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Introduction 
Global warming and the resulting climate change are some of the biggest 

challenges and problems of today. In this context, a central role is played by energy 
transition, that is the transition from energy sources that release larger amounts of 
carbon dioxide, such as fossil fuels, towards clean energy sources. In this 
perspective, the contribution of photovoltaic energy is fundamental, in particular in 
Italy, where its abundance is relatively high compared to European average. In 
addition, renewable energy sources, being inherently decentralised, can contribute 
to energy independence, which is a very important topic after the huge increase in 
gas and electricity prices in Europe last year and recent geopolitical issues. On the 
other hand, renewable sources also have disadvantages; among these the main one 
is undoubtedly the intermittency of the resource and the consequent difficulty to 
forecast the production profile, which is determined by external events, while the 
production output of traditional plants is simply determined by energy demand. 
Electrical storage can be a solution as a compensation of the variability of the 
energy resource, however, it would require higher costs and materials, whereby it 
is not feasible on a very large scale. Forecasting photovoltaic production, which is 
the topic of this thesis, is a complementary alternative to storage and is essential to 
integrate renewables into the electricity grid and minimize costs.  

The aim of this thesis is to utilize a photovoltaic power calculation model 
whose result is on an hourly production profile, with the use of weather forecast 
variables as input data to predict the produced electrical power. The quality of the 
model is tested on a PV plant for which electrical power and total irradiance are 
measured. The above-mentioned models are optimized in a second step to reduce 
the final error. As forecasts nature incorporates high uncertainties, a main focus of 
this thesis is represented by decoupling weather forecast error from power 
calculation model error, and by evaluating forecasts quality. More in detail: 

- In Chapter 1 an overview of photovoltaics is presented, which describes the 
technology used, its contribution to the electricity grid, the importance that has 
recently acquired in the context of global warming. In particular the equation of PV 
cells which correlates current, voltage and power with weather parameters like 
irradiance and air temperature. Finally, a review of the literature of some 
photovoltaic prediction models., with the focus on the difference between physical 
models, that use the correlation between meteorological and electrical variables, 
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and statistical models which are based on statistical methods and artificial 
intelligence. 
 

- Chapter 2 contains the description of the calculation model that is used in this thesis, 
which belongs to the category of physical models, and how it will be optimized in 
a second step.  
 

- Chapter 3 is dedicated to the description of the methodology used to acquire data. 
In detail, in the study there will be the contribution of measured irradiation data, 
electrical power data measured and expected meteorological data (in particular 
irradiance components, but also temperature and wind speed). The greatest 
attention is paid to this last type of data, since they are forecast data, they will have 
to be continuously updated and they introduce the highest source of uncertainty. 
Some daily irradiation profiles will be analyzed in this section.  
 

- Chapter 4 will report the results of the model. Here, after a rapid introduction on 
error calculation, models performance is displayed firstly on daily basis in order to 
have a clear visual comparison between forecasted and actual value, in particular it 
shown the effect of optimization and of forecast updating under a set of different 
circumstances. The chapter continues with the results of the power calculation on 
the whole period of simulation to estimate the global performance of the model. 
The last part of the fourth chapter is dedicated to the evaluation of the quality of 
irradiance forecast data over the 2022 year for four Italian regions. 
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1  General context 

1.1 Renewable energy resources (RES) 

Renewable power sources are harnessed from renewable and abundant 
resources that can continuously replenish themselves. This provides significant 
benefits for environmental conservation and human wellbeing, and they serve as a 
substitute for non-renewable energy sources in electricity generation. Renewable 
energy sources (RES) play a pivotal role in the decarbonization processes. These 
sources can be classified into: 

• solar energy, which is divided between solar thermal and solar photovoltaic 
energy.  

• wind power.  
• hydroelectric power. 
• biomass energy. 
• geothermal energy. 

Categorization of RES can be based on programmability, with two classifications: 
programmable and non-programmable. Programmable RES, including 
hydroelectric and biomass energy, possess the flexibility to regulate their 
production to meet grid demands. The power output can be managed and scheduled 
to match the need for electricity. For example, hydroelectric power plants can 
release or retain water to match demand, while biomass power plants can adjust the 
amount of fuel burnt. Conversely, non-programmable RES, such as photovoltaic 
and wind energy, are influenced by weather patterns and are difficult to regulate. 
They cannot be easily scheduled or controlled, and their power generation is 
influenced by natural resources such as sunlight or wind. However, techniques like 
curtailment and re-dispatching can be utilized to integrate non-programmable RES 
into the grid. Curtailment implies disconnection of non-programmable RES from 
the grid when the power they produce exceeds demand. On the other hand, re-
dispatching necessitates adjusting the output of conventional power plants to 
balance the grid in case of surplus power from non-programmable RES. 
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Figure 1-1: RES production share in 2020 and relative target [1]. 

In Europe, overall, RES cover about 20% of demand, although the overall share of 
energy from renewable sources is not distributed equally among the various states, 
as shown in Figure 1.1. In it can be noted that some States such as Sweden, Iceland 
and Norway exceed 50% of the total share of electricity from renewable energy 
sources (due to the preponderant share of hydroelectric energy). While in Italy, RES 
cover about 20% of the annual needs, even if the percentage is destined to rise in 
recent years thanks to the economic incentives issued by the Government.  
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Focusing on power production sector only, the renewable share increases. In 
particular in 2022 the renewable energy production accounted for 41% in the total 
mix, where the highest contribution comes from hydroelectric (10.6% of the total 
and 29.6% among renewables) [2].   

 

 

Figure 1-2: Electricity generation in Italy, 2022. Source: Terna [2]. 

Photovoltaic energy is immediately second to hydroelectric, with a total of 27557.2 
GWh of energy produced in 2022 leading to 7.9% of the total and 27.4% among 
renewables. Figure 1-2 and Figure 1-3 summarize these data. 
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Figure 1-3: Renewable energy generation in Italy, 2022. Source: Terna [2] 

Photovoltaic energy is even more relevant in terms of installed capacity, in fact, 
as shown in the following figure, renewable plants make up 51% of installed power, 
of which photovoltaics with 24.2 GW of installed power is in first place. 

 

Figure 1-4: Installed capacity in Italy, 2022. Source: Terna [2]. 
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1.1.1 Climate change and counteractions 

Climate change is a complex issue, but one of the key drivers is the increasing 
levels of CO2 in the atmosphere. CO2 is a greenhouse gas, which means that it 
absorbs and traps heat from the sun, making the Earth's surface warmer. As human 
activity, such as the burning of fossil fuels, has exponentially increased over the last 
decades, the levels of CO2 in the atmosphere have also risen, contributing to a 
warming of the Earth's surface. This phenomenon, highlighted in the Figure 1-5, is 
known as "Climate Change" or "Global Warming". The relationship between CO2 
emissions and temperature increase is not linear, but there is a clear correlation 
between the two. As CO2 emissions have increased, the Earth's average surface 
temperature has been progressively rising. The Intergovernmental Panel on Climate 
Change (IPCC) has found that the Earth's average surface temperature has increased 
by about 1.0°C since the pre-industrial period, with most of the warming occurring 
over the past 35 years [3]. 

 

Figure 1-5: Temperature anomalies and CO2 concentration correlation [3]. 

The United Nations (UN) established the United Nations Framework 
Convention on Climate Change (UNFCCC) in response to the issue of climate 
change. This legally binding treaty, which went into effect in 1994, aims to address 
the issue of greenhouse gas emissions, which are the main contributor to the rising 
global average temperature. The UNFCCC is in place to encourage cooperation and 
action among the 197 industrialized countries that are party to it. Each year, the 
UNFCCC holds the Conference of the Parties (COP) to assess the progress and 
challenges in tackling climate change.  
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Figure 1-6: Roadmap of the most important European and global energy policies [4]. 

Figure 1-6 shows the main EU and international energy policies. It starts with 
the Kyoto Protocol; it is very important because it is the first legally binding 
international agreement to set targets for the reduction of greenhouse gas emissions. 
Prior to the adoption of the Kyoto Protocol, there were no binding international 
commitments to reduce greenhouse gas emissions, and climate change was largely 
seen as a voluntary issue [5]. The adoption of the protocol marked a significant shift 
in the global approach to climate change, and it set the stage for further international 
action on the issue. It is published in 1997, on the occasion of COP3 between more 
than 180 countries, and it enters into force on 16 February 2005 after ratification by 
Russia. As of May 2013, 192 States have acceded to and ratified the Protocol. It 
included an obligation to reduce emissions of pollutants (carbon dioxide and five 
other greenhouse gases) by a non-inferior amount to 8.65% compared to the 
emissions recorded in 1990 (considered as the base year) in the period 2008-2012. 
The results of the Kyoto Protocol have been mixed. On the one hand, the protocol 
has played a significant role in raising awareness about the issue of climate change 
and has helped to galvanize international action on the issue. It has also led to the 
adoption of several important measures to reduce greenhouse gas emissions, such 
as the promotion of renewable energy sources, the adoption of energy efficiency 
measures, and the development of carbon-neutral technologies. On the other hand, 
the overall impact of the Kyoto Protocol on greenhouse gas emissions has been 
limited. While the protocol has helped to reduce emissions in some countries, global 
emissions have continued to rise, and the Earth's average surface temperature has 
continued to increase [5]. 

Following the footsteps of the Kyoto Protocol, The Renewable Energy 
Directive (RED) is a 2009 European Union directive that sets out binding targets 
for the use of renewable energy in the EU. The EU has made a commitment, by 
2020 to reduce its emissions by 20% below 1990 levels to increase the share of 
energy derived from renewables to 20% (and 10% in transport sector and to reduce 
energy consumption by 20% by means of improving energy efficiency [6].  
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Future objectives were introduced at COP 21 in 2015 among 196 states, where 
the Paris Agreement, which entered into force in 2016, was defined. In November 
2018, 195 members of the UNFCCC signed the agreement and 183 decided to join 
it. The long-term goal of the Paris Agreement is to limit the increase in global 
average temperature to well below the threshold of 2 °C above pre-industrial levels, 
and to limit this increase to 1.5 °C, as this would substantially reduce the risks and 
effects of climate change. 

1.1.2 RES – Integration into electric grids 

Following the Bersani decree of 1999, the energy market in Italy was 
liberalized. Thus, as shown in Figure 1-7, the electrical system is divided into four 
distinct segments: 

• Production, conversion of energy from a primary source into electricity, 
through various power plants (thermoelectric, hydroelectric, nuclear, wind, 
solar); in a competitive framework of the electricity market in many 
jurisdictions. 

• Transmission, i.e., dispatching of a large amount of electricity (indicatively 
up to 1000 MVA of power) through HV power lines (220, 380 kV) that have 
the function of transporting the electrical power from the plants to the load 
centres (points where the power required by several aggregate loads is 
concentrated). The lines are interconnected on a continental scale and 
managed by a single TSO (Transmission System Operator), in Italy Terna. 

• Distribution, transmission of an inferior quantity of electricity 
(approximately up to 10 MVA of power) through power lines mainly in MV 
(sometimes also in LV and HV). The lines are connected and managed on a 
local scale (tens of km) by a single DSO (Distribution system operator). 

• Sale and use, sale of electricity to private and public consumers, in many 
national regulations is carried out in a competitive structure.  
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Figure 1-7: Italian electricity system [7]. 

Terna, in accordance with the provisions of the Autorità di Regolazione per Energia 
Reti e Ambiente (ARERA) and of Ministero dello Sviluppo Economico (MISE), deals 
with: 

• manage and maintain the high-voltage national electricity grid, investing in 
infrastructure (transmission system) to improve safety, quality and 
efficiency. 

• maintaining the balance between energy demand and supply (dispatching 
services). 

• contribute to the energy transition by promoting the use of RES in market 
compatibility. 

The use of renewable energy sources (RES) plays a crucial role in promoting 
sustainability. However, incorporating them into the electricity grid can create 
challenges related to the security and stability of the system. One way to integrate 
RES is through large-scale connections to the grid, which allows for the harnessing 
of these energy sources on a large scale. Another option is through the use of 
microgrids, which are localized groups of energy and storage sources that can 
operate both connected and disconnected from the main electricity grid depending 
on the conditions. Microgrids provide a higher level of security and continuity of 
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power supply during grid outages, but also make the system more vulnerable and 
unstable as it is isolated from the main network. 

The increased use of renewable energy sources (RES) in the electricity system 
can lead to instability and challenges, particularly with non-programmable sources 
where regulation is more difficult. The main challenges can be broadly categorized 
as: 

• bidirectional power flow, it implies new strategies and regulations for 
various issues such as fault detection and extinction. 

• regulation of frequency and active power, in order to make the system stable 
to perturbations. 

• regulation of voltage and reactive power, to maintain the appropriate voltage 
level in the various nodes of the system; 

• The use of inverters tends to reduce the inertia of the system compared to 
rotating machines, so the same level of stability is not guaranteed.  

1.2 RES and energy security 

The necessity of having clean energy has been the main driver for the energy 
transition, but not the only one. The possibility of producing more energy on its 
own territory reduces indeed energy dependence on foreign countries, thus being 
more vulnerable to price increase. The issue of the dependence of energy imports 
and its consequences is an extremely topical topic following the latest trends in 
electricity and natural gas costs in Europe. Figure 1-8: Early 2021 steep gas price 
increases across EU . shows the steep increase in gas prices since early 2021 and 
the consequent effect on electricity prices. Italy has a very poor availability of fossil 
fuels; therefore, it relies for the vast majority of its energy needs from gas and oil 
imports, whose price can be very inconsistent. On the other hand, Italy has a great 
abundance of solar energy, although it is not homogeneously distributed and 
subjected to intermittencies.  
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Figure 1-8: Early 2021 steep gas price increases across EU [1]. 

Following the events of Russia's invasion of Poland last February, the cost of 
energy has further increased. These geopolitical events remind us once again how 
crucial it is to invest in renewable energy sources, which, even without considering 
the environmental aspect, are dispersed sources in contrast to fossil fuels. 

1.3 Solar photovoltaic systems 

1.3.1 Solar radiation and photovoltaic effect 

PV effect is a physical process in which a PV cell converts the solar irradiance 
into electricity. From a radiative point of view, the Sun can be approximated as a 
black body at a temperature of 5800 K, therefore its emission spectrum, i.e., the 
distribution of the energy intensity of the radiation as a function of the wavelength, 
is described by Plank's law. Wavelengths are associated with the energy carried by 
the individual quantum of which solar radiation is composed. As it passes through 
the atmosphere, a fraction of the sun's rays is absorbed or scattered as a result of 
collisions with molecules in the atmosphere (including water vapor, clouds and 
aerosols). Scattering affects all wavelengths of the spectrum and causes an 
attenuation of the spectrum, while absorption is a discrete phenomenon that has 
resonances in certain wavelengths determined by the molecule in question.  As a 
result, the electromagnetic spectrum assumes an irregular profile. Figure 1-9 shows 
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the irradiance spectrum on top of atmosphere (Air Mass 0) and after being 
attenuated by the atmosphere (Air >Mass 1). 

 

Figure 1-9: Solar spectrum, for AM = 0 and AM = 1 [8]. 

Each photon reaching has an amount of energy determined by its wavelength: 

𝐸 =
ℎ𝑐

λ
 

where c is the speed of the light, h is Planck's constant and  is the wavelength 
of the photons. The photovoltaic effect is based on the characteristics of 
semiconductors, materials in which there are a valence band, composed of electrons 
involved in chemical bonds, and a conduction band, consisting of electrons with a 
higher energy level to allow their movement in the lattice. The energy required by 
an electron to be promoted by the conduction valence band is called the Energy 
Gap. The photons of the solar spectrum with an energy higher than the energy gap 
of the semiconductor material are able to promote an electron in the conduction 
band, while in the valence band a hole is left, creating electron-hole pairs. These 
electron-hole pairs create an electric flow, that is, electric current through an 
external electric circuit connected to the PV cell terminals. The built-in electric field 
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that is a specific electric feature of the PV cells provides the voltage potential 
difference that drives the current through an external load.  Two layers of different 
semiconductor materials are placed in contact with each other in order to induce the 
built-in electric field within a PV cell. The first layer that is n-type has abundance 
of electrons; the other layer that is p-type has abundance of holes. The abrupt 
change in doping and in the lattice activate diffusion mechanism, with the result 
that excess electrons move from the n-type side to the p-type side. As a result, a 
positive charge is built up along the n-type side of the interface and negative charge 
along the p-type side. Thus, an electric field is created at the surface where the 
layers meet, called the p/n junction.  

1.3.2 PV technologies 

The single photovoltaic cell delivers a current density of 25÷35 mA/cm2and 
generates a voltage level of 0.5÷0.6 V. The commercial unit of the photovoltaic 
system consists of the module, consisting of the connection in series of several cells. 
The most used semiconductor in the realization of PV modules is silicon in the 
crystalline and multi-crystalline versions, as reported inFigure 1-10.  

 

Figure 1-10: market trend shares of PV technologies [9]. 

Monocrystalline silicon has a higher efficiency (up to 22%) thanks to its better 
spectral response, in particular it has the widest bandwidth for which it can generate 
current, and therefore a higher percentage of photons can be exploited to create 
electron-hole pairs. Poli-crystalline silicon on the other hand has a lower efficiency 
(14-16%) but lower production costs. As shown in the figure, these two 
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technologies make up more than 90% of the annual production of recent years. Thin 
film technologies can be based on silicon (in the monocrystalline, multi-crystalline 
and amorphous version) or on non-silicon-based semiconductors. The most 
common technologies in the thin film version are the following:  

• Cadmium telluride (CdTe): with a commercial efficiency of 13-15%. 
• Copper, indium, gallium, selenide (CIGS): with a commercial efficiency of 

11-13%. 
• Amorphous silicon (a-Si) and tandem cell (a-Si/ μc-Si): where a layer of 

microcrystalline silicon (μc-Si) is combined with amorphous silicon. The 
efficiency is around 6-10%. 

1.3.3 Equivalent circuit of a solar cell 

An ideal solar cell may be modelled by a current source in parallel with a diode, 
whose current output is proportional to the irradiation. However, in practice there 
are losses, so a shunt resistance and a series resistance component are added to the 
model. The resulting five-parameters equivalent circuit is represented in Figure 
1-11. Series resistance Rs accounts for resistances of electrodes and semiconductors, 
while Rsh is due to alternative paths for the current and it is reduced by improving 
edge insulation.  

 

Figure 1-11: 5-parameters equivalent circuit of a PV cell [10] 

The current balance equation is the following: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑗 − 𝐼𝑠ℎ (1-1), where: 
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• I = output current. 
• Iph = photogenerated current. Since it depends on the material and it is 

proportional to the irradiance G and the area of the cell A, it can be expressed 
with the following equation: 

𝐼𝑝ℎ = 𝑘𝑚𝑎𝑡 ∙ 𝐺 ∙ 𝐴 

• Ij = diode current, it takes into account electron-hole recombination effects 
occurring inside the cell. It is modelled using the Shockley equation for an 
ideal diode: 

𝐼𝑗 =  𝐼0 [𝑒𝑥𝑝 (
𝑞𝑈𝑗

𝑚𝑘𝑇
) − 1] 

I0 is the saturation current of the diode, q is the elementary charge, Uj is the 
voltage across both diode, k the Boltzmann constant, T the absolute 
temperature and m the diode quality factor. 

• Ish = shunt current, which is calculated simply by applying the Ohm law 
across the shunt resistor terminals.  

Combining all the previous equations, the resulting I-V curve, is shown in the 
following equation and figure. Iph, I0, m, Rs and Rsh are the five parameters of this 
equivalent circuit. 

𝐼(𝑉) = 𝐼𝑝ℎ −  𝐼0 ∙ 𝑒𝑥𝑝 [𝑞 (
𝑉 + 𝑅𝑠 ∙ 𝐼

𝑚𝑘𝑇
− 1)] −

𝑉 + 𝑅𝑠 ∙ 𝐼

𝑅𝑠ℎ
  

Figure 1-12 contains the I-V curve described by the previous equation. The 
most important three points of the curve are highlighted:  

• The short-circuit current, ISC, is the current through the solar cell when the 
voltage across the solar cell is zero (i.e., when the solar cell is short 
circuited). The short-circuit current is due to the generation and collection 
of light-generated carriers. The short-circuit current is the largest current 
which may be drawn from the solar cell [10]. 

• The open-circuit voltage, VOC, is the maximum voltage available from a 
solar cell, and this occurs at zero current. The open-circuit voltage 
corresponds to the amount of forward bias on the solar cell due to the bias 
of the solar cell junction with the light-generated current. The open-circuit 
voltage is shown on the I-V curve [10]. 

• The maximum power point, PMPP, is the point on the I-V curve of a solar 
module, where the product of current and voltage reaches its maximum 
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level. The points on the I and V axes which associated to this curve are 
named IMPP (current at maximum power point) and VMPP (voltage at 
maximum power point). PV electronics is equipped with maximum power 
point tracking (MPPT), a technology used with variable power sources to 
adjust the working point on the I-V curve in order to extract the maximum 
amount of energy under different ambient conditions [10].  

 

Figure 1-12: I-V curve of a PV cell [8]. 

1.3.4 Dependence on irradiance and temperature 

With the same given amount of irradiance, an increase in cell temperature 
corresponds to a slight increase in IPH and ISC, while the decrease in UOC is more 
remarkable, as reported in Figure 1-13. 
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Figure 1-13: effect of temperature on I-V curves [8]. 

The effect of irradiance, at constant cell temperature, is instead much more 
marked in the case of current, which depends linearly on the irradiance G. With a 
larger irradiance value, a greater number of photons that can generate current is 
indeed available. The open circuit voltage UOC increases too, but at a logarithmic 
rate. The effect of irradiance is shown in Figure 1-14. 
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Figure 1-14: Effect of irradiance on I-V curves [8]. 

In most applications, it can be assumed that ISC and current depend only on 
irradiance, while voltage and UOC depend only on temperature. The resulting power 
produced increases linearly with the irradiance and decreases when the temperature 
of the cell increases. In many applications, in order to account for voltage reductions 
due to high temperature, the power thermal coefficient γth is used. It is defined as: 

γ𝑡ℎ =  
𝑑𝑃𝑀𝑎𝑥 

𝑑𝑇𝑃𝑉
∙

1

𝑃𝑀𝑎𝑥
 

Its value depends on the material used. In the case of crystalline silicon it is equal 

to 0,5 % °C-1. 

1.3.5 Series and parallel connection of solar cells 

To meet the power demands of electric loads, multiple solar cells must be 
connected in series or in parallel to produce higher voltage and current levels than 
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a single cell can provide. By using multiple cells, the overall power output of a solar 
panel or system can be increased to match the requirements of the load.  

A series connection of PV cells is a method of connecting multiple cells 
together in order to increase the overall voltage output of a PV system. In this 
configuration, the current flows through each cell in a single path. The voltage of 
the overall system is equal to the sum of the individual cell voltages, while the 
current remains the same. However, there are also some disadvantages to using a 
series connection. One of the main issues is that the overall system is more sensitive 
to shading or failure of a single cell. If one cell in the series is shaded or fails, the 
entire circuit is affected, and the voltage output of the entire system is reduced. This 
can result in a significant reduction in the overall power output of the PV system.  

In parallel connection configuration, cells or modules are connected in parallel, 
with the positive terminal of one cell or module connected to the positive terminal 
of the next, and the negative terminal of one cell or module connected to the 
negative terminal of the next. The voltage of the overall system remains the same 
as that of a single cell or module, while the current is equal to the sum of the current 
produced by each PV module. As highlighted in the next paragraph, parallel 
connection is commonly used only for modules strings already in series connection. 
One of the main issues of using parallel connection is that the overall system is 
more sensitive to mismatches in the performance of the individual cells or modules. 
If one cell or module has a lower voltage or current output than the others, it will 
"drag down" the entire circuit, resulting in a reduction in the overall power output 
of the PV system. A blocking diode is connected in series to groups of strings to 
prevent defective cells working as a load with reverse current. 

Mismatch losses refer to the reduction in power output that occurs when the 
individual PV cells or modules in a PV system have slightly different performance 
characteristics. This can happen due to variations in the manufacturing process, 
changes in environmental conditions, or aging of the cells or modules. Mismatch 
losses can occur in both series and parallel connections of PV cells and modules, 
but they are generally more pronounced in parallel connections. In the overall PV 
system, losses due to mismatch are around 2-4% [10]. 

1.3.6 PV field structure 

The photovoltaic system, also known as field, is suitably formed starting from 
single cells that form a module and then through the electrical connection of 
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multiple modules in strings (or arrays) with powers ranging from kW to MW. 
Figure 1-15 shows the steps for the realization of a photovoltaic field starting from 
the single cell. 

 

Figure 1-15:PV field composition [10]. 

In turn, photovoltaic generation systems can be: 

1. Isolated or stand-alone systems, if the field is not connected to the mains 
and feeds a load directly. In this case, a storage system is used in order to 
use the energy accumulated in the moments of non-production. 

2. Systems connected to the grid or grid connected in case the field is 
connected to the power grid. 

In addition, in the case of connection of the photovoltaic system in the grid, in 
Italy, the following rules must be complied with: 

1. CEI 0-16 standard, for connections to HV and MV networks. 
2. CEI 0-21 standard, for LV connections. 

The general network pattern is highlighted in figure 1.16. 
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Figure 1-16: general scheme of grid connection. Source: [11]. 

1.4 Power production forecasts  

In accordance with the objective of increasing the production of electricity from 
renewable sources such as photovoltaic production, it becomes necessary to be able 
to adequately estimate the production profiles of PV plants. The ability of precisely 
forecasting the energy produced by PV systems is of great importance and has been 
identified as one of the key challenges for massive PV integration. It is decisive for 
grid stability, since deviations between forecasted and produced energy must be 
supplied by the rest of technologies that form the energy portfolio. Some of the 
units that build the electric system act as operating reserve generators. Moreover, 
also from an economic point of view, a proper PV forecast would be able to lower 
the number of units in hot standby and, consequently, reduce the operation costs.  

Power forecasting, therefore, is fundamental for non-programmable RES such as 
wind and photovoltaic to avoid imbalances. The main way in which forecasts can 
be classified is according to time horizon as summarized in table 1-1. a 
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Table 1-1: Temporal horizon forecasts classification and related purpose 

Type of forecast Time Base Application 

Intra-daily 5÷60 min 
Adjustments/Dispatching 

Market clearing 
Contingency analysis 

short term 1÷6 h Programming 
Congestion management 

Medium term Days 
Programming/Reserves 

Congestion management 
Trading 

 

 

Figure 1-17: Distribution of different techniques and sources of inputs with respect 
to their spatial resolution/horizon and the temporal horizon for which they are used 

in power forecasts [12]. 
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Another important distinction among forecast power models is according to the 
type of model which is used. In particular they can be physical, statistical or hybrid 
models. 

Physical models use the so-called exogenous data (temperature, wind speed and 
direction, irradiance cloud cover, …), which may come from local measurements, 
information from total sky imagers, satellites images, numerical weather prediction 
(NWP), values from other meteorological databases and neighbouring plants. Then 
a PV performance model with its analytical equations is applied to generate PV 
power forecasts. For these reasons this approach is also referred as “white box” 
method [12].  

 

Figure 1-18: PV performance model concept [13]. 

Figure 1-18 shows in a very simplified way the PV physical models approach. 
In [12]a general comparison between physical and performance models is made. 
With reference to the previous figure, the output is a PV forecasts as a function of 
relevant meteorological variables and PV plant specifications (like azimuth and tilt 
of PV modules). PV output power is affected by two main variables: the irradiance 
in the plane of the PV array, Gi, and the temperature at the back of the PV modules, 
Tm. The type of PV determines the relevant irradiance; non-concentrating PV 
requires global irradiance in the array plane, while concentrating PV requires direct 
normal irradiance. While some PV models consider other variables, like the 
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incidence angle of beam irradiance and the spectral distribution of irradiance, 
accurate results have been achieved without these factors. PV models can be 
developed using historical data or manufacturer information, depending on the 
availability of data. Weather forecasts do not provide Gi or Tm, so solar and PV 
models are used to calculate them based on PV system specifications and weather 
forecasts, like global horizontal irradiance (GHI) and ambient temperature. These 
models serve as an intermediary step. Temperature of PV modules can be calculated 
using PV system specifications, irradiance, ambient temperature and wind speed if 
available [14]. 

The PV performance method has a crucial advantage over the statistical 
approach in that it enables power output predictions for a plant before construction, 
without relying on historical data. However, a significant disadvantage of 
parametric models is their heavy dependence on NWP, which is often characterized 
by insufficient spatial and temporal resolution and is a major source of error in this 
approach. Notably, while the error reported for plant modelling was 1.2%, 
incorporating irradiance predictions raised the error to 10% [14]. To address such 
errors, Model Output Statistics (MOS) can be utilized to enhance the temporal 
resolution of weather forecasts. Nonetheless, MOS requires historical weather data, 
which may not be readily available, thereby reducing the benefits of PV 
performance models. Furthermore, since each PV performance model is specific to 
a site and relies on certain technical equipment specifications, simplifications must 
be made, which can impact the model's accuracy [14]. 

Statistical models rely primarily on endogenous data formed by past data to 
train models, with little or no reliance on solar and PV models. This is a 
methodology that relies on data to extract patterns from past records in order to 
forecast future plant behaviour. The power output can be directly calculated without 
the need for meteorological predictions, hence it is sometimes called the "direct 
method." Unlike physical models, statistical techniques are utilized, resulting in a 
"black box" model. Therefore, high-quality historical data is necessary for precise 
predictions. In contrast to the parametric approach, a large historical dataset is 
usually required, assuming that the plant has already been operational for a while. 
This approach has the advantage of correcting systematic errors related to input 
measurement. Selecting an appropriate training dataset is critical for achieving high 
accuracy in the resulting model [12]. 

Hybrid models approach: to improve accuracy, it is often preferable to combine 
different techniques, resulting in hybrid, blended, combined, or ensemble models. 
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This approach can be divided into two subcategories: two or more statistical 
techniques (hybrid-statistical) can be combined or incorporating a statistical 
technique into a PV performance model (hybrid-physical) [12]. 

Many statistical models rely on Artificial Intelligence, that can be described as 
simulation of human intelligence processes by computer systems. These processes 
include the ability to learn from data, react to external inputs and based on these 
data, make decisions and adapt to new situations. AI is a broad field that includes 
multiple sub-disciplines, including machine learning, that involves the development 
of algorithms and statistical models that enable computers to learn from data and 
improve their performance. It is a method of teaching computers to learn from 
examples, patterns, and experiences, instead of being explicitly programmed with 
a set of rules.  

Artificial Neural Networks (ANN) are the most used machine learning 
techniques in solar power forecasting [12]. An Artificial Neural Network (ANN) is 
a computational model inspired by the structure and function of the human brain. It 
consists of layers of interconnected "neurons," which process and transmit 
information. These neurons are organized into layers, with the input layer receiving 
data, one or more hidden layers processing the data, and the output layer providing 
the final result or prediction [15]. The basic building block of an ANN is the 
artificial neuron, also known as a node or unit, which is a mathematical function 
that receives input, performs a computation, and produces an output. The input is 
passed through a set of weights, which are adjusted during the training process to 
optimize the performance of the network. The training process of an ANN involves 
adjusting the weights and biases of the network based on a training dataset, which 
helps the network to learn how to produce the desired output for a given input. The 
training process is done using supervised learning, where the network is provided 
with examples and the goal is to learn to produce correct outputs for the inputs. 
Each ANN is made of an input layer, a number of hidden layers and an output layer. 
The main function of the hidden layer is to extract features or representations of the 
input data that are useful for the task at hand. It does this by applying a series of 
mathematical operations, known as activation functions, to the input data. 
Activation functions are non-linear transformations that introduce non-linearity into 
the network, allowing it to model complex relationships between the inputs and 
outputs [15]. Figure 1-19 shows how the three layers are structured. 
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Figure 1-19: Simple forward ANN [15] 

A large number of ANNs topologies exists and the classification by the number of 
hidden layers is the main one.  

Additionally, forecasts can also be made on different spatial basis. Forecasts can be 
made for a single PV system or for an ensemble of them. Normally, grid operators 
prefer regional forecasts since they are more useful to keep the balance between 
demand and supply in the electric system. Variability in power output is reduced 
when an ensemble of plants is considered, since the forecast error increase with the 
variability of signal to forecast. 

For example, in [16] they studied an approach to predict regional PV power output 
based on irradiance forecasts provided by the European Centre for Medium-Range 
Weather Forecasts (ECMWF). They evaluated the forecast error for the singe site, 
an ensemble covering the area of 220x220 km and the whole area of Germany. A 
temporal averaging procedure is then applied. They tried different approaches; best 
results were obtained combining the forecast data with a clear sky model and then 
corrected systematic deviations with a bias correction. The evaluation of the PV 
power prediction scheme resulted in an RMSE of 0.11 kW/kWpeak for single 
systems. For the ensemble power prediction for an area of 220 km x 220 km an 
RMSE of 0.06 kW/kWpeak was found, and for a larger ensemble covering the area 
of Germany the RMSE of 0.05 kW/kWpeak [16]. 

In a similar way, in [17] a study to propose a method to obtain one-day ahead hourly 
regional forecasts of photovoltaic power for a regional area. Two kinds of data are 
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necessary for the application of the forecast methods. Measured regional PV power 
generation used in the training and configuration of the forecast methods and the 
data used as input information for the forecasts. For this study, up to 33h ahead 
forecasts done at 03h UTC were used as input data to forecast the regional PV 
power from 06h to 19h of the next day [17]. Forecasts for the air temperature, 
relative humidity and cloudiness (in three levels) provided by the GPV-MSM 
weather forecast system were used as input data. The simplified equation of time 
was used to calculate the extraterrestrial solar irradiance. The aim of the study was 
to assess the efficacy of the proposed method which utilized principal component 
analysis (PCA) and support vector machines. PCA was employed to select 
appropriate weather forecast data on a regional scale, and it proved to be a valid 
option, as it produced better results than persistence and non-PCA methods in 
evaluations conducted in four regions of Japan. Additionally, the results indicated 
that the use of PCA reduced the forecast error in cases where there were a high 
number of PV systems and input variables, which often led to learning problems 
for the forecast algorithm. This approach also offered the advantage of requiring 
only regional monitoring of PV power generation, rather than individual PV 
systems [17]. The performance of the proposed method was similar to that of a 
method which utilized regional smoothing, but was outperformed only when data 
from the largest region with a variety of climates was used. In such cases, it may be 
more appropriate to obtain regional forecasts from individual PV power generation 
monitoring, if such data aggregation is feasible. Future studies should explore the 
potential gains in forecast accuracy resulting from the combination of PCA and 
smoothing techniques in large size regions. Additionally, other methods for 
obtaining regional forecasts should be investigated to improve the understanding of 
the applicability and validity of the proposed method. Finally, the evaluations 
showed that the use of PCA yielded low bias forecasts and good forecast accuracy; 
the annual RMSEn was near to 0.07 kWh/kWrated in the 4 regions studied [17]. 
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Figure 1-20: smoothing effect of power forecast for an ensemble of PV plants for a 
regional scale [17]. 

Finally, independently on the metrics used to assess the performance of the 
proposed models, there are some other factors that hamper comparisons among 
studies:  

• Climatic variability: High climatic variability normally leads to higher 
forecast errors than areas with a more stable climate. 

• Day/night values and normalization: To make a fair comparison between 
studies it is important to state clearly which time frame has been taken into 
consideration and whether only daylight values. 

• Spatial aggregation: it reduces the ensemble error, so regional results cannot 
be compared to single site results. 

• Testing period: Some authors tested over a long period of time covering all 
sky conditions, while other authors tested their models on either only sunny 
days or only cloudy days, which also increases difficulty to perform 
comparisons. 
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1.4.1 Forecast error consequences 

Forecasting models are essential in minimizing the discrepancy between 
projected and actual power profiles. Accurate forecasts benefits have a significative 
impact both on: 

- The Transmission System Operator (TSO), which would have a safer and 
easier grid management. Moreover, the high penetration of solar energy 
with its intrinsic variability, leads to the necessity of operating reserves and 
induced ramps, associated to higher costs and lower system stability [12]. 

- The plant owner, as with more accurate forecasts they can generate more 
precise bids and the avoid the risk of PV curtailment. 
 

 

 
Figure 1-21: day ahead forecast load for Italy [18]. 

Forecasts are generated every day for the following day, by the TSO and GSE 
(Gestore Servizi Energetici). A load profile on the national grid is predicted as 
shown in Figure 1-21. It is possible to notice that actual load is relatively close to 
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actual value,  where you can appreciate how the prediction is almost perfect, both 
under "base load" and "peak load" conditions. However, there may be slight 
imbalances between the two profiles, due to variations in energy consumption by 
consumers and/or fluctuations in energy production from non-programmable 
sources like photovoltaics.  

In most cases the error in load forecasts is lower than uncertainties in energy 
production, when renewables energy resources represent an important share in the 
energy mix. Neglecting the load forecast error in comparison to forecast error, the 
power imbalance between actual and expected profile can be written as: 

∆P = Pforecast − PGeff =  (PG,forecast − PG,eff) − (PL,forecast  −  PL,eff)  ≅  −∆PG    

∆PG =  PGprev  − PGeff  ≅  − ∆P              

Where subscript L refers to load and subscript G  refers to generation. For simplicity 
we will consider only PV generation.  

Consequently, there will be two cases: 

- ∆PG  >  0, i.e., overestimation in the forecast of photovoltaic production. 

- ∆PG  <  0, i.e., underestimation in the forecast of photovoltaic production. 

The two separate cases have different consequences in network operation and 
pricing in energy markets. 

In the case of forecasts overestimations: 

- The TSO, the next day, will dispatch a smaller amount of power from PV 
generation in the network than expected. Therefore, in order to maintain the 
equilibrium of the net network load, production from programmable sources 
will be increased.  

- The GSE organized the commercial trading the day before, based on a 
supply expected from photovoltaic higher than that actually available the 
next day. This leads to a lower price than the one with the correct forecast. 

In the case of underestimation of production: 
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- The TSO, the next day, will dispatch more power generated from PV plants 
than expected. Thus, in order to maintain the equilibrium of the net load in 
the network, production from programmable sources must be decreased.  

- GSE organized the trade trading the day before, based on an expected supply 
of photovoltaic lower than that actually available the next day. This leads to 
a higher price than the one with the correct forecast. 
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2 Hourly power calculation model 

As discussed in the previous chapter, models can be categorized based on the 
type of incoming data. The model adopted in this thesis is deterministic, that is, it 
uses as input data all the meteorological data of the analysed location and the 
physical parameters of the photovoltaic system. The output is an hourly power 
profile that will then be compared with the measured electrical power data. This 
chapter is dedicated to the description of this model; more precisely a total number 
of 2 non-optimized models and 5 optimized models are reported.  

The first paragraph is dedicated to non-optimized models, while in the second 
paragraph it is described how some parameters are varied to better match forecast 
and actual PV production and reduce the final error. 

2.1 Hourly power calculation model 

Figure 2-1 shows in a very simple way how a PV plant is connected to the 
electric grid, and it will be used for the starting equation of produced power. Figure 
2-2: PV performance model visual representation. 

 

Figure 2-1: connection scheme of a PV plant connected to the grid. 

More in detail, Figure 2-2 contains all the steps of the hourly power calculation 
model for photovoltaic systems. Each colour corresponds to a specific type of data 
or intermediate step. In particular: 

• Blue boxes are the input data. 
• Green boxes are the meteorological variables. They can be considered as an 

input, but unlike the other inputs contained in the blue boxes, they represent 
the most critical input or step of the model, because, as they refer to 
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forecasts, they incorporate the biggest source of error. Chapter 3 will be 
focused on the processing of these data. 

• Yellow boxes are important quantities referring to PV power calculation 
steps obtained as intermediate steps within the model. 

• Orange boxes represent the physical models used to move from one step to 
another. 

• Finally, the purple box represents the power output from the system, as well 
as the final output on which the analysis of the results will be focused. 

 

Figure 2-2: PV performance model visual representation. 

With reference to Figure 2-1, the starting equation for calculating output power is 
the following: 
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    𝑃𝐴𝐶 = 𝑃𝐷𝐶 ∙ 𝜂𝐶𝑂𝑁𝑉 ∙ 𝜂𝑇𝑅𝐴𝑆𝐹 = 

            =  (𝑃𝑆𝑇𝐶 ∙
𝐺 − 𝑮𝟎

𝐺𝑆𝑇𝐶
∙ 𝐶𝑇 ∙ 𝜂𝐺 ∙ 𝑪𝑨) ∙  (1 − 𝑓𝑔)  ∙  𝜂𝐶𝑂𝑁𝑉 ∙ 𝜂𝑇𝑅𝐴𝑆𝐹    (2.1) 

The terms in red in the previous equation and in some of the following equations, 
refer to parameters that will undergo an optimization process in order to minimize the 
difference between the measured energy and that estimated by the model. Components 
of equation are then defined: 

• 𝑃𝐷𝐶: power generated by the PV plant in direct current [kW]; 
• 𝜂𝐶𝑂𝑁𝑉: inverter efficiency. 
• 𝜂𝑇𝑅𝐴𝑆𝐹: transformer efficiency. 
• 𝑃𝑆𝑇𝐶: plant nominal power measured Standard Test Condition [kW]. 
• 𝐺: solar irradiance on the plane of array (POA Irradiance) [kW/m2].  

 
Irradiance data is available on the horizontal plane; therefore they must be 
transposed on the plane of array by means of the following equation from ASHRAE 
model: 

𝐺 =
𝐵𝐻𝐼

cos(𝜃𝑧)
∙ cos(𝜃) + 𝐷𝐻𝐼 ∙ 𝐹𝐶𝑆 + 𝜌 ∙ 𝐺𝐻𝐼 ∙ (1 − 𝐹𝐶𝑆)       (2.2)  

The terms of equation 2.2 are: 

- BHI: direct or beam horizontal irradiance. It is the irradiance component 
reaching the ground on a horizontal plane without being reflected nor 
absorbed by atmosphere. It can reach a maximum value of 1000 W/m2. 

- DHI: diffuse horizontal irradiance. It is the irradiance component reaching 
the ground on a horizontal plane after being reflected by atmosphere. 

- GHI: global horizontal irradiance. It is the sum of BHI, DHI and the Gr, the 
latter defined as the reflected irradiance by the surrounding ground (usually 
it is a negligible contribute). 

𝐺𝐻𝐼 = 𝐵𝐻𝐼 + 𝐷𝐻𝐼 + 𝐺𝑟          

- 𝜃𝑧: Solar zenith angle. It is the angle between the and the Zenith axis 
(perpendicular to the ground). 
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- 𝜃: sun rays’ angle of incidence. It is the angle between the perpendicular to 

the plane of array and the Earth-Sun line. 

- 𝐹𝐶𝑆: Earth-sky view factor. 

- 𝜌: albedo coefficient. It takes into account the contribution of the reflected 
irradiance from surrounding environment.  

In this thesis the ASHRAE model is not applied in its entirety. ASHRAE model 
indeed refers to clear sky conditions and calculates irradiance components as a 
function of the geographical coordinates and the time of the year. Forecasted data 
are instead fed into the model, while ASHRAE model is limited to the transposition 
of irradiance on the plane of array. 

• 𝐺0 solar irradiance threshold. It is the minimum irradiance required by the 
plant to be able to produce energy [kW/m2]. 

• 𝐺𝑆𝑇𝐶: irradiance in Standard Testing Conditions, equal to 1000 kW/m2. 

• 𝐶𝑇: Temperature coefficient [-]. It is calculated as: 

𝐶𝑇 = 1 + 𝜸𝑻 ∙ (𝑇𝑐𝑒𝑙𝑙𝑎 − 𝑇𝑆𝑇𝐶)                    (2-1) 

𝛾𝑇% is the power thermal coefficient [%/°C], it depends on the technology of 
the PV modules, and it accounts for power deviations for temperature values 
different for standard testing conditions of 25 °C. As the case study has 
crystalline silicon modules, the chosen value for power thermal coefficient is: 

𝛾𝑇% =  −0.50%   [
%
°𝐶

]; 

• 𝜂𝐺: global efficiency [-]. It is the product of the following efficiencies. 

𝜂𝑔 = 𝜂𝑙𝑖𝑓𝑒 ∙ 𝜂𝑑𝑖𝑟𝑡 ∙ 𝜂𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∙ 𝜂𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ ∙ 𝜂𝑐𝑎𝑏𝑙𝑒          (2-2) 

- 𝜂𝑙𝑖𝑓𝑒 accounts for aging of the PV plant.  Its value depends on the number 
n of years passed since the beginning of operation of the plant, and it is 
calculated as:  

𝜂𝑙𝑖𝑓𝑒 = 1 − 𝛾𝑙𝑖𝑓𝑒% ∙ 𝑛           (2-3) 

- 𝜂𝑑𝑖𝑟𝑡 consider the presence of dust particles that may deposit on the 
modules, it depends on environmental pollution and proximity to 
excessively dusty sites. 
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- 𝜂𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 takes into account the reflection phenomena of the front 
glazing of the modules, therefore a small fraction of the irradiance will not 
reach the PV cells.  

- 𝜂𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ accounts for mismatch losses due to the interconnection 
of modules which have not identical electrical performance. 

- 𝜂𝑐𝑎𝑏𝑙𝑒 is for losses in the cables due to Joule effect. 
 
•  𝐶𝐴: coefficient of adaptation [-]. During optimization it is used to 
compensate for inaccuracies of other terms, kept constant. 

Some of these parameters are constant and their dependence on the plant can 
be neglected. For these parameters bibliographical values and typical construction 
values are used. Some of the values used in the model are reported below:  

- 𝛾𝑙𝑖𝑓𝑒% = 1.22% ; 
- 𝜂𝑑𝑖𝑟𝑡 = 0.976 ; 
- 𝜂𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 0.973 ; 
- 𝜂𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 0.97 ; 
- 𝜂𝑐𝑎𝑏𝑙𝑒 = 0.99 ; 
- 𝜂𝑇𝑅𝐴𝑆𝐹 = 0.99. 

Regarding the efficiency of the converter, an equivalent converter is considered 
for the generic PV plants by means of a quadratic model of the inverter. The use of 
a quadratic model arises from the need to determine a single yield curve for 
𝜂𝐶𝑂𝑁𝑉the different plants of the sample. Actually, each system is characterized by 
its nominal power and a specific type of converter. The types of inverters used for 
the conversion from direct to alternating in photovoltaics are: 

- Central inverter, i.e. single inverter for all modules. It is used for medium-
high powers 20-250 kW and has high efficiencies and low costs. 

- String Inverter, i.e., a single Inverter for each string of modules in the 
system. This type is mainly used for residential applications from 1.5 to 5 
kW of installed power and maximizes the optimization of the extracted 
power for each string; 

- Multi string Inverter, multiple DC/DC converters are used with MPPT 
independent of each string and single inverter; 

- AC Module, in this case the optimization via MPPT is maximum since each 
module has its own converter. However, monitoring is complex in this case. 
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The model used in thesis work is intended for the generic PV plant, therefore 
it is not possible to know precisely the type of converter used for each system. 
Especially for large plants, there may be multiple converters in string configuration 
or multi-string inverter to extrapolate the maximum power and therefore the 
productions on the DC sides can be different as well as the yields of the individual 
converters. To overcome this problem, with the quadratic model we make 
approximately a corresponding converter, where the hourly value of the yield will 
be obtained by interpolation between the yield curve of a quadratic model, the 
consequent DC power obtained by the model and the calculated DC power. The 
model is constructed by setting a maximum percentage value of 100 for AC power 
and using 100 points in steps of 1 to obtain a model yield curve using equation 2.6. 
Then the percentage power curve in DC of the model is determined through the 
efficiency curve obtained and finally the latter is multiplied by the nominal power 
of each system to obtain the absolute value of the DC power that will be interpolated 
with the calculated DC power. [19] 

𝜂𝐶𝑂𝑁𝑉 =
𝑃𝐴𝐶

𝑃𝐷𝐶
=

𝑃𝐴𝐶

𝑃𝐴𝐶 + 𝑃𝐴𝐶,𝑙𝑜𝑠𝑠𝑒𝑠
            (2.5) 

Further explaining the term relating to power losses, we therefore obtain: 

𝜂𝐶𝑂𝑁𝑉 =
𝑃𝐴𝐶

𝑃𝐴𝐶 + 𝒂𝒑 + 𝒃𝒑 ⋅ 𝑃𝐴𝐶 + 𝒄𝒑 ⋅ 𝑃𝐴𝐶
2    (2.6) 

The denominator of equation 2.6 is three terms relative to losses, for no-load 
losses, linear losses, and quadratic losses. These terms will undergo an optimization 
process.  

The quadratic model of the converter has a maximum value of about 0.979 so 
the power produced in DC can be at maximum  1.02 ∙ 𝑃𝑆𝑇𝐶 .  

Cell temperature, essential to determine the thermal coefficient, is calculated 
using two models: NOCT and WIND, which will be described in the next section. 

NOCT model (Normal Operating Cell Temperature): 
 

It is calculation based on the meteorological parameters of: 

• 𝑇𝑎: air temperature at the installation site of the PV plant. 
• G ∶ incident irradiance on modules. 
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𝑇𝑐𝑒𝑙𝑙𝑎 = 𝑇𝑎 +
𝑵𝑶𝑪𝑻 − 𝑇𝑁𝑂𝐶𝑇

𝐺𝑁𝑂𝐶𝑇
∙ 𝐺        (2.7) 

Where: 

• 𝑇𝑎 is air temperature. 
• 𝐺 è is the POA irradiance. 
• 𝑇𝑁𝑂𝐶𝑇 is the ambient temperature at NOCT conditions, equal to 20 °C. 
• 𝐺𝑁𝑂𝐶𝑇 is the incident solar irradiance on the modules at NOCT conditions, 

equal to 800 W/m2. 
• NOCT is the cell temperature under NOCT conditions, that is under the 

conditions of 𝑇𝑁𝑂𝐶𝑇, 𝐺𝑁𝑂𝐶𝑇, wind speed of a 1 m/s, stable conditions of open 
circuit and 45° tilted module. The value of NOCT used for the purpose of 
this thesis, considering the multi-crystalline silica technology, is assumed 
equal to: 

NOCT = 47 °C 
 

WIND velocity method: 
 

In WIND velocity model the peculiar meteorological parameters are wind 
velocity v, compared to NOCT model which uses just are G and Ta. The temperature 
equation is the following:  

𝑇𝑐𝑒𝑙𝑙𝑎 = 𝒂𝑻𝒄 ∙ 𝑇𝑎 + 𝒃𝑻𝒄 ∙ 𝐺 − 𝒄𝑻𝒄 ∙ 𝑣 + 𝑑     (2.8) 

with the following coefficients: 

• 𝑎 = 0.943  

• 𝑏 = 0.028 [
°𝐶 𝑚2

W
] 

• 𝑐 = 1.528 [
°𝐶 𝑠

m
] 

• 𝑑 = 4.3 [°C] 

The formula is based on the values of air temperature, irradiance and wind 
speed, each of which is multiplied by a respective coefficient. Usually, the values 
of the coefficients are fixed experimentally. However, in order to reduce the gap 
between actual measurement and the calculation of the model, they will be 
optimized.  
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Finally, it represents the corrective factor of the day and has a significant impact 
only for the calculation of energy for the winter semester, where there are more 
cloudy days. This coefficient was added to the model in order to reduce the 
overestimation, detected by the results of previous students, during the winter 
semester. The corrective factor of the day is calculated, for each implant and for 
each 𝑓𝑔i-th day, with the following quadratic relation: 

𝑓𝑔,𝑖 = 𝒂𝒇 ∙  𝐶𝐶𝐼2  +  𝒃𝒇 ∙  𝐶𝐶𝐼 +  𝒄𝒇            (2.9) 

where a, b  and c  are coefficients of quadratic expression, while the CCI (cloud 
cover index) takes into account the cloudiness of the i-th day and derives from the 
comparison between the total daily irradiation calculated in clear sky conditions 
(CSI) using the Moon model and the total daily measured radiation. Here is his 
expression: 

𝐶𝐶𝐼 =
(𝐼𝐶𝑆 − 𝐼𝑅𝑅mis)

𝐼𝐶𝑆
                  (2.10) 

In the thesis work scarto giornaliero is defined as: 

𝑠𝑐𝑎𝑟𝑡𝑜 𝑔𝑖𝑜𝑟𝑛𝑎𝑙𝑖𝑒𝑟𝑜𝑖 = 1 −  
(𝐼𝐶𝑆𝑔𝑖𝑜𝑟𝑛𝑜,𝑖 − 𝐼𝑅𝑅𝑔𝑖𝑜𝑟𝑛𝑜,𝑖)

𝐼𝐶𝑆𝑔𝑖𝑜𝑟𝑛𝑜,𝑖
               (2.11) 

Therefore: 

(1 −  𝑠𝑐𝑎𝑟𝑡𝑜𝑔𝑖𝑜𝑟𝑛𝑎𝑙𝑖𝑒𝑟𝑜𝑖) =  𝐶𝐶𝐼 =
(𝐼𝐶𝑆 − 𝐼𝑅𝑅mis)

𝐼𝐶𝑆
                 (2.12) 

So that the equation (3. 9) can be rewritten as: 

𝑓𝑔,𝑖 = 𝒂𝒇 ∙ (1 − 𝑠𝑐𝑎𝑟𝑡𝑜𝑔𝑖𝑜𝑟𝑛𝑎𝑙𝑖𝑒𝑟𝑜𝑖)2  + 𝒃𝒇 ∙ (1 − 𝑠𝑐𝑎𝑟𝑡𝑜𝑔𝑖𝑜𝑟𝑛𝑎𝑙𝑖𝑒𝑟𝑜𝑖) +

       +  𝒄𝒇                                                                                                                                       (2.13)  

For each plant in the sample, the hourly irradiation profile at clear skies for the 
entire 2018 is then calculated (Calculation of Moon Profiles) and then the daily 
deviation for each i-th day of the year is determined by comparing it with the 
irradiation profiles that are already available, i.e., those extrapolated from the SoDa 
database. This operation is carried out with the help of the Matlab 
Estrapolazione_scarto_giornaliero.mlx script that exploits the calculation of Moon 
Profiles. 
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2.2 Calculation models and parameters optimization 

The objective of optimizing the parameters, for the various models used, is to 
reduce the gap between the actual production profiles and the profiles obtained from 
the calculation models. The goal is to compensate for the inaccuracies present in 
the model by estimating, indirectly, the most correct values for some of the 
parameters present in the calculation expression. 

The optimization chosen for the model is nonlinear multi-variable. It is based 
on the minimization of the objective function considering some inequality 
constraints of the variables to be optimized: 

𝑚𝑖𝑛𝑥 𝑓(𝒙)                

𝑠. 𝑡 ∶   𝒍𝒃 ≤ 𝒙 ≤ 𝒖𝒃     

Where: 

• 𝒙 is the vector of optimization variables that minimize the objective 
function, i.e., the parameters. 

• 𝒍𝒃 is the vector of the lower limits of the optimization variables. 
• 𝒖𝒃 is the vector of the upper limits of the optimization variables. 

𝑓(𝒙) is the objective function to be minimized. It is the average quadric error 
normalized for the nominal power of each plant. 

𝑓(𝒙) = ∑
√1

𝑇
∑ (𝑃𝐴𝐶,𝑝𝑟𝑒𝑣,𝑖 − 𝑃𝑚𝑖𝑠,𝑖)

2𝑇
𝑖=1

𝑃𝑆𝑇𝐶

𝐽

𝑗=1

             

A quadratic deviation is used, rather than in absolute value, to give more 
importance to hourly deviations that exceed unity. For each system, the standard 
deviation of the difference between the i-th power values provided by the model 
and those measured over a given period of time is calculated. Finally, the waste is 
normalized with respect to the size of the implant. 

Ultimately, 7 combinations between calculation models and optimizations will 
be analyzed, which consider the calculation of the cell temperature according to the 
NOCT model and according to the wind speed model, with different parameter 
optimizations. Note that the number in the various model names refers to the 



44 
 

 
 

optimized parameters except for the inverter loss parameters (which will be 
optimized for each model). The models analyzed are: 

1. NOCT model - not optimized with bibliographic parameters. 
2. WIND model - not optimized with bibliographic parameters. 
3. Model NOCT 3 parameters - single optimization (on the summer 

semester);𝐺0, 𝛾𝑇 , 𝐶𝐴 𝑎𝑛𝑑 𝑎𝑝, 𝑏𝑝, 𝐶𝑝  
4. Model NOCT 4 parameters - double optimization (on the summer semester 

and coefficients for day factors on the winter 
semester);𝐺0, 𝛾𝑇 , 𝐶𝐴, 𝑁𝑂𝐶𝑇 𝑎𝑛𝑑 𝑎𝑝, 𝑏𝑝, 𝐶𝑝 𝑎𝑓 , 𝑏𝑓 , 𝐶𝑓 

5. Model WIND 6 parameters - double optimization (on the summer semester 
and coefficients for day factors on the winter 
semester);𝐺0, 𝛾𝑇 , 𝐶𝐴, 𝑎𝑇𝑐, 𝑏𝑇𝑐, 𝐶𝑇𝑐 𝑎𝑛𝑑 𝑎𝑝, 𝑏𝑝, 𝐶𝑝  𝑎𝑓 , 𝑏𝑓 , 𝐶𝑓 

6. Model WIND 4 parameters coeff. A - Double optimization (on the summer 
semester and coefficients for day factors on the winter 
semester);𝐺0, 𝛾𝑇 , 𝐶𝐴, 𝑎𝑇𝑐 𝑎𝑛𝑑 𝑎𝑝, 𝑏𝑝, 𝐶𝑝  𝑎𝑓 , 𝑏𝑓 , 𝐶𝑓 

7. Model WIND 4 parameters coeff. B - Double optimization (on the summer 
semester and coefficients for day factors on the winter 
semester);𝐺0, 𝛾𝑇 , 𝐶𝐴, 𝑏𝑇𝑐 𝑎𝑛𝑑 𝑎𝑝, 𝑏𝑝, 𝐶𝑝  𝑎𝑓 , 𝑏𝑓 , 𝐶𝑓 
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3 Data resource: acquisition and 
processing of forecast 
parameters, measured 
irradiance and electrical power 

The following chapter shows how data is obtained and organized. In the 
introduction a brief interaction among data is explained. The first paragraph is 
dedicated to forecast data, with the main focus on the irradiance as it has the major 
influence on PV energy production. In particular: 

• It starts with data source description. 
• Then the procedure of data acquisition and MATLAB codes used to gather 

it are presented. 
• After that, it is reported how these data are pre-processed and organized, in 

order to create different time leads forecasts profiles.  
•  Finally, some GHI plots are shown. 

The second paragraph describe measurement methods used for irradiance and 
electric power. 

To sum up, this study consists of the acquisition, processing and comparison of 
four types of data:  

• Forecast weather data: the meteorological parameters of interest for 
photovoltaic applications are downloaded, and pre-processed for the hourly 
power calculation model. 

• Forecast power data: obtained applying power calculation model to weather 
forecast data. 

• Measured electrical power data: These are used to calculate the error of the 
photovoltaic power prediction calculation model. 

• Measured irradiation data: which are used to compare determine whether 
the final deviation is due to model or forecast inaccuracies. 
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Figure 3-1: Main steps of the thesis, focusing on distinction among the three different 
data sources. 

3.1 Forecast data 

Meteorological variables that influence PV energy production (solar radiation, 
wind speed, temperature…) at the Earth’s surface can be accessed in three forms: 
measurements from ground-based instruments (e.g., radiometers, anemometers, or 
thermometers), remote-sensing retrievals, and output of dynamical weather models. 
These three forms of information, though describing the same quantities, should be 
regarded as complementary, rather than substitutive [20]. Forecast used in the 
model of this thesis utilize a combination and elaboration of these techniques 
depending on the time horizon. Due to the sheer size of NWP data and the number 
of queries that are typically received, operational NWP forecasts only stay online 
for a few days, therefore forecast data are gathered every day with an Application 
Programming Interface (API).  
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Figure 3-2: Heatmap of global horizontal irradiation over Italy surface [20]. 

Forecasts are requested to the weather service provider Meteomatics [20] [21], 
a Swiss company with other offices also in Germany and England, that provides an 
extensive number of meteorological parameters over multiple time horizons and 
spatial resolutions. In the case of Central Europe in particular, many usable models 
are available. Meteomatics processes the model data from the leading Numerical 
Weather Prediction (NWP) providers such as Met Office, ECMWF, NOAA (US), 
MeteoSwiss and satellite data providers [20]. The most important advantage of 
Meteomatics consist in the possibility to access meteorological parameters from 
different models using Meteomatics single API endpoint. Models and sources are 
combined into an intelligent blend, in a way that the best data source is chosen for 
each time and location.  

Downloaded raw data cannot be processed directly, therefore a series of scripts 
is applied in this order: 

1. MAIN_V4.mlx: it downloads meteorological parameters of a series of 
locations for a certain time period. It is built as a MATLAB live script, but 
then it is converted into a stand-alone application with application compiler 
function. It is described in the paragraph “ 3.1.1- Weather API construction” 

and located in folder “programmi”. 
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2. unione_giorni_IRR_meteomatics_V2.mlx: it generates for each location 
and parameter a matrix containing all the timesteps and all the different 
time-horizon forecast profile. It is described in paragraph “3.1.2 - Data 
organization” and located in folder “elaborazione_dati_in_locale”. 

 

3. PRE_PROCESSING_piano_inclinato.mlx: it is used to produce a unique 
matrix containing all the plane of array irradiances of any timestep. It 
generates as many matrixes as the number of forecasts time horizon, but it 
stores all the locations together. It is described in paragraph “3.1.5 – 
irradiation profiles on a tilted plane” and it is located in folder 
“pre_processing”.  

 
4. Estrapolazione_scarto_giornaliero.mlx: for any forecast time 

horizon, it generates the file scarto_giornaliero.mat which is needed 
during the optimization part. It described in the introduction of chapter 0 
and itis located in folder “pre_processing”.  

 

3.1.1 Weather API construction 

In this paragraph the procedure used to obtain a forecast is explained. For each 
query it is mandatory to include: 

1. User credentials. 

2. Start_date: date of the first day of period of requested forecasts. It is set as 
the day previous the current day, in order to also obtain data of the forecasts 
elaborated with the most recent updates using sky images. The unit of 
measurement is the day: 

start_date = floor(now)-1; 
3. end_date: date of the midnight of the last day of period of requested 

forecasts. It is set in order to get forecasts up to the end of the third day after 
the current time: 

end_date = start_date+5; 

4. resolution: the timestep of the format of the forecasts. It defines the 
timestep of the forecasts: 

resolution = 1/24; 
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A resolution of 1/24 on a daily time basis, corresponds to a timestep equal 
to 1 hour. It is possible to select timesteps even shorter than 1 hour, however 
these values would then be interpolated starting from the hourly values, 
therefore 1/24 is the shortest significative timestep available.  
 

5. Forecast_parameters: list of meteorological variables that are requested. 
They are described more in detail in the next page of this paragraph. If the 
number of parameters is larger than 10, they must be allocated into two 
different blocks:  

parameters1 = [... 

    'clear_sky_rad:W,' ... 

    'direct_rad:W,' ... 

    'diffuse_rad:W,' ... 

    'global_rad:W,' ...              

    't_2m:C,' ...                    

    'wind_speed_10m:ms,' ... 

    'low_cloud_cover:p,' ... 

    'medium_cloud_cover:p,' ... 

    'high_cloud_cover:p,' ... 

    'total_cloud_cover:p']; 

parameters2 = [... 

    'pressure_000m:Pa,' ... 

    'relative_humidity_2m:p,' ... 

    'sun_azimuth:d,' ... 

    'sun_elevation:d']; 

 
6. Coordinates: latitude and longitude. They are not a single value, but a vector 

containing a number of element equal to the maximum number of locations 
that can be requested each query, depending on the subscription plan as 
indicated below in this paragraph. 

7. Model, they difference among the various option are related to:  
a. Spatial resolution: it depends on the model, it can be up to 0.0012° 

(~90 m at European latitudes), 
b. Temporal resolution: usually hourly resolution, or a multiple of 1 

hour. 
c. Updates per day: usually 2 or 4 times per day, reason why in this 

study forecasts are downloaded 4 times per day. 
d. Maximum lead time: usually in the range of 2-5 days. 

8. Output format. 
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On Meteomatics different subscription plans are available, therefore the 
following specifications will refer to the plan that was used for this application. The 
subscriptions used for this thesis is characterized by the following parameters: 

• number of queries per day = #50. 
• number of queries per minute = #10. 
• number of locations per query = #10. 
• number of meteorological parameters per query = #10.  
• available models. 
• option to access to historical data reanalysis, which was not activated. 
 
The forecast model needs as input the following meteorological parameters: 
 

1. Plane of Array irradiance. 

2. Air temperature. 

3. Wind speed. 

Air temperature and wind speed are directly available, while irradiance need 
more parameters to be processed in order to be obtained. Therefore, 
downloaded parameters are the following: 

• Beam Horizontal Irradiance (BHI) [W/m2]. 

• Direct Horizontal Irradiance (DHI) [W/m2]. 

• Global Horizontal Irradiance (GHI) [W/m2]. 

• Clear sky irradiance [W/m2]. 

• Air Temperature [°C]. 

• Wind speed [m/s]. 

• Solar Zenith angle [°]. 

• Solar azimuth angle [°]. 

• Low cloud cover [%]: they are formed below 2000 m in height. 

• Medium cloud cover [%]: formed between 2000 and 8000 m altitude. 

• High cloud cover [%]: formed between 8000 and 14000 m altitude. 
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• Total cloud cover [%]: determined by a combination of the previous three 
layers of clouds. In particular low clouds are responsible of the highest 
contribute to total cloud cover, while high clouds are the least relevant. 

The description of some of these parameters in the list, which are averaged on 
an hourly basis, is absent because these variables are explained more in detail in the 
chapter of description of the model. Variables like irradiation components, 
temperature, wind speed are needed to estimate photovoltaic power output and are 
forecasted data, while solar angles are determined only by the time of the year and 
plant location. Although solar angles could be calculated without using 
Meteomatics, these parameters are still maintained in the API because provide 
useful details to understand the trend of the daily profile and possibly apply 
systematic corrections. Additional variables like pressure and humidity are 
available, however they are excluded from this model because their contribution is 
marginal compared to the final error, since predicted data are used instead of 
effective reanalysis or measurements. 

Flowchart in Figure 3-3 shows the structure of the script MAIN_V4.mlx. It generates 
as many files as the number of the locations, each time a new query is made. 
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Figure 3-3: Flowchart of the code acquiring meteorological variables. 

Finally, considering that many of NWP models are updated four times per day 
(at 00:00 UTC, 06:00 UTC, 12:00 UTC and 18:00 UTC), forecasts are therefore 
queried four times per day to have always the most update data. In order to make 
this process automatic, the MATLAB script which has the function of downloading 
weather forecast data has been converted to a stand-alone MATLAB application 
and configured with the Windows task scheduler. 
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Figure 3-4: automatization of forecast download program. 

3.1.2 Data organization 

The number of generated raw files is equal to the product of: 

• Number of locations, for which forecasts are requested. 
• Number of weather parameters downloaded for each site. 
• Number of queries per day 
• Numbers of day. 

Data downloaded from Meteomatics are not suitable for direct processing into 
the main script. unione_giorni_IRR_meteomatics_V2.mlx. script is then 
applied. It produces as many matrixes as the number of the locations; each matrix 
as a number of rows equal to the total number of timesteps (hours) and number of 
columns equal to the number of forecasts profile that are going to be built. Raw data 
pre-processing is summarized in the flowchart shown in Figure 3-5. 
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Figure 3-5: Flowchart of the code which creates a unique file for each location 
containing all days. 
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3.1.3  Theoretical and effective lead times 

In paragraph 3.1.1 it is specified that forecasts must be downloaded within a 
time range. If we consider a forecast period of 2 days, the first timesteps will have 
a time lead of only a couple of hours, while the last timestep will have a 48 hours 
time lead. Therefore, it is important to create daily profiles with the same time lead. 
The time lead of a timestep is determined by how many hours there are between the 
time of forecast acquisition and the timestep itself, plus the hours needed by the 
NWP models to produce the result of the simulation. Figure 3-6.Figure 3-6 shows 
the difference between the effective forecast lead time of the simulation, and the 
perceived forecast lead time from the current time.  

 

Figure 3-6. 

With reference to the previous figure, in this thesis six different time leads 
profiles will be analyzed: 

• Six hours time lead profile, consisting in forecasts with a lead time of 6 
hours and available at the current time. This profile will be referred as           
“t-6h”. 

• Twelve hours time lead profile, consisting in forecasts with a lead time of 
twelve hours and available six hours before the current time. This profile 
will be referred as “t-12h”. 

• Eighteen hours time lead profile, consisting in forecasts with a lead time of 
eighteen hours and available twelve hours before the current time. This 
profile will be referred as “t-18h”. 
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• Twenty-four hours time lead profile, consisting in forecasts for the hour 
twenty-four hours after the current time and available eighteen hours before 
the current time. This profile will be referred as “t-24h”. 

• Thirthy hours time lead profile, consisting in forecasts with a lead time of 
thirthy hours and available twenty-four hours before the current time. This 
profile will be referred as “t-30h”. 

• Profile coming from the results of the NWP model using the final, most 
updated inputs, mainly coming from sky images. However, as the model 
takes 6 hours to produce outputs, these weather data refer to a time interval 
prior to the moment of weather forecasts. In conclusion these last data are 
are not of practical use as they do not refer to a future time. They are anyway 
utilized as a meter of how much forecasts can improve as they are more 
updated. This profile will be called “t-Post” profile. 

However, although forecasts could be theoretically queried every hour, they got 
updated only four times per day. Therefore, taking as an example the     -6h profile, 
forecasts are queried with six hours advance only for the time in which the query is 
executed, that is 00:00, 6:00, 12:00 and 18:00. As a result, what is called -6h profile 
contains forecasts with an advance between 6 and 11 hours. In general, the time 
lead of each profile is not constant, but it may have an increase of maximum amount 
of 5 hours. This amount only depends for each timestep on how many hours are 
passed between the execution time (00:00, 6:00,12:00 and 18:00) and the hour 
corresponding to that timestep a certain time.  

Table 3-1 shows for each time of the day and for each profile what is the real 
advance the forecasts have been requested. This table is used at the beginning of 
the study to build daily irradiation profiles of the next paragraph, but not fed into 
further Matlab codes. 
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Table 3-1: Actual forecasts lead time for the five time-horizon 
profiles. 

Time -6h 12h -18h -24h -30h 

00:00 -6 -12 -18 -24 -30 

01:00 -7 -13 -19 -25 -31 

02:00 -8 -14 -20 -26 -32 

03:00 -9 -15 -21 -27 -33 

04:00 -10 -16 -22 -28 -34 

05:00 -11 -17 -23 -29 -35 

06:00 -6 -12 -18 -24 -30 

07:00 -7 -13 -19 -25 -31 

08:00 -8 -14 -20 -26 -32 

09:00 -9 -15 -21 -27 -33 

10:00 -10 -16 -22 -28 -34 

11:00 -11 -17 -23 -29 -35 

12:00 -6 -12 -18 -24 -30 

13:00 -7 -13 -19 -25 -31 

14:00 -8 -14 -20 -26 -32 

15:00 -9 -15 -21 -27 -33 

16:00 -10 -16 -22 -28 -34 

17:00 -11 -17 -23 -29 -35 

18:00 -6 -12 -18 -24 -30 

19:00 -7 -13 -19 -25 -31 

20:00 -8 -14 -20 -26 -32 

21:00 -9 -15 -21 -27 -33 

22:00 -10 -16 -22 -28 -34 

23:00 -11 -17 -23 -29 -35 

 

3.1.4  Irradiation profiles on horizontal plane 

As mentioned before, decoupling forecast error and PV power model error is 
important to evaluate the performance of the PV model. For example, a final error 
of +30%, at first sight could seem a poor performance of the PV power calculation 
model, but if also in forecasts an overestimation in the range of 25-35% is detected, 
the responsibility of the bad performance must be attributed to the quality of 
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forecasts and not to flaws in the calculation model. Therefore, in the following 
figures, measured and forecast irradiances will be compared. For each plot, a 
synthetic table with the daily residual is attached. The following plots refer to the 
variable GHI, which has the main influence on the PV energy production. In this 
paragraph three plot examples are reported: 

1. Very cloudy day 
2. Clear-sky sunny day 
3. Sunny day, but with 2 hours characterised by high variability in the GHI 

trend. 

Global horizontal irradiance measures are explained in paragraph 3.2.1. 

Figure 3-7: Progressively improvement in forecast for a cloudy day. shows the 
example of a day which was at first forecasted as a sunny day and it turned out to 
be very cloudy. More precisely it displays the six forecast profiles described in 
paragraph 3.1.3 and actual measurements of GHI. This is a day which perfectly 
represents the benefits of updating the forecast more times per day, because each 
updated forecast for that day is producing a more accurate output, decreasing from 
an initial error of almost 300% to a final error of 60%, as summarized in table 3.2. 
The error reported in tables 3.2-4 is calculated on a daily basis as: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎
∙ 100         

 
Table 3-2: progressive residual improvement for a cloudy day. 

 Post t-6 t-12 t-18 t-24 t-30 Measured  

Irradiation 
[kWh/m2] 0.64 0.88 0.93 1.11 1.44 1.59 0.40 

Deviation  
[%] 59% 119% 132% 176% 257% 294% - 
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Figure 3-7: Progressively improvement in forecast for a cloudy day. 

As the majority of sunny days do not present a large variation in updated 
forecasts, with the result that more profiles tend to collapse into a single one, in the 
following figures only the most recent and the less recent forecast will be reported 
for sake of having more readable plots. An example of a day characterised by a 
negligible variability in GHI update is reported in Figure 3-8Figure 3-7. Table 3.3 
also shows the minimal variation of the residual calculated on a daily basis with the 
different forecast profiles.  

Table 3-3: negligible daily residual improvement for a sunny day. 

 Post t-6 t-12 t-18 t-24 t-30 

Irradiation 
[kWh/m2] 2.18 2.19 2.19 2.19 2.19 2.19 

Deviation 
[%] 18.8% 19.4% 19.2% 19.1% 19.2% 19.3% 
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Figure 3-8: irradiation profiles for a clear sky day with extremely low variability. 

Benefits from updated forecasts are not limited to very cloudy days, but in 
general when an element characterised by an elevated rate of variability and 
uncertainty appears. Figure 3-9 for example, represents what is mainly a clear sky 
day, with the exception of some clouds for a couple of hours in the morning. In this 
case the updated forecast profile cannot perfectly match the real profile due to the 
high rate of variability of cloud cover. Results consist in a generalized decrease of 
irradiation profile around the time interval in which clouds appear.  

Table 3-4: residuals calculated with least and most updated forecasts, for a sunny day 
with a couple of cloudy hours. 

 Post t0 t-6 t-12 t-18 t-24 Measured  
Irradiation 
[kWh/m2] 2.03 2.07 2.07 2.08 2.08 2.12 99 

Deviation 
[%] 23% 25% 26% 26% 27% 28% - 
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Figure 3-9: Most and least updated profiles for a sunny day with a couple of hours 

characterized by a high cloud variability. 

3.1.5  Irradiation Profiles on a tilted plane 

As previously introduced, irradiation components downloaded by Meteomatics 
are available only on the horizontal plane, therefore they must be translated on the 
plane of array as explained by the model in the paragraph 2.1. In particular script 
PRE_PROCESSING_piano_inclinato.mlx is applied, which uses the transposition 
model used described in equation 2.2. it requires the following inputs: 

• Latitude and longitude of each plant. 
• Solar irradiation components: they must be in an 8760xN°_of_pants format. 
• Differently from previous thesis works, the number of time horizons 

forecasts is introduced too. In particular, the original core is inserted into an 
external cycle which for any forecast produces the final POA irradiation 
matrix. For simplicity, considering the similarity in the dimensions of data 
and of the files pathway of the other variables (temperature and wind speed), 
needed into the power calculation model, also temperature and wind speed 
matrixes are saved in the appropriate folder when running this script, but 
they do not need any further processing.  
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 In order to assess whether the final error of the model is caused by the 
translation model or by the forecast error, measured irradiation da are collected both 
on the horizontal plane and on a tilted (37°) plane facing towards east. Results, here 
reported in graphical and tabular form, show the trend of the relative error of 
translated POA irradiation. This error is non negligible (for the day considered 17 
%), but the error caused in forecasts is almost preserved. More in detail, forecasted 
irradiance on the horizontal plane GHI appears in general to be over-estimated, and 
as a consequence the POA irradiance tends to be higher than the real value as well, 
but with the same proportion. As this trend is verified also for the vast majority of 
days, it is reasonable to assume that the error introduced by the translation model is 
smaller than the uncertainties determined by the use of forecast data. Table 3-5 and 
Figure 3-10 shows these results. 

 
Figure 3-10: Comparison between forecasted and measured irradiation, for horizontal and 

tilted plane. 
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Table 3-5: comparison of the daily irradiation residual between GHI and POA 
irradiance. 

 Measured 
horizontal 

Measured       
Tilt = 37° 

Forecast 
horizontal 

Forecast      
Tilt = 37° 

Irradiation 
[kWh/m2] 1.87 1.95 2.17 2.28 

Deviation 
[%] - - 15.9% 17.0% 

3.2 Measured data 

The case study is related to a photovoltaic system installed in 2015 with a 
nominal power of 4,250 kW and polycrystalline silicon modules, equipped with 
calibrated irradiation sensors and monitoring systems. The plant is installed in the 
town of Rivalta di Torino. Figure 3-11: Case study plant location. shows PV plant 
case study location. 

 

Figure 3-11: Case study plant location. 
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Measured data consist in: 

• global irradiance on horizontal plane (GHI): it is needed to decouple the 
forecast error from the output electric power error; 

• global irradiance on a tilted plane: it is used to evaluate possible errors when 
converting horizontal irradiance into incident irradiance on the plane of 
array; 

• produced power by the PV plant to evaluate the final error and results of the 
model. It is also used inside the hourly calculation power model in the 
parameters optimization part. 

3.2.1 Measured irradiance 

Instruments sensor Spektron 210 and ICP DAS I-7017 data acquisition and 
control module. The Spektron 210 provides a voltage proportionally to the intensity 
of the solar irradiation. 

Table 3-6: Spektron 210 specifications 

Model Spektron 210 

Sensor type   Monocrystalline cell (13 mm / 33 mm) 

Measuring range 0 – 1500 W/m² 

Sensor accuracy ± 5 % (annual mean) 

Outlet approx. 75 mV at 1000 W/m² 

Calibration Sun Simulator Solar Constant 1200 with 
Reference sensor calibrated by the ISE 

Design of the 
sensor  

Measuring cell laminated in novaflon 
and EH foil 

Casing Z-profiled aluminium plate, connection 
encapsulated 

Dimensions 118 mm x 50 mm x 44 mm 

Protection mode IP65 

Weight 250 g (incl. cable) 

 



  
65 

 

65 
 

The I-7017 is an analog input module that provides 8 differential input 
channels, whose datasheet is reported in Table 3-7. Considering that the output 
voltage from the irradiation sensor is around 75 mV at 1000 W/m², the voltage input 
of the acquisition model is selected to ±150 mV range.  

Table 3-7: ICP DAS – I7017 technical specifications. 

MODEL I-7017 

Channels 8 

Wiring 
6-channel Differential and 2-channel 
Single-ended, or 8-channel 
Differential. 

Input 
range 

Voltage ±150 mV, ±500 mV, ±1 V, ±5 V, 
±10 V 

Current 
±20 mA, 0 ~ 20 mA, 4 ~ 20 mA 
(Require an optional external 125 Ω 

resistor) 

Resolution 16-bit 

accuracy 0.10% 

Sampling rate 10 Hz 

Input Impedance 20 MΩ 

Common Voltage protection ±15 VDC 

Overvoltage Protection ±35 VDC 

 

Data are then accessed with EZ Data Logger, a PC based data logging, data 
acquisition, control and monitoring software. It allows to remotely control and 
configure the ICPDAS data acquisition hardware. Moreover, it sores data in a 
database and can be exported to spreadsheets. The availability  

  



66 
 

 
 

3.2.2 Measured Power 

Electrical power is measured by means of HT Solar300, located downstream 
the inverter. HT Solar300N is a multifunction device for verification of single-
phase and three-phase PV system efficiency and Power Quality analysis. For the 
sake of this thesis, only the measured output power is used, with a timestep of 1 
minute. 

 

 

Figure 3-12: solar 300N configuration 

Table 3.9 contains a brief datasheet of HT SOLAR 300N multimeter. For all the 
specifications, it is available at  
https://emin.com.mm/ht-instrumentssolar300n-hv00300n-0201-ht-instrument-
solar300n-hv00300n-0201-power-quality-analyzer-for-checking-the-efficiency-
of-photovoltaic-systems-without-cts-myanmar-33634/pr.html. 
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Table 3-8: HT SOLAR 300N datasheet. 
FS = Full Scale 

MODEL HT SOLAR 300N 

DC Voltage – PV 
systems 

Range (V) 0.0 ÷ 1000.0 

Resolution (V) 0.1 

Accuracy ± (0.5%rdg + 2dgt) 

Input impedance 10MW 

AC TRMS Voltage – PV 
systems Single/Three 
phase plants 

Range (V) 
0.0 ÷ 600.0 

0.0 ÷ 1000.0 (P-P) 

Resolution (V) 0.1 

Accuracy ± (0.5%rdg + 2dgt) 

Input impedance 10MW 

DC and AC TRMS 
Current with 
external transducers  

Range (mV) 0.0 ÷ 1000.0 

Resolution (mV) 0.1 

Accuracy ± (0.5%rdg + 
0.06%FS) 

Input impedance 510 k 

Environmental 
conditions 

Reference temperature: 23°C ± 5°C 
Working temperature 
(°C)         D 0 ÷ 40 

Working humidity <80%RH 

 

HT SOLAR 300N has a very high acquisition frequency, for simplicity its 
outputs are exported on a minute basis. Forecasts are instead available on an hourly 
basis; therefore, they need to be averaged on hourly intervals in order to match the 
array dimensions of forecast data. 

Irradiances outputs from ICP DAS I-7017 and power outputs from HT SOLAR 
300N, are available on the identical time basis of one minute. As they undergo the 
same averaging process, for convenience the pre-processing of these data is made 
in the same script, called 
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PRE_PROCESSING_Potenza_misurata_media_oraria.mlx, located in folder 
“pre_processing”. The outputs are the following files: 

1. potenza_media_oraria_misurata.mat: which is used in the code to calculate 
the energy deviation in the optimization part. In addition, it is used in the 
post-processing data analysis to evaluate the final results. 

2. IRR_medio_orario_misurato.mat: which is used to quantify forecast error, 
in order to account the weight of irradiance forecast error in the final power 
calculation model error. It is not used directly in the code, but it is however 
needed as an input because in the last lines it is anyway overwritten in an 
export excel file. 
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4 Hourly power calculation 
model performance: test on 
year 2022, results and daily 
power profiles 

The following chapter covers the results of the model. In the first paragraph 
error and performance metrics are described. In the second paragraph some daily 
profiles are reported in order to analyse the results in a punctual way under a series 
of different circumstances. The third paragraph shows in a synthetic way the global 
results considering the error over the whole period. Finally, in the last paragraph 
the behaviour of the weather variable GHI is analysed over the whole year for four 
Italian regions, in order to evaluate the forecasts quality. 

The following results were obtained with the MAIN_GASPERONI.mlx and 
MAIN_GASPERONI_Cloud_Model_V2.mlx scripts in folder “”. For each model, 
the input data of the Matlab program are:  

• Annual hourly irradiation matrix (IRR) (kWh/h/m2), 8760 x M (systems 
obtained from filtering for each region), data already reported on the 
inclined plane (downstream of the development of the ASHRAE model);  

• Annual ambient temperature matrix 8760xM (°C). 
• Wind speed matrix 8760xM (m/s).  
• Matrix of sorted filtered data, i.e. table containing master data information 

(name, address, operating data, etc.) for sample plants.  
•  Filtered annual production matrix 8760xM (kWh/h), note that each row 

contains the annual production profiles of the plant of the same row as the 
matrix of filtered data ordered;  

• Column vector Number of plants available for each class, #Classi x 1 
(11x1);  

• Column vector G0_iniziale (G00), #Classi x 1 (11x1), derives from the 
clustering procedure in order to avoid that the optimization parameters 
obtained depend on the initial values.  
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• Matrix annual daily deviation between the daily profiles of irradiance in 
clear sky and the real irradiance profiles measured, 365xM, in order to 
determine the day factor (to be considered non-zero only for optimization 
in the winter semester).  

The last matrix refers to the MATLAB script Estrapolazione_Scarto_giornaliero. 
In it, the radiance profiles at the clear sky (Moon Profiles) are first obtained and 
then compared with the actual irradiance measured on the inclined plane in order to 
obtain the daily deviation. For Estrapolazione_Scarto_giornaliero script, the 
required input data are:  

• provinces -> String with name of provinces to each region #province x 1.  
• Hb -> Matrix with direct solar irradiation values, daily average monthly in 

a year, #province x 12. To be taken from pdf file "Data - 
dati_climatici_uni103491";  

• Hd -> Matrix with diffuse solar irradiation values, daily average monthly in 
a year, #province x 12; To be taken from pdf file "Data - 
dati_climatici_uni103491";  

• Sample plant data table containing main information (province, azimuth, 
tilt, latitude, longitude);  

• Annual hourly irradiation matrix (IRR) (Wh/m2), 8760 x M (systems 
obtained from filtering for each region), data already reported on the 
inclined plane (downstream of the development of the ASHRAE model). It 
is compared with Moon profiles.  

4.1 Error and performance metrics 

Error is calculated on hourly, daily and global basis. The energy deviation is 
evaluated in percentage terms, the definition is highlighted in the following 
equation: 

𝐷% =
∑ 𝐸𝑀𝑜𝑑𝑒𝑙𝑖 − ∑ 𝐸𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖

∑ 𝐸𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖
       (4.1)   

As it is defined, a deviation greater than zero implies an overestimation of the 
model compared to measurements, while a deviation less than zero involves an 
underestimation. It gives a rapid and general overview of the model. As positive 
and negative errors tend to compensate each other, the deviation produces global 
results with a very low error. In order to evaluate the performance of the model and 
of the forecasts, also Mean Absolute Percentage Error (MAPE) is introduced. It is 
calculated as described in chapter 8 of [12]: 
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𝑀𝐴𝑃𝐸 =  
100

𝑁

∑ |𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖−𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖|𝑁
𝑖=1

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑎𝑣𝑔
   (4.2) 

Where N is the number of hours during the plant is working and Pmeasured,avg the 
average measured power. 

4.2 Production profiles comparison 

Since the global horizontal irradiance (GHI) is the most important 
meteorological parameter to calculate the yield of a photovoltaic system, the 
calculation model was performed twice, using as a value of GHI: 

1. Simply the value provided by the Meteomatics query (see paragraph 3.1.1.). 
it will be referred as “base model”. 

2. Starting from the power that would be produced in conditions of perfectly 
clear sky, corrected with the coefficient of cloudiness: 

𝑃forecast =  𝑃clear,sky ∙ 𝐹(𝑡)    

With 𝐹(𝑡) expressed as: 

𝐹(𝑡) =  𝑐 ∙  
100 −  𝑙𝑜𝑤(𝑡)

100
+ 𝑑 ∙  

100 −  𝑚𝑖𝑑(𝑡)

100
+ 𝑒 ∙

100 −  ℎ𝑖𝑔ℎ (𝑡)

100
+  𝑓 

Where the coefficients c, d, e, f are semi-empirical coefficients and low(t), mid(t) 
and high(t) represent the percentage of cloudiness at every hour, for the three 
different cloud levels The results of this second approach will be labeled as reactive 
to the “Cloud Model”.  

In this chapter a more detailed insight into some specific days is presented. In 
particular it is highlighted the effect of: 

1. Effect of the general category of the model (that is the differences between 
NOCT and wind velocity-based models), both in case of: 

 

a. Base, non-optimized model 
b. The optimized version of the model which has produced the best results. 

 

2. Effect of the optimization: the focus is on the comparison between the base 
and optimized versions, both for NOCT and wind velocity-based models. 
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3. Effect of the weather: in which daily profiles are displayed under different 
meteorological conditions of: 

 

a. Regular sunny day. 
b. Intermediately cloudy day 
c. Highly cloudy day. 

 

In the case of days presenting high variability in irradiance and therefore in 
power output (in general cloudy days) the effect of the model is much less 
important than the forecast time lead. Therefore, for this case the comparison 
between different time horizons is presented. 

4.2.1 Comparison between NOCT and Wind velocity models 

In this paragraph the two main categories of models are compared, which are: 
NOCT models and Wind velocity based models. 

NON-OPTIMIZED MODELS: NOCT AND WIND 

Wind and NOCT models are different just by the way cell temperature is calculated. 
Cell temperature affects the PV production, but with a minor impact compared to 
the irradiance; therefore NOCT and Wind non-optimized models produces very 
similar results. Figure 4-1 shows the daily profile of the electric power calculated 
with NOCT and WIND non optimized models, compared with actual measured 
data. As explained at the beginning of this paragraph, the profiles of these two 
models tend to collapse into a single curve. On the same plot also forecast and 
measured irradiances are reported, to keep into account the input error introduced 
by forecasts. The point of maximum power production is shifted to the right with 
respect to the maximum irradiance point because the monitored plant faces towards 
west. It is possible to notice that the overestimation in irradiance is smoothed by the 
models, which still produce a positive energy deviation. Table 4-1 contains on a 
daily basis the energy deviation of profiles shown in fFigure 4-1. These are the 
oldest forecast profiles (t-30), and they refer to 20/01/2022. 

Table 4-1 

 
Irradiation [kWh/m2] Electric Energy [kWh] 

Measured 
GHI 

Forecast 
GHI 

Measured 
Energy NOCT Wind 

Daily Total 1.91 2.31 7.97 8.2 8.2 

Deviation [%] - 21.06 - 3.3 3.1 
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Figure 4-1: comparison between forecasted and measured irradiances, and measured 

and forecasted (for base NOCT and WIND model) electric power. 

 

OPTIMIZED MODELS: NOCT VS WIND 

In Figure 4-2 the optimized versions of NOCT and WIND models are reported, in 
particular they are the NOCT 4 PAR and WIND 3 PAR models. Also in this figure 
measured power, measured irradiance and forecast irradiance are plotted, for the 
same day of 20/01/2022. In this case the two models still produce very similar 
results, but differently from fFigure 4-1, they do not collapse into a single curve. 
As it can be seen in this figure and it will be discussed in paragraph 4.3, WIND 3 
PAR tends to have a negative energy deviation (the prediction underestimates the 
actual production), while NOCT 4 PAR 2 STEP tends to have a positive energy 
deviation and it globally has the best performance. Table 4-2 contains on a daily 
basis the energy deviation of profiles shown in figure 4-2. The following data refer 
to the oldest forecast profiles (t-30). 
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Table 4-2 

 
Irradiation [kWh/m2] Electric Energy [kWh] 

Measured 
GHI 

Forecast 
GHI 

Measured 
Energy 

NOCT 4 
PAR 2 STEP 

WIND 3 
PAR 

Daily Total 1.91 2.31 7.97 8.15 7.77 

Deviation [%] - 21.1 - 2.32 -2.42 

 

 

Figure 4-2: comparison between forecasted and measured irradiances, and measured 
and forecasted electric power for optimized models. 

4.2.2  Effect of the optimization 

In this sub-paragraph non optimized model profiles and their optimized 
versions will be compared. 
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NOCT MODELS: BASE VS OPTIMIZED 

 Figure 4-3 contains NOCT model, NOCT 4 PAR 2 STEP model and measured 
produced power. First of all, there is a general overestimation of produced power, 
that is coherent with the general irradiance deviation. Secondly, even if trends are 
quite close to each other, the optimized profile is slightly decreased, with the largest 
improvements in the first hours in the morning. In the below figure the oldest 
forecast profile (t-30) is considered. Table 4-3 contains on a daily basis the energy 
deviation of profiles shown in figure 4-3. Data refers to the day of 24/01/2022.  

 

Figure 4-3: comparison between NOCT models: optimized and non-optimized. 

Table 4-3 

t-30 Measured NOCT NOCT 4 PAR 2  STEP 

Energy [kWh] 7.57 8.38 8.15 

Energy deviation [%] - 10.7 7.64 
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WIND MODELS: BASE VS OPTIMIZED 

Figure 4-4 contains WIND model, WIND 3 PAR model and measured 
produced power. The optimization is not punctual but global, therefore it may 
happen that in a limited number of points the optimized profile is more distant to 
the measurements than the non-optimized profile. In this case, the two central hours 
have been slightly penalized, but the whole profile during the whole day produced 
better results. Non-optimized model in this case always overestimates the 
production, while the optimized model slightly overestimates the production except 
from the 2 central hours. Data refers to the day of 19/01/2022, for which the oldest 
forecast profiles (t-30) are considered. 

 

Figure 4-4: comparison between WIND models: optimized and non-optimized. 

Table 4-5 reports the energy deviation calculated over the entire day associated to 
profiles shown in Figure 4-4. 
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Table 4-4 

t-30 Measured WIND WIND 3 PAR  

Energy [kWh] 6.55 7.20 6.76 

Energy deviation [%] - 8.15 1.55 

4.2.3 Comparison between different meteorological conditions 

In the following section, several profiles under different weather conditions 
will be compared. In the case of days with high variability or improvements in 
forecasts, also the most recent forecast is plotted and compared with the oldest. 

EXAMPLE OF A REGULAR SUNNY DAY 

Figure 4-5 shows NOCT and NOCT 4 PAR 2 STEP profiles for a generic sunny 
day and compared to measured values. The plot in the figure below refers to the 
oldest forecast profile, the so-called t-30 forecast profile, for the day of 15/01/2022, 
but it is representative of any sunny, clear sky day.  

 

Figure 4-5: profiles example for a sunny day. 
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Table 4-5 contains on a daily basis the energy deviation of profiles shown in. Figure 
4-5. 

Table 4-5 

t-30 Measured NOCT NOCT 4 PAR 2 STEP 

Energy [kWh] 7.60 7.75 7.67 

Energy deviation [%] - 2.01 0.92 

 

Figure 4-6 shows for the same day of 15/01/2022, the NOCT non optimized profiles 
for the 6-hours and 30-hours time leads. As introduced with the irradiance analysis 
in chapter 3, for very sunny days the benefit of having updated forecasts is almost 
negligible as the oldest and newest forecasts collapse into a single curve. In this 
case for example, a 24 hours more recent update just brings a 0.45% improvement 
in the residual. 

 

Figure 4-6: profile example for a sunny day; comparison between oldest and newest 
forecasts. 
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Table 4-6 reports the energy deviation calculated over the entire day associated 
to profiles shown in Figure 4-6 

Table 4-6 

  Measured NOCT 

t-6 
Energy [kWh] 7.60 7.71 

Energy deviation [%] - 1.56 

t-30 
Energy [kWh] 7.60 7.75 

Energy deviation [%] - 2.01 
 

Comparing therefore Figure 4-5 and Figure 4-6, it is possible to affirm that during 
sunny days characterized by modest or null forecast updating, the effect of model 
optimization affects more the final profile than the use of a more recent update. In 
paragraph 4.3 the low variability of forecast during sunny days will be more 
extensively indagated and discussed. 

EXAMPLE OF A DAY WITH LARGE FORECASTS UNDERSTIMATION  

Figure 4-7 contains the oldest forecast (t-30) for NOCT and NOCT 4 PAR 2 STEP 
models, for what it was predicted as an intermediately cloudy day. 31 January 2022 
is chosen as a day initially forecasted as intermediately cloudy during the central 
hours of the day, and then corrected as sunny. The effect of optimization produces 
an almost identical power profile, even a little further from the real one. This 
behaviour is due to the fact that the optimization is implemented over the whole 
period, and as in general forecasts are optimistic, it has been noticed that the 
optimization tends to decrease in general the output profile. As a consequence, if 
forecasts strongly underestimate the irradiation and therefore the energy 
production, there could be situations like this one where the optimized model fails 
compared to non-optimized version. Table 4-7Table 4-5 summarizes on a daily 
basis the energy deviation of models during the day of 31/01/2022. 

Table 4-7 

t-30 Measured NOCT NOCT 4 PAR 2 STEP 

Energy [kWh] 10.2 7.63 6.74 

Energy deviation [%] - -25.0 -33.7 
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Figure 4-7: plot examples for a day whose initial guess had a high error; oldest forecast. 

Figure 4-8 shows the same day and the same models, but with the most recent 
forecast profile (t-6). The values of the irradiance are still far from being correct, 
but the improvement from the original guess is remarkable. Furthermore, in this 
case the optimized model gives a slightly worse energy deviation, but this is due to 
the initial overestimation in the morning, while it better matches the actual 
production profile. Table 4-8 reports daily energy deviations related to the 
previously commented profiles.  

Table 4-8 

t-6 Measured NOCT NOCT 4 PAR 2 STEP 

Energy [kWh] 10.2 8.62 8.48 

Energy deviation [%] - -15.2 -16.6 
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Figure 4-8: plot examples for a day whose initial guess had a high error; newest 
forecasts. 

Figure 4-9 finally compares for the day of 31 January the oldest (t-30) and 
newest (t-6) profiles with actual measurements. As the focus is on the forecast 
update, only NOCT non-optimized model is plotted. Table 4-9 shows that for this 
model the energy deviation is improved from an initial -25% to a final -15.2% when 
updating forecasts. It emerged therefore that in the case of this types of days, 
characterized by an important irradiance underestimation, the optimization has no 
effect, while forecast update has the most relevant influence on results. 

Table 4-9 

  Measured NOCT 

t-6 
Energy [kWh] 10.16 8.62 

Energy deviation [%] - -15.21 

t-30 
Energy [kWh] 10.16 7.63 

Energy deviation [%] - -25.0 
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Figure 4-9: plot example for a day with significant improvement determined by 
forecasts update. 

EXAMPLE OF A DAY WITH LARGE FORECASTS OVERSTIMATION  

Finally, 6 February 2022 is considered as a very cloudy day example. Figure 
4-10 shows the oldest profiles (t-30) of NOCT and NOCT 4 PAR 2 STEP models 
are compared to measured data. The optimized version improves the result of the 
NOCT model, but it is still distant from the measured data, with an energy deviation 
that is reduced from 134% just to 114%, as reported in Table 4-10. This large 
overestimation is determined by an upstream error in irradiance forecasts, which 
predicted this day to be sunny. 

Table 4-10 

t-30 Measured NOCT NOCT 4 PAR 2 STEP 

Energy [kWh] 3.77 8.82 8.07 

Energy deviation [%] - 134 114 
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Figure 4-10: plot examples for a cloudy day, oldest forecast. 

Figure 4-11refers to the same models and day of previous picture, but with the 
most recent (t-6) forecast profiles. As summarized in Table 4-11, the optimized 
NOCT 4 PAR 2 STEP model has better energy deviation calculated on the day, but 
it must be noted that the overestimation in the morning partially compensates the 
afternoon underestimation, leading to a global better performance. Considering the 
performance on the single timesteps, avoiding the daily smoothing effect, in some 
hours NOCT model is more suitable, and vice versa. Moreover, the 9:00-13:00 
frame is characterized by a very high variability in irradiance and measured power, 
therefore it becomes unlikely for the forecast to exactly match that complicate 
profile. 

Table 4-11 

t-6 Measured NOCT NOCT 4 PAR 2 STEP 

Energy [kWh] 3.77 5.08 3.17 

Energy deviation [%] - 34.7 -16.0 
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Figure 4-11: plot examples for a cloudy day, newest forecast. 

 

Finally, Figure 4-12 summarize the previous 2 figures. Less recent (t-30) and more 
recent (t-6) profiles are compared with measured data, for the day of 06/02/2022. 
As the focus is on the forecast update, only NOCT non-optimized model is plotted. 
Table 4-12 summarizes the energy deviation of plotted profiles on a daily basis. 
Even if the energy deviation of the most recent profile (35%) is larger than the 
typical deviation of other days, it is a massive improvement compared to the initial 
guess, that led to an energy overestimation of 134%. 

Table 4-12 

  Measured NOCT 

t-6 
Energy [kWh] 3.77 5.08 

Energy deviation [%] - 34.7 

t-30 
Energy [kWh] 3.77 8.82 

Energy deviation [%] - 134 
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Figure 4-12: plot examples for a cloudy day, comparison between oldest and newest 

forecast. 

In conclusion, in the case of very cloudy days, the effect of using more updated 
forecasts is predominant to the benefits brought by the optimization of the model. 
The optimization is indeed meant to produce an overall better matching between 
forecasts and measured data, without overturning completely the results. It is an 
expected results as if the initial forecast contains a very large error, the optimization 
process cannot modify the parameters value beyond certain limited boundaries. 

4.2.4 Comparison between cloud models 

The goal of this paragraph is to highlights the difference between cloud model 
and given GHI model. The focus is therefore on the nature of the input data used 
and not on the optimization. In this perspective, only the NOCT model will be 
analyzed. 

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

06:00:00 09:00:00 12:00:00 15:00:00 18:00:00

El
ec

tri
c 

Po
w

er
  [

W
]

Measured t-6 t-30



86 
 

 
 

CLOUD MODEL VS GIVEN GHI MODEL: SUNNY DAY 

Figure 4-13 reports the oldest profile (t-30) obtained with NOCT model for the 
sunny day of 15/01/2022. In this picture the given GHI model, cloud model and 
actual power measurements are shown. For this day, cloud model performs better 
until 11:00, while in 12:00-15:00 given GHI models produces better results. 
Overall, results are very similar during a sunny day. 

 

Figure 4-13: comparison between given GHI and cloud model, sunny day. 

Table 4-13shows the energy deviation of the previous profiles calculated on the 
whole day. From this table it could seem that the cloud model has a better 
performance, but as it will be explained in paragraph 4.3, given GHI model has a 
lower mean absolute percentage error. On a daily basis, it may happen that positive 
and negative error compensate, leading to extremely low energy deviation, like in 
this case for cloud model.  

Considering the absolute errors over the whole period, paragraph 4.3 will show 
that given GHI model produced better results than cloud model. 
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Table 4-13 

t-24 - NOCT Measured Given GHI Cloud Model 

Energy [kWh] 7.60 7.71 7.65 

Energy deviation [%] - 3.94 0.71 
 

CLOUD MODEL VS GIVEN GHI MODEL: CLOUDY DAY 

Figure 4-14 Figure 4-13reports the oldest profile (t-30) obtained with NOCT 
model for the very cloudy day of 06/02/2022. In this picture the given GHI model, 
cloud model and actual power measurements are shown. The main difference is in 
the profiles shape: given GHI model output is steeper and more intermittent with 
respect to the cloud model one. Secondly, for this day the given GHI profile showed 
the best performance. 

 

Figure 4-14: comparison between given GHI and cloud model, cloudy day. 

Table 4-14 contains the daily energy deviation of the previous profiles. The 
error is fairly large, but it must be considered that it is a cloudy day. 
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Table 4-14 

t-6 - NOCT Measured Given GHI Cloud Model 

Energy [kWh] 3.77 5.08 6.30 

Energy deviation [%] - 34.7 73.5 

 

4.2.5 Daily error profile 

As expected, the highest values of the relative error are at the sunset and at the 
sunrise. anticipated in paragraph 4.2, in first and last hours of the day very high 
relative errors were obtained, as shown in fErrore. L'origine riferimento non è 
stata trovata.. The figure below contains the relative and absolute error for each 
timestep for the sunny day of 15/01/2022. These errors refer to the results obtained 
with NOCT model and less recent (t-30) forecast profile. 

 

Figure 4-15: relative and absolute error for each timestep during a typical day 
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The high relative error at 8:00 and at 17:00 has almost no relevance, because 
the production at sunrise and sunset is almost equal to zero, so the denominator of 
the relative error is quite low, as a result the relative error increases by orders of 
magnitude. The highest absolute errors are located in the central hours of the day, 
but the lowest relative errors are associated to these timesteps. It is possible to notice 
that the central hours reflect the general overestimation in irradiance already 
extensively discussed in this chapter. 

4.3 Energy deviation and MAPE tables 

Given GHI model 

Table 4-15 contains the energy deviation for the given GHI model. The first 
row is dedicated to irradiation deviation (GHI), while all the rest of the table refers 
to produced electrical energy deviation. The first row of the table highlights that 
irradiation forecasts are in general optimistic, with an irradiation overestimation in 
the range of 18-25%, with some improvements on the shorter time leads. On the 
other hand, electric energy results show a lower deviation, as positive and negative 
errors tend to compensate each other.  

Table 4-15: energy deviation for all models and time leads. 

Energy deviation 
[%] 

t Post t-6 t-12 t-18 t-24 t-30 

Irradiation  
(GHI) 

18.3% 18.6% 24.5% 23.9% 23.3% 23.8% 

NOCT non-OTT 1.2% -0.7% 4.7% 4.7% 4.3% 3.9% 

Wind non-OTT 0.8% -1.1% 4.3% 4.1% 3.9% 3.5% 

NOCT 3 PAR  -4.6% -6.7% -0.7% -0.9% -1.1% -1.5% 

Wind 3 PAR  -5.0% -7.1% -1.1% -1.3% -1.1% -2.0% 

NOCT 4 PAR  0.9% 0.9% 0.9% 0.9% 0.8% 0.8% 

Wind 6 PAR  6.7% 6.0% 6.0% 6.1% 6.2% 5.9% 

 

With some models an energy deviation close to 0% is achieved, despite the 
error in forecasts is much higher (range of 18-24 %). To avoid the smoothing effect 
over the whole period, Table 4-16 introduces the MAPE for all the models and time 
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leads. As for the previous table, the first row is dedicated to irradiation deviation 
(GHI), while all the rest of the table refers to produced electrical energy deviation. 
In the case of MAPE, the deviation is slightly higher regarding irradiance forecasts, 
while the deviations concerning electrical power are in a range much closer to the 
input error introduced by forecasts. As expected, the post elaboration produced by 
far the best results, while unexpectedly, from that point of view the t-6 profile had 
the worst performance. The NOCT 4 PAR model produced the best result, while 
WIND 6 PAR was not able to reduce the error. 

Table 4-16: MAPE for all models and time leads 

MAPE [%] t Post t-6 t-12 t-18 t-24 t-30 

Irradiation  
(GHI) 

19.5% 25.4% 25.1% 24.7% 24.9% 25.1% 

NOCT non-OTT 11.5% 17.7% 14.7% 14.6% 14.4% 13.7% 

Wind non-OTT 11.4% 17.5% 14.5% 14.4% 14.2% 13.5% 

NOCT 3 PAR  12.0% 18.1% 14.8% 14.6% 14.5% 13.8% 

Wind 3 PAR  12.2% 18.2% 14.9% 14.7% 14.5% 13.9% 

NOCT 4 PAR  10.1% 18.4% 13.3% 12.9% 12.7% 12.0% 

Wind 6 PAR  21.8% 29.4% 23.4% 22.7% 23.2% 22.9% 

 

Cloud model 

In a similar way, energy deviation of all models and time leads is reported for 
cloud model in Table 4-17. The first difference is that there is not the first row of 
forecast GHI error because, for cloud models, the output power is calculated on the 
basis of clear sky radiation, and then that power is corrected by cloud cover 
coefficients. In this case, the electric energy produced is always overestimated, in 
the range of +(1.8%-10%). Optimized models determine a reduction of energy 
deviation, with the best performance achieved by NOCT 4 PAR. For energy 
deviation, the forecast lead has a weak influence on the results. 
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Table 4-17: linear normalised error for all models and time horizons – cloud model 

Energy deviation 
[%] 

t Post t-6 t-12 t-18 t-24 t-30 

NOCT non-OTT 9.5% 9.9% 9.7% 9.7% 9.8% 9.7% 

Wind non-OTT 9.5% 9.9% 9.8% 9.9% 9.9% 9.8% 

NOCT 3 PAR  5.4% 5.5% 5.7% 5.9% 5.8% 5.7% 

Wind 3 PAR  5.4% 5.5% 5.7% 5.9% 5.8% 5.7% 

NOCT 4 PAR  2.1% 1.8% 2.0% 2.0% 1.9% 2.0% 

Wind 6 PAR  3.2% 2.5% 2.7% 2.7% 2.8% 2.7% 

 

As introduced for given GHI model, MAPE is introduced to avoid the 
compensation of underestimations and overestimations of energy produced. Table 
4-18 shows MAPE for all models and time leads for cloud model. In general, the 
results are very similar to given GHI model. In both cases Wind 6 PAR produces 
the highest error, while for all the other models the MAPE of cloud model is slightly 
higher (in the range of 14.5-19%) than given GHI model (in the range of 10-18%). 
Moreover, also in this case the best results were obtained with NOCT 4 PAR. The 
main difference is determined by the modest variations in MAPE for the different 
time leads, even for the post elaboration. 

Table 4-18: MAPE for all the models and time leads – cloud model 

MAPE [%] t Post t-6 t-12 t-18 t-24 t-30 

NOCT non-OTT 18.4% 18.9% 18.8% 18.9% 18.7% 18.8% 

Wind non-OTT 18.6% 19.1% 19.0% 19.1% 18.9% 19.0% 

NOCT 3 PAR  18.1% 18.7% 18.4% 18.4% 18.3% 18.3% 

Wind 3 PAR  18.2% 18.8% 18.5% 18.5% 18.4% 18.4% 

NOCT 4 PAR  14.5% 17.5% 17.2% 17.2% 17.1% 17.0% 

Wind 6 PAR  28.1% 30.1% 29.1% 29.1% 29.3% 29.3% 
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From the tables in the previous chapter, it could seem that the effect of the 
update of forecasts does not bring a relevant improvement. At the same time, it is 
found out that within a single day timespan, the updating of forecasts can 
remarkably improve the result with some extreme cases of energy error reduction 
from ~300% to ~60% as shown in Figure 3-7. This is due to the fact that, even if 
considering winter period, the majority of days is sunny, and it has been observed 
that in the case of sunny days, the different time lead profiles tend to collapse into 
one single profile that shows a negligible variation. As the majority of days of the 
considered period is sunny, the large improvements during cloudy days are 
smoothed by the largely more abundant clear sky days.  

Figure 4-16 shows in a graphic way what described previously. Despite the low 
irradiance values due to winter period, the most part of the days are sunny, therefore 
already the first forecast profile is close to the real profile, while the last update 
brings a little or null improvement. In the figure below it is plotted the measured 
value of GHI for the January-February period to show that in the considered period, 
sunny days were largely predominant. Moreover, for some days the relative error is 
reported; the red caption refers to oldest profile while the green caption represents 
the newest forecast update. It is possible to notice how relevant is the improvement 
during cloudy days, while for the regular sunny days the benefit of updated profile 
is lost. It follows that on the whole period, the global result will be much more 
affected by the majority of these sunny days. 

 

Figure 4-16: Daily profiles during 2 winter months. 
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Table 4-19 reports MAPE calculated on a daily basis, for the same period of 
figure 4-16. 

Table 4-19: daily absolute mean percentage error [%]. 

Date t-post t-6 t-12 t-18 t-24 t-30 

01/01/2022 8.8 7.0 8.0 7.8 8.7 7.8 

02/01/2022 33.3 47.5 33.3 32.2 47.7 51.2 

03/01/2022 27.1 34.7 35.0 37.5 33.1 34.9 

04/01/2022 141.0 212.4 254.8 205.9 163.7 180.0 

05/01/2022 94.9 131.7 165.7 176.1 159.4 149.6 

06/01/2022 18.3 17.9 17.1 18.6 18.7 19.6 

07/01/2022 17.9 16.7 17.1 16.5 18.8 19.6 

08/01/2022 7.7 10.8 6.7 14.0 20.2 18.6 

09/01/2022 17.0 16.4 12.7 14.4 12.8 7.5 

10/01/2022 23.3 25.1 25.7 26.1 26.9 28.3 

11/01/2022 16.2 16.6 17.2 17.1 16.9 16.9 

12/01/2022 17.4 17.4 17.2 16.8 16.9 17.6 

13/01/2022 16.5 17.3 17.4 17.3 17.4 17.2 

14/01/2022 13.5 14.1 13.9 14.1 14.4 14.3 

15/01/2022 15.2 15.7 15.7 15.6 15.7 15.9 

16/01/2022 18.9 19.4 19.3 19.2 19.3 19.3 

17/01/2022 14.9 14.9 14.7 14.8 14.8 15.0 

18/01/2022 92.8 90.9 90.6 91.1 92.0 92.3 

19/01/2022 33.4 37.9 37.1 32.2 22.5 29.7 

20/01/2022 20.4 20.7 21.1 21.3 21.3 21.1 

21/01/2022 18.5 18.5 18.4 18.5 18.7 18.7 

22/01/2022 13.4 17.1 17.3 17.4 17.5 17.8 

23/01/2022 21.5 24.6 24.9 25.2 25.4 25.3 

24/01/2022 23.8 27.5 28.1 26.4 26.8 27.5 

25/01/2022 235.9 276.0 320.0 400.0 431.3 371.3 

26/01/2022 15.4 14.2 17.1 17.3 15.6 16.8 

27/01/2022 16.1 13.7 18.8 19.5 18.2 16.5 

28/01/2022 7.5 9.0 8.2 12.0 12.9 14.6 

29/01/2022 12.2 14.4 14.0 12.5 14.5 15.1 

30/01/2022 10.5 12.8 13.9 14.0 14.1 14.3 

31/01/2022 7.9 27.0 15.1 15.9 17.5 17.1 

01/02/2022 7.2 11.0 10.9 11.1 9.8 10.3 

02/02/2022 6.1 6.7 6.4 6.5 11.1 8.7 

03/02/2022 18.2 15.0 18.2 20.5 21.2 25.4 

04/02/2022 18.5 23.3 23.1 17.7 23.0 22.8 

05/02/2022 13.2 14.0 14.4 13.6 16.9 16.7 
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The trend is very discontinuous, but it can be seen that in general, for cloudy 
days, that are the ones with highest MAPE, the error tends to improve as forecasts 
lead decreases 

4.4 Error profiles 

Commenting the results of the previous tables, it emerged that the update of 
forecast does not bring a remarkable error reduction. This paragraph is then 
dedicated to the analysis of the quality of forecasts. In particular it has been studied, 
for four locations. the evolution of global horizontal irrigation profiles. Each 
location is located in a different Italian region: Piedmont, Lombardy, Latium and 
Sicily.  

 

Figure 4-17: Error distribution profile. 

For each time lead and each timestep the linear relative error is calculated, then it 
is averaged over the whole period. In PV applications it is common that the highest 
relative errors occurs at sunrise and sunset (see Figure 4-15) and in general when 
in presence of low values of irradiance, as shown in Figure 4-17. It can be clearly 
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seen that errors over 100% are almost entirely confined for GHI values inferior to 
300 W/m2, and that the extremely large errors all occur below 100 W/m2. The 
following graph is obtained considering the less recent (t-30) forecast profile 
considering location Rivalta for region Piedmont. 

The forecast lead time alone is therefore not sufficient to describe in a detailed way 
the quality of forecasts. It is indeed introduced the further distinction among 
irradiation classes. This subdivision is made because it is expected to have very 
high errors during these times of the day with low irradiance, but from a energetic 
point of view on the whole period, these timesteps will have a reduced effect. The 
error is then monitorized along two axis: on the time axis (from oldest to most recent 
forecast) and on the class axis, that takes into account the absolute value of the 
quantity on which the error is calculated. More in detail, all the timesteps are 
classified by the value of GHI, each class has a 100W/m2 wide interval, like shown 
in tables 4.19-22. 

Table 4-20 contains result for the location of Rivalta, Torino. The error is located 
mainly in the first two classes (71,4-75,1% for  0-100 W/m2 class and 32-37,5% for 
100-200 W/m2 class). In the interval 0-200 W/m2, the improvement of updated 
forecasts (around 5%) is much less relevant  compared to the improvement by 
moving from one class to the next one (around 40% from first to second and 17% 
from second to third. In the interval 300-1000 W/m2, in general the error keeps 
reducing, but at a slower rate and not in a monotonous way. Moreover in this range, 
in general, forcasts still keeps improving from oldest to newest but not in every 
single situation. Finally, the last class (GHI>1000 W/m2) is not very signifivative 
because it contains a very limited number of points. 
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Table 4-20 

Piedmont region Forecast lead 

  Class t-6 t-12 t-18 t-24 t-30 

G
H

I (
W

/m
2 ) 

0-100        71.4             72.2         72.6         77.4         75.1  
100-200        32.0             35.1         34.1         37.0         37.5  
200-300        17.2             17.6         17.6         18.1         19.1  
300-400        13.6             13.3         13.5         14.5         15.0  
400-500        16.6             15.7         15.6         15.1         15.2  
500-600        16.3             16.7         15.9         16.4         16.5  
600-700        15.6             14.4         14.5         14.3         15.0  
700-800        12.7             12.6         13.6         13.0         13.3  
800-900        16.0             13.9         14.1         14.4         14.6  
900-1000        15.0             16.9         17.3         17.4         17.2  
>1000        13.1             15.8         16.5         16.0         16.0  

Table 4-21 shows results for province of Viterbo, located in Latium region, 
which are very similar to Piedmont region trends. The errors in the first two classes 
are even larger compared to Piedmont case (116%-124% for 0-100 W/m2 class and 
43,2%-46,6% for 100-200 W/m2 class), while for values of GHI > 200 W/m2 the 
values converge into results collacted in a similar interval to the one of the previous 
region. 

Table 4-21 

Latium region Forecast lead 

  Class t-6 t-12 t-18 t-24 t-30 

G
H

I (
W

/m
2 ) 

0-100     115.9          111.4      122.3      123.8       124.0  
100-200       43.2            42.6        44.9        45.7         46.4  
200-300       19.6            20.7        22.2        22.6         22.8  
300-400       16.1            15.1        15.8        15.6         15.6  
400-500       14.2            13.9        13.6        13.7         13.5  
500-600       15.0            13.8        14.4        14.0         14.0  
600-700       13.2            13.6        14.9        15.5         15.4  
700-800       12.3            13.0        12.7        13.0         12.6  
800-900       13.7            14.0        14.1        14.5         14.2  
900-1000       12.8            15.1        14.9        14.7         14.2  
>1000       11.3            14.1        14.1        13.9         13.6  
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Table 4-22 contains results for province of Cremona, located in Lombardy 
region. The results are very similar to what described for Piedmont. GHI > 1000 
W/m2 class exhibits in general an absolute error comparabel to 200-300 W/m2 class, 
but it is not very significative because it contains only a very limited number of 
points. Except from this last row, the general trend confirms the reduction of the 
error when GHI increases and forecast time lead decreases. 

Table 4-22 

Lombardy region Forecast lead 

  Class  t-6 t-12 t-18 t-24 t-30 

G
H

I (
W

/m
2 ) 

0-100       81.0            88.2        88.0      104.8       101.3  
100-200       31.8            32.7        35.3        35.3         35.4  
200-300       17.2            17.5        17.9        18.7         18.5  
300-400       17.0            16.4        18.1        18.0         17.7  
400-500       18.2            17.8        17.8        17.9         17.5  
500-600       15.1            15.7        15.3        15.8         16.0  
600-700       15.1            15.7        15.8        15.6         16.5  
700-800       13.6            13.9        14.3        13.9         14.0  
800-900       14.2            15.0        15.3        15.8         15.4  
900-1000       13.5            15.4        15.9        16.5         15.8  
>1000       10.8            17.1        18.1        18.5         18.6  

 

Finally, table 4-23 shows results for Sicily region, which are very similar to 
previous cases. Except from the cell 800-900 W/m2 class – t-6 forecast, we can see 
aprogressyve improvement when increasing the value of GHI and reducing the time 
lead of forecasts. In all four cases the most accurate class is the one between 700 
and 800 W/m2. 
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Table 4-23 

Sicily region Forecast lead 

  Class t-6 t-12 t-18 t-24 t-30 

G
H

I (
W

/m
2)

 

0-100       81.7            84.4        86.1        92.3         90.3  
100-200       32.6            35.4        34.9        38.0         38.0  
200-300       18.7            18.8        19.1        19.5         20.1  
300-400       15.7            15.4        15.8        16.5         17.4  
400-500       15.8            15.3        15.3        15.2         14.9  
500-600       14.5            14.9        14.2        14.6         14.7  
600-700       15.1            14.0        14.1        13.8         14.4  
700-800       12.8            12.6        13.6        13.1         13.4  
800-900       16.0            13.9        14.1        14.4         14.8  
900-1000       15.0            16.9        17.3        17.4         17.2  
>1000       13.1            15.8        16.5        16.0         16.0  
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Conclusions 

In the thesis work, chapter 4 contains the results obtained from a physical 
forecast model for the calculation of the hourly power for photovoltaic systems, on 
the basis of weather forecasts and construction data of the plants under analysis. 
Using forecast data, it is essential to identify how accurate forecasts are in order to 
understand if the final error is mainly determined by the uncertainty of the input 
data (forecasts) or if it depends on the power calculation model, described in chapter 
2, applied afterwards. Even if more meteorological parameters are used, the focus 
is on irradiation as it is the factor with the major influence on the PV production. 
For the following conclusions two different time periods will be considered: the 
January-February period which contains also all the electric power measures, and 
the whole 2022 year in which only the part of irradiation forecasts is analysed. 

For what it concerns the irradiation during the winter period, both in chapter 3 
and 4, it was found that forecasts are in general optimistic, with an overestimation 
of irradiance, averaged on the whole period, around 20% (18,3% for the most 
update profile and 24% for the oldest profiles). These input error will be reflected 
downstream the process. Furthermore, calculating the average error of the different 
time lead profiles, it emerged that, except from the last update profile, there is not 
large improvement when considering more recent forecasts. On the other end, 
focusing on single days, there are some cases in which the newer profiles 
progressively correct a wrong initial forecast, decreasing from a starting 300% 
relative error to a final 60% relative error. By the way, from an energetical point of 
view, that is averaging on the whole period, despite being during winter, the large 
majority of days is composed of sunny days. As a result, the weight of these cloudy 
days are negligible on the final result, which are dominated by the sunny days 
leading to a weak influence of updated forecasts on the final result. 

As second step, again regarding irradiation, forecasts were analysed on the 
whole 2022 year, in four different points associated to four different Italian regions. 
In this case the error was calculated in function of the time lead of the forecasts and 
of the value of GHI itself. For all the four regions, it emerged that there is a gradual 
improvement when the time lead decreases (on average it reduces by 1/8 – 1/10), 
and a more remarkable error reduction for higher values of GHI. More precisely 
there are very large errors in the class 0-100 W/m2, which vary among the regions 
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but are all in the range of 70-120%, with some reductions as the time lead decreases. 
The error still remains very high in the class 100-200 W (in the range of 30-40%), 
and then keeps reducing while the class increases but at a slower rate, always 
ranging between 10 and 19%. As expected, the highest values of the relative error 
are associated to the first classes, which in general correspond to sunset and sunrise 
timesteps, associated to high errors in PV and solar applications. 

Concerning the results of electric power, they refer to the January-February 
2022 period. As anticipated, these results are affected by the irradiance forecast 
input. All the models produced a mean absolute percentage error in the range of 19-
27%, an interval comparable to the input irradiation overestimation of 21-33%. In 
a similar way to what it has been noticed for forecasts, for the majority of sunny 
days the oldest power profile does not undergo relevant improvements (in the range 
of 0.5-1%), therefore for these types of days the effect of optimization is 
predominant over forecast updating. On the other hand, for cloudy days newest 
forecast are decisive for the model performance, with an energy deviation that can 
drop from 134% to 33%. For these types of day, which represent a small minority, 
the effect of optimization (from 134% to 120 %) is an order of magnitude lower 
compared to the massive improvement brought by forecasts update. 

In the next thesis work, a similar study will be extended to a larger number of 
plants for a more extended period. 
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