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Summary

Multiple Sclerosis (MS) is an autoimmune disease that involves the central nervous
system due to a loss of myelin, the substance that enables neurons to transmit
electrical signals between the brain and the periphery of the body. Consequently,
all body activities of MS patients are impaired, including speech articulation. This
study was carried out in collaboration with the team of speech therapists at the
Don Gnocchi Foundation in Milan, analysing the speech performance of about 70
patients that suffer from MS. One group pf patients was treated with standard
therapy, a second group with innovative LSVT-LOUD therapy and a third group
was not treated. The recordings provided include 3 repetitions of the vowel /a/
and a free speech (about 1 minute), which were acquired for each patient before
and after therapy. After excluding not valid recordings (saturated or too noisy),
two subsets were created for the analysis of the /a/ and the free speech. Using
scripts developed in the Matlab R2020a environment, 9 descriptive statistics of
Harmonic-to-Noise Ratio (HNR), intensity (RMS), Cepstral Peak Prominence
Smoothed (CPPS) and fundamental frequency (fo) were extracted. In the case of
the vowel /a/ other 9 amplitude and period stability parameters were obtained.
The script first performs a pre-processing that selects non-silent harmonic signal
frames with frequency jumps between adjacent frames not greater than half octave.
For the vowel /a/ it was necessary to carry out a further cleaning: pre-processing
sometimes resulted in the elimination of internal frames, thus creating artefacts
in the calculation of stability parameters. To solve this problem, only adjacent
frames were kept. The parameters of the recordings of 60 healthy subjects, which
are available at Politecnico di Torino, were extracted with the same script. By
comparing the vocal parameters of SM patients before therapy (T0) with those of
healthy subjects, the most distinguishable values have been identified. Parameters
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identified for the vowel /a/: stability parameters of amplitude and period, 5°
percentile (prc) and standard deviation (std) of CPPS, 95° prc, range and std of fo,
mean, median, mode and 5° prc of HNR. Parameters identified for the free speech:
mean, median, mode, std, range, 5° prc, 95° prc, skewness of CPPS, std and range
of HNR. In addition, comparing the values of the patients pre and post therapy,
the parameters mainly affected by the therapy have been observed. Then, SM
patients were analysed observing the difference between the parameters extracted
at T1 (post-therapy) and T0 (pre-therapy). The patients were divided into three
classes according to the therapy (LSVT-LOUD, ACTIVE, no therapy) and the
most representative features were sought for distinguishing the therapies. For this
aim, a combinatorial algorithm based on the logistic regression model was used.
Taking two classes at time, the model was tested with single features and with all
possible combinations of 2, 3 and 4 features and selecting those that exhibited the
best classification performance. The same operation was performed by weighting
the features with the reciprocal and the complement to one of the std of the
three repeated vowels, but no relevant improvements were observed. Subsequently,
the best feature combinations were validated (5-fold cross-validation) through
the Matlab APP Classification Learner. The best performance were obtained for
the vowel /a/ using the stability parameters vfo, apq Vam and Jitter% and the
statistics 95° prc, 5° prc, range, mode, median of HNR and std, 95° prc of fo,
range, std, 95° prc, kurtosis of the RMS; for free speech using the statistics mean,
mode, std, range, 5° prc, 95° prc of CPPS, mean, median, mode, range of HNR,
95° prc, std of fo, mode, 5° prc for the RMS. The best validated accuracy was of
about 82% for free speech. The consistency between the perceptual evaluation
of the experts, which were provided using the G value of the GIRBAS scale, and
the obtained outcomes was assessed. The differences in G values between T1 and
T0 were compared to the feature differences, reporting the results as a confusion
matrix and taking the experts’ assessment as a reference. From this last analysis,
many errors were observed that are mainly related to the poor resolution of the
GIRBAS scale (0 to 4).
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Chapter 1

The speech

"We talk to communicate, to feel less alone. Our bodies were designed for
this. Our speech is an important aspect of who we are. There are people who
spit words, who strike them like matches against our wrists. There are people
who put us back together, who slowly stack our limbs upon each other with a
few simple words. There are those who say nothing. There are those who say
too much. In special cases there are those who let you speak, then act as if you
never said a thing."
-Liv Baker

This chapter briefly explains the physiological systems involved in voice and
speech production. An introduction to the speech signal and its main characteristics
is also made. In particular, the attention is put on the phonation difficulties of
multiple sclerosis patients and the related vocal rehabilitation techniques; two
rehabilitation techniques are discussed, one standard currently used by speech
therapists with MS patients, and a second technique called LSVT-LOUD used
so far for the treatment of Parkinson’s patients. Eventually, perceptual and self-
assessment scales to classify vocal abilities are presented.
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The speech

1.1 Anatomy and Physiology of the Voice
Production

The voice production is a complex process that includes several anatomic com-
ponents, it could be divided in three system with specific roles as illustrated in
[1]. The first regulates the airflow which is the power supply for the voice (air
pressure system). The air interacts with specific anatomic structures and makes
them vibrate (phonatory system). That vibration produces an acoustic wave that is
modulated and propagates outwards through the oral cavity (articulatory system).
Fig 1.1 shows a generic representation of the voice production apparatus and the
anatomic structures involved.

1.1.1 Air Pressure System

The air pressure system is composed by the diaphragm, abdominal and chest
muscles, lungs, ribs and trachea. The process starts with inspiration, the air goes
trough the oral and nasal cavity, pass the trachea and arrives in the lungs. The
diaphragm flat down and let the ribcage expand so the air can go inside the lungs.
Once the lungs reach capacity the lungs elastic tissue recoils and the air is exhaled.
The exhaled air goes up to the trachea and pass trough the larynx where interacts
with the vocal fold.

1.1.2 Phonatory System

The phonatory system converts the air flow energy in acoustic energy trough the
interaction between the air flow and the vocal folds (Fig:1.2) located in the larynx.
The larynx is a structure with a cartilaginous support that ends superiorly with the
hyoid bone and inferiorly with the trachea. The glottis is the space between the
vocal folds, the glottis closure generates a resistance to the air that comes from the
lungs. When the pressure of the air overcomes the glottis’s closing force the vocal
folds are separated. Once the glottis is completely open the air pressure decreases
and the vocal folds re-approximates. This phenomena is called the "vibratory cycles"
and the number of repetitions of this cycle per second determines the acoustic
wave frequency. The acoustic waves at the specific frequency are propagated to the
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Figure 1.1: Generic representation of the voice production apparatus [2].

articulatory system.

1.1.3 Articulatory System

The waves, produced by the phonatory system, arrives to the oral and nasal cavities
that filter the acoustic waves until it emerges from the mouth and nostrils. The
cavities are resonant environments in which components far from the resonance are
mitigated while those close to it are amplified. This phenomenon creates secondary
frequencies called formants that modulate the course of the original wave and allow
the shape of the voice to be adjusted. The oral cavity can be modulated by the
movement of the tongue, jaw and lips allowing the articulation of speech. This
modulation, in the case of consonants, creates constrictions in which air is forced to
pass or is stopped; this generates turbulent air movements that add to the periodic
wave obtained from the vibration of the vocal cords.
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Figure 1.2: Open and close vocal folds [3].

1.2 Voice Signal

The speech signal is a complex signal in the time domain consisting of a harmonic
and a non-harmonic part. It can be studied in the time domain, where the waveform
can be observed, or in the frequency domain, where harmonic components (peaks
centred in the characteristic frequency) and non-harmonic components (constant
white noise component) can be distinguished. In general, two types of sounds are
identified in vocal production:

• Vocalized sounds: sounds generated by the passage of air through the glottis
and thus by the vibration of the vocal cords. These sounds are characterized
by the fundamental frequency, determined by the opening and closing of the
vocal cords, and other frequencies, called formants, generate by the resonant
cavities.

• Voiceless sounds: sounds that do not involve the vocal folds, air is forced
through a bottleneck in the oral tract to create turbulence. An example would
be consonants /s/, /f/ and /t/ in the Italian language.

Observing Fig:1.3, vocal signal during the phonation of the word "sì" (with Italian
pronunciation ), it is possible to recognise that in the first tract (voiceless consonant
/s/) the signal is similar to a statistic noise instead in the second tract (vocalized
vowel /i/) the signal is more similar to a sinusoidal wave. A signal can be analyzed
in the time domain, as in the last example, or in the frequency domain, where it is
possible to search for fundamental frequencies and the formants. The fundamental
frequency of the vocalized sounds is different for men and women, for the first is

4



The speech

Figure 1.3: Vocal signal during the phonation of the word "sì" (with Italian
pronunciation) extracted from Audacity.

from 75 Hz to 300 Hz and for the seconds is from 100 Hz to 400 Hz; this is due to
the different conformation of the vocal folds which are wider and longer in the men
case.

1.3 Vocal symptoms and acoustic changes in
patients with multiple sclerosis

Speech is a complex activity that requires the coordination of different systems in
the body including the neurologic system and is a reflection of the well-being of
the entire body [4]. The multiple sclerosis (MS) is a chronic degenerative disease
that affects the myelin sheath creating multiples lesion on the brain white matter,
brainstem and spinal cord leading to considerable physical disability. The laryngeal
pathophysiology reflects neuromuscular disorders with dysphonia as one of the first
presenting symptoms. A physician with a great experience may deduce relevant
clinical information by the phonatory characteristic of the patient. Unfortunately
patient with MS have sometimes intermittent or subtle presence of vocal changes so
often they are not perceived. Acoustic analysis can assist the physician’s perceptual
evaluation and support expert assessments.
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1.4 Voice Rehabilitation Technique

Referring to [5] at least 62% of people affected by multiple sclerosis have vocal
disorders. Vocal symptoms could be very different due to the different problems
including respiratory muscles weakness, incomplete glottal closure and posterior
glottal chink. The predominant vocal issues are phonatory instability, vocal
asthenia, harshness, breathiness and hypophonia. Hypophonia is the most common
symptoms (present in 16% of patients with MS) occurring in the early stages of
the disease. Vocal disorders affects significantly the quality of life but just the 2%
of the patients with MS (PwMS) receive speech therapy and few studies have been
conducted on the effectiveness of vocal treatments.

1.4.1 The Lee Silverman Voice Treatment LOUD

The Lee Silverman Voice Treatment LOUD (LSVT-LOUD), as explained in the [6],
is a popular voice therapy normally used for treat people with Parkinson’s disease
(PD), in fact the leading cause of death in patients with PD is aspiration pneumonia
associated with the presence of dysphagia and dystussia. LSVT-LOUD primarily
aims to improve the loudness but at the same time it effects the sensomotor speech
system with improvements in speech intelligibility, facial expression, breath support
and voice quality. Each session includes both "daily tasks" that are always the
same and "hierarchical exercises". Daily tasks comprise 30 minutes of sustained
phonation of the vowel /a/, high volume /a/, pitch glides and 10 functional
sentences; instead hieranchical exercises includes 30 minutes reading exercises
with increasing difficulties in duration and complexity of the tasks. Unlike other
vocal treatment, this technique requires intensive high effort speech exercise during
treatment combined with a simple and continuous exercise during every day life.

1.4.2 LSVT-LOUD versus Standard therapy

The standard therapy includes all speech techniques among which are exercises
targeting respiration, phonation and behavioral strategies. The exercises are
adapted and personalized on patient needs. In particular the rehabilitation protocol
comprehended tree type of exercises:
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1. Increase diaphragmatic and respiratory function and improve respiratory flow
awareness;

2. Improve phonatory stability and glottis closure increasing resistance to air
passage;

3. Increase expiration time and pneumo-phono-articulatory coordination with
exercises of growing difficulties.

The substantial difference beetwen this two type of vocal therapy lies in the fact that
LSVT therapy follows a standard protocol while conventional therapy is defined by
the therapist adapting it to the patient and thus aims for targeted and personalized
improvement.

1.5 Perceptual Rating Scales: GIRBAS and VHI

Patients’ pathological voices need to be classified to assess the severity of the vocal
problems, to observe any changes following injuries, surgery and rehabilitation
therapy but also to simplifies communication between therapists. GIRBAS is a
perceptive evaluation scale [7] that includes 6 parameters assigned by the therapists:

• Grade: generic grade of dysphonia;

• Instability: instability of voice functionality over time, very important for long
term evaluation;

• Roughness: low frequency aperiodicity related to atypically vocal folds vibra-
tion, that generates fluctuation in wave fundamental frequency and amplitude;

• Breathy: the voice is produced with the uncompleted glottis closure that
creates a audible turbulent noise;

• Asthenic: general fatigue due to insufficient muscles strain related to low voice
intensity and lack of high frequency harmonics;

• Strained: iperfunctional phonetic state evaluation characterizing by noise,
harmonic in the high frequency range and high fundamental frequency.
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The speech

For each parameters is assigned a quote from 0 (normal) to 4 (severe).
VHI is an auto-evaluation scale, it is a standardized 30-points questionnaire divided
into 3 subsection including functional, emotional and physical voice disorders.
Patients have to assign a score from 0 (never) to 5 (always) to each statement, the
maximum score is 120 (worst situation).
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Chapter 2

Materials and Methods

In 1945 the war was just ended and there were a great amount of people suffering
throughout the country. The Don Gnocchi’s project was to help people in need,
starting with the most needy such as war orphans and mutilated children. In
the following years Don Gnocchi Foundation expanded to include more and more
patients to give attention to all forms of disability. Today, Don Gnocchi Foundation
includes 5700 operators with more than 3700 beds for a total of 28 Centres and
around 30 territorial outpatient clinics spread over 9 Italian regions.
This thesis work is conducted in collaboration with the speech therapy and rehabil-
itation department of the Don Gnocchi hospital in Milan, which treats patients
with multiple sclerosis (MS). The study focused primarily on comparing parameters
of healthy subjects and parameters of subjects with multiple sclerosis. The aim is
to find the most significant features for the distinction between pathological and
healthy subjects and the identification of feature values representative of the two
categories. The second purpose of this study is to prove the best effectiveness of
LSVT-LOUD technique in voice therapy for PwMS in comparison with the stan-
dard technique already in use. The last analysis concerns the comparison between
the results of the extraction algorithm and the experts’ perceptual evaluations
(GIRBAS scale) to check the consistency of the results in terms of improvement or
deterioration of vocal performance. For this reason, all patients participating in
the study were divided into three groups of therapy; a first group was treated with
LSVT-LOUD therapy, a second group was treated with standard therapy and a
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third group was not treated. The therapists recorded the patients before and after
therapy while performing 3 repetitions of the vowel /a/ and free speech lasting
approximately 1 minute.

2.1 Data-set

The data set provided by Don Carlo Gnocchi includes voice recordings of 69 multiple
sclerosis (MS) patients; 23 were treated with the LSVT-LOUD therapy (labeled as
LSVT), 20 were treated with the standard therapy (labeled as ACTIVE) and 26
were not treated at all (labeled as WAITING). For each patient there is a set of
recordings acquired before the start of therapy (time T0) and a set acquired at the
end of therapy (time T1). The set includes 3 repetitions of the vowel /a/ and free
speech lasting approximately 1 minute. Expert perceptual ratings (GIRBAS scale)
and patient self-assessment (VHI scale) associated with each recording were also
provided. General information was also provided for each patient under analysis
such as: age, gender, year of disease onset and other parameters related to the stage
and type of disease. GIRBAS and the VHI scores relating to the two observation
times were also provided.
About the comparison between MS patients and healthy subjects, a data-set
available at the Electronics and Telecommunications Department of Politecnico
di Torino have been processed in order to obtain reference data. The data-set
includes 3 repetitions of the vowel /a/, free speech and the reading of a phonetically
balanced text for each of the 57 involved healthy subjects.

2.2 Signal Processing

2.2.1 Manual Cleaning

For this study, it was decided to take the 3 repetitions of the vowel /a/ and
free speech into analysis so that patients’ vocal abilities could be fully assessed.
Unfortunately, due to logistical and organizational problems some records are
missing so it was necessary to create subgroups of analysis so as to make the
best use of the provided material. In addition, some recordings were preminarly
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discarded because of saturation problems or issues related to the quality of the
microphone and acquisition system. After this first selection, the recordings were
analyzed by means of the software Audacity, which allowed to remove signal sections
that are characterised by instrumental artefacts or external noise. During manual
removal, care was taken to not cut sections of the recordings during phonation: the
cut should begin and end only during silences, thus avoiding the truncation of the
vocal signal. Specifically, the encountered problems are:

• Saturation: the signal exceeds the measuring range of the instrument ac-
quisition system all out-of-range information is lost. In this case the signal
is discarded in its entirety. The problem can only be solved upstream by
configuring the instrument correctly before acquisition.

• Instrumental artifact: signal sections with non-zero mean due to instrumental
transient; in this case a manual removal of the corrupted sections is carried
out without problems, since this problem always occurred at the beginning of
the recording.

• Low frequency artefact: these artifacts occur as signals with different frequency
characteristics from the speech signal, in which case the artifact is not deletable
since it is internal to the signal but falls in a different frequency range from
that of the speech signal (thus not affecting frequency analysis but could be a
problem for amplitude analysis).

• High frequency artefact: these are impulsive disturbances that fall, as before,
into ranges not of interest and do not affect measurements in the frequency
domain.

Some visual examples of the above problems are shown in Fig: 2.1. At the end
of the manual cleaning, two main subsets were created, one for the analysis of the 3
repetitions of the vowel /a/ and a second for the analysis of speech. In both cases,
the recordings made at observation times T0 and T1 were considered since they are
most representative of the therapy effects. Tables 3.1 and 3.2 show the two final
subsets of patients, the class of therapy they belong to and their numerosity.
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Figure 2.1: Problems encountered during manual pre-processing: a) instrumental
artifacts b) low frequency artifact c) high frequency artifact d) saturation

Vowel /a/ Data-set
TOTAL OF 44 PATIENTS

Patient therapy Numerosity
LSVT 14

ACTIVE 15
WAITING 15

Table 2.1: Data-set for the analysis
of the vowel /a/, patients are divided
in 3 therapy classes with the corre-
sponding numerosity.

Free speech Data-set
TOTAL OF 38 PATIENTS

Patient therapy Numerosity
LSVT 8

ACTIVE 16
WAITING 14

Table 2.2: Data-set for the analy-
sis of the free speech, patients are
divided in 3 therapy classes with the
corresponding numerosity.

2.2.2 Pre-processing

The pre-processing of free speech and the repetition of 3 /a/ was performed in
parallel using two separate scripts in Matlab R2020a environment, but the steps are
equivalent. First, the signals are re-sampled at two different sampling frequencies
for the two cases under analysis: in the case of the 3 repetitions of the vowel /a/
at 44100 Hz, in the case of the free speech at 22050 Hz. Then the mean value of
the entire signal is removed, after verifying that it was less than 10% of the RMS
value. Each signal is then normalised with respect to its maximum in order to
have comparable signals. For this preliminary analysis, signals are observed using
46 ms frames; for free speech, 1024-sample windows and a sampling frequency
of 22050 Hz are used (so 1024/22050 Hz = 46 ms ), while for the vowel /a/,
2048-sample windows and a sampling frequency of 44100 Hz are used (analogously
2048/44100 Hz = 46 ms). At this point, the signal is divided between silence and
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non-silence frames, for which a fixed threshold equal to half the RMS value of the
entire signal is used: if the RMS value of the frame does not exceed half the RMS
value of the entire signal, the frame is considered a silence frame. A second check
is made on the frame noise, if the HNR value (the calculation will be explained in
detail below) of the frame is greater than zero, i.e. the harmonic power is greater
than the noise power, the frame is considered harmonic. A third check is performed
on frequency jumps: frames that differ by more than half an octave are not allowed.
Valid frames are saved while retaining information about the frames that were
discarded from the analysis (discarded because they are silent or because they are
not harmonic) so as to have a general idea of the quality of the original recording.
Once the pre-processing is finished, parameter extraction is continued on the valid
frames only.

2.2.3 Features Extraction

Feature extraction is performed only on the signal blocks selected during prepro-
cessing. As mentioned in the previous paragraph two different scripts were used for
feature extraction, in fact in the case of the free speech the signal is observed using
windows with a fixed number of samples (frames of 1024 samples); instead in the
case of the vowel /a/, being an almost periodic signal, it is better to use hypothetical
periods as frames. The speudo-periods were calculated using the autocorrelation
of the signal, which, according to theory, reaches a local maximum (the absolute
maximum is at the zero shift, which corresponds to the signal’s power) at the shift
value equal to the signal’s period, i.e. where the signal repeats more or less the
same. The fundamental frequency and HNR, as well as the speudo periods are also
calculated using the autocorrelation method. In the following section, its steps are
briefly explained. Four acoustic parameters were used to analyse and compare the
vocal performances of the patients: RMS, HNR, f0 and CPPS. The parameters
were observed through their relative statistical distribution, considering for each
of them the following statistics: mean, median, mode as central trend; standard
deviation, range, 5° percentile, 95° percentile as variability measure; skewness and
kurtosis as shape factor. In the case of the vowel /a/, 9 stability parameters in
period and amplitude are also calculated. For the Matlab implementation of the
parameters, reference was made to the software instruction manual MDVP, Model
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5105 [8].

2.2.4 Acoustic Parameters

RMS: Root Mean Square
The RMS value is used in zero mean alternating signals as a power indicator.

The function already implemented in Matlab "rms" was used for the calculation.
Analytically:

xRMS =

öõõô 1
N

NØ
n=1

x2
n (2.1)

where xn are the signal samples. The RMS value of each frame is calculated before
the extraction of the other acoustic parameters as a discriminator for the silent
frames as explained above. The RMS value of the non-silent frames is then saved
in an array.

HNR: Harmonic to Noise Ratio and f0 Fundamental Frequency
Average ratio of the harmonic spectral energy. It provides a general evaluation
of the presence of noise in the signal. For the calculation of the HNR and the
fundamental frequency f0, the autocorrelation method was used; to understand the
various steps, it is necessary to recall the definition and properties of autocorrelation
of a generic signal.
y(t) is a generic steady-state signal in the time domain, i.e. a signal whose proba-
bility distribution does not change when shifted in time. A generic speech signal
consists of a periodic part, which therefore repeats itself after a period of time
equal to the duration of its period, and a non-periodic part due to noise. the
autocorrelation of a signal is defined as the product of the signal by itself shifted
by a quantity m varying between zero and the length of the signal. The auto-
correlation (equation 2.2) is defined in the time-domain, consequently it has an
absolute maximum at zero (completely overlapping signal) representing the signal
power and is zero where the signals do not overlap. For signals that have a periodic
component as in this case, the autocorrelation also has a local maximum for shift
value m equal to the period of the signal, i.e. where the signal reoccurs more or less
the same. So by identifying the point of local maximum, it is possible to obtain the
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period of the signal and consequently also its fundamental frequency f0. To speed
up computational time, the search is carried out in the period ranges corresponding
to the frequency ranges of interest; 75 Hz to 300 Hz for males, 100 Hz to 400 Hz
for females.

AC =
Ú

y(t) ∗ y(t + m) dt (2.2)

once the period T is found, the parameter HNR is calculated as:

HNR [dB] = 10 log10 | AC(T )
AC(0) − AC(T ) | (2.3)

where:

• AC(T ): harmonic energy of the signal, calculated as the autocorrelation of
the signal at the shift point equal to the period.

• AC(0): total signal energy, calcolated as the autocorrelation in the zero shift.

• AC(0) − AC(T ): portion of energy related to the unharmonic part of the
signal, calculated as the difference of the previous energies.

HNR is evaluated in dB through the use of the logarithmic operation: when it is
greater than zero, it means that the periodic signal power exceeds the non-periodic
signal power. The HNR value is calculated on non-silent frames to assess their
harmonicity: if the value exceeds 0 dB the frame is accepted and the HNR value
saved in an array and extraction is continued; if it does not exceed zero it is
considered a non-harmonic frame.

CPPS: Cepstral Peak Prominence Smoothed
For the complete understanding of the parameter, it is necessary to briefly explain
what the Cepstrum is and how it is obtained. "Cepstrum" is the anagram of
the word "spectrum", it is defined as the power spectrum of the logarithm of the
signal power spectrum ([9], [10]). The power spectrum is defined as the square of
the Fourier transform, so applying the squared transform to the logarithm of the
squared transform of the signal gives the cepstrum:

Cp(τ) = F{log |F [x(t)]|2}2 (2.4)
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where: x(t) is the vocal signal, F is the Fourier transform, |F [x(t)]|2 is the signal
power spectrum and τ is is called "quefrency" (namely the anagram of "frequency")
in the cepstrum domain, being neither a time nor a frequency. The use of the
cepstrum is extremely advantageous in the analysis of multi-component sounds, as in
the case of vocal analysis. By switching to the quefrency domain, the complex signal
is represented broken down into its simple and now easily recognisable components.
For example, a generic vocal signal y(t) is composed of two components, one s(t)
given by the vocal source (vocal cords) and a second h(t) given by the resonant
tract (which filters the first signal) in convolution with each other:

y(t) = s(t) ∗ h(t) (2.5)

By applying the Fourier transform to the equation (2.5), the convolution is trans-
formed into a multiplication, obtaining:

Y (f) = S(f) · H(f) (2.6)

Applying the logarithmic function to (2.6) gives:

log Y (f) = log S(f) + log H(f) (2.7)

In this way, it is possible to obtain the equation (2.7) that has the two components
in sum and no longer in multiplication. Finally, reapplying the Fourier transform
results:

F [log Y (f)] = F [log S(f)] + F [log H(f)] (2.8)

the graphical representation (fig.2.2) of the cepstrum, which shows on the abscissae
the quefrency in [ms] and on the ordinates the amplitude in [dB], makes it possible
to identify a peak in amplitude localised around the fundamental period of the
vocal signal y(t). The CPPS parameter is obtained by measuring the difference
between the amplitude of the cepstrum peak, on which smoothing is first performed,
and the value of the cepstrum regression line at the peak point. Smoothing was
introduced a posteriori and showed a clear improvement in results.
For the implementation of the CPPS factor, it was necessary to proceed in a
different way to the other parameters, as many more values had to be calculated
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Figure 2.2: In blue the cepstrum extracted from a patient speech recording, in
red the related regression line, the quefrency in which the peak falls corresponds to
the fundamental period of the signal.

in order to obtain satisfactory results. To do this, the CPPS was calculated every
44 samples, but using signal hamming windows of 1024 samples, this created an
indirect overlap factor of (1024 − 44)/1024 = 96 %. Once the cepstrum is smoothed
over 7 frames, the CPPS can be calculated as the difference between the regression
line on which the cepstrum is smoothed and its maximum value. To speed up the
implementation and to avoid errors, the search for the maximum is only done in
the range of interest, which falls between 3.3 ms and 16.7 ms.

2.2.5 Recording Parameters

Three pre-processing output parameters are also saved, representing the percentage
of frames rejected in the two pre-evaluation steps prior to feature extraction; they
are useful for the interpretation of the rest of the parameters. In particular, the
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stability parameters that follow are greatly influenced by the length of the signal
under analysis; in fact, being the result of an averaging operation, the longer the
signal, the more stable parameters will result. Below are the formulas used:

• V
S

: ratio of non-silent frames, which include both harmonic and non-harmonic
frames, by silent frames (considered only for the free speech);

• har
har+unhar

: ratio of harmonic frames by non-silent frames;

• Length: number of valid frames after pre-processing.

2.2.6 Stability Parameters

The parameters used for the analysis of the 3 repetitions of the vowel /a/ and free
speech are the same, with the exception of 9 additional parameters of amplitude
and period stability for the vowel /a/ analysis. In fact these parameters are useful
to get an idea of how much the patient is able to keep the tone and degree of the
voice constant. The 9 parameters and their corresponding definitions are given
below:

1. Jitta [µs]: Absolute Jitter, an evaluation of the period-to-period variability
of the pitch period. Voice break areas are excluded.

Jitta[µs] = 1
N − 1

N−1Ø
i=1

|T (i)
0 − T

(i+1)
0 | (2.9)

where: T
(i)
0 , i = 1,2...N extracted pitch period data, N : number of extracted

pitch periods.

2. Jitt [%]: Jitter Percent, relative evaluation of the period-to-period variability.

Jitt[%] = 100 ·
1

N−1

N−1q
i=1

|T (i)
0 − T

(i+1)
0 |

1
N

Nq
i=1

T
(i)
0

(2.10)

where: T
(i)
0 , i = 1,2...N extracted pitch period data,

N : number of extracted pitch periods.
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Both Jita and Jitt represent assessments of the same type of pitch disruption.
Period irregularity can be associated with the inability of the vocal cords
to sustain a periodic vibration for a given period. Usually these types of
variations are random. They are typically associated with hoarse voices. Jita
is an absolute measure dependent on the average fundamental frequency of
the voice. For this reason, normative values from the Jita for men and women
differ considerably. Higher pitch is associated with lower Jita and vice versa,
which makes Jita difficult to compare. Jitt, on the other hand, is a relative
measure and the influence of the subject’s average fundamental frequency is
greatly reduced.

3. RAP [%]: Relative Average Perturbation, Relative evaluation of the period-to-
period variability of the pitch within the analyzed voice sample with smoothing
factor of 3 periods.

RAP [%] = 100 ·
1

N−2

N−1q
i=2

|T
(i−1)
0 +T

(i)
0 +T

(i+1)
0

3 − T
(i)
0 |

1
N

Nq
i=1

T
(i)
0

(2.11)

where: T
(i)
0 , i = 1,2...N extracted pitch period data,

N : number of extracted pitch periods. It is similar to the Jitt but with
a smoothing that reduces the sensitivity of RAP to pitch extraction errors.
However, it is less sensitive to very short-term variations. Hoarse and/or
breathy voices may have a higher RAP.

4. PPQ [%] : Pitch Period Perturbation Quotient, Relative evaluation of the
period-to-period variability of the pitch within the analyzed voice sample with
a smoothing factor of 5 periods.

PPQ[%] = 100 ·
1

N−4

N−4q
i=1

|1
5

4q
r=0

T
(i+r)
0 − T

(i+2)
0 |

1
N

Nq
i=1

T
(i)
0

(2.12)

where: T
(i)
0 , i = 1,2...N extracted pitch period data,

N : number of extracted pitch periods. PPQ is a parameter very similar to
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RAP only it has smoothing over 5 periods instead of 3; thus the effect of
smoothing is more predominant.

5. vf0 [%]: Coefficient of Fundamental Frequency Variation, Relative standard
deviation of the fundamental frequency. It reflects, in general, the variation
of f0 (short to long-term) within the analyzed voice sample. vfO is com-
puted as the ratio of the standard deviation of the extracted period-to-period
fundamental frequency data by the average fundamental frequency as:

vF0[%] = 100 · σ

f0
= 100 ·

ó
1
N

Nq
i=1

( 1
N

Nq
j=1

f
(j)
0 − f

(i)
0 )2

1
N

Nq
i=1

f
(i)
0

(2.13)

where: f0 = 1
N

Nq
i=1

f
(i)
0 and f

(i)
0 = 1

T
(i)
0

period to period fundamental frequency

values, where: T
(i)
0 , i = 1,2...N extracted pitch period data, N : number of

extracted pitch periods. vfO reveals changes in the fundamental frequency.
The vFo value increases regardless of the type of pitch variation. Random or
regular variations, short or long term, increase the vFo value. These variations
can be frequency tremors or non-periodic variations, or even simply an increase
or decrease in pitch.

6. Shim [%]: Shimmer Percent, Relative evaluation of the period-to-period (very
short term) variability of the peak-to-peak amplitude within the analyzed
voice sample.

Shim[%] = 100 ·
1

N−1

N−1q
i=1

|A(i) − A(i+1)|

1
N

Nq
i=1

A(i)
(2.14)

where: A(i), i = 1, 2...N extracted peak to peak amplitude data, N : number
of extracted impulses. Cycle-to-cycle amplitude irregularity may be associated
with the inability of the strings to sustain a periodic vibration for a given
period and the presence of turbulent noise. This type of random irregularity
is typically associated with hoarse and breathy voices.

7. ShdB [dB]: Shimmer in dB - Evaluation in dB of the period-to-period (very
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short-term) variability of the peak-to-peak amplitude within the analyzed
voice sample.

ShdB[dB] = 1
N − 1

N−1Ø
i=1

|20log(A(i+1)

A(i) )| (2.15)

where: A(i), i = 1, 2...N extracted peak to peak amplitude data, N : number
of extracted impulses. Both Shim and ShbB are relative evaluations of the
same type of amplitude perturbation, but use two different units, percent and
dB.

8. APQ [%] : Amplitude Perturbation Quotient, Relative evaluation of the
period-to-period variability of the peak-to-peak amplitude within the analyzed
voice sample at smoothing of 11 periods.

APQ[%] = 100 ·
1

N−10

N−10q
i=1

| 1
11

10q
r=0

A(i+r) − A(i+5)|

1
N

Nq
i=1

A(i)
(2.16)

where: A(i), i = 1, 2...N extracted peak to peak amplitude data, N : number
of extracted impulses. APQ is a parameter very similar to shimmer but with
a smoothing factor of 11. Although smoothing reduces the sensitivity of
APQ to period-to-period amplitude variations, APQ still describes short-term
amplitude perturbations of the voice very well. Wheezy and hoarse voices
usually have a higher APQ.

9. vAm [%]: Coefficient of Amplitude Variation, Relative standard deviation of
the peak-to-peak amplitude. It reflects in general the peak-to-peak amplitude
variations (short to long-term) within the analyzed voice sample.

vAm[%] = 100 · σ

A0
= 100 ·

ó
1
N

Nq
i=1

( 1
N

Nq
j=1

A(j) − A(i))2

1
N

Nq
i=1

A(i)
(2.17)

where: A(i), i = 1, 2...N extracted peak to peak amplitude data, N : number
of extracted impulses. vAm reveals cycle-to-cycle amplitude variations of the
voice. Any type of variation, short or long term, regular or random, increases
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the value of vAm.

As a result, matrices are obtained which show the time observations of the various
patients under analysis on the rows and the extracted parameters on the columns.
In the case of the free speech on the columns, 39 features are reported, whereas for
the case of the 3 /a/ repetitions there are a total of 47 features.

2.3 Data cleaning (vowel /a/)

Following the extraction, the parameters were checked to verify their quality and
detect any anomalous values. The most variable and far from the respective
standard values turn out to be those for the stability parameters. The stability
parameters (calculated only in the case of the vowel /a/), in particular, assume
higher values where the recording under analysis is longer, i.e. where there are more
signal windows under analysis. The number of windows under analysis is reported
on the last column of the parameter matrix obtained from the extraction; this
number is obtained by subtracting the number of silence windows and the number
of non-harmonic windows from the total number of signal windows. Furthermore,
the stability parameters are calculated on consecutive frames, but if some frames
internal to the signal are removed during preprocessing, frames that are not actually
adjacent are considered as such and this leads to errors in the calculation of the
parameters. In order to quantify the effect of this undesired phenomenon, the
frames analysed by the pre-processing are represented in a graph by assigning a
value of 1 to harmonic frames, a value of 0 to silent frames and a value of 2 to
non-harmonic frames, two examples are given in Fig:2.3. Ideally, one would expect
to observe the presence of silent frames at the beginning and end of the recording,
but in the middle of the vocal reproduction, only harmonic frames should be
present; what is observed in many cases, is the presence of numerous non-harmonic
frames within the recording and sometimes even silence frames. This situation
should normally not occur because every audio reports sustained phonation of the
vowel /a/ (harmonic sound, produced by the periodic vibration of the vocal cords).
Obviously, these are pathological voices, so the patient may lose his voice at times
(silent frames) or the sound may not be clear (non-harmonic frames). On the other
hand the quality of the starting audio was poor (a lot of sub-frame noise) and many
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Figure 2.3: Two examples relating to the recording of the vowel /a/ sustained,
on the x’s are the total frames on the y’s are associated the value: 1) harmonic
frame, 2) non-harmonic and 0) silence.

frames within the signal are considered non-harmonic and eliminated, creating
holes that lead to a consistent worsening of the stability parameters; moreover, the
recording is shorter and also in this case the stability parameters are worse. It was
therefore decided to eliminate the most problematic recordings where the whole
recording was discontinuous, and in cases where a more harmonious and continuous
inner tract was observed to cut the beginning and end parts. After this cleaning,
the recordings were processed again and the parameters were save. By having 3
values for each observation time, it was possible to eliminate unsuitable data (one
or two repetitions out of 3 total) and save suitable ones, without excluding the
patient from the analysis.

2.4 Pathological vs. Healthy subjects

To get an idea of the pathological vocal situation of the patients, a comparison
with healthy subjects was made. The Turin Polytechnic provided recordings of
57 healthy subjects, for each of whom there were three repetitions of the vowel
/a/, a free speech and the reading of a phonetically balanced passage. The same
parameter extraction algorithm was used for both the vowel /a/ and the free
speech (in this case, reading was also analysed in the same way as speech). The
parameters extracted from the 3 repetitions of the vowel /a/ were averaged and
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standard deviations were calculated. The data were then observed by means of
point cloud graphs in order to observe a group trend and to understand which
features differed most between healthy and unhealthy subjects. Referring to the
fig:(2.4), pathological patients are represented in colours ranging from yellow to
red, with lighter colours indicating a low G grade and thus better conditions, while
a colour closer to red indicates a high G grade and thus a more severe pathological
situation; the colour blue is used to represent healthy patients. On the part of the
graph where the pathological patients are represented, there are red vertical lines
that divide the pathological patients into 6 subgroups, respectively: pre-therapy and
post-therapy LSVT-LOUD patients, pre-therapy and post-therapy STANDARD
patients and patients not treated with any therapy before and after few months.

From such graphs, a cut-off value could be identified for the most significant

Figure 2.4: Absolute value of jitter % of pathological patients (yellow to red as
the severity of vocal ability increases) and healthy subjects in blue

features to differentiate healthy from sick patients. From this idea, four groups
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were created:

1. All pathological patients before therapy;

2. Pathological patients after therapy (both LSVT-LOUD and standard);

3. Untreated pathological patients;

4. Healthy patients.

On these four groups, the mean and the standard deviation of the mean were
calculated and the values compared by means of bar graphs, fig:2.5. With these
types of graphs, it is possible to quantify the improvement in the vocal performance
of pathological patients and to get an idea of how close this improvement is to a
non-pathological situation.

Figure 2.5: Average value and dispersion (±2σ) of jitter with reference to the 4
categories under analysis.
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2.5 Feature Selection

2.5.1 Data Observation

Before proceeding with feature extraction, a preliminary observation of the data
was carried out. For the analysis of /a/, 3 repetitions were available for each time
observation, so the mean value and standard deviation were calculated, which will
be used from this point onwards for the analysis. The graph (Fig:2.6) shows the
average values of the 3 repetitions and the standard deviations through the error
bars of amplitude ±σ are also shown for the parameter HNR mean. The same type
of graphical observation was made with the parameters extracted from the free
speech analysis, but in this case there was just one recording for each observation
time, so the standard deviation was not represented in the graphs. This first visual
observation is intended to help the observer compare the patient’s situation before
and after therapy, highlighting any improvements or worsening. At this point,
the variations between the two temporal observations T1 and T0 were calculated
by difference; in the case of the free speech the parameter matrices of the two
observations were simply subtracted according to the formula T1 - T0; in the case
of the vowel /a/ the mean values of the 3 repetitions, previously calculated, were
subtracted in a similar way, and the standard deviations:

σ =
ñ

σ2
T0 + σ2

T1 (2.18)

obtained by quadratic summation from the standard deviations of the 2 temporal
observations were associated to those delta values. In order to better understand
what has just been illustrated, an example is given that is related to the parameter
CPPS mean for free speech (Fig:2.8) and the parameter HNR mean for the vowel
/a/ (Fig:2.7).

In Fig:2.8 and Fig:2.7, where the parameters CPPS mean and HNR mean are
represented, positive values indicate improvements in the patient voice (patient
number shown on the abscissa) as a result of the rehabilitation.
At this point, it was decided to observe the average class values (LSVT, ACTIVE and
WAITING) to note any differences in results in relation to the patient rehabilitation.
In the case of free speech, the delta values for each different feature were simply
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Figure 2.6: Mean value over the 3 repetitions of the vowel /a/ of the mean HNR
over the two time observations T0 and T1 for the patients in the analysis divided
by class.

averaged across the three classes and the standard deviation of the mean was also
calculated. For the vowel /a/ the delta values were averaged across the three
classes in a similar way, whereas two contributions had to be taken into account to
calculate the overall dispersion:

• Intra-class contribution u1, which is related to the dispersion of each subject
with respect to the class mean-value;

• Intra-subject contribution u2, which takes into account the standard deviation
of each subject that belongs to the class.
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Figure 2.7: Vowel /a/: Mean HNR delta values (T1 − T0) and relative standard
deviations of the subjects divided into the three classes.

u1 =

öõõô 1
N − 1

NØ
i=1

(δi − δ̄)2 u2 =

öõõô 1
N2

NØ
i=1

σ2
i

Where N is the number of elements belonging to each class. These two contributions
were then summed quadratically to obtain the total dispersion:

utot =
ñ

u2
1 + u2

2 (2.19)

To better understand what has just been described, visual examples are shown
in Fig:2.10 and Fig:2.9 that refer to th parameters CPPS mean for the vowel /a/
and HNR mean for the free speech, respectively.

The observation of these graphs, relating to each extracted feature, aims at the
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Figure 2.8: Free speech: Mean CPPS delta values (T1 −T0) of the subjects divided
into the three classes.

identification of specific features allowing a division between classes. To this end,
the average trends with their associated dispersion bands were observed. Indeed, if
features with dispersion bands that do not intersect between the three classes were
identified, these could be selected for the classification of patients into the three
classes.

In the case of the vowel /a/, delta intervals at ±2σ level do not overlap for
the parameters HNR mean and median, while for free speech the delta intervals
are overlapped for all the parameters. Moreover this type of Features Selection
allows features to be considered individually and not in their combinations. This
way, the discriminatory power of the features is not maximised. For this reason,
a combinatorial algorithm, based on Logistic Regression was used to perform
Features Selection. The algorithm selects all the possible features and all the
possible combination of 2, 3 and 4 features.
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Figure 2.9: Vowel /a/: Average feature values with relative dispersion considering
the range ±σ, on the abscissas are the classes with the total number of patients
belonging to them.

2.5.2 Logistic Regression

Logistic Regression (LR) is a non-linear regression model used when the dependent
variable is a binary value; in fact, unlike linear regression, which returns values
belonging to the set of real numbers ℜ, logistic regression uses a probability that by
definition is limited in the interval [0,1]. Logistic regression can be used to classify
observations, based on their features, into the two categories. LR is a supervised
classification algorithm widely used in machine learning; these are algorithms that
train using a complete data set of features with associated class. The objective of
the model is to establish the probability with which an observation x (independent
variable) can generate one or the other value of the dependent variable y (0 or 1).
The logistic, or logit, model associates a logarithmic probability function (2.20)
with a linear combination of independent variables Xi and regression coefficients
βi, where β0 is the intercept and i = 1...N with N: number of observation.

ln ( p

1 − p
) = β0 + β1x1 + β2x2 + ... + βNxN = f(x) (2.20)
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Figure 2.10: Free speech: Average feature values with relative dispersion con-
sidering the range ±σ, on the abscissas are the classes with the total number of
patients belonging to them.

The probability returned by the algorithm is defined by the sigmoid function Eq.2.21
derived from Eq.2.20, this is a continuous function defined between 0 and 1:

p(x) = 1
1 + e−f(x) (2.21)

The objective of the algorithm is to minimise classification errors [11], by finding
a sigmoid function p(x), defined by the regression coefficients β0, β1...βN , that
can minimise the distance between it and the actual responses Yi. The process
of calculating the best coefficients or weights is called model training. In order
to obtain the best weights, the maximum likelihood is estimated by maximising
the log-likelihood function, LLF (equation 2.22); this can be done with various
deterministic or stochastic mathematical methods such as least squares difference,

31



Materials and Methods

gradient descent and Newton’s method:

LLF =
NØ
i

(yi ln(p(xi)) + (1 − yi) ln(1 − p(xi))) (2.22)

The relationship between p(x) and f(x) in Eq. 2.20 implies that p(x) = 0.5 when
f(x) = 0 and in this anointing the threshold is imposed: the expected output is 1
if f(x) > 0 (p(x) > 0.5) and 0 otherwise (p(x) <= 0.5). The threshold need not be
0.5, but it usually is, otherwise a lower or higher value can be defined if it is more
convenient for the specific situation. For better understanding, the simplest case of
logistic regression, single-variable logistic regression, is taken into account. In this
model only one feature is considered and thus the logit function results in:

f(x) = β0 + β1x (2.23)

Figure 2.11: Single-variate Logistic Regression model.

The Fig:2.11 shows a visual example of what has just been illustrated; binary
true answers are shown in green, the sigmoid probability function p(x) is shown as
a continuous black line and the logit function f(x) as a dotted line.
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Once the prediction results have been obtained, it is possible to evaluate perfor-
mance by comparing the results predicted by the algorithm with the true results.
The comparison of the results obtained from the algorithm with the actual results
yields the Confusion Matrix (CM) (see Fig:2.12), in which 4 result categories are
compared, the totality of which must return the total number of observations. In
fact, if we consider the binary encoding 0 - 1 as Negative - Positive respectively,
the algorithm can act in 4 different ways with the binary data: the input data
is Positive and the algorithm returns a correct Positive value, vice versa it could
erroneously return a Negative value, similarly if the input data is Negative the
algorithm could return a correct Negative data, or be wrong and return a Positive
data. Consequently are defined:

• True Positives (TP): Total of correctly classified Positive values;

• True Negatives (TN): Totality of correctly classified negative values;

• False Positives (FP): Totality of incorrectly classified Negative values;

• False Negatives (FN): Totality of wrongly classified Positive values.

Figure 2.12: Confusion Matrix in binary classification.

From these 4 response types, metrics are defined to assess the algorithm’s
capabilities and performance. The most widely used metrics are:
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• Accuracy [%]:
ACC = 100 · TP + TN

TP + TN + FP + FN
(2.24)

Percentage of correct classified in both categories, indicates the overall goodness
of classification.

• Precision [%]:
PRE = 100 · TP

TP + FP
(2.25)

Percentage of correct among all positive classifiers. It measures the algorithm’s
ability to classify positive samples.

• Sensitivity [%]:

SENS = 100 · TP

TP + FN
= TPR = 1 − FNR (2.26)

Sensitivity indicates the algorithm’s ability to correctly classify subjects as
Positive, which is very relevant if the Positive class is that of sick subjects
and Negative, vice versa, is that of healthy subjects. A high sensitivity in fact
corresponds to a low number of FNs, i.e. sick subjects classified as healthy,
which in practice is the most dangerous situation that can occur.

• Specificity [%]:

SPEC = 100 · TN

TN + FP
= TNR = 1 − FPR (2.27)

specificity, on the other hand, is the ability to correctly classify Negative
subjects. If, as before, one considers the class of Positives as that of the sick
and that of Negatives as that of the healthy, high specificity translates into
the ability to recognise a healthy patient as such; this is much less relevant
than the ability to recognise a sick person as such; in fact, a healthy person
declared sick will undergo further examinations that will disprove the illness,
whereas a sick person declared healthy will not undergo further investigations
with likely serious consequences.

These considerations are made in a general sense to emphasise that the capabilities
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of an algorithm can often be, or are intended to be, unbalanced with respect to
classes. In this study, we want to examine the different efficacies of two speech-
language rehabilitation techniques, so there is no one class to favour because it is
more at risk. In this case, the classification aims to distinguish the two classes of
therapy as evidence and confirmation of the different impact on patients.

• Area Under Curve (AUC):

The ROC curve is defined by plotting the true positive rate (TPR) against
the false positive rate (FPR) for each possible cut-off setting (in ours case
it is 0.5, but it can be moved). The true positive rate is also known as
sensitivity. The false positive rate is also known as the false alarm probability
and can be calculated as (1 - specificity). The ROC curve is defined between

Figure 2.13: Examples of ROC curves of different classifiers [12].

values in the interval [0,1] of abscissas and ordinates; if the curve corresponds
to the diagonal, the probability of obtaining a correct result is 50 per cent,
which is the worst situation and corresponds to random classification (like
flipping a coin); the ideal situation of perfect classification corresponds to
the co-ordinate point (0,1) (instead of the step being zero only at the zero
abscissa point and 1 elsewhere); the closer the curve is to the ideal form, the
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more preferable the classification, with visual reference in Fig:2.13. Sometimes,
however, dubious situations arise where it is not possible to state with certainty
which of the curves is preferable, thus the parameter Area Under Curve (AUC)
was introduced, i.e. the integral of the curve, a value in the range [0,1], the
higher the value the better the classification.

2.5.3 Feature Selection using Logistic Regression

To perform the feature selection, a classification algorithm based on logistic re-
gression is used in the Matlab R2020a environment. As mentioned above, logistic
regression is a supervised classification algorithm, which means that it requires
as input elements described by a certain feature number and class. It was also
mentioned that logistic regression is a binary classification algorithm; in this study,
there are three classes to discriminate (LSVT, ACTIVE and WAITING), which is
why three feature selections are carried out, one for each combination of classes.
A matrix made up of two classes of elements at a time is given as input to the
algorithm. The matrix shows on the rows the subjects belonging to the two classes
and on the columns the features, the last column indicates the class. The table 2.3
shows the 3 class combinations for binary classification with their respective labels
and the number of patients belonging to the classes for the analyses performed on
the vowel /a/ and free speech. What is noticeable from the table 2.3 is that the

Labels Classes Vowel /a/ Free speech

0 vs 1 LSVT vs ACTIVE 14 vs 15 8 vs 14
0 vs 2 LSVT vs WAITING 14 vs 15 8 vs 14
1 vs 2 ACTIVE vs WAITING 15 vs 15 16 vs 14

Table 2.3: The 3 class combinations for binary classification with their respective
labels, the two columns on the right show the class numerosity for the two analyses
performed.

elements available for classification are generally few, although the class numerosity
is fairly balanced, so very good results are not expected. To evaluate the best
feature or combination of features for classification, the algorithm selects one or
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more (up to four) features, trying out all possible combinations, and calculates the
metrics described above to assess their performance. The algorithm first calculates
the autocorrelation of all features using the ’corr’ function available in the R2020a
Matlab environment. The function takes the matrix containing the features as input
and uses Pearson’s Linear Correlation Coefficient to calculate the autocorrelation
Eq:2.28.

Corr =
qn

i=1(Fa,i − F̄a)(Fb,i − F̄b)ñqn
i=1(Fa,i − F̄a)2 qn

i=1(Fb,i − F̄b)2
(2.28)

Where X̄a = qn
i=1(Xa,i)/n is the mean value of the a column, X̄b = qn

i=1(Xb,i)/n

is the mean value of the b column and n is the column length. This yields a
symmetric matrix mxm (where m is the number of features) of correlation coeffi-
cients for each couple of features; values are defined between 1 and -1 (1: positive
perfect correlation, 0: no correlation, -1: negative perfect correlation). A second
matrix with the same dimensions is also obtained containing the p-value for the
corresponding element; if the p-value is less than 0.05 the correlation is significant.
The first check is performed (only in the case where the features considered are
2 or more) on correlation and p-value: if at the same time the square correlation
value is between 0 and 0.5 and the corresponding p-value is less than 0.05, then
the feature pair is accepted. Then this first check is performed on all possible
pairs of features by selecting 1 to 4 at a time. If all possible pairs (2 features: 1
possible couple, 3 features: 3 possible couple, 4 features: 6 possible couple) of
features of the specific combination satisfy the condition then the pair, triplet or
quatern is considered valid and sent as input to the logistic regression model. The
’fitglm’ function available in Matlab version R2020a was used to create the model,
specifying that the response variable is a binomial type and that the link function
is the ’logit’ function. Once the model has been obtained, a second check is made
on the extracted p-value, this time however a much higher than the previous one
fixed threshold is used; in fact, it was noted that for low p-values equal to 0.05 no
combination of features was selected, therefore it was decided to raise the threshold
up to a value that would allow obtaining at least one triplet. The model returns
for each observation a probability value between 0 and 1 which through a fixed
threshold set at 0.5 is converted into a binary value 0/1 which represents the
membership predicted by the model. From the comparison between the real class
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and the one predicted by the model, the metrics described above are calculated and
used to select the best single feature or pair or triplet or quadruple of features for
classification. To make this selection, the combination of features with the highest
accuracy value is taken and if there is more than one with maximum accuracy, the
one with maximum AUC is selected.

Weighted LR model for the Feature Selection of /a/
The features used in the FS, both in the case of free speech and in the case of
the vowel /a/, are the delta values; these were obtained by subtraction of the
parameters obtained from the feature extraction of the recordings made at times T0

and T1 according to the formula T1 − T0. In the case of the vowel /a/, the standard
deviations of the 3 repetitions were also available, from which a dispersion matrix
of the same size as the delta matrix was derived, as explained above. It is therefore
possible to associate each delta value with its respective dispersion value. The
’fitglm’ function allows an array of weights to be included as an additional input
parameter. The vector of weights was constructed using the dispersion matrix first
using the complement method and then the reciprocal method. The calculation of
the two different weight vectors used to perform the FS is shown below:

• Complement method:
WEI = 1 − Err

Errmax

(2.29)

Where the Err is the dispersion of the features that the algorithm is taking
into account, the Errmax is the maximum dispersion value of the selected
features.

• Reciprocal method:

WEI =
|Delta

Err
|

max|Delta
Err

|
(2.30)

Where Delta is the matrix of delta value of the considered features; the Err
is the matrix of dispersion value of the same features, so it has the same
size. The matrix: |Delta

Err
| is obtained by a point-by-point operation, and its

maximum is obtained by vertically averaging the values to obtain an average
dispersion for each feature.
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The vector of weights must contain a number of elements equal to the number of
observations so that the algorithm can give each observation a different relevance.
For this, the WEI matrix was averaged horizontally, obtaining an average dispersion
value between the features for each subject. From these two weighted FS, the
features with the best performance were obtained in a similar way to the unweighted
model.

2.5.4 Feature Validation

Validation of the features was done using the classification learner available in the
APPs of Matlab R2020a. This interface allows loading a data matrix containing
the features and their classes and manually selecting the features to be used for
classification. In order to avoid overfitting errors, cross-validation was used, which
divides the dataset into 5 folds and estimates the accuracy. The Classification
Learner allows to choose the different classification model from the many available,
including Logistic Regression. As input data, it is only possible to enter the feature
matrix and not also the matrix of relative weights. Then the features obtained from
the different FS performed will simply be selected a priori and used for classification.
At the end of the model training, the relative Accuracy, confusion matrix, scatter
plot and ROC curve of the model are available.

2.6 Relation between VHI and GIRBAS scales

Together with the recordings, general patient information such as age, disease
status and other general characteristics were also provided. Ratings according to
the GIRBAS and VHI scales for each record were also available. The GIRBAS
scale is the rating scale used by speech therapists to assess the vocal quality of
patients. The VHI, on the other hand, is a self-assessment made by the patients
themselves. It was thus possible to compare the experts’ perceptual assessment
with the patients’ self-assessment. The GIRBAS scale has a score from 0 to 4 where
0 indicates a normal condition and 4 a severe condition, the VHI on the other hand
has a score from 0 to 120, where 120 indicates the worst situation. For both scales,
a higher score indicates a worse situation. To make the comparison, delta values
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derived this time from the subtraction T0 − T1 were used, so that positive delta
values indicate an improvement. Since the GIRBAS scale consists of 6 different
values for this analysis, the G and A values, which, on the advice of experts, are
more relevant for patients with Multiple Sclerosis, are observed more carefully.

Figure 2.14: Scatter plot comparing self-reported VHI and perceptual G values
(Girbas scale) of patients.

To visualise the results, the scatter plot (in Fig:2.14 and Fig:2.15) was used to
compare two magnitudes on the two time-independent axes. If a value falls in
the upper right quadrant, the perceptual evaluation and the self-assessment are
consistent: the patient feels better after therapy (could be LSVT-LOUD, ACTIVE
or WAITING ) and the practitioner finds him/her improved. If, on the other hand,
the value falls in the lower left-hand quadrant, then the two assessments are also
consistent but in a negative sense, the patient is worse off and feels even worse.
The other two quadrants, on the other hand, indicate inconsistency between the
patient’s feeling and the expert’s assessment: in the bottom right-hand quadrant
we find a patient who performs better but feels worse and in the top left-hand
quadrant a patient who has got worse but feels better. In order to distinguish
the type of rehabilitation therapy of the patients, different markers were used for
the 3 therapy classes. However, it was observed that in almost all cases the VHI
self-assessment score indicated an improvement both where the GIRBAS scale
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Figure 2.15: Scatter plot comparing self-reported VHI and perceptual A values
(girbAs scale) of patients.

confirmed it and where it did not. To confirm the unreliability of the VHI scale,
another available data set of laryngectomised patients was similarly investigated
(using only the VHI scale in comparison to the GIRBAS scale). Here too, any
positive or negative GIRBAS score was associated with positive VHI values, so this
second observation reconfirmed the thesis, so that the VHI score will no longer be
taken into consideration from here on.

2.7 Comparison between Extracted Features and
GIRBAS scale

Another analysis conducted in this study concerns the relationship between the
GIRBAS scale assigned by the experts and the result of parameter extraction.
GIRBAS values, similarly, were converted into delta values, but according to the
formula T1 − T0, in order to associate positive delta values with an improvement
in vocal performance. The features used during the study are the delta values
obtained from the subtraction of the extracted parameters at times T1 and T0

according to the formula T1 − T0. The extracted parameters are different and
for some of them the increase corresponds to an improvement of the patients’
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performance, while for others it corresponds to a worsening. Delta Features values
were multiplied by a vector containing positive and negative unit values in order to
allow direct association of delta Features values with GIRBAS delta values. Having
made this change, the new positive delta features values represent an improvement,
vice versa a deterioration. For the comparison, the scatter-plot was used, which
makes it possible to relate two time-independent variables on the two axes of
definition. For the comparison, we concentrated on observing the G (grade) and A
(asthenic) parameters of the GIRBAS scale, which, according to expert advice, are
the most significant for multiple sclerosis patients. With regard to the features,
the features selected during the FS were observed (these were the features with the
most class-related characteristics) and other features of particular clinical relevance.
This assessment was made in a similar manner for both free speech and the vowel
/a/. Observing the scatter plots in Fig: 2.17 and Fig: 2.16 is possible to observe
the relationship between the A and G components of the GIRBAS scale and the
features. As a visual reference one takes the axes of definition x and y and observes

Figure 2.16: Relationship between features and component G of the GIRBAS
assessment, in both cases positive values correspond to an improvement following
therapy.

the consistency of the values: if a point is in the upper right or lower left quadrant
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(resulting in x>0, y>0 and x<0, y<0) then the result of the extraction is consistent
with the GIRBAS evaluation, positive and negative respectively. On the other hand,
if the dot falls in the upper left quadrant (x<0, y>0), this means that according to
the extraction algorithm the patient has improved while according to the experts
he has worsened; conversely, if the dot is in the lower right quadrant (x<0, y>0),
the patient has worsened according to the algorithm but improved according to the
experts. From these scatter plots, it was possible to construct confusion matrices

Figure 2.17: Relationship between features and component A of the GIRBAS
assessment, in both cases positive values correspond to an improvement following
therapy.

to compare the algorithm’s evaluative capabilities with the experts’ reliable ones.
Two classes of patients were then constructed:

• Positive: patients who improved their vocal performance following therapy
(Class: 2).

• Negative: patients who worsened their vocal performance following therapy
(Class: 1).

For a correct interpretation it is important to remember that the health conditions
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of the patients under investigation are different and Multiple Sclerosis is a neurode-
generative disease that can lead to more or less severe worsening over a short or
longer period. Taking the neutral axes as a reference, four categories of patients
were defined considering the experts’ assessment as a real class:

• x>=0, y>=0 : True Positive

• x<0, y<0 : True Negative

• x>=0, y<0 : False Negative

• x<0, y>=0 : False Positive

Figure 2.18: CM general (all patients) and partial (divided by therapy classes)
where the true class is obtained from the GIRBAS (only G component) evaluation
and the predicted is obtained from parameter extraction.

The general and partial Confusion Matrix (CMs) were thus obtained for each
feature considered, Fig: 2.18 and 2.19; bottom right shows True Positives, bottom
left False Negatives, top left True Negatives, top right False Positives. True results
are assigned the colour blue, which intensifies with the number of elements, simi-
larly, false results are associated with the colour orange. The general Confusion
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Figure 2.19: CM general (all patients) and partial (divided by therapy classes)
where the true class is obtained from the GIRBAS (only A component) evaluation
and the predicted is obtained from parameter extraction.

Matrix in the top left-hand corner is taken as the main reference, showing all
patients regardless of therapy class. The other three CMs report partial class
results to assess whether there are different inter-class trends. From these CMs,
it was possible to calculate the evaluation metrics listed above to assess the per-
formance of the extraction algorithm with reference to the GIRBAS reference
evaluation. So by comparing the evaluation metrics of each feature, the best ones
were chosen. In this case, however, there is no selection of features, but it is
possible to identify the most robust and reliable features because they are the ones
that most reflect and confirm the experts’ assessment of the patients’ vocal abilities.

Realistic Comparison
Observing the scatter plots, Fig: 2.17 and Fig: 2.16, it is possible to see that
many points fall on the x-axis = 0, which corresponds to a delta G or A value of
zero. That situation occurs when the experts assessed the patients’ performance
before and after therapy with a similar score. The possible values for the delta
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characteristics, however approximate, are many more and it almost never happens
that the value is equal to zero. This situation often occurs in view of the fact
that the GIRBAS scale only assigns 5 different scores for each of the 6 parameters.
Since the values are divided into the four types TP, TN, FP and FN using the
axes as a boundary, the situations of greatest uncertainty and doubt are those in
which the element straddles one of the two axes. The method used to split the
elements divides the plane into 4 areas, the elements that fall on the x-axis=0 are
considered positive (patients with improvement) and are included in the right areas
of the plane using the expression >=0; this is justified by the fact that this is a
degenerative disease and therefore a maintenance of the condition is still positive.
Looking at the CMs and metrics (Fig:2.19 and Fig:2.18), it can be seen that the
predominant error is due to FNs, i.e. patients who have improved but whom the
algorithm considers to have worsened. As far as the method of assigning FNs is
concerned, it cannot be ignored that this leads to innumerable errors, so it was
decided to remove the elements with x=0 and y>0 from the dataset to create the
realistic situation. Therefore, a realistic sub-dataset was created and a similar
procedure was carried out. The CM matrix was observed and evaluation metrics
calculated; finally, the results of the realistic case were compared with those of
the original dataset. The scatter plots and general CMs (all patients belonging to
the sub-dataset) of the new ideal situation for the G (Fig:2.20) and A (Fig:2.21)
parameters of the GIRBAS scale, respectively, are shown in the figures.
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Figure 2.20: Ideal relation between delta figures and delta G.

Figure 2.21: Ideal relation between delta figures and delta A.
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Chapter 3

Results and Discussion

In this chapter, the results obtained from the different studies conducted on
the extracted vocal parameters are discussed. In particular, the results of the
comparisons between the vocal parameters obtained from recordings of multiple
sclerosis (MS) patients and those obtained from recordings of healthy patients will
first be illustrated. Next, the features obtained from the different feature selections
conducted on the three pathological patient classes will be listed with their validated
accuracies. Finally, the consistency of the experts’ GIRBAS perceptual evaluation
and that obtained from the voice parameters extracted from the algorithm will be
discussed.

3.1 Pathological vs. Healty Results

In order to reliably compare the parameters relating to pathological patients and
those relating to healthy patients, they were extracted using the same algorithm.
The comparison was made between the absolute values of the parameters for healthy
patients and those for all pathological patients before starting rehabilitation therapy
(T0) in order to consider the two most extreme and distinguishable situations and
to identify which parameters differed the most in the two cases. Subsequently, it
was decided to also include the comparison with pathological patients at time T1

(after finishing therapy) divided into:

• Therapised patients, both with LSVT-LOUD and with ACTIVE therapy, to
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see how close they are to the healthy ones after therapy.

• Untherapised patients, to observe the differences with the therapised patients.

With this further comparison, it was also possible to see which features are most
affected by the therapy and thus which features improved most and came closest
to the value of the healthy ones. In order to choose the best features, the graphs
of the mean values of the 4 categories of patients under investigation (Healthy,
Pathological T0, Therapised T1, Non-therapised at T1) were observed, on the graphs
also the dispersions relative to the 4 broad ±2σ groups (thus including 95.45% of
the cases) are shown. In the case where between healthy and pathological patients
at T0 the dispersion bands do not overlap, the feature is selected. At this point,
the relative values from pathological patients at time T1 treated and untreated are
also observed.

3.1.1 Vowel /a/ Results

For the vowel /a/ 17 parameters were identified as significantly different from a
statistic point of view. The parameters shown in Tab:3.1, where the mean value
and standard deviation relative to the 4 classes of patients under observation
are shown, on the first two columns are the feature names and their unit of
measurement. Looking at the values of the pathological patients following therapy,
one can observe an improvement in condition compared to the pre-therapeutic
condition, while remaining closer and with overlapping dispersion bands to the
values of the pathological pre-therapeutic patients; an approximation to the value
for healthy patients can be observed in all the parameters listed in Tab:3.1 except
for : vF0, std and 95° prc of f0; for which the post-therapy situation seems to have
worsened. Another thing that can be seen from the graphs is that often the value
of non-therapy patients is similar to or even higher than the values of the healthy
patients compared to the treated patients; this apparently abnormal result could
be due to the variable pathological condition of the individual patients.
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Figure 3.1: The table shows the 17 parameters that are statistically independent
(95.45%) when comparing MS patients (T0) vs. Healthy
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3.1.2 Free speech Results

In the case of free speech 10 parameters are result significantly different from a
statistic point of view (dispersion bar set at 2σ). Tab:3.2 shows the mean values
and standard deviations of the 4 classes of patients under investigation, in the
first two columns are the name and relative unit of the parameter. The selected
parameters are the std and range of the HNR, while for the CPPS all descriptive
statistics except kurtosis are selected. When looking at the values for the CPPS
statistics, it can be seen that the mean, median and mode are lower in pathological
patients than in healthy ones, as might be expected; moreover, the values increase
in a slightly higher value following therapy (improvement in the patient’s condition).
On the other hand, the range and std of the CPPS are higher in healthy patients
than in pathological patients, which is not consistent with what is expected; 5th
and 95th prc of the CPPS confirm the lower dispersion of the values in pathologists
than in healthy patients. In general, it is observed that the vowel /a/ presents
many more statistically independent and consequently significant parameters for
the distinction between pathological and healthy patients, of which many more
parameters are positively enhanced by voice therapy.

3.2 Logistic Regression Result

Logistic regression was used to find the most significant features for the classification
of the 3 classes of pathological patients. The delta values of the extracted parameters
were used as features by going to subtract the values at T0 from those at T1. Logistic
Regression is a type of binary classification so three features selection was made for
both vowel /a/ and free speech. After identifying the best feature, pair, triplet or
quatern of features, they were validated using the Classification Learner on Matlab
APP using the 5 fold cross validation option. In the validation phase, we went
to observe the accuracy values of the logistic regression but also tried the other
classifiers available on the APP and reported the accuracies that were greater than
that of the logistic regression and the corresponding classifier with which it was
obtained. In the case of the vowel /a/, similar tests were also carried out in the
two cases of weighted logistic regression, and the results obtained were similarly
validated.
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Figure 3.2: The table shows the 4 parameters that are statistically independent
(95.45%) when comparing MS patients (T0) vs. Healthy

3.2.1 Vowel /a/ Results

As mentioned before 3 features selection and validation were performed for each
combination of the 3 classes, the results are shown in the table, on the left the results
in terms of accuracy not validated and on the right the results with validation;
any results with higher accuracy from other classification methods are shown in
parentheses.
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LSVT vs. ACTIVE

Tables in green show the binary classification results between patients treated with
LSVT-LOUD (LSVT: 14 patients) and patients treated standard therapy (ACT:
15 patients), in the first table the results related to unweighted classification, Tab:
3.3, in the second table the results related to the weighted classification with the
complement method, Tab:3.4, in the third table the results related to the weighted
classification with the reciprocal method, Tab:3.5, lastly the table with the results
of classification without performing features selection Tab:3.6. Referring to the

Figure 3.3: Unweighted classification results: on the right the name of the features
used, in the middle the accuracies without validation obtained, on the left the
accuracies obtained from validation, at the bottom the parameters used by the
combinatorial algorithm for feature selection

table 3.3 it can be seen that the highest accuracy, in the unvalidated case, occurs
for the three features (86.2%); in each case all validated accuracies exceed 70% and
coincide almost in the same value of 72%. The features that are selected are two
stability parameters (vF0 - apq), two statistics of the HNR (mode and 95° prc)
and the skewness of the CPPS. The p value of the model is set to the value 0.3, the
minimum value for which at least one feature triplet is obtained. Referring to the
table 3.4 it can be seen that the highest accuracy, in the unvalidated case, occurs
for the three features (79.3%); the validated accuracies are on the order of 70%,
but it can be seen that using KNN instead of LR in the validation phase would
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Figure 3.4: Complement-weighted classification results: on the right the name of
the features used, in the middle the accuracies without validation obtained, on the
left the accuracies obtained from validation, at the bottom the parameters used by
the combinatorial algorithm for feature selection

result in 79.3% by increasing the accuracy by 10 percentage points. The selected
features turn out to be very similar to the unweighted classification case differing
only in the ppq parameter instead of apq. The p value of the model in this case
was increased to the value 0.4, indicative of more correlated features. Looking

Figure 3.5: Reciprocal-weighted classification results: on the right the name of
the features used, in the middle the accuracies without validation obtained, on the
left the accuracies obtained from validation, at the bottom the parameters used by
the combinatorial algorithm for feature selection
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at the table 3.5 we see generally lower values of accuracy in both the validated
and non-validated cases, although in the case of the three features we arrive at
accuracy values comparable to the previous two cases; again we can see that using
other classification methods (SVM or ensamble) to perform validation increases
the accuracy value up to the value of the non-validated case (75.9%). In this case
the p value of the model was raised up to 0.5; this confirms the worst classification
results. The validated classification results without features selection are much

Figure 3.6: validated classification results without features selection

lower, using LR only 58% accuracy is obtained while using KNN reaches 72.4%,
similar to the validated cases with features selection. Therefore, it can be inferred
that the KNN might be a good classifier for this type of data. In general, it is also
noted that weighted grading does not lead to particular improvements, but that it
can also sometimes be pejorative.

LSVT vs. WAITING

The case in which the best results in terms of accuracy are obtained with model
validation is the classification of LSVT and WAITING subjects, in the unweighted
case the best results are obtained in the case of the three features, in which values
in the region of 80% are obtained. Looking at the Tab: 3.7 it can be seen that the
selected features are different statistics of the HNR (95° prc, 5° prc and range),
the stability parameter vF0 and the range of the RMS, which is, however, taken
into little consideration due to the inconsistent acquisition modes. The p-value
in this case is set at 0.2, one of the lowest values among the tests performed,
confirming the best results. It is also noted that SVM might be a better model
than logistic regression in the validation phase. Observing Tab: 3.4 we can see that
by introducing feature weighting the validated results are better, with accuracies
always above 70% up to almost 80% in the case of three features, where again
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Figure 3.7: Unweighted classification results: on the right the name of the features
used, in the middle the accuracies without validation obtained, on the left the
accuracies obtained from validation, at the bottom the parameters used by the
combinatorial algorithm for feature selection

Figure 3.8: Complement-weighted classification results: on the right the name of
the features used, in the middle the accuracies without validation obtained, on the
left the accuracies obtained from validation, at the bottom the parameters used by
the combinatorial algorithm for feature selection

the SVM turned out to be an improving method. In this case the p-value was
increased to 0.4 indicating less distinguishable features. The best combination,
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that of the three features, is consistent with the unweighted case and is always
the best. Looking at Tab:3.9 we can see that the features selected are the same

Figure 3.9: Reciprocal-weighted classification results: on the right the name of
the features used, in the middle the accuracies without validation obtained, on the
left the accuracies obtained from validation, at the bottom the parameters used by
the combinatorial algorithm for feature selection

in all cases considered, so in this case we can say that the weighting has had no
influence on feature selection and the results are similar. What does change is the
value at which the p-value is set, which is much higher, so we can deduce that this
weighting is not improving. Not doing feature selection (Tab:3.10) leads to very

Figure 3.10: validated classification results without features selection

low results, less than 50 per cent, and LR is certainly not the preferred method, in
which case SVM is certainly advantageous, confirming the cases seen above.
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Figure 3.11: Unweighted classification results: on the right the name of the
features used, in the middle the accuracies without validation obtained, on the left
the accuracies obtained from validation, at the bottom the parameters used by the
combinatorial algorithm for feature selection

ACTIVE vs. WAITING

In general, the least distinguishable case turns out to be the one between ACTIVE
and WAITING, observing the Tab:3.11 we immediately notice how the results are
much lower than the previous cases, the best case turns out to be the one that
uses two features and arrives at around 70%. In general, many stability parameters
are selected (VF0, apq, Vam, Jitter), the std of the f0 the median of the HNR,
the 5th prc of the CPPS and the statistics of the RMS are not taken into much
consideration. In this case, the algorithm also manages to select 4 features but sets
the p-value to 0.7, which is a dicisely high value. It should be noted that in this
case, too, the SVM proves itself to be a vantage model for this type of classification.

Looking at the Tab:3.12 we can see that the weighting of the features leads
to decidedly worse results, arriving in the best case at an accuracy of 60 % in
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Figure 3.12: Complement-weighted classification results: on the right the name
of the features used, in the middle the accuracies without validation obtained, on
the left the accuracies obtained from validation, at the bottom the parameters used
by the combinatorial algorithm for feature selection

the validated case, i.e. 10 percentage points less than the unweighted case. In
this case the p-value is a little lower, 0.5, and in fact one does not get to select 4
features as in the previous case. The highest accuracy is obtained using only one
feature (first situation) which is the kurtosis of the RMS, which we had considered
unreliable due to acquisition problems; certainly this situation is worse than the
unweighted LR. The latter case in Tab: 3.13 turns out to be extremely worse, this
time the best accuracy is 53.3%, with other classification methods it could be as
high as 60% but still remains considerably low, and in this case the p value is
again set to 0.7. Certainly feature weighting with the reciprocal method is not an
advisable method for this type of data. Again, the results of classification without
feature selection are low, Tab 3.14, about 45%, but consistent with the previous
case of reciprocal-weighted classification. In general, in this third case of binary
classification (ACTIVE vs. WAITING), it can be said that feature weighting is
pejorative.
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Figure 3.13: Reciprocal-weighted classification results: on the right the name of
the features used, in the middle the accuracies without validation obtained, on the
left the accuracies obtained from validation, at the bottom the parameters used by
the combinatorial algorithm for feature selection

Figure 3.14: validated classification results without features selection

3.2.2 Free speech Results

For the classification of patients in the case of free speech, it was not possible to
carry out feature selection weighing but only simple feature selection as only one
repetition was available. We therefore proceeded in a similar way to the case of
the vowel /a/ by first carrying out the features selection using the combinatorial
algorithm based on LR and then went on to validate the model on the Classification
Learner (Matlab APP’s) going on to identify, in addition to LR, other more
advantageous classification methods.
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LSVT vs. ACTIVE

Looking at the Tab:3.15, it can be seen that in the first two cases the validated
accuracy always exceeds 75 %. The best case turns out to be the second, in which
are used the 5° prc of CPPs and the V/uV parameter. Using alternative methods,
such as the Decision Tree Classifiers, values above 92 % are obtained. The selected
features are the range and the median of the HNR, 5° prc and range of CPPS and
the V/uV parameter. In this case, the p-value was set at 0.2, which is a lower value
compared to the case of the vowel /a/. The classification results without feature

Figure 3.15: Classification results: on the right the name of the features used, in
the middle the accuracies without validation obtained, on the left the accuracies
obtained from validation, at the bottom the parameters used by the combinatorial
algorithm for feature selection

selection, Tab: 3.16, turn out to be extremely poor, with the LR achieving only
45.8%, whereas using other methods such as Ensemble or KNN yields higher results,
70.8%. Again, LR does not seem to be a preferable method in the validation phase.

LSVT vs. WAITING

Also in the case of speech, the classification between LSVT and WAITING patients
turns out to be the most accurate, Tab: 3.17. In this case, significantly higher
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Figure 3.16: validated classification results without features selection

results are obtained, reaching values of the order of 80 % in the case validated
with LR; while using other methods, such as SVM, it is up to 91 %. The selected
features are the mode, the mean and the 95° prc of CPPS; ths std and the 95° prc
of f0 and the mean of HNR. The p value is set to 0.1, the lowest value in all the
features selection performed in this study. The results in Tab:3.18 are obtained not

Figure 3.17: Classification results: on the right the name of the features used, in
the middle the accuracies without validation obtained, on the left the accuracies
obtained from validation, at the bottom the parameters used by the combinatorial
algorithm for feature selection

carrying out features selection. Also in this case accuracy are worse. Using the
Naive Bayes Classifier the accuracy is higher and reaches the 72.3 per cent.

ACTIVE vs. WAITING

As in the case of the vowel /a/ the classification with the poorest results is again
the one between ACTIVE and WAITING patients. Referring to the Tab: 3.19, the
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Figure 3.18: Validated classification results without features selection

cases validated with LR, accuracy of 73.3 % are reached in all the cases except for
the first selection, in which is used only one features.In this case the LR results
to be the best classifier even in validation phase. The selected features are the
mode, the mean of the HNR, the mode and the std of CPPS, the mode and the 5°
prc of RMS. The p-value in this case is set to 0.5 that is considered an high value;
on the other hand it allows to perform the selection of 4 features. The results in

Figure 3.19: Classification results: on the right the name of the features used, in
the middle the accuracies without validation obtained, on the left the accuracies
obtained from validation, at the bottom the parameters used by the combinatorial
algorithm for feature selection
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Tab: 3.20 are obtained not performing feature selection. Using the LR classifier
accuracy of 50% is reached; this confirms the outcomes previously obtained by
not implementing FS, Fig: 3.16 and Fig: 3.18. Using Ensemble Classifier for the
validation higher accuracy are obtained, 67.7%.

Figure 3.20: validated classification results without features selection

As expected, the classification that achieves the best results is that between
LSVT and WAITING patients. In general, Logistic Regression is a good method
for performing Features Selection. However, to validate the model, it was observed
that other classification methods might be more advantageous.

3.3 VHI vs. GIRBAS scale Results

For each recording, both the experts’ perceptual assessment (GIRBAS scale) and
the patients’ self-assessment (VHI scale) were available. The delta values of the two
assessments (positive values indicate improvement and negative values a worsening)
were compared on a dot plot. What was observed is that patients almost always
tend to increase their scores following therapy and thus consider themselves to
have improved in vocal performance. This makes the VHI assessment inconsistent
but certainly indicates that the therapy has given hope and increased psychological
confidence to the patients, which is very important when dealing with degenerative
diseases.

3.4 Extracted Features vs. GIRBAS scale Re-
sults

Girbas delta values were also compared with feature delta values. To facilitate
the evaluation, some delta feature values were changed in sign to obtain positive
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values in the case of improvement and negative values in the opposite case. For
each feature, a scatter plot was obtained in which the x and y axes divide the
space into 4 regions from which the TP, TN, FP and FN were calculated. The
confusion matrices with the corresponding evaluation metrics were then obtained.
In particular, accuracy, precision, sensitivity and specificity were looked at first on
all patients and then by class (LSVT, ACTIVE, WAITING).

3.4.1 Vowel /a/ Results

The average values for accuracy, precision, sensitivity and specificity are shown
below, on the left column the values in relation to parameter G (Girbas scale),
on the right the values in relation to parameter A (Girbas scale). The first row
shows the total values, i.e. for all patients, the other rows the partial values for the
three therapy classes under consideration. Looking specifically at Tab: 3.1 and 3.2,
generally low values are observed, around 55%, except for LSVT patients, which
reach almost 63%.

G (Girbas scale)
Patient Accuracy
TOTAL 56%
LSVT 63%

ACTIVE 56%
WAITING 50%

Table 3.1: Average accuracy of the
relationship between the G parame-
ter (GIRBAS scales) and extracted
parameters.

A (Girbas scale)
Patient Accuracy
TOTAL 56%
LSVT 63%

ACTIVE 51%
WAITING 55%

Table 3.2: Average accuracy of the
relationship between the A GIRBAS
parameter (scales) and extracted pa-
rameters.

Looking instead at Tabs: 3.3 and 3.4 one can immediately notice for precision
much higher values, between 95 % and 100 %; while for sensitivity (3.5 - 3.6) and
specificity (3.7 - 3.8) the values return low. Thus, there is a glaring imbalance
between precision and sensitivity. Reconstructing the formulae defining precision,
sensitivity and specificity and unitaly observing the confusion matrix from which
they were then calculated, one can see that a large part of the errors can be
attributed to the presence of many false negatives (FN).
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G (Girbas scale)
Patient Precision
TOTAL 98%
LSVT 100%

ACTIVE 96%
WAITING 100%

Table 3.3: Average precision of the
relationship between the G parameter
(GIRBAS scale) and extracted param-
eters.

A (Girbas scale)
Patient Precision
TOTAL 96%
LSVT 100%

ACTIVE 92%
WAITING 98%

Table 3.4: Average precision of the
relationship between the A parameter
(GIRBAS scale) and extracted param-
eters.

G (Girbas scale)
Patient Sensitivity
TOTAL 56%
LSVT 63%

ACTIVE 55%
WAITING 50%

Table 3.5: Average sensitivity of the
relationship between the G parameter
(GIRBAS scale) and extracted param-
eters.

A (Girbas scale)
Patient Sensitivity
TOTAL 56%
LSVT 63%

ACTIVE 53%
WAITING 53%

Table 3.6: Average sensitivity of the
relationship between the A parameter
(GIRBAS scale) and extracted param-
eters.

Looking at the scatter plots from which the confusion matrices were derived,
it can be seen that many points (representative of individual patients) lie on the
x=0 axis, i.e. delta G is zero. If these values are associated with y>0 then they
are considered true positives (TP), if the associated values are y<0 then they
are considered false negatives (FN); it therefore happens that patients who have
been assessed in a similar way, before and after therapy, by the specialist but who,
according to the algorithm, have had a worsening of their condition fall among the
FN. This kind of error is partly due to the poor resolution of the GIRBAS scale,
which is defined on 5 different values, where 0 represents a healthy item and 4 a
very serious situation; small or medium variations are indefinable and this was also
confirmed by the experts at Don Gnocchi.
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G (Girbas scale)
Patient Specificity
TOTAL 60%
LSVT 0%

ACTIVE 60%
WAITING 0%

Table 3.7: Average specificity of the
relationship between the G parameter
(GIRBAS scale) and extracted param-
eters.

A (Girbas scale)
Patient Specificity
TOTAL 56%
LSVT 0%

ACTIVE 28%
WAITING 85%

Table 3.8: Average specificity of the
relationship between the A parameter
(GIRBAS scale) and extracted param-
eters.

Realistic Result

In order to get an idea of what this evaluation might look like by eliminating the
problem just described, it was decided to repeat the evaluation according to the
metrics by eliminating from the calculation those patients who had x=0 and y<0
values. This time, however, only the overall values were calculated and not the
therapy class partials.

G (Girbas scale)
ACCURACY 80%
PRECISION 98%

SENSITIVITY 81%
SPECIFICITY 60%

Table 3.9: Evaluation metrics aver-
aged over all features, in relation to
parameter G, for all patients under
examination.

A (Girbas scale)
ACCURACY 77%
PRECISION 96%

SENSITIVITY 78%
SPECIFICITY 56%

Table 3.10: Evaluation metrics av-
eraged over all features, in relation to
parameter A, for all patients under
examination.

By making this change, the average accuracy rises by about 20 percentage points
to around 80%, the precision remains high in any case, the sensitivity increases
considerably to around 80%, compared to 58% in the previous case; the specificity,
although low, remains constant, not being affected by this change (Tab: 3.9 and
3.10).
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3.4.2 Free speech Results

In the case of free speech, we behaved in exactly the same way; it can be observed
that the results obtained have more or less the same order of magnitude. In fact the
metrics are affected by the same type of error due to the excess of False Negative.

G (Girbas scale)
Patient Accuracy
TOTAL 51%
LSVT 59%

ACTIVE 52%
WAITING 45%

Table 3.11: Average accuracy of the
relationship between the G parame-
ter (GIRBAS scales) and extracted
parameters.

A (Girbas scale)
Patient Accuracy
TOTAL 50%
LSVT 59%

ACTIVE 48%
WAITING 48%

Table 3.12: Average accuracy of the
relationship between the A parame-
ter (GIRBAS scales) and extracted
parameters.

G (Girbas scale)
Patient Precision
TOTAL 95%
LSVT 100%

ACTIVE 89%
WAITING 100%

Table 3.13: Average precision of the
relationship between the G parameter
(GIRBAS scale) and extracted param-
eters.

A (Girbas scale)
Patient Precision
TOTAL 100%
LSVT 69%

ACTIVE 90%
WAITING 98%

Table 3.14: Average precision of the
relationship between the A parameter
(GIRBAS scale) and extracted param-
eters.

Realistic Result

In Tab:3.19 and Tab 3.20 are reported the evaluation metrics after the removal of
the error due to the element with x=0 and y<0. The metrics report similar result
as the case of the vowel /a/: the average accuracy increase, the precision remains
high in any case, the sensitivity increases, compared to 58% in the previous case;
the specificity, remains constant, not being affected by this change.
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G (Girbas scale)
Patient Sensitivity
TOTAL 50%
LSVT 59%

ACTIVE 51%
WAITING 45%

Table 3.15: Average sensitivity of
the relationship between the G param-
eter (GIRBAS scale) and extracted
parameters.

A (Girbas scale)
Patient Sensitivity
TOTAL 50%
LSVT 59%

ACTIVE 49%
WAITING 46%

Table 3.16: Average sensitivity of
the relationship between the A param-
eter (GIRBAS scale) and extracted
parameters.

G (Girbas scale)
Patient Specificity
TOTAL 59%
LSVT 0%

ACTIVE 59%
WAITING 0%

Table 3.17: Average specificity of
the relationship between the G param-
eter (GIRBAS scale) and extracted
parameters.

A (Girbas scale)
Patient Specificity
TOTAL 53%
LSVT 0%

ACTIVE 38%
WAITING 67%

Table 3.18: Average specificity of
the relationship between the A param-
eter (GIRBAS scale) and extracted
parameters.

G (Girbas scale)
ACCURACY 75%
PRECISION 95%

SENSITIVITY 78%
SPECIFICITY 51%

Table 3.19: Evaluation metrics av-
eraged over all features, in relation to
parameter G, for all patients under
examination.

A (Girbas scale)
ACCURACY 71%
PRECISION 95%

SENSITIVITY 72%
SPECIFICITY 47%

Table 3.20: Evaluation metrics av-
eraged over all features, in relation to
parameter A, for all patients under
examination.

69



Chapter 4

Conclusions

In this thesis work, three different studies were conducted on vocal parameters
extracted from pathological patients and healthy subjects.
The first study relates parameters from pathological subjects, before voice therapy
(T0), to values from healthy subjects. All parameters are extracted using the
same algorithm to make the values comparable. Looking also at the value of the
pathological subjects after voice therapy (both LSVT-LOUD and ACTIVE at
T1), it is possible to observe how much the voice therapy positively influenced
that parameter by bringing it closer to the characteristic value of healthy subjects.
The parameters that best discriminate between pathological and healthy patients
are: CPPS (5° pcr, std), f0 (std, range, 95° prc), HNR (mean, median, mode, 5°
prc), Vam, APQ, Shimmer db, Shimmer %, Vfo, PPQ, RAP, local Jitter, for the
vowel /a/, Tab:3.1; HNR (std, range), CPPS (mean, median, mode, std, range, 5°
prc, 95° prc, skewness) for free speech, Tab:3.2. The selected parameters confirm
what could be expected. No RMS statistics are selected, as the data acquisition
of pathological patients was carried out under amplitude uncontrolled conditions.
Increasing vocal amplitude is the primary goal of voice therapy, therefore a future
study conducted on consistent amplitude data could be very interesting. Men and
women have different vocal frequency ranges, with higher average values in women.
The parameter f0 is selected using dispersion statistics (range and std of f0) and
never using central tendency statistics. A subsequent study could be conducted by
dividing male patients from females in the observation of f0 statistics.
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The second study conducted concerned only pathological subjects divided into the
three therapy classes. The delta values of the extracted parameters between times
T0 and T1 were considered as subject features. Three binary classifications were
conducted for the three therapy classes of patients, with the aim of finding the
features for which the classes were most distinguishable. In general, no very high
classification results were obtained, around 80%, but this is not surprising as the
data were very similar: patients with the same disease are not differentiated by
severity of the disease. The best result of classification are obtained for the free
speech, specifically in the case of LSVT vs. WAITING (non-therapised patients).
The best validated accuracy, around 82%, occurs in two cases: the single feature
CPPS mode and for the triplet of features HNR mean, fo std, CPPS 95° prc. Also
other methods of classification were used in validation phase, it was often noted
that other classification methods such as Dispersion Trees, SVM and KNN can
increase the performance. In fact the best classification accuracy is reached in
free speech classification between LSVT and ACTIVE patients. In this case an
accuracy of 92% is reached using 3 features (HNR median, CPPSrange, CPPS prc)
and the Dispersion Tree for validation. In general, the Dataset used is too small
to achieve good classification results. If a larger Dataset was available, it would
be possible to differentiate patients also by severity of vocal condition (using the
Girbas evaluation).
The last analysis conducted verifies that the algorithm used for feature extraction
returns values that are consistent with what the experts assess in terms of improve-
ment or worsening of vocal performance. The problem encountered is in the poor
resolution of the rating scale, which makes it impossible to assess small changes.
In this sense, the algorithm could be used as a support tool for experts during
perceptual evaluation. Moreover the algorithm could be used also to make an early
diagnosis by overcoming the human ear in term of resolution.
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