing

3.1.1 Speaker diarisation
The recordings were captured by allowing the children to engage in the tasks as
naturally as possible, both in terms of language use and movement. Many times,
in order to get the children’s attention during these experimental situations, the
operator had to step in, corrupting the acquired audio signal. Speaker diarization
seeks to locate and then remove any segments of the signal where the operator’s
voice is detectable, this was achieved by using the Python pyannote toolkit [26]
[27] [28]. The PyTorch machine learning framework, which offers a collection of
trainable end-to-end neural building blocks, is a prerequisite for the diarization
toolkit. There are three distinct phases in the speaker-diarization pipeline:

• Speaker segmentation through a sliding window

• Speaker embedding

• Agglomerative clustering

Speaker segmentation: With a 5s window and a 500ms step, segmentation is
carried out through an end-to-end neural network (EEND) (see. Fig 3.1). A
sequence of audio signal measurements are sent into the model as input, X =1
xt ∈ RF |t = 1, .., T

2
. Each observation has a label associated to it Y = (yt|t ..., T ),

with yt = [yt,c ∈ {0,1}|c = 1, ..., C] where c denotes the particular speaker. When
the label is set to 1 in both cases for two speakers, we are in an overlap condition.
The most likely label sequence is then estimated by the model as:

Ŷ = arg max
Y ∈Y

P (Y |X) (3.1)

Where Y are the sequence of all possible speaker labels. The model is actually
unable to distinguish between two sequences with the same labels but different
speaker orders (labels ambiguity) (see. Fig.3.1). The ambiguity was resolved
by the introduction of two permutation-free loss functions. All combinations of
the ground-truth speaker labels are taken into account using the loss function
permutation-invariant-training (PIT). The Deep Clustering loss function (DPCL)
is used to boost the activation of networks that can distinguish between speakers.
A bidirectional long short-term memory (BLSTM) building block is present in the
EEND model. The BLSTM is a special variety of recurrent neural network where
the input data sequence (in this application, our audio stream) flows both backward
and forward. Because each element in the input sequence provides information
about both the past and the future, this network is frequently employed in natural
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language analysis since both are occasionally essential for comprehending the
relationship between words inside a sentence (see. Fig 3.2).

Figure 3.1: Neural end-to-end speaker diarisation model
[29]

Figure 3.2: BLSTM layer of the EEND neural network; It is a combination of
two long short-term memory (LSTM) layers.

[30] [31]

The segmentation model was trained permutatively with a maximum of three
speakers, which is why the same speaker may be given a different index in different
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signal segments. The output of the segmentation model corresponds to a three-
dimensional vector calculated every 16ms for each 5s window into which the signal
is split and represents the likelihood that each of the three speakers is active at
that moment (see. Fig 3.3).

Figure 3.3: Speaker segmentation for each one of the 3 possible speakers. For
ease of visualising, a 2.5s step has been chosen in the image, however the actual
step is 500ms

[32]

The next binarization phase used θ ∈ [0,1] as a threshold, which is the first
hyper-parameter of the model.

Figure 3.4: Binary speaker segmentation. The speaker whose probability sur-
passed the threshold (θ) was chosen for each window.

[32]
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Speaker embedding: Every speaker embedding for each window is extracted,
precisely one speaker embedding for each of the three potential speakers.

Figure 3.5: Speaker embedding; a) signal inside the 5s window. b) The speaker
segmentation model detects two active speakers (orange and blue). c) Speaker
embedding of the two speakers in orange and blue

[28]

It is possible for speakers to occasionally partially intersect in the same window,
as seen in the grey area in Figure 3.5. In these circumstances, the concatenation
of the samples with no overlap is used to determine the embedding of speakers.
This technique has the drawback that it is dependent on the segmentation model,
which is a performance bottleneck.

Global agglomerative clustering: The final stage is to perform a cluster-
ing procedure, in which each speaker detected in the multiple windows is given a
global index. Clustering is carried out using the UPGMC method, a centroid-based
clustering algorithm. At this stage, a new hyper-parameter called δ is added. It
works as the clustering process’s stop condition. The final stage will combine the
clusters to produce the diarization’s result (see. Fig 3.6).

Figure 3.6: Diarization result
[32]
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3.1.2 Segmentation and windowing
Using a Hamming window, the signals were then separated into 1s epochs with 50%
overlap. This final step was carried out to allow us to assume stationarity for these
time intervals while preserving the nature of the signal and therefore expanding,
artificially, the number of observations in our dataset. To eliminate any potential
DC signal impacts on the recordings, the average was subtracted for each signal.

Figure 3.7: Signal segmented into 1s epochs via Hamming window

3.2 Feature extraction and feature selection
3.2.1 Feature extraction
The feature extraction procedure was conducted in accordance with earlier work of
Mittapalle Kiran Reddy et al [25]. The feature extraction was carried out using
the openSMILE toolkit developed for the INTERSPEECH 2016 Computational
Paralinguistic Challenge [33]. The Challenge’s goal was to assess the sincerity
and native tongue of some speakers. This thesis project utilised the same feature
set as the challenge, which consists of 6373 features that were calculated using
some statistical functionals on low-level descriptors (LLD) and on ∆LLD. These
features are based on 64 LLD that relate to parameters:

• Energetic

• Spectral

• Related to voice

Additional categories for features include prosodic, spectral/cepstral, or sound
quality-related.
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Energy related LLD
Sum of auditory spectrum (loudness) Prosodic
Sum of RASTA-style filtered auditory spectrum Prosodic
RMS energy, zero-crossing rate Prosodic

Spectral LLD

RASTA-style auditory spectrum, bands 1–26 (0–8 kHz) Spectral
MFCC 1–14 Cepstral
Spectral energy 250–650 Hz, 1 kHz–4 kHz Spectral
Spectral roll off point 0.25, 0.50, 0.75, 0.90 Spectral
Spectral flux, centroid, entropy, slope Spectral
Psychoacoustic sharpness, harmonicity Spectral
Spectral variance, skewness, kurtosis Spectral

Voicing related LLD
F0 (SHS and viterbi smoothing) Prosodic
Prob. of voice Sound quality
Log. HNR, Jitter (local, delta), Shimmer (local) Sound quality

Table 3.1: The feature set ComParE 2016 uses 64 LLD for the description of
acoustic signals
[34] [35] [36]

Functionals Applied to LLD and ∆LLD

Quartiles 1–3, 3 inter-quartile ranges Percentiles
1% Percentile (≈ min), 99% percentile (≈ max) Percentiles
Percentile range [1%,99%] Percentiles
Position of (min/max), range (max − min) Temporal
Arithmetic mean, root quadratic mean Moments
Contour centroid, flatness Temporal
Standard deviation, skewness, kurtosis Moments
Rel. duration LLD is above 25/50/75/90% range Temporal
Rel. duration LLD is rising Temporal
Rel. duration LLD has positive curvature Moments
Gain of linear prediction (LP), LP coefficients 1–5 Modulation
Mean, max, min, SD of segment length Temporal

Functionals applied to LLD only

Mean value of peaks Peaks
Mean value of peaks – arithmetic mean Peaks
Mean/SD of inter peak distances Peaks
Amplitude mean of peaks, of minima Peaks
Amplitude range of peaks Peaks
Mean/SD of rising/falling slopes Peaks
Linear regression slope, offset, quadratic error Regression
Quadratic regression a, b, offset, quadratic error Regression
Percentage of non-zero frames Temporal

Table 3.2: Functionals applied to LLD. The third column shows the statistical
functional’s type
[34] [35]

The descriptors were selected from those that are most frequently used in speech
and sound analysis as well as those that are used to extract information from
music. For instance, speaker identification often involves the use of Mel Frequency
Cepstral Coefficients (MFCC). These coefficients use a cepstral representation of
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the audio signal. The cepstrum, is a representation of the calculation of the inverse
Fourier transform (IFT) of the logarithm of the signal spectrum. When computing
the cepstrum, the effects of tone excitation and voice formants are additive and
thus separable.
Other computed features include:

• Loudness

• Energy

• Foundamental frequency

• Psychoacoustic sharpness

• Jitter

• Shimmer

3.2.2 Feature selection
The distribution of the features retrieved in the preceding stage was examined
before feature selection to ensure that they had a normal distribution. The Jarque-
Bera [37] test was utilised to assess the distribution of features. Its performance
is comparable to that of the Shapiro-Wilk test, but it is more efficient when a
large number of samples need to be studied [38] [24]. This test ensures that a data
distribution’s skewness and kurtosis match those of a normal distribution. The
formula for the test is as follows:

JB = n

6

3
S2 + 1

4 (K − 3)2
4

(3.2)

where n is the number of observations, S represents the sample skewness, and K
represents the sample kurtosis.

S = µ̂3

σ̂3 =
1
n

qn
i=1 (xi − x̄)31

1
n

qn
i=1 (xi − x̄)2

2 3
2

(3.3)

K = µ̂4

σ̂4 =
1
n

qn
i=1 (xi − x̄)41

1
n

qn
i=1 (xi − x̄)2

22 (3.4)

• σ̂ is estimation of the variance

• µ̂3 and µ̂4 are the estimates of third and fourth central moments

• x̄ is the mean
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The Jarque-Bera test’s results provided a list of 56 features that appeared to have a
normal distribution (p ≤ 0.05). Two tests were then used to carry out the selection
of statistically significant features to differentiate between normative and clinical
patients. For the normally distributed features, an independent samples t-test [39]
was employed; for the other features, the Mann-Whitney U [40] non parametric
statistical test was applied. Following the Jarque-Bera test, 56 features had a
normal distribution and 6317 had a non-normal distribution. The 56 features
with normal distribution underwent a Levene’s test [41] to valute homogeneity of
variance between the normative and clinical populations. Welch’s t-test [42] used
for 14 of the 56 features with non-homogeneous variance, whereas independent-
samples t-tests were used for 42 of the 56 features for which the variance of the
two populations was determined to be homogeneous.
t-test: the two samples independent t-test is performed for equal variance popula-
tion :

t = X̄1 − X̄2

sp

ñ
2
n

(3.5)

Welch’s t-test is performed for populations with non-homogeneous variance:

t = X̄1 − X̄2ñ
s2

X̄1
+ s2

X̄2

(3.6)

with:
sX̄i

= si√
NI

(3.7)

where si is the corrected sample standard deviation
Mann-Whitney U test: This test uses independent samples and is a non-
parametric test based on U-statistic. X1, .., Xn are independent identically dis-
tributed samples from X, Y1, .., Yn are independent identically distributed samples
from Y. The definition of the Mann-Whitney U statistic is:

U =
nØ

i=1

mØ
j=1

S (Xi, Yj) (3.8)

S =


1, X > Y
1
2 , X = Y

0, X < Y

(3.9)

During the selection process, 857 features out of the initial 6373 were dropped,
leaving a total of 5516 features. A dimensionality reduction was done to strengthen
the selection to shorten classifier training times, lower computational costs, and
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prevent overfitting issues [24]. Particularly, two alternative dimensionality reduction
techniques were tested:

• Neighbourhood components analysis (NCA)

• Principal component analysis (PCA)

Neighbourhood components analysis [43]: With the use of linear transforma-
tions, this method derives a distance value in order to improve the performance of
a leave-one-out (LOO) classifier. By establishing a differentiable objective function
for the matrix itself and using the gradient descent approach, it is possible to iden-
tify the matrix encoding the linear transform. With this method, after the linear
transformation inside the LOO classifier, we will take into account the complete
dataset rather than just the k-neighbors at each location. The entire dataset is
therefore redefined using a softmax function of the squared Euclidean distance.

pij =


e−||Axi−Axj ||2q

k /=i
e−||Axi−Axj ||2 , j /= i

0, j = i
(3.10)

where pij is the probability of classifying neighbour j of point i. The probability
of classifying data i properly is equal to the probability of identifying each of its
neighbours’ points with the same class Ci.
The objective function is:

f(A) =
Ø

i

Ø
j∈Ci

pij =
Ø

i

pi (3.11)

Where A is the linear transform matrix, which are obtained by using an iterative
solver such conjugate gradient descent.
Principal component analysis [44]: This is used to compress huge datasets
while maintaining the information’s integrity. The component that maximises
the variance of the data is the first principal component. The direction that
maximises the variance of the projected data and is orthogonal to the first (i − 1)
principal components is the ith principal component. We consider a matrix X with
dimension n × p, where n are the repetitions and p are the columns representing
the various features. A set of p-dimensional vectors of weights of size l define the
transformation; w(k) = (w1, ..., wp)(k). Each row vector is transformed into a new
vector that contains the principal component scores t(i) = (t1, ..., tl)(i), wihch is:
tk(i) = x(i) · w(k). Hence, in order to reduce dimensionality, l is typically chosen
to be strictly less than p. Due to dimensionality reduction, 2921 features were
ultimately chosen, and they were enough to explain for 99% of the variance.
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3.3 Classification
Following feature selection, three distinct machine learning-based classifiers were
evaluated and compared:

• K-nearest neighbors (K-NN)

• Support vector machine (SVM)

• Feedforward Neural Network (FFNN)

3.3.1 K-NN [45]
Both classifications and regressions can be done using this approach. In the latter
situation, classification is done based on its neighbours. The sole hyperparameter
that needs to be determined for this approach is the number of neighbours to
compare our object in order to determine its class. The most prevalent class among
its neighbours is given to the sample that has to be classified.

Figure 3.8: Application example of the KNN algorithm
[45]
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3.3.2 Support vector machine (SVM) [46]
The SVM creates a line or hyperplane whose task is to divide the data into classes.
In the first approximation, the SVM tries to create a dividing line between the
two classes. The SVM classification algorithm is based on the idea of finding the
best line or hyperplane that allows the separation between classes, so as to have as
general a classifier as possible. To find the best line, the distance of the nearest
data points to the line or hyperplane for both classes is calculated, these points are
called support vectors while the distance is called the margin. The hyperplane
or line for which the margin is maximum will be the one chosen for classification.

Figure 3.9: SVM linear classifier
[46]
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3.3.3 Feedforward-neural-network (FFNN) [47]
These networks are distinct from recurrent neural networks in that there are no
circular connections between the nodes. In this network, data moves from the
input neurons to the output neurons via the hidden layer. Here, an input layer, an
output layer, and three hidden layers made up the FFNN. There are 16 neurons in
the input layer, while there are 8, 4, and 2 neurons in each of the 3 hidden layers
(see. Fig 3.10) .

Figure 3.10: FFNN layers with the relatives activation functions

To prevent overfitting, dropout levels were implemented. This method involves
randomly removing some neurons during training such that they do not affect
the firing of downstream neurons and their weights are not updated later. This
prevents neurons from becoming specialised on training data by forcing the network
to generalise. The neurons that are left over must make up for the loss of the ones
that are turned off by periodically adjusting their weights in order to make the
necessary prediction, leading to less precise weights [48]. It was chosen at random,
with a 40% probability, which nodes would be removed. A ReLU activation
function was applied for the input layer and the three hidden layers, which is a
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non-linear function with a very low computing cost [49]. Instead, the sigmoid, a
better activation function for binary classification tasks, was selected for the output
layer (see. Fig 3.10) [50]. All activation functions share these two characteristics:

• Output ∈ [0,1]

• Output ≈ 1 with enough stimulation (threshold effect)

The optimisation function is another significant parameter in the neural network.
The optimization function is the one that enables me to assess each node’s error
at each iteration, and the relative weights are modified in accordance with the
error. ADAM’s function, an extension of root mean square propagation (RMSProp)
that considers the first and second moments of the gradient, was chosen as the
optimization function. The SGD gradient descent and RMSprop itself are frequently
rejected in favour of the ADAM function because it is less sensitive to noisy gradients,
consumes less memory, and works well with large datasets [51].
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Chapter 4

State of the art

4.1 Face detection
In order to determine the state of the art in face identification techniques, several
algorithms developed throughout time were evaluated and applied to numerous
widely used public datasets, including:

• Face Detection Data Set and Benchmark (FDDB) [52]: It has 5171 faces in
2845 images

• Annotated Faces in the Wild [53]: 205 images with 473 faces

• WIDER Face (Easy) [54]

• PASCAL Face [55] 1335 faces in 851 images

The Cheng Chi et al. algorithm is the one that currently outperforms the others
on average in these datasets [56]. The technique developed by Cheng Chi is a
single-shot face detector (SSD) called the Selective Refinement Network (SRN).
When compared to other face identification algorithms, this algorithm, which is
of the anchor-based type, introduces two extra classification and regression steps.
Two modules, the Selective Two-step Classification (STC) module and the Selective
Two-step Regression (STR) module, respectively, carry out these steps [56]. The
first module’s goal is to remove as many negative anchors from the lower description
layers, and the second module’s aim is to change the anchors’ sizes and positions.
To identify the most unusual facial poses, an additional model known as Receptive
Field Enhancement (RFE) was introduced to the end of the network.
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Figure 4.1: Network structure of SRN. It is made up of RFB, STR, and STC. In
order to narrow the search space for the second-step classifier, STC employs the
first-step classifier to filter the negative anchors from low level detection layers. For
better initialization of the second-step regressor, STR uses the first-step regressor
to alter the positions and sizes of anchors from high level detection layers. To
better record faces in unusual poses, RFE offers more varied receptive fields.

[56]

The ResNet-50 [57] with a 6-level pyramid structure makes up the SRN network.
In Figure 4.1 the blocks Cn with n ∈ (2,3,4,5), are the features maps extracted,
after C5, C6 and C7 are obtained by two down-sample 3 X 3 convolution layers.
Pn with n ∈ (2,3,4,5), are extracted from lateral connection, after P5,P6 and P7
are down-sampled by two 3 X 3 convolution layers. On the FDDB dataset, on
the other hand, another model based on a neural network and belonging to the
anchors-based performed slightly better. The model proposed by Jian Li et al
[58], called Dual Shot Face Detector (DSFD), introduces the Feature Enhancement
Module (FEM) to improve the characteristics’ robustness and discriminability.
The following neural network employs a Progressive Anchor Loss (PAL) for each
level and each shot, where the anchor in the first shot gets bigger than in the
second shot. In order to better align anchors and target faces, an Improved Anchor
Matching (IAM) is carried out, which combines an anchor partition technique with
anchor-based data argumentation.
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Figure 4.2: DSFD architecture; b) is the Feature Enhance Module, it is applied on
the VGG/ResNet architecture and produce enhanced features c) from the starting
features a)

[58]

These two face detection models, which are both based on ResNet technology, are
the state-of-the-art. For instance, they obtained accuracy scores of 0.991 for DSFD
and 0.988 for SRN on the FDDB dataset. The best methods for lowering false
positive detection rates and raising precision are those mentioned above. The main
drawback of these strategies is the amount of time and hardware resources needed
to execute the models, which are unusable without GPU accelerators and require
significantly more resources for the DSFD model.

4.2 Marker-less oral-motor feature extraction
As in the experiments by Gonzalo D. Sad et al., recent investigations have used
markerless technology to derive suggestive features, particularly for diseases like
ALS (Amyotrophic Lateral Sclerosis) or other primarily motor disorders [9][59].
In the field of rehabilitation, using increasingly adaptable technologies that can
extract data with settings and conditions far removed from the laboratory has
become a prerequisite. A CANDIDE-type model was employed in the specific
instance of the investigations by Gonzalo D. Sad et al. on the ALS to identify all
the facial asymmetries that are typical of the condition.
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Figure 4.3: A comparison between the outcomes on the same video produced by
the developed computer programme and the asymmetry detecting software created
by Gonzalo D. Sad et al. for ALS patients. a) Eye-mouth distance measured
with Gonzalo D. Sad et al. software. b) Eye-mouth distance measured with our
programme

[59]

It can be seen that the produced programme has equivalent performance when
compared to the software developed in the works of Gonzalo D. Sad et al. for the
detection of facial asymmetries. Due to mesh adaptation, the feature extraction
approach developed in this work is in this instance more sensitive to noise. However,
because it does not require the mesh on the face to be adjusted and modified before
the start of the acquisition, the MediaPipe method is simpler for medical staff to
utilise, especially in the absence of a dedicated interface. It was preferable to switch
to a fully automated approach because this condition for the type of patients on
whom the research was conducted was limited because, particularly for clinical
patients, it was challenging to obtain even a few frame instants without movement
to allow manual adaptation of the mesh on the face. In recent years, a number of
studies have employed markerless technology, particularly for tracking jaw and lip
movements in experimental lab settings, frequently employing the Dlib algorithm
to identify facial markers, as in the experiments by Andrea Bandini et al [21] [22].
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4.3 Natural language processing
To date, technologies based on deep learning have not been widely used in the analy-
sis of natural language to perform assessments of children in the developmental age.
This is due to the fact that specifying the features to be assessed for classification
is a necessary step to achieve a good classification. Machine learning techniques
have already been used to identify children with SLI, as in the studies of Mittapalle
Kiran Reddy and Yogesh Sharma, two of the pioneering studies in the field [25] [24].
In order to create the models for both works, the features that were deemed to be
the most important were extracted. In the first case, in particular, the glottal-type
features, the MFCC features, and those originating from the openSMILE software
were compared in order to evaluate their classification effectiveness. Contrarily, the
classification in the second study is purely based on pitch-related characteristics.
These investigations introduce the glottal features that are also connected to a
child’s motor skills, the lack of which results in an irregular vocal vibration that
may be identified by the glottal waveform. Recovering the glottal excitement is the
aim of glottal inverse filtering (GIF). The GIF filter recognised the output signal,
or speech pressure waveform, from the vocal input [60]. The MATLAB APARAT
toolbox is one of the most popular methods for glottal parameter extraction [61].

Figure 4.4: Aparat software output spectrum for audio signal analysis; a) Clinical
child, b) Normative child
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Figure 4.4 shows the output of the Aparat software for a clinical and a
normative child. The software displays the vocal tract filter’s formants, the GIF
filter’, the speech signal spectrum, and the glottal flow spectrum. The spectra of
the glottal signal was acquired using the quasi-closed phase method (QCP) [62]
as the GIF algorithm, after the application of a low-pass-filter with 60Hz cut-off
frequency. Because it requires the guidance of an experienced operator and the
Aparat extraction tool is only accessible with a MATLAB licence, glottal feature
extraction was not used in this thesis study. Studies by Mittapalle et al. further
demonstrate that, in comparison to openSmile characteristics, the use of glottal
features does not now provide any discernible benefits to classification performance.
There have already been more recent studies that examined the use of deep learning
techniques for categorising specific developmental language disorders, such as the
studies by Kanimozhiselvi et al. [63] that employ a convolutional neural network
(CNN) to perform a multi-class classification among 4 different language disorders
by creating software that is also suitable for mobile devices. The benefit of deep
learning in this case is that it eliminates the need for a specialist operator to
perform the feature extraction, and once trained, the model can also be used on
devices such mobile phones. However, because the issue of language problems, as
already indicated in chapter 1, is a multi-factorial issue, it is frequently helpful for
medical staff to be able to check the features used for the classification.
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Chapter 5

Results

The outcomes of audio and video analysis will be discussed in this chapter. The
various approaches will be compared, which will determine the final decisions made
in the programme given to the Foundation.

5.1 Analysis of oral-motor features
5.1.1 Face-identification
We examined the various face detection algorithms (described in Chapter 2) to
determine which one would work best with the oral-motor feature extraction
software. The computation time and measurement precision were taken into
consideration when making the comparison. A random selection of 5 clinical and
5 normative patients was made. The area of the rectangle defining the face and its
centre was determined for each frame. The Dlib toolkit creates boxes, on which
the area of the face is calculated, and these boxes have fixed sizes. Because of this,
the pertinent Bland-Altamn diagrams do not have a uniform distribution of points
(see. Fig 5.1). For the same reason, the amount of outliers produced by the Dlib
toolkit are frequently overlapped in boxplot diagrams (see. Fig 5.2).
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Figure 5.1: The degree of agreement between the three distinct measures of face
area was assessed using Bland-Altman graphs.

Figure 5.2: The boxplots compare the areas created using the three algorithms
while also numerically expressing the number of outliers for each one. Visually, the
Dlib algorithm has fewer outliers than the other two since the area can only take
on a certain range of values, and many of the outliers are overlapping.
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Dlib MediaPipe Viola-Jones
Dlib 88.47% 52.71% 57.60%

MediaPipe 52.71% 97% 48%
Viola-Jones 57.60% 48% 61.68%

Table 5.1: The overlap of the face rectangles is used in the table to compare
the face detection methods in pairs. The main diagonal displays the number of
frames in which each algorithm successfully recognises a face. The total of frames
considered for the study is 171202

A comparison of the three face detection methods is presented in Table 5.1.
The number of frames in which the rectangles of the two methods can be regarded
as superimposable can be determined by crossing the table’s rows and columns.
The main diagonal shows how many frames the algorithms were able to recognise
a face. c = (x, y) and c1 = (x1, y1) are defined as the centre of the box produced
by algorithm Q and algorithm Q1, respectively. If the area of the rectangle formed
by c1 ± 80 contained c, the two boxes were regarded as being overlapped.

Figure 5.3: Results of face detection algorithms on a single frame. For the boxes
to be deemed overlapping, the rectangles’ centres must be inside the ROI in green.
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Additionally, the processing speed of a 16s video was compared to determine
which of the three algorithms was the quickest. The MediaPipe algorithm was

Time
40.36s Dlib
8.07s MediaPipe
23.43s Viola-Jones

Table 5.2: Time to process a 16s video

selected to carry out face detection based on the analysis that was conducted. This
is due to the fact that it seems to be the optimal trade-off between processing
efficiency and precision in identifying the face for each frame.

5.1.2 Face mesh assessment
Healthcare practitioners can already make an early assessment of the child’s
linguistic abilities and executive function development from the mesh fitting on
the face, which enabled the extraction of various clinical features (described in
Chapter 2). This section compares the results produced by the programme in
terms of processing speed and acquisition accuracy, using both the CANDIDE and
MediaPipe models for a clinical and normative child. To lose the least amount of
data and have a more accurate algorithm, it will also assess how effectively the two
models can monitor head position. The model’s sensitivity to noise, particularly
the noise produced by the mesh’s fit to the face itself, is another crucial factor to
consider.
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Clinical child

CANDIDE MediaPipe
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CANDIDE MediaPipe

Figure 5.4: Oral-motor features extracted from CANDIDE model and MediaPipe
model from the same video of clinical child

CANDIDE 350.67s
MediaPipe 93.05s

Table 5.3: Time to process the same videos for a clinical child
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Normative child

CANDIDE MediaPipe
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CANDIDE MediaPipe

Figure 5.5: Oral-motor features extracted from CANDIDE model and MediaPipe
model from the same video of normative child

CANDIDE 659.73s
MediaPipe 144.70s

Table 5.4: Time to process the same videos for a normative child
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When the algorithm identifies that a child is not looking directly at the camera,
it will not acquire signals for brief periods of time. As you can see, the clinical
children show this condition more frequently. This is due to the fact that children
with speech disorders typically struggle to pay attention for the entire test. It can
be seen from a comparison of the two algorithms that the MediaPipe method is
more accurate at detecting asymmetrical face changes and in correctly identifying
the position of the head in space while losing much less data than the CANDIDE
model. However, MediaPipe model is more sensitive to noise due to the process of
adapting the mesh to the face. Due to MediaPipe’s incredibly lightweight code,
which is created with mobile devices in mind, the processing time for videos is
also reduced (see. Table 5.3 and Table 5.4). For these reasons, MediaPipe was
selected as the algorithm to do the child’s oral motor analysis.

5.2 Classification of children by audio signal
With 234 videos of normative children and 27 videos of clinical children (Considering
also the presence of several acquisitions for the same child), the dataset contains a
significant samples imbalance. In order to solve this problem, the normative group
was under-sampled. At the end of the division into epochs, there were 15748 epochs
for clinical children and 105479 epochs for normative children. Then a random
draw was made for the number of epochs of the normative children, amounting to;
15748 + 15748 · 30%. The original dataset was separated into training (80%) test
set (10%) and validation set (10%). The data were standardised before usage. The
practise of standardisation makes it possible to compare quantitative variables more
successfully, especially when doing so with values in various units of measurement.
Each feature in this case was scaled by the standard deviation after being cleaned
of the mean.

x = (x − u)
s

(5.1)

Where u is the mean and s is the standard deviation of the feature x Cross-validation
was carried out to find the best hyper-parameters for classifiers K-NN and SVM.
The cross-validation process was implemented using the Time Series Split, a
K-fold technique variant. Due to the fact that our data are derived from time series
and are thus not independent of one another, using conventional cross-validation
approaches would result in inaccurate correlations. The samples are typically
divided into k groups of equal size using the K-fold procedure, of which (k − 1)
folds are utilised for training and the remaining group for testing. This method
splits the dataset into k folds for training, with the (k + 1)th fold serving as the
test set. The training set will include all k folds plus the (k + 1)th fold in the
subsequent iterations, while the test set will consist of the (k + 2)th fold [64]. Then,
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a number of metrics were determined to carry out the evaluation of the various
hyper-parameters, including:

• Jaccard similarity coefficient score.

• Computation of the receiver operating characteristic area (ROC-AUC)

• Recall score

• Precision

• Compute the F1 score

Jaccard similarity: The dimensions of the intersection and the union of the set
of labels defining the two classes are used to calculate this index.

J(A, B) = |A ∩ B|
|A ∪ B|

(5.2)

ROC-AUC: This metric is applied to various classification methods, including
binary classification. Plotting true positives vs false positives yields a ROC curve.
The likelihood that a randomly chosen instance will be correctly labelled by the
classifier can be thought of as the area under the ROC curve (AUC).
Recall score: The ratio of true positives to the total of true positives plus false
negatives is represented by this measure. It is regarded as the capacity to detect
positive samples.

r = tp

(tp + fn) (5.3)

Where tp are the true positive and fn are the false negative
Precision: Precision is the ability of the classifier to avoid classifying negative
samples as positive and is measured as the ratio of true positives to the sum of
true positives and false positives.

p = tp

(tp + fp) (5.4)

Where tp are the true positive and fp are the false positive
F1-score: The harmonic mean of the precision and racall scores is used to get the
F1 score.

F1 = 2
1
r

+ 1
p

= 2 · p · r

p + r
(5.5)
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5.2.1 K-nearest neighbors (K-NN)
The classification outcomes using the K-NN classifier are displayed under four
different conditions with dimensionality reduction (PCA, NCA) and without di-
mensionality reduction. For each condition, the one that were best for the most
indicators were selected as the hyper-parameters.

Without dimensionality reduction

Jaccard ROC-AUC Recall score Precision F1-score
n=1 0.512296 0.71749 0.666339 0.688645 0.67726
n=3 0.543526 0.746184 0.666928 0.745886 0.70407
n=5 0.555396 0.757148 0.662292 0.774466 0.713797

Table 5.5: Cross-validation results for different value of number of neighborhood.
For each indicator, the top values are denoted in bold.

Figure 5.6: Confusion matrix after the application of a K-NN classifier without
dimensionality reduction and number of neighbours equal to 5
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Figure 5.7: ROC curve for a K-NN classifier without dimensionality reduction
and number of neighbours equal to 5

Accuracy=78% Precision Recall score F1-score
Class(0) 79% 83% 81%
Class(1) 77% 72% 74%

Table 5.6: The classification results on the test, for a K-NN classifier without
dimensionality reduction, set are summarised in the table. 0 indicates the normative
class, and 1 represents the clinical class.

PCA

Jaccard ROC-AUC Recall score Precision F1-score
n=1 0.51273 0.717925 0.666225 0.689531 0.677645
n=3 0.543934 0.746685 0.666289 0.747437 0.704379
n=5 0.555919 0.757408 0.663308 0.774221 0.714265

Table 5.7: Cross-validation results for different value of number of neighborhood.
For each statistic, the top values are denoted in bold.
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Figure 5.8: Confusion matrix for a K-NN classifier after dimensionality reduction
with PCA and number of neighbours equal to 5

Figure 5.9: ROC curve for a K-NN after dimensionality reduction with PCA and
number of neighbours equal to 5

70



Results

Accuracy=78% Precision Recall score F1-score
Class(0) 79% 83% 81%
Class(1) 77% 72% 74%

Table 5.8: The classification results on the test, for a K-NN classifier with PCA
as dimensionality reduction algorithm, set are summarised in the table. 0 indicates
the normative class, and 1 represents the clinical class.

NCA

Jaccard ROC-AUC Recall score Precision F1-score
n=1 0.56496 0.754951 0.708892 0.732049 0.720242
n=3 0.588074 0.77737 0.691168 0.794634 0.739095
n=5 0.597787 0.784485 0.695313 0.808127 0.746784

Table 5.9: Cross-validation results for different value of number of neighborhood.
For each statistic, the top values are denoted in bold.

Figure 5.10: Confusion matrix for a K-NN classifier after dimensionality reduction
with NCA and number of neighbours equal to 5
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Figure 5.11: ROC curves for a K-NN classifier after dimensionality reduction
with NCA and number of neighbours equal to 5

Accuracy=84% Precision Recall score F1-score
Class(0) 84% 88% 86%
Class(1) 84% 78% 81%

Table 5.10: The classification results on the test, for a K-NN classifier with NCA
as dimensionality reduction algorithm, set are summarised in the table. 0 indicates
the normative class, and 1 represents the clinical class.
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5.2.2 Support vector machine (SVM)
It was deemed fair to apply a kernel based on radial basis function (RBF) because
to the non-linearity of the supplied data. The RBF kernel function between two
points serves as a gauge of their separation.

K(x1, x2) = e−γ||x1−x2||2 (5.6)

Where σ is the variance, ||X1 − X2|| is the Euclidean distance between the two
points. In this instance, distance is used to measure the equality of the points.
Changing the variance’s value will result in a change in the number of points that
are deemed equal. A cross-validation for the SVM classifier involved assessing C
values ranging from 1 to 10 extremes, including. Each regularisation factor (C)
was tried with two different gamma values:

γ1 = 1
(nfeaturesX.var()) (5.7)

γ2 = 1
(nfeatures)

(5.8)

Where X.var() represent the variance of the input data. The variance of the RBF
kernel and the gamma parameter are connected, so changing gamma will change
the curvature of our decision boundary. Four distinct tests were conducted utilising
the three different forms of dimensionality reduction and without dimensionality
reduction, just like with the K-NN classifier. Below are provided the cross-validation
outcomes for each of the four examples.

No-reduction PCA NCA
C 3 4 3
γ γ1 γ1 γ1

Table 5.11: Cross-validation results for SVM classifier
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Without dimensionality reduction

Figure 5.12: Confusion matrix for a SVM classifier without dimensionality
reduction

Figure 5.13: ROC curves for a SVM classifier without dimensionality reduction

Accuracy=93% Precision Recall score F1-score
Class(0) 94% 93% 94%
Class(1) 91% 93% 94%

Table 5.12: The classification results on the test set for a SVM withour dimen-
sionality reduction are summarised in the table. 0 indicates the normative class,
and 1 represents the clinical class.
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PCA

Figure 5.14: Confusion matrix for a SVM classifier with PCA

Figure 5.15: ROC curves for SVM classifier with PCA

Accuracy=93% Precision Recall score F1-score
Class(0) 94% 93% 93%
Class(1) 91% 93% 92%

Table 5.13: The classification results on the test set, for SVM classifier with PCA
as dimensionality reduction are summarised in the table. 0 indicates the normative
class, and 1 represents the clinical class.
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NCA

Figure 5.16: Confusion matrix for a SVM classifier with NCA

Figure 5.17: ROC curves for a SVM classifier with NCA

Accuracy=92% Precision Recall score F1-score
Class(0) 94% 92% 93%
Class(1) 91% 92% 92%

Table 5.14: The classification results on the test set, for a SVM classifier with NCA
as dimensionality reduction algorithm, are summarised in the table. 0 indicates
the normative class, and 1 represents the clinical class.
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5.2.3 Feedforward neural network (FFNN)
Now, the FFNN neural network’s results are shown.

Figure 5.18: Confusion matrix for training, test and validation set after the
application of a FFNN without dimensionality reduction

Figure 5.19: ROC curves after the application of a FFNN without dimensionality
reduction

Accuracy=89% Precision Recall score F1-score
Class(0) 94% 86% 90%
Class(1) 84% 93% 89%

Table 5.15: The classification results on the test, for a FFNN classifier without
dimensionality reduction, set are summarised in the table. 0 indicates the normative
class, and 1 represents the clinical class.
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PCA

Figure 5.20: Confusion matrix after the application of FFNN with PCA

Figure 5.21: ROC curves after the application of a FFNN with PCA

Accuracy=90% Precision Recall score F1-score
Class(0) 90% 92% 91%
Class(1) 90% 87% 88%

Table 5.16: The classification results on the test,for a FFNN classifier with PCA
as dimensionality reduction algorithm, set are summarised in the table. 0 indicates
the normative class, and 1 represents the clinical class.
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NCA

Figure 5.22: Confusion matrix for a FFNN classifier with NCA

Figure 5.23: ROC curves for a FFNN classifier with NCA

Accuracy=89% Precision Recall score F1-score
Class(0) 86% 95% 90%
Class(1) 92% 80% 86%

Table 5.17: The classification results on the test, for a FFNN classifier with NCA
as dimensionality reduction algorithm, set are summarised in the table. 0 indicates
the normative class, and 1 represents the clinical class.

The three classification techniques were then compared based on their accuracy,
time of computing, and how dimensionality reduction algorithms affected them.
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Figure 5.24: Results of the three classifiers on the test set, both without and
with dimensionality reduction (PCA, NCA)

The results show that only for the K-NN classifier does the NCA algorithm
improve accuracy levels. Given the accuracy levels and computational costs, PCA
seems to be the most effective dimensionality reduction approach for the other two
classifiers.
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Time of application (s) K-NN SVM FFNN
NO-DIM 65.54 1520.64 13.96

PCA 51.49 831.52 11.28
NCA 40.00 696.96 10.64

Table 5.18: Time to apply the models to training and test sets

Figure 5.25: Results of the application of the three different classifiers on the test
set after the application of NCA for K-NN and PCA for SVM and FFNN; The
figure shows also the accuracy of all classifiers

The three classifiers have comparable performances, although the SVM classifier,
when applied to this dataset, produces less false negatives than the others while
maintaining the same accuracy. Figure 5.32 shows the three classifiers’ training
pipeline.

Figure 5.26: Pipeline of the classification model with the application of the
dimensionality reduction algorithm and subsequently of the classifiers.

[65]
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5.3 Discussion
There are many face detection algorithms that are suitable to the issue, as stated in
chapter 4. It was decided to just compare these 3 algorithms in-depth because they
may be utilised on a wider range of devices and yet provide acceptable performance.
In the end, the MediaPipe algorithm was determined to be the most effective in
terms of measurement precision and processing time. For these kinds of acquisitions,
time is sometimes a deciding factor; in fact, the staff is able to repeat the work in
a fair amount of time that may also be acceptable to the child. As a result, the
programme may someday be changed to implement real-time acquisitions. The
drawback of facial meshes is that they must go through an automatic adaption
procedure that introduces high-frequency noise into the obtained data and inhibits
them from tracking the quickest movements. Only significant displacements of the
jaw can be observed since the markers utilised are not connected to the articular
structures. Implementing dimensionality reduction has no impact on classification
performance, especially when using the SVM, leaving the accuracy levels mostly
unchanged (see. Fig 5.30). Although using dimensionality reduction before
training an SVM algorithm is computationally expensive, the resulting model has
significant benefits in terms of application time on the data as well as helpful
effects to prevent overfitting. The NCA application performs better when using
the K-NN algorithm. This is because the NCA algorithm produces a space of
features, where the stochastic nearest neighbor algorithm provides the highest levels
of accuracy. The fact that more hardware resources are needed for the application
of the model with NCA than with the other two approaches under consideration is
one of the limitations to this method. When comparing the three models, the SVM
classifier with PCA had the best accuracy; however, the FFNN classifier seemed to
deliver equivalent results at a lower computational expense. It will undoubtedly
be necessary to use the three classifiers on various and larger datasets in order to
actually evaluate how they behave.
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Chapter 6

Conclusions

Healthcare professionals believed that the oral-motor features extraction programme
was a good compromise for obtaining important data without interfering with the
task of the children. The final results must always be thereafter be analysed and
connected with additional parameters by the specialised staff because, as stated in
Chapter 1, a specific evaluation cannot overlook even extremely distinctive factors
like environmental and family conditions cannot be ignored in a specific examination.
It was chosen not to train any automatic classifiers using the oral-motor features.
This choice was reached after assessing the quantity and quality of the data at our
disposal. The choice to only collect data while taking a frontal view of the child
drastically limited the amount of data we had available, rendering machine learning-
based classification methods useless. The length of the children’s autonomous speech
production was measured using the diarized audio signal, providing an additional
parameter for assessment. The machine learning algorithms were trained using the
audio features since they were considered to be more representative for separating
the two classes of individuals. The pipelines applied to audio signals can be a
significant starting point for the development of increasingly efficient models, even
though the results obtained in this thesis work obviously show some biases due
to the previously mentioned experimental settings. Applying and assessing the
models on various datasets is required to determine how effectively robust the three
techniques are. Future research could also take into account extracting more specific
video features while performing particular tasks and observing how the trained
classifiers behave by correlating the oral-motor and audio features. Additionally,
it can be important to research the effects on the classifiers of the parameters
generated by the foundation’s programme, such as:

• Total number of produced words used

• Number of different words used
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• Total number of words spoken

• Average length of the utterance

• Moving Average TTR: measure of lexical diversity

• Number of correct words compared to adult target production

• Number of idiosyncrasies: unrecognizable words / not belonging to the Italian
linguistic system

It would be interesting to use facial meshes to get muscolar information for further
projects. In fact, a preliminary analysis of the activation times of a few particular
muscles may be done in the case of the CANDIDE mesh because the activation units
are related to the activation of the facial muscles. Due to the fact that the altered
emotional state might occasionally be a deciding factor in the diagnosis of language
disorders, doing a preliminary assessment (sentiment analysis) could strengthen
the classification algorithm and give the medical staff additional information.
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