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ABSTRACT

Probabilistic graphical models (PGMs) represent a branch of machine learning that supplies

an intuitive framework for describing the interactions within systems with simple abstraction.

Reasoning using PGMs allows answering inference queries with uncertainty backing the

support of probability theory. Two classical types of PGMs are the well-known Bayesian

Networks (Directed Acyclic Graphs) and Markov Random Fields (Undirected Graphs).

A helpful extension of Bayesian Networks for decision-making is known as Influence

diagrams (IDs). IDs are graphical decision models used for reasoning under uncertainty:

solving an ID means determining the optimal strategy for the decision-maker and the value

of the decision when that optimal strategy is applied.

PGMs can be used to construct knowledge-based systems as guidance for domain experts

and analysts, in fields as diverse as medicine, language processing, vision. IDs can be keys

for decision support. When dealing with complex systems, the outcome of model inference

may not be intuitive. The ability to critically interpret the results is crucial, so developing

adequate methods to interpret and explain is currently an ambitious and challenging task.

Much research e↵ort has been devoted to develop methods and algorithms for PGMs, and

a vast literature exists. At first, this work attempts a brief exposition on the state-of-the-art

techniques used for inference in BNs and for solving IDs, along with their criticalities.

Besides exploring the main methods, the purpose of this work is the implementation of

a package in Python, providing some of the algorithms studied and described, with personal

attempts to improvement. Some insights related to interdisciplinary work follow, together

with application examples of the developed software. Finally, strategies for explaining and

visualize results are sought using data mining approaches.
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CHAPTER 1

MOTIVATION: WHY PROBABILISTIC GRAPHICAL

MODELS

Probabilistic modeling it is a fascinating scientific field bridging two very di↵erent branches of

mathematics: probability and graph theory. It also has intriguing connections to philosophy,

particularly to the issue of causality.

At the same time, probabilistic modeling is widely used throughout machine learning and

decision making. In this introductory chapter, the main concepts that define the structure

and properties of Bayesian Networks are formally presented. These concepts are essential to

understand techniques for inference and their extensions to optimization problems.

The subsequent discussion on inference-related procedures will be divided into two main

categories: exact methods and approximate methods

1
.

1.1 Review of Bayesian Networks (BNs)

A Bayesian network is a probabilistic graphical model that measures the conditional depen-

dence structure of a set of random variables based on the Bayes theorem:

P (A | B) =

P (A)P (B | A)
P (B)

where A, B are random variables and P represent their densities. J. Pearl [1998] stated

that Bayesian Networks are graphical models that contain information about causal probabil-

ity relationships between variables and are often used to aid in decision making. The causal

probability relationships in a Bayesian network can be suggested by experts or updated using

Bayes theorem when new data is collected. The inter-variable dependence structure is repre-

1. Interestingly, algorithms described in this work are heavily based on work done in the statistical physics
community in the mid-20th century.
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sented by nodes (which depict the variables) and directed arcs (which depict the conditional

relationships) in the form of a directed acyclic graph (DAG

2
).

Figure 1.1: Simple Bayesian Network.

The notion of conditional independence is crucial. For example, node X is conditional

independent from node Y given node Z in Figure 1.1 (not the same to say that they are

independent in general). This is the same to state that:

P (X | Y, Z) = P (X | Z)

In order for a Bayesian Network to model a probability distribution, the following is true

by construction:

Each variable is conditionally independent of all its non-descendants in the

graph given the value of all its parents. This implies that, in general:

P (X1 . . . Xn

) =

nY

i=1

P (X
i

| Par(X
i

)).

This work will mainly deal with DAG; however, it is appropriate to mention that a

fundamental theorem concerning the conditions for which a probability distribution can

be mapped on a graphical model has been developed by Hammersley and Cli↵ord [1971]

2. It is a directed graph with no loop or self connection. A directed graph is a DAG if and only if it can
be topologically ordered.
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for undirect graphs (Markov random fields or MRF), and that in general there are useful

conversion techniques from BNs to Markov models and vice versa.

In particular, to convert a BN it is ”moralized”: the moralized counterpart of a DAG is

formed by adding edges between all pairs of non-adjacent nodes that have a common child,

and then making all edges in the graph undirected. This process is a key step for a particular

inference method, the junction tree algorithm.

1.2 Hybrid Bayesian Networks

Bayesian Networks that handle both discrete and continuous nodes are said to be hybrid.

There are two approaches to deal with continuous variables.

The first approach is to use parametric distributions within nodes that pertain to a

continuous variable. This has two disadvantages (Halford [2020]). First, it is complex because

there are di↵erent cases to handle: a discrete variable conditioned by a continuous one, a

continuous variable conditioned by a discrete one, or combinations of the former with the

latter. Secondly, such an approach requires having to pick a parametric distribution for

each variable. There are methods to automate this choice for you, popular examples in the

literature are Gaussian Networks (Lauritzen and Jensen [1999]) and Truncated Exponential

Networks (Seraf́ın Moral [2001]).

The second approach is to discretize continuous variables. Although this might seem

naive, it is generally a good enough process and makes things simpler implementation-wise.

There are many ways to go about discretizing a continuous attribute. For instance, you

can apply a quantile-based discretization function. You could also round each number to its

closest integer; in some cases, you might be able to use a manual rule. It is noticeable that

also discretization techniques have drawbacks: if we need to store conditional probability

tables with many predecessors and large domains, they have a huge usage of memory.

There are actually several di↵erent and much more sophisticated versions to the dis-

3



cretization approach. The method proposed by Kozlov and Koller [1997] performs the dis-

cretization by minimizing an upper bound of the Kullback-Leibler divergence between the

true and the discretized density. The minimization is done dynamically on the join tree. This

is, however, a computationally costly method that even requires a specific data structure. A

more efficient approach is proposed by Neil and Marquez [2007]. Here, it is the individual

posterior density that is discretized instead of dynamically discretizing the densities in the

join tree. This approach to dynamic discretization can therefore be implemented on top of

any discrete inference scheme.

To summarize, is preferable to give the user the flexibility to discretize the variables by

herself. Most of the time, the best procedure depends on the problem at hand and cannot

be automated adequately.

4



CHAPTER 2

EXACT INFERENCE IN BAYESIAN NETWORKS

Given a probabilistic model, typically we want to querying the marginal or conditional

probabilities of certain events of interest. Concretely, there are two typical types of questions:

• Marginal inference: looks for the probability of a given variable in our model after we

sum everything else out. For example:

p(x1) =
X

x2

X

x3

· · ·
X

xn

p(x1, x2, . . . , xn).

• Maximum a posteriori (MAP) inference asks for the most likely assignment of variables.

We may try to determine the most likely assignment given some evidence

3

arg max

x1,...,xn−1
p(x1, . . . , xn−1, xn = 1).

When queries are involving evidence, the assignment are fixed for a subset of the variables.

Inference is a challenging task: for many probabilities of interest, it is NP-hard to answer

these questions. Whether inference is tractable will depend on the structure of the graph

that describes that probability: if a problem is intractable, is still possible to obtain useful

answers via approximations (V. Kuleshov [2019]).

2.1 VE: The variable elimination method

2.1.1 Preliminaries: Brute force approach comparison

This chapter covers the first exact inference algorithm, variable elimination (Bertele and

Brioschi [1972]). This technique is a special case of dynamic programming, a general

3. For evidence, we mean the information about the realization of certain variables.
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approach to algorithmic design in which a larger problem is break into a sequence of smaller

ones.

A chain example:

Consider the problem of marginal inference and suppose a chain BN, so a probability in the

form

4

p(x1, . . . , xn) = p(x1)
nY

i=2

p(x
i

| x
i−1).

Now compute the marginal probability p(x
n

). In a brute force approach, we sum the

probability over all kn−1 assignments to x1, . . . , xn−1:

p(x
n

) =

X

x1

· · ·
X

xn−1

p(x1, . . . , xn).

But one can do better by leveraging the factorization of our probability distribution,

rewriting the sum in a way that pushes in certain variables into the product.

p(x
n

) =

X

x1

· · ·
X

xn−1

p(x1)
nY

i=2

p(x
i

| x
i−1)

=

X

xn−1

p(x
n

| x
n−1)

X

xn−2

p(x
n−1 | x

n−2) · · ·
X

x1

p(x2 | x1)p(x1)

Now one can sum the inner terms first, starting from x1 and ending with x
n−1. Con-

cretely, one computes an intermediary factor ⌧(x2) =
P

x1
p(x2 | x1)p(x1) by summing out

x1. This operation takes O(k2) time since one must sum over x1 for each assignment to x2.

The resulting factor ⌧(x2) can be interpreted as a table of k values, with one entry for each

4. We assume that xi are discrete variables taking k possible values each.
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assignment to x2, as factor p(x1) can be also represented as a table. Then, is possible to

rewrite the marginal probability using ⌧ as

p(x
n

) =

X

xn−1

p(x
n

| x
n−1)

X

xn−2

p(x
n−1 | x

n−2) · · ·
X

x2

p(x3 | x2)⌧(x2).

This has the same form as the initial expression, except that we are summing over one

fewer variable. At each time, we are eliminating a variable, so this gives the algorithm its

name. Another factor ⌧(x3) =

P
x2

p(x3 | x2)⌧(x2) has to be computed, and repeat the

process until we are only left with x
n

. Since every step takes O(k2) time, and there are O(n)

steps, the inference process now takes O(nk2) time, that is definitively better than brute

force O(kn) solution (S. Ermon [2019]).

2.1.2 Eliminate Variables

Now assume that there is a graphical model as a product of factors.

p(x1, . . . , xn) =
Y

c2C
φ
c

(x
c

).

In a BN, the factors correspond to conditional probability distributions (CPDs).

The VE algorithm repeatedly performs two factor operations: product and marginal-

ization.

The factor product operation simply defines the product φ3 := φ1 ⇥ φ2 as

φ3(xc) = φ1(x
(1)
c

)⇥ φ2(x
(2)
c

).

The scope of φ3 is defined as the union of the variables in the scopes of φ1,φ2; also x
(i)
c

denotes an assignment to the variables in the scope of φ
i

defined by the restriction of x
c

to

that scope. For example, we define φ3(a, b, c) := φ1(a, b)⇥ φ2(b, c).

7



The marginalization operation eliminates a set of variables from a factor. Given factor

φ(X, Y ) over two sets of variables X, Y , marginalizing Y produces a new factor

⌧(x) =
X

y

φ(x, y),

where the sum is over all joint assignments to the set of variables Y .

⌧ refers to the marginalized factor. This factor does not necessarily correspond to a

probability distribution, even if φ was a CPD.

The algorithm:

Essentially, we loop over the variables in a particular order O and eliminate them in that

ordering.

Formally, for each variable X
i

(ordered according to O),

1. Multiply all factors Φ

i

containing X
i

.

2. Marginalize out X
i

to obtain a new factor ⌧

3. Replace the factors Φ

i

with ⌧

2.1.3 Dealing with evidence

A common query type is in the form P (X|E = e) where X and E are disjoint subsets of a

probability distribution, and E is observed taking value e. We can compute this probability

by computing first P (Y,E = e) and then P (E = e) with VE, since:

P (X | E = e) =
P (X,E = e)

P (E = e)

8



2.1.4 Time complexity of Variable Elimination

The running time of VE depends heavily on the graph’s structure.

Moreover, some orderings are more efficient than others. The running time of VE is

O(nkM+1
), where M is the maximum size of any factor ⌧ formed during the elimination

process and n is the number of variables (V. Kuleshov [2019]).

Note that while n and k are parameters of the model, the value M is not: it depends

on the variable elimination ordering. Thus, di↵erent orderings may dramatically alter the

running time of the variable elimination algorithm.

Choosing VE order:

The VE algorithm requires an ordering over the variables according to which variables will

be eliminated. In general, it is NP-hard to find the best ordering.

In practice, we rely on heuristics. The most common are:

• Min-degree: Next node with fewest neighbors.

• Weighted-min-degree: Next variable minimizing the product of the cardinalities of its

neighbors.

• Min-fill Choose vertices to minimize the size of the factor that will be added to the

graph.

2.2 Message passing algorithms

VE algorithm can answer marginal queries of the form P (Y | E = e) for both directed and

undirected networks.

This algorithm has a critical shortcoming: if we want to ask the model for another query,

e.g., P (Y2 | E2 = e2), we need to restart the algorithm from scratch. This is very wasteful

9



and computationally burdensome.

It turns out that this problem is also easily avoidable. When computing marginals, VE

produces many intermediate factors ⌧ as a side-product of the main computation; these

factors turn out to be the same as the ones that we need to answer other marginal queries.

By caching them after the first run of VE, we can quickly answer new marginal queries at

essentially no additional cost, in O(1) time. The idea was initially proposed by Pearl [1982],

who formulated it as an exact inference algorithm on trees.

There are two variants: belief propagation (BP), and the complete Junction Tree (JT)

method. BP applies to tree-structured graphs, while JT method applies to general networks.

2.2.1 Belief propagation

Consider to apply the VE algorithm on a tree to compute a marginal p(x
i

). We can easily

find an optimal ordering for this problem by rooting the tree at x
i

and iterating through the

nodes starting from the leaves and goes up the tree such that a node is visited after all of

its children.

At each step, we will eliminate x
j

; this will involve computing the factor ⌧
k

(x
k

) =

P
xj

φ(x
k

, x
j

)⌧
j

(x
j

), where x
k

is the parent of x
j

in the tree. At a later step, x
k

will be

eliminated, and ⌧
k

(x
k

) will be passed up the tree to the parent x
l

of x
k

in order to be

multiplied by the factor φ(x
l

, x
k

) before being marginalized out. The factor ⌧
j

(x
j

) can be

thought of as a message that x
j

sends to x
k

that summarizes all of the information from

the subtree rooted at x
j

. So it is also called message-passing.

At the end of VE, x
i

receives messages from all of its immediate children, marginalizes

them out, and obtains the final marginal.

Now suppose that after computing p(x
i

), we want to compute p(x
k

) as well. We would

again run VE with x
k

as the root, waiting until x
k

receives all messages from its children. It

is noticeable the messages x
k

received from x
j

now will be the same as those received when

10



x
i

was the root, and this is true since there is only a single path connecting two nodes in

the tree. Thus, if we store the intermediary messages of the VE algorithm, we can compute

other marginals as well.

The variant of the algorithm used for marginal inference is called sum-product message

passing.

Sum-product:

The sum-product message passing algorithm is defined as follows: while there is a node x
i

ready to transmit to x
j

, send the message

m
i!j

(x
j

) =

X

xi

φ(x
i

)φ(x
i

, x
j

)

Y

`2N(i)\j
m

`!i

(x
i

).

The notation N(i)\j refers to the set of nodes that are neighbors of i, excluding j. Again,

observe that this message is precisely the factor ⌧ that x
i

would transmit to x
j

during a

round of variable elimination with the goal of computing p(x
j

).

Because of this observation, after computing all messages, is possible to answer any

marginal query over x
i

using the equation:

p(x
i

) / φ(x
i

)

Y

`2N(i)

m
`!i

(x
i

).

2.2.2 Junction tree algorithm

In general, the graph could not be a tree, especially when we are dealing with the moral

graph of a DAG. However, we may try to transform the graph to its most tree-like form and

then run message passing on this graph.

The junction tree algorithm partitions the graph into clusters of variables; internally, the

variables within a cluster could be coupled; however, interactions among clusters will have

11



a tree structure, so clusters neighbors will only directly influence a cluster in the tree. This

leads to tractable global solutions if the local (cluster-level) problems can be solved exactly.

Another chain example:

Suppose that we are performing marginal inference on an MRF of the form

p(x1, . . . , xn) =
1

Z

Y

c2C
φ
c

(x
c

),

It is crucial assume that the cliques

5 c have some path structure, meaning that we can

find an ordering x
(1)
c

, . . . , x
(n)
c

with the property that if x
i

2 x
(j)
c

and x
i

2 x
(k)
c

for some

variable x
i

then x
i

2 x
(`)
c

for all x
(`)
c

on the path between x
(j)
c

and x
(k)
c

. This assumption

as is called running intersection property (RIP).

We may again use a form of variable elimination to “push in” certain variables deeper

into the product of cluster potentials.

This marginalization can also be interpreted as computing a message over the variables

it shares with the neighbor: the RIP is important since it enables to do so.

Junction trees:

The core idea of the junction tree algorithm is to turn a graph into a tree of clusters that are

amenable to the variable elimination algorithm like the above. Ultimately, we implement

a form of message passing on the junction tree at a high level; this will be equivalent to

variable elimination for the same reasons that BP was equivalent to VE.

Suppose we have an undirected graphical model G (if the model is directed, we consider

its moralized graph). A junction tree T = (C,E
T

) over G = (X
c

, E
G

) is a tree whose nodes

5. A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique
are adjacent.
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c 2 C are associated with subsets x
c

✓ X
c

of the graph vertices (i.e., sets of variables); the

junction tree must satisfy the following properties:

• Family preservation: For each factor φ, there is a cluster c such that Scope[φ] ✓ x
c

.

• Running intersection: For every pair of clusters c(i), c(j), every cluster on the path

between c(i), c(j) contains x
(i)
c

\ x
(j)
c

.

Even if we may always find a trivial junction tree with one node containing all the

variables in the original graph, such trees are useless because they will not result in efficient

marginalization algorithms (S. Ermon [2019]).

There are di↵erent ways for constructing good junction trees. On can do it by hand, when

models will have a very regular structure, for which there will be an obvious solution. For

instance in a grid clusters are associated with pairs of adjacent rows or columns. However,

popular methods were developed by Shenoy and Shafer [1988] and bettered for the Hugin

software by F. V. Jensen and Olesen [1990].

Optimal trees make the clusters as small and modular as possible; unfortunately, it is

again NP-hard to find the optimal tree. For this very reason, I will return to this topic at

the end of the Chapter on approximate methods.
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CHAPTER 3

APPROXIMATE INFERENCE

When probabilistic models are quite complex, simple algorithms like variable elimination

may be too slow. Many classes of models may not admit exact polynomial-time solutions

at all, and for this reason, much research e↵ort in machine learning is spent on developing

algorithms that yield approximate solutions to the inference problem (V. Kuleshov [2019]).

There exist two fundamental families of approximate algorithms: sampling methods,

which produce answers by repeatedly generating random numbers from distributions of in-

terest, and variational methods

6
, which formulate inference as an optimization problem.

3.1 Sampling methods

3.1.1 Preliminaries: Markov Chain Monte Carlo (MCMC)

Monte Carlo estimation:

Sampling from a distribution lets us perform many useful tasks, including marginal and

MAP inference, as well as computing integrals of the form

E
x⇠P [f(x)] =

Z

x

f(x)P (x)dx.

In many cases, this integral will be impossible to perform analytically; instead, we will

approximate it using a large number of samples from P . Algorithms that construct solutions

based on many samples (i.e. based on the law of large numbers) from a given distribution

are known as Monte Carlo

7
(MC) methods.

6. Take their name from the calculus of variations, which deals with optimizing functions that take other
functions as arguments.

7. The name refers to the Monte Carlo Casino in Monaco.
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MC methods has a long history: as explained by Metropolis [1987], Enrico Fermi first

experimented them while studying neutron di↵usion in the 1930s, but he did not publish the

work. Then, they were central to the simulations required for the Manhattan Project.

Monte Carlo integration is an important instantiation of the general MC principle. This

technique approximates a target expectation with

E
x⇠P [f(x)] ⇡ I

T

=

1

T

TX

t=1

f(xt),

where x1, . . . , xT are samples drawn according to p. It can be shown that the MC

estimate I
T

is an unbiased estimator for E
x⇠p[f(x)]. Moreover I

T

! E
x⇠p[f(x)] as T !1;

in particular, the variance of I
T

can be made arbitrarily small with a large enough number

T of samples.

Review of stationary distribution for Markov Chains:

Given a discrete-time Markov Chain, on state-space S, and with transition matrix

T
ij

= P (Snew = i | Sprev = j)

we know that if P0 is the initial vector probabilities, after t steps we have P
t

= T tP0.

The limit ⇡ = lim

t!1 p
t

, when it exist, is called a stationary distribution of the Markov

chain. We will construct below Markov chain with a stationary distribution ⇡ that exists

and is the same for all P0; we will refer to such ⇡ as the stationary distribution of the chain.

A sufficient condition for a stationary distribution is called detailed balance:

⇡(x0)T (x | x0) = ⇡(x)T (x0 | x) for all x

Sum both sides of the equation over x and simplify: ⇡ must form a stationary distribu-

tion. However, the reverse may not hold, and indeed it is possible to have MCMC without
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satisfying detailed balance (Durrett [2011]).

The high-level idea of MCMC will be to construct a Markov chain whose states will be

joint assignments to the variables in the model and whose stationary distribution will equal

the model probability P .

To construct such a chain, is important to understand when stationary distributions

exist. That is true under two sufficient conditions:

• Irreducibility : You can get from any state x to any other state x0 with probability > 0

in a finite number of steps.

• Aperiodicity : It is possible to return to any state at any time, i.e., there exists an n

such that for all i and all n0 ≥ n, P (s
n

0 = i | s0 = i) > 0

The first condition means no absorbing states, i.e., states from which we can never leave.

Chains of this type are called ergodics, according Manning and Schütze [2008] definition.

3.1.2 Gibbs sampling and Metropolis-Hastings (MH)

The idea of MCMC algorithms is to construct a Markov chain over the assignments to a

probability function P ; the chain will have a stationary distribution equal to P itself; by

running the chain a large number of times, we will thus sample from P .

At a high level, MCMC algorithms take as argument a transition operator T specifying

a Markov chain whose stationary distribution is P , and an initial assignment x0 to the

variables of P . Then, perform the following steps:

1. Run the Markov chain from x0 for B burn-in steps.

2. Run the Markov chain for N sampling steps and collect all the visited states.

Assuming B is sufficiently large, the latter collection of states will form samples from P .

We may use them to produce Monte Carlo estimates of marginal probabilities. Finally, we

may take the sample with the highest frequency and perform MAP inference.
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Metropolis-Hastings:

Metropolis-Hastings (MH) origin is from an article by Metropolis [1953], introducing the

algorithm for the case of symmetrical proposal distributions, and from Hastings [1970] that

extended it to the more general case. It constructs a transition operator T (x0 | x) from two

components:

• A transition kernel Q(x0 | x), also named proposal distribution, specified by the user

• An acceptance probability for moves proposed by Q, specified by the algorithm as

A(x0 | x) = min

✓
1,

P (x0)Q(x | x0)
P (x)Q(x0 | x)

◆
.

At each step of the Markov chain, we choose a new point x0 according to Q. Then, we

either accept this proposed change (with probability ↵), or with probability 1−↵ we remain

at our current state.

The acceptance probability encourages to move towards more likely points in the distri-

bution; when Q suggests that we move into a low-probability region, we follow that move

only a certain fraction of the time.

In practice, the distribution Q is something simple, like a Gaussian centered at x. Given

any Q the MH algorithm will ensure that P will be a stationary distribution of the resulting

Markov Chain. More precisely, P will satisfy the detailed balance condition for the MH

Markov chain.

To see that, observe that if A(x0 | x) < 1, then

P (x)Q(x0|x)
P (x0)Q(x|x0) > 1 and thus A(x | x0) = 1.

When A(x0 | x) < 1, this lets to write:
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A(x0 | x) = P (x0)Q(x | x0)
P (x)Q(x0 | x)

P (x0)Q(x | x0)A(x | x0) = P (x)Q(x0 | x)A(x0 | x)

P (x0)T (x | x0) = P (x)T (x0 | x),

which is actually the detailed balance condition. We used T (x | x0) to denote the full

transition operator of MH (obtained by applying both Q and A). So, if the MH Markov

chain is ergodic, its stationary distribution will be P .

Notice that P appears in the acceptance rate only as ratio, and that it is commonly

available.

In a Bayesian setting, P is a posterior distribution that could be intractable with other

methods. Since it is the objective of the estimation, it is called target distribution. In BNs

inference, the targets will be the marginals.

Gibbs sampling:

The algorithm was described by Geman [1984], decades after the death of the physicist Josiah

Willard Gibbs

8
.

It is a widely-used special case of the MH method. Given an ordered set of variables

x1, . . . , xn and a starting configuration x0 = (x01, . . . , x
0
n

), consider the following procedure.

Repeat until convergence for t = 1, 2, . . .:

• Set x xt−1.

• For each variable x
i

in the order we fixed:

1. Sample x0
i

⇠ P (x
i

| x−i)

8. The name is a reference to an analogy between the sampling algorithm and statistical physics.
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2. Update x (x1, . . . , x
0
i

, . . . , x
n

).

• Set xt  x

We use x−i for all variables in x except x
i

. It is often easy to performing each sampling

step, since we only need to condition x
i

on its Markov blanket

9
, which is typically small.

When updating x
i

, its new value is immediately used for sampling other variables x
j

.

Gibbs can be seen as a special case of MH with proposal Q(x0
i

, x−i | xi, x−i) = P (x0
i

|

x−i). In this case, the acceptance probability simplifies to one.

Assuming the right transition operator, both Gibbs sampling and MH will eventually

produce samples from their stationary distribution, which by construction is P .

It is easy to check when it is the case since, in practice, it is not difficult to ensure

ergodicity.

MH within Gibbs:

It is widespread to use MH within Gibbs when concerning multivariate distribution, like

joint probabilities in BNs. For pure Gibbs, full conditionals

10
are directly required for each

variable to simulate. Instead, with a Metropolis step for a single variable in the main Gibbs

loop is enough to set a proper proposal distribution, using the full conditional only to evaluate

the acceptance rate.

Typically, the proposals are distributed Normally or Uniformly, centered at the current

point of the MCMC for that variable. One can choose di↵erent proposals for di↵erent

variables or use the same parametric form for simplicity. The critical point is to set a

symmetric proposal to reduce the computation in the ratio of the acceptance rate: if Q(x0 |

x) = Q(x | x0) the acceptance rate will depend only on the target distribution ratio.

9. In a BN, the Markov blanket of a node includes its parents, children and children’s parents.

10. The resulting distribution obtained disregarding the factor not of interest from the joint
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The only drawback of the MH step is that the algorithm will require an additional

hyperparameter linked to the definition of the proposal Q (it can be the variance for a

gaussian or the step-size for a uniform). For this issue, several algorithms can automatically

tune the hyperparameters for the sampling procedure, adapting the proposal during the

iterations to increase and accelerate performances. Those are called Adaptive Metropolis

methods.

3.1.3 Hamilton-Monte Carlo (HMC)

This section describes a sampling method that takes advantage of an additional piece of

information about a distribution: its shape. It is named Hamiltonian Monte Carlo, and uses

an approximate Hamiltonian dynamics simulation based on numerical integration, which is

then corrected by performing a Metropolis acceptance step.

The algorithm was originally proposed by Duane [1987] for calculations in lattice quantum

chromodynamics.

It is noticeable that HMC can only be applied to continuous problems since it requires

the di↵erentiability of the target density, while the previous methods can be essentially used

for any problems

11
.

Physical intuition:

When doing Metropolis-Hastings sampling with a naive proposal distribution, we are essen-

tially performing a random walk without considering any additional information we may

have about the distribution we want to sample.

There is a possible improvement: if the density function we want to sample from is

di↵erentiable, we can access its local shape through its derivative. The derivative tells us,

at each point x, how the value of the density P (x) increases or decreases depending on how

11. Eventually ensuring the discretization of a proposal step in MH, for discrete targets
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we change the x. That means we should use the derivative of P (x) to propose states with

high probabilities, precisely the critical idea of Hamiltonian Monte Carlo (HMC).

The intuition behind HMC is that we can interpret a random walker as a particle moving

under the e↵ect of forces attracting it to higher-probability zones.

The potential energy V (x) looks like a mountainous landscape that attracts the particle

to its bottom: the steeper the landscape, the stronger will be the force pulling it towards

the bottom. The bottom of this landscape coincides with the region’s most considerable

probability of P (x). If we can predict where the particle will move to given its position and

velocity, we can use the result of that prediction as a proposal state for Metropolis-Hastings,

such that the sampler will be more focused on the peak of the probability distribution.

This prediction problem is classical in physics as part of well-known theories and methods

from Hamiltonian mechanics (Carstens [2020]).

Auxiliary momentum variable:

As usual, the goal of sampling is to draw from a density P (x) for variable x. This is typically a

Bayesian posterior P (x|y) given data y. But HMC introduces auxiliary momentum variables

⇢ and draws from a joint density

P (⇢, x) = P (⇢|x)P (x).

In most applications of HMC, the auxiliary density is a multivariate normal that does not

depend on the parameters x,

⇢ ⇠ MultiNormal(0,M).

M is the Euclidean metric (Stan-Manual). It can be seen as a transform of parameter space

that makes sampling more efficient, see Betancourt [2017] for details.
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The Hamiltonian:

The joint density P (⇢, x) defines a Hamiltonian

H(⇢, x) = − logP (⇢, x)

= − logP (⇢|x)− logP (x).

= T (⇢|x) + V (x),

where the term

T (⇢|x) = − logP (⇢|x)

is the “kinetic energy” and the term

V (x) = − logP (x)

is the potential energy. It is specified by the program through its definition of a log density.

Generating transitions:

Starting from the current value of the parameters x, a transition to a new state is generated

in two stages before being subjected to a Metropolis accept step. First, a value for the

momentum is drawn independently of the current parameter values (practically, performing

an i.i.d. sampling from the multinormal).

Thus momentum does not persist across iterations. Next, the joint system (x, ⇢) made up

of the current parameter values x and new momentum ⇢ is evolved via Hamilton’s equations,

dx

dt
= +

@H

@⇢
= +

@T

@⇢

d⇢

dt
= −@H

@x
= −@T

@x
− @V

@x
.
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With the momentum density being independent of the target density, i.e., p(⇢|x) = p(⇢), the

first term in the momentum time derivative, @T/@x is zero, yielding the pair time derivatives

dx

dt

= +

@T

@⇢

d⇢

dt

= −@V

@x

.

Leapfrog integrator:

The last part leaves a two-state di↵erential equation to solve. Most HMC implementations

use the leapfrog integrator, which is a numerical integration algorithm that’s specifically

adapted to provide stable results for Hamiltonian systems of equations. The leapfrog al-

gorithm takes discrete steps of some small-time interval ✏. It begins by drawing a new

momentum term independently of the parameter values x or previous momentum value.

It then alternates half-step updates of the momentum and full-step updates of the posi-

tion.

⇢  ⇢ − ✏

2
@V

@x

x  x + ✏M−1 ⇢

⇢  ⇢ − ✏

2
@V

@x

.

By applying L leapfrog steps, a total of L ✏ time is simulated. The resulting state at the

end of the simulation will be denoted (⇢⇤, x⇤). The leapfrog integrator’s error is on the

order of ✏3 per step and ✏2 globally, where ✏ is the time interval, also known as the step size

(Stan-Manual).

MH step:

If the leapfrog integrator were perfect numerically, there would no need to do any more

randomization per transition than generating a random momentum vector. Instead, what is

done in practice to account for numerical errors during integration is to apply a MH accep-
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tance step, where the probability of keeping the proposal (⇢⇤, x⇤) generated by transitioning

from (⇢, x) is

min(1, exp(H(⇢, x)−H(⇢⇤, x⇤))) .

If the proposal is not accepted, the previous parameter value is returned for the next draw

and used to initialize the next iteration, as usual.

Algorithm summary:

The Hamiltonian Monte Carlo algorithm starts at a specified initial set of variable x; this

value is either user-specified or generated randomly. Then, for a given number of iterations,

a new momentum vector is sampled, and the current value of the parameter x is updated

using the leapfrog integrator with discretization time ✏ and number of steps L according to

the Hamiltonian dynamics. Then a Metropolis acceptance step is applied, and a decision is

made whether to update to the new state (x⇤, ⇢⇤) or keep the existing state.

Tuning the parameter L is very critical. A well-known adaptive extension of the algorithm

that controls L automatically is the NUTS (No U-Turn Sampler, Matthew D. Ho↵man

[2011]).

3.1.4 Time complexity of MCMC

A key parameter for MCMC is the number of burn-in steps B. Intuitively, this corresponds

to the number of steps needed to converge to our limit (stationary) distribution. It is called

the mixing time of the Markov chain. Unfortunately, this time may vary dramatically and

may sometimes take very long times.

This problem does not occur only with particular complicated distributions. Sampling

is a complex problem in general, and MCMC does not give us a free lunch. Nonetheless, for

many real-world distributions, sampling will produce handy solutions.
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Another, perhaps more significant problem is that we may not know when to end the

burn-in period, even if it is theoretically not too long. Many heuristics exist to determine

whether a Markov chain has mixed; however, typically, these heuristics involve plotting

specific quantities and estimating them by eye; even the quantitative measures are not sig-

nificantly more reliable than this approach (V. Kuleshov [2019]).

In summary, even though MCMC can sample from the proper distribution - that in turn

we can use for solving any inference problem - doing so may sometimes require long times,

and there is no easy way to judge the amount of computation that we need to spend to find

a good solution.

3.2 Variational methods

As discussed, sampling-based methods have several significant shortcomings. Besides issues

related to time complexity, in order to reach a good solution, MCMC methods require also

to choose appropriate sampling techniques, as a good proposal in MH. That can be an art

in itself: as mentioned, a vast literature for adaptive methods exists.

In this chapter, we will look at an alternative approach to approximate inference called

the variational family of algorithms.

3.2.1 Preliminaries: Inference as optimization

The main idea of variational methods is to cast inference as an optimization problem.

Suppose we have an intractable probability distribution p. Variational techniques try to

solve an optimization problem over a class of tractable distributions Q in order to find a

q 2 Q that is most similar to p. Then, query q (rather than p) in order to get an approximate

solution.

The main di↵erences between sampling and variational techniques are that:
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• Variational approaches will rarely find the globally optimum.

• Nevertheless, we will always know if they have converged. In some cases, we will even

have bounds on their accuracy.

• In practice, variational inference methods often scale better and are more amenable

to techniques like stochastic gradient descent, parallelization over multiple processors,

and acceleration using GPUs.

Although sampling methods were historically invented first (in the 1940s), variational

techniques have been steadily gaining popularity and are currently more widely used (Attias

[2000], S. Ermon [2019]).

The Kullback-Leibler divergence:

To formulate inference as an optimization problem, we need to choose an approximating

family Q and an optimization objective J(q). This objective needs to capture the similarity

between q and p; the field of information theory provides us with a tool for this called the

Kullback-Leibler (KL) divergence, from Kullback [1951].

Formally, the KL divergence between two distributions q and p with discrete support is

defined as

KL(qkp) =
X

x

q(x) log
q(x)

p(x)
.

In information theory, this function is used to measure di↵erences in information con-

tained within two distributions. The KL divergence has the following properties that make

it especially useful in our setting:

• KL(qkp) ≥ 0 for all q, p.

• KL(qkp) = 0 if and only if q = p.
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Note however that KL(qkp) 6= KL(pkq), i.e., the KL divergence is not symmetric. For

that reason, it is a divergence, but not a distance.

The variational lower bound:

To perform variational inference with a KL divergence, let’s fix a form for p. We will assume

that p is a general (discrete, for simplicity) undirected model of the form

p(x1, . . . , xn; ✓) =
p̃(x1, . . . , xn; ✓)

Z(✓)
=

1

Z(✓)

Y

k

φ
k

(x
k

; ✓),

where the φ
k

are the factors and Z(✓) is the normalization constant. This formulation

captures virtually all the distributions in which we might want to perform approximate

inference, such as marginal distributions of directed models p(x | e) = p(x, e)/p(e) with

evidence e.

Given this formulation, optimizing KL(qkp) instantly is not possible because of the po-

tentially intractable normalization constant Z(✓). Even evaluating KL(qkp) is not possible,

because we need to evaluate p.

Instead, we will work with the following objective, which has the same form as the KL

divergence, but only involves the unnormalized probability p̃(x) =
Q

k

φ
k

(x
k

; ✓):

J(q) =
X

x

q(x) log
q(x)

p̃(x)
.

This function is not only tractable, but it also has the following important property:

J(q) =
X

x

q(x) log
q(x)

p̃(x)

=

X

x

q(x) log
q(x)

p(x)
− logZ(✓)

= KL(qkp)− logZ(✓)
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Since KL(qkp) ≥ 0, we get by rearranging terms that

logZ(✓) = KL(qkp)− J(q) ≥ −J(q).

Thus, −J(q) is a lower bound on the log partition function logZ(✓). In many cases, Z(✓)

has an interesting interpretation. For example, we may be trying to compute the marginal

probability p(x | D) = p(x,D)/p(D) of variables x given observed data D that plays the role

of evidence. We assume that p(x,D) is directed. In this case, minimizing J(q) amounts to

maximizing a lower bound on the log-likelihood log p(D) of the observed data.

Because of this property, −J(q) is the variational lower bound or the evidence lower

bound (ELBO); it is in the form

logZ(✓) ≥ E
q(x)[log p̃(x)− log q(x)].

Crucially, the di↵erence between logZ(✓) and −J(q) is precisely KL(qkp). Thus, by

maximizing the evidence-lower bound, we are minimizing KL(qkp) by squeezing it between

−J(q) and logZ(✓).

3.2.2 Loopy Belief propagation

In the Exact Inference Chapter, we have seen the junction tree algorithm that has a run-

ning time that is potentially exponential in the size of the largest cluster, since we need to

marginalize all the cluster’s variables.

For example an Ising model with N ⇥N grid and N ⇠ O(1000) will yield a clique with

2

100
entries. The conversion of the non-tree model to a junction tree would lead to a graph

with extremely large tree-width, which is una↵ordable (Donghan Yu [2019]).

So it will not be easy for many graphs to find a good junction tree; applying the algorithm

will not be possible. Nevertheless, we may not need the exact solution that the junction tree
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algorithm provides; we may be satisfied with a quick approximate solution instead.

Frey and MacKay [1997] introduced a technique for performing inference on complex

(non-tree structure) graphs: Loopy belief propagation (LBP). Unlike the junction tree algo-

rithm, which attempted to find the exact solution efficiently, LBP is an approximate inference

algorithm.

Properties:

This heuristic approach often works surprisingly well in practice. In general, however, it may

not converge, and its analysis is still an area of active research. For example, it provably

converges on trees and graphs with at most one cycle. In most cases, directly copying the

idea of belief propagation from tree to non-tree graphical model leads to two outcomes (Weiss

[2000]):

• LPB converges, and its beliefs, although they may not necessarily equal the true

marginals, are regularly close.

• It fails to converge at all and oscillates between multiple answers of the beliefs b.

It can be possible to show it as a particular case of variational inference algorithms

(Jonathan S. Yedidia and Weiss [2004]).

The algorithm:

So, the main idea of loopy belief propagation is to extend message-passing from tree to non-

tree graphical models. Suppose that we are given an MRF with pairwise potentials. The

main idea of LBP is to disregard loops in the graph and perform message passing in any case.

Given an ordering on the edges, at each time t we iterate over a pair of adjacent variables

x
i

, x
j

, in that order, and perform the update:
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mt+1
i!j

(x
j

) =

X

xi

φ(x
i

)φ(x
i

, x
j

)

Y

`2N(i)\j
mt

`!i

(x
i

).

We keep performing these updates for a fixed number of steps or until convergence, when

the messages do not change. Messages initialization is typically uniform.

Then the marginal probability will be based on the following equation:

b(x
i

) / φ(x
i

)

Y

`2N(i)

m
`!i

(x
i

).

To be specific, the messages are updated and passed iteratively among nodes at the same

time. Unlike the belief propagation algorithm, where we pass the messages from the leaves

to the root, the message passing here is recurrent. Another di↵erence is that the loopy belief

propagation algorithm does not need to pass messages only after collecting all the messages

from its neighbors.

A theory behind - Bethe approximation to Gibbs free energy:

Suppose we want to find the approximation Q for p. Based on the factorized probability of

the joint distribution p, we can write the exclusive KL-divergence as follows:

KL(qkp) =
X

x

q(x) log
q(x)

p(x)

=

X

x

q(x) log q(x)−
X

x

q(x) log p(x)

= −H
q

(x)− E
q(x)[log p(x)]

= −H
q

(x)−
X

k

E
q(x)[log φk(xk; ✓)] + logZ(✓)

We call the first two terms −H
q

(x) −
P

k

E
q(x)[log φk(xk; ✓)] the (Gibbs) Free En-

ergy. Now we consider an example of tree-structured distribution. Based on the chain

30



rule and local Markov property of undirected graphical model, we can expand the joint

probability to factorized probability. According to the Bayes rule, we can summarize the

joint probability for any tree-structured distribution (for any factor tree in general) as

b(x) =

Q
k

b
k

(x
k

)

Q
i

b
i

(x
i

)

(1−di)
, where d

i

where the first product term is over the dou-

bleton factors, the second product term is over the singleton factors and represents the

degree of singleton node x
i

. The entropy H of this distribution is given by:

H
tree

=

X

k

X

xk

b
k

(x
k

) ln b
k

(x
k

) +

X

i

(d
i

− 1)

X

di

b
i

(x
i

) ln b
i

(x
i

),

Thus, the Gibbs free Energy for a tree-structured distribution Q can be written as:

F
tree

= −H
q

(x)−
X

k

E
q(x)[log φk(xk; ✓)]

=

X

k

X

xk

b
k

(x
k

) ln

b
k

(x
k

)

φ
k

(x
k

)

−
X

i

(d
i

− 1)

X

di

b
i

(x
i

) ln b
i

(x
i

)

Consider a more general Markov network (Fig. (2b)). The factor graph here is not a

tree, and the distribution cannot be “exactly” factorized as:

p(x) =

Q
k

b
k

(x
k

)

Q
i

bdi−1
i

(x
i

)

However, we can still “approximate” it to be the same. This approximation is known as

the Bethe approximation and the corresponding approximated energy (known as the Bethe

free energy) is given by

ˆF (p, q) = F
Bethe

, which has the formulation:

F
Bethe

=

X

k

X

xk

b
k

(x
k

) ln

b
k

(x
k

)

φ
k

(x
k

)

−
X

i

(1− d
i

)

X

xi

b
i

(x
i

) ln b
i

(x
i

)

Note that this is equal to the exact Gibbs free energy when the factor graph is a tree,

but for general graphs, H
Bethe

is not the same as the H of a tree.

So actually, we can choose −J(q) = −F
Bethe

as the variational lower bound.
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Constrained minimization of the Bethe free energy:

Then we want to solve the constrained minimization problem:

min F
Bethe

(b(x
i

), b(x
k

))

subject to

X

xi

b
i

(x
i

) = 1,
X

xk|xi

b
k

(x
k

) = b
i

(x
i

)

We can write the Lagrange form as:

L = F
Bethe

+

X

i

γ
i

 
X

xi

b
i

(x
i

)− 1

!
+

X

k

X

i2N(k)

X

xi

λ
ki

(x
i

)

0

@
X

xk|xi

b
k

(x
k

)− b
i

(x
i

)

1

A

Then we can put the zero-gradient solutions, and the interesting finding is that, if we

identify λ
ki

(x
i

) = log(m
i!k

(x
i

)) = log

Q
b2N(i) 6=k

m
b!i

(x
i

), then we get exactly the BP

equations:

b
i

(x
i

) / φ
i

(x
i

)

Y

k2N(i)

m
k!i

(x
i

)

b
k

(x
k

) / φ
k

(x
k

)

Y

i2N(k)

Y

c2N(i)|k
m

c!i

(x
i

)

Therefore, the singleton and doubleton potentials

12
in the Bethe optimization problem

can be interpreted as beliefs at each iteration of LBP. Morever, the analysis shows that belief

propagation on factor graphs is equivalent to minimizing the Bethe energy function.

Formally, the LBP algorithm would converge to true values in case of tree-structured

graphs and may only approximate the true values in case of general graph, as Jonathan

S. Yedidia [2000] showed that the belief update rules correspond to the fixed points of the

12. The initial potential of the node itself, and the edge potential with its neighbour (Rajarshi Das [2014]).
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Bethe free energy. Precisely, it has been demonstrated that stable fixed points of BP are

local minima of the Bethe free energy (Heskes [2003]).

3.2.3 Other developments

In a variational inference setting, we choose an approximating family Q. A widely used

classes of distributions is simply the set of fully-factored q(x) = q1(x1)q2(x2) · · · qn(xn); here

each q
i

(x
i

) is categorical distribution over a one-dimensional discrete variable, which can be

described as a one-dimensional table.

It is perhaps a popular choice when optimizing the ELBO:

min

q1,...,qn
J(q).

Variational inference with this choice of Q is called VMP (Variational Message Passing,

Winn and Bishop [2005]) or mean-field inference, since it is a message-passing version of the

mean-field method (Peterson and Anderson [1987]).

Interestingly, in the recent years Bayesian message passing schemes as variational message

passing and belief propagation – each of which is derived from a free energy functional

that relies upon di↵erent approximations (mean-field and Bethe respectively) become very

popular to describe neuronal processing

1314
(Thomas Parr [2019]).

13. Both BP and VMP have had some success in reproducing aspects of cognitive function, as architecture
of communication between populations of neurons.

14. A generic account of brain function that subsumes the Bayesian brain is active inference (Friston
[2015]). This account derives from the imperative for living creatures to maximise Bayesian model evidence
or, more simply, engage in self-evidencing (Hohwy [2016]). This is equivalent to minimising their variational
free energy (Friston [2010]).
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CHAPTER 4

INFLUENCE DIAGRAMS: EVALUATION METHODS

Influence diagrams (IDs) or Decision Graphs (Jensen [2001]) can be used by decision analysts

to help structure decision. Formally, IDs are DAGs G = {N,A}, where N is a finite set of

distinct nodes partitioned into three disjoint subsets: decision, chance and value nodes, and

E is a set of arcs classified according to the nodes they get into.

Decision nodes (D1, . . . , D
k

, represented as squares) are variables under the control of

the decision maker, chance nodes (C1, . . . , Cm

, represented as circles) are probabilistic events

variables, and value nodes (V1, . . . , Vm, represented as diamonds) are profits and costs of

actions.

Arcs into decision nodes (informational arcs) specify the information available at the time

of the decision, arcs into chance nodes (conditional arcs) represent probabilistic dependence

and the dependences of chance nodes C
i

upon its parent (direct predecessors, represented by

Par(C
i

) is characterized by CPD P (C
i

|Par(C
i

)), and arcs into value nodes indicate func-

tional dependencies and the dependences of value node V
i

upon their parents (represented

by Par(V
i

)) is characterized by utility table u(Par(V
i

)) (Ruan [2013]).

4.1 Expected utility hypothesis

Let D1, . . . , D
k

be all the decision nodes in an ID, dom(D
i

) is the set of alternatives at D
i

,

~E

be the set of chance and decision nodes whose information available before taking action at

D
i

, V
i

be a value node pointed from D
i

, CPar(V
i

) be chance nodes that have arcs pointing

to V
i

, and cpar(V ) be an instance of CPar(V
i

), i.e. a configuration of states of nodes in

CPar(V
i

), then a decision rule for decision node D
i

is a mapping δ
i

:

~E ! D
i

= d, where

d 2 dom(D
i

) and a strategy is a list of decision rules ∆ = (δ1, · · · , δ
k

) consisting of one rule

for each decision node. The expected utilities corresponding to a decision rule and a strategy
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are defined by:

EU(δ
i

) = EU(δ
i

:

~E ! D
i

= d) =
X

cpar(V )

P (cpar(V
i

)/ ~E)⇥ u(cpar(V
i

), D
i

= d)

EU(∆) =

kX

i=1

EU(δ
i

)

The maximum expected utility is obtained over all possible strategies, and solving IDs

means selecting the strategy that maximizes its expected utility, that is,

MEU = max

∆
EU(∆),

∆

⇤
= argmax

∆
EU(∆)

Solving ID is one of the most critical problems in IDs. In reality, it is impossible to

evaluate each possible strategy and compare their expected utilities because the number of

strategies grows exponentially in the number of decisions to be taken. The complexity is

much greater than BN inference since we need to solve a number

15
of BN inference problems

(Ruan [2013]).

4.2 VE for IDs

Given a decision node, is possible to compute the expected utility on an action applying

Variable Elimination (Koller and Friedman [2009]), since EU(δ
i

) is actually a sum over

factors - utility nodes can be treated just as factors whose values are not probabilities.

For a simple network with just a decision node associated, it is easy to compute the

optimal policy ∆

⇤
just extending the VE algorithm to the value node and finding in that

15. One BN problem for each setting of decision node parents and decision node value.
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way the maximal expected utility.

To solve general and more complex IDs, much more e↵ort could be required, and e↵ective

techniques are commonly on the use of dynamic programming principle to avoid enumerating

all policies.

4.3 The Arc Inversion method

Shachter proposed a method based on arc reversal and node deletion in the paper Evaluating

Influence Diagrams (1986). It belongs to a wider class of evaluation algorithms that preserves

utilities during modifications of the graph. In fact, this approach removes nodes from an ID

through some value-preserving reduction until only the value node remains.

At that point, it has determined all of the optimal strategies and computed the maximal

expected utility. When a node is removed, it can be dropped from the current node-set, and

all arcs incident to it can be drowned from the arc set (Ruan [2013]). Again, this method is

essentially based on dynamic programming (for the nodes removal mechanism) and on the

Bayes’ rule (for the inversion of arcs).

• Barren node removal : A chance or decision node is called a barren node if it has no

successors. A barren node may be simply removed from an ID. If it is a decision node,

then an alternative would be optimal.

• Chance node removal : A chance node C that directly precedes the value node and

nothing else in an ID may be removed by conditional expectation, and then the value

node inherits all of the conditional predecessors from node C. The new utility of the

value node can be computed by the formula:

u
n

(V ) 
X

c2dom(C)

EU(V/Par
o

(V ))⇥ P (c/Par(C)) (4)
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Where Par
o

(V ) is the set of parents of the value node before removing node C.

• Decision node removal : A decision node D that is a conditional predecessor of the

value node and all other conditional predecessors of the value node are its informational

predecessors may be removed by maximizing expected utility, conditioned on the values

of its informational predecessors, i.e.

u
n

(V ) max

d2dom(D)
EU(V/Par

o

(V )) (5)

The maximizing alternatives should be recorded as the optimal strategy. The value

node inherits no new conditional predecessors from this operation.

• Arc reversal : An arc (C1, C2) can be replaced by arc (C2, C1) if there is no other di-

rected path from C1 to C2. Afterward, both nodes inherit each other’s conditional

predecessors, i.e. Par
n

(C2)  Par
o

(C1) [ Par
o

(C2)\{C1}, Pn(c2/Par
n

(C2)) and

P
n

(c1/Par
n

(C1)) can be computed by formula:

P
n

(c2/Par
n

(C2)) 
X

c12dom(C1)

P
o

(c2/Par
o

(C2))⇥ P
o

(c1/Par
o

(C1))

P
n

(c1/Par
n

(C1)) P (c1/c2, Par
n

(C2)) = P (c2/Par(C2))⇥
P (c1/Par

o

(C1))

P (c2/Par
n

(C2))

4.3.1 The algorithm

First of all, is important to check if the ID is regular (checking the associated DAG)

and that exists at least a path containing all the decision nodes (no forgetting property).
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Algorithm 1: Arc Inversion pseudo-code

Check for regular, oriented, ”no forgetting” arcs ID;

Remove all barren nodes;

while Par(V ) 6= 0 do

if 9i 2 CPar(V ) : Par(C
i

) = V :

remove chance node i;

else if 9D
i

2 Par(V ) : Par(V )/D
i

2 CPar(V ):

remove decision node D
i

;

remove all barren nodes;

else:

find i 2 CPar(V ) : Par(C
i

) [D = 0 then:

while Par(C
i

) 6= 0 do

find j 2 Par(C
i

): no other directed (i, j) paths;

reverse arc (i, j);

end

remove chance node i;

end

end if

end

4.4 Other approaches

An alternative method to solve Influence Diagrams could be that of a combinatorial opti-

mization approach. Since we have to avoid the exploration of all the possible feasible policies,

we can set up an heuristic that looks for an optimal solution with certain search methods:

the key idea is to treat the expected utility as an objective function - so that we can use vari-

able elimination for computing the fitness of a solution during iterations of the algorithm.

This would be an approximate method for IDs.
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4.4.1 Genetic Algorithms (GA)

Genetic algorithms (GA) are a class of iterative optimization methods that use the principles

of evolutionary biology, proposed by Holland [1992]. Terminology is usually associated with

optimization changes to the biological terms. Solutions in a problem are referred to as

individuals, and the set of individuals is known as a population.

GA mimics the Darwinian theory of survival of fittest in nature: the fitness of an indi-

vidual refers to the values of the objective functions. Each iteration in the GA is called a

generation. For some generation n, the nth population is known as the o↵spring population

while the n− 1th population is the parent population.

GA begins with some initial population and each generation afterwards produces an

o↵spring population using genetic operators. Genetic operators include selection, crossover,

and mutation. They use the principle of natural selection to find the best solution, using

the principle of diversity to avoid convergence to a local minima.

Selection:

Selection operators are used to select which o↵spring survive to the next generation. Tour-

nament selection is a selection operator that randomly sorts the individuals into blocks and

chooses the best individual from each block.

Crossover:

Crossover operators are used to mix two or more parents to produce similar, but slightly

di↵erent o↵spring. Most crossover operators convert the individual into binary representation

to perform the operations. One-point crossover crosses the binary digits at some crossover

point of two parents to create two new individuals.

For example, consider the parents 7 and 18 which in binary are 00111 and 10010 repsec-

tively. Let the crossover point be position 3; thus the o↵spring would be 00010 and 10111
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or 2 and 23 respectively. Another type of commonly used crossover operation is two-point

crossover which is similar to one-point crossover but with two crossover points.

Mutation:

Mutation operators are used to further preserve the diversity of a population to ensure non-

convergence to an optimum. A type of mutation known as flip bit also performs operations

on the binary representation of a number where each bit in the binary representation has

some probability of being mutated.

The algorithm:

Algorithm 2: Pseudo-code for a simple genetic algorithm

pop GenerateInitialPopulation(desiredPopulationSize);
pop assignF itnessToEachMember(pop);
while run− time < allowedT ime do

newGeneration selectMembersOfPopForCrossover(pop);
newGeneration mutatePopulation(newGeneration);
pop assignF itnessToEachMember(pop);
if highestF itnessInPopulation(pop) >= fitnessRequired then

return fittestMemeberOfPopulation(pop)
end

end
return fittestMemeberOfPopulation(pop)

For IDs, this algorithm can be applied to maximize the expected utility, computed for

each policy with VE. Individuals are taken as combinations of subsets of each decision rule:

the composition of all the minimal-length arrays

16
useful to perform decisions is a possible

solution for the algorithm. In the fitness computation phase, an unique transformation

decompose individuals into decision factors to evaluate their associated utility.

16. The reduction of strategies is though to compress information: when we have a binary decision, for
example, the single rule representation contains redundant values.
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Criticalities:

This approach is very useful to solve complex IDs with several decision nodes. The imple-

mentation is for simplicity developed only for binary rule-nodes; an example is in the Python

library chapter.

Although this optimization approach is generally very efficient, it is necessary to observe

that the latter is not preferred in the community dealing with probabilistic graphical models.

The power of PGMs lies in the graphical representation of knowledge models; to reap

benefits such as intuitiveness, analysis and updating. Algorithms such as message passing, or

arc inversion, exploit and align with this philosophy. To withdraw from the graphing model

to translate the problem into a combinatorial optimization problem could mean losing these

advantages.
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CHAPTER 5

A PYTHON PACKAGE FOR PGMS

5.1 Implementation details

The repository is available at https://github.com/pierociffo/mypgm. It contains the

source code of the package and the examples. The work is named mypgm and it is organized

in 5 main modules:

1. base, with fundamental classes:

• Factor

• CPD

Tables can be visualized with Pandas (McKinney [2010]).

2. pgms, with graphical models classes:

• BayesianNetwork

• InfluenceDiagram

Models regularity is checked with topological sorting; graphical manipulations are

based on networkx (Aric A. Hagberg and Swart [2008]) and visualization tools are

taken from graphviz (Gansner and North [2000]).

3. exacted, for exacted inference algorithms:

• VariableElimination

• ExpectedUtility
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• ArcInversion

4. approximated, for approximated inference:

• ProbabilisticSampling

• LoopyBeliefPropagation

• GeneticAlgorithm

5. mining, containing useful functions for conversion of the results in optimal decision

tables, for analysis concerning Chapter 6.

Some computational issues were solved taking inspiration from works available in the

repositories of Paul Rauber, in particular for the Expected Utility and the Variable Elimina-

tion classes, and Maxwell Forbes, for the LPB algorithm.

As introduced in the first Chapter, I faced the problem of hybrid BNs with the dis-

cretization approach. For this task, I use the class (quantile-based) Discretized from pgmpy

(Ankan and Panda [2015]).

5.2 Examples

Defining Networks:

Let’s see an example of Bayesian Net definition. This example is taken from pgmpy. Basically

the network is created just passing to it the proper set of factors. The CPD objects are just

particular instances of the Factor class, properly normalized.

1 # Clone the repository from github and import the project

2 import git

3 git.Git("./").clone("https :// github.com/pierociffo/mypgm")

4 import mypgm
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5 # Import class and functions useful for the example

6 from mypgm.base import RandomVar , CPD

7 from mypgm.pgms import BayesianNetwork

8 P = RandomVar(’Pollution ’, 2)

9 S = RandomVar(’Smoker ’, 2)

10 C = RandomVar(’Cancer ’, 2)

11 X = RandomVar(’Xray’, 2)

12 D = RandomVar(’Dyspnoea ’, 2)

13 # CPDs

14 cpd_poll = CPD([P], values =[[0.9] , [0.1]])

15 cpd_smoke = CPD([S], values =[[0.3] , [0.7]])

16 cpd_cancer = CPD([C, S, P], values =[0.03 , 0.05, 0.001 , 0.02, 0.97, 0.95,

0.999, 0.98])

17 cpd_xray = CPD([X, C], values =[0.9 , 0.2, 0.1, 0.8])

18 cpd_dysp = CPD([D, C], values =[0.65 , 0.3, 0.35, 0.7])

19 # define the net

20 bn2 = BayesianNetwork ([cpd_poll , cpd_smoke , cpd_cancer , cpd_xray , cpd_dysp

])

21 # Visualize with graphviz

22 bn2.viz()

Figure 5.1: Example network.

Thanks to the MarkovRF class, is possible to easily convert Bayesian Nets to Markov
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Random Fields.

5.2.1 BNs: Fraud detection example

This is an example of a simple fraud detection system for credit cards, based on the following

information: when the card holder is traveling abroad, fraudulent transaction are more likely

since tourists are prime targets for thieves.

We want to compute the probability of fraud if an abroad purchase is done, and the

probability of fraud if an abroad purchase is done and the holder is travelling.

1 from mypgm.exacted import VariableElimination

2 # Define the model structure: first , define the variables.

3 # Random variable for the indicator of traveling , with 2 possible values:

0 if not traveling , 1 if traveling

4 T = RandomVar(name=’Traveling ’, k=2)

5 # Indicator for the fraudolent transaction

6 F = RandomVar(’Fraud ’, 2)

7 # Abroad purchase

8 A = RandomVar(’Abroad ’, 2)

Precisely, 2% of transactions are fraudulent when the card holder is traveling, whereas

only 1% of the transactions are fraudulent when he is not traveling. On average, 5% of all

transactions happen while card holder is traveling. If a transaction is fraudulent, then the

likelihood of a purchase abroad increases, unless the card holder happens to be traveling.

Specifically, when the card holder is not traveling, 10% of the fraudulent transactions

are abroad purchases, whereas only 1% of the legitimate transactions are abroad purchases.

On the other hand, when the card holder is traveling, 90% of the transactions are abroad

purchases regardless of the legitimacy of the transactions.

1 # Define the conditional distributions:

2 f_T = CPD(scope=[T], values =[0.95 , 0.05])
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3 # The first two probability values referred to cases when there is no

fraud

4 f_F = CPD([F, T], [0.99 , 0.98, 0.01, 0.02])

5 # Abroad purchase transaction probabilities conditioned on T and F

6 f_A = CPD([A, T, F], [0.99 , 0.9, 0.1, 0.1, 0.01, 0.1, 0.9, 0.9])

7 # Visualizing table of the CPD can be useful

8 f_A.to_dataframe ()

9 # The order of the variables in a CPD term is determining the conditional

dependence relation:

10 # The first variable specified is conditional dependent on the others

11 # So, once defined the right CPDs , the structure of the Bayesian Network

is set on

12 fraud_model = BayesianNetwork ([f_T , f_F , f_A])

13 # Initializing the exact inference method

14 ve = VariableElimination(fraud_model)

15 # Computing the marginal of Fraud given Abroad =1.

16 print(ve.marginal(hypothesis =[F], evidence =[(A, 1)]))

17 [Output ]:

18 Fraud

19 (0,) -> 0.9665

20 (1,) -> 0.0334

21 # Computing the marginal of Fraud given Abroad =1 and Traveling =1.

22 print(ve.marginal ([F], [(A, 1), (T, 1)]))

23 [Output ]:

24 Fraud

25 (0,) -> 0.9800

26 (1,) -> 0.0200
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Figure 5.2: Fraud detection Network and CPT dataframes.

5.2.2 BNs: the student’s grade example

Here is analyzed a Bayes network model of a student’s grade g on an exam; in addition to g,

are also modeled other aspects of the problem, such as the exam’s difficulty d, the student’s

intelligence i, his SAT score s, and the quality l of a reference letter from the professor who

taught the course. Each variable is binary, except for g, which takes 3 possible values.

1 D = RandomVar(’Difficulty ’, 2)

2 I = RandomVar(’Intelligence ’, 2)

3 G = RandomVar(’Grade ’, 3)

4 L = RandomVar(’Letter ’, 2)

5 S = RandomVar(’SAT’, 2)

6 # init the factors with propabilities relationship

7 cpd_d = CPD([D], values =[0.6 , 0.4])

8 cpd_i = CPD([I], values =[0.7 , 0.3])

9 cpd_g = CPD([G, I, D], values =[0.3 , 0.05, 0.9, 0.5,

10 0.4, 0.25, 0.08, 0.3,

11 0.3, 0.7, 0.02, 0.2])

12 cpd_l = CPD([L, G], values =[0.1 , 0.4, 0.99,

13 0.9, 0.6, 0.01])

14 cpd_s = CPD([S, I], values =[0.95 , 0.2,

15 0.05, 0.8])
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16 # pass CPDs to a DAG structure

17 bn3 = BayesianNetwork ([cpd_d , cpd_i , cpd_g , cpd_l , cpd_s])

18 bn3.viz()

Figure 5.3: The student’s grade Network.

Variable Elimination:

Let’s start to make inference on the network with variable elimination. After passing the

graph structure to the inference method, we can query (or looking for maximum a posterior

assignment) whether variable present, also including evidence.

1 #initialize the method

2 ve = VariableElimination(bn3)

3 #marginal query on G

4 print(ve.marginal ([G]))

5 [Output ]:

6 Grade

7 (0,) -> 0.3620

8 (1,) -> 0.2884

9 (2,) -> 0.3496

10 #marginal query on G given an evidence on D and I

11 print(ve.marginal ([G], [(D, 0), (I, 1)]))
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12 [Output ]:

13 Grade

14 (0,) -> 0.9

15 (1,) -> 0.08

16 (2,) -> 0.02

17 #map query on L, G, S

18 print(ve.map_query ([(D, 0), (I, 1)]))

19 [Output ]:

20 [(Letter , 1), (Grade , 0), (SAT , 1)]

21 #map query on G

22 print(ve.map_query ([(D, 0), (I, 1), (L, 1), (S, 1)]))

23 [Output ]:

24 [(Grade , 0)]

Probabilistic Sampling:

Now try to apply an approximate inference engine like probabilistic sampling to the same net-

work. We can compare the results with the exact one just founded. The class GibbsSampler

provide the implementation of a Metropolis-Hasting within Gibbs algorithm, if specified,

otherwise we can perform a pure Gibbs sampling from the probability distribution of inter-

est.

For the MH step, is possible to set the type of proposal distribution (uniform by default)

with the relative hyperparameter.

In this example I try to use a gaussian proposal (delta in that case is the standard

deviation):

1 # set the MCMC parameters and query G with a simulation

2 gs = GibbsSampler(bn3 , metropolis=True , proposal=gaussian_proposal , delta

=0.8)

3 gs.sample(burn_in =1000, n=2500, plot=[G], print_posterior =[G])

4 [Output ]:
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5 100%|||||||||| 2500/2500 [00:03 <00:00 , 691.90 it/s]

6 (0,): 0.3612

7 (1,): 0.2664

8 (2,): 0.3724

9 # incorporate evidence on D, I and query G

10 gs.reset()

11 gs.sample(burn_in =1000, n=1500, evidence =[(D, 0), (I, 1)], print_posterior

=[G])

12 [Output ]:

13 100%|||||||||| 1500/1500 [00:03 <00:00 , 691.90 it/s]

14 (0,): 0.8900

15 (1,): 0.0740

16 (2,): 0.0360

As shown, results are not perfectly equals to those of variable elimination, but they are

quite good. It is noticeable that results are sensible to changes in hyperparameters, and that

di↵erent runs produces di↵erent results, as the method is based on stochastic simulations.

One can also choose what posteriors to print as outcome and whether to plot the MCMC and

the resulting histogram (when dealing with continue variables, also kernel density estimation

is shown) for the variable queried.

Figure 5.4: MH within Gibbs sampling results after querying Grade.
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Loopy Belief Propagation:

Finally, we can perform message passing on the graph. As it does not contain loops, the

algorithm will return exact solutions. We have to transform the network to an undirected

model, and then a single execution of the LBP function will give as output all the marginals.

1 mrf3=bn3.to_markov_model ()

2 iters , converged = mrf3.lbp(normalize=True)

3 print(’LBP ran for %d iterations. Converged = %r’ % (iters , converged))

4 # Print out the final marginals

5 mrf3.print_rv_marginals ()

6 [Output ]:

7 ’LBP ran for 3 iterations. Converged = True

8 Marginals for RVs (normalized)’:

9 Difficulty Intelligence Grade

10 0 0.7 0 0.6 0 0.3620

11 1 0.3 1 0.4 1 0.2884

12 2 0.3496

13

14 Letter SAT

15 0 0.4976 0 0.7250

16 1 0.5023 1 0.2750

5.2.3 IDs: the market example

Regarding Influence Diagrams, the definition of decision nodes and utility functions is always

related to factors. One has just to specify it with the argument ”mod” (chance by default).

In this setting, the decision maker have to choose between two opposite action (to fund/not

to fund), when the its utility is determined by the outcome of a probabilistic event in the

market. The following toy model is taken from Koller and Friedman [2009].

1 # random variable for the market: 3 possible situations
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2 M = RandomVar(’Market ’, 3)

3 # 2 possible action to take: to found or not to found the market

4 F = RandomVar(’Found ’, 2)

5 # utility table of the actions given the values of the market

6 uMF = Factor ([M, F], [0, -7, 0, 5, 0, 20], mod=’utility ’)

7 uMF.to_dataframe ()

8 # probability table for the market

9 cM = CPD([M], [0.5, 0.3, 0.2])

10 # F defines the decision scheme

11 dF = Factor ([F], mod=’decision ’)

12 id_ = InfluenceDiagram ([cM], [uMF], [dF])

13 id_.viz()

Figure 5.5: An influence diagram example and its utility function table.

Variable Elimination:

Consider the VE extension evaluation method for influence diagrams. In order to determine

the optimal rule solution of the problem we have to pass the decision variable to determine

to the function optimal− decision− rule, from the class ExpectedUtility. In this case, the

aim is to find a strategy for F , that is associated to a binary action chance.

1 # Alternative decision rules for F

2 dF_1 = CPD([F], [1.0, 0])

3 dF_2 = CPD([F], [0, 1.0]) # Optimal

52



4 # initialize the decision graph to the method

5 eu = ExpectedUtility(id_)

6 print(’Maximal expected utily for action:’, eu.optimal_decision_rule ([F]))

7 [Output ]:

8 Found

9 (0,) -> 0.0

10 (1,) -> 1.0

11 print(’Expected utily of the first action:’, eu.expected_utility ([dF_1]))

12 [Output ]: 0.0

13 print(’Expected utily of the second action:’, eu.expected_utility ([dF_2]))

14 [Output ]: 2.0

The optimal solution consists in to fund (F = 1). For clarity, the value of the expected

utility associated to the alternative actions are reported as well.

Arc Inversion:

Here we use a slightly more complex case of the one introduce for the influence diagram

representation example. In this extension, the decision maker can also take advantage from

the results of a survey, possibly useful to decide whether to fund or not, thanks to the

additional decision node test, describing the action of testing/not testing the survey. Also

this example is from Koller and Friedman [2009].

1 M = RandomVar(’Market ’, 3)

2 S = RandomVar(’Survey ’, 4) # S = 3 means no survey

3 T = RandomVar(’Test’, 2)

4 F = RandomVar(’Found ’, 2)

5 # utility

6 u = Factor ([M, F, T], [0, -1, -7, -8, 0, -1, 5, 4, 0, -1, 20, 19], mod=’

utility ’)

7 cM = CPD([M], [0.5, 0.3, 0.2])

8 # influence table for S
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9 cST = CPD([S, M, T], [0.0, 0.6, 0.0, 0.3, 0.0, 0.1,

10 0.0, 0.3, 0.0, 0.4, 0.0, 0.4,

11 0.0, 0.1, 0.0, 0.3, 0.0, 0.5,

12 1.0, 0.0, 1.0, 0.0, 1.0, 0.0])

13 # decision node for F given S

14 dFS = Factor ([F, S], mod=’decision ’)

15 # decision factor for T

16 dT = Factor ([T], mod=’decision ’)

17 # set the diagram

18 id1 = InfluenceDiagram ([cM , cST], [u], [dT , dFS])

19 id1.viz()

To evaluate the influence diagram is enough to pass the decision structure to anArcInversion

object and then solve it. The dedicated function will return 3 objects: the new solved net-

work structure, the optimal policy found composed as a list of optimal action, the list of

utilities gained from each action taken.

1 ai = ArcInversion(id1)

2 ai.solve()

Figure 5.6: Output best decision of Arc Inversion on the market example.

In this case, the algorithm suggests the decision maker to test and to fund according

to a specific policy. This is not a trivial solution, since the action of testing seen alone seems

to reduce the utility. Otherwise, this is confirmed to be optimal also with other approaches.
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Figure 5.7: (Clockwise) Progressive reduction of the market influence diagram along the

evaluation steps of the Arc Inversion.

5.2.4 IDs: the car buyer example:

In this example from S. Matsumoto [2011], the decision maker wants to buy a used car, but

there’s a good chance it is a “lemon” (i.e., prone to breakdown). Before deciding to buy

it, he can take it to a mechanic for inspection. S/he will give to him a report on the car,

labelling it either “good” or “bad”. A good report is positively correlated with the car being

sound, while a bad report is positively correlated with the car being a lemon. The report

costs 50 however. So you could risk it, and buy the car without the report. Owning a sound
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car is better than having no car, which is better than owning a lemon.

1 L = RandomVar(’Lemon ’, 2) # y/n

2 R = RandomVar(’Report ’, 3) # good , bad , none

3 I = RandomVar(’Inspect ’, 2) # get inspection or not

4 B = RandomVar(’Buy’, 2) # to buy/ no to buy a car

5

6 cL = CPD([L], [0.5, 0.5])

7 dI = Factor ([I], mod=’decision ’)

8 dB_RI = Factor ([B, R, I], mod=’decision ’)

9

10 cR_IL = CPD([R, I, L], [0.2, 0.9, 0, 0, 0.8, 0.1, 0, 0, 0, 0, 1, 1])

11 # utility

12 uBL = Factor ([B, L, I], [-650, -600, 950, 1000, -350, -300, -350, -300])

13

14 car = InfluenceDiagram ([cL , cR_IL], [uBL], [dI , dB_RI])

This time there is just an utility function, nevertheless it can be separated (the Inspection

only lead to an additional price of 50 if True).

Figure 5.8: The car influence diagram example and its utility function table.
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Genetic algorithm:

To apply this combinatorial optimization method (belonging to theEvolutionary algotithms)

is sufficient to initialize and set the hyperparameters.

1 h = heuristicID(car , [dI, dB_RI ])

2 h.run_algorithm(max_epochs = 20, mut=0.9, population_size = 2, crossp =0.8)

3 [Output ]:

4 ’Max EU at iteration 0’: 150.0

5 Starting simulation ...

6 ’Max EU at the end’: 205.0

7 ’End simulation ’: time spend = 0.1635451316833496

8 ’Best solution ’: [1, 1, 0, 0, 1, 0, 0]

9 ’Optimal strategy ’:

Figure 5.9: Expected utility computed during the GA steps.

Figure 5.10: Output best decision of Genetic Algorithm on the car example.

As one can see, the algorithm converges fast to the optimum, 20 epochs are more than

sufficient. Surely this is because this example does not represent a complex problem from

the combinatorial point of view.
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CHAPTER 6

DATA MINING EVALUATION

In this chapter, I will perform data mining processing over the results of some of the graphical

methods explored in the previous sections.

Especially when we are dealing with complex network structures, the output of an algo-

rithm executed over the model is challenging to interpret. An optimal decision table may

have millions of rows and typically more than twenty columns leading to enormous data sets

for storage and analysis.

Solutions of an ID aim to provide the best decision-making recommendations. However,

experts may find such recommendations hard to accept if they come without explaining the

reasons the proposed decisions are optimal. Unexplained responses are not good enough for

expert users since the model approximates the real world. They need to understand the

underlying reasons or implicit rules (Bielza and Fernandez del Pozo [2011]).

Indeed, every decision algorithm is designed with a proper rationale, and results should

be self-explanatory depending on the way it was constructed. Nevertheless, developing ad-

ditional tools to search for features implicit in the result is an possibly valuable experiment

to test the robustness of the proposed solution and provide ulterior sources of explanation.

For this purpose, data mining seems suitable.

There are several data mining methods in the literature whose model results (and implicit

rules) are simple to understand and to be visualized. So, this final part of the work aims to

rely on some of these data mining techniques to explain the results of the decision algorithms

previously applied on graphical models.

Possible policies for IDs can be viewed as tables of actions. Each action has several

attributes so that it can be viewed as a vector. The attributes concerns both the realization

of random variables involved and decisions linked to di↵erent nodes.

The label for each action can be represented by a binary state asserting the optimality,
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a feature established by the previous algorithm.

In this way, we can set up a complete dataset

17
to use as a training set for a learning

algorithm: the resulting model could be helpful in our explanatory purposes. Each element

of the dataset will have as its characteristics the realization of the events considered and the

choices.

An example of conversion is reported with A medical Decision Problem.

Having split the dataset opportunely into train and test

18
is possible to analyze per-

formance measures associated with those new methods and compare them. The processes

that will follow have been developed using existing libraries, especially scikit-learn, a famous

Python library for machine learning (Pedregosa et al. [2011]), scikit-learn-extra, for clusters

analysis, and mlxtend, for association rules.

In the following sections, I will introduce two clinical examples with di↵erent levels of

complexity. After a brief exposition of the data mining methods developed, there will be a

conclusive section with the complete results of the analysis with eventual comparison.

6.1 Examples

6.1.1 A medical decision problem

This example is taken from the paper ”Use of Influence Diagrams to Medical Decisions-

Structure, R. Nease, D. Owens, 2000”.

The influence diagram model consists of 5 chance nodes, one value node, three decision

nodes and 17 arcs. The utility fuction is associated to the life experience of the patient, that is

strongly influenced by the decision of which treatment to take (thoracotomy or radiotherapy)

and whether to make or not Computed tomography (CT) and mediastinoscopy.

17. Precisely, I used the DataFrame object from Pandas

18. Scikit-klearn can perform a split with shu✏e and test proportion of 0.25 by default.
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Figure 6.1: A medical decision problem Influence Diagram with associated CPTs.

I will evaluate the solution computed by the Arc Inversion and the Genetic Algorithm.

Once defined variables and CPDs as the figure is indicating, we do the following:

1 dg = InfluenceDiagram ([cA_FB , cC_BH , cD_G , cE_H , cB], [LifeExperience], [

dF, dG, dH])

2 # This function convert the variables to a table of possible action.

3 t = action_table ([A, B, C, D, E, F, G, H])

4 # run the decision algorithms

5 ai = ArcInversion(dg)

6 ai.solve()

7 # save results

8 optimal_trial = ai.decisions
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9 # Use another example optimal strategy from heuristic solution

10 from mypgm.approximated import heuristicID

11 # it requires more epochs to find the exact solution since the ID is more

complex

12 h = heuristicID(dg, [dF, dG, dH])

13 h.run_algorithm(max_epochs = 50, mut=0.9, population_size = 4, crossp =0.8)

14 optimal_trial_1 = h.solution

15 # This function is adding a label regarding the optimaliity of each action

according to the supposed strategy.

16 train = add_label(t, optimal_trial)

17 # Now we have vectors for data mining evaluation

18 y = train.loc[:, [’Optimal ’]]

19 X = train.loc[:, train.columns != ’Optimal ’]

The optimal decision is overall a table of 8 columns and 144 rows. The Genetic Algorithm

identifies 25 optimal actions (or rows) and 199 sub-optimal actions, while Arc Inversion labels

20 as optimal and 124 as sub-optimal.

6.1.2 The Primary Gastric non-Hodgkin Lymphoma

Now we consider a more complex example. The relative ID was introduced by P.J. Lucas in

1998 in the paper ”Computer-based Decision Support in the Management of Primary Gastric

non-Hodgkin Lymphoma”.

Primary gastric non-Hodgkin lymphoma, gastric NHL for short, is a relatively rare disor-

der, accounting for about 5% of gastric tumors. This disorder is caused by a chronic infection

by the Helicobacter pylori bacterium. Treatment consists of a combination of antibiotics,

chemotherapy, radiotherapy and surgery.

The influence diagram model consists of 17 chance nodes, one value node, three decision

nodes and 42 arcs.

The first of the decision nodes, HELICOBACTER-TREATMENT, corresponds to the
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decision to prescribe antibiotics against H. pylori. The second decision concerns carrying

out SURGERY. The possibilities are either curative surgery, involving the complete removal

of the stomach and locoregional tumor mass; palliative surgery, i.e. partial removal of the

stomach and tumor; or no surgery. The last decision, CT-RT-SCHEDULE, is concerned

with the selection of chemotherapy, radiotherapy, chemotherapy followed by radiotherapy,

or none.

Figure 6.2: Influence diagram for the treatment of gastric NHL.

For this example the optimum is computed finding the maximum expected utility actions,

given a particular shape of the utility function. The resulting decision table has 10 columns

and 1029 rows, of which 120 are labeled as optimal and 900 as sub-optimal.

6.2 Performance measures

To analyze performances of data mining methods, I used ROC curves, confusion matrix and

accuracy. The Receiver Operating Characteristic (ROC, Mandrekar [2010]) is a measure of a

classifier’s predictive quality that compares and visualizes the tradeo↵ between the model’s

sensitivity and specificity. When plotted, a ROC curve displays the true positive rate on the
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Y axis and the false positive rate on the X axis on both a global average and per-class basis.

The ideal point is therefore the top-left corner of the plot: false positives are zero and true

positives are one.

This leads to another metric, area under the curve (AUC), which is a computation of the

relationship between false positives and true positives. The higher the AUC, the better the

model generally is. However, it is also important to inspect the steepness of the curve, as

this describes the maximization of the true positive rate while minimizing the false positive

rate.

By definition a confusion matrix C is such that C
i,j

is equal to the number of observations

known to be in group i and predicted to be in group j.

Thus in binary classification, the count of true negatives is C0,0, false negatives is C1,0,

true positives is C1,1 and false positives is C0,1.

Accuracy is the number of correct predictions divided by the total number of predictions.

6.3 Classfication trees

Decision Trees are a non-parametric supervised learning method used for classification and

regression. The goal is to create a model that predicts the value of a target variable by

learning simple decision rules inferred from the data features. A tree can be seen as a

piecewise constant approximation.

The deeper the tree, the more complex the decision rules and the fitter the model.

Typical advantages of decision trees are:

• Simple to understand and to interpret. Trees can be visualised.

• Requires little data preparation compared to other techniques. The cost of using the

tree for predicting data is logarithmic in the number of data points used to train it.

• Able to handle both numerical and categorical data.
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• Uses a white box model. If a given situation is observable in a model, the explanation

for the condition is easily explained by boolean logic. By contrast, in a black box

model (e.g., an artificial neural network), results may be more difficult to interpret

(Pedregosa et al. [2011]).

The main disadvantage of decision trees is that Decision-tree learners can create over-

complex trees that do not generalise the data well, in other words they are easily a↵ected

by overfitting.

1 from sklearn import tree

2 dt = tree.DecisionTreeClassifier ()

3 dt.fit(X_train , y_train)

4 # predictions

5 y_train_hat = dt.predict(X_train)

6 y_test_hat = dt.predict(X_test)

7 # accuracy

8 print(’Test accuracy: {}’.format(accuracy_score(y_train , y_train_hat)))

9 print(’Test accuracy: {}’.format(accuracy_score(y_test , y_test_hat)))

10 # AUC score

11 y_test_score_tree = get_auc_scores(dt, X_train , X_test , y_train , y_test)

12 # confusion matrix

13 show_cm(y_test , y_test_hat)

In this way is possible to analyze the data mining model built over the two algorithmic

results, thanks to performance measures and visualization tools (that for trees are simple).

As one can see from Fig. 6.3 and 6.4, the Arc Inversion solution is more simple and the

data mining model performs better on it. Results summary is in Table 6.1.

6.4 Nearest Neighbors

The principle behind nearest neighbor methods is to find a predefined number of training

samples closest in distance to the new point, and predict the label from these. The number of
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Figure 6.3: Confusion matrices of decision tree analysis applied to Genetic Algorithm (left)

and Arc Inversion results (right) of the first clinical problem.

CT <= 0.5
gini = 0.212
samples = 432
value = [380, 52]
class = Sub-optimal

Mediastinoscopy? <= 0.5
gini = 0.362
samples = 219
value = [167, 52]
class = Sub-optimal

True

gini = 0.0
samples = 213
value = [213, 0]

class = Sub-optimal

False

km_clust <= 0.5
gini = 0.263
samples = 109
value = [92, 17]

class = Sub-optimal

CT Results <= 1.5
gini = 0.434
samples = 110
value = [75, 35]

class = Sub-optimal

gini = 0.0
samples = 37
value = [37, 0]

class = Sub-optimal

CT Results <= 0.5
gini = 0.361
samples = 72
value = [55, 17]

class = Sub-optimal

gini = 0.0
samples = 37
value = [37, 0]

class = Sub-optimal

Treatment <= 0.5
gini = 0.5
samples = 35
value = [18, 17]

class = Sub-optimal

Mediastinoscopy Results <= 1.5
gini = 0.488
samples = 19
value = [11, 8]

class = Sub-optimal

Mediastinoscopy Results <= 1.5
gini = 0.492
samples = 16
value = [7, 9]
class = Optimal

Mediastinoscopy Death <= 0.5
gini = 0.337
samples = 14
value = [11, 3]

class = Sub-optimal

gini = 0.0
samples = 5
value = [0, 5]
class = Optimal

gini = 0.0
samples = 8
value = [8, 0]

class = Sub-optimal

Mediastinoscopy Results <= 0.5
gini = 0.5
samples = 6
value = [3, 3]

class = Sub-optimal

gini = 0.0
samples = 3
value = [0, 3]
class = Optimal

gini = 0.0
samples = 3
value = [3, 0]

class = Sub-optimal

Mediastinoscopy Death <= 0.5
gini = 0.375
samples = 12
value = [3, 9]
class = Optimal

gini = 0.0
samples = 4
value = [4, 0]

class = Sub-optimal

gini = 0.0
samples = 6
value = [0, 6]
class = Optimal

Mediastinoscopy Results <= 0.5
gini = 0.5
samples = 6
value = [3, 3]

class = Sub-optimal

gini = 0.0
samples = 3
value = [3, 0]

class = Sub-optimal

gini = 0.0
samples = 3
value = [0, 3]
class = Optimal

CT Results <= 0.5
gini = 0.368
samples = 70
value = [53, 17]

class = Sub-optimal

Treatment <= 0.5
gini = 0.495
samples = 40
value = [22, 18]

class = Sub-optimal

Treatment <= 0.5
gini = 0.494
samples = 38
value = [21, 17]

class = Sub-optimal

gini = 0.0
samples = 32
value = [32, 0]

class = Sub-optimal

Mediastinoscopy Death <= 0.5
gini = 0.444
samples = 21
value = [14, 7]

class = Sub-optimal

Mediastinoscopy Death <= 0.5
gini = 0.484
samples = 17
value = [7, 10]
class = Optimal

gini = 0.0
samples = 11
value = [11, 0]

class = Sub-optimal

Mediastinoscopy Results <= 1.5
gini = 0.42
samples = 10
value = [3, 7]
class = Optimal

Mediastinoscopy Results <= 0.5
gini = 0.5
samples = 6
value = [3, 3]

class = Sub-optimal

gini = 0.0
samples = 4
value = [0, 4]
class = Optimal

gini = 0.0
samples = 3
value = [0, 3]
class = Optimal

gini = 0.0
samples = 3
value = [3, 0]

class = Sub-optimal

gini = 0.0
samples = 6
value = [0, 6]
class = Optimal

Mediastinoscopy Results <= 1.5
gini = 0.463
samples = 11
value = [7, 4]

class = Sub-optimal

Mediastinoscopy Results <= 0.5
gini = 0.49
samples = 7
value = [3, 4]
class = Optimal

gini = 0.0
samples = 4
value = [4, 0]

class = Sub-optimal

gini = 0.0
samples = 3
value = [3, 0]

class = Sub-optimal

gini = 0.0
samples = 4
value = [0, 4]
class = Optimal

Mediastinoscopy Results <= 0.5
gini = 0.499
samples = 21
value = [11, 10]

class = Sub-optimal

Mediastinoscopy Results <= 0.5
gini = 0.488
samples = 19
value = [11, 8]

class = Sub-optimal

gini = 0.0
samples = 7
value = [7, 0]

class = Sub-optimal

Mediastinoscopy Results <= 1.5
gini = 0.408
samples = 14
value = [4, 10]
class = Optimal

gini = 0.0
samples = 7
value = [0, 7]
class = Optimal

Mediastinoscopy Death <= 0.5
gini = 0.49
samples = 7
value = [4, 3]

class = Sub-optimal

gini = 0.0
samples = 3
value = [0, 3]
class = Optimal

gini = 0.0
samples = 4
value = [4, 0]

class = Sub-optimal

gini = 0.0
samples = 5
value = [0, 5]
class = Optimal

Mediastinoscopy Death <= 0.5
gini = 0.337
samples = 14
value = [11, 3]

class = Sub-optimal

gini = 0.0
samples = 8
value = [8, 0]

class = Sub-optimal

Mediastinoscopy Results <= 1.5
gini = 0.5
samples = 6
value = [3, 3]

class = Sub-optimal

gini = 0.0
samples = 3
value = [3, 0]

class = Sub-optimal

gini = 0.0
samples = 3
value = [0, 3]
class = Optimal

Treatment <= 0.5
gini = 0.194
samples = 432
value = [385, 47]
class = Sub-optimal

CT <= 0.5
gini = 0.357
samples = 202
value = [155, 47]
class = Sub-optimal

True

gini = 0.0
samples = 230
value = [230, 0]

class = Sub-optimal

False

gini = 0.0
samples = 106
value = [106, 0]

class = Sub-optimal

Mediastinoscopy? <= 0.5
gini = 0.5
samples = 96
value = [49, 47]

class = Sub-optimal

gini = 0.0
samples = 47
value = [0, 47]
class = Optimal

gini = 0.0
samples = 49
value = [49, 0]

class = Sub-optimal

Figure 6.4: Decision trees applied to Genetic Algorithm (left) and Arc Inversion results

(right) of the first clinical problem.

Decision table Accuracy Accuracy with Clusters AUC Score AUC with Clusters

Medical ID by GA 0.9722 0.9305 0.9209 0.9242

Medical ID by AI 1.0 1.0 1.0 1.0

Gastric NH by EU 0.9951 0.8182 0.9939 0.7699

Table 6.1: Summary of test performances of Decision Tree over results for the clinical exam-

ples.

samples can be a user-defined constant k. For my analysis, I set di↵erent values of k and the

best turned out to be k = 3. The distance can be any metric measure: standard Euclidean

distance is the most common choice. Neighbors-based methods are known as non-generalizing
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machine learning methods, since they simply “remember” all of its training data: it does not

attempt to construct a general internal model, but simply stores instances of the training

data. Classification is computed from a simple majority vote of the nearest neighbors of each

point: a query point is assigned the data class which has the most representatives within the

nearest neighbors of the point.

Despite its simplicity, nearest neighbors has been successful in a large number of classi-

fication and regression problems. Being a non-parametric method, it is often successful in

classification situations where the decision boundary is very irregular. In our case we could

not expect it to work very well, because optimal actions should not necessarily be close in

the features space. However, as an experiment it exploits quite good results, shown here:

Decision table Accuracy Accuracy with Clusters AUC Score AUC with Clusters

Medical ID by GA 0.8750 0.8750 0.8213 0.8247

Medical ID by AI 0.9375 0.9236 0.9727 0.9648

Gastric NH by EU 0.9931 0.7191 0.9993 0.7523

Table 6.2: Summary of test performances of KNN over results for the clinical examples.

6.5 Bayes Classifier

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’

theorem with the naive assumption of conditional independence between every pair of fea-

tures given the value of the class variable. Bayes’ theorem states the following relationship,

given class variable y and dependent feature vector x1 through x
n

, :

P (y | x1, . . . , xn) =
P (y)P (x1, . . . , xn | y)

P (x1, . . . , xn)

Using the naive conditional independence assumption that

P (x
i

|y, x1, . . . , x
i−1, xi+1, . . . , xn) = P (x

i

|y),
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for all i, this relationship is simplified to

P (y | x1, . . . , xn) =
P (y)

Q
n

i=1 P (x
i

| y)
P (x1, . . . , xn)

Since P (x1, . . . , xn) is constant given the input, we can use the following classification

rule:

P (y | x1, . . . , xn) / P (y)
nY

i=1

P (x
i

| y)

ŷ = argmax

y

P (y)
nY

i=1

P (x
i

| y),

and we can use Maximum A Posteriori (MAP) estimation to estimate P (y) and P (x
i

| y).

The di↵erent naive Bayes classifiers di↵er mainly by the assumptions they make regarding

the distribution of P (x
i

| y). Common choices are Gaussian or Multinomial.

In spite of their over-simplified assumptions - strange in particular for our case, where x
i

variables conditional dependence is determined by a network - naive Bayes classifiers have

worked quite well in many real-world situations, famously document classification and spam

filtering (Pedregosa et al. [2011]). Results are in Table 6.3.

Decision table Accuracy Accuracy with Clusters AUC Score AUC with Clusters

Medical ID by GA 0.6134 0.6597 0.8439 0.8423

Medical ID by AI 1.0 1.0 1.0 1.0

Gastric NH by EU 0.9358 0.9037 0.9695 0.9579

Table 6.3: Summary of test performances of Naive Bayes over results for the clinical exam-

ples.
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6.6 SVM

Support-vector machine constructs a hyperplane or set of hyperplanes in a high- or infinite-

dimensional space, which can be used for classification, regression, or other tasks like outliers

detection. Intuitively, a good separation is achieved by the hyperplane that has the largest

distance to the nearest training-data point of any class (so-called functional margin), since

in general the larger the margin, the lower the generalization error of the classifier.

Often happens that the sets to discriminate are not linearly separable in the original space.

So, the original finite-dimensional space can be mapped into a much higher-dimensional

space, for making the separation easier in that space. Mappings used by SVM schemes are

designed to ensure that dot products of pairs of input data vectors may be computed easily

in terms of the variables in the original space, by defining them in terms of a Kernel function

k(x, y) selected to suit the problem (Pedregosa et al. [2011]). This is called the ”kernel

trick”.

The advantages of support vector machines are:

• E↵ective in high dimensional spaces, also in cases where number of dimensions is greater

than the number of samples.

• Uses a subset of training points in the decision function (called support vectors), so it

is also memory efficient.

• Versatile: di↵erent Kernel functions can be specified for the decision function. Common

kernels are provided are Linear and RBF .

The main disadvantages of SVM include the criticality in choosing Kernel functions and

regularization term

19
to avoid over-fitting when the number of features is much greater than

19. The regularization parameter is a degree of importance given to misclassifications, in the relaxed
quadratic optimization problem.
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the number of samples. For my analysis, I set an RBF kernel and a regularization parameter

C = 1.0. Results are in Table 6.4.

Decision table Accuracy Accuracy with Clusters AUC Score AUC with Clusters

Medical ID by GA 0.8611 0.8611 0.8971 0.9443
Medical ID by AI 1.0 1.0 1.0 1.0

Gastric NH by EU 0.9737 0.8202 0.9941 0.7431

Table 6.4: Summary of test performances of SVM over results for the clinical examples.

6.7 Discriminant analysis: LDA

Linear discriminant analysis (LDA) is a discriminant approach that attempts to model dif-

ferences among samples assigned to certain groups, that can be used as a classifier. The aim

of the method is to maximize the ratio of the between-group variance and the within-group

variance. When the value of this ratio is at its maximum, then the samples within each

group have the smallest possible scatter and the groups are separated from one another the

most. Once the LDA assumption of equal group covariances for a two-class discriminant

problem is fulfilled, one tries to maximize the expression:

S =

pC
b

pT

pC
w

pT

where C
b

and C
w

are between- and within-group covariance matrices, respectively, and

p is the direction in multivariate data space that separates the two groups of samples the

best

20
. Results are in Table 6.5.

20. It is insteresting to emphasize that p is the eigenvector obtained from the PCA decomposition of matrix
C

−1
w Cb.
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Decision table Accuracy Accuracy with Clusters AUC Score AUC with Clusters

Medical ID by GA 0.8611 0.8611 0.8491 0.8463

Medical ID by AI 1.0 1.0 1.0 1.0

Gastric NH by EU 0.9416 0.8814 0.9718 0.9449

Table 6.5: Summary of test performances of LDA over results for the clinical examples.

6.8 Association rules

For association rules mining over the results I developed two di↵erent algorithms: Apriori

and F-P Growth. Apriori algorithm is given by R. Agrawal and R. Srikant in 1994 for

finding frequent itemsets. Name of the algorithm is Apriori because it uses prior knowledge

of frequent itemset properties. We apply an iterative approach or level-wise search where

k-frequent itemsets are used to find k+1 itemsets.

To improve the efficiency of level-wise generation of frequent itemsets, an important

property is used called Apriori property which helps by reducing the search space: All

subsets of a frequent itemset must be frequent. If an itemset is infrequent, all its supersets

will be infrequent. To analyze frequencies, I had to convert the training set made of possible

solution to a categorical database.

Once found the frequent itemsets with one of the methods, is possible to search the

boolean association rules. Here I report the first 4 association rules made with Apriori for

the results of Arc Inversion:

1 antecedents consequents \

2 0 (Optimal) (CT)

3 1 (CT result 0) (Sub -optimal)

4 2 (CT result 1) (Sub -optimal)

5 3 (CT result 2) (Sub -optimal)

6 4 (Mediastinal Metastases) (Sub -optimal)

Slightly di↵erent rules are mined with FP-Growth:

1 antecedents consequents \
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2 0 (No CT) (Sub -optimal)

3 1 (No Mediastinoscopy , No CT) (Sub -optimal)

4 2 (No Mediastinoscopy , Mediastinal Metastases Re... (Sub -optimal)

5 3 (Mediastinal Metastases , No Mediastinoscopy , N... (Sub -optimal)

6 4 (Mediastinal Metastases , No Mediastinoscopy , M... (Sub -optimal)

F-P Growth (frequent-pattern growth) algorithm is another popular technique in Market

Basket Analysis (first introduced by Han). It produces similar results as Apriori algorithm

but is computationally faster due to a mathematically di↵erent technique. It follows a two-

step data preprocessing approach: first, it counts the number of occurrences of each item in

the transactional dataset; then, it creates a search-tree structure using the transactions.

Unlike Apriori, F-P Growth sorts items within each transaction by it’s frequency from

largest to smallest before inserting it into a tree. This is where it has a substantial compu-

tational advantage over Apriori since it does the frequency sorting early on. Items which

don’t meet minimum frequency support requirements are discarded from the tree.

I made the same mining operation for the result given by Genetic Algorithm, and I report

the first 4 rules with the FP-Growht method:

1 0 (Thoracotomy) (Sub -optimal)

2 1 (Thoracotomy , Mediastinal Metastases Result 2) (Sub -optimal)

3 2 (No Mediastinoscopy) (Sub -optimal)

4 3 (Thoracotomy , No Mediastinoscopy) (Sub -optimal)

5 4 (Thoracotomy , No Mediastinoscopy , Mediastinal ... (Sub -optimal)

6.9 Cluster analysis

Clustering is a type of unsupervised machine learning which aims to find homogeneous

subgroups such that objects in the same group (clusters) are more similar to each other than

the others.
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Although an unsupervised machine learning technique, the clusters can be used as fea-

tures in a supervised machine learning model.

K-Means is a clustering algorithm which divides observations into k clusters. Since we

can dictate the amount of clusters, it can be easily used in classification where we divide

data into clusters which can be equal to or more than the number of classes.

The idea is to use the clusters as additional features, looking for improvements over

another classification model.

1 from sklearn.cluster import KMeans

2 from sklearn.metrics import silhouette_score

3 clu = KMeans(n_clusters = 2, random_state =0, tol =0.00001 , max_iter =3000)

4 clu.fit(X_train)

5 # predict

6 y_labels_train = clu.labels_

7 y_labels_test = clu.predict(X_test)

8 # score of the clusters

9 print(f’Silhoutte score:’, silhouette_score(X_train , y_labels_train))

10 # add clusters as features

11 X_train[’km_clust ’] = y_labels_train

12 X_test[’km_clust ’] = y_labels_test

To check and to plot centers of the clusters (Fig. 6.5) can be useful for various reasons.

Fist, one can check if according to the algorithm - with respect to a specific feature - optimal

solutions are well separated from sub-optimal ones or not, looking at the centroids nearness.

Furthermore, is possible to eventually identify additionally intermediate clusters. For the

axis selection, one can be suggested by previous mining methods as association rules.

Finally, clusters visualization can be particularly useful in the case of discrete variables

problems, where plotting points in the features spaces is generally less understandable.

I tried other 3 clustering techniques: K-Medoids, OPTICS (Ordering Points To Identify

the Clustering Structure) and Agglomerative Clustering. In the summary tables, I also
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Figure 6.5: Plot of cluster centers found with K-Means with k=2 and k=3, along two features

of the optimal Gastric NHL table.

reported hyperparamenters and random seeds to make replicable the results.

The K-Medoids problem is similar to K-Means. Both algorithms are partitional (breaking

the dataset up into groups) and attempt to minimize the distance between points labeled

to be in a cluster and a point designated as the center of that cluster, but K-Medoids

chooses actual data points as centers (medoids or exemplars), and thereby allows for greater

interpretability of the cluster centers than K-Means, where the center of a cluster is not

necessarily one of the input data points (it is the mean between cluster’s points). The

classical greedy search to solve it is called Partitioning Around Medoids (PAM).

Hierarchical clustering is a general family of clustering algorithms that build nested clus-

ters by merging or splitting them successively. This hierarchy of clusters is represented as a

tree, an example is in Fig. 6.6. The root of the tree is the unique cluster that gathers all

the samples, the leaves being the clusters with only one sample.

Agglomerative Clustering performs a hierarchical clustering using a bottom up approach:

each observation starts in its own cluster, and clusters are successively merged together.

Finally, unlike previous method that based on distances, OPTICS uses the density of

cases to assign cluster membership. Its basic idea is similar to another popular method called

DBSCAN, but it addresses one of DBSCAN’s major weaknesses: the problem of detecting

meaningful clusters in data of varying density. To do so, the points of the database are

73



Figure 6.6: Dendogram obtained with Agglomerative Clustering performed on the heuristic

solution of the first clinical ID.

ordered such that spatially closest points become neighbors in the ordering.

Evaluating the performance of a clustering algorithm is not as trivial as counting the

number of errors or the precision and recall of a supervised classification algorithm. I used

the Silhouette score, that is a measure of how similar an object is to its own cluster (cohesion)

compared to other clusters (separation). The silhouette ranges from 1 to +1, where a high

value indicates that the object is well matched to its own cluster and poorly matched to

neighboring clusters. If most objects have a high value, then the clustering configuration is

appropriate. If many points have a low or negative value, then the clustering configuration

may have too many or too few clusters.

Clustering method N. Cluster Silhouette Score Hyperparameters Random Seed

K-Means 2 0.5601 tol = 0.001 5

PAM 4 0.4308 metric = manhattan 0

OPTICS 18 0.4388 min. samples = 3 0

Agglomerative 5 0.2974 metric = euclidean 2

Table 6.6: Summary table of clustering analysis performances on the Genetic Algorithm

results of the first clinical problem.
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Clustering method N. Cluster Silhouette Score Hyperparameters Random Seed

K-Means 2 0.4701 tol = 0.0001 5

PAM 4 0.4905 metric = euclidean 0

OPTICS 18 0.4328 min. samples = 3 0

Agglomerative 5 0.2974 metric = euclidean 2

Table 6.7: Summary table of clustering analysis performances on the Arc Inversion results

of the first clinical problem.

Clustering method N. Cluster Silhouette Score Hyperparameters Random Seed

K-Means 2 0.2508 tol = 0.0001 5

PAM 4 0.2489 metric = manhattan 0

OPTICS 5 0.0237 min. samples = 5 0

Agglomerative 5 0.2722 metric = l1 2

Table 6.8: Summary table of clustering analysis performances on the solution of the gastric

NHL problem.

6.10 Results and comments

In this section, the final results are reported and discussed. A first observation is that the

solution of the first clinical example founded with Arc Inversion is straightforward to mine

concerning the one of Genetic Algorithm. As Tables 6.4 and 6.5 report, accuracy and AUC

scores are very high for Arc Inversion results: except for KNN, they are maximal. Firstly, it

is noticeable that the example is not highly complex, so it is easy for powerful data mining

methods to perform well. In addition, the logic behind the Arc Inversion is di↵erent with

respect to that of Genetic Algorithm, and this can explain the di↵erent result in the analysis:

GA works in practice as a combinatorial method, so its results could be less interpretable.

GA results are performed remarkably well by Decision Tree, followed by LDA and Naive

Bayes in terms of AUC.

The additional clustering analysis in the first example does not improve the results, but

they remain fairly good. This is clear looking at the ROC curves in Fig. 6.7. Reasons are

mainly due to the difficulty in identify clusters for those problems: silhouttes scores are quite
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low; moreover, di↵erent clustering methods are the better performing on di↵erent instances,

as reported in Tables 6.6, 6.7 and 6.8.

In particular, regarding the gastric NHL optimal treatment, the clustering analysis does

not perform very well. The increasing complexity of the network makes it hard to divide

possible actions into reasonable clusters: this negatively a↵ects performance. Comparable

results are in the summary tables and Fig. 6.8. Interestingly, the only method whose

performances are not significantly reduced by the cluster is the Naive Bayes.

I also report the first 4 association rules mined with FP-Growth on the optimal treatment

for the gastric NHL example, in Fig. 6.9.

The first rules could not be very useful to explain results, since they are based on frequent

itemsets and the more frequent could be trivial ones. But analyzing the table deeper could

be interesting.

The optimal gastric NHL treatment shows a deep associated decision tree as showed

in Fig. 6.10, and this is coherent with the structure of the problem. However, confusion

matrices of many methods give good measures, as reported in Fig. 6.11. Best performances

are obtained with Decision tree, quickly followed by KNN and then by SVC.

6.11 Conclusions

It noticeable that, in general, more than one optimal table could exist for a given problem.

This is the first clinical example, where two di↵erent algorithms produce two di↵erent optimal

solutions that are both associated with the same maximal expected utility. However, each

algorithm finds only one optimal solution; therefore, in the data mining process, all the

others possibilities are labeled as sub-optimal, regardless of their actual optimality or sub-

optimality. On the one hand, this could a↵ect the reliability of the results classifier. On

the other, this follows our purposes since we want to mine the reasons behind algorithm

outcomes instead of finding all the optimal solutions.
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In conclusion, overall results show that it is possible to explain outcomes of an unsu-

pervised method with a supervised method. The idea to construct a new model over the

result of a complete model could be successful in terms of analysis, finding criticalities, and

understanding essential variables for the decisions suggested by the first approach.

Classification performances alone could not be instrumental. Though, when the mining

procedure are not black-boxes we can access several visualization and explanation tool, which

may not be available with the original model, or would be mainly di↵erent.

In our case, since the example problems treated involve only discrete variables, the ex-

trapolated rules easier to illustrate concerned decision trees and association rules essentially.

However, in general, when dealing with continuous variables, SVM or LDA’s decision bound-

aries could be very useful too.

When it is needed to critically analyze the recommended result of a machine learning

process, visualizing it from di↵erent points of view can be crucial, especially if accessing a

more intuitive version of the explanation.

6.12 Future lines of research

Nowadays, to construct decision-support systems (DSSs) supervising experts through con-

cise knowledge extraction and satisfactory answers when approaching complex queries is a

challenging task.

Mine is a proposal of an analysis method to demonstrate how data mining is a powerful

tool capable of lending itself to that particular issue.

However, this work did not deal with optimizing the performance of the decision model on

the basis of such analysis. A natural following could be to perform sensitivity analysis over

sets of parameters of the decision model. For instance, constructing a dataset by merging the

data mining evaluation of models sampled over the parameter sets of the decision algorithm

can show the relevance of the parameters conditioned to the optimal evaluated policies.
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In this direction, an intriguing topic to investigate would concern the ability of DSSs to

identify criticalities in their responses when the applied evaluation methods show poor or

contrasting performances.

Besides, further research could concern the automatic selection of the best set of hyper-

parameters of the mining technique, looking for optimization of the research techniques for

explaining results, probably necessary when the decision tables are incredibly complex.

Finally, it could be interesting to search for suitable visualization methods of decision

boundaries when dealing with discrete or mixed variables.
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Figure 6.7: ROC curves of di↵erent methods applied to the result of Genetic Algorithm on

the first clinical problem, with (up) and without (down) the additional clustering analysis.
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Figure 6.8: ROC curves of di↵erent methods applied to the solutions of the gastric NHL ID,

with (up) and without (down) the additional clustering analysis.

80



Figure 6.9: Dataframe head of gastric NHL treatment association rules.

BULKY.DISEASE <= 0.5
gini = 0.226
samples = 3086

value = [2685, 401]
class = Sub-optimal

CLINICAL.STAGE <= 0.5
gini = 0.012
samples = 2101
value = [2088, 13]
class = Sub-optimal

True

SURGERY <= 1.5
gini = 0.477
samples = 985

value = [597, 388]
class = Sub-optimal

False

HISTOLOGICAL.CLASSIFICATION <= 0.5
gini = 0.064
samples = 392
value = [379, 13]
class = Sub-optimal

gini = 0.0
samples = 1709
value = [1709, 0]
class = Sub-optimal

HELICOBACTER.TREATMENT <= 0.5
gini = 0.148
samples = 162
value = [149, 13]
class = Sub-optimal

gini = 0.0
samples = 230
value = [230, 0]

class = Sub-optimal

gini = 0.0
samples = 102
value = [102, 0]

class = Sub-optimal

HELICOBACTER.PYLORI <= 0.5
gini = 0.339
samples = 60
value = [47, 13]

class = Sub-optimal

gini = 0.0
samples = 47
value = [47, 0]

class = Sub-optimal

gini = 0.0
samples = 13
value = [0, 13]
class = Optimal

HELICOBACTER.TREATMENT <= 0.5
gini = 0.491
samples = 685

value = [297, 388]
class = Optimal

gini = 0.0
samples = 300
value = [300, 0]

class = Sub-optimal

HELICOBACTER.PYLORI <= 0.5
gini = 0.222
samples = 291
value = [37, 254]
class = Optimal

HISTOLOGICAL.CLASSIFICATION <= 0.5
gini = 0.449
samples = 394

value = [260, 134]
class = Sub-optimal

gini = 0.0
samples = 140
value = [0, 140]
class = Optimal

HISTOLOGICAL.CLASSIFICATION <= 0.5
gini = 0.37
samples = 151
value = [37, 114]
class = Optimal

CLINICAL.STAGE <= 2.5
gini = 0.497
samples = 80
value = [37, 43]
class = Optimal

gini = 0.0
samples = 71
value = [0, 71]
class = Optimal

CLINICAL.STAGE <= 0.5
gini = 0.431
samples = 54
value = [37, 17]

class = Sub-optimal

gini = 0.0
samples = 26
value = [0, 26]
class = Optimal

gini = 0.0
samples = 19
value = [19, 0]

class = Sub-optimal

CLINICAL.STAGE <= 1.5
gini = 0.5
samples = 35
value = [18, 17]

class = Sub-optimal

gini = 0.0
samples = 17
value = [0, 17]
class = Optimal

gini = 0.0
samples = 18
value = [18, 0]

class = Sub-optimal

CLINICAL.STAGE <= 0.5
gini = 0.492
samples = 194
value = [85, 109]
class = Optimal

CLINICAL.STAGE <= 2.5
gini = 0.219
samples = 200
value = [175, 25]
class = Sub-optimal

gini = 0.0
samples = 41
value = [0, 41]
class = Optimal

HELICOBACTER.PYLORI <= 0.5
gini = 0.494
samples = 153
value = [85, 68]

class = Sub-optimal

CLINICAL.STAGE <= 2.5
gini = 0.35
samples = 84
value = [65, 19]

class = Sub-optimal

CLINICAL.STAGE <= 2.5
gini = 0.412
samples = 69
value = [20, 49]
class = Optimal

gini = 0.0
samples = 39
value = [39, 0]

class = Sub-optimal

CLINICAL.STAGE <= 3.5
gini = 0.488
samples = 45
value = [26, 19]

class = Sub-optimal

gini = 0.0
samples = 19
value = [0, 19]
class = Optimal

gini = 0.0
samples = 26
value = [26, 0]

class = Sub-optimal

gini = 0.0
samples = 32
value = [0, 32]
class = Optimal

CLINICAL.STAGE <= 3.5
gini = 0.497
samples = 37
value = [20, 17]

class = Sub-optimal

gini = 0.0
samples = 20
value = [20, 0]

class = Sub-optimal

gini = 0.0
samples = 17
value = [0, 17]
class = Optimal

CLINICAL.STAGE <= 0.5
gini = 0.334
samples = 118
value = [93, 25]

class = Sub-optimal

gini = 0.0
samples = 82
value = [82, 0]

class = Sub-optimal

gini = 0.0
samples = 51
value = [51, 0]

class = Sub-optimal

CT.RT.SCHEDULE <= 2.5
gini = 0.468
samples = 67
value = [42, 25]

class = Sub-optimal

GENERAL.HEALTH.STATUS <= 0.5
gini = 0.497
samples = 48
value = [26, 22]

class = Sub-optimal

SURGERY <= 0.5
gini = 0.266
samples = 19
value = [16, 3]

class = Sub-optimal

SURGERY <= 0.5
gini = 0.444
samples = 15
value = [10, 5]

class = Sub-optimal

SURGERY <= 0.5
gini = 0.5
samples = 33
value = [16, 17]
class = Optimal

CLINICAL.PRESENTATION <= 0.5
gini = 0.198
samples = 9
value = [8, 1]

class = Sub-optimal

CLINICAL.PRESENTATION <= 0.5
gini = 0.444
samples = 6
value = [2, 4]
class = Optimal

gini = 0.0
samples = 1
value = [0, 1]
class = Optimal

gini = 0.0
samples = 8
value = [8, 0]

class = Sub-optimal

gini = 0.0
samples = 2
value = [2, 0]

class = Sub-optimal

gini = 0.0
samples = 4
value = [0, 4]
class = Optimal

CT.RT.SCHEDULE <= 0.5
gini = 0.375
samples = 16
value = [4, 12]
class = Optimal

CLINICAL.PRESENTATION <= 1.5
gini = 0.415
samples = 17
value = [12, 5]

class = Sub-optimal

gini = 0.0
samples = 3
value = [3, 0]

class = Sub-optimal

CLINICAL.PRESENTATION <= 1.5
gini = 0.142
samples = 13
value = [1, 12]
class = Optimal

gini = 0.0
samples = 7
value = [0, 7]
class = Optimal

CLINICAL.PRESENTATION <= 2.5
gini = 0.278
samples = 6
value = [1, 5]
class = Optimal

gini = 0.0
samples = 1
value = [1, 0]

class = Sub-optimal

gini = 0.0
samples = 5
value = [0, 5]
class = Optimal

gini = 0.0
samples = 7
value = [7, 0]

class = Sub-optimal

CLINICAL.PRESENTATION <= 2.5
gini = 0.5
samples = 10
value = [5, 5]

class = Sub-optimal

gini = 0.0
samples = 5
value = [0, 5]
class = Optimal

gini = 0.0
samples = 5
value = [5, 0]

class = Sub-optimal

gini = 0.0
samples = 9
value = [9, 0]

class = Sub-optimal

CLINICAL.PRESENTATION <= 0.5
gini = 0.42
samples = 10
value = [7, 3]

class = Sub-optimal

gini = 0.0
samples = 4
value = [4, 0]

class = Sub-optimal

GENERAL.HEALTH.STATUS <= 0.5
gini = 0.5
samples = 6
value = [3, 3]

class = Sub-optimal

gini = 0.0
samples = 2
value = [0, 2]
class = Optimal

CLINICAL.STAGE <= 1.5
gini = 0.375
samples = 4
value = [3, 1]

class = Sub-optimal

gini = 0.0
samples = 3
value = [3, 0]

class = Sub-optimal

gini = 0.0
samples = 1
value = [0, 1]
class = Optimal

Figure 6.10: Decision tree on gastric NHL treatment.

Figure 6.11: In clockwise order: Decision Tree, SVC, LDA, Naive Bayes, KNN confusion

matrix of the optimal gastric NHL treatment.
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