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A B S T R A C T

Recent advancements in DNA and RNA sequencing technologies al-
low for higher resolution single cell and bulk data. Interest in research
for cancer-driving mutations has therefore increased. The underly-
ing models for such biological data are usually complex, typically
showing hierarchical structures and still being subject to noisy and
highly variable data. Here we propose an extension to a state-of-the-
art method, PhylEx, which combines allelic imbalance data of somatic
mutations both from scRNA-seq data and DNA bulk data to build a
clonal tree of genetic mutations. The extension of the statistical model
takes into consideration also the copy-number variation throughout
the whole genome which helps in better explaining the data, provid-
ing a more accurate framework for Bayesian inference procedures.
More specifically, in addition to allelic imbalance data, we try to lever-
age on gene expression data which has been shown to be highly cor-
related with copy numbers. The devised model is partially based on
the model described in Clonealign, which is basically a regression
model on count data. The scope of the thesis is to investigate the new
model, generate synthetic data, and show that true copy number pro-
files maximize the likelihood of the data. In a future work, it will be
possible then to implement a sampling algorithm in order to perform
inference on the new parameters of the model, potentially increasing
the performance of the mutation tree generation already achieved by
PhylEx.
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G L O S S A RY

allele One of the different forms of a gene. It can be
normal or mutant. Alleles of the same gene can
be either dominant or recessive. If both alleles are
recessive, then the expressed phenotype of the in-
dividual changes with respect to the dominant
one.

bin Region of the DNA (or RNA) in which genes are
clustered. The bins size can be fixed or vary de-
pending on the genetic content.

break-point Position in the genome that separates two se-
quences that have different copy numbers.

codon Triplet of nucleotides in DNA or RNA which cod-
ifies for a specific amino acid. E.g. the codon CAA
translates to Glutamine.

dropout Event that occurs in single-cell RNA sequencing
when a gene is observed at a low or moderate
expression level in one cell but is not detected
in another cell of the same cell type. Dropout
events occur due to the low amounts of mRNA
in individual cells and inefficient mRNA cap-
ture, as well as the stochasticity of mRNA expres-
sion [28].

genome The complete set of genetic information in an or-
ganism.

genotype The subsequent combination of alleles of an indi-
vidual for a specific gene. A particular genotype
determines the phenotype of an organism.

hypermutability The state or condition of undergoing mutation at
a high rate, or of being highly prone to mutation.

library size The count of all reads that come out of the se-
quencer for the used library (referred to a se-
quencing experiment). In the context of differen-
tial expression normalization it could simply re-
fer to the sum of the reads over the genes.

x
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Glossary xi

locus A single position in the genome. Each locus can
be referenced through two coordinates, namely
the chromosome where it is located and the posi-
tion of its associated base.

phenotype The sum of an organism’s observable characteris-
tics. The phenotype is influenced by the genotype.
Unlike the genotype, which requires the analy-
sis of biological assays, the phenotype can be ob-
served simply by looking at the organism’s out-
ward features and characteristics.

stop codon Codon which notifies the termination of the trans-
lation process when generating a protein.

transcription Biological process in which several enzymes,
including helicase and topoisomerase, unwind
DNA to provide access to another enzyme known
as RNA polymerase. RNA polymerase travels
along the unwound DNA strand to construct the
mRNA molecule until it is ready to leave the nu-
cleus.
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1
I N T R O D U C T I O N

1.1 background

Cancer arises when cells grow and multiply uncontrollably and, start-
ing from one tissue, spread over other parts of the body1. When cells
contain faulty genetic information (DNA) the normal cell division be-
haviour can be altered and may eventually lead to tumors. Normally,
cells with defected DNA are recognized by the organism and there-
fore eliminated before they turn cancerous. However, the body is not
always able to do so, and sometimes these cells proliferate without
being stopped.

In 1976, Nowell [25] proposed that genetically unstable cells evolve
producing new variants and following a selection process similar (but
not identical [13]) to Darwin’s evolution of species. Most cancer cells
are eliminated by immune cells, as just mentioned, but occasionally
some have additional selective advantage, which allow them not only
to survive, but also to generate new mutations, which might be even
more resistant against an individual’s immune system.

Nowell’s theory and the related advancements in cancer research
have led the way to more specific subareas, dedicated to the devel-
opment of theory and methods for interpreting tumor evolution. The
hereby presented work of research belongs to the thread of tumor
phylogenetics, i.e. the scientific study of the relationship between can-
cer clones in a clonal tree structure which characterizes the evolution-
ary process. Studies in the last decades [32] show that it might indeed
be possible to devise computational methods to reconstruct the evo-
lutionary processes and therefore increase the level of understanding
of the initiation and development of tumors.

1.2 problem statement

One peculiar characteristic of tumor evolution is that cancer cells
present mutations at higher rate with respect to species evolution.
This property is also called hypermutability [22]. Variants are of many
kinds and recent methods predominantly focus on single nucleotide
variations (SNV) and copy number variations (CNV) [32] (more on
that in Section 2.1), defining models which leverage on that infor-
mation to characterize the evolution of one or multiple tumors. This
work indeed wants to expand the model of a state-of-the-art method,
PhylEx [18], which uses SNVs to build a clonal tree that fits the given
data. More specifically, the aim is to incorporate CNVs in the model
in a way that this additional information could lead to greater perfor-
mance in terms of accuracy.

1 What Is Cancer? - National Cancer Institute

1
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2 introduction

In the context of Bayesian inference methods, reconstructing a clonal-
tree, which describes the evolution of a tumor in a patient, from bi-
ological data D, can be done by finding the tree T̂ which yields the
maximum probability given the data:

T̂ = argmaxT p(T|D),

where p(·) is a complex probability distribution, main target of the
probabilistic modelling process.

Although PhylEx method is shown to perform better than all the
other methods for clonal-tree reconstruction, it leverages only on SNVs
and not on CNVs. Since both variations are valuable sources of in-
formation when studying cancer evolution, a method that is able to
make inference taking into account these two kinds of mutations to-
gether is likely to achieve more accurate results. In order to build
such method, a new mathematical model has to be defined on top of
the existing one.

1.3 purpose

The work aims at further developing the project started with PhylEx,
which has been carried out by Dr. Seong-Hwan Jun and Prof. Lager-
gren, supervisors of this degree project, and the rest of the research
team, which features members from several institutions, including
KTH Royal Institute of Technology.

The high level purpose of the thesis is therefore the same as in
PhylEx, i.e. improve the state-of-the-art methods in tumor phyloge-
netics, acquire new insights on the evolution of cancer, thus paving
the way for developing innovative medical treatments in cancer ther-
apy.

1.4 goals and results

The thesis will address the following main research questions:

1. How to incorporate copy-number variations in PhylEx model?

2. Is there a preferred model among alternative formulations?

3. Given the new model, can it drive an inference algorithm to the
true copy-number values?

We answer Question 1 showing that Clonealign [6] offers a suitable
model of the data given the analysis presented in Section 4.1. Then,
we design a new model (Section 3.4) and consider some variations of
it, in order to seek the most appropriate one; we address Question
2 by predicting copy number values using a maximum likelihood
approach and we observe that models accounting for zero-inflation
should be preferred (Section 4.2). Lastly, we answer Question 3 by
carrying out a sensitivity analysis on the copy numbers with the like-
lihood as the target measure (Section 4.3), which finds maximum like-
lihood value for the true copy number values.

[ July 9, 2021 at 15:16 – classicthesis version 4.2 ]



1.5 scope and delimitations 3

1.5 scope and delimitations

This work proposes a novel probabilistic model for tumor evolution-
ary tree inference which extends the original model in PhylEx by in-
cluding copy number variations and gene expression data. It brings
under analysis various possible models of the data and compares
them. Moreover, it provides a tool for generating synthetic data ac-
cording to several parameters which have been found in literature
and by extensively analyzing real data. Finally, it shows the impact of
copy number variations on the log-likelihood of the model through a
sensitivity analysis, which might be of value for a future implemen-
tation of a sampling technique for Bayesian inference.

However, designing, implementing and testing a specific inference
algorithm for the new model is out of the scope of this work. As a
consequence, a comparison between the original PhylEx model and
the new one in terms of accuracy in the clonal-tree reconstruction will
not be addressed.

1.6 outline

In Chapter 2 I introduce all the most relevant concepts that are nec-
essary for understanding the present study. Then, in Chapter 3 the
original model and the extension proposed are described, along with
the adopted tools and methodologies. In Chapter 4 I show the results
obtained. Lastly I elaborate on the meaning and validity of the re-
sults in Chapter 5, concluding with a few comments and reflections
in Chapter 6.

1.7 about the thesis

The simulation software is written in C++ on top of PhylEx and is
available at

https://github.com/junseonghwan/PhylEx/tree/copy-number,

while all the data analysis software has been coded in R and can be
found at

https://github.com/toyo97/cn-phylex-analysis.
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2
B A C K G R O U N D

In this section I first present a brief introduction to genomics, which is
fundamental to understand the biological concepts embraced in this
work. Then I elaborate on the basic principles of Bayesian methods
and statistical modelling. Finally, I summarize some related methods
to give a brief overview of the state-of-the-art approaches.

2.1 genomics

2.1.1 DNA and RNA

Deoxyribonucleic acid (DNA) is a molecule composed by a long dou-
ble stranded chain of base units called nucleotides. Each nucleotide
contains one of the four nucleobases (cytosine, guanine, adenine or
thymine) resulting in a sequence of alternating bases whose order
defines the unique characteristics of the individual. The two separate
strands are connected together according to the two base pairing rules
(A with T and C with G) and form the so-called “double helix” struc-
ture. In eukaryotic cells, category to which animals, and therefore
humans belong, DNA is organized in structures called chromosomes
that are stored within the cell nucleus. In Figure 1 a schema of the
DNA structure along with the base-paring rules is shown.

In human cells, each DNA molecule is formed by 23 pairs of chro-
mosomes, with one pair being the X/Y sex chromosomes (see Fig-
ure 2). The length of a human genome is typically around 3 bil-
lion bases (or 6Gb if we consider also the complementary sequence),
which constitutes an extremely large amount of genetic information.
This information is used by the cells as instructions saying which
protein to generate, hence letting them provide the necessary compo-
nents for an organism to grow and survive.
The information required to build a specific protein is coded in a sub-
sequence of DNA called gene. More than 99.9% of the human genome
is common to all humans, while the rest 0.01% determines the indi-
vidual traits such as eyes color, skin tone etc., but also the risk of
developing diseases and the responses to medications1. The number
of genes in the human genome is around 20 and 25 thousands, all di-
vided into the 23 pairs of chromosomes. However, not all sequences
in a gene codify for proteins: the protein-coding sequences are called
exons, but most of the gene is constituted of sequences which contain
no coding information, and these are called introns.

Proteins are not generated directly from the DNA, but rather from
a copy of its information that is transferred to the RNA during tran-
scription. The RNA is a single-stranded molecule which, among other

1 Introduction to Genomics - National Human Genome Research Institute

5
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6 background

Figure 1: Schematic illustration of the DNA structure, as a double-stranded
helix, forming the chromosome. Image credits to Soleil Nordic,
Shutterstock

Figure 2: Karyotype of human male picturing the 22 chromosomes plus
the sex chromosomes. Note that the first chromosomes are signifi-
cantly larger than the last ones, therefore containing more genetic
information. Image credits to NHGRI.
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2.1 genomics 7

... CAT CAT CAT CAT ...

... CAT CAT CCT CAT ...

Figure 3: Example of SNV, the adenine nucleotide in the original sequence
has been replaced by a cytosine nucleotide.

functions, is responsible for the generation of the appropriate pro-
teins. In fact, the RNA (more precisely, the mRNA) filters out all the
non-coding part of DNA while keeping only the exons, and then it is
translated into amino acids by the ribosome2.

2.1.2 Mutations: SNV and CNV

Somatic mutations can occur in various forms. The simplest mutation
is the single nucleotide variation (SNV) and consists of an alteration
of a nucleotide base (e.g. see Figure 3). Sometimes, a certain SNV
can be more common and qualify as SNP (single nucleotide polymor-
phism), if it is present in at least 1% of the population. Since particular
sequences of bases codify for specific amino acids, and therefore pro-
teins, an SNV might result in a different instruction for the ribosome.
More specifically, an SNV can lead to one of the following cases:

• the SNV produces a sequence which codifies for the same amino
acid as before, having no effect during the translation process
(e.g. both the codons CGC and CGA codify for Arginine). This
is called synonymous change;

• the SNV leads to a codon that codifies for a different amino
acid, then it is called non-synonymous change. Even in this case,
the mutation might not result in a pathogenic variant;

• the SNV produces a stop codon, prematurely stopping the trans-
lation process. This is called nonsense variant.

While SNVs consist of a change of a single base, a mutation can
generally involve more nucleotides at once, and this is not restricted
to a change of the nucleotide, but it can also consist of an insertion (or
deletion) of one or more bases. These mutations are also called indels.
When an indel is larger than 50b, it is called structural variation. In
particular, a structural variation in which a portion of DNA (or RNA)
is duplicated or deleted) is known as copy number variation.

Recently, copy number variations have been widely studied along
with SNVs as it has been generally accepted that these variations are
highly present in tumors [5, 37] and they have been shown to affect
the gene expression [35].

According to the tumor evolution theory introduced by Nowell [25],
cancer cells arise from healthy cells that accumulate mutations. In this
setting, it is possible to construct an evolutionary tree in which each
node represents a clone. A clone is a population of cells that share

2 What Is RNA? - News Medical Life Sciences
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8 background

(a) SNV (b) CNV

Figure 4: Comparison between SNV and CNV at DNA sequence level. Note
that in CNVs (b) the repeated sequence is composed by a large
number of nucleotides, while SNVs (a) involve only one nu-
cleotide.

some characteristics, such as a set of mutations, and the root node is
generally identified as the healthy population. Also, the prevalence of
each clone in the individual indicates its growth and fitness. Knowing
the clonal population structure of a tumor is therefore a great source
of information for cancer diagnosis and treatment.

2.2 biological data

Collecting genomic data is a notably expensive and complex task;
besides, obtaining high-quality data is even more challenging. Nev-
ertheless, in the recent years, next generation sequencing (NGS) tech-
nologies has led to faster and higher quality data collection, making
large-scale whole genome sequencing (WGS) accessible and practical
for the average researcher [2].
Through DNA sequencing it is possible to extract the sequence of nu-
cleotides in the DNA and therefore recognize eventual SNVs, CNVs
and other mutations. There are several methods and technologies
that perform sequencing and they usually follow a complex pipeline
which starts from the treatment of the tissue containing the genetic
information, which then passes through an amplification process and
is matched with a sequencing library to eventually obtain the reads. A
detailed description of the sequencing process is beyond the scope of
the present work.

Sequencing can be performed both on DNA and RNA. As men-
tioned in Section 2.1, the DNA is situated, unchanged, in all cells of an
organism, while RNA molecules are transcriptions of DNA contain-
ing the information used by the cells. This means that DNA sequenc-
ing provides us with a static picture of the cells behaviour, whereas
RNA sequencing is more likely to give us information about what the
cells are actually doing. None of them is a better source of informa-
tion when analyzing the state of a tumor, in fact these two processes
are dependent upon and inform each other.
Moreover, sequenced data can be obtained either from sets of differ-
ent cells put all together (bulk data) or from single cells taken sep-
arately (single-cell data). Again, each of the two data types has its
strengths and weaknesses: bulk data are generally of higher resolu-
tion and less noisy while single-cell data present regulatory elements
specific to one cell type useful to determine how genes are differ-
entially expressed across cells, although they feature high rates of
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2.2 biological data 9

ID b d M m

s0 73 150 7 0

s1 101 198 4 3

s2 109 369 4 3

(a) bulk DNA

gene_id c1 c2 c4 c5

ENSG00000223972 0 0 0 0

ENSG00000227232 0 11 16 5

ENSG00000241860 0 9 23 3

(b) scRNA

Figure 5: First lines of the (a) bulk DNA allelic-imbalance dataset and the
(b) scRNA gene expression dataset. In (b) only four out of the 360

cells are shown.

dropout3 and few reads per cells [14]. After sequencing DNA (or
RNA) several types of information can be extracted from the genomic
sequence. Here I present the two data-types that have been taken un-
der analysis in this work, namely allelic-imbalance of somatic muta-
tions and gene expression data. The former, which I will just refer to
as allelic imbalance data, deal with SNVs, and present, for each single
position in the genome, the number of reads of the variant nucleotide
against the total number of reads of that position. The latter feature
the number of reads for each gene regardless the variations, which
represents how much a gene is expressed.

2.2.1 The datasets

The datasets available for the presented work have been obtained
from a culture of three ovarian cancer cell-lines, all originating from
the same patient. For more details on the origin of the datasets and
the preparation process, see PhylEx description [18].
The main datasets are three: bulk DNA allelic imbalance data, single-
cell RNA allelic imbalance data, and single-cell RNA gene expression
data.

Figure 5 shows an example of two of the above mentioned datasets.
The third, scRNA allelic imbalance dataset, is equivalent to the bulk
DNA with the additional distinction between different cells.
The allelic imbalance dataset features four attributes for each position
in the genome n (from now on, also called locus): the variant reads
count bn, the total reads count dn, the major copy number Mn and
the minor copy number mn. The ID of each locus maps to the coor-
dinates in the genome, which are written in terms of chromosome
and base position (e.g. SNV s0 is located in chromosome 1 at posi-
tion 33282970). The mappings between SNV IDs and coordinates are
stored in a separate file.
The single-cell RNA dataset is instead in the form of a matrix (some-
times referred to as UMI-count matrix) with the genes row-wise and
cells column-wise. The gene IDs refer to the Ensembl genes database,
one of the most used gene databases. In particular, the IDs belong
to the Genome Reference Consortium Human Build 37 (GRCh37),

3 see Glossary for definition of dropout
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also called simply hg194. Each Ensembl gene ID is associated to a
set of coordinates. Unlike the SNV IDs the mapping is not relative
to the dataset, but refers to the standard just mentioned, and since
each gene is a sequence of multiple nucleotides, the coordinates are
now three: chromosome, start position and end position (e.g. the
gene ENSG00000227232 is located in chromosome 1 between posi-
tions 14363 and 29806).

2.3 bayesian inference

In the last two decades, many methods have been developed and
tested in tumor phylogenetics for estimating the parameters of the
evolutionary trajectories of cancer cells, such as combinatorial opti-
mization methods (like ILP), maximum likelihood, etc. [32]. More re-
cently, the field moved towards more sophisticated probabilistic meth-
ods like Bayesian sampling which better handles the noisy nature of
the data and gives more insights on the uncertainty in trees inference,
although they can be more computationally demanding compared to
the other approaches.

In this section I briefly introduce the Bayesian approach for infer-
ence since PhylEx, and other methods upon which this work is based,
perform machine learning with probabilistic models.

2.3.1 Maximum A Posteriori (MAP)

In any machine learning method, we can identify three main con-
cepts: a model, the data and the learning algorithm. The goal is then
to design an algorithm with which it is possible to automatically find
some parameters θ̂ of a model M such that it fits the given dataset D.
In parametric Bayes the model is a probabilistic model, and the learn-
ing process, also known as inference, is performed using Bayes’ rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)

where

• p(θ|D) is called the posterior distribution;

• p(D|θ) is the likelihood of the data given the parameters;

• p(θ) is the prior distribution over the parameters;

• p(D) is the marginal distribution for the data.

Most of the times the marginal distribution p(D) is not considered
as its computation is typically intractable. In fact, we can also simply
write

p(θ|D) ∝ p(D|θ)p(θ).

4 Human Genome GRCh37, Ensembl archive
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In the case of maximum a posteriori (MAP) inference, the goal is
then to find the point estimate of the parameters that maximizes the
posterior distribution, hence

θ̂MAP = argmaxθ p(θ|D) (1)

= argmaxθ p(D|θ)p(θ) (2)

which is, intuitively, the most likely parametrization that the model
M would have when provided with the dataset D.

2.3.2 Sampling methods

There are several ways or finding the point estimate θ̂ in MAP infer-
ence. Sometimes it is possible to derive a closed form solutions (exact
inference), especially if the prior distribution p(θ) is conjugate for the
likelihood distribution p(D|θ), which means that the posterior distri-
bution belongs to the same family of the prior.
When exact inference is intractable, it is necessary to resort to some
kind of approximation. One way of obtaining this approximation is
by numerical sampling.

Sampling methods, also known as Monte Carlo techniques, aim at
finding an approximation of the posterior distribution by drawing a
large amount of samples from it. This way it is possible, for instance,
to compute the expected value of the posterior distribution simply by
taking the average of the samples. To obtain an approximation of the
MAP parameters it is enough to draw a sufficiently large amount of
samples from the posterior and then take the one that reaches maxi-
mum value of p(θ|D).
However, it is worth to mention that numerical sampling allows us to
learn all information about the posterior, not just obtaining a point es-
timate. For example, one could also plot an histogram of the samples,
obtaining an approximation of the density function of the posterior
distribution.

2.4 nonparametric bayes

In parametric Bayesian inference, when we deal with distributions
over structured data, we need to fix the structure in advance. For ex-
ample, in the case of distribution over an evolutionary tree, we would
have to define first what is the size and topology of the tree, and then
assign prior probabilities to each node of the tree, which means a
limited number of parameters. Fixing the number of parameters is
possible if the tree structure can be observed, however it is not al-
ways the case.
Indeed, in tumor phylogenetics inferring the unobserved structure
of the evolution process is one of the main goals. To make Bayesian
inference possible in this case, models have to adopt a nonparamet-
ric Bayesian approach to obtain more flexible priors, with infinite-
dimensional structures. Due to their flexibility, nonparametric models
have gained considerable popularity in the field of machine learning,
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especially in unsupervised learning.
The idea is to define not just a distribution over the data, but a distri-
bution over distributions (or distributions over probability measures).
The structure is then not specified a priori, but rather it is determined
from the data. Note however that the fact it is called “nonparametric”
does not mean that the model lacks parameters.
To make a simple example, an histogram is a nonparametric estimate
of a probability distribution: although we have to define the width of
each bin in advance (which is a parameter of the model), the number
of bins for an histogram depends on the nature of the data5.

2.4.1 Dirichlet process

The Dirichlet process, introduced by Ferguson in 1973 [10], is one of
the models used in Bayesian nonparametric statistics.
The name comes from the Dirichlet distribution, a family of contin-
uous multivariate distributions parametrized by α which describes
K > 2 variables X1, ...,X2 such that each xi > 0 and

∑
i xi = 1. In

fact, the Dirichlet process is a generalization of this family of distri-
butions in which K → ∞. Given this last definition, it might seem
unclear how it is possible to describe a distribution on an infinite di-
mensional space. Instead of defining a density function, it is enough
to define an algorithm for drawing samples from the distribution.

More specifically, following the constructive approach to the Dirich-
let process (DP) by Sethuraman [34], denoting by Θ the continuous
parameter space on which we define the DP, we can draw a random
probability measure G with parameters H,α using a sequence of beta
random variables6. The base measure H is a distribution over the
same space Θ that serves like a mean E[G(A)] = H(A) (e.g. a Gaus-
sian over the real line), and the strength parameter α > 0 serves like
inverse variance Var[G(A)] = H(A)(1−H(A))

α+1 , for A as any subset of Θ.
Furthermore, it can be proved that any finite partition (A1,A2, ...,An)
of the parameter space Θ is such that (G(A1),G(A2), ...,G(An)) is
Dirichlet distributed.
Sethuraman’s approach can be viewed as a way of breaking a stick
of unitary length (hence, the alternative name stick-breaking process) in
an unlimited number of pieces and is described as follows:

1. draw a sample from a Beta distribution νi ∼ Beta(1,α);

2. compute the actual length of the stick normalizing over the pre-
vious Beta variables

πi = νi

i−1∏
i ′=1

(1− νi ′)

5 A more detailed description of histograms in the context of nonparametric Bayesian
inference can be found in [3]

6 The Beta distribution is continuous and describes a r.v. with support [0, 1] given two
shape parameters
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Figure 6: Illustration of the Chinese restaurant process. A new person arrives
and either sits at a table with people or sits at a new table. The
probability of sitting at a table is proportional to the number of
people at the table.

if i = 1, then πi = νi;

3. draw a value θi ∼ H, with each θi being i.i.d;

4. repeat infinitely many times.

The outcome of this process is the infinite discrete distribution over
the continuous space Θ:

G :=

∞∑
i=1

πiδθi .

Note that, while H is a continuous distribution and thus the prob-
ability that any two samples are equal is precisely zero, G is made
up of countably infinite number of masses, therefore there is a pos-
itive probability that two samples collide. This property implies the
creation of an implicit clustering on samples drawn from G.

An effective way of representing a DP can be viewed in the popular
analogy of the so-called “Chinese restaurant process” [1] in which the
Nth customer is assigned to the table jwith probabilityNj/(N+α−1)

or assigned to a new (empty) table with probability α/(N + α − 1),
whereNj is the number of customers at table j, which impliesN = 1+∑
jNj. Each customer is a sample drawn from the Dirichlet process,

the number of tables is potentially infinite and each table corresponds
to one the θi atoms that build the G distribution.

In practice, when applying this model to a finite set of data, each da-
tum is then assigned to its cluster according to the urn-based scheme
just described, i.e. sequentially positioning the data in the segments
according to a rule. Equivalently, for each datum, the cluster can be
sampled from G using the πi probabilities, segments of the unitary
length stick in the stick-breaking process. Once all data have been as-
signed, the result is an implicit grouping (or clustering) of the data
where the number of clusters is not defined in advance and, in case
of data streams, could potentially grow indefinitely.

2.4.2 Tree-structured stick-breaking process

The tree-structured stick-breaking process [12], or TSSB, is an extension
of the Dirichlet process in which the structure is not linear but takes
the form, indeed, of a tree. The cluster are then related through an
ancestry. This is achieved by interleaving two parallel stick-breaking
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processes as shown in Figure 7 (b): the first determines the size of the
partition reserved to each node, as a function of depth, the second
determines the branching probabilities.
The process therefore makes use of two sequences of Beta variates: de-
noting with |ε| the depth of node ε, νε ∼ Beta(1,α(|ε|)) is the relative
(unnormalized) length of the stick that is reserved to the node itself,
that is the proportion of the probability mass allocated to ε versus
the mass allocated to the descendants, while ψε ∼ Beta(1,γ) defines
the splitting of the probability mass between the children of node ε.

Similarly to a DP, we can describe this process with the following
steps:

1. ν-break: draw νε ∼ Beta(1,α(|ε|)) which defines the portion of
the current stick that is allocated to node ε, while (1−νε) is the
portion of the stick that will be split between its children;

2. ψ-break: draw ψε1 ∼ Beta(1,γ) which selects the portion of the
previous (1 − νε) stick that goes down to the first child. The
remaining part is recursively split with other ψ-breaks, generat-
ing more siblings.

3. Given the current node ε, compute the probabilities of a certain
sequence of children with the formula

ϕεεi = ψεεi

εi−1∏
j=1

(1−ψεj)

where εεi denotes the ith children of ε;

4. compute the absolute probability measure assigned to the cur-
rent node as

πε = νεϕε

∏
ε ′≺ε

ϕε ′(1− νε ′)

where ε ′ ≺ ε denote the ancestors of ε. In case of the root node,
π0 = ν0;

5. repeat infinitely many times.

Again, the process goes on indefinitely generating a tree of unlimited
depth and width. The actual tree structure induced by a finite set
of data is created by assigning each datum to the nodes of the tree.
This can be achieved through a slight modification of the Chinese
restaurant process introduced in Section 2.4.1.

In particular, a datum (i.e. a customer, following the metaphor) is
assigned to node ε with probability

Nε + 1

Nε +Nε≺· +α(|ε|) + 1
(3)

where Nε is the number of data already assigned to node ε and
Nε≺· the number of data that came down this path but did not stop
at ε, i.e. the sum over all descendants.
If the datum does not stop at ε, it goes down the tree, choosing
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(a) Dirichlet process stick breaking

(b) Dirichlet process stick breaking

Figure 7: Illustration and comparison of (a) the Dirichlet process with lin-
ear partitioning and (b) its tree-structured extension seen as stick-
breaking processes. In (b) rows 1, 3 and 5 are ν-breaks (depth); rows
2 and 4 are ψ-breaks (width). Image credits to [12]

the child (and therefore the path) with a classic Chinese restaurant
process where the previous customers are only the data who have
reached this point. Precisely, it descends to child εεi with probability

Nεεi +Nεεi≺·
Nε≺· + γ

or creates a new child with probability γ/(Nε≺· + γ).
Note that unlike the DP, the strength parameter α is a function

of the depth. More specifically, α(·) : N → R+ and must satisfy∑∞
j=1 ln(1 + 1/α(j − 1)) = +∞ [15]. With this additional flexibility,

it is possible to put most of the probability mass at an intermediate
depth; this is done, for instance, with a function like α(j) = λjα0,
where λ ∈ (0, 1] is the decay parameter, regulating the depth of the
tree.

2.5 related methods

In this section I present a few methods developed in the past and
attempt to give an overview of the state-of-the-art tools that perform
inference with tumor phylogenetics data.

pyclone PyClone [31] is a statistical tool that performs inference
of clonal population structures in cancer. It models bulk DNA allelic
imbalance data (as described in Section 2.2) in order to cluster SNVs
in different evolution clones and estimate their cellular prevalence,
that is the fraction of cancer cells.

Cellular prevalences (portion of cells belonging to a clone) are mod-
eled with a Dirichlet process so to let the number of clones be inferred
along with the other parameters. However, the DP does not build a
tree-structured phylogeny, unlike the TSSB process in PhylEx (see
Section 3.2).
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Figure 8: Directed graphical model of PyClone. Image credits to [31].

Figure 9: An illustration of the dependency between gene expression of sin-
gle cells and their copy number signal. Image credits to [6].

clonealign Clonealign [6] models single-cell RNA expression
data along with copy number data in order to perform inference on
the cell assignments to the tumor clones. The idea behind the model
is that an increase in the copy number for a certain gene, will lead to
a proportional increase in that gene’s expression level, property that
has been also shown in other studies [8, 24, 35].

The model is based on a formula that links the expression value
ycg of a gene g in cell c to the copy number λgv of that gene in the
clone v to which the cell belongs. We can define each cell assignment
as ζc = v and write Clonealign formula as follows7

E[ycg|ζc = v] = sc
µg × λgv × ewcg∑G

g ′=1 µg ′ × λg ′v × e
wcg ′

(4)

where sc is the total read depth size of cell c, i.e. the total number of
reads, which tells how much information there is for a single cell; µg
is the per-copy expression for gene g, that is how much a certain gene
expression depends on the copy number. wcg is simply an additional
factor that accounts both for the structured noise (not all expression
values are necessarily explained in terms of the copy number) and for

7 The presented formula is slightly different from the original as it lacks some details
that are not relevant for the purpose of this summary.
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the known covariates (if any).
The gene expression is assumed to follow a negative binomial distri-
bution, i.e.

ycg ∼ NegativeBinomial(mcg, rg)

with parametrization by means of the meanmcg (defined in Eq. (4))
and the gene-specific inverse of dispersion parameter rg.

Inference in Clonealign is performed with Variational Bayes, a sta-
tistical method which approximates the posterior through the mini-
mization of the evidence lower bound (ELBO) [4]; nevertheless, since
the model is not conjugate, a sampling method is still required to
compute the ELBO. The overall inference machine takes the form of
a Variational Auto-Encoder [27]. The optimization process finds esti-
mates of the per-copy expression µ and the cell assignments to the
clones ζ.

copykat CopyKAT [11] is a recent statistical tool that infers copy
number profiles from scRNA-seq data by integrating a Bayesian and
hierarchical clustering methods.
Briefly, it filters the relevant cells and genes in the input UMI-count
matrix and smooths the expression values. Then cells are grouped
in several clusters through hierarchical clustering with ward linkage.
The cluster with minimum variance is identified as the confident nor-
mal cell cluster. This cluster is then used as a baseline for determining
the relative gene expression of cancer cells, i.e. those cells that belong
to the other clusters.

CopyKAT is shown to perform better than previous tools like in-
ferCNV [26]. In fact, previous methods have been designed for first-
generation scRNA-seq data with lower cell throughput, and they are
not suitable for data acquired using new high-throughput scRNA-seq
technologies.
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3
M E T H O D S

3.1 overview

In this chapter I present the main method related to this work, that
is the original PhylEx model; then I describe the tools used and the
steps performed for the exploratory data analysis; after that, I define
two alternative extensions of the PhylEx model, illustrating how they
are related to each other; lastly, I report the process for synthetic data
generation that has been developed.

3.2 existing method

PhylEx [18] is a Bayesian statistical tool that combines scRNA-seq
and DNA bulk data to reconstruct a tumor evolution clonal-tree and
estimate cell assignments to the clones.

The tool has been shown to outperform other current state-of-the-
art methods in clonal-tree reconstruction, namely Canopy [17] and
PhyloWGS [9]. This is mainly due to the fact that it incorporates
single-cell data in the probabilistic model in order to better separate
the sub-clonal lines and therefore infer non-linear trees. Since each
cell in a clone inherits every SNV from the ancestor clones, and not
those of the other clones, co-occurrence of mutations in single cells
helps separating clones with different sets of SNVs. For example,
looking at Figure 10, we can deduce that the cells in the light-blue
clone share some mutations with both blue and yellow clones, but
they also have some new mutations that distinguish them from the
others; at the same time, the yellow clone cells might have mutations
not present in the cells of the light-blue one. This distinction cannot
be achieved with only bulk data because we can only see that the set
of mutations assigned to the light-blue node is less frequent than the
others, and therefore should belong to a child node.

3.2.1 Probabilistic model

The model of PhylEx is built around two datasets, namely the bulk
DNA and the scRNA-seq allelic imbalance datasets. The former is de-
fined as a set of SNVs data B = {(bn,dn,Mn,mn)}Nn=1 where bn and
dn are, respectively, the variant and total reads of the SNVs at locus n;
Mn,mn are the major and minor copy numbers and N the total num-
ber of SNVs in the dataset. Single-cell data S = {{bcn,dcn}Nn=1}

C
c=1

contains the variant and total reads for each locus n and for each
single cell c, from a set of C cells.

To better explain the meaning of major and minor copy numbers,
let us consider an example. If an SNV in locus n is associated to

19
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Figure 10: Non-linear (C) and linear (D) evolutionary tree example. Cellu-
lar prevalences of the clones are written inside the nodes. Image
credits to [18].

Mn = 2 and mn = 1, then there are three genotypes compatible with
it: two in which the variant belongs to the major copy (BB,A), (BA,A)
and one with the variant in the minor copy (AA,B). The major and
minor copy numbers therefore tell us that (AAA,−) and (BBB,−) are
not compatible, even though the total copy number is still three. Note
that the tuple notation represents the maternal and paternal copies;
however, we have no information on whether the paternal copy is the
major and the maternal is the minor or vice versa.

The target variables for inference in PhylEx are the clonal-tree struc-
ture T , the cellular prevalence for each node v of the treeφ = {φv}

V
v=1,

and the SNVs assignment to the nodes z = {zn}
N
n=1, where zn ∈ [V] =

{1, ...,V}. The likelihood of the bulk and single-cell data is assumed to
be conditionally independent given the aforementioned variables:

l(B,S|T , z,φ) = l(B|T , z,φ)l(S|T , z,φ). (5)

Then, the posterior distribution can be expressed as follows

π(T , z,φ|B,S) ∝ l(B|T , z,φ)l(S|T , z,φ)π0(φ|T , z)π0(z|T)π0(T), (6)

where π0(·) denotes the prior distribution. More specifically, the prior
distribution on the tree T is given by the tree-structured stick-breaking
process (TSSB) (explained in Section 2.4.2). Please note that, due to
this prior, the number of nodes V is not pre-defined, but rather it is a
random variable related to T .
The prior on the SNV assignments under T follows the urn-scheme in-
troduced in the same section of Chapter 2, in particular an SNV is as-
signed to a node with probability given by Eq. (3) with α(v) = α0λ|v|.
The prior distribution on the cellular prevalences is expressed through
a Dirichlet distribution on a set of derived variables ηv called clone
fractions and defined as

ηv = φv −
∑

v ′∈κ(v ′)

φv ′ , (7)

where κ(v) is the set of children nodes of v. This leads to a multivari-
ate η = {ηv}

V
v=1 such that

∑
v ηv = 1 and ηv > 0, upon which it is

possible to place a Dirichlet prior, conditioned on the tree T .
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Assuming site independence given the tree and the assignments of
the SNVs, the joint likelihood of the bulk data factorizes as

l(B|T , z,φ) ∝
N∏
n=1

P(bn|T , zn,φzn ,dn,Mn,mn), (8)

where the likelihood of each site is obtained marginalizing over the
possible genotypes G(Mn,mn) ⊂ {A,B,AA,AB,BB,AAA, ...} that are
compatible with Mn and mn. Precisely we have

P(bn|T , zn,φzn ,dn,Mn,mn) =
∑

gn∈G(Mn,mn)

P(bn|dn,gn,φn)P(gn),

(9)

where the genotype follows a Binomial distribution over the variant
and the total copy number, normalized over all the genotypes with
at least one variant, and the variant reads given the genotype is also
modeled with a Binomial distribution

bn|dn,gn,φn ∼ Binomial(dn,ψ(gn,φzn , ε)), (10)

with dn as the number of trials of a Bernoulli experiment with
probability of success (i.e. probability of seeing a variant) equal to
ψ(gn,φzn , ε). If we denote by ε the sequencing error probability, with
v(gn) the variant copy number in genotype gn and with c(gn) the
total copy number, then ψ(·) is defined by:

ψ(gn,φzn , ε) =


ε if v(gn) = 0

φzn(1− ε) + (1−φzn)ε if v(gn) = c(gn)

φzn
v(gn)
c(gn)

+ (1−φzn)ε otherwise.

(11)

The meaning of this definition is straightforward: if the genotype
does not contain any variant, then the variant read is recorded when
a sequencing error occurs, therefore with probability ε; if the geno-
type only contains variant copies, either the read comes, in case of
no sequencing error, from the population that has cellular prevalence
φzn , or it comes from another population of cells when an error oc-
curs; in all the other cases, i.e. 0 < v(gn) < c(gn), the variant read
probability is proportional to the ratio of variant and total copies in
the genotype (in absence of errors).

The likelihood of the single-cell data S, under the assumption of
conditionally independence over cell c and locus n given the tree T ,
the SNV assignments to the nodes z and the cell-to-clone membership
ζ = {ζc}

C
c=1, factorizes as:

l(S|T , z,φ, ζ) ∝
C∏
c=1

N∏
n=1

P(bcn|T , z, ζc,dcn). (12)

The data is modelled with a mixture of two Beta-Binomial distribu-
tions:

bcn ∼


(1−δcn)BetaBinomial(dcn,α0,β0)
+δcnBetaBinomial(dcn,αn,βn) if µcn = 1

BetaBinomial(dcn, ε, 1− ε) otherwise
(13)
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where µcn is the mutation status of cell c in locus n, that is 1 when
the cell contains a variant in that locus, 0 otherwise; this status can be
seen as a function of T , z and ζc since it is determined by the SNVs
that are assigned to the node to which the cell belongs.
The Beta-Binomial distribution is chosen due to the noisy nature
of scRNA-seq data. In fact, the probability of the underlying Bino-
mial cannot be assessed with confidence through the ratio of variant
and total reads due to sequencing errors. The Beta-Binomial model
gives more flexibility as the unknown probability becomes a Beta-
distributed random variable, on which marginalization is performed.
The mixture of the two Beta-Binomial accounts, again, for the spar-
sity of the scRNA-seq data: one distribution models the monoallelic
expression (dropout event, δcn = 0) and the other models the bial-
lelic distribution (δcn = 1). In absence of mutations, the reads are still
modeled with a Beta-Binomial distribution, in which the Beta distri-
bution modelling the probability of a variant read is more skewed
towards 0 as ε decreases.
The parameters of the underlying Beta variates, α0,β0,αn,βn are hy-
perparameters of the model, obtained as a pre-processing of the data.

Lastly, the joint likelihood of the single-cell data as presented in
Eq. (5) is obtained through a marginalization over the cell-to-node
assignments:

l(S|T , z,φ) =

C∏
c=1

∑
ζc

N∏
n=1

P(bcn|T , z, ζc,dcn)P(ζc) (14)

where a Uniform distribution is placed on the cell assignments, hav-
ing P(ζc) = 1/V .

3.3 datasets

The datasets used for this work are the same described in Section 2.2.1,
that is bulk DNA and scRNA-seq data from the HGSOC cell-line. In
particular, for the extension of the model mainly the scRNA-seq gene
expression data has been considered.

Additionally, for the purpose of data analysis and the study on
gene expression to copy number correlation, as well as for the syn-
thetic data generation, also clone-specific copy number data has been
taken into account.
This datatype consists of a total copy number value for each clone
and for each bin of the genome. Here, bin refers to a sequence of the
DNA (or RNA), typically larger than a gene, that is used to summa-
rize the properties of genes that are close together.
The dataset comes as a result of the analysis carried out by Laks et
al. [20] and it has been considered as de facto ground truth for the scope
of the present work.

Figure 11 shows an extract of this dataset. It has to be specified,
though, that the copy number data is only available for the leaf nodes
of the evolutionary tree (see Figure 12). This is of course a limitation
for the purpose of this work since only a few cells of the PhylEx
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clone_id chr start end total_cn

E 1 1 500000 4

E 1 500001 1000000 4

E 1 1000001 1500000 4

...

A 10 1 500000 2

...

Figure 11: Clonal copy number data. Chromosome number, start and end
positions define the coordinates of the bin and the clone ID, a let-
ter from A to I, refers to a specific leaf node in the true phylogeny
of the HGSOC cell-line delineated in [20].

Figure 12: Phylogenetic tree with branch lengths calculated as counts of
SNVs originating on each branch. Leaf nodes are single letters
from A to I, all internal nodes are denoted by the string union of
the descendant clones, e.g. the node right before the branching
around 4000 SNV count is ABCD. Image credits to [20].

dataset have been assigned to the leaf node, thus the copy number of
many cells is not known and would have to be imputed in alternative
ways.

Along with the copy number dataset, the cell-to-node assignments
obtained with the original PhylEx software as output of the inference
process, have been used to relate clonal copy numbers and single cell
gene expressions and considered as a ground truth.
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3.4 probabilistic models

Let us extend PhylEx model adding an extra set of variables in the
single-cell dataset, namely the expression counts for each cell and
each gene. Then we have S = {{bcn,dcn}Nn=1, {ycg}Gg=1}

C
c=1.

The posterior distribution now can be factorized as

π(T , z,φ,λ,µ|B,S) ∝ (15)

l(B,S|T , z,φ,λ,µ)π0(φ|T , z)π0(µ)π0(z|T)π0(λ|T)π0(T).

Here we introduce two new variables, λ = {λbv|b ∈ [B], v ∈ [V]} and
µ = {µg}

G
g=1. Both are new target variables of the inference process.

The first is the matrix of the bin-specific copy number values for each
clone. We assume, as in Clonealign, that the copy number profile is
shared across all cells in the same clone. Then µ is the so called per-
copy expression for each bin, describing the dependency between copy
number and gene expression.

The prior distribution over µ is the same as in [6], therefore a Nor-
mal distribution.
Copy numbers, instead, are modeled through an Hidden Markov
Model (HMM), which is a full probabilistic model whose aim is to
determine an unknown sequence of states based upon a sequence of
observations. In this setting, copy numbers are the states and expres-
sion counts are the obervations. This approach is commonly adopted
when modeling CNVs (e.g. [7, 33, 36]) and usually it is composed by
a six states HMM, while transition and emission probability calcula-
tion strategies can vary from one method to another.
Note that the dependence built using HMM is for modelling con-
venience. From a biological standpoint, the copy number of a gene
doesn’t depend on a “previous” gene in a causative manner, although
they are correlated.

However, the number of genes (therefore the number of copy num-
ber values for each clone) is excessively large (around 15k expressed
genes) and the gene length is highly variable. For this reason, the
HMM model is applied not at the gene level but rather at bin level.
This approach allows smoother copy number signal predictions and,
since typically copy number changes do not occur precisely at the
end of a gene, is even more correct from a biological point of view.
In fact, unlike in Clonealign, here we denote the gene-specific copy
numbers by λ̃ = {λ̃gv|g ∈ [G], v ∈ [V]} and we assume that one copy
of gene g is effectively expressed with probability δg. To make an
example, given a copy number λbv = 4 we have that for each gene
inside that bin we can observe a value of λ̃gv 6 4 depending on δg;
this value is the copy number that actually influences the expression
data, also referred to as active copy number.

The complete likelihood, assuming again independence between
bulk and single-cell data given the rest, is equal to

l(B,S|T , z,φ,λ,µ, ζ) = l(B|T , z,φ)l(S|T , z,µ,λ). (16)
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Keeping the idea of the marginalization over the cell assignments,
we modify the modelling of the allelic imbalance data using the infor-
mation given by the copy number.

Let us denote with b(g) the bin containing gene g and with λb(g)v
the total copy number of the bin at a certain node v of the clonal tree.
The joint likelihood for the single cell data is as follows:

l(S|T , z,µ,λ) =
C∏
c=1

∑
ζc

G∏
g=1

P(ycg,bcn|T , z,λ,µ,dcn, ζc)P(ζc). (17)

Like in PhylEx model we have P(ζc) = 1/V , which places a Uni-
form distribution on the cell assignments as the prior. The joint prob-
ability of the gene counts and the variant reads given T , z,µ,λ,dcn
and ζc is given by the formula

P(ycg,bcn|T , z,λ,µ,dcn, ζc) = (18)
λb(g)ζc∑
e=1

q(e|λb(g)ζc , δg)P(ycg|T ,µg, e)
e∑
v=0

(
e

v

)
q(bcn|dcn, v/e),

where we marginalize both over the active copy numbers λ̃gζc ,
which take values denoted by e to avoid cluttered notation, and over
the variant copy number v.
The active copy number is assumed to be drawn from a Binomial dis-
tribution (for which the q(·) distribution stands), and so is the variant
reads count bcn. With this framework the Beta-Binomial distribution
can be replaced by a simple Binomial since variant and total copy
numbers are given and we can estimate the probability of recording a
variant read as the ratio between the variant and total copy numbers.
Also, the variant copies can be any combination over the total copies,
and this leads to a multiplication factor of

(
e
v

)
.

λ̃gv|λb(g)v, δg ∼ Binomial(λb(g)v, δg) (19)

bcn|dcn, v/e ∼ Binomial(dcn, v/e). (20)

As for the gene expression counts, we model them in various ways
and compare the different models.

First we consider a simpler version of the model shown in [6] in
which the expected value of the expression count is given by

E[ycg|ζc = v] = sc
µgλ̃gv∑G

g ′=1 µg ′ λ̃g ′v
, (21)

where sc is the library size of cell c.
Then, since ycg is a count variable, a Poisson distribution can be

appropriate. However, many studies (such as [29]) adopt a Negative
Binomial distribution instead, which gives more flexibility to handle
the over-dispersion that is typically observed in scRNA-seq data. In
fact, while in a Poisson distribution the variance is equal to the mean,
in a Negative Binomial distribution we allow the variance to be larger.
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Moreover, given the sparse nature of the data some studies (again,
such as [29]) adopt a zero-inflated distribution, which accounts for fre-
quent zero valued observations. This leads to distributions like Zero-
Inflated Poisson (ZIP) or Zero-Inflated Negative Binomial (ZINB).

Given these premises, in this work we consider all four distribu-
tions to further analyze the advantages and drawbacks of each one.

In the case of ZINB, the most complex yet flexible one, we can
therefore define the gene expression data as follow:

ycg|T ,µg, λgζc ∼ ZINB(mgζc , rg, ρcg), (22)

where mgζc is the mean given by Eq. (21), rg the gene-specific
inverse of dispersion parameter for the underlying Negative Binomial
and ρcg the zero-inflation probability for each cell and gene.

Precisely, the probability mass function is defined as

P(ycg|T ,µg, λζc) = fZINB(ycg;mgζc , rg, ρcg) (23)

= ρcg 1(ycg = 0) + (1− ρcg)fNB(ycg;mgζc , rg),
(24)

with 1(·) being the indicator function, i.e. equal to 1 when the
condition in the argument is true, 0 otherwise. The Negative Bino-
mial distribution here is parametrized by the mean and the inverse
of dispersion parameters, instead of the typical number of failures
and probability of success parameters. Given mean m and inverse
dispersion r, the associated variance and probability of success are

σ2 = m+
m2

r
, p =

m

σ2
. (25)

Then, letting r be real-valued, the pmf of the negative binomial can
be written as such

fNB(y;m, r) =
Γ(r+ y)

Γ(y+ 1)Γ(r)

(
r

r+m

)r(
m

m+ r

)y
. (26)

It is worth mentioning that the NB distribution boils down to a
Poisson when r→ +∞. Also, it can be viewed as a mixture of Poisson
and Gamma distribution: the unknown rate parameter is described
by a Gamma prior with parameters α and β, resulting in a NB of
parameters r = β and p = α

α+1 .
We notice that the expression mean in Eq. (21) is obtained through

normalization over all genes. This might lead to complications in
terms of computation time and could be replaced by a even simpler
model. In particular, we want to compare the Clonealign model for
the mean with

E[ycg|ζc = v] = exp (sc × µg × λ̃gv). (27)

Here we remove the normalization factor and we model the log-
mean of the Poisson (or NB, ZIP, ZINB) distribution since the natural
link function for the Poisson is the log-link.
From now on, I will refer to the model given by Eq. (21) as the
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Figure 13: Directed graphical model of PhylEx with copy number extension

clonealign model and the one given by Eq. (27) as the log-link model.
Each of the two models can be associated to all of the four distribu-
tions taken under analysis.

Although a detailed inference procedure has not been designed in
the present work due to time constraints, some parameters have to
be jointly inferred with the target variables, such as the copy number
expression probability δg, while others can be computed from the
data. In fact, size factors can be obtained with tools such as the one
explained in Section 4.1 The inverse dispersion parameters rg can
be inferred in several ways as described in [21]; one is, for instance,
to estimate the inverse dispersion parameters using empirical Bayes
with edgeR as proposed in [30].

To conclude the section, in Figure 13 I summarize the variable de-
pendencies drawing the graphical model of PhylEx with the proposed
extension (in particular the one described by the ZINB distribution).
Please note that, in order to avoid confusion, I omit some of the pa-
rameters which would over-complicate the graph without adding any
relevant information.
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3.5 synthetic data

In order to test statistical models, it is common practice to devise
algorithms and tools for synthetic data generation. Assuming that
the synthetic data is close enough to the real data, this framework
provides extremely useful additional information such as the true
parameters of the underlying distributions that are unknown in real-
data applications.

In this section I present the process of synthetic data generation de-
signed for gene expression data and copy number evolution, which
has been built upon the already existing simulation software pro-
vided with PhylEx (see Supplementary material of [18]).

3.5.1 Copy number evolution

Copy numbers evolution is sampled with a simplified birth-death pro-
cess. If we denote by λmax the maximum copy number allowed, given
the tree T , the copy number at bin b is sampled using a transition ma-
trix P ∈ Rλmax×λmax which provides the probability mass function
for λbv given λbv ′ where v ′ is the parent node of v. The P matrix is
obtained through matrix exponentiation of the rate matrix Q, which
is in turn built from the birth and death rates.
A normal birth-death process would require each copy in the bin to
evolve independently, therefore having different birth and death rates
depending on the number of copies. However, the presented approxi-
mation, which is the one adopted in the original PhylEx study, can be
considered enough for the purpose of the synthetic data generation.

Copy number changes in PhylEx are simulated by evolving copy
numbers in each locus independently one locus from the other. As
shown in Figure 20a of Section 4.1, although copy numbers in dif-
ferent bins are not dependent one from each other, they show some
correlation. More specifically, a copy number in a bin is likely to be
the same of the previous bin. Thus, simulating the evolution of whole
genome copy numbers should take into account this property.

In order to replicate this pattern, two strategies have been tested,
namely a HMM and a break-point sampling approach.

The HMM evolves the copy number of the bin with the simpli-
fied birth-death process introduced before, but the new copy num-
ber is accepted only with some fixed probability p, otherwise the
copy number of the previous bin is taken. This approach leads to a
smoother pattern than independent evolution, but due to the simplis-
tic transition event (with fixed probability) it doesn’t reflect real data
variability in the length of the sequences with equal consecutive copy
numbers.

For this reason, a break-point sampling approach based on the data
analysis presented above, precisely in Figure 20b, better suits the task.
Specifically, a copy number variation ∆λ = λbv − λbv ′ , with v ′ being
the parent node of v, is sampled by subtracting the current copy num-
ber value to the new copy number obtained with the same transition
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(a) Independent evolution

(b) HMM

(c) Break-point sampling

Figure 14: Different sampling approaches to copy number evolution. (a) In-
dividual evolution between bins, (b) HMM, (c) break-point sam-
pling. The whole genome is displayed on the abscissa with ticks
at each chromosome change.

matrix P. The difference is then summed to all the subsequent copy
numbers until the next break-point. The length of a sequence between
two consecutive break-points, measured in terms of number of bins,
is drawn from a Negative Binomial distribution with mean and vari-
ance estimated from the empirical distribution of the ground truth
copy number data.

In Figure 14 a comparison between the different simulations is
shown. Eventually, break-point sampling seems to replicate the real
data quite accurately.

3.5.2 Gene expression reads

Genes are uniformly sampled from the complete set of genes stored
in a hg19 annotation file. This provides both the Ensembl gene ID and
the position coordinates. Then genes are binned together in fixed size
bins and, given the sampled copy numbers for each clone and given
the cell assignments to the nodes, the gene expression count is sam-
pled from one of the four distributions considered (Poisson, ZIP, NB,
ZINB).
More specifically, first the size factor is sampled from a uniform dis-
tribution U(0, 2) and then the gene expression is sampled with mean
computed given either formula (21) or (27), depending on the param-
eters of the simulation.
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All the parameters such as distribution parameters, number of cells,
number of genes, bin size etc. are specified in a separate configuration
file.

3.6 evaluation

A direct comparison between the new model and the original PhylEx
model is not possible since an inference algorithm based on the new
model has still to be designed and implemented. However, to evalu-
ate the proposed framework, two experiments have been carried out.

The first consists of generating synthetic data and predict the copy
number of each gene using a maximum likelihood approach, i.e. by
choosing the one which maximizes the partial likelihood given the
expression counts and all the other parameters and variables (i.e. tree
T , cell assignments to the nodes ζ, per-copy expressions µ, etc.).
The performance of the model is then measured with accuracy (ratio
of correct predictions), mean squared error (MSE) and mean absolute
deviation (MAD).The last two score measures are defined as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 MAD =

1

n

n∑
i=1

|yi − ŷi|, (28)

where yi is the true value of copy number and ŷi is the prediction.
Both measures account for the same error, that is the mean distance
between the true and predicted values. However, mean squared error
stresses larger mistakes.

The prediction is done for each gene and for each cell, hence n =

G×C. The experiment allows to compare the alternative models, i.e.
the clonealign model and the log-link model, each one in all four distribu-
tions, by simulating a simple likelihood-based copy-number inference
process.

The second experiment consists of a sensitivity analysis with the
likelihood as target measure. This helps understanding how the like-
lihood is affected by changes in the copy number signal. The anal-
ysis is performed by generating synthetic data and by sampling m
perturbations of the true copy number signals. Each perturbation is
created first by uniformly sampling the clone whose copy numbers
will change, then sampling between 5% and 10% of the copy numbers
for that clone (again uniformly). For each of these copy numbers, the
new perturbed value is determined randomly, with higher probabil-
ity given to smaller changes.

In order to distinguish different perturbations, we define the dis-
tance between the true copy number signal and its perturbation as
the Euclidean distance. More formally, let λ̃v be the vector of length
G of all copy numbers in clone v, then the copy-number distance is
given by

d(λ̃v, λ̃ ′v) = ||λ̃v − λ̃
′
v|| =

√√√√ G∑
g=1

(λ̃gv − λ̃ ′gv)
2. (29)
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Intuitively, the more a copy-number signal is far from the true value,
the larger would be the decrease in the likelihood.

The results of the experiments are reported in the dedicated chapter
(Chapter 4), and then further discussed in Chapter 5.
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4
R E S U LT S

4.1 exploratory data analysis (eda)

The purpose of the exploratory data analysis is two-fold:

1. visualize the marginal distribution of the data, especially scRNA-
seq gene expression data which are known to have a sparse and
noisy nature, for the purpose of the model definition and the
synthetic data generation,

2. analyze the correlation between the gene expression and copy
number data to confirm the assumptions made in the Clonealign
model [6], which can then be used to extend PhylEx.

Part of the exploration and data pre-processing has been performed
following the work-flow for scRNA-seq data described in [23], in par-
ticular using tools provided by R libraries such as scater, scran and
SingleCellExperiment.

The single-cell gene expression dataset consists of a matrix of 63677

rows (genes) and 360 columns (cells). Each element of the matrix is
the number of reads for that gene in the single cell and this value
is shown to have large variance, especially for some genes. This is
partially shown in Figure 15 where it is also clear that variability in-
creases along with the gene expression values. Of course, genes with
high variance are more likely to give valuable information about the
origin of the cells (i.e. the clones to which they are assigned), while
genes that are expressed almost at the same rate are probably not
significant. Besides, many genes are under-expressed, meaning that
only few reads, or even none, are present. In fact, as a pre-processing
step, it is necessary to filter out uninteresting genes: although some
information might get lost, filtering helps removing technical noise
due to amplification biases during sequencing [16].

Figure 15: Box-plot showing the 20 most expressed genes in the scRNA-seq
gene expression data.

33
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Figure 16: Low-abundance mean-based genes filtering removes the genes
whose mean expression value across the cells is lower than a pre-
defined threshold (0.2 in the figure).

Figure 17: Cells size factor histogram.

Filtering has been performed simply by removing low-abundance
gene with a mean-based filter (see Figure 16). This has reduced the
number of genes to roughly 15 thousands significant genes.

As for the cells, these should not be filtered since the inference pro-
cess ideally assigns each cell to a node. However, looking at Figure 17

it is possible to detect that around 60 cells contain very few reads.
The histogram shows the distribution of the reads in terms of the size
factor which is simply another way of expressing the library size.
In this case, the size factor has been computed with a deconvolution
strategy tailored for scaling normalization of sparse count data [19].
This normalization technique, which pools similar cells together be-
fore deconvolution, is shown to better eliminate cell-specific bias, es-
pecially when dealing with sparse data. As a result, the obtained size
factors are more robust in distinguishing cells from their gene expres-
sion counts (see Figure 18).

Figure 18: Size factors from deconvolution plotted against library size for all
the cells.
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Figure 19: Histogram of the copy numbers across bins in the leaf nodes of
the evolutionary tree, for each clone.

As for the copy number dataset, a first insight on its distribution
can be given by the plot in Figure 19 which exhibits significant simi-
larity between some clones. More specifically, three groups of nodes
with similar copy number profile can be drawn: ABCD, EF, GHI. This
is not totally unexpected since in Figure 12 we can already notice
that those three groups differ substantially from each other in terms
of SNVs, while all their children nodes only differ from those groups
by a small amount of mutations.
This observation is quite useful as it allows to relate the known copy
number profile of one of the leaf nodes to the cells belonging to the
parent nodes up to those groups (whose copy numbers are not avail-
able) as a preliminary approximation.

In order to understand how copy numbers are distributed along
the genome, and more specifically where a break-point can be found,
it is possible to look at Figure 20a which shows the copy number for
each bin in the whole genome. The number of break-points in each
clone is around 90.
Moreover, all clones share similar mean over the length of the se-
quences between two consecutive break-points, which is between 55

and 74 bins. This information is further exploited in the synthetic
data generation process which is discussed in Section 3.5.

Lastly, gene expression data and copy number profiles can be ana-
lyzed together to verify the assumption made in Clonealign paper [6],
which is that an increase in the copy number leads to highly ex-
pressed genes.

In order to link the two datasets, it is necessary to first map the En-
sembl gene IDs to genome position coordinates. This has been achieved
through biomaRt package.

The plot of the copy numbers against the gene expression values
should result in a dependency as shown in Figure 21a, where the ex-
pression median across all cells and genes corresponding to a certain
copy number manifests an increase. However, as already mentioned
before, copy number profiles of the internal nodes are not available
for this dataset and the only clone for which both cells and copy num-
bers are available is clone C. The support in terms of cells of this clone
is very low (only 6 cells) therefore any correlation between the expres-
sion values and the copy number of those cells would be statistically
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(a) Copy number for each bin plotted over the whole genome for clone C. Values are
jittered in order to be able to visualize the size of a bin compared to the genome
length.

(b) Stacked histogram of the distance between consecutive break-
points for each clone.

Figure 20: Copy number plots. (a) refers only to clone C, while (b) compares
the distribution of all clones’ copy number break-points.

irrelevant.
To try to overcome this issue and still be able to obtain some rele-
vant indications on the data, cells assigned to internal nodes up to
the three groups mentioned above (ABCD, EF, GHI) have been as-
signed to leaf nodes descendants of the relative groups. This approx-
imation is justified for the reasons already discussed and leads to a
higher support of cells. Nevertheless, even with a larger number of
cells (precisely, 152), the resulting plot shows a dependency not as ev-
ident as in Clonealign plot (see Figure 21b). This might be due to two
reasons: first, because of the approximation made by assigning cells
to leaf nodes even when they belong to internal nodes with similar
characteristics; second, because the nodes above those three groups
in the tree are not present at all in the plot, therefore the plot lacks
information that might be less noisy being closer to the healthy cells
root node.

A zoomed-in picture of the dependency between copy number and
gene expression is shown in Figure 22. There is definitely some corre-
lation, although it might not be the case for all genes. This being said,
it is worth trying out the Clonealign model as well as other models
or variations of the same. This is addressed in the next section.
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(a) Mean log expression as a func-
tion of the copy number across
all clones in Clonealign. Image
credits to [6].

(b) Mean log expression as a
function of the copy number
across clones up to ABCD, EF,
GHI in the HGSOC dataset
with copy numbers by [20].

Figure 21: Comparison of copy number and gene expression dependency
between (a) Clonealign original study and the (b) present HG-
SOC cell-line study. While our dataset was obtained according to
Smart-seq 3 sequencing protocol, Clonalign dataset was obtained
through Chromium v3 sequencing protocol.
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(a) Chromosome 5 of clone C cells, where copy
number clearly reflects gene expression data.

(b) Chromosome 13 of clone C cells. Here the two
trends are not related with each other in any
way.

Figure 22: Log gene expression and copy number along (a) chromosome
5 and (b) chromosome 13 of cells in clone C. This shows two
opposite cases: in the first one the correlation is quite evident,
in the second one the gene expression does not reflect the copy
number.
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4.2 copy number prediction

As a way of evaluating the models accuracy and compare their per-
formances in a quantitative manner, a copy number prediction ex-
periment has been performed in the way it has been defined in Sec-
tion 3.6. The prediction has been performed over two different kinds
of datasets, one with low zero-inflation (i.e. low ratio of zero values)
and one with high zero-inflation, therefore having more sparse data.
More specifically, the first dataset is sampled using the ZINB distri-
bution for gene expression values, with zero-inflation parameters ρcg
sampled from a Beta distribution Beta(1, 15), while the second dataset
has zero-inflation ratios ρcg ∼ Beta(7, 5).

The results of the experiments are shown in 3a and 4a.
The performances with low zero-inflation are similar for all four

distributions of the gene expression data. However, the log-link model
seems to perform slightly better than the clonealign model. In both
cases, even though the accuracy is not very high, the MSE and MAD
connote an average error of less than 1, which means that most of
the wrong predictions are one copy far from the true value. This kind
of mistake could be partially fixed by smoothing the copy number
prediction with a simple filter such as the median filter.

In 4a it is clear that simple Poisson and Negative-Binomial are
not flexible enough to model sparse data such as scRNA-seq data.
This shows that the zero-inflation model is necessary when the zero-
inflation is high. In particular, around 70% of the gene expression
values in the real dataset presented in Section 4.1 consists of 0s, and
this ratio is better represented by the high zero-inflation dataset. Also,
performances of the clonealign model are slightly better compared to
the log-link model when dealing with sparse data.
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Accuracy (%) MSE MAD

Poisson 57.0± 8 0.70± 0.15 0.49± 0.1
NegBin 57.8± 8 0.67± 0.15 0.49± 0.1

ZIP 55.0± 7 0.96± 0.20 0.58± 0.1
ZINB 57.5± 7 0.67± 0.15 0.50± 0.1

(a) clonealign model

Accuracy (%) MSE MAD

Poisson 62.7± 4.5 0.68± 0.10 0.46± 0.05
NegBin 63.6± 4.5 0.67± 0.10 0.45± 0.05

ZIP 63.7± 5 0.78± 0.15 0.47± 0.05
ZINB 66.0± 5 0.63± 0.10 0.42± 0.05

(b) log-link model

Table 3: Copy number prediction results over low zero-inflation data for ((a))
clonealign model and ((b)) log-link model with standard deviation
over ten experiments.

Accuracy (%) MSE MAD

Poisson 26.2± 7 2.16± 0.85 1.13± 0.25
NegBin 26.2± 7 2.13± 0.85 1.12± 0.25

ZIP 51.8± 8 1.15± 0.20 0.66± 0.10
ZINB 54.3± 9 0.85± 0.20 0.57± 0.15

(a) clonealign model

Accuracy (%) MSE MAD

Poisson 12.3± 2 3.58± 0.55 1.62± 0.15
NegBin 12.0± 2 3.59± 0.55 1.63± 0.15

ZIP 46.1± 7 1.60± 0.30 0.81± 0.15
ZINB 47.6± 7 1.32± 0.30 0.74± 0.15

(b) log-link model

Table 4: Copy number prediction results over high zero-inflation data for
a clonealign model and b log-link model with standard deviation
over ten experiments.
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Figure 23: Scatter-plot showing copy number distance (as defined in
Eq. (29)) against the log-likelihood value for the clonealign model.
The four plots show the results for A Poisson, B Negative-
Binomial, C ZIP, and D ZINB distributions. The dashed red line
indicates the likelihood for the true copy number values. Differ-
ent clones are shown in different colors. The number of samples
is m = 100.

4.3 sensitivity analysis

To test the behaviour of the likelihood obtained with different copy
numbers we perform sensitivity analysis, simulating variations of the
true copy number values along the genome and computing the rela-
tive single-cell data likelihood. The methods adopted are presented
in Section 3.6.

The sensitivity analysis is performed both on the clonealign model
and the log-link model, for all four count distributions. Nevertheless,
the results shown in Figure 23 are relative only to the clonealign model
since the log-link model does not give any additional evidence useful
for comparison.
As expected, the more a copy number profile is distant from the true
one, the lower is the likelihood. Also, some clones present larger sen-
sitivity to the variation of the copy number. This is explained by the
fact that clones that are closer to the leaf nodes present a more vari-
able copy number signal and therefore the likelihood is more affected
by it.
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5
D I S C U S S I O N

The probabilistic models defined in this work gather information and
results from the most recent and advanced research papers in the field
of tumor phylogenetics, such as Clonealign [6], ZINB-WaVE [29] and,
most importantly, PhylEx [18]. The model extends an already existing
tool for inference, incorporating copy number information alongside
single nucleotide variations, leading to a novel method.

It should be noted that the problem that PhylEx, and therefore this
work, is trying to solve is generally considered as a complex task.
Reconstructing clonal-trees in tumor phylogenetics is a recent and
difficult research goal, also because of the lack of a methodology in
developing solutions to such problem. There are several outstanding
problems in tumor phylogenetics that have still to be solved, for in-
stance the fact that data sources are heterogeneous and new sequenc-
ing technologies are developed every year [32].

This method has not been fully tested in this work and therefore
further development should follow in future works. However, the re-
sults reported in the previous section still allow for a valuable discus-
sion.
More specifically it has been shown that one alternative of the model
(the clonealign model) should be preferred to the other, and also that
due to the sparsity of scRNA-seq data, the count distribution mod-
elling the gene expression data should account for zero-inflation when
inferring copy-numbers.
Moreover, the sensitivity analysis points out that the true copy num-
ber profiles actually lead to the maximum likelihood. It is therefore
likely that an inference algorithm based on this model would estimate
the true copy-number correctly given a sufficient amount of time.

5.1 limitations

The main limitations of this work are two: computational complexity
due to large number of variables, and lack of complete ground truth
data.

The number of variables introduced in Section 3.4 is quite large, es-
pecially considering the fact that some parameters are specific for
each gene, and that the number of genes is typically around 104.
Some parameters of the model can be estimated from the data, but
others have to be jointly inferred with the target variables. In order to
avoid issues of undetermined parameters and excessively long execu-
tion time, some different strategies might have to be adopted, such as
approximations of computationally expensive tasks (e.g. likelihood
computation) and the definition of tailored, efficient sampling tech-
niques.
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44 discussion

The available real dataset, as already mentioned in Section 3.3, is
not complete: the copy-number data is in fact partial, representing
only the leaf nodes of the evolution tree. For this reasons, only a few
experiments have been conducted on real data while most of the re-
sults have been based on synthetic datasets. This is of course a major
limitation, since manipulation of real data is the final objective and
typically presents peculiar aspects that synthetic data is not able to
capture. The results are therefore to be considered as an indication on
which path to follow first when further developing the work, and not
on what is best: we can say that the clonealign model is more likely to
achieve better results on real data, but we cannot exclude completely
the log-link model.

5.2 future work

Future works may consider to further develop the method, define
sampling techniques for inference to be applied to the model and test
these procedures on real data. Eventually, additional ground truth
data, including internal nodes copy number profiles, will be available,
hence more accurate real data analysis could be performed.

More specifically, the implementation of a working inference algo-
rithm for reconstructing the clonal-tree while inferring clonal copy-
numbers would allow a direct comparison with the original PhylEx
model. This will eventually lead to the discovery of whether copy
number information can actually improve the accuracy of the tree
with respect to a model only based on SNVs such as PhylEx.
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C O N C L U S I O N

This work extends the probabilistic model of a new method that re-
constructs tumor phylogenetic tree combining bulk DNA and scRNA-
seq data. PhylEx has been shown to achieve state-of-the-art accuracy,
and by incorporating also copy number variations along with single
nucleotide variation, we inject additional information in the inference
process, aiming at even better performances.

In this research, we initially performed an exploratory data anal-
ysis on real genomic data, acquiring information about their nature.
Then we defined more than one alternatives of the novel probabilistic
model based on PhylEx. Furthermore, we built a simulation software
based on the devised models and showed that synthetic data actually
reflect real data. Lastly, we evaluated and compared the models with
tailored experiments over simulated data, observing that models ac-
counting for zero-inflation has to be preferred, and we motivate this
fact with the sparse nature of scRNA-seq data.
The analysis that has been conducted shows that the devised model
might be used as a reference for the development of specific inference
procedures, which have not been addressed in the current work.
Although this study undergoes some limitations, it provides several
insights on the topic under analysis and offers a well-defined starting
point for other future works.

Fight against cancer through numerical computation is still far away
from success, and faces several complex challenges. Nevertheless, re-
search in this field is moving forward with increasing interest and this
thesis can be viewed as another small step towards that direction.
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