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Summary

This thesis follows and assembles what I did during a six-months traineeship at Actelion Janssen.

Once the company’s therapeutic areas of interest are briefly described, the emphasis in this work

is on one of them: Pulmonary Hypertension (PH). Then, a WHO classification and available

diagnostic tests for this disease are examined and two clinical studies in PH labelled TRACE

and CIPHER are outlined: the first is a multicenter, double-blind, placebo-controlled, Phase-4

study to evaluate the effect of Uptravi® treatment on the daily life physical activity of patients

with pulmonary arterial hypertension, while the second one is a prospective, multicenter study

designed to identify a biomarker signature for the early detection of PH and another signature

to distinguish two sub-classes of this pathology from the others.

The problem presented in the latter belongs to the challenging field of genetic analysis and is

here addressed by developing a process for the identification of blood-based biomarker signatures

for any disease through the implementation on R of different statistical methods such as Gra-

dient Boosting, Support Vector Machines, GLM with elastic-net regularization and resampling

techniques like Cross-Validation and Nested Cross-Validation.

Thus, after summarizing what is available in the literature concerning biomarkers involved in

the processes and mechanisms of the disease under investigation, the approach is applied to the

dataset extracted from the proof-of-concept study used to design CIPHER, to search for a PH

signature with microRNAs as biomarkers. Moreover, the resulting model is evaluated through

some metrics such as sensitivity, specificity, and precision, and it is analyzed in detail together

with its most influential biomarkers and the results separately by the different groups of the dis-

ease classification. Finally, the signature is compared with the standard non-invasive diagnostic

method by means of the 95% level Wilson confidence region of sensitivity and specificity, and

possible ways to improve its performance are proposed in the conclusion.
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Chapter 1

Introduction

This work collects and describes what I have done during a traineeship from October 2020 to

April 2021 in Janssen-Cilag and through it in Actelion Janssen, a pharmaceutical and biotech-

nology company based near Basel in Switzerland and purchased in recent years by Janssen, the

pharmaceutical companies of Johnson&Johnson. The internship was carried out under the su-

pervision of Prof. Mauro Gasparini, full professor at the Department of Mathematical Sciences

of the Politecnico di Torino, and Matthieu Villeneuve, scientific director at the company.

1.1 Janssen, the pharmaceutical companies of J&J

Johnson&Johnson is a multinational company with more than 130000 workers that has been

operating for more than a century in three main business areas: Consumer Healthcare, Medical

Devices, and Pharmaceuticals. Janssen is therefore the group of companies that includes Actelion

Figure 1.1: Janssen and Actelion Janssen

and focuses on the latter area of the business wherein more than 40000 employees in 150 countries
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of all continents around the world work to treat, cure, stop, and prevent some of the most deadly

and complex disorders from heart disease, HIV to cancer and Alzheimer’s disease. The main

purpose is to change the current approach to how diseases are managed and prevented through

the contribution of scientific advances, the development of effective and affordable medicines,

and collaborations with different experts at every stage of their design. J&J established a global

network of innovation centers that are constantly working on new ideas to deliver life-saving

and life-enhancing healthcare solutions to patients around the world, through huge investments

but also the cooperation with start-ups, universities, scientific organizations, and government

institutions. Such efforts contributed to the EU approval of seven pharmaceutical products in

2020, including the Ebola vaccine, and four more were in the process of being approved at the

end of the same year [33].

At Janssen, researches and clinical studies concern six therapeutical areas or fields of medicine

where the need is high and the opportunity to make a difference is great: pulmonary hypertension,

cardiovascular and metabolism, immunology, infectious diseases and vaccines, neuroscience, and

oncology and hematology [30]. Moreover, many of the diseases for which treatments or cures are

sought belong to rare diseases.

Furthermore, several projects have been and still are implemented in some of these areas to help

patients in their daily lives, as well as their families and doctors. Additionally, many websites

and pages on the main social networks are available to promote awareness on the prevention of

different disorders and to support patients in their treatment.

Let us now describe in detail the therapeutic areas and diseases on which the studies are focused.

1.2 Pulmonary Hypertension

The first therapeutic area consists of Pulmonary Hypertension (PH), a rare progressive disease

with multiple causes but no cure whose incidence is increasing in some developing countries such

as China and India [18, 50]. PH includes a heterogeneous group of clinical conditions associated

with increased pulmonary arterial pressure, which can compromise most cardiovascular and res-

piratory functions.

This is the therapeutic area they deal with at Actelion, and it became part of Janssen’s pipeline

only after the purchase of Actelion itself in 2017, as the sixth medical area of interest at Janssen.
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For 20 years Actelion has achieved the first oral pulmonary arterial hypertension (PAH) treat-

ment, the first long-term outcomes data, and that on triple combination therapies. Now, cap-

turing Actelion’s expertise in PAH, which is the rarest form of PH, Actelion Janssen is a world

leader in PAH and has expanded its focus to include other types of PH for changing the disease

to a long-term manageable condition, resulting in 16 approved drugs on the WHO Essential

Medicines List in 2016. This is achieved partly through collaboration with patient organizations

but also through commercial partnerships that provide unique access to new diagnostic tech-

nologies and medical devices that aim to extend the benefits of its PH portfolio. Janssen is also

leading the PHocus360 project to raise awareness of this illness through digital channels and

social networks, and to provide support for patients and families, especially for PAH.

Researchers seek to overcome the diagnostic gap and improve survival rates through new disease

monitoring approaches and new treatments. Many studies are underway with the immediate

objective of improving the quality of patients’ lives, and understanding the challenges and risks

associated with it. Considerable advances have already been achieved, as the median survival

from PAH diagnosis has increased from 2.5 years to almost 10 years, but the most ambitious goal

is to cure the disease. Furthermore, several drugs for PH have been developed in recent years,

and there are currently four approved and marketed products in Europe [34].

Another important purpose is therefore the early identification and diagnosis of the disorder,

which can be achieved by investing in diagnostics and biomarkers to find the disease signature.

Indeed, it has been demonstrated the feasibility of developing microRNA-based biomarker signa-

tures through machine learning methods to differentiate patients with and without PH. Hence,

work is underway through the CIPHER study to exploit these miRNA signatures for the devel-

opment of non-invasive tests for the early detection or the discrimination of different types of

PH.

Thus, this thesis focused on this therapeutic field and precisely on two PH clinical protocols

provided by Janssen: first of all, I investigated the possible effect of drug treatment in PAH pa-

tients on their daily life physical activity, and then I developed a procedure for finding biomarker

PH signatures which, as already mentioned, can help in the early diagnosis of the disease. The

latter is explored in detail together with a pathophysiological description of PH and its WHO

classifications.
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1.3 Other therapeutic areas in Janssen

Cardiovascular and Metabolism

Cardiovascular and metabolic disorders such as diabetes, obesity, and chronic kidney diseases, are

rapidly rising, especially in recent years, so that cardiovascular illnesses are the leading cause of

death for both men and women, while diabetes is the seventh most common killer worldwide [69].

Metabolic diseases, moreover, are closely associated with cardiovascular ones and, for example,

nearly half of people with type-2 diabetes have chronic kidney disease while obesity may lead to

increased rates of cardiovascular diseases and other complications.

This encourages further investigation in this field of study for searching compounds that provide

real clinical benefits to patients. Several diseases in this therapeutic area are of interest at

Janssen since they affect millions of people worldwide that need treatments and, if possible,

cures. Meanwhile, many successes have been achieved over the years, such as the development

of some treatments for type-2 diabetes and thrombosis.

Relevant cardiovascular diseases include deep vein thrombosis and pulmonary embolism, whose

victims are at high risk of other major cardiovascular events, and whose current treatments are

effective but often associated with marked bleeding risks. Thus, while searching for new methods

to help patients and prevent thrombosis, the desire is to develop new generation anticoagulants

both safer and equally effective.

In metabolic disorders, on the other hand, research ranges from chronic kidney disease, whose

end-stage treatment is limited to dialysis and kidney transplantation and therefore associated

with a short life expectancy, to obesity, which causes a multitude of cardiovascular complications

and affects around 13% of the world’s population, hence the need for effective weight reduction

therapies for obese people at higher risk of the illness, to diabetes mellitus, which concerns 6.3%

of the European population and whose prevalence over the next 25 years is expected to improve

in countries worldwide, but more markedly in middle-income ones [34].

Lastly, this field includes retinal disorders, for which there are currently few treatments and

several therapeutic limitations. By collaborating with other areas of the company and with

external organizations and universities, the aspiration is to better study these conditions and

develop new and innovative therapies that may change lives in a better way for many people.
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Immunology

Immune-mediated diseases affect about one in ten European citizens but, in some cases, these

are not quickly diagnosed and therefore people suffer for years before receiving treatment. More-

over, these disorders afflict the patient from their onset for his whole life as his immunity system

also reacts abnormally against the organism itself [30]. However, more than two million people

worldwide do not respond to currently available treatments, hence the need to recruit the best

minds to develop new therapeutic options.

Over the past decades, Janssen developed the first approved monoclonal antibody to act directly

on the immunological system, providing patients with exceptional efficacy and symptomatic

benefit. After leading for twenty years the discovery, development, and commercialization of

monoclonal antibodies that have changed the treatment of several diseases, people are now en-

gaged in the discovery of promising novel oral and biological therapies, as well as new diagnostic

solutions.

To accomplish this, it is fundamental to understand how the disease works at the molecular level

and thus to discover the targets behind the autoimmune processes. The research area has also

expanded in recent years to try to meet the needs of patients from early diagnosis to preventive

care and treatment.

The company holds a strong pipeline of treatments for some of the most common immune-

mediated inflammatory disorders, still expanding with innovative oral small-molecule or biolog-

ical therapies. The key fields of interest are dermatology, gastroenterology, and rheumatology

with diseases including psoriasis, rheumatoid arthritis, Chron’s disease, and ulcerative colitis, and

it is intended to use previous achievements to identify new treatments as well as opportunities

for early prevention and long-term treatability of some of these illnesses.

Infectious Diseases and Vaccines

Infectious diseases are among the greatest threats to life and public health, and this condition

has become more evident in recent months due to the COVID-19 pandemic.

Janssen’s portfolio in this area is very strong and is continuously being enriched by working

to develop innovative solutions to combat the most complex infectious disorder, find the right

interventions, and improve the lives of millions of people through prevention and treatment, with

the ambition of being able to prevent the spread of infectious diseases in the foreseeable future.

Many clinical trials are underway to investigate the efficacy and safety of several treatments, and
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advanced technologies enable researchers to look ahead and pursue next-generation therapies.

First, at Janssen, there is a deep-rooted tradition of treating respiratory infections since the

development in 1918 of hypodermic needles and sterile gauze masks to overcome the Spanish

influenza pandemic. This mission is still carried out today through the production and advance-

ment of many products for daily respiratory care of diseases such as COVID-19, respiratory

syncytial virus (RSV), and influenza: on the one hand, work is to address the serious damage

caused by infections with the development of antivirals, while on the other hand, efforts are

in progress to collaborate with diagnostic companies developing platforms that offer accurate,

rapid, and affordable diagnostics for achieving early diagnosis and thus maximizing the benefit

of antivirals.

Despite advancement made, also HIV is still an illness of interest that science has already trans-

formed into a manageable critical condition and, at Janssen, researchers attempt to control the

disease and improve the lives of patients for example through the Moving Fourth campaign that

aims to address HIV-related health challenges such as associated physical and emotional comor-

bidities, and mental health issues.

Other focus disorders are chronic hepatitis B which afflicts about 300 million people in the world

but only 20% of them know to have the disease and few are those who get treatment, bacterial

infections that often develop drug resistance leading to a higher death rate, but also tuberculosis

which causes 1.6 million deaths worldwide each year [34].

Furthermore, research is also focused on prevention with vaccine development through Janssen’s

AdVac® adenovirus vaccine technology platform, which was used to develop the Ebola vaccine

approved by the European Commission in 2020 as well as to build vaccine candidates against

HIV, RSV, and Zika. Over the past year, the platform was also used to develop the candidate

vaccine to combat the COVID-19 pandemic, which is the first single-dose vaccine to be approved

by FDA and EMA.

Neuroscience

Neuroscience is a critical area of medicine as one in four people experiences a mental health

disorder in his or her lifetime, and that condition has a huge impact on the daily existence of

patient and caregivers [70].

At Janssen, this field has been of interest since 1958 with the development of a pioneering ther-

apy for schizophrenia while today efforts are ongoing to develop new solutions and innovations
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that improve and transform the lives of people suffering from a mental illness through collabo-

ration with about 30 groups and associations, and the employment of new technologies available

in imaging, genomics, and biomarkers. Thus, the purpose is to improve the care standards of

people with neuropsychiatric disorders by bringing together two of J&J’s business areas such as

pharmaceuticals, and medical and diagnostics.

Studies focus mainly on Alzheimer’s disease, mood disorders, and schizophrenia and are directed

to search for diagnostic and prognostic biomarkers of disease as well as the development of new

diagnostic technologies using imaging, and drugs and treatments for the same illness. To ac-

complish these goals, researchers are exploring several properties of the nervous system such as

synaptic plasticity and cellular resilience that are linked to learning, memory, and even mood,

and whose abnormalities lead to neurodegenerative disorders.

Furthermore, Janssen has launched several campaigns aimed at raising awareness of the chal-

lenges of living with neurodegenerative disorders, such as Breaking Depression that has been

developed for different types of depression with the support of the Global Alliance of Mental

Illness Advocacy Networks-Europe (GAMIAN-Europe) and the European Federation of Associ-

ations of Families of People with Mental Illness (EUFAMI).

Oncology and Hematology

Lastly, despite the hard work made so far by the scientific community, oncology and hematology

remain an area of medicine only partially explored and cancer causes 1 out of 4 deaths in Europe,

where it is still the second cause of premature death [13].

For 30 years they have pioneered innovations in oncology with a very strong portfolio of novel

therapies, and still today research is focused on the best-known types and subtypes of cancer and

treatments for clinical needs currently unmet or with limited treatment options. The aspiration

is certainly to make cancer a manageable and curable illness, and Janssen is engaged in research

of drugs and treatments achieving the first positive results in 1988.

However, research is not limited to the treatment and cure of the disease, but also cancer inter-

ception and early detection through innovative collaborations with leading scientific institutions.

Indeed, early diagnosis by detecting suspicious cells before they become malignant and resistant

to treatment, and start to proliferate can allow people to be treated at the onset of the disease

and thus to a positive outcome.

As a result of close collaboration between translational research and oncology diagnostics teams,

there is continuous accommodation of new clinical findings to accelerate the development of
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drugs and supporting diagnostics.

Among solid tumors, the attention is on those with a dramatic unmet need such as prostate,

bladder, or lung cancers, while among hematological neoplasms, which represent 7% of cancers

worldwide, rare blood cancers such as multiple myeloma and B-cell neoplasia are being ana-

lyzed, through the employment of new therapeutic approaches including precision medicine and

immune-based therapy, like CAR-T [67].

1.4 Aim of the thesis

The initial goal of this thesis is to describe two protocols in PH developed at Janssen and my

contributions regarding them. Moreover, a short description of the pathogenesis of PH and some

classifications of the disease are provided to examine and discuss one of the protocols in detail.

Thus, a multi-center, double-blind, placebo-controlled, Phase-4 study in patients with PAH is

considered to study the effect of treatment with a drug already approved by regulatory agencies

on patients’ daily life physical activity.

In medicine, however, several diseases are not always easy to detect, but at the same time, it is es-

sential to diagnose them early and start treatment as soon as possible. Over the last few decades,

moreover, the usefulness of biomarkers found, for example, in the blood has been demonstrated

for describing the processes involved in these illnesses and thus for developing diagnostic and

prognostic tests.

This work aims to address the need of developing novel accurate and non-invasive diagnostic

tests by setting up a procedure for identifying a blood-based biomarker signature of a disorder,

through employing machine learning techniques. Once the procedure and the statistical methods

included in it have been outlined in detail, they are applied to a real data collection provided by

the company to look for a miRNA biomarker signature for the early detection of PH.

RStudio is the software employed for statistical processing in both studies, while database prepa-

ration in the first one has been accomplished by SAS via Citrix Receiver [5, 54].
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Chapter 2

Pulmonary Hypertension

Pulmonary hypertension is a rare pathophysiological disorder with high blood pressure that af-

fects the arteries in the lungs and the right side of the heart. Formally PH is defined as a

mean resting pulmonary artery pressure mPAP ≥ 25mmHg, assessed by right heart catheteri-

zation (RHC) [18]. However, a retrospective study more recently suggested a definition based

on exercises combined with mPAP and pulmonary vascular resistance (PVR) values, and the

PH severity is defined by a WHO classification into four functional classes according to physical

activity limitations [25].

Typically, the onset of the disease occurs between 20 and 60 years of age and it may involve mul-

tiple clinical conditions and aggravate many cardiovascular and respiratory diseases. According

to the available literature, the prevalence of PH in the population is very low and, in the UK,

for example, it is 97 cases per one million inhabitants with a female:male ratio of 1.8 while 1000

new cases occur each year in the US. On the other hand, it is increasing in incidence rate in

developing countries like India and China [18].

Normally the mPAP at rest is 14 ± 3.3 mmHg with maximum values that can reach up to 20

mmHg [26, 39]. From the clinical point of view, the meaning of mPAP values between 21 and

24 mmHg is not very clear and should be investigated because patients with these values of

pulmonary artery pressure could be at risk of developing PAH. For this reason, according to the

most recent definition of PH, this condition is defined as mPAP > 20 mmHg [59].

Hearts and lungs, in the normal run of things, work together to carry blood throughout the body:

the right side of the heart receives de-oxygenated blood from the rest of the body and pumps

it into the lungs, which replace the carbon dioxide with oxygen. At this point, the oxygenated
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blood passes through the left side of the heart which pumps it throughout the body and thus a

new cycle begins [50].

The condition of high blood pressure within the arteries of the lungs leads to damage and nar-

rowing of the blood vessels in the lungs and therefore the heart has difficulty pumping blood into

them. Consequently, the most affected organs are the lungs and heart.

2.1 WHO Groups

Combining the main definition of PH with pulmonary artery wedge pressure (PAWP) values mea-

sured at rest, it is possible to provide two hemodynamic definitions of the disease: pre-capillary

if PAWP ≥ 15 mmHg, post-capillary PH otherwise, and in the latter, some sub-classes may be

identified by including other clinical cardiac values [26, 65].

However, in 1998 the WHO has defined five clinical groups of PH, called PH WHO Groups,

according to the clinical presentation, hemodynamic features, causes and symptoms, and treat-

ment strategies of the disease [51, 58]. This was then updated in 2013 as more knowledge about

PH was available, resulting in the following categories which are summarized in Figure 2.1:

Figure 2.1: Circulatory system and locations of dysfunctions associated with each type of PH
according to 2013 WHO classification [31]

• WHO Group 1: PAH

It occurs when arteries in the lungs become stiffer or narrowed due to dysfunction of the

cells in the walls of blood vessels, leading to increasing difficulty for the heart to pump

blood through them. It is probably the group about which there is more knowledge on
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both causes and possible treatments, and it may show up in different clinical conditions:

Idiopathic PAH (IPAH) which is a sporadic form of the disease with no family history and

Heritable PAH (HPAH) that is linked to inherited gene even if it is not common, but PAH

may occur also in association with other illnesses such as heart and liver disorders, HIV or

connective tissue diseases, and lastly the illness may be induced by past or present use of

drugs such as methamphetamines and cocaine. Approximately half of PAH patients belong

to the last subgroup and all types are treated similarly but the prognosis may be different.

Most diagnoses are in women between 30 and 60 years old and, in Europe, PAH incidence

is in the range of 5-10 cases per million per year and its prevalence is 15-60 subjects per

million inhabitants [49]. For this reason, it is one of the rare disorders, as well as being the

rarest type of PH.

• WHO Group 2: PH due to Left Heart Disease

The disorder is caused by dysfunction in the left side of the heart regarding contraction and

relaxation of the heart muscle or related to valves such as the mitral and aortic. Therefore,

the left heart is no longer able to do its task properly leading to increased blood pressure in

the lungs. It is post-capillary PH as the flow obstructions are at the post-capillary level, in

contrast to PAH which is at the pre-capillary level. This is certainly the most common form

of PH with growth in prevalence as the severity of dysfunctions and symptoms increases.

Indeed, about 60% and 70% of subjects with heart failure with reduced ejection fraction

(HFrEF) and heart failure with preserved ejection fraction (HFpEF), respectively, experi-

ence PH symptoms while the disorder is detected in almost all patients with symptomatic

mitral valve disease and up to 65% of patients with severe symptomatic aortic stenosis [21].

• WHO Group 3: PH due to Lung Disease and/or Hypoxia

The group includes PH associated with chronic obstructive and restrictive lung disease that

leads to narrowing of the lung airways or difficulty expanding during inhalation. Some of

the most common conditions comprise emphysema, chronic bronchitis but also sleep apnea

that is widespread in overweight middle-aged adults. These disorders cause the blood in

the lungs manage to reach only the areas with more oxygen and it implies an increase in

blood pressure. In this group, severe PH is not commonly seen but has a high prevalence

in individuals with emphysema or fibrosis [27].

• WHO Group 4: Chronic Thromboembolic PH (CTEPH) and other pulmonary artery ob-

structions
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It is a rare form of PH caused by old blood clots in the lungs which block the flow of blood

in the vessels and sometimes have no symptoms. In most cases, the use of anticoagulants

leads to the recovery of normal blood flow to the lungs preventing the disease, but in some

people it may still occur and require surgical removal of the clots. Recent studies, how-

ever, have shown that CTEPH may also develop through changes in small blood vessels in

the lungs, like PAH. Moreover, some analyses indicate an incidence of about 5 people per

million per year [18].

• WHO Group 5: PH due to unclear mechanisms

In this last group, PH derives from other diseases through a mechanism that is still poorly

understood and it may include many causes such as metabolic or systemic disorders but

also sarcoidosis or anemias. It can be either pre-capillary or post-capillary PH, and patients

identified in this group need a careful diagnosis and subsequent treatment of the disorder

and only afterward of PH.

Among the two Janssen owned protocols described in these chapters, the first one (TRACE)

considers only the first group, i.e patients with PAH, to examine if there is a treatment effect

on their daily life physical activity, while the second study (CIPHER) concerns, in addition to

healthy subjects, patients belonging to all PH groups for determining a biomarker signature of the

disease, and then takes in analysis only PH patients for establishing a signature for discriminate

subjects belonging to the first and fourth WHO groups, hence with PAH and CTEPH, from

others.

Despite the different causes leading to the above classifications, all PH groups share common

operating alterations, which are summarized in Figure 2.2.

The right ventricle, indeed, begins to face obstacles in pumping venous blood into the lungs

and, to be able to carry out its function regularly, it dilates. However, this lasts only for a

fairly limited time, because over time it loses effectiveness until cardiac decompensation occurs,

meaning that it cannot pump enough blood to the lungs. As a result, the blood accumulates

in the ventricle and veins, and it causes leakage of fluid through the vessel walls, edema, and

ascites. Finally, it reduces the cardiac output in organs and tissues, and complicates even the

most common daily activities, from housework to shopping and walking.

Usually, the therapy involves the combined use of several drugs, but their effect also depends on

the time of diagnosis. However, this therapy is viable only for some PH groups such as PAH.
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Figure 2.2: Heart and lungs in normal conditions (left) and with PH (right) [7]

2.2 Diagnosing Pulmonary Hypertension

Diagnosis of PH is not easy because its major symptoms such as breathlessness, fatigue, and

dizziness are non-specific but are also associated with many other diseases. Less common man-

ifestations, instead, are dry cough, nausea/vomiting after exercise, arrhythmia, and hoarseness.

All symptoms are mainly induced by reduced effectiveness of the right ventricle in pumping blood

to the lungs, but they also depend on the specific PH group and its pathophysiology.

Diagnosis requires a clinical suspicion grounded on symptoms and an investigation on personal

and family medical history, as well as a physical examination and several diagnostic tests. Inter-

pretation of these tests involves a discussion by a multidisciplinary team with a broad range of

expertise, and if suspicion of PH is verified, RHC is performed to support the diagnosis. Besides,

clinical group identification is a key aspect of the diagnosis and treatment pathway.

The first step in the diagnostic identification of PH is an echocardiographical assessment accord-

ing to the procedures and recording parameters established by the European guidelines. Several

laboratory examinations are then required to confirm the diagnosis and identify the clinical group

of the patient suspected of suffering from pulmonary hypertension [18, 52]:

• Electrocardiogram (ECG), checks the electrical impulses of the heart. It is one of the best

current practices for non-invasive diagnosis of PH despite it is not enough for a diagnosis

since a negative result does not exclude the diagnosis of the illness;

• Echocardiography, is used to estimate PAP and to check the proper heart working through

high-frequency sound waves. This test helps in finding the cause of the suspected PH and

25



Pulmonary Hypertension

it is a necessary but not sufficient examination for supporting the diagnosis. The trans-

thoracic echocardiogram (TTE) is the most used non-invasive screening test which provides

multiple parameters to distinguish between different types of PH;

• Chest radiography, may show cicatrices in the lungs but also enlarged ventricle or pul-

monary arteries and thus may help in differentiating PH diagnoses. However, as well as

for ECG, a negative test result doesn’t exclude a positive diagnosis;

• Pulmonary function tests, may help in detecting the cause of the suspected PH by mea-

suring the amount of air held by lungs, and that its move into and out of them, but also

their ability to exchange oxygen;

• Blood tests, are required to identify some forms of PH in addition to organ damage. Sero-

logic tests are sometimes performed to investigate the presence of N-terminal prohormone

brain natriuretic peptide (NT-proBNP) that may abound in patients with the disorder;

• Exercise tolerance test, in which the patient is subject to a physical exercise like the 6-

minute walk test (6MWT) to measures the degree of functional limitation of the subject;

• Ventilation and perfusion lung scan, is useful in PH patients to check for blood clots

and blood flow in the lungs and then to look for CTEPH: it is conducted by breathing

and injecting via vein into the lungs a small dose of radioactive material to observe their

condition.

Despite the plentiful of tests available to confirm a suspected PH, these are not sufficient for the

final verification. Indeed, the gold standard for PH diagnosis and confirmation is RHC, that is

an invasive procedure, associated with low morbidity (1.1%) and mortality (0.055%) rates, but

considered one of the most accurate methods to get a diagnosis of the disorder and the only

one that measures the pressure directly inside the pulmonary arteries [29]. For this reason, it is

essential for diagnosing PAH and CTEPH but may also help to assess the seriousness of PH.

The RHC procedure starts by inserting a catheter, an extended skinny rubber tube, into an

oversized vein within the patient’s groin or neck then passing it into the heart to take pressure

within the right side of the heart and lungs. In some cases, left heart catheterization may be

performed in addition to RHC to avoid misclassification of subjects with an unexpected high

PAWP, by introducing the catheter in the heart through an artery.
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2.3 Search for non-invasive diagnostics

Many recent studies highlight the necessity to find an accurate non-invasive test alternative to

the RHC for diagnosing PH and to develop some treatments that allow patients to lead a normal

life and longer survival. Indeed, despite its high accuracy, RHC is a test that may present some

risks and adverse events related to the catheterized vessel but also infections or organ damage.

Besides, the test should be able to differentiate the types of PH because a critical PH problem is

that there is no cure for it, but the treatment, the causes, and symptoms change from patients

to patients, and depend on the PH WHO group to which the disease belongs.

Finally, all forms of PH are frequently diagnosed when the illness is already in an advanced state,

and that decreases the potential effectiveness of the treatment. For these reasons, it is necessary

to build up methods to accelerate the diagnosis and then to develop new treatments to turn PH

into a manageable long-term condition.

To accommodate all of these requirements, it would therefore be useful a non- or less-invasive

diagnostics which would allow a diagnosis of the disease since the onset of symptoms and a

quicker start of treatment, with the objective also to improve the outcomes of the test through

the recognition of those subjects who would otherwise never be diagnosed. To do this one might

employ new technologies and therefore images and artificial intelligence but also genetics, and a

possible solution may be to identify blood or breath-based biomarkers associated with PH.

2.3.1 Blood-based biomarkers

A practical application of the latter goal is through genetic testing or gene expression analysis.

These techniques allow finding a biomarker or an ensemble of biomarkers for diagnosing PH and

for stratifying patients on the risk of the disorder.

Gene expression analysis is the study of how genes are transcribed to synthesize functional

gene products and provides insights into normal cellular processes, such as differentiation and

pathological processes. This has rapidly spread over the last decade, due to the impact of new

technologies and the development of algorithms that model the cell interactions and many tech-

niques have been developed to profile and quantify the gene expression such as DNA microarrays

and quantitative Polymerase Chain Reaction (qPCR).

In recent years, a wide range of clinical studies have been conducted to discover and develop

blood-based biomarkers for clinical research, diagnostics, and therapy monitoring, especially for
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oncological and cardiovascular diseases, which have led to innovations in the therapies them-

selves, but also to a faster diagnosis of diseases. Indeed, it is only recently that the importance

of microRNAs, which are small non-coding RNA molecules consisting of 18-25 nucleotides, has

been discovered with the role they play in regulating gene expression both at the transcriptional

and post-transcriptional levels, but also in RNA silencing by pairing their bases with comple-

mentary sequences in mRNA molecules. Due to their small size, miRNAs are very engaged in

several fields of medicine and, also because of the low concentrations in biofluids, need specific

techniques to be detected, amplified, and measured such as PCR which is certainly the most

robust technology and that with the highest sensitivity.

Although the knowledge of miRNAs dates back at least a century ago, only in the 90’s the first

miRNA has been characterized while now there are about 30000 miRNAs of which more than

2000 in humans, and potentially these can target at least 60% of human protein-coding genes

[11]. More recent studies indicate approximately 600 miRNAs encoded by the human genome

[16].

Furthermore, miRNAs released in body fluids including blood are called circulating miRNAs

and it is proved that they are involved in the pathologies of numerous illnesses, such as vascular,

neurological but also pulmonary vascular.

Considering many biomarkers simultaneously yields disease signatures and this is confirmed for

example in [71] where authors highlight that circulating miRNAs have potential applications as

diagnostic biomarkers in heart failures also combined with NT-proBNP.

Thus, for any given disorder, once its diagnostic biomarkers are identified, a disease signature

could be found for use as an alternative test to the current standard one. This approach is also

being explored at Janssen, for example, to understand the mechanisms of a variety of neurode-

generative and cancer diseases and to develop drugs and treatments, but the use of biomarkers

is also being extended to other therapeutic areas.

These considerations suggest that a signature for diagnosing pulmonary hypertension may be

identified. Actelion Janssen’s CIPHER protocol defines the first study to accomplish this and is

explored further in subsequent chapters.
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Chapter 3

Two protocols in Pulmonary

Hypertension at Janssen

Actelion is mainly concerned with Janssen’s sixth therapeutic area, i.e. PH. This chapter con-

siders three datasets associated with clinical protocols or statistical analysis plans (SAPs) in PH

from two different studies, TRACE and CIPHER [1, 2].

The first one is a double-blind, multicenter, placebo-controlled, Phase-4 study including patients

with PAH to assess the effect of treatment with a drug on daily life physical activity (DLPA)

as measured through a triaxial accelerometer worn on the non-dominant wrist. The drug under

investigation is Uptravi®, a tablet approved by regulatory authorities for the treatment of adults

with PAH to prevent worsening of the disease. After manipulating the provided tables with

SAS, a linear mixed-effects model is chosen and used along each directional axis over 14-day

intervals to extract random effects of each patient to be used as covariates with several machine

learning techniques involving the level of physical inhibition as the response variable. Once the

best method is chosen and the model to be considered is constructed with data from the 14 days

before the randomization date, it is evaluated on the data from the last two weeks of treatment

to analyze whether or not the treatment produces an improvement in the patient’s physical con-

dition.

The second study, on the other hand, is a prospective, multicenter, Phase 0 biomarker signature

identification study for the early detection of PH, where biomarkers are indicators of physiologi-

cal and pathological disease processes that might be identified, for example, by analysis of blood

samples. This study doesn’t involve any treatment and, unlike the previous one, include all PH
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groups as well as healthy subjects to analyze the functioning of the signature on those patients

as well. Moreover, the progression of the study also plans to identify a signature for differenti-

ating patients with PAH and CTEPH from others as they usually exhibit the early symptoms

of the illness years before the diagnosis and thus would benefit more from early detection. In

this instance, however, the protocol is only partially respected as two datasets with two distinct

families of biomarkers are provided and they are different from the one described in the protocol.

Once the available data are preprocessed, a way of identifying a signature with biomarkers for

a disease is built through machine learning and resampling techniques. Then, the achieved final

model and signature are analyzed and tested on a collection of data independent of that with

which the model itself was built.

Now, let us examine the two studies in detail and then take an in-depth analysis of the second

one, skipping at this stage the definition of the statistical techniques and evaluation metrics

applied.

3.1 TRACE study for PAH

3.1.1 Protocol description

As reported in [2], the study involves 108 patients with PAH which are first screened in a

visit based on eCRF (Electronic Case Report Form) to collect data for the clinical study and

then observed for 14 days, the so-called baseline, wearing the triaxial ActiGraph GT9X Link

accelerometer on the non-dominant arm. This tool measures and collects the instantaneous

accelerations along the three spatial directions in units of gravity at a sampling rate of 30 Hz,

and the acceleration signal is first filtered by a band-pass filter at 0.25-2.5 Hz and then digitized

using an 8-bit conversion, through algorithms licensed by ActiGraph and implemented by the

ActiLife software. Finally, the digital signal is summed over specific intervals (epochs) of 60

seconds for each direction returning Activity Counts (ACs) indicating the average counts per

minute [46]. These values allow the vector magnitude calculation

VM =
√
AC2

x +AC2
y +AC2

z

to classify each epoch into different types of activity using Koster’s algorithm or even, by ap-

propriate transformations, Freedson’s one; in TRACE, as stated by the protocol, the second is

preferred [15, 38].
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Furthermore, as reported in the clinical study protocol, DLPA is the activity performed while

awake with a worn device, and such requirements are identified through the Troiano and Tudor-

Locke algorithms, whereas ACs are collected first daily and then in 14-day windows for subsequent

analysis [63, 64].

Next, at the baseline visit, patients are randomized in a 1:1 ratio to drug or placebo double-blind

administration of 200 mcg oral tablet, where Uptravi® is the drug being analyzed containing

the active substance selexipag, the only approved selective IP receptor against targeting the

prostacyclin pathway in PAH. Thus, the study drug first is increased at weekly intervals to the

maximum tolerable dose for 12 weeks and then the dose of selexipag/placebo is kept constant,

except for safety adjustments, until week 24 and the end-of-treatment (EOT) visit.

The objectives of the study are first to evaluate the effect of selexipag on DLPA of PAH patients

after 24 weeks, and then on symptoms, exercise capacity, and disease severity in participants.

Besides, the safety and tolerability of the drug and its impact on patients’ daily lives, along with

potential associations between traditional efficacy outcomes and DLPA, are to be assessed. All

actigraphy variables are summarized by periods of 14 days.

3.1.2 My own contributions: SAS for database preparation and R for

statistical processing

The endpoint considered by me is the evaluation of the treatment effect on DLPA after 24

weeks, once that has been studied by machine learning methods over the 14 days of the baseline.

The prognostic effect is the WHO variable FC which indicates the degree of PAH severity and

physical activity limitation [25]: it has only two levels labeled as FC1 and FC2 for mild and

marked physical activity limitations, respectively. This is accomplished by considering the ACs

in all directions at the baseline while awake with a worn accelerometer, and the WHO FC ones.

First of all, SAS software has been employed for database preparation, through Citrix Receiver,

an online workspace allowing employees to work and use many programs in remote widely adopted

by companies, public administration but also universities [5].

Therefore, several tables have been provided in SAS7BDAT files among which there are:

• epochsummary, collecting for each patient the values of ACs measured through the Acti-

Graph accelerometer in the three axial directions in each one-minute epoch during all weeks

of observation, from baseline to EOT, with the corresponding timestamp and thus infor-

mation regarding the wearing of the device (i.e. whether worn or not) and the patient’s
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state (i.e. awake or sleep);

• adsl, containing data of all PAH patients involved in the study such as the randomization

date and the treatment administered;

• adbs, including participants’ data collected during the baseline visit as the WHO functional

class and other clinical information.

From the previous tables, the following variables and records of interest are merged: the epochs

with the device worn and patient awake in the first database, the randomization date for each

participant in the second one, and finally the WHO FC of all patients in the last one.

Then, using data extracted from the first two tables, baseline ACs in each of the three axial

directions are selected and averaged daily for each subject, and the baseline day number is

calculated for the resulting records, as shown by the SAS code in Figure 3.1. The same procedure

Figure 3.1: Some lines of SAS code for baseline data in TRACE [55]

is also repeated for data from the last weeks of treatment. Data regarding the patients’ functional

class, instead, are collected in a distinct table to be considered later at the end of the preprocessing

phase.

Once the database preparation phase was completed, the software RStudio was introduced to

proceed with the dataset transformation and the statistical processing. Starting with the baseline

data, these are transformed through four different Generalized Linear Mixed Models (GLMMs)
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to evaluate which approach to take in the analysis.

Let u ∼ N(0,Σ) the vector of the random effects and Y |u ∼ H(·), withH a distribution belonging

to the exponential family, a GLMM can be defined in matrix form as

η = g(E(Y |u)) = Xβ + Zu

where the two factors indicate the linear predictor for the fixed effects and the random effects

terms, respectively, whence

E(Yi) = E[E(Yi|ui)] = E[g−1(Xiβ + Ziui)]

V ar(Yi) = E[V ar(Yi|ui)] + V ar[g−1(Xiβ + Ziui)]

In the specific scenario of normal distribution Yi|ui ∼ N(µi, σ2I) the model takes the form

y = Xβ + Zu+ ε = Xβ +
H∑
h=1

Zhuh + ε, ε ∼ N(0, σ2
ε I)

and

E(Yi) = Xiβ

V ar(Yi) = σ2I + ZiΣiZTi

where the second term in the variance expression introduces dependence between observations.

In the conducted analysis, four models are considered and applied to the baseline data separately

on each direction with the average daily ACs as the response variable y and the number of the

day within the time interval as a covariate. For the first case, a simple GLM is chosen (i.e. linear

regression) having as the only covariate the number of the day in the given 14 days interval.

Subsequently, in the other models, the random intercepts for each patient, the random slopes,

and finally also the random second-degree terms are added progressively.

Specifically, for each of these models a new database is obtained, collecting for each patient the

slope values on the three axes for the linear regression, and those of the random effects in the

remaining cases, but also the associated WHO FC.

For example, the GLMMs with random intercepts

yij = β0 +
p∑
d=1

xij,dβd + ui = (β0 + ui) +
p∑
d=1

xij,dβd
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are built by using the lmer function in the lme4 package for linear models and, for each axis,

the mean value yij of ACs for the i-th patient on the day j-th of the given 14 days time interval

is described by the model

yij = β0 + β1 · diffdatej + ui = β∗0,i + β1 · diffdatej

where ui denotes the random intercept effect associated with the i-th patient, and so β∗0,i is

the intercept of the same patient, while diffdatej indicates the number of the day in the time

interval and takes values from 1 to 14. The random effects ui along each of the three axes are

stored in the new database for each patient together with the associated functional class. Few

lines of R code related to the application of the latter model on the baseline data are now shown,

similarly to the other chosen methods.

1 set.seed (825)
2 dfavgdaily <- read. sas7bdat ("bs_ dailyavg . sas7bdat ")
3 dfavgdaily $ SUBJID <- as. factor ( dfavgdaily $ SUBJID )
4 # GLMM with random intercept - x-axis
5 glmm1 <- lmer(avgx ~ diffdate + (1| SUBJID ), data = dfavgdaily )
6 rand1 <- data. frame(ranef(glmm1 ))[,c(3 ,4)]
7 names(rand1) <- c(" SUBJID ", "effx")
8 # GLMM with random intercept - y-axis
9 glmm2 <- lmer(avgy ~ diffdate + (1| SUBJID ), data = dfavgdaily )

10 rand2 <- data. frame(ranef(glmm2 ))[,c(3 ,4)]
11 names(rand2) <- c(" SUBJID ", "effy")
12 # GLMM with random intercept - z-axis
13 glmm3 <- lmer(avgz ~ diffdate + (1| SUBJID ), data = dfavgdaily )
14 rand3 <- data. frame(ranef(glmm3 ))[,c(3 ,4)]
15 names(rand3) <- c(" SUBJID ", "effz")
16 # Read file with WHO FC
17 whodf <- read. sas7bdat ("whofc. sas7bdat ")
18 whodf$ WHOFC <- as. factor ( ifelse (whodf$ WHOFC ==2,"FC1","FC2"))
19 whodf$ SUBJID <- as. factor (whodf$ SUBJID )
20 names(whodf)<-c("FC", " SUBJID ")
21 # Merge data
22 dataset <- merge( merge( merge(rand1 ,rand2),rand3),whodf )[,-c(1)]

Now, only one out of the four datasets is chosen by considering several machine learning methods:

gradient boosting, Support Vector Machines (SVMs) with linear, radial, and polynomial kernels,

random forest, logistic regression, and GLM with elastic-net regularization. These and what

follows are defined in more detail in the subsequent chapters.

Proceeding similarly for each dataset, each of these is randomly split into two parts where the first
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one contains two out of three observations and is used for the construction of the classification

models with slopes or random effects as covariates and the functional class as the response

variable. Particularly, models are fitted to the first subset through a 3-fold Cross-Validation

to optimize their hyper-parameters, using AUC score maximization as a criterion. The latter

is also used to choose the best performing model for each dataset among those constructed,

resulting in gradient boosting and GLM with elastic-net regularization for the first and third

datasets respectively, and SVM with polynomial kernel for the remaining two. After calculating

for each model the optimal cut-off probability on the first set, they are tested on the collection of

observations not involved in their construction to predict their level of physical activity limitation

and some resulting statistics such as the AUC score but also the sensitivity, specificity, and

precision are compared.

From this analysis, the method associated with the dataset containing only random intercepts

appears to be the best performing and is therefore selected together with the dataset itself.

Validation AUC score

Gradient Boosting 0.6620

Linear SVM 0.6674

Radial SVM 0.7291

Polynomial SVM 0.8191

Random Forest 0.6154

Logistic Regression 0.7985

Elastic-net GLM 0.8018

Table 3.1: Validation AUC score for ML methods with dataset transformed by GLMMs with
random intercepts

Looking at the validation AUCs shown in Table 3.1, however, the second best method is preferred,

i.e. GLM with elastic-net regularization

η̂ = −0.8563− 0.0056 · effx − 0.0065 · effy + 0.0085 · effz

from which

π̂ = P(ŷ = FC1|X) = exp (η̂)
1 + exp (η̂)

with random effects effx, effy, and effz as covariates, because a slight decrease in the value
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of the statistic corresponds to a significant increase in model interpretability. The final choice is

confirmed by comparing the predicted probabilities and the validation metrics already mentioned.

Once the GLMM with random intercepts is chosen to transform patients’ ACs over 14 days time

periods and thus the classification model to be considered, the former is applied to average daily

AC values from weeks 23-24 by deriving random effects as already done for baseline data, to

assess whether there is a treatment effect and a change in physical activity limitations from the

two weeks prior to randomization to the last two weeks of treatment from day 155th to day 168th.

These are indeed chosen because they follow 12 weeks of progressive increase in the administered

dose and 10 weeks of maintenance of the individual’s maximum tolerated dose, and culminate in

the EOT visit as well as the next 30 days safety follow-up phase.

Subsequently, the classification model built with the baseline data is refitted on the data got from

the transformation of final weeks ACs, and the treatment effect is evaluated by comparing the

estimated probabilities of physical limitation levels and its main statistics with those obtained by

fitting it on the previous collection, separately by treatment. So, the aim is to check whether a

change occurs in DLPA from baseline to week 24 through a variation in the predicted probabilities

of both the WHO FCs.

However, it results that there is no clear benefit from taking selexipag and therefore this therapy

seems not to work as there is no significant improvement in the limitations of physical state. Of

course, this may also be due to the GLMM employed for data transformation, the length of the

time intervals considered, or the classification method itself, but is certainly influenced by the

low number of PAH patients involved in the clinical trial.

3.1.3 Progress of the study

The study is over but more in-depth analysis has been carried out considering more variables

since the study is exploratory. Indeed, different types of physical activity have been taken into

account, and Fredson’s and Koster’s algorithms and the thresholds established by them are

used with VM to distinguish non-sedentary activity and moderate-to-vigorous physical activity

(MVPA) [15, 38].

Thus, as described in the protocol, changes in DLPA are assessed by considering accelerometry-

based endpoints such as time spent in non-sedentary activities. Moreover, in response to some

FDA feedback for other Actelion studies, the volume of non-sedentary activity measured through

the number of steps is added in the SAP, together with the daily time spent in MVPA as sug-

gested by Bellerophon Therapeutics due to the positive outcome of a Phase 2b clinical trial with

36



Two protocols in Pulmonary Hypertension at Janssen

this endpoint.

The variation for all these variables was analyzed using an analysis of covariance including terms

for treatments and geographic region, and baseline values as covariates. Then, the differences in

least square means between treatment and placebo, corresponding 2-sided 95% confidence inter-

val and p-value was provided. The same analysis has been repeated also by considering other

PAH-related variables such as PAH-SYMPACT® domain scores, i.e. cardiovascular and car-

diopulmonary symptom domain scores or physical impact one, 6-minute walk distance (6MWD),

Borg dyspnea index during a 6MWT, and NT-proBNP.

3.2 CIPHER study

3.2.1 Protocol description

As outlined in [1], the study involves the development of a PH signature using biomarkers from

blood samples (50mL) in the absence of treatment. Being multicenter, patients are chosen from

several countries such as Japan, the USA, and the UK to represent different areas of the world,

and healthy subjects are also included to observe how the signature works on them as well

control group. The analysis of the blood samples was undertaken by MiRXES, an external

Singapore-headquartered biotechnology company, and participants are subjected to a transtho-

racic echocardiogram at the time of enrollment in the study to update the eCRF.

The dataset contains for each patient clinical data (which are neglected in the analysis) but also

values of several miRNAs as well as proBNP (prohormone brain natriuretic peptide), a protein

biomarker highly associated with PH. Thus, the collection of data is split into two distinct and

disjoint sets, a discovery set and a testing one. In both collections, the categorical variable

DANA indicates the diagnosis and has 11 levels (9 of diseased patients according to the WHO

classification, one for healthy patients, and one of diseased subjects but not PH) which are then

grouped into two levels to bring the study to a case-control one. Next, only PH subjects are

considered and grouped differently for further analysis.

Moreover, a retrospective study is conducted to identify potential biomarker signatures using

blood samples collected from patients with PH in multiple studies during the last 10 years, and

then to select the potentially most useful biomarkers for diagnosis.

Thus, the protocol includes a procedure with machine learning and sampling methods to iden-

tify circulating miRNA biomarkers associated with PH in the collected blood samples, and to
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achieve the identification, and subsequent validation through some evaluation metrics, of a dis-

ease biomarker signature to be used as a non-invasive test for PH diagnosis.

3.2.2 My own contributions

Based on the CIPHER protocol, the aim of my analysis is first to develop a procedure for building

a disease signature with quantitative biomarkers and then to compare the diagnostic performance

of the signature with that of the best available non-invasive diagnosis test. Thus, the procedure

is applied to a real dataset to identify a miRNA biomarker signature for PH.

The strategy is created by combining different statistical and resampling methods to choose the

best technique for a given collection of data. However, the built procedure is slightly different

from the one described in the protocol for identifying a PH signature, as it is generalized for any

disease and is also adjusted to the needs driven by the data provided.

Given a discovery set containing miRNA biomarkers as quantitative variables and a binary

diagnostic variable, several machine learning techniques are considered and built on it with the

diagnosis as the response variable and the others as covariates. Thus, the most suited and best

performing method is first chosen via Nested Cross-Validations and its hyper-parameters are

optimized through a simple Cross-Validation. Furthermore, the identified signature is analyzed

and evaluated on some testing observations, separate from those contained in the discovery set,

through metrics that will be described later, and then its performance is compared with that

of the standard non-invasive method for diagnosing the disorder through Wilson’s confidence

regions of two evaluation metrics. Moreover, it is also planned to evaluate the model execution

on the different subclasses of the illness and the impact of missing values on the signature.

At this point, it is desired to find a PH signature by applying the built procedure on the provided

dataset split into a discovery and a testing sets with 1194 and 376 observations, respectively. Both

of these include clinical data of healthy and PH subjects from several countries around the world

and meet the conditions described as the presence of several quantitative variables for miRNA

biomarkers and a binary variable of diagnosis to be used in the models as covariates and response

variable, respectively. However, this data collection is different from the one described in the

CIPHER clinical protocol because it has been extracted from the proof-of-concept study used to

design the protocol itself. Moreover, a wide range of machine learning techniques is chosen, from

the simple k-Nearest Neighbors (k-NN) to tree-based methods, and also more recent approaches

such as neural networks.

In the following chapters, the procedure for identifying a biomarker signature for any disease is
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described in detail with the statistical methods adopted and then the results of its application to

the data collection provided by the company are shown to obtain a miRNA biomarker signature

for early detection of PH.

Finally, the company also provided a dataset similar to the previous one but with metabolomic

data. These are also pilot data not yet included in the CIPHER ones but structured similarly,

with two sets of discovery and testing including 1221 and 359 patients respectively, for which

data on 1522 metabolic biomarkers have been collected. Then, the developed procedure is also

used to find the PH signature with metabolic biomarkers, similarly to that done with the other

biomarkers. This, however, is not analyzed here.

3.2.3 Progress of the study

At the company, according to what defined in the protocol and its dataset, the plan is similar

to what done with the first collection of data, which is to explore several machine learning

techniques to identify a suitable PH signature with miRNA biomarkers and then to compare it

to the standard non-invasive method of diagnosis. Indeed, the procedure defined in the CIPHER

protocol is not very different from the one defined in this work. Furthermore, a second signature

is intended to develop to differentiate PAH and CTEPH from other PH groups, using the ROC

curve and AUC score.

At the moment, the CIPHER study is ongoing and no analysis has been performed so far: the

end of the first phase, that of discovery, is approaching and it is expected to run models by the

end of this year.
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Chapter 4

miRNA biomarkers: studies and

researches

It has been proved in several papers that circulating miRNAs are involved in the pathogenesis of

several disorders. The purpose of this chapter is to briefly recap what is available in the literature

regarding miRNAs concerned with the different processes of PH and then go on to describe a

procedure for identifying a miRNA biomarker signature for any disease and its application to a

real collection of data for PH.

First of all, in literature microRNA sequences are defined by concatenating miR, the number of

the family it belongs to with eventually a letter for differentiation among multiple members of

the same family, and then the tag of the double helix RNA it comes from, i.e. 3p or 5p if it

comes from the 3’ or the 5’ arm respectively of the precursor. This sequence is then preceded by

three letters indicating the species to which it belongs, and hsa is used for humans. An example

is given by hsa-miR-148a-3p but there are some nomenclature exceptions for miRNAs discovered

before the standard just described came into force such as hsa-let-7f-5p [22].

Due to their small size, miRNAs have many applications in medicine and one of the most im-

portant employments of genetic analysis is to isolate individual miRNA, amplify its signal, and

identify biomarkers to assess disease risk but also to perform diagnosis or prognosis.
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4.1 Fold change

Over the years, several statistical and computational methods have been used to investigate the

differentiation of gene expression.

The simplest approach for selecting genes whose expression patterns differ by phenotype is to

use the fold change criterion [40]. This, however, is not enough to assess the significance of

gene expression differences and so it is combined with some statistical tests such as t-test and

F-test. Due to the repetition of the selected test for each gene, that could lead to an increase in

false positives and so the procedure of multiple tests provides an overall assessment of the test

significance by controlling the first type error, i.e. false positives, but also the false discovery rate

introduced by Benjamini and Hochberg and defined as the expected percentage of false positives

among the claimed positives [4]. Another possible approach is the cluster analyses, still widely

used although it cannot provide accurate disease predictions due to its characteristics [20], but

in recent years many alternatives have been offered and applied for tumor classification such as

the Support Vector Machine (SVM) and the naive Bayes method [17, 47].

These methods can thus be applied to separate biomarkers into up-regulated and down-regulated

in response to an external stimulus, such as a disease or the processes involved in it: a variable

or biomarker results up-regulated if it is more expressed in diseased subjects than in controls,

while it is down-regulated in the opposite case.

The computation of the fold changes is the basic method to apply in the analysis of gene ex-

pression data for measuring variation in the expression level of a gene due to the possibility of

combining it with the results of statistical tests through graphs. For a biomarker in a case-control

study, the fold change is defined by the ratio of its mean value in cases and that in controls, and

logarithmic transformation is often applied to its absolute value. In clinical studies, however, the

base-2 logarithmic transformation is preferred because it better describes changes and variations

between the two classes, and the log2 fold change for the i-th biomarker is defined as

log2 fold changei = log2

∣∣∣∣∣ xmean,casexmean,control

∣∣∣∣∣
Thus, for a positive value it is up-regulated, down-regulated otherwise. Furthermore, a null value

represents no change between the mean values of the two classes, +1 represents a doubling of

the mean value in cases compared with that in controls while -1 represents a halving of the mean

values in cases compared with controls.
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Figure 4.1: Volcano plot with the second dataset described in the CIPHER study: test signifi-
cance and variable regularization

As already said, these values may also be shown in combination with the p-values of a hypothesis

test with α significance level for identifying among the significant variables, i.e. for which p −

value ≤ α , those that are also of interest, i.e. satisfying |log2 fold change| > 1 or in other words

those having an average value in cases at least double that of controls or vice versa. Results could

be visualized for example by a volcano plot, as shown in Figure 4.1 where variables above the

blue line are significant for the test, and those not in the area between the two red lines are of

interest. At the same time, values on the x-axis allow the distinction between up-regulated and

down-regulated biomarkers, depicted in green and orange, respectively.

4.2 miRNAs and pulmonary hypertension

The pathogenesis of PH involves several molecular mechanisms that cause thrombosis, vasocon-

striction, vascular remodeling, and heart failure. Increased or decreased levels of miRNAs have

been shown in several studies to be closely associated with the clinical phenotypes of PH and

PAH and, at the same time, the role as markers of some genetic mutations causing PAH and PH

has been demonstrated such as that of bone morphogenetic protein receptor type-2 (BMPR2)
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found in 75% and 25% of IPAH and HPAH cases, respectively [6, 48]. These findings suggest

that several circulating miRNAs are involved in regulating the expression of genes of pathological

and physiological processes of PH and PAH.

Several papers have been written in recent years identifying possible miRNA biomarkers of PH

or one of its types, and some of them associated with processes involved in the illness, through

statistical tests such as the t-test and the F-test.

Miao et al [45] highlight the role of some circulating miRNAs in PH pathogenesis and focus

primarily on their role in PAH, by suggesting some biomarkers as possible diagnostic and ther-

apeutic targets of the disorder. Abnormal levels of some miRNAs are, for example, involved

in the anomalous proliferation of pulmonary arterial smooth muscle cells (PASMCs). miR-34a

inhibition leads to an increase in cell proliferation and a consequent rise in the expression of

platelet-derived growth factor receptor α leading to PAH, but also the miR-17∼92 cluster be-

cause removal of its miRNAs from PASMCs of PAH patients drives to a relaxation of the disease.

miR-145, instead, is important for the differentiation of vascular smooth muscle cells (VSMCs)

but also plays a key role in the PAH pathogenesis as a rise in its expression causes over prolifer-

ation and invasion of VSMCs, whereas miR-143-3p is involved in pulmonary artery remodeling

and its inhibition suppresses PH.

However, one of the most important mechanisms in PAH is right ventricular failure, and miR-126

expression is significantly lower in patients with this condition and significantly reduces capillary

density, whereas miR-140 expression is up-regulated in hypertrophic right ventricles.

Fares et al [11], on the other hand, summarize several profiling studies regarding the differentia-

tion of some miRNAs involved in PH pathogenesis and focus on miRNAs regularization in some

PAH manifestations. The set of up-regulated miRNAs includes miR-143 and miR-145, which are

abundantly expressed in cardiac and vascular smooth muscle cells and increase in humans with

PH, miR-21 that is over-expressed in the lungs of PH patients, and miR-27a that is induced by

hypoxia in pulmonary artery endothelial cells. Those down-regulated, instead, comprise miRNAs

in the miR-17∼92 cluster that are essential for lungs development as well as miR-204, miR-424,

and miR-503 that are positively regulated by apelin that results essential for pulmonary vascular

homeostasis, and miR-126 that decreases in PAH skeletal muscles.

The three mechanisms that most regulate miRNAs in PAH are hypoxia, inflammation, and ty-

rosine kinase pathways. The first one activates some transcription factors such as HIF-α, which

induces the expression of miR-210 in endothelial cells and pancreatic cancer cells, and miR-155.

Inflammation, instead, releases numerous growth factors and cytokines by increasing miR-155
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and miR-146, whereas other miRNAs like miR-204 and those in the miR-17∼92 cluster are reg-

ulated by tyrosine kinase and STAT3.

Furthermore, it has been proved that several circulating protein biomarkers are highly associated

with PAH and PH and these are grouped into markers of vascular dysfunction, inflammation,

tissue hypoxia, secondary organ damage, and myocardial stress. To this last class belong BNP

and proBNP, and McGlinchey et al [44] emphasize their usefulness as equal to some circulating

miRNAs and in combining them in multi-biomarker panels to increase their diagnostic power.

Both peptides are not specific for PH but more generally for heart disease: the former appears

to have a closer correlation with pulmonary hemodynamics and is less influenced by renal func-

tion, whereas the latter appears to be a powerful prognostic predictor. These also highlight the

possibility of combining several biomarkers to get a possible disease signature.

Most of the statistical methods used so far, however, can identify highly differentiated genes but

lead to a not so high biomarker accuracy. This is mainly due to all of these techniques not using

classification accuracy to measure the miRNAs discriminating ability and therefore genes are not

sorted by their accuracy in experiments. Indeed, many authors combine the genes that come

out best from their analyses to obtain a better classifier [72]. To overcome all these limitations,

methods commonly referred to as machine learning techniques can be employed.

4.3 miRNA biomarkers and machine learning techniques

The term machine learning has been coined around the beginning of the second half of the last

century to denote the ability of machines or computers to learn from experience or, in other

words, to be able to perform tasks only by processing input data with some algorithms. It

involves several methods elaborated since the beginning of the last century such as linear regres-

sion, logistic regression, and the generalized linear model. As technology has evolved, non-linear

models like tree-based methods have been developed, starting from classification and regression

trees and proceeding to random forests and boosting. Finally, the rise of more computationally

powerful software has led to more recent and complex techniques such as neural networks.

Nowadays, these methods and other more complex ones are employed by major multinationals

such as Amazon, Google, Facebook, and Netflix to perform market research and segmentation

(e.g. to understand what their audience likes and dislikes, and target the right content to them),

to explore customer behavior and personalize recommendations (e.g. to get to know customers

in-depth and make recommendations to them via advertisements) but also to predict trends for
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businesses by using big data.

All methods used to understand data and learn from experience are grouped into supervised and

unsupervised according to their output: the former obtain predictions as output (e.g. classifica-

tion or regression analysis) while those in the second group analyze relationships and structures

of input data (e.g. cluster analysis).

This work is an attempt to differentiate miRNA biomarkers and identify a biomarker signature

for diagnosing the disease, employing supervised models. Moreover, since the response variable is

the diagnosis, this is a classification problem. For achieving the established goal, it is of primary

importance to find a classification method that both allows defining an accurate signature and

guarantees good interpretability of the results. Thus, in the following chapters, eight supervised

methods for binary classification are considered, and their main features are now described.

The first method is among the simplest machine learning algorithms, the k-Nearest Neighbors

(k-NN). It is a non-parametric method that consists only in the discovery or training set and,

once a value of k has been chosen, for a given test observation the most frequent class among the

k nearest neighbors in the discovery set is assigned to. It is very fast even with large datasets

and has a computational advantage, but it is susceptible to outliers.

Then, two techniques are chosen into the family of tree-based methods, which involve stratifying

the predictor space into many regions to predict the diagnosis label for one or more observa-

tions and all the splitting rules may be displayed in trees. Decision trees are simple and easily

interpreted but sometimes perform poorly than other supervised approaches. Thus, multiple

trees can be combined in ensemble methods to obtain a single prediction improving performance

significantly. Among these techniques, random forest and gradient boosting are chosen in this

work.

Gradient boosting improves the decision tree predictions because it is built sequentially: starting

with a simple model, at each step, a shrunken version of the new learner that minimizes a loss

function is added and it is trained with data incorrectly classified in the previous step. Then,

each learner uses information from the previous step with the functional gradient descent algo-

rithm to improve the tree where it works worst. So, the final prediction function is obtained by

combining all the built models.

Random forest, instead, involves several trees built on bootstrapped discovery samples at the

same time. Furthermore, while building each tree, at each stage only a subset of predictors is

considered to choose the cutting one, leading to different and decorrelated trees and preventing

overfitting. For a classification problem, the output for each test observation corresponds to the
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mode of the classes predicted by all trees. The model becomes less interpretable as the number

of trees increases.

Another family of binary classification models is that of the Support Vector Machines (SVMs),

which offers also several approaches to generalize them to the multilevel case. These meth-

ods infer the Support Vector Classifier (SVC) by accommodating non-linear boundaries through

kernels, which quantify the similarity of pairs of observations. In the linear case, it finds a hy-

perplane that better splits the classes by allowing some misclassifications to avoid overfitting;

here, polynomial and radial kernels are employed in addition to the linear one.

Another method is the penalized Generalized Linear Model (GLM) with elastic-net regulariza-

tion which improves the logistic regression by adding a penalty term in the expression that is

maximized to estimate coefficients. This approach represents a compromise between lasso and

ridge regression, by overcoming their limitations and allowing variable selection by shrinkage. It

is described and defined in more detail in Chapter 5.

To use the widest possible range of methods, it has been also decided to employ a technique

developed in the 80s even though it requires a large amount of data to work well and so it is

not expected to work well in the real case analyzed in this work. This last method is the neural

network, a nonlinear parametric approach inspired by the neural networks of animal brains. It

consists of many interconnected nodes distributed over several layers and the output for each test

observation is obtained by combining linear and nonlinear functions. This method is difficult

to interpret and therefore the simplest one, i.e. that with a single hidden layer, is chosen for

demonstration purposes.

All these techniques are employed to identify a biomarker signature for a disease, achieving dif-

ferent performance and levels of interpretability. At the same time, they may be combined with

resampling methods to improve their performance, which are defined as procedures that upgrade

the data learning process and that have become an essential part of modern statistics. These

methods require a set of observations and some hyper-parameters with which to build a model,

and they involve repeated sampling from the dataset and fitting a model of interest to each

sample to extract additional information about the fitted model. Some of these procedures will

be described later.

Thus, by combining sampling techniques with the previously defined classification models, it is

possible to choose the best method and to analyze it in detail, taking into account that in a

clinical context it is preferable to understand the models and their results.
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Proceeding in this way, a procedure is developed and described in Chapter 5 for building the sig-

nature of a general disease, and then applied to a real collection of data for PH in the succeeding

chapter.
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Chapter 5

Development of methods for

biomarker signatures

In this chapter, a general procedure to determine a disorder blood-based biomarker signature

from a dataset that meets some requirements is described.

Let’s consider a collection of data containing clinical data from blood samples of patients enrolled

in the study: a categorical variable indicating the diagnosis to be transformed into a binary

one, with 1 meaning a diseased subject and 0 a healthy one, and several quantitative variables

collecting biomarker values in blood samples. Other medical information from eCRF, however,

is overlooked in the study. The database, if not yet, is split into two disjoint sets, a discovery

set and a testing one, where the first is used to choose the best technique for developing the

signature that is then evaluated on the second one.

After a preliminary step of data analysis, variable selection, and preprocessing, a retrospective

case-control problem with biomarkers as covariates and the binary diagnosis as response variable

is then outlined. The endpoint is the development of a procedure to build a signature of a disease

with blood-based biomarkers and to evaluate its performance, also considering any sub-levels of

the categorical variable.

This objective is accomplished through the implementation of classification methods mentioned

and briefly described in the last section of the previous chapter such as GLM with elastic-net

regularization and gradient boosting, together with some resampling techniques including k-fold

Cross-Validation and Nested Cross-Validations. Specifically, the functionalities and properties

of methods and evaluation metrics employed in the strategy and into the next case study are
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analyzed in detail, including insights about their implementation on Rstudio. Moreover, the

implemented code lines are shown in the appendix at the end of this thesis.

5.1 Univariate analysis and variable selection

Before going ahead with the procedure development, it is recommended to analyze the provided

dataset and select variables by checking their power to discriminate healthy from diseased sub-

jects, standardize them to be able to make comparisons and use some algorithms, and remove

those that result to be highly correlated.

First, a retrospective study on banked blood samples of diseased patients from multiple sites

around the world is carried out: this is an essential step because it allows to retrospectively se-

lect the variables that may be useful in the disease signature and thus to overlook those certainly

having no discriminatory power between healthy and diseased subjects.

Furthermore, missing values in the discovery set are analyzed: if these are not so many, one could

remove the not complete observations paying attention to the preservation of the proportions of

the two classes, otherwise, appropriate imputation techniques would have to be used. This last

step is not meticulously explored here as it is not a thesis topic.

A logarithmic transformation is applied to variables with a scale markedly different from the

others according to boxplots but also the available literature, to stabilize the variance and to

reduce multiplicative effects to additive ones. At the same time, this transformation limits the

influence of outliers on the distributions.

Now, some statistical tests and a pre-processing step follow to better explore the provided data

collection.

5.1.1 Normality test

To further investigate the distributions of the quantitative variables in the discovery set, one can

start by checking their normality with the Shapiro-Wilk test whose results may be confirmed

through some statistics such as skewness and kurtosis.

The normality check with the Shapiro-Wilk test is performed by comparing two alternative

variance estimators: a non-parametric one defined as the optimal linear combination of the order

statistics of a gaussian random variable, and the usual parametric estimator, that is the sample

variance. The null hypothesis H0 of the test is that the underlying distribution is normal.

Before testing a sample X containing n observations, its values are sorted in ascending order so
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that X1 ≤ X2 ≤ · · · ≤ Xn. Furthermore, once m =
⌊
n
2
⌋
is set, the test statistic is defined as

W =
(∑m

i=1 ki(Xn+1−i −Xi)
)2∑n

i=1(Xi − X̄)2

where ki values are provided by specific tables to derive the linear combination of the order

statistics of a variable with normal distribution, while the denominator denotes a multiple of the

sample variance. The W statistic takes values between 0 and 1, and the closer it is to 1, the

closer the distribution of X is to a normal distribution. Conversely, with small W values, the

test rejects the null hypothesis.

One way to confirm the test results is the quantile-quantile plot that displays and compares the

truth quantiles of a given distribution and those expected from a gaussian one: if the depicted

points are arranged along a straight line, then the distribution closely approximates the normal

one. However, with hundreds of features it is difficult and computationally expensive to explore

all variables but you may choose those that result normal from the previous test or a subset of

them.

Another excellent alternative is given by calculating two statistics for the distribution of quan-

titative variables such as skewness and kurtosis defined as

skew(X) = E

[(X − µ
σ

)3
]

= E[(X − µ)3]
(E[(X − µ)2])3/2 =

∑n
i=1

1
n (xi − x̄)3

σ3

kurt(X) = E

[(X − µ
σ

)4
]

= E[(X − µ)4]
(E[(X − µ)2])2 =

∑n
i=1

1
n (xi − x̄)4

σ4

On one hand, skewness is a measure of the asymmetry of the distribution, and 0 or values

close to the latter indicate symmetric distributions and normally distributed data. For positive

skewness values, instead, the distribution is positively skewed with most values below the mean

and therefore concentrated on the left side of the distribution, while for negative values it is

negatively skewed with values mostly above the average value.

On the other hand, kurtosis measures the distance of a distribution from the normal one with

respect to which there is a greater flattening or greater elongation, and thus the peak shape. For

that measure, the value for an approximately normal distribution should be close to 3. Instead,

the data distribution is leptokurtic and shows a marked peak if the coefficient of kurtosis is

greater than 3 while for smaller values the distribution is platykurtic and is more flattened on

the axis. However, many functions often subtract 3 from the computed coefficient, resulting in
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an approximately zero value for normal distributions or approximately such.

The Shapiro-Wilk test is performed in R through the shapiro.test function which returns the

W-statistic and the associated p-value, while the quantile-quantile plot is drawn, for example, by

implementing the qqnorm function. The package e1071, instead, contains skewness and kurtosis

for computing these two statistics for a given sample.

5.1.2 Rank-based tests

An analysis of quantitative variables through tests on mean values may be helpful. A standard

example is a one-sample t-test that is any statistical hypothesis test in which the test statistic

follows a Student’s t-distribution under the null hypothesis. It compares the mean x̄ of the

sample data to a theoretical value µ, and the t-statistic is calculated as

t = x̄− µ
s/
√
n

where n is the sample size and s is the sample standard deviation. Thus, the critical value of the

Student’s t-distribution with n−1 degrees of freedom related to the chosen test α significant level

is found in proper tables also available in statistics manuals, with associated p-value denoting

whether the difference is statistically significant or not. However, the t-test should not be used

if the normality null hypothesis of the Shapiro-Wilk test is rejected for many biomarkers. So, a

non-parametric test not influenced by possible outliers could be opted for.

Consider as an alternative the rank-based regression which has the same goal of the linear

regression, that is to estimate the vector β of coefficients for which

yi = β0 + xTi β + εi, i = 1,2, . . . , n

where yi is the response variable, β0 the model intercept, εi the error term, while xi is the vector

of explanatory variables [37]. However, this formula is resumed and explained better later to

define the GLMs.

Unlike linear regression, the rank-based one uses the information of the observations ranking

leading to estimates that are less susceptible to outliers. The rank-based estimator is obtained

by employing as distance metric the convex Jaeckel’s dispersion function

D(β) = ||y −Xβ||ϕ
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wherein ||·||ϕ is a norm defined as

||u||ϕ=
n∑
i=1

a
(
R(ui)

)
ui

and R indicates the rank, a(t) = ϕ( t
n+1 ) while ϕ is a non-decreasing, square-integrable and

standardized score function on the interval [0,1]. The Wilcoxon scores are the functions for

rank-based fitting defined as

ϕ(u) =
√

12(u− 0.5), u ∈ [0,1]

that work better with most datasets generalizing the process to distributions that deviate from

the Gaussian shape. Thus, the β estimate is obtained by

β̂ϕ = arg min||y −Xβ||ϕ

and it is consistent and asymptotically normal, and defined as

β̂ϕ ∼ N
(
β, τ2

ϕ(XTX)−1)
where τϕ depends on the errors’ probability and the score functions, while an approximate

(1− α)× 100% confidence interval for βj is

β̂j ± t1−α/2,n−p−1τ̂ϕ(XTX)−1
jj

A Wald test associated to the model isH0 : Mβ = 0

H1 : Mβ /= 0

and the null hypothesis H0 is rejected if

(Mβ̂ϕ)T [M(XTX)−1MT ]−1(Mβ̂ϕ)/q
τ̂2
ϕ

> χ2
1−α(q)

where q = dim(M) is the number of parameters not included in the reduced model, and χ2
1−α(q)

is the (1− α)× 100% percentile of a chi-square distribution with q degree of freedom. However,
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simulations suggest using F critical value and so the null hypothesis is rejected if

(Mβ̂ϕ)T [M(XTX)−1MT ]−1(Mβ̂ϕ)/q
τ̂2
ϕ

> F1−α(q, n− p− 1)

where F1−α(q, n−p− 1) is the (1−α)× 100% percentile of a F distribution with q and n−p− 1

degrees of freedom.

Another useful rank-based test is the drop in dispersion one which is based on both the full and

reduced model estimates. Let β̂r be the rank-based coefficient estimate of the model constrained

by H0, i.e. the reduced one, and DW (β̂r) and DW (β̂f ) that are the reduced and full model

minimum dispersions with the Wilcoxon score functions. Then, the drop in dispersion test has

an asymptotic chi-square distribution but, similarly to the Wald test, simulations suggest using

F -percentiles, and the null hypothesis H0 of the test is rejected if

[DW (β̂r)−DW (β̂f )]/q
τ̂ϕ/2

> F1−α(q, n− p− 1)

Thus, applying it separately for each variable, the test tells whether there is a reduction in

dispersion by switching from the model with only one biomarker to the null one and whether it

is significant. This may also be a measure of the difference in biomarkers in the two classes.

The R software provides the Rfit package which uses linear models to make inference and meets

the previous requirements. The main available function is rfit which has syntax and outputs

similar to those of lm to fit linear model, and it has as one of the arguments the scores that

can be those of Wilcoxon, normal but also bent, where the latter are recommended if the errors

are skewed distributed. Thus, from its implementation come the rank-based coefficient estimate

β̂ϕ and then the Wald test outcomes with the p-values related to the t-statistic of each feature.

Moreover, it shows the results associated with the drop in dispersion test which can be used to

compare different models through the drop.test function.

The results of these tests can be shown using volcano plots as described earlier, identifying

significant variables and among these those of interest. In this way, the variables are split into

up-regulated and down-regulated according to the sign of log2 fold change and this may also be

shown through boxplots.

53



Development of methods for biomarker signatures

5.1.3 Preprocessing

Before proceeding to apply the machine learning methods described in the previous chapter, the

data analysis is completed with a preprocessing phase.

First, any variables with zero or near-zero variance that may cause instability and failures in

the models must be identified and, if any, removed. The caret package contains the nearZerVar

function to accomplish this task.

Then, the variables need to be standardized to make comparable even those with mean and

standard deviation measured on a different scale: each variable is centered by subtracting its

mean value and scaled dividing its values by its standard deviation

Zi = Xi − µi√
V ar(Xi)

so that it has zero mean and unit variance. This is especially important for the analyses that fol-

low, and thus for many classification methods. For example, standardization is crucial for SVMs

since the kernels are distance-based, but also for regression analyses because the importance

can be computed by sorting the absolute values of the standardized estimated coefficients in

descending order. Once the operation on the discovery set is carried out, the same is reproduced

on the testing observations by using means and standard deviations estimated with the data of

the first set. This is executed in R by using the preProcess function of the caret package, with

the center and scale methods.

Finally, it needs to explore the correlations of predictors through the cor function. Thus, while

some models may benefit from the presence of correlated predictors, others conversely may gain

from a reduced correlation between them. For these reasons, it is chosen to remove variables that

are strongly correlated with others in the discovery set and that might negatively affect subse-

quent analyses: once a correlation threshold is fixed, the variables with at least one correlation

in absolute value above it are selected and for each pair of correlated features, that having the

highest mean value is removed from both the discovery and the testing sets.

At this point, one has the same two starting sets without any discovery observations with missing

values and without the variables that turned out to be highly correlated or found to have no

discriminatory power between cases and controls.

Therefore, one proceeds to search for the disease signature: the discovery set is used first to find

the most suitable classification method for the dataset and the problem, and then to derive the

final model and signature. The testing set, on the other hand, is used to test the built model on
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a data collection independent of that of discovery, and this results to be a key step in evaluating

the performance of the signature on a generic set and comparing it to that of the current standard

non-invasive method.

5.2 Method selection

Now, let’s proceed to choose the best method for searching a disease signature. Indeed, starting

with any number of statistical techniques, it is first required to select one of them, and then to

find the best hyper-parameters for it. Specifically, this work considers the eight methods briefly

described in the last section of Chapter 4.

The first goal is achieved by exploiting the Nested Cross-Validation, which is a resampling tech-

nique improving simple Cross-Validation. The latter, instead, is employed for the construction

of the final model and signature. Only the discovery set is taken into account at this stage.

The salient features of these two resampling techniques are now stated, and then it is explained

how they are applied in the procedure being constructed.

5.2.1 k-fold Cross-Validation

k-fold Cross-Validation consists of splitting the discovery set into k non-overlapping subsets

(folds) having the same number of observations, by preserving the class proportions of the start-

ing collection. If k is set equal to the number of observations in the collection, it leads back

to the Leave-One-Out Cross-Validation (LOOCV) that is computationally more expensive and

doesn’t allow sample stratification.

Once a validation criterion C is chosen, at each iteration, the k-th fold becomes the validation

set for model evaluation while the residual subsets constitute the set of training for building the

model itself. Thus, the model is fit on the training data and then validated on the remaining

ones by returning a value Ci of the validation criterion. This procedure is repeated for each fold

and results are finally averaged to provide an overall assessment of the model.

The validation measure changes according to the problem type: in regression problems usually

the mean square error (MSE) is chosen, while in classification studies such as the one under

investigation, the classification error or the AUC score are mainly preferred. So, in the first case,

Cmean is the mean error estimate, while in the second one it is the mean misclassification error

or the mean validation AUC score.

This technique is convenient for model selection or hyper-parameters tuning on a given collection
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of data, and for choosing the appropriate level of model flexibility: it is repeated for all possible

combinations of hyper-parameters, and the model for which the established criterion is maxi-

mized or minimized is picked. Thus, the chosen technique is retrained on the whole discovery

set with the optimal hyper-parameters. The same holds for comparing several models.

Figure 5.1: k-fold Cross-Validation

In this way, k-fold Cross-Validation avoids, for example, overfitting and selection bias by mea-

suring how the model performs with a generic collection of data. Indeed, the objective of the

technique is to simultaneously minimize the variance and the bias of the taken model, where the

former refers to the working of the model itself on a set different from the training one, while the

latter indicates an error introduced by the approximation of a complex real-life problem with a

simpler model. However, these measures have different behaviors and when the first increases,

the second decreases and vice versa. For this reason, it is usually referred to as a bias-variance

trade-off since a balance of the two measures is necessary.

The choice of k-value is critical in this context, as it pushes the technique to an intermediate

level between LOOCV and the simple validation set approach, where the former leads to high

variance and computational time, and low bias, while the latter has high bias, low variance, and

a reduced computational time. Usually, k = 5 or k = 10 are selected, but k = n is preferred for

very sparse dataset. However, this also depends on the size of the collection at hand such that

each training and validation set of samples is large enough to statistically representative of the

broader dataset.
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5.2.2 A×B Nested Cross-Validation

When a procedure is required for both hyper-parameter tuning and model evaluation, it is not

convenient to use a simple Cross-Validation. In this context, a good alternative may be the

Nested Cross-Validation which is another resampling technique, defined from the k-fold Cross-

Validation. It consists of two loops, one internal and one external, and each of them is associated

with a k-fold Cross-Validation with different purposes: the first one is exploited for searching the

best values of hyper-parameters and selecting the model, while into the external loop the built

models are evaluated through some validation metrics and the comparison between different

machine learning methods are allowed. For simplicity, it is denoted by A × B Nested Cross-

Validation where the values of A and B are associated with the previous two loops, respectively.

Let’s consider a collection of discovery data, a classification method with an associated grid of

hyper-parameter values and a given criterion C to be maximized, to describe in detail how the

Nested Cross-Validation works. The following procedure, that is summarized in Figure 5.2, is

the same when considering a criterion to be minimized.

In the outer loop, an A-fold Cross-Validation occurs: the collection of data is split into A subsets

and, at the k-th step, the k-th subset becomes the validation set while the remaining A− 1 folds

constitutes the training data for the model building, which is performed through an inner B-fold

Cross-Validation. In the inner resampling, indeed, the set is split into B subsets for searching the

optimal hyper-parameters among the provided grid of values. Thus, for each hyper-parameters

set a B-fold Cross-Validation is executed and the value Ci of the chosen criterion is calculated

for each validation set of the inner loop. These measures are then averaged by obtaining Cmean
and the set of hyper-parameter values which leads to the highest Cmean is selected.

Subsequently, the model with the chosen hyper-parameters is re-fitted on the whole training

set of the external sampling and then validated on the k-th fold, returning CV AL,k. All this is

repeated for all A validation sets leading to A different models since they are built on different

training sets even if they could have the same hyper-parameters. Additionally, each of these is

associated with its value of the validation criterion.

For the overall model performance evaluation, one may estimate the mean performance of

the method on all the validation sets of the outer resampling through the validation values

CV AL,1, CV AL,2, . . . , CV AL,A and the estimate of its mean value CV AL,mean with the associated

95% confidence interval (CI). Then, these results may be used for comparing many algorithms

and selecting the best one.
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Figure 5.2: A×B Nested Cross-Validation

However, the newly defined A × B Nested Cross-Validation may be repeated several times to

reach more stable and robust results by considering different partitions of the discovery set in

the outer resampling. In this way, with k repetitions the number of built models and thus of

validation values of the criterion increase to k ×A.

This approach is very efficient and reduces, if not delete, the risk of overfitting on the dataset

because each model is validated only on a subset of the collection of data, and it also guarantees

a less biased performance through the inner loop of the Nested Cross-Validation, in which model

selection becomes an integrated component of the model fitting procedure.

A disadvantage concerning the A × B Nested Cross-Validation is certainly related to the com-

putational cost. Indeed, given H sets of hyper-parameters of a selected method, B×H different

models are built and validated in the inner loop, and this task is repeated A times, as many

as the number of folds of the outer resampling. Finally, this is reiterated as many times as k,

yielding a total cost of A×B ×H × k.

58



Development of methods for biomarker signatures

Therefore, the choices of A and B for the resampling and then the number k of repetitions and

the size H of hyper-parameters set are crucial and should take into consideration the available

data but also the overall cost required by each method. Here, to reduce the computational cost,

the number of possible combinations of hyper-parameter values is limited at first. Then, a more

careful search for the optimal hyper-parameters follows, but only with the resulting best per-

forming method.

Coming back to the maximization criterion, as already remarked for k-fold Cross-Validation,

accuracy is often used in a classification problem but in case-control studies, it is suggested to

use the AUC score which measures the separation of two categories. These metrics are defined

in the next sections together with others.

5.2.3 Application for biomarker signature

In the following case-control study, considering also the size of the dataset, the maximization

criterion of the AUC score is employed in 5× 5 and 5× 10 Nested CVs, both without repetitions

and with 3 repetitions, on the discovery set to select the best classification method for searching

a biomarker signature.

RStudio offers several alternatives to implement these techniques, such as the trainControl func-

tion in the caret package which admits among its arguments the resampling technique with the

associated numbers of sampled sets and repetitions. This function is then required as an argu-

ment of train once it is applied with a classifier.

To display and analyze the results at each iteration, since a seed is used in R to divide the

discovery set, it is preferred to use a double for loop, one on repetitions and one for the external

resampling, and then the employment of a simple B-fold Cross-Validation in the train function.

To avoid these steps which obviously increase the computational cost, instead, you can use the

repeatedcv method directly without setting any random seeds.

Taking up the models briefly defined in section 4.2, Table 5.1 summarizes the classifiers imple-

mented in this procedure together with the associated methods for the train function.

A peculiarity of the strategy developed concerns the performance comparison of the chosen clas-

sifiers with all the resampling techniques employed. In this work, for each pair of classifier and

Nested Cross-Validation, the mean value CV AL,mean of the validation AUC scores with the asso-

ciated 95% confidence interval and the percentage of validation AUCs exceeding an acceptability

threshold, set equal to 0.80, are computed. Then, the best method is chosen by looking at these

results but also at the level of interpretability of the model itself.
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Due to these conditions and the results shown in the next chapter for the case study being

examined, the most interpretable and best-performing method is the Generalized Linear Model

(GLM) with elastic-net regularization, a special case of GLMs, that is among the most widely

adopted techniques in clinical trials for its high level of interpretability.

Classification model Method

k-Nearest Neighbors knn

Gradient Boosting gbm

Random Forest ranger

svmLinear (linear kernel)

Support Vector Machines (SVMs) svmPoly (polynomial kernel)

svmRadial (radial kernel)

GLM with elastic-net regularization glmnet

Neural Network nnet

Table 5.1: Classification methods involved as arguments of the train function

5.3 Generalized Linear Models

A Generalized Linear Model (GLM) is obtained from the general linear model in which a response

variable y is defined through the linear combination of p variables called predictors. In formula,

for the i-th observation the general linear model can be written as

yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βpxi,p−1 + εi

where the residual εi contains what the variables fail to explain and satisfies
∑n
i=1 εi = 0. In

matrix form, on the other hand, the previous expression for n observations becomes

y = Xβ + ε

where X is a n × p matrix, β = (β0, β1, . . . , βp−1)T a p-dimensional vector of coefficients, and

ε = (ε1, ε2, . . . , εn)T is a vector of n independent error terms with ε ∼ Nn(0n, σ21n). The goal is to
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estimate the vector β̂ of coefficients which minimizes ||y−Xβ||2 and results β̂ = (XTX)−1XT y.

Turning to a GLM, the previous relationship is expressed by a link function g as follows:

η = g(µ) = Xβ

where µ = E(y), and y takes on an exponential family distribution. More specifically, a random

variable yi belongs to the exponential family if its density can be traced back to the following

expression

f(yi; θi, φi) = exp
{
yiθi − b(θi)

a(φi)
+ c(yi, φi)

}
where θi and φi are the natural and the dispersion parameters, respectively. Furthermore, it

results

E(yi) =b′(θi) = µi

V ar(yi) =b′′(θi)a(φi)

The vector β̂ of the GLM coefficients is estimated by looking at the log-likelihood function

L(β, y) =
n∑
i=1

log f(yi; θi, φi) =
n∑
i=1

yiθi − b(θi)
a(φi)

+
n∑
i=1

c(yi, φi)

and, specifically, the score statistic

U = ∂L(β; y)
∂β

is set equal to zero, whence it follows that

Uj = ∂L(β; y)
∂βj

=
n∑
i=1

(yi − b′(θi))xij
V ar(yi)

· ∂µi
∂ηi

= 0, j = 1,2, . . . , p

with ηi =
∑p
j=1 βixij = g(µi) for the link function g. If it is not possible to perform these

calculations, numerical algorithms are often used.

According to the Law of Large Numbers, for large n values the estimator β̂ has asymptotically

a normal distribution with a covariance matrix that is the inverse of the same for the score

statistic, called information matrix J , with elements

Jjk = E

[
−∂2L(β)
∂βj∂βk

]
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Furthermore, recalling that yi are independent and identically distributed in the exponential

family, it follows that

E

[
−∂2Li
∂βj∂βk

]
= E

[(
∂Li
∂βj

)(
∂Li
∂βk

)]
whence

Jjk = E

[(
n∑
i=1

(yi − µi)xij
V ar(yi)

· ∂µi
∂ηi

)(
n∑
h=1

(yh − µh)xhk
V ar(yh) · ∂µh

∂ηh

)]
=

=
n∑
i=1

E(yi − µi)2xijxik
(V ar(yi))2 ·

(
∂µi
∂ηi

)2

=

=
n∑
i=1

xijxik
V ar(yi)

·

(
∂µi
∂ηi

)2

where the latter step is due to the relation E(yi−µi)2 = V ar(yi), and in matrix form it becomes

J = XTWX

being W a diagonal matrix with main-diagonal elements

Wii = 1
V ar(yi)

·

(
∂µi
∂ηi

)2

, i = 1,2, . . . , n

From all these remarks, it follows that

β̂ ∼ N(β, J−1)

and you can test on individual βj as well as β. Besides, one may proceed to estimate the

confidence intervals of η̂i and, if g is not the identity link function, those of µ̂i by applying g−1.

The log-likelihood may be also used to make tests on the model and, specifically, to compare the

current model with the saturated one, which is the most accurate with as many parameters as

possible and ŷi = yi. Denoting by L(y; β̂max) and L(y; β̂) the log-likelihood for the saturated

model and that of the built one, respectively, the formula

D = 2
(
L(y; β̂max)− L(y; β̂)

)
∼ χ2

m−p,ν
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defines the deviance with non-centrality parameter ν = L(y;βmax) − L(y;β), and the model

becomes better as the deviance decreases. Similarly, deviance is useful for comparing different

sub-models.

5.3.1 GLM for binary data

One of the classification methods most frequently applied in clinical studies to make a diagnosis

is the logistic regression, which is a special case of GLM wherein the response variables are

generated by the binomial distribution

yi ∼ Binomial(πi, ni)

with yi that indicates the number of successes in ni trials, and for which P(yi = 1) = πi and

P(yi = 0) = 1− πi. Thus,

E(yi) = µi = niπi

V ar(yi) = niπi(1− πi)

and the probability density function is

f(yi;ni, πi) =
(
ni
yi

)
πyi(1− πi)ni−yi =

= exp
{
yi log

(
πi

1− πi

)
+ ni log(1− πi) + log

(
ni
yi

)}

with θi = log
(

πi
1−πi

)
and φi = 0.

The link function takes on the log-odds form

g(πi) = log
(

πi
1− πi

)
=

p∑
j=1

βjxij = xiβ, i = 1,2, . . . , n

and then

πi = exp(xiβ)
1 + exp(xiβ)

Observing that

1− πi =
(
1 + exp(xiβ)

)−1
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it results that πi is monotone in each variable in accordance with the coefficients’ sign: high

probability of yi = 1 are reached for large values of xiβ, while conversely, low values of xiβ result

in high probability values of yi = 0. For determining the significance of the coefficients, the cases

of a quantitative and a qualitative variable are analyzed separately.

For a quantitative variable, βj indicates the slope of the straight-line tangent to the logistic curve

at any point and so the instantaneous variation rate in πi at that point. Indeed:

∂πi
∂xij

= βj
exp(xiβ)

(1 + exp(xiβ))2 = βjπi(1− πi)

and the maximum slope equal to βj
4 is obtained for πi = 1

2 , while it tends to 0 as πi moves

towards 0 or 1. Therefore, if βj > 0, an increment of the value xij leads to a rise of πi while if

βj < 0, on the contrary, to the same increment corresponds a decrease of πi.

Moving on to qualitative variables, it is useful to consider a logistic model with p predictors in

which the k-th predictor is qualitative and it is assumed that it takes the value 1 if it belongs to

a class (e.g. diseased) and 0 otherwise. By supposing xik = 1 and xhk = 0 for two observations

i and h, while xij = xhj for j = 1,2, . . . , k − 1, k + 1, . . . , p, it results that

OR =
πi

1−πi
πh

1−πh
=

exp
{
β0 +

∑k−1
j=1 βjxij + βk +

∑p
j=k+1 βjxij

}
exp

{
β0 +

∑k−1
j=1 βjxij +

∑p
j=k+1 βjxij

} = eβk

and then the logarithm is

log(OR) = logit(πi)− logit(πh) = βk

So, all other values being equal, for βk > 0 disease subjects have a higher probability πi and

moving from xhk = 0 to xhk = 1 the probability increases, whereas with βk < 0 the situation is

the opposite.

However, the log-likelihood in the logistic model results in

L(yi, πi, ni) = yi log(πi) + (ni − yi)(1− πi) + log
(
ni
yi

)

and asymptotically β̂ ∼ N(β, J−1), with J = XT diag(niπi(1− πi))X, while the deviance is

D = 2
n∑
i=1

[
yi log

(
yi
ŷi

)
+ (ni − yi) log

(
ni − yi
ni − ŷi

)]
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where the first term refers to successes while the second one to failures. Thus, the latter is a sum

over the success and failure totals multiplied by 2, and it takes the general form

D = 2
n∑
i=1

[
obs success× log

(
obs success

est success

)
+ obs failure× log

(
obs failure

est failure

)]

5.3.2 GLM with elastic-net regularization

Starting with GLMs, one can move on to regularization methods by introducing bias in the

model to gain a drop in variance and adding a penalty term P (β) to the log-likelihood function

to be maximized to estimate the β vector, as

L∗(β) = L(β)− P (β)

where only the log-likelihood L(β) is a data-depend term while the penalty P (β) is a function

of the model smoothness which doesn’t include the model intercept. These are called penalized-

likelihood methods and usually, they use the Lq-norm smoothing function

P (β) = λ

p∑
j=1
|βj |q

where λ > 0 is the smoothing or shrinkage parameter. The explanatory variables in this model

should be standardized as they are equally treated in the shrinkage function.

Two of the most applied methods are the ridge regression and the lasso (least absolute shrinkage

and selection operator) which employ the L2 and L1 norms, respectively. In the first one, the

log-likelihood maximization is constrained to
∑p
j=1 β

2
j ≤ λ∗ where λ∗ is the inverse value of λ,

while in the second method it is subject to
∑p
j=1 |βj | ≤ λ∗. For both methods, as the shrinkage

parameter λ increases, the least squares estimate shrinks 0 but in the lasso, as λ increases, more

βj are shrunken to 0 leading to variable selection and hence less complex models. In other

words, only lasso includes feature selection and it is great when a simpler and more interpretable

model is desired: it selects one of the correlated features while ridge regression shrinks correlated

features together.

Thus, both techniques have the same formulation but different constraints: for the bivariate case

with p = 2, these conditions reduce to a square in the lasso and a circle in the ridge regression

both centered in the origin. Moreover, for linear normal models, the isovalue curves of the log-

likelihood are elliptically centered on the β̂ estimate as well as approximately for the other GLMs
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with large n. Thus, the lasso estimate occurs when an ellipse touches the square constraint and

sometimes results in some βj set equal to 0, while in the ridge regression when it touches the

circular constraint, as shown in Figure 5.3.

Figure 5.3: Geometrical interpretation of lasso (left) and ridge regression (right) for bivariate
models [53]

A more complex method is the GLM with elastic-net regularization where the penalty term

is defined as a linear combination of L1 and L2 norms. Thus, the vector of coefficients β̂ is

estimated by maximizing

L∗(y;β) = L(y; β̂)− λ
(

1− α
2

p∑
i=1

β2
i + α

p∑
i=1
|βi|

)
= L(y; β̂)− λ

(
1− α

2 ||β||22+α||β||1

)

where L(y; β̂) is the log-likelihood and α is the regularization parameter: if α = 1 the method is

reduced to the lasso, while if α = 0 it leads to the ridge regression.

Considering only the L2-norm penalty, the method includes all predictors because the smoothing

term shrinks coefficients towards zero, without setting any of them equal to zero. On the other

hand, the L1-norm penalty allows for more interpretable model shrinking coefficients by setting

some of them exactly equal to zero: it can build models with any number of variables through

variable selection and some numerical methods should be applied to solve it.

The hyper-parameters optimization and then the variables selection can be execute through

a k-fold Cross-Validation or a Nested Cross-Validation as an integrating section of the model

building. However, it is very important not to forget the variable standardization.
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Then, through the linear combination of the two different penalty terms, the elastic-net GLM

attempts to overcome the limitations of the two extreme models: as the regularization parameter

increases, the number of non-zero coefficients decreases. So, combining their strengths it involves

feature selection and shrinks correlated features together.

5.3.3 R implementation

RStudio provides a broad variety of packages and functions for implementing GLMs and glm is

probably the most used function to fit them.

Furthermore, the glmnet package contains efficient procedures for implementing lasso, ridge

regression or elastic-net regularization in linear, logistic or multinomial regression models as well

as in many other models. In particular, the glmnet function allows the fitting of all these models

and the main hyper-parameters are:

• alpha, the elastic-net mixing parameter which takes values in the range [0,1], and the

penalty with the extreme interval values reduces the model to ridge regression and lasso,

respectively;

• lambda, the shrinkage parameter by which the penalty term is multiplied to be subtracted

from the log-likelihood;

• family, a description of the link function to use in the model and, similarly to the glm

function, binomial is the one required for the method just defined.

5.4 Model analysis

After selecting the best performing method at the previous step, the optimal set of hyper-

parameters is found from a broader grid of values than those used in Nested Cross-Validations,

through a k-fold Cross-Validation on the discovery set, i.e. the same set used so far. Once some

optimal values have been found, a deeper analysis is done around these to derive the optimal

hyper-parameters.

As already accomplished in the previous stage, the maximization of the AUC score is chosen as

the criterion for the resampling techniques. Indeed, in a problem like this one where you want to

make a diagnose, the AUC score is managed as a reference metric, since it measures the ability

to discriminate the two classes of the categorical variable, and thus the ability to distinguish

healthy and diseased subjects. This choice is also due to the deliberation that datasets are not
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always balanced, and in the unbalanced case, i.e. when the set is not equally or nearly equally

divided between the two different diagnoses, the accuracy has several limitations.

Thus, once the optimal hyper-parameters are chosen and the final model is re-fitted on the

discovery set, an optimal probability threshold is found for the classification, among those that

maximize or minimize some statistics, through the analysis of some evaluation metrics, before

the assessment of the model performance is carried out on the testing set by using the same

metrics.

The procedure outlined that is better described in the coming sections is valid not only for the

previous method but for any binary classifier that results as the best technique from the Nested

Cross-Validations. Nevertheless, due to their high interpretability, the logistic regression and

the GLM model with elastic-net regularization are among the most widely employed methods in

clinical studies, for example, to diagnose a disorder.

Now, some important tools like the confusion matrix and the ROC curve should be characterized

to define the AUC score and other evaluation metrics. Then it is described how to reach the

final model.

5.4.1 Confusion matrix and evaluation metrics

Let’s start with the confusion matrix or classification table, which is a summary of prediction

results of a classification model. For a binary problem into which observations are labeled as

Positive (P or 1) or Negative (N or 0), it cross-classifies the binary response y and the prediction

ŷ as displayed in Figure 5.4, where the element (i, j) of the matrix indicates the number of

patients in the j-th class and predicted as i.

Figure 5.4: Confusion matrix for a binary classification problem

Thus, for a case-control clinical study it displays:
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• True Positive (TP): diseased subjects correctly classified by the model;

• False Positive (FP): healthy patients mistakenly classified with positive diagnosis;

• False Negative (FN): diseased patients misclassified as healthy ones;

• True Negative (TN): healthy subjects correctly classified by the algorithm.

The cell entries strongly depend on a cut-off probability Pth: for a given observation i, the

prediction is ŷi = 1 if π̂i > Pthr, otherwise it is 0. A widely used threshold value is Pth = 0.50

while sometimes it is estimated by maximizing or minimizing certain statistics, as explained

below. However, this matrix can be also extended to the generic case of classification into k

classes.

Using what has just been explicated, many useful metrics can be defined to evaluate a binary

classifier.

First of all, the accuracy indicates the fraction of correctly predicted samples

̂Accuracy = TP + TN

TP + FP + TN + FN

or, in other words, the fraction of not misclassified observation. It is an effective reference metric

in balanced problems, while in unbalanced ones this metric can be misleading and so it doesn’t

make much sense.

The predictive power of classifiers, therefore, is summarized by sensitivity and specificity: the

first one, also known as recall, is defined as the fraction of diseased patients that are correctly

classified as such
̂Sensitivity = P(ŷi = 1|yi = 1) = TP

TP + FN

while the latter is the proportion of healthy patients that are correctly predicted as such by the

model
̂Specificity = P(ŷi = 0|yi = 0) = TN

TN + FP

In other words, the sensitivity is the true positive rate (TPR) while (1− ̂specificity) corresponds

to the false positive rate (FPR).

When the dataset is unbalanced, there is a strong difference between the percentage of observed

positive and negative diagnoses and a more appropriate metric is the precision or Positive Pre-

dictive Value (PPV) that indicates the fraction of truly positive diagnosis out of all the predicted
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positive samples, and it is defined as

̂Precision = P(yi = 1|ŷi = 1) = TP

TP + FP

It may be expressed also as a function of the observed prevalence β, that is the proportion of

observed positive diagnoses

β = P(yi = 1|Xi) = TP + FN

TP + FP + TN + FN

Then, the previous formula becomes

̂Precision =
̂sensitivity × β

̂sensitivity × β + (1− ̂specificity)× (1− β)

Another useful metric for unbalanced data is the balanced accuracy Ĵ that follows the same

principles of accuracy taking values between 0 and 1, and it is defined as the mean value of the

estimated sensitivity and specificity:

Ĵ = ̂Balanced Accuracy =
̂sensitivity + ̂specificity

2

Finally, the F-measure is an assessment metric defined as the harmonic mean of sensitivity and

precision

F̂1 = 2
1

̂precision
+ 1

̂sensitivity

= 2
̂precision× ̂sensitivity

̂precision+ ̂sensitivity

It takes values between 0 and 1 and the latter is obtained for both precision and sensitivity equals

1 while the minimum is achieved if at least one of the two statistics is equal to 0. That measure

can be generalized for an unbalanced dataset as follows by using the observed prevalence β

F̂β = (1 + β2)× ̂precision× ̂sensitivity

β2 × ̂precision+ ̂sensitivity

and for β = 0 the previous is equal to the precision, while it is the recall as β →∞.

Out of the several functions available in R that generate the confusion matrix or the previously

defined evaluation metrics, the caret package offers one called confusionMatrix which yields all

of them simultaneously requiring only the vectors of the observed and predicted classes.
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5.4.2 ROC curve and AUC score

Another tool for assessing performance is the Receiver Operating Characteristic (ROC) curve

which is built with the probabilities predicted by the model on a given set of observations, and

from which the AUC score is obtained. Specifically, the ROC curve illustrates the diagnostic abil-

ity of the model by changing its discrimination threshold and is drawn by plotting the sensitivity

(or True Positive Rate) against the False Positive Rate (1− specificity), at various probability

thresholds:

R̂OC(·) =
{

(FPR(c), TPR(c)), c ∈ (−∞,+∞)
}

Thus, it is a concave monotone increasing function mapping [0,1] to [0,1] that joins the points

(0,0) and (1,1) and measures sensitivity and specificity as the cut-off probability thresholds

changes.

To plot the curve, the probabilities P(ŷj = 1|Xj) of the considered observations are predicted

and sorted in increasing order. Then, TP, TN, FP, and FN observations are counted and then

the rates T̂PR and F̂PR are estimated for each probability value. Furthermore, by plotting the

computed values of F̂PR and T̂PR, and joining the points with alternate horizontal or vertical

segments, you get the ROC curve.

Figure 5.5: ROC curve: five example classifiers [68]
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If the probability threshold tends towards 1, almost all samples have a negative prediction (ŷi = 0)

while, on the other hand, if the same probability tends towards 0 almost all predictions are ŷi = 1.

Moreover, as sensitivity increases, there is a reduction in specificity, and between two curves, one

of these being equal, there is greater predictive power for higher values of the other metric.

In diagnostic medicine, the golden standard is achieved with F̂PR = 0 and T̂PR = 1: the ROC

curve improves as it approaches the point (0,1) while it gets worse the more it becomes flattened

on the diagonal line joining its two extreme points, as shown in Figure 5.5 which depicts the ROC

curve for the random classifier as well as the perfect one and three middle-performing models.

Thus, ROC curves are particularly useful for comparing different models and their discriminatory

capacities.

Consequently, the area under the ROC curve, called AUC (Area Under the Curve) score, is a

well-grounded metric to assess the classifier performance and is defined as

ÂUC =
∫ 1

0
R̂OC(t)dt

It takes on values between 0 and 1 and measures the degree of separability between diseased

and healthy distributions: as it approaches 1, the model is able to distinguish better the two

distributions, while these are overlapped if ÂUC = 0.50 (i.e. random guess). Thus, the greater

the ÂUC, the better the model: as the value increases, the model performance improves, moving

from an uninformative model to a highly accurate one if 0.9 < ÂUC < 1.0 and to a perfect one

with ÂUC = 1.0.

In other words, the AUC score is interpreted as the probability that a value extracted from

the distribution of diseased people is higher than one pull out from the distribution of healthy

subjects. Indeed, being FPR and TPR two function mapping a probability threshold to a value

on the x and y axes respectively as

FPR(t) = x and TPR(t) = y(x)

it results that

AUC =
∫ 1

0
y(x) =

=
∫ 1

0
TPR(t)dx =
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=
∫ 1

0
TPR(FPR−1(x))dx

Furthermore, being f1(x) and f0(x) the positive and negative probability distributions respec-

tively, TPR and FPR in the integral form are

TPR(t) =
∫ ∞
t

f1(x)dx =

=
∫ ∞
−∞

I(t′ > t)f1(t′)dt′

and

FPR(t) =
∫ ∞
t

f0(x)dx

Applying Leibnitz’s integration rule on the latter

FPR′(t)dt = ∂

∂t

∫ ∞
t

f0(x)dx =

= ∂

∂t
lim
c→∞

∫ c

t

f0(x)dx =

= lim
c→∞

∂

∂t

∫ c

t

f0(x)dx =

= lim
c→∞

∂f0(c)
∂t

− f0(t) =

= −f0(t)

and from these considerations, one has:

AUC =
∫ −∞

+∞

∫ +∞

−∞
I(t′ > t)f1(t′)(−f0(t))dt′dt =

=
∫ +∞

−∞

∫ +∞

−∞
I(t′ > t)f1(t′)f0(t)dtdt′ =

= P(X1 > X0)

where X1 and X0 are extracted from the distribution of diseased people and that of healthy ones,

respectively.

Thus, in clinical problems of disease diagnosis, the AUC score is an important criterion for

discriminating group distributions and, specifically, in a case-control study for discriminating

between cases and controls: if AUC = 1 the classifier is able to distinguish between all the

positive and negative class, if AUC = 0.5 it is in the opposite situation, while if 0.5 < AUC < 1
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there is a high probability that the model can distinguish the positive class from the negative

class and to detect more numbers of TP and TN than FP and FN (Figure 5.6).

(a) ROC curve very close to (0,1) and AUC ap-
proaching 1

(b) ROC curve at an intermediate level between
perfect and random classifiers

(c) ROC curve flattening to that of random classi-
fier and AUC approaching 0.50

Figure 5.6: Positive and negative distributions with different ROC curves and AUC scores [8]

This metric is scale-invariant because it doesn’t look at predictions but how they are ranked, and

classification-threshold-invariant because it measures the model’s prediction quality regardless

of the chosen probability threshold.

However, the AUC score is equivalent to a measure of the model predictive power, called the

concordance index, that is defined as the proportion of pairwise predictions for which π̂i > π̂j ,

among all pairs of observations (i, j) having yi = 1 and yj = 0.

To sum up, through AUC score maximization, in method selection one chooses the classifier

that better discriminates overall the two subject types on the different validation sets of external

sampling associated with the Nested Cross-Validations. Similarly, in model fitting one chooses

the set of hyper-parameter values that leads to a model that on average best distinguishes positive

and negative observation distributions of the different validation sets of Cross-Validation.

Among the many R packages for plotting the ROC curve and computing the AUC score, pROC

contains the function roc that accomplishes both tasks and requires the predicted probabilities,
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the levels of the response variable and especially the positive one.

5.4.3 Final model

Once the ROC curve is built with the predictions of the discovery set, one may derive for each

probability threshold the associated sensitivity and specificity. At the same time, as the thresh-

old probability varies, one can identify correctly classified (TP and TN) but also misclassified

observations (FP and FN).

So, after choosing the best method from the Nested Cross-Validations and then also the optimal

set of hyper-parameters one should find an optimal probability threshold P̂thr: in this way, for a

binary model, the prediction for an observation i is ŷi = 1 if π̂i > P̂thr, otherwise it is 0.

Figure 5.7: Model performances as the probability threshold changes [68]

The most frequently adopted threshold is Pthr = 0.50 but sometimes, especially with unbalanced

datasets, it is preferable to use other cut-off values obtained by the maximization of some statis-

tics as the criterion.

To find an alternative cut-off probability, the built model is fitted on the discovery set and the

associated ROC curve is constructed with the predicted probabilities. It would be wrong to do

that with the testing set. In detail, after ordering the predicted values, some statistics are chosen

and computed for each probability threshold. Then, those probabilities maximizing statistics are

extracted to then choose only one by examining the estimates of accuracy, sensitivity, specificity,

precision, and other assessment metrics.

In this work, the Ĵ and F̂β statistics are considered and estimated at each probability threshold,
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in order to find the probability values maximizing each of them. Thus, among these values is

chosen the one with which the fitted method performs better on the discovery set.

5.5 Biomarker signature and model evaluation

Up to this point, the discovery set has been used both to choose the method and find the

optimal hyper-parameters and thus the optimal probability threshold, but not to evaluate the

model globally. Now, a testing set disjointed from that of discovery must be considered to

give an overall model evaluation and study in detail the resulting signature for early disease

detection exploiting the features of the model itself. If the provided database was not already

partitioned, at the beginning of the analysis, it would be advisable to randomly extract from it

the observations to be used to test the final model, keeping the others for its construction.

Resuming the GLM with elastic-net regularization previously defined, for each test observation

Xj = (x1j , x2j , . . . , xpj) it calculates the probabilities

P(Ŷj = 1|Xj) = exp (β̂0 +
∑p
i=1 β̂ixij)

1 + exp (β̂0 +
∑p
i=1 β̂ixij)

and the signature consists of the coefficients β̂ = (β̂1, β̂2, . . . , β̂p) estimated by the model itself.

Thus, the fitted model and the associated optimal probability threshold P̂thr are employed to

predict the labels of the testing observations: positive if P(Ŷj = 1|Xj) > P̂thr, negative otherwise.

The procedure is repeated for all observations in the testing set and, finally, the performance

evaluation is carried out considering the same metrics used before, such as sensitivity, specificity,

and precision, and showing the confusion matrix and thus the AUC score.

Furthermore, if the binary response variable has many sublevels, the model could also be eval-

uated in each subgroup of cases and controls through accuracy. In this way, it can be assessed

whether the performance on the whole testing set is the same in the various sub-levels, or whether

the signature is better at identifying one category of diseased subjects than another.

At this point, the signature of the disease can be analyzed in detail and it is possible in GLMs

by examining the estimated coefficients of the model. Indeed, all biomarkers with non-zero co-

efficients are included in the signature, while the others are excluded from it. At the same time,

all biomarkers are quantitative variables and, for each one, the estimated coefficient indicates

the slope of the straight-line tangent to the logistic curve at any point and thus the variation

rate of P(Ŷj = 1|Xj). Then, the estimated coefficients measure the influence of each biomarker
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in predictions.

Analysis of these coefficients, therefore, allows one to show which biomarkers play a more im-

portant role in disease diagnosis and which little or no role. Besides, one may study especially

for the biomarkers found to be more influential, if there is any match in the available literature.

5.5.1 Model comparison

The signature may also be compared with the current best practice for non-invasive diagnosis

the disease or any other tests through a statistical test on the estimated assessment metrics. To

accomplish that, it is necessary to define the (1− α)-level Wilson confidence interval.

Let’s consider a sample of variablesX1, X2, . . . , Xn independent and identically distributed (i.i.d.)

as X ∼ Bernoulli(p). It follows that
∑n
i=1 Xn ∼ Binomial(n, p) and this asymptotically ap-

proximates with a normal distribution

n∑
i=1

Xn ∼ N(np, np(1− p))

Furthermore, this can be rewritten as

p̂− p√
p(1−p)
n

∼ N(0,1), with p̂ =
∑n
i=1 Xn

n

and from it, approximate confidence intervals such as Wald’s and Wilson’s can be obtained. The

latter, especially, asymptotically equals to the former but, for a fixed value of n, it gives better

coverage, i.e. closer to the nominal constant (1− α).

Then, the (1− α)-level Wilson confidence interval is defined from

P

(∣∣∣∣∣ p̂− p√
p(1−p)
n

∣∣∣∣∣ ≤ zα/2

)
= 1− α

where zα/2 is the (1− α
2 )-quantile of Z ∼ N(0,1), whence follows

p̂+ z2
α/2
2n ± zα/2

√
p̂(1−p̂)
n +

z2
α/2

4n2

1 +
z2
α/2
n

Starting with Wilson confidence intervals, one can move to the generic k-variate case. From

statistics it is known that a k-dimensional (1−α)-level confidence region of θ = (θ1, θ2, . . . , θk) is
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defined as the Cartesian product of k distinct one-dimensional (1− α
k )-level confidence intervals

related to θ1, θ2, . . . , θk.

Thus, in the bivariate case, one computes the Cartesian product of the (1 − α
2 )-level Wilson

confidence intervals of a pair of statistics to obtain a (1 − α)-level Wilson confidence region of

the two statistics. Therefore, considering two 95% level Wilson confidence intervals yields a

confidence region of just over 90%, whereas it requires two 97.5% level confidence intervals to

result in a confidence region with a coverage of about 95%.

Now, let’s assume that the signature has sensitivity and specificity equivalent to those of a meta-

analysis of the performance of the standard non-invasive test, setting as minimum acceptable

values of sensitivity (TPR0) and specificity (1 − FPR0) the lower bounds of the confidence

intervals of the same in the aforementioned meta-analysis.

Figure 5.8: Model comparison test with the current non-invasive one

Then, the TPR and FPR 2-sided 95% Wilson confidence region for the signature is computed

as the Cartesian product of the 97.5% Wilson confidence intervals of the two statistics, and if

this region is entirely within the acceptable test region, the null hypothesis

H0 : {TPR ≤ TPR0 or FPR ≥ FPR0}
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meaning that the new model does not improve the performance of the considered test, is rejected

and then the problem has a positive conclusion and the signature is a valid alternative to the

standard non-invasive method for diagnosing the disease (Figure 5.8). Otherwise, statistics can

be studied individually to try to improve diagnostic signatures later in subsequent studies.

This statistical test can then be repeated to compare different signatures but also these with

several diagnostic tests already available in medicine.

Starting from the analysis undertaken so far, one could eventually proceed to a more in-depth

investigation, but a team with different expertise, including clinicians and biologists, is required

to do this.
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Chapter 6

An application to the CIPHER

protocol: miRNA biomarker

signature for the early detection

of PH

In this chapter, the strategy described in the previous chapter is applied to a real database in

order to searching for a miRNA biomarker signature of PH. Thus, its performance is evaluated on

a set of observations independent of the discovery one from which it is built, taking into account

also the accuracy for each sub-level of the response variable, i.e. the different subpopulations and

so the various types of diseases, healthy subjects, and those who are diseased but without PH.

Finally, the signature and the biomarkers included in it are examined by comparing the results

with what is already available in the literature.

6.1 Dataset description

Now let’s consider the dataset provided by Actelion Janssen, extracted from the proof-of-concept

study used to design CIPHER. Being the study multicenter, it is representative of various sets

of populations all around the world and the values in the dataset are taken from the analysis of

blood samples as described in the protocol [1].
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The dataset is already divided into a discovery set with 1191 observations and a testing set

with only 376 observations. Both collections have 596 variables, 40 of which are clinical data

variables such as age and gender, or information for the enrollment of patients in the study such

as the patient identification code (PID). These are excluded from the analysis at this stage as the

focus is only on blood-based biomarker signatures. Other features are, however, the categorical

DANA variable indicating the diagnoses, and 555 quantitative variables representing the miRNA

biomarkers and proBNP.

Applying the built procedure, in classification models DANA is the response variable while the

quantitative variables are the covariates. However, according to the WHO PH classification in

[18], the DANA variable initially consists of 11 levels:

HC healthy subjects

PH0_NOPH diseased patients but no PH yet

PH1.1 IPAH patients

PH1.2 HPAH subjects

PH1.3 drugs and toxins induced PAH people

PH1.4 patients having PAH associated with other diseases

PH2 subjects with PH due to left heart disease

PH3 patients with PH due to lung disease and/or hypoxia

PH0_CTED subjects having chronic thrombo-embolic disease (CTED)

PH4 subjects with CTEPH and other pulmonary obstructions

PH5 patients with PH due to unclear mechanisms

These classes are organized into only two categories to apply the strategy for searching a

biomarker signature for early detection of PH: controls denoted as NO_PH, include the first

two levels, while the others are the cases indicated as PH. Notably, as suggested by the company,

patients with CTED are included in cases even if CTED is characterized by symptoms and per-

fusion defects similar to CTEPH but without PH at rest, and there is no evidence that CTED

evolves into CTEPH also because the natural history of the disorder is still unknown [36].

Thus, with reference to the only categorical variable in the dataset, both collections are made

up as follows:
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• Discovery set: 967 PH (81.19%) and 224 NO_PH (18.81%)

• Testing set: 270 PH (71.81%) and 106 PH (28.10%)

The two sets are unbalanced with proportions of the two classes not very different, but with a

greater presence of cases and a lesser presence of controls, where the inclusion of the latter is

important because it also allows you to achieve and analyze signature performance on subjects

without PH.

Quantitative variables, on the other hand, indicate biomarker values obtained from 50 mL blood

samples collected from patients enrolled in the study, using a qPCR-based miRNA assay technol-

ogy developed by MiRXES that is a biotechnology company based in Singapore whose technolo-

gies and methodologies have broad applications in biomarker discovery and disease diagnosis.

6.2 Univariate analysis and variable selection

First, a retrospective study of miRNA biomarkers has been carried out to see which may be or

not considered in the signature, by using banked blood samples collected from PH patients in

several sites around the world during the last 10 years as UK, USA, and Japan. This leads to a

reduction of covariates to consider in the algorithms and 334 miRNA biomarker variables with

missing values in the testing set are excluded from the data collection being analyzed.

However, the discovery set turns out to have 298 missing values, corresponding to 0.11% of the

values in the whole set, in 61 variables and 183 patients. Thus, it is opted to remove these

observations, reducing the size of the set to 1008 observations but preserving the proportions of

the two classes as in the starting one.

Furthermore, proBNP takes values in a very wide range (between 5 and 35000) and a logarithmic

transformation is applied to it, even if keeping this name, to obtain a scale like other biomarkers.

This transformation, suggested by the company, finds several supports in the available literature.

Then, one analyzes the dataset starting with the Shapiro-Wilk test: using 0.05 as test significance

level, it follows that the normality null hypothesis can be rejected for 164 out of 219 quantitative

variables while those significant become 130 by lowering the test significance level to 0.01. These

conclusions are confirmed by analyzing the variables through skewness and kurtosis, as shown in

Table 6.1, but also through quantile-quantile plot of which some examples are collected in Figure

6.1. Specifically, the picture depicts this plot for the three biomarkers with the highest p-values

in the Shapiro-Wilk test and for those with the lowest value of the same: it shows that points
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are arranged along a straight line for the variables in the first subset which are so approximately

normal, while they go far from the line for high quantiles of biomarkers into the second subset

for which the test rejects the null hypothesis of normality.

Biomarker p-value Skewness Kurtosis

hsa.miR.625.5p 0.9294 0.0262 0.1618

hsa.miR.20b.5p 0.8937 0.0481 0.0972

hsa.miR.140.3p 0.8924 0.0453 −0.1069

hsa.miR.320c 1.71 · 10−14 0.8238 1.9102

hsa.miR.10a.3p 5.02 · 10−16 0.6268 2.9822

hsa.miR.150.5p 1.80 · 10−16 0.8246 2.6363

Table 6.1: Biomarkers with the highest and the lowest p-values in the Shapiro-Wilk test

Figure 6.1: Q-Q plot for biomarkers with the highest and the lowest p-value in the Shapiro-Wilk
test

Next, for each biomarker the rank-based regression

biomarker = β0 + β1 ·DANA
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is fit on the discovery set, by estimating coefficients through the Wilcoxon score. Then, the

drop in dispersion test associated with it is performed and the null hypothesis is rejected for 130

biomarkers if the test significance level is set equal to 0.05. Given the high number of variables

and therefore the impossibility of using Bonferroni’s method, by lowering the significance level

of the test to 0.01 the statistically significant variables become 106.

Considering now the log2 fold change, 31 biomarkers are down-regulated while 190 are up-

regulated, and thus most biomarkers have a higher mean value in cases than in controls. Com-

bining these results with those of the previous test with the second significance level value, slightly

less than half of the variables are significant: only 5 biomarkers are down-regulated while 101

are up-regulated.

Down-regulated Up-regulated Total

All biomarkers 31 190 221

p < 0.05 9 121 130

p < 0.01 5 101 106

Table 6.2: Biomarkers regularization and drop in dispersion test

Furthermore, proBNP is the variable with the highest log2 fold change even though it is less

than 1 and therefore no variable results of interest from the test, as depicted in Figure 6.2 where

proBNP is indicated by a circle on the upper right edge.

Figure 6.2: Volcano plot for the drop in dispersion test
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Furthermore, the boxplots in Figure 6.3 show for each regularization group the two biomarkers

with the highest log2 fold change in absolute value. From the graphs, it is clear that the variables

need standardization as they are defined on different intervals, but only in proBNP there are

clear differences between cases and controls while in the other biomarkers the distributions are

less distinguishable. However, median biomarker values in subjects with PH are higher than the

same in the first two boxplots, whereas an inverse behavior is observed in the remaining boxplots.

Figure 6.3: Boxplots of two up-regulated (left) and down-regulated (right) biomarkers

This analysis is now completed with a preprocessing step. First, variables are scaled and centered

to be comparable, and then those highly correlated are also identified. For the latter, the thresh-

old is set at 0.94 and three highly correlated variables are removed, reducing the total number

of variables to 219. Specifically, the resulting highly correlated biomarkers are hsa.miR.126.5p,

hsa.miR.27a.3p, and hsa.miR.1285.5p.

Coming to this point, the discovery and testing sets consist of 1008 and 376 observations, re-

spectively. In addition, there are 219 selected variables, of which 217 are circulating miRNA

biomarkers.

6.3 Method selection

After analyzing and preprocessing the dataset, let’s move on to the choice of the best method

by employing some Nested Cross-Validations on the discovery set.
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Table 6.3 displays the results achieved by the eight selected machine learning techniques with

four different Nested Cross-Validations, and thus for each of them the mean validation AUC

score, the associated 95% level confidence interval, and the percentage of validation AUC above

the established threshold. Specifically, the 5 × 5 and 5 × 10 Nested CVs are looked at either

without repetitions or with three repetitions.

Results highlight that neural networks achieve the poorest performances with mean AUCs around

0.73, probably due to the size of the discovery set which is not large enough, and quite narrow

confidence intervals especially in Nested CVs with repetitions. Furthermore, k-NN methods get

pretty poor results with average values of the validation criterion around 0.70 and confidence

intervals fairly larger than the other methods, with lower bounds also significantly below 0.70.

Both these techniques share a weak behaviour and neural networks never manage to exceed the

acceptability threshold of the validation criterion, while the other one succeeds in approaching

it only in three resamplings out of four, but few times.

SVMs, on the other hand, perform better with average AUC scores around 0.75 and confidence

intervals that are narrower and further narrowing as repetitions increase. Moreover, although

changing the kernel does not yield a dramatic change in performance, the model with a linear

kernel seems to perform slightly better than the others by taking into account all values in the

table overall. Indeed, it succeeds in exceeding the acceptability threshold equal to 0.80 only once

in Nested CVs with repetitions, while the SVM with radial kernel never succeeds in overpassing

this threshold.

Similarly, for random forests the average value of the validation criterion is around 0.75, but

with fairly wide ranges in cases without repetitions. The mean value rises both as the number

of repetitions increases and as the number of folds of the internal sampling of the Nested CV

grows, overcoming the acceptable threshold in all the resamplings but in no more than 20% of

the validation sets.

Finally, the remaining methods are the two best performing with higher percentages of validation

AUC scores above the threshold of acceptability.

Out of these, gradient boosting reaches average AUC values not very different from those seen for

SVMs and random forests with very wide confidence intervals especially in resampling without

repetitions, but always surpasses the acceptable cut-off up to 26.67% of acceptable validation

AUCs in 3-times repeated 5× 10 Nested CV.

GLM with elastic-net regularization, instead, turns out as the best method for all values shown in

Table 6.3. Indeed, the mean validation AUC approaches the established threshold in all Nested
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CVs and it is the only technique where the confidence intervals, which are very wide in sampling

without repetitions, are always partially above the same threshold. This method gains a better

discrimination capacity of the two classes of patients both as the number of repetitions increases

and as the number of sets to be considered in the internal sampling grows, up to halving almost

one out of two AUC scores above the established cut-off in the 3-times repeated Nested CV.

Summarizing the previous findings, the GLM with elastic-net regularization performs far better

than all the other methods and so it is the technique to be considered in the next analysis to

look for the PH signature. This method is easily interpretable as its results, which are a leading

factor in clinical studies as model analysis and interpretability are both important.

6.4 Model analysis

Next, one switches to determining the optimal hyper-parameters for the chosen method, re-

minding that the main arguments of method glmnet for fitting penalized GLMs with elastic-net

regularization are the elastic mixing parameter alpha and the shrinkage parameter lambda.

This task is fulfilled by a 20-fold Cross-Validation on the discovery set, where the value of the

folds is chosen considering the size of the dataset. First, as displayed in Figure 6.4, from an

initial analysis the biggest AUC scores are achieved with lambda = 0.01 and alpha values higher

than 0.50. Upon further analysis of the AUC scores obtained with these values, the optimal

set of hyper-parameters achieves an AUC just below 0.92 and results in alpha = 0.74 and

lambda = 0.01.

Figure 6.4: Tuning hyper-parameters by maximizing validation AUC score over a wide grid (left),
then zooming in for some alpha values (right)

Building the ROC curve with the probability predictions of the model on the discovery set, it is
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observable that this tends to approach the top-left vertex reaching an AUC score on the whole

discovery set just below 0.85 and therefore the model gains a good overall ability to discriminate

the distributions of cases and controls.

Now, before analyzing the model and evaluating it on the testing set in detail, it needs to find

the optimal probability threshold Pthr for the classification into DANA’s levels, using the dis-

covery set. The two optimal probability thresholds which maximize the J and Fβ statistics are

P̂thr,J = 0.8425 and P̂thr,Fβ = 0.5507, respectively, as shown in Figure 6.5. These values are far

Figure 6.5: ROC curve for discovery observations, with the optimal cut-off points associated
with the statistics J and Fβ

away from each other and to the first one corresponds a low FPR while to the second one a high

TPR. It implies different results of evaluation metrics summarized in Table 6.4.

What immediately stands out among the results of the metrics on the discovery set are the

sensitivity and specificity values. With the second threshold, the model achieves a sensitivity

almost close to 1 but a very low specificity, less than 0.40. With the other threshold, conversely,

there is a considerable decrease in sensitivity up to 0.69 but an increase in specificity, which is

around 0.84. This is also reflected in the accuracy and balanced accuracy which reach similar

values with the first threshold while the balanced one is about 0.20 lower than the other in the

model with the second probability cut-off. Moreover, the first model achieves almost the highest

possible precision value while the second one reaches a good value even if lower than the former.
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Metric J cut-off Fβ cut-off

P̂thr 0.8425 0.5507

Statistic 0.7656 0.9098

Accuracy 0.7173 0.8601

Balanced Accuracy 0.7656 0.6722

Sensitivity 0.6897 0.9673

Specificity 0.8415 0.3770

Precision 0.9515 0.8750

Table 6.4: Model evaluation statistics for the optimal probability thresholds on the discovery set

This is confirmed by confusion matrices in Figures 6.6 and 6.7: with the former, there is a high

number of FNs but a low number of FPs, whereas the situation is the reverse with the latter,

with a significant increase in TPs and more than a halving of TNs.

Figure 6.6: Confusion matrix for the model on
the discovery set with P̂thr,J

Figure 6.7: Confusion matrix for the model on
the discovery set with P̂thr,Fβ

What just shown and described indicates that the same model with two different thresholds

behaves markedly differently. On the one hand, the model with the first probability threshold

succeeds in correctly identifying around 84% of healthy subjects but just over 2 out of 3 diseased,

even if more than 95% of the predicted positive diagnoses are true positive and less than 5%

are false positives. On the other hand, with the second probability threshold, the same model

correctly recognizes almost all the PH subjects but less than half of the healthy subjects, and

one out of eight predicted positives are false positives.
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Precisely for all these findings, the choice of the optimal threshold is not very difficult, and

therefore in the following analysis P̂thr = 0.8425 is considered.

6.5 Biomarker signature and model evaluation

The model built so far and the optimal threshold Pthr are now considered and applied on the

testing set for an overall evaluation of it. In addition, these results are compared with those of

the current best non-invasive method for diagnosing PH, while the signature and the biomarkers

included in it are analyzed in detail.

Reconsidering that the response variable DANA has the two levels PH and NO_PH, once the

model is built and the vector of coefficients β̂ = (β̂1, β̂2, . . . , β̂218) is estimated, it predicts for a

test observation Xj = (xj1, xj2, . . . , xj218) a positive diagnosis, i.e. PH, if

P(D̂ANAj = PH|Xj) = exp{β̂0 +
∑218
i=1 β̂ixji}

1 + exp{β̂0 +
∑218
i=1 β̂ixji}

> P̂thr = 0.8425

negative otherwise.

Let’s start with the classification of the third test observation as an example, whose predictions

are shown in the Table 6.5: the predicted PH probability is just over the optimal probability

threshold and so the associated prediction is PH as the true DANA label.

odds[P(D̂ANAj = PH|Xj)] logit[P(D̂ANAj = PH|Xj)] P(D̂ANAj = PH|Xj)

1.8492 6.3539 0.8640

Table 6.5: Third test observation’s predictions

Thus, the model proceeds in this way for all test observations. Since the testing set is indepen-

dent of the discovery one, it is very gainful to estimate the evaluation metrics on the obtained

predictions to have an overall assessment of the running of the fitted model and therefore of the

signature. In summary, the results shown in Table 6.6 are similar to those previously obtained

with the discovery set, with decreases due to the independence of the testing set from that of

discovery. As shown also in the confusion matrix depicted in Figure 6.8, just over two out of

three of the 376 test observations are correctly classified by the signature with differences in the

two classes. Indeed, about 75% of the healthy subjects are correctly identified as such while

67% of the PH patients are recognized as such. Moreover, as observed in the discovery set, the
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accuracy is slightly lower than that balanced. At the same time, there is a not too high number

of FPs, which makes it possible to reach a precision slightly higher than 0.87. Finally, the ability

to discriminate between the two classes is described by the value of the AUC score which is

estimated to be around 0.81, just below that of the discovery set.

Evaluation metric Value

AUC Score 0.8176

Accuracy 0.6941

Balanced Accuracy 0.7126

Sensitivity 0.6704

Specificity 0.7547

Precision 0.8744

Table 6.6: Model evaluation statistics for the optimal probability threshold on the testing set

Figure 6.8: Confusion matrix on testing set with the optimal probability threshold

In other words, the signature is able to fulfill a fair distinction between the distributions of cases

and controls with a greater ability to correctly identify healthy subjects. However, the high

precision of the model is important as it reduces the probability of misdiagnosing PH in healthy

subjects.

Given the non-excellent results of the model, it may be useful to analyze the accuracy of the

model in each DANA sub-level as summarized in Tables 6.7 and 6.8.

With regard to healthy subjects, the accuracy is maximal for the actually healthy subjects (HC)

while it is fair (68.29%) in the largest group, i.e. the group of subjects who are diseased but not
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yet PH (PH0_NOPH).

Accuracy N.Obs.

PH0_NOPH 68.29% 82

HC 100.00% 24

PH1.1 82.35% 51

PH1.2 33.33% 6

PH1.3 100.00% 1

PH1.4 62.50% 40

PH2 76.19% 42

PH3 61.29% 31

PH0_CTED 27.27% 22

PH4 68.06% 72

PH5 100.00% 5

Table 6.7: Biomarker signature accuracy sepa-
rately by starting levels of DANA

Accuracy N.Obs.

NO_PH 75.47% 106

PH1 71.43% 98

PH2 76.19% 42

PH3 61.29% 31

PH0_CTED 27.27% 22

PH4 68.06% 72

PH5 100.00% 5

Table 6.8: Biomarker signature accuracy sepa-
rately by 7 sub-levels of DANA

Let’s now turn to the PH sub-levels. First, the signature is very weak for patients with CTED

with an accuracy below 30%, from which it could be suggested that this class might have been

included in controls and not cases. Furthermore, different scores are achieved in groups of PAH

patients: the signature is good for IPAH subjects (PH1.1) while it drops by about 20 percentage

points in the PH1.4 level of people with PAH associated with other diseases. The only patient

with drug-induced PAH (PH1.3) is also correctly identified as a PH but this is not statistically

significant, as are those in PH1.2, due to the small size of the group. What has just been observed

may be repeated for PH subjects with unclear mechanisms (PH5) since, despite an accuracy of

100%, these are only 5. On the other hand, results are statistically significant for the three re-

maining groups: while the signature correctly identifies about three out of four PH subjects due

to left heart disease (PH2), this proportion decreases in CTEPH patients (PH4) until it reaches

that of three out of five patients with PH due to lung disease and/or hypoxia correctly classified

as PH.

To summarize, the built model correctly identifies a large proportion of healthy subjects and a

smaller proportion of diseased ones but with different performances in the 11 sub-levels. Indeed,
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it performs perfectly in completely healthy subjects and those with PH due to unclear mecha-

nisms. Moreover, in diseased people, the signature works better in subjects with PH due to left

heart disease (which is also the most common type of PH) and in PAH patients, especially in

idiopathic PAH and drug or toxin induced PAH subjects.

Let’s now analyze the PH signature in detail. As already said, GLMs with elastic-net regu-

larization include variable selection by shrinkage and, being the optimized elastic-net mixing

parameter equal to 0.74, the built model is a mixture between the lasso and the ridge regression.

Thus, the signature includes only 41 biomarkers by setting the coefficients of the remaining 177

equal to zero. Moreover, among the non-zero coefficients, 24 are positive and 17 are negative

while the estimated intercept is positive and equal to β̂0 = 1.9462. Taking up the regularization

of biomarkers, it is mentioned that the majority were up-regulated, and this finding is reflected in

the estimated coefficients: 23 of 24 estimated positive coefficients are associated with biomarkers

that were found to be up-regulated in the discovery set, while about half of those with negative

coefficients were down-regulated.

As shown in Figure 6.9, given alpha = 0.74, increasing the value of lambda rises the number

of biomarkers with non-zero coefficients until the ridge regression is reached. In the case un-

der analysis, however, less than one biomarker out of five has a non-zero coefficient resulting in

||β̂||1= 4.42.

Figure 6.9: Coefficients of the model with alpha = 0.74 as lambda changes

For the optimal lambda value, there is an estimated parameter with a coefficient that is much
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larger than the others, namely the one represented by a black line: it corresponds to proBNP

and the coefficient is just over 0.95, about three times as large as the second largest associated

to hsa.miR.30a.5p represented by a light green line. All other biomarkers, instead, have coef-

ficients in the range (0.19,+0.19): among biomarkers with non-zero parameters, only 3 have

|β̂j |< 0.01 while 15 features are added to the two mentioned above with |β̂j |> 0.01. Biomarkers

with the largest coefficient in modulus are collected in Tables 6.9 and 6.10, separately by sign.

Biomarker Coefficient

proBNP 0.9573

hsa.miR.30a.5p 0.3202

hsa.miR.93.5p 0.1883

hsa.miR.140.3p 0.1875

hsa.miR.192.5p 0.1855

hsa.miR.148a.3p 0.1684

hsa.miR.18a.3p 0.1383

hsa.miR.1825 0.1321

Table 6.9: Biomarkers with the highest coeffi-
cients in the built model

Biomarker Coefficient

hsa.let.7f.5p −0.1874

hsa.miR.501.3p −0.1436

hsa.miR.151a.5p −0.1352

hsa.miR.374a.3p −0.1334

hsa.miR.34a.5p −0.1317

hsa.miR.132.3p −0.1257

hsa.miR.142.3p −0.1204

hsa.miR.29c.5p −0.1125

Table 6.10: Biomarkers with the lowest coeffi-
cients in the built model

Since all predictors are quantitative variables, the coefficients can be understood as rates of

change in the probability P(D̂ANAj = PH|Xj). Then, positive coefficients indicate rates

of growth of the probability, while those negative ones indicate rates of decrease of the same

one. In other words, a unit increase in the value of proBNP corresponds to a growth rate of

P(D̂ANAj = PH|Xj) equal to three times that obtained with the same rise in hsa.miR.30a.5p.

At the same time, the rate of decrease associated with the same increase in the value of

hsa.let.7f.5p is nearly equal in modulus but of opposite sign to the growth rate observed with a

unit increase in hsa.miR.93.5p. Furthermore, several biomarkers have an associated zero coeffi-

cient: it means that these make no contribution to the prediction of diagnosis and that therefore

these biomarkers are excluded from the PH signature.

What is just described may be expressed through the variable importance, which corresponds to

the absolute value of the associated estimated coefficient. It is therefore confirmed that proBNP

is by far the most influential biomarker in the model followed by hsa.miR.30a.5p and then by a

large group of features with influence around 0.15. Moreover, the four most influential biomarkers

95



An application to the CIPHER protocol: miRNA biomarker signature for the early detection of PH

all have positive coefficients: in other words, as their values increase, the probability of diagnos-

ing PH increases.

Figure 6.10: Importance plot

At this point, it would require the help of some experts to know whether biomarkers in the

signature are significant: in these studies, it would be useful to have not only biostatisticians but

also clinicians and biologists. Now, however, in this work it is simply seen if there is any match

in the literature.

Let’s start with the two biomarkers with the highest coefficients. proBNP is a natriuretic pep-

tide that reflects right ventricle structure and function in PH and has been shown to be useful

and accurate for diagnosis and categorization into subtypes of heart failures, with preserved and

reduced ejection fraction [71]. hsa.miR.30a.5p, instead, is a sequence of 22 nucleotides that is

proven to be a diagnostic and prognostic biomarker of certain diseases such as left ventricular

dysfunction after myocardial infarction and glioma, but also a suppressor gene of various tumors

(e.g. gastric cancer, renal cell carcinoma, and oral cancer) and thus of their proliferation and

invasion [32, 61, 66]. Both of these are biomarkers of vascular dysfunction or myocardial stress,

and as their value increases, there is a growth in the probability of a positive diagnosis.

For completeness, the feature with the greatest influence among those with negative coefficients

is also analyzed. hsa.let.7f.5p is a miRNA sequence of 22 nucleotides that promotes bone mar-

row mesenchymal stem cells survival in Alzheimer’s disease patients, and it serves as a diagnostic
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biomarker of carcinoid tumors of the lung and as pro-angiogenic miRNA [9, 23]. hsa.miR.501.3p,

instead, suppresses metastasis and progression of hepatocellular carcinoma and it is identified

as a novel serum biomarker for Alzheimer’s disease [24, 42]. Thus, for these biomarkers, as the

values increase, there is a decrease in the probability of having PH.

Now, to conclude this analysis, the above results are compared with those of the best current

non-invasive method for PH diagnosis.

Specifically, the signature is assumed to have true sensitivity and specificity equivalent to the sum-

mary sensitivity and specificity of a meta-analysis of echocardiogram performance, i.e. TPR =

0.83 and FPR = 0.28. Furthermore, the minimum acceptable values of the two cited statistics

are set to the lower bounds of the confidence intervals of the summary sensitivity and specificity

of the echocardiogram in [29], and so TPR0 = 0.73 and FPR0 = 0.47. Then, the TPR and FPR

2-sided 95% Wilson confidence region for sensitivity and specificity of the signature is computed

and if it is entirely within the threshold of acceptability, the null hypothesis

H0 : {TPR ≤ 0.73 or FPR ≥ 0.47}

is rejected and then the problem has a positive conclusion and the signature is a valid alternative

to the standard non-invasive diagnostic method.

To built a 95% level Wilson confidence region for sensitivity and specificity, the 97.5% level

confidence intervals of the two statistics mean values should be defined, and these in the present

case turn out to be

Sensitivity : 0.6704 [0.5898, 0.7447]

Specificity : 0.7547 [0.6378, 0.8486]

So, the TPR and FPR 2-sided 95% Wilson confidence region for the signature is defined as

the following Cartesian product [0.1514,0.3622] × [0.5898,0.7447] which is not entirely in the

acceptability region but is only minimally so, as shown in Figure 6.11.

It means that the null hypothesis cannot be rejected and that the signature does not seem to

improve the performance of the best standard non-invasive test. Thus, the obtained signature

cannot be considered as a diagnostic method for PH but should be improved to be treated as a

viable alternative to the best current non-invasive one.

97



An application to the CIPHER protocol: miRNA biomarker signature for the early detection of PH

Figure 6.11: Acceptable ad unacceptable test regions, with the TPR and FPR 2-sided 95%
Wilson confidence region for the signature
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Chapter 7

Conclusions

Genetic expression analysis is increasingly an innovative and useful tool for the diagnosis of a

wide range of disorders. Thanks to their small size, indeed, miRNAs are discovered to play an

important role as biomarkers for the disease diagnosis or subtyping, with applications in different

fields of medicine from oncology, to neurological diseases, to respiratory disorders, and many re-

search proves that miRNAs are involved in the pathophysiological processes of many illnesses. At

the same time, however, the discipline is still evolving and looks promising in view of developing

new diagnostic tests.

Up to now, many statistical tests such as t-tests and F-tests have been employed to perform this

challenge, but in the last decades, the development of innovative machine learning statistical

methods has opened new horizons for the identification of disease biomarkers. In this work, the

goal of developing a procedure for identifying a blood-based biomarker signature for any disease

through the employment and the implementation of several statistical and sampling methods

in a case-control problem is met: starting from the protocol of Janssen’s CIPHER study and

looking at eight different methods, first the most interpretable and best performing one in some

Nested CVs on a discovery set is chosen and its hyper-parameters are optimized by a k-fold CV,

and then the obtained signature is evaluated on a testing set independent of the previous one.

This strategy may be applied in several medical fields to find biomarker signatures of disor-

ders, and in this work, pulmonary hypertension, which constitutes the sixth therapeutic area

of Janssen, has been considered because its symptoms are common to several respiratory and

circulatory illnesses while its diagnosis requires many diagnostic tests and a confirmatory inva-

sive examination characterized by low morbidity and mortality. Next comes the challenge of
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finding new non-invasive diagnostic approaches for faster detection such as biomarker signature

of the disease to explain the several processes involved in the illness itself. This task has already

been partly discussed in many scientific papers that enabled the identification of some miRNA

biomarkers describing the mechanisms implicated in PH but also demonstrated the convenience

of combining several biomarkers for diagnostic purposes.

Here, an attempt has been made to fulfill this requirement by looking at a dataset provided by

Actelion Janssen extracted from the proof-of-concept study used to design CIPHER, consisting

of discovery and testing sets with 1191 and 376 observations, respectively. First, the GLM with

elastic-net regularization results as the best performing method from some Nested CVs. Then,

by means of a 20-fold CV, a signature consisting of only 41 out of 555 starting biomarkers is

generated: among these, proBNP and hsa.miR.30a.5p are widely the most influential, also ac-

cording to the studies in the literature that indicate the role of biomarkers of processes involved

in PH. The resulting model has a quite satisfactory discriminatory capacity between positive

and negative diagnoses with an AUC score in the testing set just below 0.82. At the same time,

the signature turns out to perform better in the identification of healthy rather than diseased

subjects, with sensitivity and specificity equal to 0.6704 (97.5% Wilson CI [0.5898,0.7447]) and

0.7547 (97.5% Wilson CI [0.6378,0.8486]), respectively. These values, however, change when

different subgroups are considered, also because the several types of PH present diverse causes

and characteristics. On the one hand, indeed, the signature correctly detects the totality of

healthy subjects, 76% of patients with PH due to left heart disease, 71% of those with PAH,

and among them about 82% of those having IPAH. On the other hand, the signature recognizes

less than 50% of the subjects of some sub-levels and in particular 27.27% of the patients with

CTED and 33.33% of those having HPAH. Finally, the signature does not seem to improve the

performance of the best current non-invasive method for the diagnosis of PH by resulting in a

95% level Wilson confidence region of TPR and FPR not wholly within the acceptability region

of the test: while the specificity confidence interval is entirely above the lower bound of that of

the echocardiogram, for sensitivity it only slightly exceeds the lower bound of that of the current

method.

7.1 Future outlook

The work carried out in this thesis may represent a starting point to identify biomarker signa-

tures of some illnesses, especially of those currently without cures or more lethal, and then make
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early diagnoses and start treatments as soon as possible.

First of all, the proposed approach may be improved especially in the dataset analysis and pre-

processing stage and in the choice of the machine learning methods to be investigated. Indeed,

retrospective studies, executed to select biomarkers that could constitute the signature itself and

to exclude from the analysis those that do not seem to explain the processes involved in the

targeted disease, are essential for identifying accurate signatures. At the same time, if a wider

variety of statistical methods are adopted, perhaps also sacrificing a bit the interpretability of

the results, it would be possible to find models and signatures with greater ability to detect both

healthy subjects and those diseased. Moreover, one may evaluate employing imputation tech-

niques especially when there are several missing values for biomarkers that could be influential

in the signature or were revealed as such in several scientific articles.

About the PH signature got in the previous chapter, it does not seem to perform better than the

current standard non-invasive method but it could be improved through a collaboration between

specialists with different expertise, such as clinicians, biologists, and biostatisticians, but also

through the inclusion of other biomarkers such as those metabolic or clinical and demographic

indicators that may contribute to the onset of the disease, like the age since the first symptoms

occur in patients between 20 and 60 years. Additionally, because of the very low accuracy in

detecting ill subjects with CTED, it might be thought to include this sub-level in healthy ones as

already done for diseased subjects but not PH since, despite similar symptoms, it is not proven

that this disorder evolves into CTEPH.

Furthermore, due to the different clinical presentation of the many forms of PH, as well as their

different hemodynamic characteristics, causes, and symptoms, it could be helpful and strategical

to find signatures to detect individual subgroups of PH or batches of them having analogous

features, similar to the intention of CIPHER. This may bring, especially for patients with PAH

and CTEPH, a stronger advantage and a faster treatment administration, as their symptoms

usually emerge on average two years before the diagnosis is made.

To sum up, all these remarks may help to improve the developed methodology and the perfor-

mance of the resulting signature, to design new ones for PH and other diseases, and thus to

explore new horizons in the field of medicine and diagnostics.
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This chapter collects all the functions, with input arguments and output values, defined and

involved in the whole process for searching a biomarkers signature of a disease, starting with the

univariate analysis and variable selection, then continuing with the method selection, the final

model specification, and its evaluation on the testing set as described in Chapter 5. Subsequently,

the full code run for the case study described in Chapter 6 is shown.

First, the simple function missingValues is defined for identifying and quantifying missing values

in a given data collection and, if present, detecting the set of variables containing them.
1 # INPUT:
2 # - data: data collection
3 # - label: name of the set (i.e. " Discovery ")
4 # OUTPUT :
5 # - print: number and percentage of missing values
6 # - indexes : indexes of variables with NAs
7 missingValues <- function (data , label ){
8 # Number (NAs) and percentage ( percNAs ) of missing values
9 NAs <- sum( rowSums ( ifelse (is.na(data ) ,1 ,0)))

10 percNAs <- round(NAs/(dim(data )[1]*dim(data )[2])*100 ,2)
11 print( paste(label , " set: ", as. character (NAs), " NA (",
12 as. character ( percNAs ), "%)", sep=""))
13 if(NAs >0){
14 # Percentage of missing values for each variable , sorted by
15 # decreasing order
16 misValues <- data.frame (perc= round( colSums ( ifelse (is.na(data),
17 1 ,0))/dim(data )[1]*100 ,2))
18 misValues <- data. frame( sortPerc = misValues [ order ( misValues $perc ,
19 decreasing =TRUE ),], row.names =
20 rownames ( misValues )[ order( misValues $perc ,
21 decreasing =TRUE )])
22 # Variables having missing values and their indexes
23 set <- rownames ( misValues )[1: sum( misValues $sortPerc >0)]
24 indexes <- data. frame(name= names (data), i=seq (1, dim(data )[2]) ,
25 row.names = names(data ))[ set ,2]
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26 return ( indexes )
27 }
28 }

Thus, the ShapiroWilkTest function consists of the first step of the univariate analysis, that is

the Shapiro-Wilk test on each quantitative variable with associated Q-Q plots for those variables

which result in the highest and lowest values of the test statistic.
1 # INPUT:
2 # - dataset : collection of data (only quantitative variables )
3 # - y: categorical variable
4 # OUTPUT :
5 # - shapRes : Shapiro -Wilk test results (W- statistic and p-value), and
6 # values of skewness and kurtosis
7 # - print: number of significant variable for levels 0.05 and 0.01
8 # - plot: quantile - quantile plot for six variables
9 ShapiroWilkTest <- function (dataset , y){

10 shapRes <- data.frame (W=c(), pvalue =c(), skewness =c(), kurtosis =c())
11 # For each quantitative variable
12 for(i in c(1: dim( dataset )[2])){
13 variable <- names ( dataset )[i]
14 # Shapiro -Wilk test
15 test <- shapiro .test(na.omit( dataset [, names( dataset )[i]]))
16 # Skewness and Kurtosis
17 skew <- skewness (na.omit( dataset [,names ( dataset )[i]]))
18 kurt <- kurtosis (na.omit( dataset [,names ( dataset )[i]]))
19 shapRes <- rbind(shapRes , data. frame(W=test$statistic ,
20 pvalue =test$p.value , row. names =variable ,
21 skewness =skew , kurtosis =kurt ))
22 }
23 # Sort result by p- values in decreasing order
24 shapRes <- shapRes [order( shapRes $pvalue , decreasing =TRUE ),]
25 # Number of significant variables with levels 0.05 and 0.01
26 print(data. frame( signVariable =c(sum( shapRes $pvalue >0.05) ,
27 sum( shapRes $pvalue >0.01)) , row.names =c("p >0.05","p >0.01")))
28 # q-q plot 6 features (3 with the highest W + 3 with the lowest W)
29 features <- shapRes [c(1:3 , (dim( shapRes )[1] -2): dim( shapRes )[1]) ,]
30 par(mfrow=c(2 ,3))
31 for(i in c (1:6)){
32 qqnorm ( miPresentData [,row. names( features )[i]], pch =1, frame=FALSE ,
33 main=row. names ( features )[i],
34 sub= paste("W=", as. character (round ( features [i ,1] ,4)) , sep=""))
35 grid ()
36 qqline ( miPresentData [,row. names( features )[i]], col=" steelblue ", lwd =2)
37 }
38 par(mfrow=c(1 ,1))
39 return ( shapRes )
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40 }

Hence, RankBasedRegression follows to fit rank-based regression for each biomarker as described

in Chapter 6, and analyze the associated Wald and drop in dispersion tests, whose results can

be shown through volcanoPlot within volcano plots together with log2 fold change to identify

the statistically significant variables for the test and, among them, those of interest.

1 # INPUT:
2 # - dataset : data collection where the first variable is binary
3 # - levels : levels of the categorical variable (case and control )
4 # OUTPUT :
5 # - testRes : dataframe with p- values associated with Wald and drop in
6 # dispersion tests , and log2 fold change for each quantitative
7 # variable
8 RankBasedRegression <- function (dataset , levels ){
9 testRes <- data.frame (Wald=c(), Dispersion =c(), logfold =c())

10 # For each quantitative variable
11 variable <- names ( dataset [,-c (1)])
12 for(i in c(1: length ( variable ))){
13 variables <- dataset [, variable [i]]
14 # Rank -based regression : variable ~ categorical variable
15 fit <- rfit( variables ~ dataset [,1], data= dataset )
16 # Means in cases and controls , and log2 fold change
17 meanCase <- mean(na.omit( dataset [ dataset [ ,1]== levels [1], variable [i]]))
18 meanControl <- mean(na.omit( dataset [ dataset [,1]!= levels [1],
19 variable [i]]))
20 logFoldChange <- log2(abs( meanCase / meanControl ))
21 testRes <- rbind(testRes ,
22 data.frame (Wald= summary (fit)$ coefficients [2,4],
23 Dispersion = summary (fit)$ droppval [1],
24 logfold = logFoldChange , row.names = variable [i]))
25 }
26 return ( testRes )
27 }

1 # INPUT:
2 # - rbr: dataset with results of the RankBasedRegression function
3 # - pvalues : names of columns with pvalues to show (" Wald" or " Dispersion ")
4 # - alpha: significance level of the test ( default value = 0.05)
5 # OUTPUT :
6 # - p: volcano plot
7 # - downUp : number of down and up regulated variables , those significant
8 # for the test and of interest
9 volcanoPlot <- function (rbr , pvalues , alpha =0.05){

10 # Select data for the plot
11 data <- data. frame( logfold =rbr[," logfold "], pvalue =rbr[, pvalues ],
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12 row.names = rownames (rbr ))
13 data[," Regulation "] <- as. factor ( ifelse (data$logfold >0, "Up", "Down"))
14 data[," Variable "] <- ifelse (data$pvalue <alpha , " Significant ",
15 "Not - significant ")
16 data[data$ Variable ==" Significant "," Variable "] <- ifelse (abs(
17 data[data$ Variable ==" Significant "," logfold "])>=1,
18 "Of interest "," Significant ")
19 data$ Variable <- as. factor (data$ Variable )
20 # Volcano plot
21 p <- ggplot (data = data , aes(x=logfold ,y=- log10 ( pvalue )))+
22 geom_ point(aes(fill=Regulation , color= Variable ), shape =21,
23 size =1.5) +
24 scale_fill_ manual ( values = c(" goldenrod3 "," chartreuse3 ")) +
25 scale_color _ manual ( values = c("NA", " darkred "," darkblue "))+
26 xlab("log2 Fold Change ")+
27 ylab("-log10 p-value")+
28 geom_ hline( yintercept =-log10 (alpha),col=’darkblue ’,lty =2)+
29 geom_ vline( xintercept =0, col=’black ’)+
30 theme _bw()
31 if(max(abs(data$ logfold ) >1)){
32 p <- p + geom_vline( xintercept =-1, col=’darkred ’,lty =2)+
33 geom_ vline( xintercept =+1, col=’darkred ’,lty =2)
34 }
35 # down - regulated and up - regulated variables
36 downReg <- c(dim(data[data$ Regulation =="Down" ,])[1] ,
37 sum(data[data$ Regulation =="Down"," Variable "]==" Significant "),
38 sum(data[data$ Regulation =="Down"," Variable "]=="Of interest "))
39 upReg <- c(dim(data[data$ Regulation =="Up" ,])[1] ,
40 sum(data[data$ Regulation =="Up"," Variable "]==" Significant "),
41 sum(data[data$ Regulation =="Up"," Variable "]=="Of interest "))
42 downUp <- data.frame ( downRegulated =downReg , upRegulated =upReg ,
43 tot= downReg +upReg ,row. names = c(’All variables ’,paste ("p<",
44 as. character (alpha),sep=""),’Variables of interest ’))
45 return (list(p, downUp ))
46 }

Furthermore, up and down regulated variables identified by the volcano plot may also be displayed

through boxplots as outlined in the boxplotVariable function.

1 # INPUT:
2 # - data: collection of data (the categorical variable and the chosen
3 # quantitative one)
4 # - posLevel : positive label of the categorical variable
5 # OUTPUT :
6 # - p: boxplot of the quantitative variable separately by the categorical
7 # one
8 boxplotVariable <- function (data , posLevel ){
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9 data <- na.omit( dataset )
10 # Compute lower and upper whiskers
11 ylimCase <- boxplot .stats(data[data [ ,1]== posLevel ,2])$ stats[c(1 ,5)]
12 ylimControl <- boxplot .stats(data[data [,2]!=posLevel ,2])$ stats[c(1 ,5)]
13 ylim <- c(min( ylimCase [1], ylimControl [1]) ,
14 max( ylimCase [2], ylimControl [2]))
15 ylim [1] <- ifelse (ylim [1]>0, ylim [1]*0.9, ylim [1]*1.1)
16 ylim [2] <- ifelse (ylim [2]>0, ylim [2]*1.1, ylim [2]*0.9)
17 p <- ggplot (data=data , aes(x=data [,1], y=data [,2], fill=data [ ,1]))+
18 geom_ boxplot () +
19 scale_fill_ manual ( values =c(" green3 ", " deepskyblue2 "))+
20 theme( legend . position ="none") +
21 xlab( names (data )[1]) + ylab( names (data )[2]) +
22 coord _ cartesian (ylim=ylim)
23 return (p)
24 }

The univariate analysis and variable selection section ends with the pre-processing step included

in the preProcessing function, which involves removing near-zero-variance variables, standardiz-

ing, and dropping highly-correlated features for both discovery and testing sets.
1 # INPUT:
2 # - discovery : discovery set (only the first variable is categorical )
3 # - test: testing set (only the first variable is categorical )
4 # - corrCut : cut -off correlation value to identify highly - correlated
5 # features
6 # OUTPUT :
7 # - discovery : pre - processed discovery set
8 # - test: pre - processed testing set
9 # - print: number of near -zero - variance features

10 preProcessing <- function (discovery , test , corrCut ){
11 # Remove near -zero - variance variables
12 nzv <- nearZeroVar ( discovery )
13 print( paste("Near -zero - variance variables :", as. character ( length (nzv ))))
14 if( length (nzv ) >0){
15 discovery <- discovery [,-c(nzv )]
16 test <- test[,-nzv]
17 }
18 # Scale and center
19 standardization <- preProcess ( discovery [,-c(1)] , method =c(" center ",
20 "scale"))
21 discovery <- predict ( standardization , discovery )
22 test <- predict ( standardization , test)
23 # Correlation analysis
24 corrmat <- cor( discovery [,-c (1)])
25 var <- c()
26 for(i in c(2:( dim( corrmat )[1] -1))){
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27 for(j in c(1:(i -1))){
28 # Pair of variables with correlation higher than the cut -off value
29 if( corrmat [i,j]> corrCut ){
30 # Select the variable with the highest mean correlation
31 var <- c(var , ifelse (mean( corrmat [,row.names ( corrmat )[i]])>
32 mean( corrmat [,row. names( corrmat )[j]]), i+1, j+1))
33 }
34 }
35 }
36 # Remove highly - correlated variables
37 discovery <- discovery [,-var]
38 test <- test[,-var]
39 return (list(discovery , test ))
40 }

Once completed the first step, proceeds with the function NestedCV for implementing 3-times

repeated 5×B Nested Cross-Validations on the discovery set and choosing the best-performing

method. Specifically, as stated earlier, a double for loop was chosen in the function rather than

the repeatedcv method to see results step by step. Moreover, since not all the chosen techniques

require the same hyper-parameters, the if-else construct was selected to include several classifiers,

even if it is not very computationally convenient.

1 # INPUT:
2 # - dataset : discovery set (DANA is the response variable )
3 # - method : method to fit
4 # - grid: grid of hyper - parameter values
5 # - ninnerfolds : folds inner CV
6 # - times: number of repetitions ( default value = 3)
7 # OUTPUT :
8 # - print: validation AUC scores and t-test without and with 3 repetitions
9 NestedCV <- function (dataset , method , grid , ninnerfolds , rep =3){

10 # Outer partitions
11 evaluationSets <- list ()
12 for(i in c(1: rep )){
13 set.seed (824+i)
14 folds <- createFolds ( dataset $DANA , k=5)
15 evaluationSets [[i]] <- list(folds$Fold1 , folds$Fold2 , folds$Fold3 ,
16 folds $Fold4 , folds$ Fold5)
17 }
18 # rep -times 5 Xninnerfolds Nested Cross - Validation
19 AUCs <- c()
20 for(j in c(1: rep )){
21 # Outer Cross - Validation
22 for(i in c (1:5)){
23 # Split discovery set in training and testing ones
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24 training <- dataset [- evaluationSets [[j]][[i]],]
25 validation <- dataset [ evaluationSets [[j]][[i]],]
26 # Inner Cross - Validation
27 set.seed (825)
28 innerCV <- trainControl ( method ="cv", number = ninnerfolds ,
29 classProbs =TRUE , savePredictions =TRUE ,
30 summaryFunction = prSummary )
31 # Methods :
32 # - k- Nearest Neighbors : method =" knn"
33 # - Gradient Boosting : method =" gbm"
34 # - Elastic -net GLM: method =" glmnet ", family =" binomial "
35 # - Random Forest : method =" ranger "
36 # - SVMs: method =c(" svmLinear ", " svmRadial ", " svmPoly ")
37 # - Neural Network : method =" nnet"
38 if( method ==" ranger "){
39 # Random Forest
40 methodFit <- train(DANA~., data=training , method =method ,
41 importance =" permutation ",
42 trControl =innerCV , verbose =FALSE ,
43 tuneGrid =grid , metric ="AUC", maximize =TRUE)
44 }else if( method =="nnet" || method =="knn"){
45 # Neural Network and k- Nearest Neighbors
46 methodFit <- train(DANA~., data=training , method =method ,
47 trControl =innerCV , tuneGrid =grid , metric ="AUC",
48 maximize =TRUE)
49 }else{
50 # Gradient Boosting , GLM with Elastic -net regularization , and
51 # Support Vector Machines
52 methodFit <- train(DANA~., data=training , method =method ,
53 trControl =innerCV , verbose =FALSE ,
54 tuneGrid =grid , metric ="AUC", maximize =TRUE)
55 }
56 # AUC score
57 auc <- roc( predictor = predict (methodFit , newdata =validation ,
58 type="prob")[,1], response = validation $DANA ,
59 positive = levels ( validation $DANA )[1])$auc
60 print( paste ("Rep.", as. character (j), " VALIDATION SET n.",
61 as. character (i), "- Outer Validation AUC:",
62 as. character (round (auc ,4))))
63 AUCs <- c(AUCs , auc)
64 }
65 }
66 # t-test without and with repetitions
67 print("t-test (no repetitions ):")
68 print(t.test(AUCs [1:5]))
69 print( paste("t-test (", as. character (rep)," repetitions )", sep=""))
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70 print(t.test(AUCs ))
71 }

Then, the kCV function is defined to choose the optimal hyper-parameters and fit the best GLM

with elastic-net regularization model through a k-fold Cross-Validation on the discovery set.

1 # INPUT:
2 # - dataset : discovery set
3 # - grid: grid of hyper - parameters
4 # - nfolds : k ( default value = 20)
5 # OUTPUT :
6 # - p: plot AUCs for each set of values
7 # - methodFit : fitted model
8 # - print: optimal hyper - parameters
9 kCV <- function (dataset , grid , nfolds =20){

10 # nfolds -fold CV
11 set.seed (825)
12 CV <- trainControl ( method ="cv", number =nfolds , classProbs =TRUE ,
13 savePredictions =TRUE , summaryFunction = prSummary )
14 methodFit <- train(x= dataset [,-c(1)] , y= dataset [,1], method =" glmnet ",
15 family =" binomial ", trControl =CV , verbose =FALSE ,
16 tuneGrid =grid , metric ="AUC", maximize =TRUE ,
17 case= levels ( dataset [ ,1])[1] ,
18 control = levels ( dataset [ ,1])[2])
19 # Plot and best hyper - parameters
20 p <- plot( methodFit )
21 print("Best hyper - parameters ")
22 print( methodFit $ bestTune )
23 return (list(p, methodFit ))
24 }

Once the best model is built, function cutoffs is defined to identify the probability thresholds

that maximize the J and Fβ statistics by fitting the chosen model on the discovery set, which

are then shown on the ROC curve constructed with the same collection of data by implementing

the cutROC function.

1 # INPUT:
2 # - data: discovery set
3 # - methodFit : fitted model
4 # - var: response variable
5 # - levels : levels of categorical variable
6 # OUTPUT :
7 # - Jmax: threshold with the highest J-statistic , and associated
8 evaluation metrics
9 # - Fbetamax : threshold with the highest F-measure , and associated

10 evaluation metrics
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11 # - plot: plot of J and Fbeta statistics
12 cutoffs <- function (data , methodFit , var , levels ){
13 # Evaluation metrics for each probability threshold
14 roc_test <- roc(data[,var], predict (methodFit , newdata =data ,
15 type="prob")[,1], levels =levels , plot=FALSE)
16 prevalence <- table (data[,var ])[1] /(table (data[,var ])[1]+
17 table(data[,var ])[2])
18 actualCase <- table (data[,var ])[1]
19 actualControl <- table(data[,var ])[2]
20 tp <- roc_test$ sensitivities * actualCase
21 tn <- roc_test$ specificities * actualControl
22 fp <- actualControl -tn
23 precision <- tp/(tp+fp)
24 cutoff <- data.frame ( threshold =roc_test$ thresholds ,
25 sensitivity =roc_test$ sensitivities ,
26 specificity =roc_test$ specificities ,
27 precision = precision )
28 cutoff <- cutoff [-c(1, dim( cutoff )[1]) ,]
29 # J- statistic
30 cutoff [,"J"] <- ( cutoff $ sensitivity + cutoff $ specificity )/2
31 # Fbeta - statistic
32 cutoff [,"Fbeta"] <- ((1+ prevalence ^2)* cutoff $ sensitivity *
33 cutoff $ precision )/(( prevalence ^2)* cutoff $ precision +
34 cutoff $ sensitivity )
35 # Maximization of the statistics and plot
36 Jmax <- cutoff [ cutoff $J== max( cutoff $J),]
37 Fbetamax <- cutoff [ cutoff $ Fbeta == max( cutoff $Fbeta ),]
38 plotJ <- ggplot (data=cutoff , aes(x=threshold , y=J))+
39 geom_line(col="blue")+
40 geom_point(data= cutoff [ cutoff $J== max( cutoff $J),],
41 col="red", cex =2.5)+
42 ggtitle ("J- statistic ")
43 plotF <- ggplot (data=cutoff , aes(x=threshold , y=Fbeta ))+
44 geom_line(col="blue")+
45 geom_point(data= cutoff [ cutoff $ Fbeta == max( cutoff $Fbeta ),],
46 col="red", cex =2.5)+
47 ggtitle ("Fbeta - statistic ")
48 pl <- plot_grid(plotJ , plotF)
49 return (list(Jmax , Fbetamax , pl))
50 }

1 # INPUT:
2 # - data: set of data
3 # - Jmax: evaluation metric for the threshold with the highest
4 # J- statistic value
5 # - Fbetamax : evaluation metric for the threshold with the highest
6 # F- measure
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7 # - methodFit : fitted model
8 # - var: response variable
9 # - levels : levels of response variable

10 # OUTPUT :
11 # - p: ROC curve and optimal cut -off points
12 cutROC <- function (dataset ,Jmax ,Fbetamax ,methodFit ,var=’DANA ’,
13 levels =c(’NO_PH’,’PH’)){
14 # Predicted probabilities
15 roc_test <- roc( dataset [,var], predict (methodFit , newdata =dataset ,
16 type="prob")[,1], levels =levels , plot=FALSE)
17 par(mfrow=c(1 ,1))
18 pred_ final <- prediction ( predict (methodFit , newdata =dataset ,
19 type="prob")[,1], ifelse ( dataset $DANA =="PH" ,1,0))
20 perf_ final <- performance (pred_final ,"tpr","fpr")
21

22 # ROC curve
23 p <- plot(perf_ final@x . values [[1]] , perf_ final@y . values [[1]] ,
24 col=’blue ’, type="l", xlim=c(0,1), ylim=c(0,1), lwd =2,
25 xlab=’FPR (1- Specificity )’, ylab=’TPR ( Sensitivity )’,
26 main=’ROC curve and cut -off points ’)
27 p <- p + grid ()
28 p <- p + abline (a=0, b=1, col=’black ’, lty =2)
29

30 # Optimal probability thresholds
31 p <- p + points (1- Jmax$ specificity , Jmax$ sensitivity , pch =4,
32 col=’red ’, lwd =3, cex =1.5)
33 p <- p + points (1- Fbetamax $ specificity , Fbetamax $ sensitivity ,
34 pch =4, col=’darkgreen ’, lwd =3, cex =1.5)
35 p <- p + legend ( legend =c(’J cut -off ’, ’ F cut -off ’),
36 fill=c(’red ’,’darkgreen ’),’bottomright ’,inset =0.01)
37 p <- p + text(x=0.35 , y=0.6 , paste(’AUC = ’,
38 as. character ( round(roc_test$auc [1] ,4)) , sep=’’))
39 return (p)
40 }

Then, the fitted model with a given probability threshold can be evaluated by the function

confMatrix on a set of observations through confusion matrix and evaluation metrics such as

specificity, sensitivity, and AUC score.
1 # INPUT:
2 # - data: dataset
3 # - thr: threshold probability
4 # - methodFit : fitted method
5 # - var: categorical variable
6 # - levels : levels of the response variable
7 # OUTPUT :
8 # - confusionMat : confusion matrix and evaluation metrics
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9 # - aucScore : AUC score
10 confMatrix <- function (data , thr , methodFit , var , levels ){
11 # Predictions
12 pred <- as. factor ( ifelse ( predict (methodFit , newdata =data ,
13 type="prob")[,1]>thr , levels [2], levels [1]))
14 # Confusion matrix and evaluation metrics
15 confusionMat <- confusionMatrix ( relevel (pred , levels [2]) , data[,var ])
16 # AUC score
17 aucScore <- roc( predictor = predict (methodFit , newdata =data ,
18 type="prob")[,1], response =data[,var],
19 levels =rev( levels (as. factor (data[,var ]))) ,
20 positive = levels [2])$auc
21 return (list(aucScore , confusionMat ))
22 }

By employing the properties defined in Chapter 5 of the GLM with elastic-net regularization,

the function GLMNETexample allows one to manually compute the logit, odds, and probability

P (Ŷj = 1|Xj) for each test observation and compare the latter with the same predicted by the

fitted model.

1 # INPUT:
2 # - dataset : test data
3 # - methodFit : the fitted model
4 # - posLevels : label of positive diagnosis
5 # OUTPUT :
6 # - example : logit , odds , Pcomputed and Ppredicted P(Y=1) for each test
7 # observation
8 GLMNETexample <- function (dataset , methodFit , posLevel ){
9 # Extract intercept and coefficients

10 intercept <- coef( methodFit $ finalModel , methodFit $ bestTune $ lambda )@x [1]
11 coefs <- coef( methodFit $finalModel , methodFit $ bestTune $ lambda )@x[-1]
12 if( levels ( dataset [ ,1])[1]== posLevel ){
13 intercept <- -intercept
14 coefs <- -coefs
15 }
16 coefsindex <- coef( methodFit $ finalModel ,
17 methodFit $ bestTune $ lambda )@i [ -1]+1
18 coefs <- data. frame(coefs , row.names = colnames ( dataset [, coefsindex ]))
19 # logit , odds and probability
20 logitTest <- as. matrix ( dataset [, coefsindex ])%*%as. matrix (coefs )+
21 as. matrix (data. frame (( intercept *rep (1, dim( dataset )[1])) ,
22 row.names = rownames ( dataset )))
23 oddsTest <- exp( logitTest )
24 PTrain <- oddsTest /(1+ oddsTest )
25 Ppred <- predict (methodFit , newdata =dataset , type = "prob")[, posLevel ]
26 example <- data.frame (logit=logitTest , odds=oddsTest ,
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27 P(Y=1)_ computed =PTrain , P(Y=1)_ predicted =Ppred)
28 return ( example )
29 }

Thus, the groupAnalysis function evaluates the built model through the accuracy in each sub-

levels of the response variable DANA. Specifically, the function considers the categorical variable

indicating the PH diagnosis, as depicted in the case study in Chapter 6.

1 # INPUT:
2 # - datasetStart : starting testing set (DANA with 11 levels )
3 # - datasetMod : preprocessed testing set (DANA with 2 levels )
4 # - pred: predictions for testing set
5 # OUTPUT :
6 # - accuracy11 : accuracy separately by 11 levels
7 # - accuracy7 : accuracy separately by 7 levels
8 groupAnalysis <- function ( datasetStart , datasetMod , pred ){
9 # Correctly classified or not

10 diagnosis <- data. frame ( Diagnosis = datasetStart $DANA ,
11 Truth= datasetMod $DANA , Prediction =pred)
12 diagnosis [," Correct "] <- ifelse ( diagnosis $ Truth == diagnosis $Prediction ,
13 1,0)
14 # 11 levels : PH0_CTED , PH_NOPH , PH1 .1, PH1 .2, PH1 .3, PH1 .4, PH2 , PH3 ,
15 # PH4 , PH5 , HC
16 res <- aggregate (x= diagnosis $Correct , by=list( diagnosis $ Diagnosis ),
17 FUN=mean)$x*100
18 names (res) <- c("Diagn", " Accuracy ")
19 accuracy11 <- cbind (res , data.frame ( count= summary ( diagnosis $ Diagnosis )))
20 # 7 levels : PH0_CTED , NO_PH , PH1 , PH2 , PH3 , PH4 , PH5
21 PHdiagn <- diagnosis
22 levels ( PHdiagn $ Diagnosis )<- c("PH0_CTED","NO_PH","PH1","PH1","PH1",
23 "PH1","PH2","PH3","PH4","PH5","NO_PH")
24 res2 <- aggregate (x= PHdiagn $Correct , by=list( PHdiagn $ Diagnosis ),
25 FUN=mean)$x*100
26 names(res2) <- c("Diagn", " Accuracy ")
27 accuracy7 <- cbind (res2 , data.frame ( count= summary ( PHdiagn $ Diagnosis )))
28 return (list(accuracy11 , accuracy7 ))
29 }

So, the coeffGLMNET and importancePlot functions are useful to analyze the identified signature

and thus the estimated coefficients for the several features.

1 # INPUT:
2 # - methodFit : fitted model
3 # - levels : levels of the response variable
4 # - posLevel : label of the positive class
5 # OUTPUT :
6 # - print: numbers of positive / negative coefficients and some of them
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7 # - coefficients : estimated coefficients
8 # - p: plot of coefficients as lambda changes
9 coeffGLMNET <- function (methodFit , levels , posLevel ){

10 # Extract coefficients for P(Y=1|X)
11 if( levels [2]== posLevel ){
12 coeff <- coef( methodFit $ finalModel , methodFit $ bestTune $ lambda )
13 }else{
14 coeff <- -coef( methodFit $ finalModel , methodFit $ bestTune $ lambda )
15 }
16 coefficients <- data. frame("Coeff"=coeff[is.na(coeff )==0] ,
17 row.names = rownames (coeff ))
18 coefficients [" Importance "] <- abs( coefficients $Coeff)
19 coefficients <- coefficients [ order( coefficients $Importance ,
20 decreasing =TRUE ),]
21 # Split into positive and negative coefficients
22 posCoeff <- coefficients [ coefficients $Coeff >0,]
23 posCoeff <- posCoeff [ order( posCoeff $Coeff , decreasing =TRUE ),]
24 negCoeff <- coefficients [ coefficients $Coeff <0,]
25 negCoeff <- negCoeff [ order( negCoeff $Coeff , decreasing =FALSE ),]
26 print( paste(" Positive coefficients :", as. character (dim( posCoeff )[1])))
27 print(head(posCoeff , 10))
28 print( paste(" Negative coefficients :", as. character (dim( negCoeff )[1])))
29 print(head(negCoeff , 10))
30 print( paste("Zero coeffients :", as. character (dim( coefficients )[1] -
31 dim( posCoeff )[1] - dim( negCoeff )[1])))
32 # Coefficients plot
33 p <- plot( methodFit $ finalModel , lwd =1.5 , label=TRUE , " lambda ")
34 p <- p+ abline (v=log( methodFit $ bestTune $ lambda ), lwd =1, lty =3, col="red")
35 return (list( coefficients , p))
36 }

1 # INPUT:
2 # - methodFit : fitted model
3 # - top: number of top variables to show ( default value = 15)
4 # OUTPUT :
5 # - varPlot : variable importance plot
6 importancePlot <- function (methodFit , top =15){
7 varimp <- varImp (methodFit , scale=FALSE)
8 varPlot <- ggplot (varimp , top=top)
9 return ( varPlot )

10 }

Finally, the comparison of the built signature performance with the current best non-invasive

diagnostic method is made by the construction of the 2-sided TPR and FPR Wilson confidence

region with plotRegion and, before that, the identification of the confidence intervals of sensitivity

and specificity through WilsonInterval.
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1 # INPUT:
2 # - stat: statistic
3 # - level: confidence level
4 # - n: number of observations
5 # OUTPUT :
6 # - LB: lower bound CI
7 # - UB: upper bound CI
8 WilsonInterval <- function (stat , level , n){
9 # Quantile

10 q <- qnorm(level +(1- level)/2)
11 # Upper and lower bounds
12 UB <- (stat+q^2/(2*n)+q*sqrt(stat (1- stat)/n+q^2/(4*n^2)))/(1+q^2/n)
13 LB <- (stat+q^2/(2*n)-q*sqrt(stat (1- stat)/n+q^2/(4*n^2)))/(1+q^2/n)
14 return (c(LB ,UB))
15 }

1 # INPUT:
2 # - sens: sensitivity CI (1st statistic )
3 # - spec: specificity CI (2nd statistic )
4 # - TPR0: TPR for the current best non - invasive test
5 # - FPR0: FPR for the current best non - invasive test
6 # OUTPUT :
7 # - p: plot confidence region and comparison with the current best
8 # non - invasive test
9 plotRegion <- function (sens , spec , TPR0 , FPR0 ){

10 # Best non - invasive diagnostic test
11 p <- plot(c(0,1), c(0,1), type="n", xlab="FPR (1- specificity )",
12 ylab="TPR ( sensitivity )")
13 for(i in seq (0.02 , floor(TPR0*100/2)*0.02 , 0.02)){
14 p <- p + segments (0, i, 1, i, col="grey")
15 }
16 for(i in seq( ceiling (TPR0*100/2)*0.02 , 0.98 , 0.02)){
17 p <- p + segments (FPR0 , i, 1, i, col="grey")
18 }
19 p <- p + segments (0, 0, 1, 0)
20 p <- p + segments (0, 0, 0, 1)
21 p <- p + segments (1, 0, 1, 1)
22 p <- p + segments (0, 1, 1, 1)
23 p <- p + segments (0, TPR0 , FPR0 , TPR0)
24 p <- p + segments (FPR0 , TPR0 , FPR0 , 1)
25 # Wilson Confidence Region of the signature
26 p <- p + segments (1- spec [2], sens [1], 1-spec [1], sens [1], col="red",
27 lty=" dashed ")
28 p <- p + segments (1- spec [2], sens [1], 1-spec [2], sens [2], col="red",
29 lty=" dashed ")
30 p <- p + segments (1- spec [1], sens [1], 1-spec [1], sens [2], col="red",
31 lty=" dashed ")
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32 p <- p + segments (1- spec [2], sens [2], 1-spec [1], sens [2], col="red",
33 lty=" dashed ")
34 p <- p + text(x=0.075 , y=TPR0 -0.03 ,
35 labels = paste("TPR0=",as. character (TPR0), sep=""))
36 p <- p + text(x=FPR0 +0.08 , y=0.97 ,
37 labels = paste("FPR0=",as. character (FPR0), sep=""))
38 p <- p + text(x=floor (FPR0*100/2)*0.01 ,
39 y=( TPR0+ ceiling ((1- TPR0)*100/2)* 0.01+0.05) ,
40 labels =" Acceptable ", cex =0.75)
41 p <- p + text(x=floor (FPR0*100/2)*0.01 ,
42 y=( TPR0+ ceiling ((1- TPR0)*100/2)*0.01) ,
43 labels ="Test Region ", cex =0.75)
44 p <- p + text(x=(1- specWilson [1])*1.2,
45 y= sensWilson [2] -( sensWilson [2]- sensWilson [1])/2*0.75 ,
46 labels =" Biomarker ", cex =0.90 , col="red")
47 p <- p + text(x=(1- specWilson [1])*1.2,
48 y= sensWilson [2] -( sensWilson [2]- sensWilson [1])/2*1.25 ,
49 labels =" Signature ", cex =0.90 , col="red")
50 return (p)
51 }

All these functions are employed to search for a PH signature with biomarkers as described by

the following lines of code, where TRAINING and VALIDATION are the discovery and testing

sets provided by the company, respectively. Results are gathered and explained in Chapter 6.
1 #### #### Univariate analysis and variable selection #### ####
2 miPresentData <- TRAINING # Discovery set
3 dim( miPresentData )
4 names( miPresentData )
5 miFeaturesData <- VALIDATION # Testing set
6 dim( miFeaturesData )
7 # Transformation of DANA into a binary variable
8 levels ( miPresentData $DANA)<- c("PH", "NO_PH", "PH", "PH", "PH", "PH",
9 "PH", "PH", "PH", "PH", "NO_PH")

10 summary ( miPresentData $DANA)
11 levels ( miFeaturesData $DANA)<- c("PH", "NO_PH", "PH", "PH", "PH", "PH",
12 "PH", "PH", "PH", "PH", "NO_PH")
13 summary ( miFeaturesData $DANA)
14 # Drop of not useful variables
15 miPresentData <- miPresentData [,-c(1:4 , 6:38 , 40:42)]
16 miFeaturesData <- miFeaturesData [,-c(1:4 , 6:38 , 40:42)]
17 # Missing values analysis
18 setDiscovery <- missingValues (data= miPresentData , label=" Discovery ")
19 setTesting <- missingValues (data= miFeaturesData , label=" Testing ")
20 # Remove variables with NA values in testing set
21 miPresentData <- miPresentData [,- setTesting ]
22 miFeaturesData <- miFeaturesData [,- setTesting ]
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23 dim( miPresentData )
24 dim( miFeaturesData )
25 # Omit missing values in discovery set
26 miPresentData <- na.omit( miPresentData )
27 summary ( miPresentData $DANA)
28 # Log - transformation of proBNP
29 miPresentData $ proBNP <- log( miPresentData $ proBNP )
30 miFeaturesData $ proBNP <- log( miFeaturesData $ proBNP )
31 # Shapiro -Wilk test
32 shapiroResults <- ShapiroWilkTest ( dataset = miPresentData [,-c(1)] ,
33 y= miPresentData $DANA)
34 head( shapiroResults )
35 # Rank -based regression and associated tests
36 rankBasedRes <- RankBasedRegression ( dataset = miPresentData ,
37 levels =c("PH","NO_PH"))
38 head( rankBasedRes )
39 # Volcano plots
40 volcanoPlot (rbr= rankBasedRes , pvalues =" Dispersion ")
41 volcanoPlot (rbr= rankBasedRes , pvalues =" Dispersion ", alpha = 0.01)
42 # Boxplots : up and down regulated biomarkers
43 up1 <- boxplotVariable (data= miPresentData [,c("DANA"," proBNP ")],
44 posLevel ="PH")
45 up2 <- boxplotVariable (data= miPresentData [,c("DANA","hsa.miR .101.5 p")],
46 posLevel ="PH")
47 down1 <- boxplotVariable (data= miPresentData [,c("DANA","hsa.let .7f.5p")],
48 posLevel ="PH")
49 down2 <- boxplotVariable (data= miPresentData [,c("DANA","hsa.miR .125a.5p")],
50 posLevel ="PH")
51 plot_grid(up1 , up2 , down1 , down2 , nrow =1)
52 # Pre - processing
53 preProc <- preProcessing ( discovery = miPresentData , test= miFeaturesData ,
54 corrCut =0.94)
55 miPresentData <- preProc [[1]]
56 miFeaturesData <- preProc [[2]]
57 #### #### Method selection #### ####
58 # Gradient Boosting
59 gbmGrid <- expand .grid(n.trees=c(70 ,100 ,140 ,150) , interaction .depth =(2:4) ,
60 shrinkage =c(0.1 ,0.01) , n. minobsinnode =10)
61 NestedCV ( dataset = miPresentData , method =’gbm ’, grid=gbmGrid , ninnerfolds =5)
62 NestedCV ( dataset = miPresentData , method =’gbm ’, grid=gbmGrid ,
63 ninnerfolds =10)
64 # Linear SVM
65 svmLinGrid <- expand .grid(C=c (0.001 ,0.005 ,0.01))
66 NestedCV ( dataset = miPresentData , method =’svmLinear ’, grid=svmLinGrid ,
67 ninnerfolds =5)
68 NestedCV ( dataset = miPresentData , method =’svmLinear ’, grid=svmLinGrid ,
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69 ninnerfolds =10)
70 # Radial SVM
71 svmRadialGrid <- expand .grid(sigma=c(0.001 ,0.005 ,0.01) ,
72 C=c (0.001 ,0.005 ,0.01 ,0.1))
73 NestedCV ( dataset = miPresentData , method =’svmRadial ’, grid= svmRadialGrid ,
74 ninnerfolds =5)
75 NestedCV ( dataset = miPresentData , method =’svmRadial ’, grid= svmRadialGrid ,
76 ninnerfolds =10)
77 # Polynomial SVM
78 svmPolyGrid <- expand .grid(C=c(0.001 ,0.005 ,0.01 ,0.1) , degree =c(2,3),
79 scale=c (0.001 ,0.05 ,0.01))
80 NestedCV ( dataset = miPresentData , method =’svmPoly ’, grid= svmPolyGrid ,
81 ninnerfolds =5)
82 NestedCV ( dataset = miPresentData , method =’svmPoly ’, grid= svmPolyGrid ,
83 ninnerfolds =10)
84 # Elastic -net GLM
85 glmnetGrid <- expand .grid(alpha=c(0 ,0.1 ,0.25 ,0.5 ,0.75 ,0.9 ,1) ,
86 lambda =c (0.1 ,0.01))
87 NestedCV ( dataset = miPresentData , method =’glmnet ’, grid=glmnetGrid ,
88 ninnerfolds =5)
89 NestedCV ( dataset = miPresentData , method =’glmnet ’, grid=glmnetGrid ,
90 ninnerfolds =10)
91 # Random Forest
92 rfGrid <- expand .grid(mtry=c(10 ,20 ,40) , splitrule =c(’gini ’,’extratrees ’),
93 min.node.size=c(1 ,3))
94 NestedCV ( dataset = miPresentData , method =’ranger ’, grid=rfGrid ,
95 ninnerfolds =5)
96 NestedCV ( dataset = miPresentData , method =’ranger ’, grid=rfGrid ,
97 ninnerfolds =10)
98 # k-NN
99 knnGrid <- expand .grid(k=c(46 ,51))

100 NestedCV ( dataset = miPresentData , method =’knn ’, grid=knnGrid ,
101 ninnerfolds =5)
102 NestedCV ( dataset = miPresentData , method =’knn ’, grid=knnGrid ,
103 ninnerfolds =10)
104 # Neural Network
105 nnetGrid <- expand .grid(decay =0.2 , size=c(3 ,5))
106 NestedCV ( dataset = miPresentData , method =’nnet ’, grid=nnetGrid ,
107 ninnerfolds =5)
108 NestedCV ( dataset = miPresentData , method =’nnet ’, grid=nnetGrid ,
109 ninnerfolds =10)
110 #### #### Model analysis #### ####
111 glmnetGrid <- expand .grid(alpha=seq (0 ,1 ,0.1) , lambda =c (0.1 ,0.05 ,0.01))
112 methodFit <- kCV( dataset = miPresentData , grid= glmnetGrid )
113 # Zoom for searching the optimal hyper - parameters
114 glmnetGrid <- expand .grid(alpha=seq (0.5 ,0.8 ,0.01) , lambda =0.01)
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115 methodFit <- kCV( dataset = miPresentData , grid= glmnetGrid )
116 methodFit <- methodFit [[2]]
117 methodFit $ results
118 # Probability cut -off points
119 cutoff <- cutoffs (data= miPresentData , methodFit , var="DANA",
120 levels =c("NO_PH","PH"))
121 Jmax <- cutoff [[1]]
122 Fbetamax <- cutoff [[2]]
123 # ROC curve with the two optimal probability thresholds
124 cutROC (data= miPresentData , Jmax , Fbetamax , methodFit , var="DANA",
125 levels =c("NO_PH","PH")
126 # Evaluation of the two optimal cut -off points on the discovery set:
127 # confusion matrix , evaluation metrics , and AUC score
128 confMatrix (data= miPresentData , thr=Jmax$threshold , methodFit ,
129 var="DANA", levels =c("NO_PH","PH"))
130 confMatrix (data= miPresentData , thr= Fbetamax $threshold , methodFit ,
131 var="DANA", levels =c("NO_PH","PH"))
132 #### #### Biomarker signature and model evaluation #### ####
133 # Test examples
134 testExample <- GLMNETexample ( dataset = miFeaturesData , methodFit ,
135 posLevel ="PH")
136 head( testExample )
137 # Evaluation on testing set: confusion metrics , evaluation metrics , and
138 # AUC score
139 confMatrix (data= miFeaturesData , thr=Jmax$threshold , methodFit , var="DANA",
140 levels =c("NO_PH","PH"))
141 # Accuracy on testing observations , separately by subgroup
142 predJtest <- as. factor ( ifelse ( predict (methodFit , newdata = miFeaturesData ,
143 type="prob")[,1]> Jmax$threshold , "PH", "NO_PH"))
144 acc <- groupAnalysis ( datasetStart =VALIDATION , datasetMod = miFeaturesData ,
145 pred= predJtest )
146 accuracy11 <- acc [[1]]
147 accuracy7 <- acc [[2]]
148 # Model coefficients
149 coeff <- coeffGLMNET (methodFit , levels = levels ( miPresentData $DANA),
150 posLevel ="PH")
151 importancePlot ( methodFit )
152 # 97.5% Wilson confidence intervals for sensitivity and specificity
153 sensWilson <- WilsonInterval (stat= sensitivity (predJtest ,
154 miFeaturesData $DANA), level =0.975 , n= summary (
155 miFeaturesData $DANA )[’PH’][[1]])
156 specWilson <- WilsonInterval (stat= specificity (predJtest ,
157 miFeaturesData $DANA), level =0.975 , n= summary (
158 miFeaturesData $DANA )[’NO_PH’][[1]])
159 # 95% Wilson confidence region
160 plotRegion (sens=sensWilson , spec=specWilson , TPR0 =0.73 , FPR0 =0.47)
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