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Summary

For an adequate assessment of the spent nuclear fuel, it is necessary to consider all
possible uncertainties that affect the design, performance and possible accidents
in nuclear facilities environment. Nuclear data is a source of uncertainty that is
involved in neutronics, fuel depletion and activation calculations. Methodologies
for performing the uncertainty propagation calculations need to be implemented in
order to analyze the impact of the nuclear data uncertainties on critical responses
during operation and in the event of accident, such as decay heat or neutron
multiplication factor. Nevertheless, it is necessary to understand the current status
of nuclear data and their uncertainties, in order to be able to handle this type
of data. For this purpose, the state-of-the-art of different nuclear data libraries
was analyzed during the development of this thesis, focusing on two main kinds
of data: radioactive decay and fission yield data. To process these data the
SANDY code was used. In this nuclear data sampling code two methodologies
were added to obtain perturbed decay data and fission yields. A revision of the
state-of-the-art of fission yield data shows inconsistencies in uncertainty data. For
this reason, the possibility to use the formulas of the Bayesian/Generalised Least
Square (GLS) update technique was also inserted in SANDY. Another contribution
in the development of SANDY is related to the sampling methodology. Indeed, the
possibility to choose between different distributions to sample from was inserted.
The three distributions analyzed are: Gaussian, lognormal and uniform. Then the
Fission Pulse Decay Heat problem is tackled: first because of its importance during
events after shutdown and because it is a clear exercise for showing the impact and
importance of decay and fission yield data uncertainties, testing the implemented
perturbation methodologies. In this frame, a sensitivity and uncertainty analysis
was carried out to evaluate the final uncertainty of fission pulse decay heat due to
the uncertainties on the mentioned input data, to study the individual contribution
of each nuclide and to quantify the most relevant isotopes. Finally, the sampling
methodology was used to test the new fission yield evaluations realised by CEA
and to produce several sets of samples for each input distribution analysed.
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Chapter 1

Introduction

1.1 Thesis objectives and motivation

Concerning the design of new nuclear reactors and the nuclear energy production,
the quantification of uncertainties plays an important role in almost all parts of the
fuel cycle to reduce the risks, have a deeper knowledge of the safety and security
margins and to minimize the production of nuclear waste. For the licensing, design,
and safety analyses of spent nuclear fuel storage, transportation, and repository
systems, the spent fuel decay heat is an important observable to take under
consideration. Therefore, many efforts are done to understand the accuracy of such
data and to assess the impact of uncertainties on it [1]. In particular with this thesis
the nuclear data of relevance in Spent Nuclear Fuel (SNF) characterization are
addressed. SNF contains a lot of nuclides, which are formed after neutron-induced
reactions and radioactive decay occurring during neutron irradiation and cooling
periods. For the presence of radionuclides, a SNF assembly needs to be fully
characterized for its decay heat and γ-ray and neutron emission for a secure, safe,
ecological and economical transport, intermediate storage or final disposal. Some of
the observables under consideration in this type of characterization are decay heat
and neutron and γ-ray emission rate. They can be evaluated with Non-Destructive
Analysis (NDA) methods. Unfortunately, a measurement of the decay heat of
an assembly can last one full day (or even more), which is too long for routine
operations. In addition, decay heat measurements can be very expensive and it is
impractical to cover the multitude of existing operating conditions, fuel designs,
and specific applications. Consequently, computer simulations are used to fulfilled
some of the gaps of knowledge. The used codes must be validated and uncertainties
on are quantified. These simulations are coupled with theoretical calculations to
determine the inventory of specific nuclides for criticality safety assessments and
for verification of the fuel history. The calculations involve a neutron transport
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code combined with a nuclide creation and fuel depletion code. The results of such
calculations are strongly dependent on nuclear data, fuel fabrication data, reaction
operation and irradiation conditions [2].
Uncertainties are necessary to make meaningful consistency checks and comparisons
between varied attempted measurements and calculations and to make scientifically-
sound decisions. Wrong estimates may lead to erroneous conclusions on the validity
of physics models and theories [3].
The aim of this thesis is to develop a possible methodology to assess the impact of
the uncertainties of decay and fission yield data in nuclear calculations. In addition,
different nuclear data libraries are studied and lacks of data are investigated;
whenever possible, modifications or solutions are analyzed to add physical constrains
to some correlated nuclear states. The impact of these modifications is also studied
and the differences are discussed.

1.2 Nuclear data
"Nuclear data" is considered as the values resulting directly from experimental
measurements or nuclear model calculations. These data and their corresponding
uncertainties are evaluated using experimental and theoretical knowledge, but it
is not always possible to measure with a good level of accuracy some physical
parameters required for nuclear data applications. To fill in these gaps, nuclear
modeling has become quite sophisticated and capable of predicting the major
characteristics of important nuclear data but remains deficient in several area [4].

In order to obtain sufficient data, a huge number of experiments must be
performed and then these data must be compared between different measurements
and eventually adjusted. The tasks associated with nuclear data are reported in
Figure 1.1 and commented below.

• Nuclear data production: the task of data production is well coordinated
by international collaborations. Laboratories that can perform experimental
measurements have guidelines, which can help them to plan their activities. As
already mentioned, when experimental data are not available, nuclear model
calculations are used to interpolate or extrapolate experimental data and to
resolve discrepancies. There is then a need for a database which would include
all the available experimental values measured in all the laboratories in the
world. This database already exists and it is regularly compiled and updated
by different Nuclear Data centers, such as NNDC for USA and Canada or
NEA DB for West European Countries and Japan. Due to the large amount
of information, the databases must be handled in a computerized way: for this
reason, special formats exist that can accommodate all relevant information
about experiments and analytical model calculations;

2
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Figure 1.1: Activities associated with nuclear data [4]

• Nuclear data evaluation: the evaluators perform a critical review of all the
available data and determine the best estimate values of the parameters. This
is usually done using sophisticated numerical procedures. Evaluated data files
are grouped by materials and data types. They are computer-readable and
the most common used format is the ENDF-6 format;

• Evaluated nuclear data processing: the evaluated data files contain
information that exceed the capacity of a computational tool for practical
neutron transport applications. Deterministic methods solve the differential or
the integral forms of the transport equation using one of the standard method,
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dividing the energy interval in groups. Within a group, each energy-dependent
parameter takes some average values. The accuracy of the calculation depends
on the number of groups and the group averaging method. Before an evaluated
data library can be used for practical applications, it must undergo a thorough
verification and validation process. This is done to avoid processing code failure
due to format rule violation and to ensure that the data on the file correspond
to what the evaluator intend them to be and that they are consistent with
integral experimental measurements, when they are available;

• Nuclear data applications: the processed nuclear data can be used in a
very large variety of applications, such as: thermal power or fast reactors,
small experimental thermal reactors, nuclear fusion applications, shielding
problems, radiotherapy, radioactive isotope production, inventory estimation,
transport, etc.

1.3 Thesis structure
This thesis can be divided in four different main parts.

• The first one is related to the state-of-the-art of nuclear data analyzed during
the development of this work, considering the nuclear data libraries and the
stored format adopted.

• The second part aims to explain the theoretical background behind the analysis
performed in this thesis.

• The third part defines the contribution done for the SANDY development.
It is a nuclear data sampling code compatible with nuclear data files in
ENDF-6 format, explained in details in Chapter 4. The contributions to this
development can be subdivided in four main groups:

1. first of all, an improvement of the sampling procedure was introduced,
adding the option to choose between different input parameter distribu-
tions, investigated in Section 4.3;

2. the Generalized Least Squares (GLS) technique to perform an adjustment
of an estimate or of the associated uncertainty, discussed in Section 4.4,
was implemented;

3. an algorithm to obtain perturbed decay data was added and it is explained
in Chapter 5;

4. finally, the methodology to perturb the fission yield data was inserted and
it is reported in Chapter 6.
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• The last part of this thesis is related to the set up of a Fission Pulse Decay
Heat (FPDH) model: this was done to test the algorithms inserted in SANDY
for the perturbation of decay and fission yields data. For this reason, an
uncertainty analysis and then a sensitivity analysis were done and the results
are reported in Chapter 7. Finally, the IFY sampling methodology was used
to test the newly realised CEA independent fission yield covariance matrices
and the obtained results are commented and compared in Chapter 8. The
last part focuses on the conclusions obtained at the end of this work and the
suggestion of further prospectives that can be analyzed.

5



Chapter 2

State-of-the-art of nuclear
data libraries

This chapter presents the different nuclear data libraries and storing formats
addressed during the development of this thesis.

The neutronics simulation of nuclear systems relies on the availability of nuclear
data and their related uncertainties to provide accurate numerical representation of
the underlying physical processes [5]. As already said in the Introduction 1, all this
information is stored in a certain format in a proper nuclear data library, discussed
in the following Sections.

2.1 Nuclear data libraries
The major general purpose nuclear data libraries investigated in this study are
reported in Table 2.1.

In particular the ENDF/B and JEFF libraries were analyzed.

• The Joint Evaluated Fission and Fusion (JEFF) Nuclear Data Library: this
project comes from a collaboration between Nuclear Energy Agengy (NEA) 1

Data Bank participating countries. In particular the version of the JEFF-3.3
library, released in December 2017, was used in this contest [7]. The next
version JEFF-4T1 was released as test version in February 2022. It includes
two sets of data containing 562 and 2813 neutron cross section evaluations,
respectively. The first set, as the previous versions of JEFF, includes the 562

1NEA is an intergovernmental agency that facilitates co-operation among countries with
advanced nuclear technology infrastructures to seek excellence in nuclear safety, technology,
science, environment and law [6].

6
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Table 2.1: Some of the most relevant nuclear data libraries, their formats and
country of origin

Country Data File Format Comments
OECD/NEA JEFF-3.3 ENDF-6 Latest realised version of

European files
OECD/NEA EFF-2.4 ENDF-6 European Fusion files

Japan JENDL-5 ENDF-6 Latest version released
in 2021 of the

Japanese library
USA ENDF/B-IV ENDF-4 Old but useful for reference
USA ENDF/B-VIII.0 ENDF-6 The evaluations benefit

from recent experimental
data obtained in the U.S.

and Europe, and improvements
in theory simulation

USA ENDL-84 ENDF-5 Livermore laboratory evaluation
Russia BROND-2.2 ENDF-6 Neutron reaction data of

the Russian Federation, released
in 1992 and updated in 1993

China CENDL-2 ENDF-6 It contains cross sections
of all reactions, angular

distributions and spectra of
secondary neutrons from 54

nuclides from 10-5eV to 20MeV

most important isotopes for criticality calculations. The second one includes
the 562 isotopes of the previous set, but it is completed by the additional 2251
isotopes. This set is recommended for more general purposes [8]. During the
development of this Thesis, it was possible to contribute to the testing of the
last version of this library and the results are reported in Section 8.

• The Evaluated Nuclear Data File (ENDF) library project is coordinated by
the Cross Section Evaluation Working Group (CSEWG) and CSEWG. They
released the new ENDF/B-VIII.0 library in February 2018, incorporating work
from across the US and the international nuclear science community over the
last six years. The library is being issued in the traditional ENDF-6 format,
as well as in an alternative new Generalized Nuclear Database Structure
(GNDS) format. The latest realised version is the ENDF/B-VIII.0 library
which continues to evolve through close interactions with parallel organizations
around the world, most notably with Europe (JEFF), Japan (JENDL) and

7
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with South Korea. Collaborations with the International Atomic Energy
Agency (IAEA) have had numerous impacts, most notably on Collaborative
International Evaluation Library Organization (CIELO) nuclides, prompt
fission neutron spectra (PFNS) evaluations, and dosimetry cross sections [9].

These libraries have been generated by different projects but they are not totally
independent since certain evaluations appear in several different libraries. What
ties a lot of these libraries together is their use of a common format known as the
ENDF-6 format [4].
As already said, after the creation of a library, the data will be processed in files
and formats which can be used by different codes such as transport codes. This step
is not trivial and can have many impacts in the performances of transport codes.
The International Atomic Energy Agency (IAEA) 2, the Nuclear Energy Agency
(NEA) or the National Nuclear Data Center (NNDC) 3 are the main organizations
responsible for the distributions of the nuclear data libraries [12].

2.2 ENDF-6 format
The ENDF-6 format is the internationally agreed format for data files of evaluated
nuclear reaction data [13]. Apart from the storage and retrieval of evaluated nuclear
data, it was developed to be used for applications of nuclear technology. These
applications control many features of the system including the choice of materials
to be included, the data used, the formats used, and the testing required before a
library is released. The structure of the ENDF-6 Formats Manual is divided in
Formats and Procedure. The former describes how the data are arranged in the
libraries and gives the formulas needed to reconstruct physical quantities, while the
latter gives the rules that specify what data types must be included, which format
can be used in particular circumstances, and so on.

The ENDF-6 format is a computer-readable format, it means that it can be
used as the main input to nuclear data processing programs. It uses 80-character
records. For historic reasons the parameters are defined in the old-fashioned form of
FORTRAN variables. The structure of the ENDF-6 format is illustrated in Figure
2.1. Each file contains a library which may have several sections corresponding
to different MAT (specific number which identifies a material) and each material
section is structured into several so-called Files [14].

2The IAEA is the world’s centre for cooperation in the nuclear field and seeks to promote the
secure and peaceful use of nuclear technologies [10].

3The NNDC is an organization based in the Brookhaven National Laboratory that acts as a
repository for data regarding nuclear chemistry [11].

8



State-of-the-art of nuclear data libraries

Figure 2.1: Structure of an ENDF-6 data tape [13]

In each File a certain class of information is stored and they are identified with
the abbreviation MF which runs from 1 to 99. Some important examples are:

• File 1 (MF1) stores general information and the multiplicities of neutrons for
prompt and delayed fission reaction;

• File 2 (MF2) stores information about the resonance parameters;

• File 3 (MF3) stores the reaction cross sections and auxiliary quantities;

• File 8 (MF8) stores information concerning the decay of the reaction products;

• Files 31-35 (MF31-35) stores the covariance information for MF1-5.

Each MF section is again divided in different subsections called MT, each of which
runs from 0 to 999 and identifies a particular reaction or a particular type of
auxiliary data. During the development of this thesis, a great effort was done to
analyze the section MF8 of the ENDF-6 format, which can be divided into two
main subsections:

• MT=454 and MT=459 contain independent and cumulative fission product
yield data for fissionable materials;

• MT=457 contains the spontaneous radioactive decay data.

These data will be analyzed in details in Chapters 5 and 6.
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2.3 Covariance matrix
The correlated uncertainties of different nuclear parameters are considered using
the concept of covariance matrix. One of the important aspects of nuclear data
and of cross sections in particular is that the various data tend to be correlated
to an important degree through the measurement processes and the different
corrections made to the observable quantities to obtain the microscopic cross
sections. In addition to the uncertainties due to the basic data, the results of
calculations have uncertainties due to imperfections in the calculational models
used. In some situations ”modeling uncertainties” may dominate the uncertainties
in computed results, while in others they can be considered negligible compared to
the effects of microscopic data uncertainties. In principle improving the models
may reduce ”modeling uncertainties”, although sometimes at a large cost. The
data uncertainties may also be reduced by performing better measurements, new
kinds of measurements, or sometimes a more refined analysis of existing data.

Until the ENDF/B-IV (version IV of the ENDF/B library), the only means avail-
able to evaluators for communicating the estimated uncertainties in the evaluated
data was through publication of the documentation of the evaluations. Then the
Nuclear Data community have formed a Covariance Subcommittee to coordinate
the efforts at standardizing statements made about the data uncertainties and
correlations. The dominant reason for the inclusion of covariance files in the ENDF
system is to enable estimation of the contribution of nuclear data uncertainties
to uncertainties in calculates results for nuclear systems having broad (neutron)
spectra. Therefore, in developing the ENDF formats, the highest priority was given
to attain this goal. Indeed, the main purpose of the covariance information in
ENDF-6 formats is to permit the propagation of nuclear data uncertainties for
applications with broad neutron spectra [13].

It is appropriate to define uncertainty quantities. Each cross section or related
quantity in an ENDF file represents a physical quantity that has a definite, though
unknown true magnitude. The knowledge of each such quantity X is summarized by
its Probability Density Function (PDF) defined so that f(X)∆X is the probability
that the true numerical value of X lies in the range ∆X about X. The marginal
density function f(X) is the average over all other independent variables Y , Z, etc.
of the overall multivariate density function for the cross section data base. The
shape of a density function depends on the experiments that have been performed,
relevant to estimating the true values of the data elements. The density function
has unit normalization for each variable. The expected value, < g(X) >, of any
function g(X) is given by the average value of that function over the marginal
density function. The simplest example is the expected value of the quantity itself:

< X >=
Ú
Xf(X)dX (2.1)

10
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The true value of a given quantity X can be expressed as the best estimate of its
expected value X̄ plus its uncertainty δX:

X = X̄ + δX (2.2)

Considering the second moments of the density function and the quantity F (X, Y )
as the Cumulative Distribution Function (CDF) averaged over all variables other
than X and Y, it is possible to define the covariance between X and Y as a measure
of the relationship between them:

Cov(X, Y ) =< δXδY >=
Ú Ú

(X− < X >)(Y− < Y >)F (X, Y )dXdY (2.3)

The variance of X, as a measure of its variability, is:

V ar(X) = Cov(X,X) =< δX >2 (2.4)

In matrix form, the covariance terms will cover the off-diagonal terms, while the
the variance terms will be in the diagonal. Knowledge of the covariance is crucial
to the joint application of the quantities X and Y [13].
From these definitions, it is possible to state that the concept of covariance matrix
defines a quantification of a lack of knowledge on a particular physical quantity
and, as a mathematical object, it is symmetric and positive semidefinite, i.e., with
only non-negative eigenvalue. Considering this concept in a physical way, round-off
errors and collapse or extension into multi-group energy structures can lead to small
negative eigenvalues, for which approximate solutions are stored in the nuclear
data libraries.
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Chapter 3

Nuclear data uncertainty
propagation

In this Chapter, the basic physical aspects and methodologies used during the
development of this thesis are reported.

3.1 Basic definitions
In this Section, the basic definition of the main physical quantities used in this
Thesis are mentioned. The notation used and explained in this paragraph will be
adopted in the following Sections.
The time will be indicated with t, the position with r̄ = (x, y, z), the energy with
E and the velocity with v̄. The latter is a vector which direction is represented by
the normalized vector Ω̄ = v̄

|v̄| .Ω̄ = Ωx1̄x + Ωy1̄y + Ωz1̄z

Ω2
x + Ω2

y + Ω2
z = 1

(3.1)

with 1̄x, 1̄y and 1̄z the versors of the three space directions (x, y and z respectively
in carterian coordinate). Now it is possible to define the density function

n(r̄, E, Ω̄, t) (3.2)

where (r̄, E, Ω̄, t) is called phase space. To evaluate the number of neutrons that
are in the volume dr̄ whit energy in the interval (E, E +dE) and direction in the
small area dΩ, the density function must be multiplied for the equivalent volume
of interest:

n(r̄, E, Ω̄, t)dr̄dEdΩ = neutrons within dr̄ dE dΩ at time t (3.3)
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3.1.1 Neutron interactions
Neutrons can have different interactions with particles surrounding them: scattering,
fission, capture are some of them. Each kind of interaction has a certain probability
of happening. In general, the probability per unit of path that the event ’x’ occurs
(i.e. the collision that generates the event ’x’) is indicated with Σx and it is
measured in cm−1. Σx is called macroscopic cross section. Each interaction is
due to the collision of neutrons with other nuclei of the medium, in fact neutron vs.
neutron collisions are neglected. The area of the target involved in the collision is
called microscopic cross section. It is a figurative way to represent the quantum
effect of the mentioned collision. It is generally indicated with the symbol σ and
it is measured in cm2 or in barn (1 barn = 10−24 cm2) [15]. There are several
events of interest occurring during neutron collisions. In particular, absorption
(including fission or capture) and scattering are the most important. A neutron
that is absorbed (Σa) by a target can generate fission (Σf ) or can be just captured
by it (Σc). Otherwise a neutron can just be scattered (Σs) by the target and the
collision may be elastic or inelastic. The macroscopic cross section is not a simple
constant but depends on the position and on the energy of the neutron colliding
on the target in an isotropic medium. Considering a non-isotropic medium, it
depends also on the direction Ω̄. Talking about scattering, it can be useful to know
not only the probability that a scatter event occurs, but also the probability for
a neutron located in r̄ moving with direction Ω̄′ and energy E ′ of being reissued
in a certain cone dΩ with energy in the interval (E, E + dE) [16]. In order to
do so, it has been defined the scattering probability density fs that depends
on the position of the neutron, on the energy before (E ′) and after (E) and on
the direction before (Ω̄′) and after (Ω̄) the collision. In particular, in an isotropic
medium, this probability does not depend on the incoming direction of the neutron
(it is a rotational invariant in spherical geometry), so it will depend only on the
angle that the two directions may form. It means that it is possible to consider
just the dependence of the scalar product between the two directions.

fs(r̄, E
′ → E, Ω̄′ · Ω̄) (3.4)

Regarding fission, it is possible to define ν(r̄, E ′), i.e. the expected number of
neutrons emitted in r̄ after a fission event by a neutron with energy E ′ (before
the collision), and the fission spectrum χ(r̄, E) which represents the probability
density of being reissued within the interval (E, E + dE). Moreover, fission can be
considered isotropic, so the probability for a neutron of being reissued in a certain
direction is equal for all direction (i.e. 1

4π
) [17].

Knowing the cross section of each event is crucial to calculate the number
of interactions of that type. It can be written as the total distance traveled by
neutrons in a certain media multiplied by the probability for unit path of that kind
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of interaction. The total distance traveled by neutrons is the multiplication of the
total number of neutrons (equation 3.3) by the distance traveled at their speed, v,
by the time dt.

n(r̄, E, Ω̄, t)dr̄dEdΩvdtΣx = number of interactions ’x’ in dr̄dEdΩdt (3.5)

The product n(r̄, E, Ω̄, t)v in nuclear physics is usually called angular flux ϕ:

ϕ(r̄, E, Ω̄, t) = n(r̄, E, Ω̄, t)v (3.6)

In order to have the total amount of interactions in a finite volume in phase space,
the sum of all the contributions must be performed, and so integrating:j

Ω

Ú
E
ϕ(r̄, E, Ω̄, t)dr̄dEdΩdtΣx = total number of interactions ’x’ (3.7)

3.2 The transport equation
In this Section the main ingredients needed to put down a model describing neutrons
behavior in a reactor are analyzed. Let’s start taking in consideration a little volume
dr̄ and studying the variation in time of the number of neutrons that are in this
volume due to collisions - without considering fission for the moment. It is possible
to set up an equation like [16]:

neutrons at time (t+dt) - neutrons at time (t) =
(neutrons moving in - neutrons moving out) − (removal due to captures) +

(neutrons scattered in from the outside) + source (3.8)

In math form it can be expressed as:

[n(r̄, E, Ω̄, t+ dt) − n(r̄, E, Ω̄, t))] =
= −∇ · Ω̄ϕ(r̄, E, Ω̄, t)dr̄dEdΩdt− Σ(r̄, E)ϕ(r̄, E, Ω̄, t)dr̄dEdΩdt+

+
j
dΩ′

Ú
dE

′ Σs(r̄, E
′)ϕ(r̄, E, Ω̄, t) fs

1
r̄, E

′ → E, Ω̄′ · Ω̄
2
dr̄dEdΩdt+

+ S
1
r̄, E, Ω̄, t

2
dr̄dEdΩ̄ (3.9)

The notation adopted and the physical meaning of each term are the same as
discussed in the previous Section, but a further comment is needed for the divergence
term. It corresponds to the net number of neutrons that cross the surface going
out of the volume. It can be seen as the surface integral of the net current density
(ϕ(r̄, E, Ω̄, t) · Ω̄), but exploiting the divergence theorem, it is reported as the
volumetric integral of the divergence of the current density. In equation 3.9, the
divergence theorem is used in differential form.
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In the discussion so far, the fission term of the neutron transport equation was
neglected. It can be expressed in the following way:j

dΩ′
Ú
dE

′Σf (r̄, E ′)Ω̄′χ (r̄, E)
4π ν

1
r̄, E

′2
ϕ(r̄, E, Ω̄′)dr̄dEdΩ (3.10)

Each parameter was already explained in 3.1.
For what concerns initial conditions, in general it is not restrictive to say that
they are known, while boundary conditions require more attentions. Let’s suppose
that the space domain is a non re-entering (convex) and simply-connected one. If
outside the domain there is void, neutrons can leave it but once out they cannot
bounce back because they cannot collide anymore, so it is possible to say that the
incoming flux is equal to zero at the boundaries. Since air is a rarefied gas, it is
not much different for a neutron if outside the domain there is air or void, so the
previous condition remains valid also in this case. This boundary condition can be
expressed in the following way [18]:

ϕ(r̄, E, Ω̄incoming, t) = 0 (3.11)

The transport equation can be analytically solved in simplified domains but, for
what concerns nuclear studies domains, it can be not very simple so approximations
could be needed. It is possible to write the transport equation in operational form,
useful in the developing of solution methods. In Table 3.1 the definition of some
operators to write the equation 3.9 in a more concise way is reported, considering
steady state condition and without source term.

Table 3.1: Operator definitions useful to write the transport equation in a more
concise way

Operator Expression
Transport operator T̂ = ∇ · Ω̄ + Σ(r̄, E)
Leakage operator L̂ = T̂ − θ̂s

Scattering operator θ̂s =
i
dΩ′ s

dE
′ Σs(r̄, E

′) fs

1
r̄, E

′ → E, Ω̄′ → Ω̄
2

Fission operator F̂ =
i
dΩ′ s

dE
′Σf (r̄, E ′)Ω̄′ χ(r̄,E)

4π
ν
1
r̄, E

′
2
dr̄dEdΩ

with these operators, the transport equation can be expressed as:

T̂ ϕ = θ̂sϕ+ F̂ ϕ (3.12)

This equation is homogeneous, it has of course the zero solution, but it’s not
of practical interests. To find a non-zero solution it is possible to introduce an
eigenvalue k, also called multiplication factor. It is a mathematical trick inserted
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to find the non-trivial solution. This parameter can be seen as the ratio between
the number of neutrons in one generation with respect to the number of neutrons
in the preceding generation.
Once k is inserted, a solution of this equation is guaranteed and it is called
eigenfunction [19].

• If k = 1 the system is called critical, which means that the neutron population
selfsustain itself;

• if k < 1 the system is called sub-critical, which means that the fission process
is not able to compensate the leakages, the neutron population is not self-
sustaining;

• if k > 1 the system is super-critical and the fission process is producing more
neutrons than those that are lost.

With this parameter, equation 3.12 becomes 3.13.

T̂ ϕ = θ̂sϕ+ 1
k
F̂ϕ or L̂ϕ = 1

k
F̂ϕ (3.13)

3.3 The adjoint transport equation
In this Section a new physical concept is introduced: the Importance function

ψ(r̄, E, Ω̄) (3.14)

whose output is a scalar value. The physical meaning of the Importance function is
to estimate the importance of neutrons. First, to derive the importance equation,
the importance concept is addressed as the capability to make fission; later on, this
concept will be extended in a more general way.
Considering N0 neutrons traveling along direction Ω̄ with energy status E, it is
possible to perform a steady-state balance of neutron importance between a point
r̄ and a nearby one r̄ + dsΩ̄ distant ds along the direction Ω̄. The importance
of the neutrons introduced in r̄ with energy E and direction Ω̄ is equal to the
importance of the neutrons in r̄ + dsΩ̄ that have not collided plus the importance
of all generated neutrons. The generated neutrons considered are the scattered and
the fission produced [20]. The Importance of the neutrons in r̄ with energy E and
direction Ω̄ is given by:

N0ψ(r̄, E, Ω̄) (3.15)

The Importance of neutrons in r̄ + dsΩ̄ that have not collided moving along ds is
given by

[1 − Σ(r̄, E)ds]N0ψ(r̄ + dsΩ̄, E, Ω̄) (3.16)
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The scattering contribution is given by:

N0ds
j
dΩ′

Ú
dE

′Σs(r̄, E)fs(r̄, E → E
′
, Ω̄ · Ω̄′)ψ(r̄, E ′

, Ω̄′) (3.17)

The fission contribution is given by:

1
k
N0ds

j
dΩ′

Ú
dE

′Σf (r̄, E)ν(r̄, E)χ(r̄, E ′)
4π ψ(r̄, E ′

, Ω̄′) (3.18)

The overall balance can be written as:

N0ψ(r̄, E, Ω̄) = [1 − Σ(r̄, E)ds]N0ψ(r̄ + dsΩ̄, E, Ω̄)+

+N0ds
j
dΩ′

Ú
dE

′Σs(r̄, E)fs(r̄, E → E
′
, Ω̄ · Ω̄′)ψ(r̄, E ′

, Ω̄′)+

+ 1
k
N0ds

j
dΩ′

Ú
dE

′Σf (r̄, E)ν(r̄, E)χ(r̄, E ′)
4π ψ(r̄, E ′

, Ω̄′) (3.19)

Simplifying the arbitrary number of neutrons N0, dividing for ds and taking the
limit for ds going to zero, the following importance equation is derived:

− Ω̄ · ∇ψ(r̄, E, Ω̄) + Σ(r̄, E)ψ(r̄, E, Ω̄) =

=
j
dΩ′

Ú
dE

′Σs(r̄, E)fs(r̄, E → E
′
, Ω̄ · Ω̄′)ψ(r̄, E ′

, Ω̄′)+

+ 1
k

j
dΩ′

Ú
dE

′Σf (r̄, E)ν(r̄, E)χ(r̄, E ′)
4π ψ(r̄, E ′

, Ω̄′) (3.20)

An important consideration is that ψ is not a density function, it is a value,
so the differentials dE ′

dΩ̄′ , inserted in the scattering and fission terms, are there
even before the introduction of ψ: indeed, they are attached to the probability
density functions fs and χ [20]. To solve equation 3.20, some boundary conditions
are needed. Assuming the impossibility of any neutron to enter the domain from
the external world (i.e. domain surrounded by vacuum), once a neutron leaves the
domain is lost. This means that it is no more able to make any fission and in this
contest its importance is zero. From a mathematical point of view, it is possible to
write:

ψ(r̄s, E, Ω̄outgoing) = 0 (3.21)

From equations 3.11 and 3.21, it seems obvious that there is a kind of similarity
between the importance equation and the transport equation. If a position in space
that is the boundary of the domain is considered, then for every entering directions
the angular flux will be zero; if now every outgoing direction is considered, the
Importance will be zero. This behaviour leads to this statement: the product

17



Nuclear data uncertainty propagation

between the angular flux and the importance evaluated in any position at the
boundary is always zero whatever energy and direction.

ϕ(r̄s, E, Ω̄)ψ(r̄s, E, Ω̄) = 0 ∀Ω̄, E (3.22)

Equation 3.20 is also called Adjoint transport equation. An adjoint equation
is a linear differential equation, usually derived from its primal equation using
integration by parts [21]. To understand the meaning of the adjoint function, a
simple example is proposed. Let f and g be two functions of one variable x. The
scalar product of these two functions is:

(g, f ) =
Ú
dxg(x)f(x)ξ(x) (3.23)

where ξ(x) is a weighting function, that could be equal to 1. Now if θ is an operator,
f and g are two functions in the x domain, then θ+ is called the adjoint operator
of θ if this relation is true [22].

(g, θf) = (θ+g, f) (3.24)

The general way to find the adjoint of an operator is to apply the formal definition
of adjointness (equation 3.24).
Coming back to the equation 3.20, it results an homogeneous equation so in every
term there is an operator applied to ψ(r̄, E, Ω̄). To find the link between the
importance equation and the transport equation, the adjoint operator of each term
of the importance equation must be computed as follows [20]:

• θ = Σ(r̄, E):
Considering the angular flux ϕ and the importance function ψ and applying
the definition of the adjoint operator (ψ,Σϕ) = (Θ+ψ, ϕ) the result is:j

dΩ
Ú
dE

Ú
dr̄ψ(r̄, E, Ω̄)[Σ(r̄, E)ϕ(r̄, E, Ω̄)] =

=
j
dΩ

Ú
dE

Ú
dr̄ϕ(r̄, E, Ω̄)[θ+ψ(r̄, E, Ω̄)] (3.25)

The product operation is commutative and the equation is satisfied if

θ+ = Σ(r̄, E) (3.26)

which means
(Σ(r̄, E))+ = Σ(r̄, E) (3.27)

From formula 3.27, it is possible to conclude that the Σ operator is self-adjoint.

• θ =
i
dΩ′ s

dE
′Σs(r̄, E)fs(r̄, E → E

′
, Ω̄ · Ω̄′):
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• θ = 1
k

i
dΩ′ s

dE
′Σf (r̄, E)ν(r̄, E)χ(r̄,E

′ )
4π

:
Also the scattering term and the fission term are self-adjoint. The demon-
stration for these terms is the same as explained for the Σ operator and it is
based on renaming the variables of the integral.

• θ = −Ω̄ · ∇:
For the sake of simplicity, the derivation of this adjoint term is performed in
the opposite way. Starting from the assumption that

(Ω̄ · ∇)+ = −Ω̄ · ∇ (3.28)

the condition of adjoitness is applied to verify that the assumption 3.28 is
satisfied. This condition is the following:

(ψ, Ω̄ · ∇ϕ) = (−Ω̄ · ∇ψ, ϕ) (3.29)

that in an extended form is written asj
dΩ

Ú
dE

Ú
dr̄ψ(r̄, E, Ω̄)[Ω̄ · ∇ϕ(r̄, E, Ω̄)] =

=
j
dΩ

Ú
dE

Ú
dr̄ϕ(r̄, E, Ω̄)[−Ω̄ · ∇ψ(r̄, E, Ω̄)] (3.30)

Gathering all the terms to the first member:

j
dΩ

Ú
dEdr̄[ψΩ̄ · ∇ϕ+ ϕΩ̄ · ∇ψ] = 0j

dΩ
Ú
dEdr̄Ω̄ · [ψ∇ϕ+ ϕ∇ψ] = 0j

dΩ
Ú
dEdr̄Ω̄ · ∇(ψϕ) = 0j

dΩ
Ú
dEdr̄∇ · [Ω̄ψ(r̄, E, Ω̄)ϕ(r̄, E, Ω̄)] = 0 (3.31)

At this point the divergence theorem can be applied, which states that the
integral of the divergence of a vector in the volume is equal to the flux of that
vector through the surface of that volume [23].Ú

dE
j
dΩ

Ú
Ω̄ϕ(r̄s, E, Ω̄)ψ(r̄s, E, Ω̄) · n̄(r̄s)dA(r̄s) = 0 (3.32)

Where dA(r̄s) is an element of the surface surrounding the volume dr̄ and
n̄(r̄s) is the outgoing normal vector in every point of the surface. Using
equation 3.22, it is possible to state that the adjointness condition is verified
and assumption 3.28 is true.
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With these demonstrations it is verified that the equation for the importance
function is the adjoint equation of the transport equation and so:

ψ = ϕ+ (3.33)

A more general definition for the importance function can be done introducing
the concept of detector. It can be thought as the general target for neutrons. More
precisely a detector is a volume in phase space to which a cross section can be
associated:

Σd(r̄, E, Ω̄) (3.34)
In the balance equation, this detector can be seen as a source. This means that a
balance should be performed considering a sub-critical system in which a source can
be inserted. The condition of sub-critical system is mandatory since for just critical
or super-critical system the introduction of a source would produce meaningless
results as a negative solution, to compensate for the over production of neutrons,
in order to achieve the equation balance. So the equation for the considered system
can be written as:

− Ω̄ · ∇ψ(r̄, E, Ω̄) + Σ(r̄, E)ψ(r̄, E, Ω̄) =

=
j
dΩ′

Ú
dE

′Σs(r̄, E)fs(r̄, E → E
′
, Ω̄ · Ω̄′

ψ(r̄, E ′
, Ω̄′)+

+
j
dΩ′

Ú
dE

′Σf (r̄, E)ν(r̄, E)χ(r̄, E ′)
4π ψ(r̄, E ′

, Ω̄′) + Σd(r̄, E, Ω̄) (3.35)

With equation 3.35 it is possible to change the kind of detector and get different
equations for the importance, meaning that there is no unique equation for the
source importance problems.

3.4 Perturbation theory
During the normal life of a nuclear reactor it works in steady state for most of the
time. However, sometimes some changes could be needed such as the movement
of control rods. This Section focuses on the discussion of how the change of some
quantities affect the others. These effects of change can be mainly of two types:
changes can be produced by the operator or they can be related to the uncertainties
on the basic nuclear data [24].
A list of some applications of perturbation theory is presented:

• Evaluation of effects of perturbations on integral parameters;

• Evaluation of effects of perturbations on neutrons and reaction rates distribu-
tions;
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• Sensitivity/uncertainty analysis, i.e. uncertainty of material compositions;

• Studies of reactor control and safety;

• Nuclear data adjustment.

3.4.1 SPT - Standard Perturbation Theory
The main aim of Standard Perturbation Theory (SPT) is evaluating the perturbation
of the multiplication factor k due to perturbation of some nuclear data — e.g. cross
section Σ. At this scope it is possible to define the reactivity ρ and sensitivity
S (of parameter k with respect to the cross section) as follows:

ρ = δk

k
(3.36)

S = δk/k

δΣ/Σ (3.37)

Note that in the case of cross sections, if several materials are adopted, then
different cross sections can be perturbed: thus Σ could be a vector and so for the
multiplication factor k. For this reason sensitivity is in general a matrix. Starting
from the criticality problem, it is possible to perturb all the terms [25].

L̂ϕ = 1
k
F̂ϕ (3.38)

Indeed the perturbation of the operations will induce a perturbation to the flux,
which will be indicated as follow:

L̂ −→ L̂+ δL̂; F̂ −→ F̂ + δF̂ ; ϕ −→ ϕ+ δϕ (3.39)

To simplify the notation, k can be expressed as its inverse λ = 1
k

and the perturbed
value is:

λ −→ λ+ δλ; δλ = − 1
k2 δk (3.40)

Substituting 3.39 and 3.40 into 3.38, the perturbed equation of the criticality
problem is:

L̂δϕ+ δL̂ϕ = λF̂ δϕ+ λδF̂ϕ+ δλF̂ϕ (3.41)

In order to solve equation 3.41, it is useful to solve the adjoint criticality problem
and get the adjoint function ϕ+ whose meaning was discussed in Section 3.3:

L̂+ϕ+ = λ+F̂+ϕ+ (3.42)
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Since λ is a real number, it coincides with its adjoint λ = λ+. Exploiting this
relationship, it is possible to project equation 3.41 to ϕ+ and integrate it over the
phase space – i.e. to do the inner product between equation 3.41 and ϕ+ [25].
Considering only the first order terms and so neglecting the higher order terms,
the equation obtained is:

✘✘✘✘✘✘(ϕ+, L̂δϕ) + (ϕ+, δL̂ϕ) = ✘✘✘✘✘✘
λ(ϕ+, F̂ δϕ) + λ(ϕ+, δF̂ϕ) + δλ(ϕ+, F̂ ϕ) (3.43)

The two terms cancelled are simplified thanks to the equation 3.42, indeed they
can be written as (L̂+δϕ+, ϕ) = λ+(F̂+δϕ+, ϕ). By using the definition of adjoint
operator and substituting 3.42, it is possible to obtain a suitable formula to evaluate
the reactivity at a 1st order without finding δϕ that is:

δλ = (ϕ+, δL̂ϕ) − λ(ϕ+, δF̂ϕ))
(ϕ+, F̂ ϕ)

(3.44)

or in terms of multiplication factor:

δk

k
=

1
k
(ϕ+, δF̂ϕ) − (ϕ+, δL̂ϕ)

1
k
(ϕ+, F̂ ϕ)

= ρ (3.45)

Formula 3.45 allows to compute the perturbation on the multiplication factor,
i.e. the reactivity inserted by that perturbation, for any kind of perturbation.
To get ρ, the reference problem and the adjoint problem must be solved and the
perturbations δL̂ and δF̂ must be computed. Equation 3.45 is valid for small
perturbation (only first order terms have been used to derive it).
From Section 3.3, the adjoint function of angular flux was defined as the importance
of neutrons. Thus, if F̂ ϕ is the number of neutrons emitted by fission per unit of
phase space and time, its inner product with the importance (ϕ+, F̂ ϕ) is the total
importance of all the neutrons produced by fission in the whole domain. With
the same scheme, it is possible to say that (ϕ+, δL̂ϕ) is the total importance of
the neutrons lost due to the change of L̂ and (ϕ+, δF̂ϕ) is the total importance of
neutrons emitted by fission due to the change of F̂ . To understand the physical
meaning of equation 3.45, it can be expressed in words [24]:

ρ = change of importance due to perturbation

importance of fissions
(3.46)

3.4.2 GPT- Generalized Perturbation Theory
The basic principle of the generalized perturbation theory is to study the perturba-
tion of parameters that can be written as integrals of the solution of the reference
equation [26].
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Let’s consider a system which is kept in steady state by the presence of a source
S (this means the system is sub-critical). Defining the operator Ĥ = L̂− F̂ , the
model behaviour can be described by equation 3.47.

Ĥϕ = S (3.47)

Then a perturbation occurs, such that the operator Ĥ and the source S are
perturbed.

Ĥ → Ĥ + δĤ ; S → S + δS (3.48)

The relevant perturbation under consideration can be seen as the variation of the
integral quantity I, defined as:

I = (D, ϕ) (3.49)

where D is called detector. It is defined as an ideal instrument to measure the
interested quantity. As the perturbations δĤ and δS arise, the flux will be perturbed
as δϕ. Assuming that the perturbation is only propagated to the flux and not to
the detector, the perturbation of the quantity of interest will be:

δI = (D, δϕ) (3.50)

The aim of perturbation theory proposed with this approach is to compute the
value of δI without the need of finding δϕ [27]. Substituting 3.48 into 3.47, the
perturbed equation results:

✚
✚Ĥϕ+ Ĥδϕ+ δĤϕ+ δĤδϕ = ✓✓S + δS (3.51)

Simplifying the reference equation 3.47 and neglecting the second order terms,
equation 3.51 becomes:

Ĥδϕ+ δĤϕ = δS (3.52)

Coherently with the philosophy of the perturbation theory, the next step is to solve
another problem to get a solution which is valid for a various range of applications.
For this purpose, the extra problem to be solved can be consider as the adjoint
problem of the reference equation 3.47, with the system driven by the detector D
instead of the adjoint source.

Ĥ+ϕ+ = D (3.53)

An important consideration is that in the case of the homogeneous problem, the
adjoint problem to be solved was unique. In the case of the detector analysis
considered, the auxiliary problem to be solved is not unique as it changes with the
detector chosen.
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The next step is to project equation 3.52 on the solution of the adjoint problem
ϕ+:

(ϕ+, Ĥδϕ) + (ϕ+, δĤϕ) = (ϕ+, δS) (3.54)
Exploiting the definition of adjoint problem, the first term can be written in the
following way:

(ϕ+, Ĥδϕ) = (Ĥ+ϕ+, δϕ) = (D, δϕ) = δI (3.55)
Finally, the interested perturbation can be computed with equation 3.56.

δI = (ϕ+, δS) − (ϕ+, δĤϕ) (3.56)

which is a formula that allows to compute the perturbation of the integral quantity
of interest δI, knowing only the perturbing phenomena δĤ and δS and the solutions
of the adjoint and direct problems [27].

3.5 Perturbation Theory vs Total Monte Carlo
As already discussed in the Introductory Chapter, since the beginning of the
century the nuclear science community is putting more attention to the assessment
of nuclear data uncertainties. Nuclear data uncertainties are currently on the
spotlight, due to the assessment of their impact on criticality safety analysis, and
also in burn-up/depletion/activation analysis [28]. As of today, two methods can
be used to propagate uncertainties from nuclear data to quantities of large scale
systems: Perturbation method and Total Monte Carlo (TMC) [29]. The
first method was explained in Section 3.4. The TMC method was developed more
recently thanks to the huge increase in computer power of these last decades. It
relies on a large number of calculations, all alike but with different random nuclear
data in each of them. The result is a probability distribution from which different
moments can be extracted [30]. Total Monte Carlo means that the random variation
of nuclear data, experimental data, ENDF-6 data file creation, processing and
applied reactor calculation are seen as a single loop in a Monte Carlo process [31].
An example of the propagation of cross sections uncertainties to evaluate the
uncertainty on the multiplication factor parameter is reported in Figure 3.1 to
compare the two methods. Moreover, to be comparable, the two approaches should
start from a similar starting point. To ensure this, it is possible to generate these
start ENDF files from the same set of runs using different codes, such as the
TALYS code1. The TALYS system creates random ENDF nuclear data files based
on random inputs [32]. At the end of the random file generation, the covariance

1TALYS: Nuclear Model Code System for Analysis and Prediction of Nuclear Reactions and
Generation of Nuclear Data [32].

24



Nuclear data uncertainty propagation

information is extracted and formatted into an ENDF format. This method allows
to cover the top part of Figure 3.1, from the "n TMC input files", to the "1 ENDF file
+ covariances" and "n x ENDF random files". After this point, the "TMC box" in this
Figure has two ramifications described in the following items. Both methods exploit
the MCNP calculation. MCNP is a general-purpose Monte Carlo N-Particle code
that can be used for neutron, photon, electron, or coupled neutron/photon/electron
transport. It has predictive capability that can replace expensive or impossible-to-
perform experiments. It is often used to design large-scale measurements providing
a significant time and cost savings to the community [33]. In the case of the
example analyzed this code is used to compute the values of keff , starting from
the perturbed nuclear data and the related sensitivity.

• In Perturbation method branch (left side) the ENDF file is processed by
NJOY2 to obtain processed covariances and processed cross sections. The
"Add perturbation", "MCNP input file + perturbation card" and "MCNP6"
boxes in Figure 3.1 present the essential part of the sensitivity calculation.
Exploiting version 6 of the MCNP code, the sensitivity profile S can be
calculated. It is defined as the relative change in a response parameter R
due to a relative change in a cross section in a particular energy group g. In
the MCNP input file the relevant material is replaced by the perturbation
cards, introducing a perturbation in one or more specific materials. Then the
MCNP6 code is run with these modifications in the input file. The MCNP
output gives the results of the perturbations with statistical uncertainties
and a keff value in case of criticality benchmarks. Finally, to combine the
sensitivity and covariance matrices, the moment propagation equation can be
adopted obtaining the uncertainty on keff due to nuclear data;

• In the TMC branch (right side), each of the n random input ENDF files is
processed by NJOY and the benchmark calculation is performed with MCNP6.
At the end of the n calculations, n different keff values with their statistical
uncertainties are obtained. It means that, from the calculated probability
distribution of keff , the standard deviation can be obtained which corresponds
to the uncertainty on keff due to the nuclear data [29].

Several comparisons were found in literature between the two methods. The TMC
seems to provide a more general and exact answer, it does not require special codes,
but it is more time-consuming. The Perturbation method considers a restricted
number of nuclear data uncertainties, and it needs more processing and intermediate
codes, but it is the fastest to produce results [29].

2NJOY: nuclear data processing code developed at Los Alamos National Laboratory [34].
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Figure 3.1: Flowchart of the uncertainty propagation from Total Monte Carlo
and perturbation method [35]

3.6 Sensitivity and uncertainty analysis
The Sensitivity Analysis (SA) is the study of how the uncertainty in the output
of a model can be apportioned to different sources of uncertainty in the model
input. The Uncertainty Analysis (UA) refers to the quantification of uncertainty
in the model output, based on the uncertainties of the input. A model can be seen
as whatever stands between some input parameters and the related outputs. It
can be:

• Diagnostic or prognostic: the first is related to a model used to understand a
law, while the second is used to predict the behaviour of a system, given a
supposedly understood law;

• Data-driven or law-driven: A data-driven model tries to treat the solution as
a signal and to derive its properties statistically, while the law-driven model
tries to put together accepted laws which have been attributed to the system,
in order to predict its behaviour. The latter may have a greater capacity

26



Nuclear data uncertainty propagation

to describe the system under unobserved circumstances, while data-driven
models tend to adhere to the behaviour associated with the data used in their
estimation. Statistical models are an example of data-driven models [36].

Of course, other categorizations of models are possible. The definition of
the model input depends on the particular model under study. Concerning the
uncertainty and sensitivity analysis, the inputs of the model can be defined as
everything that can drive a variation in the output of the model. When the best
parameter values and their uncertainty are known, it is possible to perform the
uncertainty analysis by propagating the uncertainty in the parameter through the
model. One possible way of doing this is through the Monte Carlo approach (or
sampling based), in which the distribution function of the input parameters is taken
under consideration. To explain the procedure, a simple scheme is reported for the
uncertainty analysis of a model with a output y and three inputs (α, β, γ). The
following scheme was then adapted and used to perform the uncertainty analysis
in the model of Fission Pulse Decay Heat (FPDH), discussed in Chapter 7.

1. The input parameter α is considered to be normally distributed with mean
ᾱ and standard deviation σa. The same is done also for the other input
parameters β and γ. For the sake of simplicity, for the moment, the input
factors are considered independent of each other;

2. For each of these factors a sample from the respective distributions is drawn;

3. Step 2 is repeated N times to produce a set of row vectors (α(j), β(j), γ(j))
with j = 1,2, ...N in such a way that (α(1), α(2),..., α(N)) is an array of samples
from N(ᾱ, σa) (likewise for the distribution function of the other factors).
Collecting the array of samples for each input parameter, the following matrix
can be built: 

α(1) β(1) γ(1)

α(2) β(2) γ(2)

... ... ...
α(N−1) β(N−1) γ(N−1)

α(N) β(N) γ(N)

 (3.57)

4. In the last step, the model is computed for all vectors (α(j), β(j), γ(j)) thereby
producing a set of N values of the model output yj:

y(1)

y(2)

...
y(N−1)

y(N)

 (3.58)
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These four steps constitute the uncertainty analysis. From these it is possible
to evaluate the average output, its standard deviation (which corresponds to its
uncertainty), plot the distribution itself and so on. Note that, for the purpose of
the uncertainty analysis just described, only the estimated parameters α, β and γ
were considered as relevant inputs. All other possible types of information fed into
the model, like the observations or the internal model variables, are disregarded.
Of course a further step could be added at the beginning of the scheme to collect
all the uncertainties coming from the different uncertainty sources and perform the
uncertainty propagation taking all of them into account.

3.7 Global vs Local sensitivity analysis
Most of the sensitivity analyses met in literature are based on the concept of
derivatives. Indeed the derivative δYj/δXi of an output Yj versus an input Xi can
be thought as a mathematical definition of the sensitivity of Yj with respect to
the input Xi. This approach is also known as Local sensitivity analysis. The
fatal limitation of this approach is that the derivatives are only informative at
the base point where they are computed and do not provide for an exploration of
the rest of the space of the input factors. In opposite, with the so called Global
sensitivity analysis, it is possible to examine the sensitivity with regard to the
entire parameter distribution. It focuses on the variance of model outputs and
determines how input parameters influence the output parameters. It is a central
tool in sensitivity analysis since it provides a quantitative and rigorous overview
of how different inputs influence the output. Global SA is often preferred when
possible, due to its greater detail, but for a large system it is very computationally
expensive. Local SA method can be preferred because it requires less computational
power [37]. The sensitivity coefficient in case of Global SA must be normalized by
the input-output standard deviations: in this way all the distribution is taken into
account.

Sσ
Zi

= σZi
δY

σY δZi

(3.59)

This aspect changes the point of view of sensitivity: with the Global sensitivity
analysis it is possible to access the variance fraction of the output explained by
the variance of the input [38]. Monte Carlo analysis is a common approach for
global methods. As already said, Monte Carlo analysis is based on performing
multiple evaluations with randomly selected values of model inputs, and then using
the results of these simulations to determine both uncertainty in the prediction
of model outputs and assign to each model input its contribution to the variance
in model outputs [39]. To investigate the behaviour of the model in the Global
analysis usually a scatterplot is adopted by projecting in turn the N values of the
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selected output Y against the N values of each of the Z input factors. In Figure
3.2, an example with some of them is reported.

Figure 3.2: Scatterplots of Y versus Z1, Z2, Z3, Z4 [36]

The Figure 3.2 shows that Y is more sensitive to Z4 than it is to Z3. The
ordering of the input factors by their influence on Y is

Z4 > Z3 > Z2 > Z1 (3.60)

Such a conclusion can be drawn from this Figure as there is a better pattern in the
plot for Z4 than for Z3 and so on. However, using the derivative approach of Y
versus Zi, the standard deviation of the input parameters and so their distribution
is not taken into account and relation 3.60 is not so straightforward to get [36].
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Chapter 4

Contributions to SANDY
development

From Section 2.2 it emerges that the data stored in ENDF-6 format are restricted
by constraining formatting rules and it is difficult to handle them without suitable
tools. To manipulate these data it is possible to use different processing codes
and then use these data as inputs for many user applications. In this processing
procedure SANDY is inserted. It is a Monte Carlo sampling-based code developed
to perform the nuclear data uncertainty propagation in nuclear codes. SANDY can
generate random nuclear data samples, exploiting the basic theory of stochastic
sampling, that reproduce the covariance information stored in the ENDF-6 files.
Such random data are then rewritten in perturbed ENDF-6 or Point-wise ENDF-6
files (PENDF) [40]. These steps are are schematized in Figure 4.1.
The files processed will become the input of different nuclear data codes; they are
suitable for Monte Carlo uncertainty propagation calculations, where a given model
is solved repetitively, each time adopting a different file. From the statistical analysis
of the resulting output predictions, it is possible to calculate the distributions of any
calculated quantities, including their mean, variance and any other moments [41].
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Figure 4.1: SANDY’s workflow [35]

4.1 Development of SANDY
SANDY is created as an high-level Python interface to parse ENDF-6 files, collect
nuclear data, build covariance matrices, draw samples from probability distribution
and perform other nuclear data-related tasks. To coordinate the work among
different SANDY developers, GitHub is used. It is a provider of Internet hosting
for software development and version control using Git, an open source distributed
system designed to handle from small to very large projects with speed and efficiency.
It is possible to use it for the storage of different projects, collaborative development,
download, hosting/website publishing and versioning [42].
Exploiting this software, continuous integration (CI) with GitHub actions is also
performed, allowing developers to frequently merge code changes into a central
repository where tests are then run. The version control system is also supplemented
with other checks like automated code quality tests, syntax style review tools, and
more. This helps guarantee a certain level of quality assurance of the SANDY code.
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Figure 4.2: SANDY’s documentation on GitHub platform [43]

4.2 Working scheme
After the interaction with the ENDF-6 format to extract the requested data, SANDY
sampled the nuclear parameters into random sets according to the multivariate
probability distribution of the uncertain variables. The samples are randomly
selected using a sampling algorithm, according to the specified probability distribu-
tion. It is guaranteed that the random samples are distributed in the input phase
space according to the original covariance matrix information. At the end of the
process, the random nuclear data samples are written in copies of the original data
file, so keeping the original format. Response uncertainties calculated with SANDY
take into account first and higher order effects and are not limited by constraints
of linearity. Cross sections and other energy-dependent data are not approximated
by multigroup energy structures but they are propagated as pointwise, exploiting
the Total Monte Carlo scheme.
Currently, SANDY can produce random perturbed nuclear data files for:

• Nubar (MF31)

• Cross sections (MF33)

• Angular distributions (MF34)

• Energy distributions (MF35)

• Fission yields (MF8) (detailed discussion in Chapter 6)
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• Decay data (MF8) (detailed discussion in Chapter 5)

SANDY retrieves the best estimates and uncertainties/covariances directly from
the libraries, so it interacts only with the ENDF-6 nuclear data files and it remains
independent of the model and of the numerical solver. This tool is therefore able
to quantify the uncertainty on the model responses and it can also estimate the
importance of the nuclear data on the response uncertainty.

4.3 Sampling procedure
To implement statistical sampling, an assumption on the input parameter distribu-
tion is required. Gaussian distribution is generally assumed [44] as it guarantees
maximum entropy to the parameter values and since a set of random variables
tends to be distributed normally according to the Central Limit Theorem (CLT).
On the one hand, the bias brought by this assumption should be assessed, on the
other hand, the gaussian distribution assumption implies the possibility of having
negative sampled values, which is not always physical for nuclear data.

In SANDY the correlated sampling procedure is performed through covariance
matrix diagonalization, which only allows to preserve the normal shape of the
distribution, as such a shape is the only one to be preserved when convoluted [45],
according to the CLT.
A linear combination of normally distributed random variables is also normally
distributed, so if −→

ξ is a set of normally distributed variables, each with zero mean
and unit standard deviation, then set of samples with target mean and standard
deviation can be computed as in equation 4.1,

−→x (m) = A ·
−→
ξ (m) + −→µ (4.1)

where matrix A is such as to preserve the mean values, standard deviations and
the correlations between the components of −→x and −→µ is the vector of the expected
values of −→x .

E(−→ξ ) = 0 (4.2)

E(−→ξ −→
ξ T ) = 1 =

C
1 0
0 1

D
(4.3)

Matrix A is the lower-triangular decomposed covariance matrix of Σ and the
product A ·

−→
ξ (m) results in correlated sets of randomly distributed values centered

in zero and with covariance matrix A · AT = Σ. This dot product is a linear
operation, which makes −→x converge to the normal distribution. More intuitively,
it can be considered as:
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x1 = A1,1ξ1
x2 = A2,1ξ1 + A2,2ξ2
x3 = A3,1ξ1 + A3,2ξ2 + A3,3ξ3
...

xn
n→∞−−−→ N

Each parameter xn results from a sum of distributions and the CTL states that
the distribution of sample means approximates a normal distribution as the sample
size gets larger, regardless of the population’s distribution [46].
SANDY works with relative covariance matrix, this means that equation 4.1 is
adapted to handle relative terms in this way:

−→x (m) = (Arelative ·
−→
ξ (m) + 1) · −→µ (4.4)

where the matrix Arelative is computed is such a way as to satisfy the product
Arelative ·AT

relative = Σrelative, with Σrelative the covariance matrix built with relative
variance — i.e., relative uncertainties with respect to the best estimates.

Evaluated covariance matrices can present correlations out of bounds — i.e.,
lower than -1 or larger than 1. This results in non-physical negative eigenvalues
during the sampling procedure, for which reason SANDY "adjusts" the evaluated
covariance matrices. This is done by setting to zero the negative eigenvalues and
then recomposing the adjusted covariance matrix Σ̃. Σ̃ is semi-positive definite by
construction and it is decomposed as in equation 4.5,

Σ̃ = V · E · V −1 = V ·
√
E ·

√
E · V −1 (4.5)

where V is the matrix of eigenvectors vi of Σ̃, and E is the diagonal matrix whose
elements are the eigenvalues of Σ̃. To obtain matrix A of equation 4.1, the QR
decomposition of the

√
E matrix is computed and equation 4.5 can be rewritten as

in equation 4.6

Σ̃ = V ·
√
E ·

√
E · V −1 = (QR)T · (QR) = RTQT ·QR (4.6)

The Q matrix is a unitary matrix, so the latter equation leads to write the
approximation of covariance matrix in the form Σ̃ = RT ·R. Setting RT = A, an
analogous form to the Cholesky factorization for semi-positive defined matrices is
obtained. Thanks to the linearity of the operation, the covariance matrix of −→x
will approximate Σ̃ — the higher the number of considered samples the better the
approximation—, indeed, for the moment propagation, it is possible to write:

E(−→Aξ) = AE(−→ξ ) = 0 (4.7)
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E((A−→
ξ )(A−→

ξ )T ) = AE(−→ξ −→
ξ T )AT = A · AT = Σ (4.8)

With explicitly given A and −→µ , arbitrary random multivariate normally distributed
samples can be produced by employing equation 4.1.

4.3.1 Truncation of negative values
The normal distribution is the distribution at maximum entropy, which means the
one that makes the fewest assumptions about your data (the one with maximal
information entropy) [47]. This is therefore a conservative guess when only the
best estimate and the standard deviation or covariance matrix of a distribution are
provided. This is often the case for nuclear data. The usual choice of multivariate
normal distribution sampling is also well justified by the CLT, according to which,
when manipulated, the distributions tend to converge to the normal one. Still,
negative samples can be computed when sampling a normal distribution. This
can lead to non physical values for many nuclear data such as the cross sections,
the decay constants, the fission yields, etc... For this reason, usually the normal
distribution is truncated, removing the negative values. If the random variable
has been truncated only from below, some probability mass has been shifted
to higher values, giving a first-order stochastically dominating distribution and
hence increasing the mean to a value higher than the expected original normal
distribution. Likewise, if the random variable has been truncated only from above,
the truncated distribution has a mean less than original one. Regardless of whether
the random variable is bounded above, below, or both, the truncation is a mean-
preserving contraction combined with a mean-changing rigid shift, and hence the
variance of the truncated distribution is less than the variance of the original normal
distribution [48].

Concerning the sampling procedure of nuclear data, the mean of the distribution
coincides with the best estimate of the nuclear datum provided by the libraries.
To preserve the mean value of the distribution, the truncation procedure must be
symmetrical, i.e. truncation on both sides of the distribution must be performed. To
avoid these negative samples, two main options were considered in the development
of the sampling procedure in SANDY:

• method 1: all truncated values are set equal to the mean value of the distribu-
tion;

• method 2: all the truncated values are set equal to the values at the boundaries
of the distribution.

In both cases, the truncation procedure results in a reduction of the standard
deviation. A further investigation was performed to see which method deviates less
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(a) Method 1 (b) Method 2

Figure 4.3: Methods to handle negative samples with Normal PDF

from the standard deviation of the original distribution and the result is shown in
Figure 4.4.

Figure 4.4: Standard deviation of the original PDF vs. standard deviation of the
truncated PDFs

When the variance of the original normal distribution increases, the second
method results in a lower reduction of the variance so this method was selected to
be implemented in the SANDY sampling procedure.
The work done for this implementation during the development of this Thesis was

36



Contributions to SANDY development

also presented during the JEFF-Nuclear data week of April 2022, reported in [49].

4.3.2 Change of the input parameter distributions

As already said in section 4.3, considering the distribution of the input parameters
as a Gaussian is the first assumption made in the sampling procedure. One
might then want to assess the bias given by this assumption considering different
distributions. This kind of analysis is out of the scope of this work, yet a contribution
to the implementation of the sampling according to the lognormal and to the
uniform distribution was part of the effort of this thesis work. This was done in
collaboration with Federico Grimaldi. These two distributions were selected among
different options to avoid negative samples (in case of lognormal) and for the easy
implementation (in case of uniform).

The implementation of the sampling according to the lognormal distribution
was implemented according to [50]. This distribution is defined in the interval
[0,+∞], so the probability to have negative values in this case is zero. For large
standard deviations, the lognormal distribution becomes highly asymmetric, with
a significantly higher tail than normal distribution. In opposite, for small standard
deviations, the lognormal looks like a normal distribution. This behaviour is shown
in Figure 4.5.

Figure 4.5: Lognormal distribution [51]
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A transformation of the covariance matrix and the mean values is needed to
obtain lognormally distributed correlated samples. The link between the mean
value and the standard deviation (µ, σ) of the normal distribution and the ones of
the lognormal distribution (< x >, σx) is expressed by the following two equivalent
equations 4.9 and 4.10.

σ =
ó
ln(1 + σ2

x

< x >2 ) (4.9)

µ = ln(< x >) − σ2

2 = ln(< x >) − 1
2 ln(1 + σ2

x

< x >2 ) = ln( < x >2ñ
< x >2 +σ2

x

) (4.10)

This modification of the standard deviation and the mean value allows to repeat the
procedure described in section 4.3 for the normal distribution using the transformed
covariance matrix. This results in the underlying normal distribution of the target
lognormal distribution, such that 4.11 holds

LogN = eN (4.11)

where LogN is the lognormal distribution with the covariance matrix from the
ENDF-6 file and N is the underlying normal distribution.
The transformation of the covariance matrix is needed because of the implemented
procedure. After the sampling scheme is performed with the underlying mean and
covariance matrix, the exponential is computed to get the lognormal distribution
centered in the original mean and with the original covariance matrix.
The consideration about the dot product A ·

−→
ξ (m) in the explanation in Section

4.3 is of major importance when trying to sample non-normal distributions. An
example of this also is given by the uniform distribution U. The sum of uniform
distributions converges to the Irwin–Hall distribution [52].
This makes impossible to perform such a sampling in a straightforward way as
it was for N, highlighting the need of a change in the covariance matrix or the
impossibility for such an implementation.The investigation of the possibility to
compute uniformly distributed multivariate correlated samples is left out of the
scope of this work while non-correlated uniform sampling was implemented in
SANDY — i.e. diagonal covariance matrix is considered in that case.

To access the impact of the choice of the input parameter sampling distribution,
the nuclide concentration uncertainty results of the UAM Benchmark Exercise
I-1 ”Cell Physics”, obtained sampling the independent fission yields from normal,
lognormal and uniform distributions were analysed. This investigation is reported
in Appendix A.
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Figure 4.6: Irwin–Hall distribution [53]

4.4 Generalized Least Squares update technique

As already discussed in Chapter 1, nuclear data communities have embraced the
concept of covariance matrix to collect the uncertainties of the nuclear data. Usually
the best estimates of nuclear parameters can be obtained by performing experiments.
Importantly, the raw data from measurements, such as detector counts, must always
be transformed and corrected to reflect the properties of the nuclei, which are
independent of the applied experimental technique. For this reason, the corrected
data from experiments are assessed another time by evaluators. As a first step of an
evaluation, evaluators collect and compare available experimental data. Depending
on the outcome of this investigation, experimental data are then corrected if
possible or discarded. A correction may be the adjustment of an estimate or of the
associated uncertainty. This can be done with the Generalized Least Squares
technique [54]. This is an adjustment technique that states that the information on
some prior system parameters can be improved with the addition of new knowledge
for which relationships between data and parameters are established [55]. This
method represents a modification of Ordinary Least Square (OLS) which takes into
account the inequality of variance in the observations. It is mainly used to deal
with situations in which the OLS estimator is not BLUE (Best Linear Unbiased
Estimator) because one of the main assumptions of the Gauss-Markov theorem,
namely that of homoscedasticity — i.e. constant variance’s error — and absence
of serial correlation, is violated. The Gauss-Markov (GM) theorem states that
for an additive linear model, and under the ”standard” GM assumptions, OLS
estimator has the lowest sampling variance within the class of linear unbiased
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estimators. The standard GM assumptions are:

1. Linearity: the parameters we are estimating using the OLS method must be
themselves linear;

2. Randomity: our data must have been randomly sampled from the population;

3. Non-Collinearity: the regressors being calculated are not perfectly correlated
with each other;

4. Exogeneity: the regressors are not correlated with the error term;

5. Homoscedasticity: the error of the variance is constant.

If heteroscedasticity is present, so the variances of the observed values are unequal,
the GLS estimator is BLUE. For this theorem, the updated values will have the
minimum variance or the narrowest sampling distribution. More specifically, when
your model satisfies the assumptions, GLS estimates follow the tightest possible
sampling distribution of unbiased estimates compared to other linear estimation
methods [56].

Many practitioners use the Generalized Least Squares (GLS) formulas to combine
experimental data and results of model calculations in order to determine reliable
estimates and covariance matrices. A prerequisite to apply the GLS formulas
is the construction of a prior covariance matrix for the observables from a set
of model calculations. The method described is suitable to handle problems in
which relationships between the observables and the parameter to be estimated
are inherently linear or non-linear problem which are first linearized by means of
Taylor series expansion [57], so they are in the form:

y − ya = S · (θ − θa) (4.12)

where θ are the parameters of the system, θa the prior estimates of θ, y the responses
of the constraining equation, ya the responses of the constraining equation to the
prior estimates θa and S are the sensitivity coefficients of the response y – ya to
the parameters θ – θa [58].

It is assumed that no correlations existed between the prior and the new
information. Then, further information η could be introduced in order to derive
refined values for the parameters θ, with all the available uncertainty information
properly incorporated into the formalism. The updating process is the following:

θ − θa = Va − ST · (S · Va · ST + V )−1 · (η − ya) (4.13)

Vs = Va − Va · ST ·
1
S · Va · ST + V

2−1
· S · Va (4.14)
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where Va is the covariance matrix of the prior estimates of the parameters θ,
V is the covariance matrix of the introduced data fitting the constraining system
η, and Vs is the updated covariance matrix of the system parameters θ [59]. The
uncertainty reduction is highlighted in the equation 4.14, where the diagonal and
off-diagonal terms are respectively:

µii = σ2
i

A
1 − σ2

i

σ2 +q
j σ

2
j

B
(4.15)

µij = −
σ2

i σ
2
j

σ2 +q
j σ

2
j

(4.16)

with σi the standard deviation of the i-th parameter and σ the standard deviation
of the introduced data fitting the constraining system. Sum q

j σ
2
j includes all the

other correlated parameters [60]. The derivation of these formulas is reported in
Appendix B.

Part of the work of this thesis was devoted to insert the procedure for this
updating scheme in SANDY. Then it was used to obtain an estimate of the fission
yields covariance matrix and it is discussed in Chapter 6.
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Chapter 5

Perturbation methodology
of decay data

In this Chapter, the implementation of the covariance propagation and local/global
sensitivity capabilities - based on stochastic sampling - for radioactive decay data
in SANDY is described.

Decay data are defined as those parameters relating to the normal radioactive
decay modes of a nuclide. They include half-life, total decay energies and branching
fractions, alpha-particle energies and emission probabilities, beta-particle energies,
emission probabilities, and transition types, electron-capture (and positron) ener-
gies, transition probabilities, and transition types, gamma-ray energies, emission
probabilities and internal conversion coefficients, Auger and conversion-electron
energies and emission probabilities, X-ray energies and emission probabilities,
characteristics of spontaneous fission, delayed-neutron energies and emission proba-
bilities, delayed-proton energies and emission probabilities [61].
Radionuclidic decay data are also used in many types of non-nuclear applications
such as chemical experiments, metallurgical and mining industries, medical treat-
ments and functional studies, quality control, health, safety, etc. A nuclide is a
neutral atom, specified by the mass number A and atomic number Z of its nucleus,
which is either stable or lives long enough to be classified as radioactive. Figure 5.1
shows the stable nuclides represented by black squares, while the radioactive ones,
experimentally identified, are plotted by the light-shaded area [62].

For burnup/inventory/transmutation calculations, radioactive Decay Data li-
braries are needed, indeed they provide the radioactive decay data, such as decay
constants, half-lives, branching ratios or decay energies, which drive part of the
burnup/depletion equations [63]. Very often the decay data stored in the libraries
are not so accurate due to a lack of experimental information and they are accompa-
nied by very large uncertainties. The covariance information for the evaluated data

42



Perturbation methodology of decay data

Figure 5.1: Nuclide chart [63]

is absent in the currently commonly used formats, so we don’t have information
about the correlated uncertainties of some decay data. When the uncertainty of the
reference data used in the experiment predominates, the results of measurements
are highly correlated and cannot be processed assuming statistical independence.
Besides that, direct inclusion of balance relations in the evaluation procedure
leads to a strong correlation between some resulting evaluated characteristics. For
this reason the evaluated data reported without covariance information should be
considered as incomplete [64].

5.1 Algorithm to obtain perturbed decay data in
SANDY

The decay data analyzed during the development of the decay data sampling
procedure in SANDY are decay constant, branching ratio and decay energy, which
are the ones more relevant in nuclear spent fuel characterization.

As discussed in Chapter 4, the SANDY code is written in python and it is
composed by different scripts with different python classes and methods. The
algorithm to obtain perturbed decay data touches four main classes of this code:
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• sandy.Endf6: container for ENDF-6 file text grouped by MAT, MF and MT
numbers;

• sandy.DecayData: container of radioactive nuclide data for several isotopes;

• sandy.decay._DecayBase: base class to perturb decay data, it acts as a con-
tainer of best estimates and uncertainty of decay data as a pandas dataframe;

• sandy.CategoryCov: container of covariance matrices.

A typical Unified Modeling Language (UML) Class diagram with the python classes
used in the perturbation algorithm of decay data implemented in SANDY, their
attributes and main operations (or methods) is reported in Figure 5.2.

Figure 5.2: UML Class diagram with the main python classes, attributes and
methods used for the implementation of the algorithm for the perturbation of
radioactive decay data implemented in SANDY
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The procedure starts with the reading of the ENDF-6 file directly from the libraries
to retrieve the best estimates and the related uncertainties information. The decay
data information are stored without the covariance matrix needed to perform the
sampling procedure implemented in SANDY. For this reason the uncertainties are
taken as standard deviations and, divided by the best estimates, will be used to
build a relative diagonal covariance matrix. Then the correlations between the decay
data are inserted, if present, by imposing some physical constraints discussed one by
one in the following Sections. Once the relative covariance matrix is obtained, the
sampling procedure can be performed and it will give the perturbation coefficients
that must be multiplied by the best estimates to obtain the radioactive perturbed
decay data. The last step of the algorithm focuses on the writing of the perturbed
values in ENDF-6 format into a file that will be used as input for different nuclear
data codes.
The explained steps are summarized in Figure 5.3.

Figure 5.3: Algorithm to obtain perturbed decay data
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5.2 Decay constant
The decay constant λ corresponds to the probability that an atom will decay per
unit time [65]. It relates to the lifetime T1/2, which is the time required to halve
the number of atoms of a particular radioactive nuclide, through the relation

T1/2 = ln(2)/λ (5.1)

The procedure for the perturbation of the decay constant is performed through the
perturbation of the half life, exploiting the equation 5.1. This is done because the
ENDF6 file stores the information of the half life and not the value of the decay
constant, which would be redundant.
In this case the generation of random perturbed values is quite straightforward
following the procedure reported above, because there is no existing correlation
between the half lives of different nuclides. It is just necessary to choose a probability
density function to sample from and follow the algorithm in Figure 5.3.

5.3 Branching ratio
The branching ratio for a decay process is the ratio of the number of particles which
decay via a specific decay mode with respect to the total number of particles which
decay via all decay modes. From the definition it is evident that the branching
ratio of a specific decay mode can be understood as the probability that this decay
mode happens, so the sum of all the branching ratios of a specific nuclide must
satisfy the physical constraint:

NØ
i=1

bi = 1 (5.2)

with N the total number of decay modes of the nuclide [66].

Figure 5.4: Branching ratios of 64Cu [67]
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Of course, if a nuclide has two decay modes and the corresponding branching
ratios have equal uncertainties, it is possible to assume that the evaluation was
performed by taking into account the above constraint: the sampling can be done
for one variable and the other is evaluated from the constraint. In opposite, if a
nuclide has two decay modes with different uncertainties in the branching ratios
or if a nuclide has more than two decay modes, the constraint can be enforced
by updating the covariance matrix according with the GLS method or with the
normalization method. The differences between the two mentioned methods are
reported in Section 5.3.1. At the end, the normalization method, which results
easier to implement, was selected to be inserted in SANDY.

5.3.1 Generalized least squares update vs normalization
procedure

The GLS method was already discussed in section 4.4 and the updating formulas
reported there were used to update the covariance matrix of the branching ratios.
Concerning the normalization method, it consists of the normalization of each set
of samples, i.e. dividing each set for the sum of all the perturbed branching ratios.
The main difference between the two methods is related to the fact that with the 4.4
method, the sampling procedure will be implemented with the updated covariance
matrix. In the other case, it will be performed with the diagonal covariance matrix,
so between non-correlated variables, and then the constraint will be added for each
set of samples.
To report an example of the covariance matrix of sampled branching ratios obtained,
the branching ratios of 235U and 236U from the JEFF-3.3 library were perturbed.
Figure 5.5 reports the correlation matrix of 50 sampled branching ratios of these
nuclides without the insertion of the constraint.
Figure 5.6 shows a visual comparison between the correlation matrices coming
from the updated GLS covariance matrix and the covariance matrix after the
normalization of 50 sampled branching ratios of 235U and 236U.
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Figure 5.5: Correlation matrix of 50 samples branching ratios without correlations

Figure 5.6: Comparison of correlation matrices of branching ratios obtained with
GLS and Normalization method

5.4 Decay energy

The decay energy is the energy released from a nuclide having undergone one or
more of the possible radioactive decays. In ENDF-6 file, these energies are grouped
as average decay energies for decay heat application, for three general radiation
types: ELP (for light particles), EEM (for electromagnetic radiation), and EHP (for
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heavy particles), followed by the individual components.

ELP = Eβ− + Eβ+ + Ee− + ...

EEM = Eγ + Ex−ray + Eannih.rad. + ...

EHP = Eα + Espont.fission + Ep + En + ...

(5.3)

The sum of these three general quantities is the total average energy (neutrino
energies excluded) available per decay to the decay heat problem.
Not all the isotopes have an uncertainty for their decay energy stored in the ENDF-6
files, so a study of which isotopes have no uncertainty data is important because
they can affect the final results of the uncertainty propagation calculations. For
this purpose, the nuclides without uncertainties in their decay energies were studied
for two nuclear data libraries and the results are reported in Table 5.1.

Library Total # of isotopes # of isotopes with no
uncertainty in decay energy

JEFF-3.3 4908 3391
ENDF/B-VIII.0 5114 3398

Table 5.1: Number of isotopes without uncertainties in their decay energies for
the analysed libraries

In JEFF-3.3 about 70 % of the isotopes have no decay energy uncertainty informa-
tion and about 65 % in ENDF/B-VIII.0. To identify which isotopes have this lack
of information, they were classified according to half life groups reported in Table
5.2. The result is reported in Figure 5.7.
The most relevant nuclides in nuclear spent fuel characterisation have large half
lives, so they belong to groups 1 or 2. In this range, the total number of isotopes
without uncertainties is around 320 for JEFF-3.3 and 300 in ENDF/B-VIII.0. The
bulk of the isotopes with no uncertainty in decay energy is between the fifth and
eighth groups, corresponding to isotopes with short half-lives which are poorly
characterised, with partially known (even non-existent) decay schemes that arise
from a serious lack of measured data [61].
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Group T1/2 [s]
1 > 10e7
2 [10e7; 10e5]
3 [10e5; 10e3]
4 [10e3; 10e2]
5 [10e2; 10]
6 [10; 1]
7 [1; 0.1]
8 [0.1; 10e-2]
9 [10e-4; 10e-6]
10 < 10e-6

Table 5.2: Half life groups

Figure 5.7: Number of isotopes with no uncertainty in their decay energy, classified
in half life groups reported in Table 5.2
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Chapter 6

Perturbation methodology
of fission yields

In this Chapter, the implementation of the sampling procedure for fission yields
inserted in SANDY is described.

When fission happens, a nucleus undergoes a deformation that leads to the
scission of the nucleus into at least two fragments. These fragments have high
excitation energy and undergo prompt neutron and photon emission. When the
prompt neutron emission has ceased, the fragments are referred to as "products".
The probability that a particular fission product will be produced directly from
a fission event is called an independent yield (IFY). It can be written as the
product of three factors [60]:

IFY (A,Z,M) = Y (A) · f(A,Z) · r(A,Z,M) (6.1)

where:

• Y(A) is the total mass fission yield(MFY), i.e. the sum of independent
fission yields of all fission products with mass number A, before delayed
neutron emission;

Y (A) =
Ø

Ai=A

IFY (Ai, Z,M) (6.2)

• f(A, Z) represents the fractional independent yield of all isomers with
mass A and charge Z;

• r(A, Z, M) is the anisomeric yield ratio and represents the fraction of fission
products (A,Z) produced as isomeric state M.

.
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Figure 6.1: Independent fission yield distribution for a thermal fission of 235U.
Nuclear data is taken from the ENDF/B-VIII.0 library [68]

The probability that a particular fission product will exist at some point in time
after fission, either due to direct production from fission or due to product ion from
the decay of a parent fission product, is called a cumulative yield(CFY) [69].
CFYs have a strong relationship with fission products decay chains, indeed they can
be calculated from IFYs and decay data branching fractions using the so-called Q-
matrix approach [70]. From the definition, the CFY can be obtained by calculating
the probability that an independent product will follow a decay path leading to a
cumulative product using Equation C.2.

CFYi = IFYi +
Ø
j /=i

bj→iCFYj (6.3)

where bj→i the branching ratio of isotope j decay mode to isotope i. In matrix form,
equation C.2 becomes:

CFY = Q · IFY (6.4)

The derivation of this formula is reported in Appendix C. Q-matrix is equal to
Q = (1 −B)−1 and B is the diagonal matrix of the collection of all branching ratios,
so in terms of IFY:
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IFY = (1 −B) · CFY (6.5)

The chain fission yield (ChFY) is defined as the total yield for a given decay
chain after both prompt and delayed neutron emission.

ChFY (A) =
Ø

Ai=A

IFY (Ai) (6.6)

At first sight it may be confused with the mass fission yield Y(A), indeed the two
can differ by a few percent as the second does not include the contribution of
delayed-neutron emission [70].
Fission product yields are required at several stages of the nuclear fuel cycle, indeed
they are needed for calculating the accumulation and inventory of fission products.
Concerning the reactor design and operation, fission yields are used in criticality
and reactivity calculations, for fuel and reactor core management, for reactor safety
and in determining limits of safe operation in new plants and for nuclear materials
transport [71].

Figure 6.2: Mass distribution of fission product yields for thermal neutron fission
of 235U, 229Th and 239Pu [68]
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All the libraries analyzed in Section 2.1 store the recommended independent and
cumulative fission yields with their uncertainties, whereas the chain yields are
provided only in the literature.

6.1 Algorithm to obtain perturbed fission yield
in SANDY

Part of the work of this thesis was related to update the procedure to obtain
perturbed fission yields in the newly version of SANDY, according with the new
Pyhton classes and methods implemented.

The algorithm to obtain perturbed fission yields refers to three main python
classes inserted in SANDY:

• sandy.Endf6, already used for the sampling of decay data;

• sandy.Fy: container of independent and cumulative fission yields for several
isotopes;

• sandy.CategoryCov: already used for the sampling of decay data.

Again a UML Class diagram with the classes used in the perturbation algorithm
of fission yields implemented in SANDY, their attributes and main operations (or
methods) is reported in Figure 6.3.

Figure 6.3: UML Class diagram with the main python classes, attributes and
methods used for the implementation of the algorithm for the perturbation of
fission yields implemented in SANDY
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The steps to follow are the same already presented for the Decay Data in Section
5.1. Even in this case, the full covariance matrix is not stored in the ENDF-6
file, in which all the uncertainties are available. Taking again them as standard
deviations, it is possible to build the variance matrix needed for the sampling
procedure. However, because of the constraints and of the physics that governs the
fission, the fission yields must be correlated and several institutions and projects
are putting a great effort to develop methodologies to generate full covariance
matrices. For this purpose, the procedure to update the diagonal covariance matrix
with the GLS method explained in [60] was inserted in SANDY.

6.2 Generalized Least Squares update of inde-
pendent fission yields covariance matrix

As already said in the previous Section, independent fission yields are constrained
by physical conditions or conservation equations. In a fission event, at least two
fission products must be produced. Therefore, binary fission yields should sum to
two (normalization of the independent yield):Ø

i

IFYi = 2 (6.7)

The conservation of mass and charge numbers can be expressed as:
Ø

i

AiIFYi = ACN − νp(E) − ALCP (6.8)

Ø
i

ZiIFYi = ZCN − ZLCP (6.9)

In the mass conservation equation 6.8, Zi, Ai and ACN are the proton and the
nucleon numbers of the i-th fission product and the latter of the compound nucleus.
< ALCP > is the average mass number of light-charged particles from ternary
fission such as proton, triton, and α particles, respectively. νp stands for the
prompt neutron multiplicity [71]. In the charge conservation equation 6.9, ZCN

and ZLCP are the charge numbers of the compound nucleus and average Z value of
the light-charged particles, respectively. Another constraint that is possible to add
is the chain yield relationship given by equation 6.6. All the mentioned constraints
are linearized and can be expressed in matrix form, reported in Table 6.1, where the
Design matrix corresponds to the sensitivity matrix used in the GLS procedure,
explained in Section 4.4.
Sequential GLS updating steps can be applied to the independent fission yields
and their variance matrices in an iterative way. An example of this procedure was
performed during the development of this thesis, exploiting the last constraint, to
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Constrain Linear relation Design matrix
normalization IT IFY = 2 IT

mass conservation AT IFY = ACN − νp(E) − ALCP AT

charge conservation ZT IFY = ZCN − ZLCP ZT

chain yield relation DT IFY = ChIFY DT

Table 6.1: Summary of the reported equations for the constraints that can be
used to create covariances with Generalized Least Squares method for independent
fission yields.

update the thermal fission yields covariance matrix of 235U. The updating GLS
covariance matrix formula 4.14 becomes:

VIF Ypost = VIF Yprior
− VIF Yprior

·DT ·
1
D · VIF Yprior

·DT + VChextra

2−1
·D · VIF Yprior

(6.10)
The extra information for the evaluation of the chain yields and their related
covariance matrix VChextra are taken from the IAEA document [72]. By using
evaluated chain fission yields to modify independent fission yield data, a deeper
knowledge on the first is assumed. This is a consistent assumption since the chain
fission yield and uncertainties are evaluated mostly directly from the measurements,
while the independent fission yields are not [71].
To understand the impact of the difference between the chain fission yields and
the mass fission yields, the IFY covariance matrix was updated considering the
design matrix coming from the chain yield relationship 6.6 (Dc) and mass fission
yield relationship 6.2 (Dm). Both matrices have the mass numbers in the rows and
the nuclides along the columns. The main difference between the two is related
to the fact that the chain yield takes into account the delayed neutron emission,
this means that the sensitivity of an isotope must be evaluated considering the
decay products of this isotope. On the contrary, the mass yield sensitivity was
evaluated based only on the information stored in the Fission Yield section of the
ENDF-6 file, i.e., considering only the correlations between the fission products of
235U. This explains why the chain yield sensitivity matrix correlates more nuclides
with respect to the other. Indeed, Dc matrix has 1 in the row of that nucleus if
it is stable or in the mass number of the products in which it decays and it has
the fraction in the rows, which represents the probability of decaying along that
path, if that nucleus has more than one path to decay. To highlight the fact that a
nuclide results correlated to more nuclides in the chain yield case, a comparison
between the two correlation matrices of the two design matrices is show in Figure
6.4. In this Figure the "Nuclide Index" is an index assigned to each nuclide and it is
sorted by atomic number, mass number, and isomeric number in ascending order.
With these design matrices the IFY covariance matrix was computed with equation
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Figure 6.4: Comparison between correlation matrices of the two sensitivity
matrices Dc and Dm

6.10. Some nuclides were selected among the fission products of thermal fission
of 235U to have a more clear visualization of the added correlations in a spy plot,
reported in Figure 6.5.

Figure 6.5: Comparison between IFY updated covariance matrices

The difference between the two matrices is already explained by the sensitivity
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matrices. Indeed the Dc matrix results much more dense with respect to the
Dm matrix, which means that more off-diagonal terms are present. As already
explained, this is because, with the chain fission yields constraint, more nuclides
result correlated to take into account the emission of delayed neutrons and so
considering the possible decays of each nuclide. Delayed neutrons originate in the
decay by neutron emission of nuclei produced in the β− decay of certain fission
products with gradually decreasing intensity over a period of minutes. As an
example, one of the fission products is 87Br, containing too many neutrons and is
consequently a β− emitter with a half-life of 55.7 s, decaying to 87Kr. The latter
is evidently formed in a highly exited state, with sufficient energy to permit it
immediately to eject a neutron and leave a stable 87Kr. Another Delayed neutron
precursor is 137I with a half-life of 22.7 s [73]. From Figure 6.5 it is possible to see
that with the mass yield relation, the 87Br results correlated just with the nuclides
with the same mass number (87) while, with the chain yield case, the other decay
modes are taken into account. Indeed, this nuclide can undergo a beta decay with
the production of 87Kr (branching ratio = 0.9749), but also a beta decay followed
by the neutron emission, producing 86Kr (branching ratio = 0.0251). 87Kr can be
also formed after beta decay plus neutron emission of Br88. The latter nuclide
can also decay in 88Kr and finally 88Rb is formed. All these decay schemes are
considered in the case of chain yield relation, adding the correlations between these
nuclides. The same consideration can be done for 137I: it undergoes beta decay
with a branching ratio equals to 0.935, producing 137Xe and this is considered in
both covariance matrices; it can also undergo a beta decay followed by a neutron
emission with a branching ratio equals to 0.0251, producing 136Xe and this is not
considered with the update performed with the mass yield relation. It is possible
to see that all the other decay schemes connected to 137I are considered with the
chain yield sensitivity in Figure 6.5.

6.2.1 Uncertainty reduction
Not only does the GLS method produce correlations between independent fission
yields, but it also updates their variances. As already explained in Section 4.4,
such an update consists in a reduction of the original values also due to the
fact that the correlations added between the IFYs result in general negative
correlations. The negative correlations expected (anti-correlations) can result from
conservation equations. On the other hand, some chain yields with relatively large
evaluated uncertainties may be expected to introduce positive correlation between
the components of their corresponding chains. Still, that happens only in few cases,
with anticorrelations generally dominating the updating steps. In Figure 6.6 a
comparison between the original uncertainty and the updated one of some nuclides
subjected to uncertainty reduction is reported. The amplitude of the uncertainty

58



Perturbation methodology of fission yields

Figure 6.6: Independent fission yield uncertainties reduction for some JEFF-3.3
235U thermal fission data. The reduction is caused by the GLS update of the
covariance matrix.

reduction is again explained by the updated covariance matrix: more negative
correlations are added, more the uncertainty is reduced. An example is the nuclide
137Xe, indeed it results negative correlated with a lot of nuclides. Following its
decay chain it can be correlated through a sequence of beta decays to 137Cs, 137Ba
and 137mBa. It can also be produced after the beta decay of 137I that can also emit
a neutron producing 136Xe and finally 136Ba. The other uncertainty reductions can
be explained following the decay path and production of the other nuclides.

6.3 Cumulative fission yields covariance matrix
The evaluation of the covariance matrix of the cumulative fission yields can be done
with an indirect measurement through the moment propagation equation, also
called sandwich rule, derived in Appendix D. It states that the variance of the
response R (α1, ..., αk), taken as a linear function of the input parameters α1, ..., αk,
can be computed with equation 6.11:

VR = STVpS (6.11)

where S is the sensitivity matrix composed by sensitivity coefficients, i.e. the
partial derivatives of R with respect to the input parameters and VR and Vp are the
response and parameter covariances respectively [74]. In case of CFY covariance
matrix, exploiting the linear relation C.1, the sensitivity matrix corresponds to the
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Q-matrix and the parameter covariance matrix is the independent fission yields
covariance matrix. To see the consistency of this constraint in the nuclear data
stored in the libraries, the IFYs of 235U thermal fission were computed from equation
6.5, taking the CFYs values from the library and the B matrix from SANDY. The
results are compared with the data stored in the JEFF-3.3 library in Figure 6.7.

Figure 6.7: Comparison between evaluated IFY with B matrix approach and IFY
stored in the JEFF-3.3 library

From Figure 6.7, the mass distributions of the IFYs evaluated with the B matrix
approach and IFYs stored in the JEFF-3.3 library seem quite coincident, which
means that the consistency between the evaluation of these IFYs and the physical
constraint 6.5 is satisfied.

The uncertainty propagation of the original independent data taken from some
libraries can lead to very large cumulative yield uncertainties in comparison to the
values obtained from the experiments. For this reason, the JEFF evaluators cor-
rected the cumulative yield uncertainty quantification formula using a least square
approximation, introducing the contribution of the chain yields uncertainty [75]:
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δCFYj =

öõõôA31 − CFYj

ChFY

4Ø
i

Qi,jδIFYi

B2

+
3
CFYj

ChFY
δChFY

42
(6.12)

This correction includes a weighting factor determined by the ratio chain/cumulative
yields, which allows for the strict correlations between the two types of yield. Indeed,
the cumulative yield represents the total number of atoms of that nuclide produced
over all time after one fission: if the nuclide is stable and at the end of a mass
chain, the cumulative yield is the total number of atoms remaining per fission, and
is termed the chain yield [76].

The covariance matrix of the cumulative fission yields obtained from thermal
fission of 235U was computed exploiting the moment propagation equation and
considering the diagonal IFY covariance matrix. The nuclear data is retrieved from
the JEFF-3.3 library. The result is presented in Figure 6.8. "FY Index" is an index
assigned to each fission product and is sorted by atomic number, mass number, and
isomeric number in ascending order. Thus in this case, for the 984 fission products,
FY Index 0 has the lightest Z and A while FY Index 983 has the heaviest Z and A.
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Figure 6.8: Cumulative fission yields covariance matrix

The CFY covariance matrix results similar to the independent fission yield covari-
ance matrix updated with the chain yield information. This is due to the link
between the cumulative and chain yields. Indeed the two take into account the
correlations between the nuclides caused by their decay paths but the chain yield
also adds the uncertainties which come from the chain yield evaluations (extra infor-
mation). This link is highlighted by the fact that the unstable neutron-rich fission
isomers mostly decay through β-particle emission, without any mass change [66].

62



Chapter 7

Fission pulse decay heat

In this Chapter the perturbation methodologies presented in Chapter 5 and 6 were
exploited to perform the uncertainty quantification (UQ) studies to assess the
impact of decay data and fission yields uncertainties on fission pulse decay heat
results.

When a nuclear reactor is shut down, following some period of operation, there
are various nuclear species and processes that remain which are capable of generating
heat. The main sources of this heat are:

• Heavy elements - actinides: It is possible, through (n, α), (n, γ) and (n, 2n)
reactions and subsequent alpha and beta decay, to create numerous heavy
elements and actinides during reactor operation. Then, following reactor
shutdown, there remain many radioactive species which arise as a result
of neutron-induced transmutation of the fuel constituents. The radiation
subsequently emitted, in the form of alpha, beta and gamma rays, is an
important component of reactor heat. The contribution of actinides to decay
heat is a function of a number of different features such as specific power,
initial enrichment, and accumulated burnup. Transmutation of actinides by
neutron capture is the production mechanism of interest, and this production
is more significant for fuel that has sustained a high neutron flux during its
operating history [77].

• Fission products: During reactor operation fission products, in addition to
their direct formation, may be produced as a result of neutron capture (n, γ)
in a neighbouring isobar. Unstable nuclides will undergo radioactive decay
while many, along with numerous stable fission products, will also be depleted
through neutron capture. When the reactor is shut down, many radioactive
fission products remain which, in their subsequent decay, produce the most
important component of reactor decay heat [78].
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• Decay of activated structural materials can also release heat but it is a minor
contributor to overall decay heat.

Many aspects of the nuclear fuel cycle require accurate knowledge of the decay
heat liberated at various times following reactor shutdown, such as safety analyses
of nuclear power plants and nuclear waste disposal. It is significant to predict decay
heat accurately and to quantify its uncertainty. These attempts contribute to make
safety margin rational and then to improve the reliability of design. In general
in decay heat analyses there are two basic concepts whose properties are utilized
extensively: the instantaneous burst of fissions and the infinite irradiation in which
there is neither build-up nor depletion of fission products as a result of neutron
absorption [78].

The decay data and fission yields data of fission products are important for
the analysis of the reactor decay heat and the radioactive inventory of the fission
products in nuclear reactors. The accuracy of such a calculation as the decay heat
depends on the adopted data. Although there are about 1000 fission products
produced after fission, their decay data are not always reliable ones [79]. Roughly
speaking, about a half of them has no measured or poorly measured decay data
because of the difficulty to obtain experimentally the data with short half-lives. It
is not suitable to use such deficient decay data for decay heat calculation at short
cooling times after fission when the nuclides with short half-lives mainly contribute
to the decay heat [80]. For this reason, an uncertainty quantification analysis is
necessary to quantify the reliability of the calculation, indeed the uncertainty on
decay heat raises from the propagation of variance and covariance values of the
nuclear data.
The Fission Pulse Decay Heat (FPDH) is an idealised concept where an instanta-
neous burst of fissions occurs, typically in an individual nuclide. It can be defined
as the the heat generated by radioactive decay after a single atom of a specific
material fissions [81].

7.1 Set-up of the model
The decay heat at time t, DH(t) , is calculated by integrating the nuclide-wise
decay heat by a following equation:

DH(t) =
Ø
i=1

λiNi(t)Ei (7.1)

where λi is the decay constant, Ni(t) is the concentrations of isotopes involved in
the calculation and Ei is mean decay energy of nuclide i. The time-evolution of
radioactive material subject to pure decay is described by the system of ordinary
differential burn-up equations (ODEs) in equation 7.2.
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dNi(t)
dt

= −λiNi(t) +
Ø

j

λjβjiNj(t) i = 1, ..,M (7.2)

where βji is the branching ratio which indicates the decay mode and the fraction
of decays that converts isotope j into i and M defines the size of the system which
will be equal to the number of considered isotopes.

The analytical solution of this ODE system is generally complicated because
the matrix governing the system is usually large and sparse and the problem is
stiff [82]. For this reason, several numerical methods have been developed and
incorporated to depletion codes.
In this thesis the model adopted simulates the FPDH for a thermal fission event
of 235U. Radioactive decay and fission yield data that will be perturbed are taken
from the libraries, whereas cross-sections do no take part in this kind of calculation.
The code used to perform this calculation was ALEPH-2. ALEPH is a general
purpose burn-up code merging Monte-Carlo radiation transport and ORIGEN-2.2
depletion codes, developed at SCK CEN since 2004. The new version of the
code, ALEPH-2 was used in this thesis. It has decay heat and FPDH calculation
capabilities and resorts to the highly accurate Runge–Kutta method RADAU5
to solve ODE systems [83]. In the fission pulse decay heat calculations, only
the depletion calculations are done: 200 depletion steps were selected for this
model, from 0 to 106 s logarithmically spaced. In these calculations, the initial
nuclide composition is the independent fission yields of the considered fissionable
nuclide [84].

7.2 Results
In this section plots and results of FPDH calculations for 235U thermal fission
with uncertainty quantification are presented. To guarantee coherence in the
calculations, all the simulated values have been compared with Tobias’ compiled
data [78], as they were previously used for the test and validation of the decay
and fission yield data sub-libraries of JEFF-3.1.2 [75]. To validate the model
built, the FPDH was computed with the best estimates of the nuclear data taken
from JEFF-3.3 library and the result was also compared with the data from two
standards: American(ANS5.1) [85] and Japanese(AESJ) [86]. This comparison is
shown Figure 7.1, where the evaluated FPDH results in good agreement with the
standards.

As stated before, 235U thermal FPDH calculation with uncertainty quantification
was performed using the JEFF-3.3 library, first with the propagation of decay data
uncertainties and then propagating the fission yields uncertainties. The sensitivity
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Figure 7.1: Comparison of evaluated FPDH and data taken from the ANS5.1
and AESJ standard

analysis was also explored to study the individual contribution of each nuclide and
to quantify the most relevant isotopes.

7.2.1 Perturbation of decay data
Radioactive Decay Data present in the decay heat calculations are half lives,
branching ratios and decay energies. To propagate the uncertainties of these data,
the sampling procedure was performed with 200 samples and the convergence of
means and standard deviations of the perturbed data was checked.

The Figure 7.2 shows the uncertainty estimates in 235U decay heat due to those
in the radioactive half life, branching ratio and decay energy. Concerning the
uncertainty coming from the half lives, this component seems the most relevant
at the beginning of the cooling time considered. This is due to the fact that
259 out of 983 fission products of 235U thermal fission (about 25%) are short
lived nuclides, so they disappear almost instantaneously and their half lives are
difficult to measure [78]. For this reason, the half life of these nuclides is subjected
to higher uncertainty with respect to the one of the long lived nuclides. This
explains the overall decreasing trend of the uncertainty propagated from the half
life. Yet, some oscillations arise from large uncertainties in the half lives of some
not instantaneously-decaying nuclides. The most relevant ones are reported in
Table 7.1.
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Table 7.1: Nuclides with higher contribution in half life uncertainty

Nuclide Half life [s] Uncertainty [%]
147Xe 0.13 62
89Se 0.4 10
76Ni 0.47 83

84mAs 0.65 23
102Nb 1.3 15
162Sm 2.4 21
145La 24.8 8

130mSn 102 6
145Pm 104 6
144In 144 4
71Zn 147 4

99mNb 156 8
170Ho 166 5
69Cu 171 5
174Er 192 7
84Se 195 3

84mBr 360 4
108mRh 360 5
130mSb 378 4
129mSn 432 4
167Ho 11160 3
90mY 11484 2

111mPd 19800 2
156Sm 33840 2
127Sb 332640 3
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Figure 7.2: Uncertainty FPDH with various uncertainty contributions

The Figure 7.3 shows the uncertainty estimates in 235U fission pulse due to those
in the radioactive decay energies. This is the highest contribution in almost all
the cooling time considered. As mentioned in Section 5.4, a lot of decay energy
uncertainties are not provided for many nuclides. To quantify the impact of
the missing information in the output uncertainty, the sampling procedure was
performed with the data available in the JEFF-3.3 library and adding the average
uncertainty per decay when missing. The comparison between the resulting output
uncertainty after the two sampling procedures performed is presented in Figure 7.3.
The average uncertainty per decay among the data taken from JEFF-3.3 library
for the fission products of 235U thermal fission, is reported in Table 7.2. In the
case analyzed, 329 out of 983 fission products are stored in the library without
uncertainty in their decay energies. As expected, with the insertion of the decay
energies’ uncertainties, the FPDH uncertainty increases (more uncertainties are
propagated). The contribution of isotopes with no uncertainty on their decay
energies increases the mean FPDH uncertainty of about 6 %. The difference is
more relevant up to 1 second, in which it is almost 15 %. This is due to the fact
that a lot of nuclides without uncertainty in their decay energies are short lived
nuclides.
A sensitivity analysis was performed to understand which nuclides have an higher
contribution to the FPDH uncertainty, and so the presence of some peaks in the
distribution of Figure 7.3. A list of these isotopes with their uncertainty is reported
in Table 7.3.

The Figure 7.4 shows the uncertainty estimates in 235U decay heat due to
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Table 7.2: Average decay energy uncertainty per decay mode between the data
taken from JEFF-3.3 library for the fission products of 235U thermal fission

Decay mode Average uncertainty [%]
alpha 10
beta 5.6

gamma 5.4

Table 7.3: Nuclides with higher contribution in decay energy uncertainty

Nuclide Decay mode Decay Energy [eV] Uncertainty [%]
57Cr Beta decay 1.94927e+06 13.96
57Cr Gamma decay 4.62212e+05 16.07
59Mn Beta decay 2.05981e+06 11.37
69Cu Beta decay 8.86523e+05 10.74
115Ag Beta decay 1.07923e+06 18.15

115mCd Gamma decay 3.29355e+04 23.37
121mIn Beta decay 1.51563e+06 21.43
121mIn Gamma decay 6.43700e+04 13.03
123Sn Gamma decay 6.89212e+03 15.81
125Sn Gamma decay 3.33552e+05 10.72

129mSn Gamma decay 1.70746e+06 10.44
131Sb Beta decay 5.76152e+05 14.05

129mTe Beta decay 2.62993e+05 45.29
129mTe Gamma decay 3.76553e+04 32.56
134mI Beta decay 8.67145e+04 16.61
138Xe Beta decay 6.41877e+05 14.10
145Ce Gamma decay 6.01026e+05 13.28
150Pm Beta decay 7.67614e+05 10.05
156Sm Beta decay 2.04310e+05 13.57
156Sm Gamma decay 1.14170e+05 10.54
157Eu Beta decay 3.92770e+05 10.63
162Gd Beta decay 3.39540e+05 11.32
167Ho Beta decay 2.26888e+05 31.34
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Figure 7.3: Comparison between the propagated uncertainty from the decay
energies uncertainties available in the JEFF-3.3 library and adding the average
uncertainty per decay when missing

Figure 7.4: Comparison between the propagated uncertainty from correlated and
non-correlated branching ratios

radioactive branching ratios. This component tends to be relatively insignificant
for all the considered cooling times — i.e., of the order of 0.05% or smaller,
corresponding to less than 5% of the total uncertainty, if correlated sampling
is considered. The sampling procedure was implemented with and without the
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correlations in the branching ratio covariance matrix and the comparison is reported
in the mentioned Figure. From this Figure it is evident that, with the insertion of
correlations between the branching ratio samples, the FPDH uncertainty decreases.
For example, in the highest peak in Figure 7.4 at 105 seconds, the uncertainty on
FPDH is reduced of about 80 %. This trend of uncertainty reduction is negligible
in the first 10 seconds of the considered cooling time. However, the branching ratios
uncertainty contribution remains low with respect to the total FPDH uncertainty,
even without considering the correlations between the branching ratios, with the
exception of one peak. Indeed for the non-correlated sampling, this contribution
is 0.3 % at 105 seconds (highest peak), which means almost 30 % of the total
FPDH uncertainty at that time. The uncertainty reduction is due to the insertion
of the correlations. Indeed, the constrain 5.2 added to get the full covariance
matrix introduces negative correlations. The uncertainty propagation law
states that, for a function y = f(x1, x2), the combined standard uncertainty of the
measurement result y, designated by uc(y) and taken to represent the estimated
standard deviation of the result, is the positive square root of the estimated variance
u2

c(y) obtained from:

u2
c(y) =

NØ
i=1

( δf
δxi

)2u2
xi

+ 2
N−1Ø
i=1

NØ
j=i+1

δf

δxi

δf

δxj

u(xi, xj) (7.3)

where δf
δxi

corresponds to the sensitivity coefficient of f with respect to xi, u(xi) is
the standard uncertainty associated with the input estimate xi and u(xi, xj) is the
estimated covariance associated with xi and xj [87]. In case of branching ratios, the
parameter y is the FPDH and uc(y) is its related uncertainty, while xi corresponds
to the i-th branching ratio and u(xi, xj) is the covariance between the i-th and j-th
branching ratios. The equation 7.3 explains the uncertainty reduction: if u(xi, xj)
is negative, this term will be subtracted from the total uncertainty uc(y). This
happens in the case of correlated samples, while in the opposite case u(xi, xj) will
be equal to 0: this means that uc(y) will be larger.
The three bumps reported in Figure 7.4 are related to three main decay chains.
These physical mechanisms are preserved independently from the considered covari-
ance matrix, so they are visible in both curves. In these peaks the sensitivity of the
decay heat with respect to the branching ratio results to be larger. Moreover, to
investigate the uncertainty reduction and the presence of these bumps, a sensitivity
analysis was performed and the resulted main important nuclides are reported in
Table 7.4. For some nuclides subjected to high uncertainty reduction, a comparison
between the original uncertainty and the reduced one is reported in Figure 7.5. The
original uncertainties are the ones obtained from the non-correlated samples, i.e.
the uncertainties stored in the JEFF-3.3 library. The reduced uncertainties were
calculated from the set of correlated samples, so they are the standard deviations
of the correlated distributions. The selected nuclides are the ones for which the
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relative difference between the original uncertainty and the reduced one, with
respect to the original branching ratio uncertainty, is larger than 10%. These
nuclides decay in correspondence to the times where the peaks are present in Figure
7.4. In Figure 7.5, "IT" stands for Isomeric transition while 0 ans I correspond
respectively to the first isomeric and ground state.

Table 7.4: Nuclides with higher contribution in branching ratio uncertainty

Nuclide Decay mode Branching Ratio [-] Uncertainty [%]
129Sb Beta decay 0.16 6.62

129mTe Beta decay 0.37 45.94
129mTe Isomeric transition 0.63 26.98
90mRb Isomeric transition 0.026 15.38
129mSn Beta decay(I isomeric state) 0.31 9.67
129mSn Beta decay 0.69 4.34
129mSb Isomeric transition 0.15 13.33
133mTe Beta decay 0.825 3.63
133mTe Isomeric transition 0.75 17.14

90Kr Beta decay(I isomeric state) 0.128 4.68
130mSn Beta decay(I isomeric state) 0.16 12.5

89Br Beta decay + n emission 0.14 2.83
132mI Isomeric transition 0.86 2.32
132mI Beta decay 0.14 14.28

117mIn Isomeric transition 0.47 3.14
117mIn Beta decay 0.53 2.83
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Figure 7.5: Comparison between the original branching ratio uncertainty and the
reduced one of some nuclides

7.2.2 Perturbation of fission yields
Fission yield data are of critical importance in decay heat applications [80]. As
already said in Chapter 6, these data are stored in the libraries without covariance
matrix. In the same Chapter, the GLS update procedure was discussed to build
a fission yield covariance matrix adding a physical constrain, according to [60].
The sampling procedure to propagate the uncertainty of fission yields in the fission
pulse decay heat calculation was performed considering the diagonal covariance
matrix, with the uncertainty coming from the JEFF-3.3 library, and the updated
covariance matrix discussed in 6.2. 200 samples were adopted for this analysis
and the convergence of means and standard deviations of the perturbed data was
checked for each simulation.

The Figure 7.6 shows the uncertainty estimates in 235U decay heat due to those
in fission yields, considering the correlated and non-correlated sampling procedures.
From a visual comparison between this Figure and Figure 7.2, it is evident that
the contribution of uncertainties coming from the fission yield data is higher than
the one coming from the radioactive decay data. The uncertainty propagation
performed with the uncertainties of correlated IFYs results in a reduction of the
FPDH uncertainty with respect to the case of non-correlated IFY uncertainties
taken from JEFF-3.3. This is due to the fact that with the GLS update technique,
negative correlations are introduced into the off-diagonal terms of the IFY covariance
matrix and the variance is reduced, as discussed in Chapter 4.4. FPDH calculations
turn out to be very sensitive to nuclides with large IFYs, and this has a bearing on
the statistics of decay heat [60]. A sorted list of nuclides whose IFYs contribute
the most to thermal FPDH calculations for 235U over all times was compiled after
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a sensitivity analysis and is proposed in Table 7.5.

Nuclide FY [-] FY uncertainty [%]
87Br 0.012767 16.92
88Kr 0.020639 14.57
89Kr 0.034248 10.29
91Rb 0.021575 21.41
92Sr 0.016104 24.34
93Sr 0.02905 18.31
94Sr 0.046061 10.54
95Y 0.010776 31.55
97Zr 0.011501 28.96

104Mo 0.010521 15.86
131Sb 0.013297 18.93
132Sb 0.01179 18.49
133Sb 0.024142 20.16
132Te 0.015042 24.02
133Te 0.011536 12.88

133mTe 0.02785 12.88
135I 0.024635 21.81

137Xe 0.029632 17.99
139Cs 0.011949 29.69
140Cs 0.018194 25.11
142Ba 0.027621 17.60
148Ce 0.010936 13.52

Table 7.5: List of the nuclides with higher contribution in the uncertainty of 235U
Fission Pulse Decay Heat

From Figure 7.6, it can be also noticed that after 103 seconds the difference
between the FPDH uncertainty calculated with correlated and non correlated IFY
uncertainties increases. As already explained in Section 6.2.1, this is due to the
fact that a lot of fission products, that contribute to the decay heat at that time,
are negatively correlated and are subjected to a larger uncertainty reduction. The
identification of these nuclides was done and reported in Figure 7.7.

An example of the reduced uncertainty is given by 131Sb. For this nuclide a lot
of negative correlations are added with the performed GLS update technique. It
takes into account its beta decay scheme, which leads to the production of 131Te,
131mTe, 131I up to the stable 131Xe.
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Figure 7.6: Uncertainty of 235U FPDH evaluated from the uncertainty propagation
of FYs with diagonal and GLS covariance matrices

Figure 7.7: Comparison between the original fission yield uncertainty stored in
JEFF-3.3 and the reduced one of some nuclides of interest in FPDH uncertainty
after 103 seconds of cooling time. The reduced uncertainties come from the GLS
update technique.
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Chapter 8

Fission yield evaluations
performed by CEA

During the development of this thesis, it was also possible to have access to the
fission yields evaluations for the thermal neutron induced fission of 235U provided
by CEA, and to test their realised correlation matrices. To update the fission yields
evaluations the first point for CEA was to evaluate the mass yields after prompt
neutron emission and 12 experimental datasets were considered for 235U thermal
fission. Then, for each mass, nuclear charge distribution and isomeric ratio are
based on the JEFF-3.3 library. It was also necessary to apply a "regularization" to
these results because the data points from the 12 experimental datasets were not
always comparable with each other. For this adjustment, four options have been
explored:

• Conservative sorting 1 (C1): the 12 datasets are used by adding 2.5% uncer-
tainty to all data points, in order to make them compatible. Only the mass
153 presents a mismatch with the second conservative sorting;

• Conservative sorting 2 (C2): Same as the C1, except for the mass A=153,
where data from 2 datasets were excluded;

• Strict sorting 1 (S1): Instead of adding independent uncertainty, only some
experiments are selected. Measurements that did not pass the tests per
datasets and the tests per mass were excluded;

• Strict sorting 2 (S2): Same as S1, but different datasets were selected.

All the CEA proposed evaluations comply with standard conservation rules
(mass, charge, isomeric, cumulative relationship) and come along with covariance
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matrices (gaussian-like distribution is imposed in the generation process). FY
correlations come as a by-product of normalization (or regularization).
The covariance matrix obtained with C1 approach is reported in Figure 8.1, where
"FY index" is an index assigned to each fission product and is sorted by atomic
number, mass number and isomeric number in ascending order.

Figure 8.1: Covariance matrix obtained from the correlation matrix released by
CEA with C1 approach

8.1 Propagation through FPDH model
All these covariance matrices were used to perform the sampling procedure through
the FPDH model described in the previous chapter, exploiting the sampling method-
ology developed during this Thesis. The output uncertainty results, coming from
the propagation of the uncertainties stored in the different CEA matrices, are
compared in Figure 8.2. In this Figure the FPDH uncertainty coming from the
non-correlated sampling procedure (i.e. from a diagonal matrix built considering
only the IFY uncertainties from JEFF-3.3) is also reported in blue.

Even in this case, the correlated FY uncertainties lead to a FPDH uncertainty
reduction with respect to the non-correlated ones. This reduction is higher after 103
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Figure 8.2: Uncertainty of FPDH evaluated from the uncertainty propagation of
FYs with diagonal and CEA covariance matrices

seconds of cooling time. Also in this case, the insertion of negative correlations will
lead to an uncertainty reduction in the fission yields of some nuclides. The insertion
of different correlations gives a relevant impact after 103 seconds, where the matrix
evaluated with C1 or C2 approaches leads to the highest FPDH uncertainty in
comparison with the other CEA matrices. This is due to the fact that they consider
data with a larger standard deviation, i.e. a more sparse dataset. This reduction
is still lower with respect to the one obtained with the implemented GLS update
proposed. This is due to different constraints added between the independent
fission yields and the different measurements of the chain yields considered.The
trend between C1 and C2 is inverted after 105 seconds. This is probably caused by
the decay schemes of the nuclides with A=153, such as 153Sm that presents the
largest IFY uncertainty in C2.

8.2 Propagation through UAM Pincell and Turkey
Point models

Further analyses were done to test these covariance matrices. Two case studies
were considered in the presented work: the first one was the UAM Benchmark
Exercise I-1 "Cell Physics", described in [88]. It is a typical fuel rod from the TMI-1
PWR, 15 × 15 assembly design. The configuration is shown in Figure 8.3a. The
fuel adopted is UO2 with an initial enrichment of 4.85 w/o. Periodic boundary
conditions are assumed. The Hot Full Power (HFP) condition for fuel pin-cell
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test problem is analyzed in this work, where the average power density is equal to
33.58 W/g initial uranium. The final burnup achieved is 61.28 GWd/t, keeping
the average power density constant during the whole burn-up period of 1825 days.
The decay of the inventory is then followed for 300 years.

(a) PWR pin-cell (b) D01 assembly of TP

Figure 8.3: Geometry configurations of the analyzed models

The other model designed was the one of Turkey Point Unit 3 reactor, bench-
marked in [89]. It is a PWR in the United States designed by Westinghouse Electric
Corp with a net generating capacity of 699 MWe. The sample 15 from fuel rod
G9, irradiated in the assembly D01 is considered. The configuration of the 15 x
15 assembly, showing the location of the measured fuel rod in red, is reported in
Figure 8.3b. Exploiting the symmetry of the geometry, an eighth of the domain
was modelled. The fuel used is UO2 with an initial 235U enrichment of 2.587 w/o.
Reflective boundary conditions are set to the assembly. The specific power is
assumed to be constant for the three considered cycles and equals 32.235 W/g
initial uranium. A final sample burn up of 30.44 GWd/t is achieved for the selected
sample, which is consistent with the expected one — 30.72 GWd/t. The results
of the inventory were compared with the measured data found in SFCOMPO
database [90]. This comparison is reported in Figure8.4, where the error bar
represents the experimental error as one standard deviation.

The burnup calculation of the two models is performed with Serpent 2 [91]. The
independent fission yield uncertainties evaluated by CEA were propagated to the
neutron multiplication factor keff and the nuclide inventory of the samples. The
uncertainty results are reported for a selected set of nuclides, consisting in the ones
with higher impacts in burnup and criticality calculations [92].

Before the uncertainty propagation, the CEA evaluations were compared with
the values stored in the JEFF-3.3 and JEFF-3.1 libraries. The major important
discrepancies for spent nuclear fuel characterization are reported in Figure 8.5.
Most of the deviations are in the range of the standard deviation. The largest

79



Fission yield evaluations performed by CEA

Figure 8.4: Comparison of the model results (C) against the reference results (E).

Figure 8.5: Comparison of CFYs evaluated by CEA and stored in JEFF-3.1.1
against the values in JEFF-3.3. The uncertainties are reported as error bars

deviation was detected in 137Cs and 145Nd, about 4% larger in S2 compared with
JEFF-3.3.

8.2.1 Uncertainty evaluation on keff

200 samples were used for the uncertainty analysis, after a convergence check of the
mean and standard deviation with respect to the CEA evaluated IFY best estimates
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and uncertainties. In Figure 8.6 the results of the uncertainty propagation on the
keff parameter through the the Pincell model are showed. These are reported in
the form of discrepancies (in pcm) with respect to the uncertainty results obtained
propagating the IFY values stored in JEFF-3.1.1. Statistical error is reported in
the form of error bars. The uncertainty deviation results higher at low burnup:

Figure 8.6: Discrepancies (in pcm) on keff parameter uncertainty (also called
C/C-1) obtained propagating the CEA IFY uncertainties with respect to ones
obtained propagating the IFY uncertainties stored in JEFF-3.1.1

this is due to the fact that in this range the analyzed parameter is more sensitive to
the 235U, while for higher burnup the effects of Pu and other nuclides become more
relevant but they are not perturbed in this analysis. A more clear visualisation of
the resulted keff uncertainty is reported in Figure 8.7. The largest uncertainty
is coming from JEFF-3.3 represented in purple, due to the lack of correlations
between the fission yields. All the CEA evaluated uncertainties reduce the output
uncertainty of about 100 pcm at low burnup. No relevant differences were found
between the keff uncertainties obtained propagating the different CEA matrices.
Even in this case the decreasing trend of the curve is visible due to the more relevant
contribution of Pu at higher burnup. To highlight this aspect, the contribution
of different fissioning systems to the keff variance was accessed propagating first
only the 235U IFY uncertainty and then adding one by one the contribution of the
thermal fissions of 239Pu and 241Pu and finally the fast fission of 238U, all coming
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Figure 8.7: FY uncertainty propagation to keff

from the values stored in JEFF-3.3 library. This analysis is showed in Figure 8.8.

Figure 8.8: Contribution of different fissioning systems to the variance of keff
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8.2.2 Uncertainty evaluation on nuclide concentrations
The deviations of the uncertainties of the nuclide vector coming from the pertur-
bation of the CEA matrices with respect to the perturbation of the values from
JEFF-3.1.1, resulted from Turkey Point model at 30 GWd/t, are visible in Figure
8.9. The Nd and Cs will build up linearly with burnup, so they should deviate

Figure 8.9: Nuclide vector deviations from JEFF-3.1.1

almost like the cumulative fission yields deviate. Indeed the visible trend is the
same reported in Figure 8.5, where the cumulative fission yield deviations are
reported. The analysis of the uncertainty on nuclide vector was done for the Pincell
model up to 5 GWd/t (where the 235U contribution results more relevant) and up
to 30 GWd/t for the Turkey Point model (at the experimental measurement time).
The uncertainty results are showed in Figure 8.10.

As expected, it is evident a large reduction of the output uncertainty with respect
to the results obtained with JEFF-3.3 and overall C1 and C2 show the largest
uncertainty, in the range of 2-4 %. In some cases S1 and S2 go up, probably due to
the selection of the databases in their generation that include some mismatches for
mass A=153.

The same analysis of variance performed in the evaluation of k effective uncer-
tainty was done for this case, taking the IFY uncertainties of 235U, 239Pu, 241Pu and
238U from JEFF-3.3 for Pincell model at 5 GWd/t and 60 GWd/t. From Figure
8.11 it is possible to see that at 5 GWd/t the uncertainty is basically totally due to
the contribution of 235U IFYs, with the exception of 109Ag where capture reactions
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(a) PWR pin-cell at 5 GWd/t

(b) D01 assembly of TP at 30 GWd/t

Figure 8.10: Uncertainty on nuclide vector

are involved and the direct production from 235U is very low. At 60 GWd/t the
variance contribution of 235U is still important but there is a relevant contribution
coming from 239Pu and 241Pu.
The nuclear community expressed the need for full fission yield covariance matrices
in core and fuel cycle analysis, to take into account complete uncertainty data.
The tests done until now with the CEA covariance matrices highlight the signif-
icant reduction of the FY uncertainty contribution to keff and nuclide vector
uncertainty [93]. Several efforts are being spent to generate reliable FY covariances
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Fission yield evaluations performed by CEA

(a) Pin-cell at 5 GWd/t

(b) Pin-cell at 60 GWd/t

Figure 8.11: Fraction of variance due to the different fissioning systems

by CEA hoping to include them in the next version of the JEFF library. More-
over, the CEA evaluations of some important nuclides for the spent nuclear fuel
characterization, used to carried out this work, are now available in SANDY in
https://github.com/luca-fiorito-11/sandy/tree/develop/notebooks.
The results of this analysis were presented during the JEFF Nuclear Data Week of
November 2022, reported in [94].
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Chapter 9

Conclusions

This thesis presents a methodology for propagating radioactive decay data and
fission yields in calculations that involve ENDF-6 files as inputs, in conjunction
with a review of the state-of-the-art of nuclear data and their uncertainties. In
particular, decay data more relevant in nuclear spent fuel characterization were
analyzed. The revision of these data is centered on the JEFF-3.3 and ENDFB-
VIII.0 nuclear data libraries. It is found that for many isotopes, uncertainties
on their decay energies are lacking and this lack has an impact on decay heat
calculations related to fission products. Also, the uncertainties on branching ratios
are not always consistent with a proper update of the uncertainties using the
normalisation constraint to one. Indeed, for the probability nature of the branching
ratios, the sum of all the branching ratios for each nuclide has to be equal to one.
Finally, a comparison between two methodologies for the uncertainty propagation
was discussed (Perturbation Theory and Monte Carlo sampling) and the sensitivity
and uncertainty quantification were presented. These knowledge were the basis of
the added contributions in the development of the SANDY code.
The sampling procedure adopted in SANDY is based on Monte Carlo sampling and
its implementation is completely described: from the processing of nuclear data
to statistical analysis. Improvements have been made to the methodology, such
as the possibility to chose between different distribution for the input parameters.
The assumption of the Gaussian distribution for the input parameters is analyzed
and the truncation of the negative samples, which can result nonphysical for some
nuclear data, is discussed.
Inconsistencies between independent and cumulative fission yield uncertainties and
the lack of covariance for both gave rise to another improvement in the SANDY
code. Indeed, it was also inserted the implementation of fission yield covariance
data generation capability based on Bayesian/GLS updating scheme according
with the algorithm described in [60].
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The perturbation methodologies for decay and fission yield data were tested prop-
agating the uncertainties of these data thought the model of fission pulse decay
heat. For this analysis the data of 235U thermal fission were taken from JEFF-3.3
library. ALEPH code was used for the depletion calculation. In this frame several
uncertainty quantifications were computed and analyzed:

• All the radioactive decay data were perturbed;

• Only the decay constants of the 235U thermal fission products were perturbed;

• Comparison of the perturbation of only the branching ratios with and without
the insertion of correlation between them;

• Comparison between the propagated uncertainty from the decay energies uncer-
tainties available in the JEFF-3.3 library and adding the average uncertainty
per decay when missing;

• Only the fission yields were perturbed, considering the diagonal matrix, i.e.,
without the insertion of correlations;

• The fission yields were perturbed with the insertion of correlation based on
the implemented GLS update technique;

• The fission yields were propagated using the available covariance matrices
produced by CEA.

The results of all these calculations were commented and validated comparing
the FPDH uncertainty with the results found in literature. After the uncertainty
quantification, also the sensitivity analysis was performed where the nuclides with
the higher contributions in the FPDH uncertainty were identified and reported
in Tables in Chapter 7. The decay uncertainties result in negligible impact in
all the response functions, while the fission yield uncertainties give a significant
contribution.
The sampling methodology was further improved to add the possibility to sample
from the CEA covariance matrices. The analyses done during the their testing
brought to the consideration of the influence of different fissioning systems, pre-
dicting the possible future interest for 239Pu thermal FY evaluation and covariance
data. All the samples used for this work were released to the NEA community
during the JEFF week of November 2022.
In conclusion, the addition of correlations reduces the uncertainties on the response
function, therefore the uncertainties stored in the libraries seem overestimated. This
aspect highlights the need of full covariance matrices for more accurate calculations.

There are several points where further investigations can be carried out. Re-
garding state-of-the-art of nuclear data uncertainties, the performance of major
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evaluated nuclear data libraries can be compared. Considering the sampling pro-
cedure, the methodology adopted in SANDY can be compared with other tools
used for the nuclear data uncertainty propagation and based on the Perturbation
Theory. Moreover, a detailed analysis of the bias introduced by the choice of the
sampling distribution of the input parameters can be done, considering the added
options in the SANDY of the lognormal and uniform distributions. Furthermore,
other distributions can be analyzed such as the symmetrical beta distribution.
In addition to the possibility to obtain perturbed radioactive decay and fission
yields data with the added methodologies, several sets of 200 samples were produced
for each of the mentioned calculations to perform these analyses. The perturbed
ENDF-6 files are now available at the SCK-CEN center and can be used for
further analyses of different models. This can help to perform different uncertainty
quantifications. Providing realistic uncertainties can have a major impact on
important scientific research program directions and technological applications.
Indeed, if a quantity is thought to be known to a high-degree of accuracy, the need
for further research may be hampered. Conversely, if the uncertainty is believed
to be large, significant efforts may be spent to improve our knowledge of it. In
nuclear field and in particular in spent nuclear fuel characterization, this can have
a great impact in economical and security aspects, to minimize risks, reduce safety
and security margins, and optimize the production of electricity while minimizing
the production of nuclear waste, or possibly optimizing its destruction.
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Appendix A

Impact of PDFs when
propagating fission yield
uncertainties in burnup
calculations

In this Section a preliminary calculation of the bias introduced by the choice of
the nuclear data distributions as input parameters for uncertainty quantification in
burnup calculations is assessed.
To do so, an uncertainty analysis is carried out propagating the thermal neutron-
induced 235U independent fission yields from ENDF/B-VII.1, suitable candidates
because of their large evaluated uncertainties. Their values were sampled according
to normal, lognormal and uniform distributions, exploiting to the sampling method-
ologies explained in Chapter 4.3.2. The uncertainties are propagated through the
UAM Pincell model to the nuclide compositions. The model adopted is described
in Chapter 8 and the nuclides selected in this analysis are the ones with higher
impacts in burnup and criticality calculations [92].The results are reported in Figure
A.1.
No significant differences were found in the output uncertainties evaluated changing
the input distributions to sample from. In general an higher uncertainty is expected
considering the lognormal distribution. This trend is due to the distribution cut
performed in the sampling procedure for normal and uniform distributions to avoid
negative samples, which decreases the standard deviation. However this effect in
this case is overall negligible, since it accounts for less than 2% for each nuclide
concentration.
A more detailed analysis of the output distribution was done for 148Nd, which
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Impact of PDFs when propagating fission yield uncertainties in burnup calculations

Figure A.1: Nuclide vector uncertainty evaluated with different input distributions

results one of the nuclide with the highest uncertainty in its concentration. It is
widely used as burnup indicator. It originates from a fast decay chain involving
148La as relevant contributor, given its large 235U thermal independent fission yield.
The uncertainty results of the discharge concentration of 148Nd propagated from
JEFF-3.3 data through the PWR pin-cell model are reported in Figure A.2a, as
computed with the three input parameter distributions. 200 samples were taken for
each distribution, resulting in the histograms in Figure A.2b for the 235U thermal
independent fission yield of 148La.
The distribution difference looks to be much attenuated by the uncertainty propa-
gation procedure, being the concentration distributions more resembling the normal
one. This seems to predict a marginal impact of sampling PDF. The standard
deviations of the considered concentration distributions are consistent with each
other, proving the handling procedure of the negative samples to be reliable.
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(a) Distribution of final 148Nd concentration

(b) Distribution of 148La IFY perturbation coefficients

Figure A.2: Input and output sample distributions
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Appendix B

Generalized Least Squares
formulas

Consider a set of parameters θ, observables y for which a relation is known y=f(θ)
and a prior knowledge of θ, namely a collection of values θprior, and its associated
covariance matrix Vprior. Suppose that it is possible to have a collection of new
measured data set η, with covariance matrix V, of the observables y. With the
Generalized Least Squares method it is possible to state that the best estimate
θpost, which merges the new and prior information, is obtained by satisfying the
condition [56]

θpost = min|θχ2 = min|θ
C
θ − θprior

η − yprior

DT C
Vprior H
HT V

D C
θ − θprior

η − yprior

D
(B.1)

To find the value of θpost which minimizes the equation B.1, it is possible to linearize
the relation y=f(θ):

y − yprior = S(θ − θprior) (B.2)

with S that denotes the design matrix of sensitivity coefficients that approximates
f [54]. yprior represents the values of the observables that are calculated using prior
parameters θprior —i.e. yprior = Sθprior. Matrix H in B.1 represents the correlations
that exist between the prior and new information. For the derivation of the GLS
formulas, it is possible to assume that no such correlation is present and so H = 0.
For convenience, a substitution of variables can be done:

t = η − yprior; p = θ − θprior (B.3)

Exploiting these substitutions, the equation B.1 can be written as follow

χ2 = pTV −1
priorp+ (t− Sp)TV −1(t− Sp) (B.4)
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Generalized Least Squares formulas

χ(p) results a function of p or θ, because the other quantities are constants. The
solution of equation B.1 can be found setting dχ2(p) = 0 and assuming that the
considered analysis is confined to a region where only a minimum exists. The
requirement that χ2 be a minimum, that is dχ2(p) = 0, leads to the expression

pTV −1
prior − zTV −1S = 0 (B.5)

with z = t− Sp.
Applying the rules of matrix algebra, p can be explicitly defined

p = (V −1
prior + STV −1S)−1STV −1t = VpriorS

T (SVpriorS
T + V )−1t (B.6)

where (V −1
prior +STV −1S) and (SVpriorS

T +V ) are square, non-singular matrix, thus
invertible. Then, by reapplying the change of variables, the GLS update equation
is obtained.

θpost = θprior + VpriorS
T (SVpriorS

T + V )−1(η − yprior) (B.7)

The covariance matrix for θpost can be derived from the law of error propagation as

Vpost = Vprior − VpriorS
T (SVpriorS

T + V )−1SVprior (B.8)
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Appendix C

Q matrix formula

The cumulative fission yields can be calculated using the independent yields and
the Q-matrix equation, which involves the use of radioactive branching ratios [70].
In matrix form this sentence can be written as follow:

CFY = Q · IFY (C.1)

Each term of the above equation can be expressed as:

CFYi = IFYi +
Ø
j /=i

bj→iCFYj (C.2)

where bj→i is the branching ratio of isotope j which decays to isotope i.
To prove the expression C.2, it is possible to consider the fission product A, which
is an end of chain, and its precursor B, which decays with decay constant λB and
branching ratio br(B → A) = 1 to the nuclide A. To follow the evolution in time
of the concentration of this two isotopes, the following system of equations can be
written: 

dA(t)
dt

= λB B(t)
dB(t)

dt
= −λB B(t)

(C.3)

At time t=0 the concentration of the fission product A can be expressed with
its independent fission fission yield A(t = 0) = A0 = IFY (A). In opposite, after
a long time (infinite time), it can be denoted with its cumulative fission yield
A(t = ∞) = A∞ = CFY (A).
The system C.3 can be solved by substitution and integration:

Ú t∞

t0

dA(t)
dt

=
Ú t∞

t0
λBB(t) =

Ú t∞

t0
−dB(t)

dt
(C.4)
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Simplifying 1
dt

in both terms of C.4 and changing the extremes of integration, the
equation C.4 becomes: Ú A∞

A0
dA(t) =

Ú B∞

B0
−dB(t) (C.5)

The integration of equation C.5 leads to the expression for the evaluation of A∞
—i.e. CFY(A):

A∞ = A0 +
Ú B∞

B0
−dB (C.6)

If the branching ratio of the nuclide B (br(B → A)) is not equal to 1, the C.6
becomes:

A∞ = A0 +
Ú B∞

B0
− br(B → A)dB (C.7)

Considering N isotopes that decay producing the isotope A with its own branching
ratio, the equation C.7 can be written as follow:

A∞ = A0 +
Ø

i

Ú I∞i

I0i

− br(Ii → A)dIi (C.8)

Finally, the solution of the integral
s I∞i

I0i
− dIi is:

Ú I∞i

I0i

− dIi = I0 +
Ø

j

Ú J∞j

J0j

− br(Jj → I) dJj (C.9)

which corresponds, for the equation C.7, to the cumulative fission yield of the
nuclide I —i.e. CFY(I). Solving the integrals for all the isotopes, the sum of the
integrals in equation C.8 results in the sum of the cumulative fission yields of all
the precursors of A, multiplied for its own branching ratio. This means that the
cumulative fission yield of the i-th isotope can be expressed with the equation C.2.
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Appendix D

Sandwich rule

In an indirect measurement, the true but unknown value of the measured quantity
or response, denoted by R, is related to the true but unknown values of arguments,
denoted as (α1, ..., αk), by a known relationship (i.e., function) f [95]. This relation-
ship is called the measurement equation, and can be generally represented in the
form:

R = f(α1, ..., αk) (D.1)

which can be expressed in terms of Taylor expansion as follow:

R(α1, ..., αk) ≡
R(α0

1 + δα1, ..., α
0
k + δαk) =

R(α0) +
kØ

i1=1
( δR
δαi1

)α0δαi1+

1
2

kØ
i1,i2=1

( δ2R

δαi1δαi2

)α0δαi1δαi2+

1
3!

kØ
i1,i2,i3=1

( δ2R

δαi1δαi2δαi3

)α0δαi1δαi2δαi3 + ...+

1
n!

kØ
i1,i2,...,in=1

( δnR

δαi1δαi2 ...δαin

)α0δαi1 ...δαin + ...

(D.2)

Using the Taylor-series expansion, the various moments of the random variable
R(α1, ..., αk) (like its mean, variance, etc.) can be calculated considering that the
system parameters (α1, ..., αk) are random variables, distributed according to a
joint probability density function p(α1, ..., αk) [95]. For large complex systems, with
many parameters, it is often impractical to consider the nonlinear terms in the
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Taylor expansion of the response. In such cases, response R(α1, ..., αk) is taken to
be a linear function of the parameters (α1, ..., αk), that is,

R(α1, ..., αk) = R(α0) +
kØ

i=1
( δR
δαi

)α0δαi = R0 +
kØ

i=1
Siδαi (D.3)

where R0 = R(α0), while Si = ( δR
δαi

)α0 denotes the sensitivity of the response
R(α1, ..., αk) to the parameter αi.
The mean value of R(α1, ..., αk) is obtained from D.3:

E(R) =
Ú

Sα

(
kØ

i=1
Siδαi)p(α1, ..., αk)dα1dα2...dαk +R0 =

=
kØ

i=1
Si

Ú
Sα

(αi − α0
i )p(α1, ..., αk)dα1dα2...dαk +R0 = R0 (D.4)

The various moments of R(α1, ..., αk) can be calculated by using D.3 and D.4.
This means that the l-th central moment µl(R) of R(α1, ..., αk) is obtained as the
following k-fold integral over the domain Sα of the parameters α:

µ(R) = E((R − E(R))l) =
Ú

Sα

(
kØ

i=1
Siδαi)lp(α1, ..., αk)dα1dα2...dαk (D.5)

The variance of R(α1, ..., αk) is calculated by setting l = 2 in D.5 and by using the
result obtained in D.4, as follows:

µ2(R) = var(R) = E((R −R0)2) =

=
kØ

i=1
S2

i var(αi) + 2
Ø

i /=j=1
SiSjcov(αi, αj) = SVαS

T (D.6)

where the superscript “T” denotes the matrix transposition. The column vector
S = (S1, ..., Sk), with component Si = ( δR

δαi
)α0 , denotes the sensitivity vector, and

Vα denotes the covariance matrix for the parameters (α1, ..., αk). Each term in this
matrix is defined as

(Vα)ij =
cov(αi, αj) = ρijσiσj, i /= j

var(αi) = σ2
i

(D.7)

where ρij is the correlation coefficient.
The result of the relation D.6 is colloquially known as the sandwich rule [74].
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