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Abstract 
In recent studies, characterization of tensile anisotropic behavior of metallic materials used the following 

instruments such as Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) 

and Optical Microscopy (OM) to be able to observe the microstructure of the metals. SEM includes 

Electron Backscatter Diffraction (EBSD) and Energy Dispersive Spectroscopy (EDS). Additive 

Manufacturing (AM) involves processes that implement three-dimensional (3D) printing of complex 

geometries, layer by layer. Powder Bed Fusion (PBF) is an AM which uses thermal energy density to 

selectively melt and fuse powder particles in a powder bed. Laser powder bed fusion (LPBF) is one of 

the PBF process where the source of thermal energy is a laser power responsible to melt powder 

particles. LPBF introduces defects such as porosities, elongated columnar dendrites, melt pool on the 

microstructure of the metals. Researchers have investigated anisotropy caused by LPBF and quantified 

by tensile properties anisotropies (including elastic modulus E, yield strength σy, ultimate tensile strength 

UTS, elongation at failure A%). It resulted a correlation between printing direction and mechanical 

properties.  

Topic of the present research is In718, a material widely used for aerospace applications and often 

processed by means of AM, this material shows brittle tensile fracture (i.e., cleavages, transgranular 

and intergranular fractures) and ductile fracture (i.e., micro voids coalescence) when processed with 

AM. 

The aim of this thesis is to investigate the fracture behaviour of In718 specimens by means of fracture 

surface analysis. The in-situ scanning electron microscopy (SEM) and optical microscopy (OM) are used 

to characterize the microstructure of In718 specimens fracture surfaces from tensile tests and surfaces 

of cubic samples obtained by LPBF in AM. The tensile test operated at room temperature is performed 

on cylindrical specimens obtained with axis parallel and perpendicular to deposition plane. The results 

confirmed that the measured mechanical properties and fracture surface aspect are affected by 

deposition direction. The sources of anisotropies such as elongated grain, porosities, lack of fusion and 

melt pools within the In718 fracture surfaces were observed. OM enabled to observe the microstructure 

of In718 cubic samples in both deposition orientations for the grain morphology (i.e., elongated columnar 

dendrites, equiaxed dendrites) and its defects (such as, porosities, keyholes, lack of fusion, melt pools). 

Additionally, EDS by Energy Dispersive X-ray (EDX) analysis method is used to characterize the 

chemical composition of In718 superalloy cube samples and its powder particles. Ultimately, explicit 

dynamics finite element simulation is implemented to visualize the failure of cylindrical specimens of 

In718 in tensile test.  

 

Keywords:  
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anisotropy property, scanning electron microscope (SEM), EDS/EDX, optical microscopy (OM), FEM 
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 Introduction 

  Main Topic 
Superalloys consists of the austenitic fcc matrix phase γ and secondary phases. These 

secondary phases are carbides (MC, M23C6, M7C3), γʹ, γʺ, δ, η and unfavorable phases (σ, µ 

and laves) [1].  There are three groups of superalloys, namely nickel-base, iron-nickel-base and 

cobalt-base superalloys. 

Alloy 718 or Inconel 718 or In718 or UNS NO7718 is the nickel-base superalloy that can be 

operated at intermediate temperatures that vary between 450°C - 700°C and still maintains its 

resistance to oxidation and corrosion [2]. Also, In718 can be used in high temperatures of 816°C 

to the melting point of its alloys [1]. Due to incipient temperature of some alloys (e.g., Al) 

evaporation hinder the full capability of In718. In718 is strengthened by precipitation hardening 

of γʺ, Ni3(Nb, Ti, Al, tetragonal unit cell, space group:14/mmm)  and γʹ, N3(Ti, Al, Nb, cubic unit 

cell, space group: Pm-3m) [3] [4]. 

Additive manufacturing (AM) has enabled the production of products with complex geometries 

that are not easily processed by conventional processes (such as forging, casting and wrought).  

In718 is a hard material, therefore, to fabricate components in In718 by conventional processes 

is challenging. By means of additive manufacturing, alloy 718 is an advantageous choice 

because of its good weldability [2] and little surface finishing is required. 

Space and turbine engines industries have increased the use of this In718 superalloy due to 

the need of weight reduction and service operations at high temperatures [5].  

Inconel 718 is used significantly approximately 34% [6] for jet engines (refer Figure 1-2) in 

aerospace industries, gas turbines and steam generators in nuclear power plants, where 

elevated temperatures are prevailing [7].  
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Also, In718 can be used in cryogenic applications [1]. Main advantages of In718 relates to its 

high strength, fatigue capability, rupture strength, corrosion and creep resistance [5]. 

 

The microstructure and mechanical properties anisotropies depend on grain texture, grain 

morphology, phases formation, melt pool and porosity [9]. Material crystallography textures, 

material phases and residual stresses are characterized by electron backscattering diffraction 

(EBSD), transmission electron microscopy (TEM) [10] and X-ray Powder Diffraction (XRD) [11] 

respectively. In this study only a brief description will be provided about these key 

characterization instruments. 

 

 

 

Figure 1-1:CF6-6 cutaway - Jet engine [8] 
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This thesis presents the characterization of the tensile anisotropy of LPBF In718 by analysing 

fracture mechanism behavior in which the microstructures of In718 superalloy will be illustrated 

and explained. Specimens will be characterized by tensile test, SEM, EDS/EDX and OM [12]. 

Hence the microstructure anisotropies (columnar dendrites, equiaxed dendrite, porosities, melt 

pool) and tensile anisotropies (modulus, yield strength, UTS, elongation) are reported here. 
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 Aim  
Aim of this thesis is to investigate the fracture behaviour of In718 specimens by means of 

fracture surface analysis 

In particular tensile specimens obtained in different deposition directions will be tested by 

means of static and fatigue tests and their fracture surfaces will be investigated by means of 

different analysis techniques. 

 

The results will be compared with literature. 
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 Organization of the thesis  
Two types of bulk components were produced with In718 powder particles which are cylindrical 

specimens and cubes. Specimens were obtained with the axis parallel and perpendicular to 

deposition direction. Further processing, by lathe, mill and power saw, was used to obtain the 

desired designed shapes and sizes [refer Table 4-2] and Appendix A and B. 

The cylindrical specimens were used in tensile testing machine to obtain the fracture surfaces 

that were examined by scanning electron microscope (SEM) for fracture morphology and the 

mechanical anisotropies properties (modulus, yield stress, UTS, Elongation) was evaluated 

from tensile data. However, the cubes were prepared for metallographic analysis in both optical 

microscopy (OM), SEM and Energy Dispersive Spectrometer (EDS) by Energy Dispersive X-

ray (EDX) analysis method. 

In brief the thesis will address the following topics: 

Section 1: Introduction 

Section 2: State of the art 

Section 3: Problem statement and research objectives 

Section 4: Results and discussions 

Section 5: Conclusion and future work 

Section 6: Finite element method (FEM) analysis 
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 Inconel 718   
Being of nickel base superalloy, its incipient melting temperatures are less than 1204°C, are a 

function of chemical composition and a choice PBF in AM [1].  The pure nickel has a melting 

temperature of 1453°C. According to Table 1-1, elements can be modified by reducing or 

increasing or adding new elements according to the designer to achieve certain mechanical 

properties. For example, addition of Yttria, rhenium, hafnium can alter the microstructure of 

In718. 

1.4.1 Chemical composition 

According to SAE, Inconel 718 [13] has the following elements shown in table 1-1.  

Table 1-1: SAE specification for Inconel 718 chemical composition 

 

In our work, the chemical composition has been modified refer table 4-1, but around the 

indicated range in table 1-1. 

1.4.2 Properties 

Pure nickel has a density of 8900 kg/m3 while the nickel-base superalloys densities range from 

7800 to 8900 kg/m3. Therefore, the density reducing elements (such as aluminium, titanium, 

chromium) and increasing elements (i.e., tungsten, rhenium, tantalum) can cause anisotropies 

in both microstructures and tensile properties [1]. 

Superalloys have a modulus of elasticity of approximately 205 GPa. Directional grain or crystal 

orientation can give result in a moduli range between 124 to 310 GPa [1]. In the result section, 

it can be proved that island scan strategy in parallel deposition plane the elastic modulus higher 

than the perpendicular deposition plane as shown in section 5.2.3. 
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1.4.3 Inconel 718 Powder 

According to Gruber et al., [14], by laser diffraction method In718 powder particles 

morphologies are categorized into four states as virgin(V), used(U), overflow(O) and spatter(S). 

 
Figure 1-2: SEM characterization of states of In718 powder particles  

(a) virgin, (b) used, (c) overflow, (d) spatter [14] 

As observed in Figure 1-1, that virgin configuration has particles sizes less than 10 µm with 

highest number of particles with satellites (1) morphologies and lower number of non-spherical 

powders (2) which can be due gas atomized processing defects. The used, overflow and spatter 

(has PSD of 10–45 µm) configuration particles are opposite to the characteristics of the virgin 

configuration [14]. 

Corresponding powder SEM images were imported to binarized images and Image J analysis 

software analysis for particle size and shape distribution (PSD) [14]. In another paper [7], 

demonstrated that the PSD of In718 powder used in PBF ranged between 15 to 63 μm. 

In our work, we will adopt this method where high magnification SEM images with Image J were 

used to analyse the In718 powder morphologies and sizes as discussed in section 5.1. 

According to Spierings et al., [7] [15], flowability of powder particles is measured by a hall funnel 

flow meter, a bulk density by EV2 volumeter, a tapped density by ETD 1020 automatic tester, 

an angle of repose by Hall funnel BEP2 Flowability Tester and the Hausner coefficient 

computed as the ratio of the free bulk density to the tapped density. 

1 satellite 
2 non spherical powders 
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 Additive Manufacturing 
ISO/ASTM defines AM as “the process of joining materials to make parts from 3D model data, 

usually layer upon layer as opposed to subtractive (e.g., lathe turning, milling) and formative 

(e.g., forging, casting, wrought) manufacturing methodologies” [refer figure 1-3] [16].  

 

High performance materials such as In718 which take advantage of SLM process due to its 

capability to operate at high temperatures so the laser power will fuse its powder particles 

without affecting its final crystal structure.  As illustrated in figure 1-4, part orientation either in 

deposition plane or perpendicular to it is the key to understand the anisotropies included in 

each deposition orientation. Then, machine preparation can influence the outcome of 

microstructure such as defects. In the building process many things are involved, for example 

laser power, scan strategy, quality of powder particles and layer thickness [18] [16].  In post-

processing, involves powder removal and heat treatment. The latter, heat is required for 

annealing (that is stress relieving, solution treatment and homogenization) to remove induced 

stresses during LPBF in AM, to dissolve γʹ , γʺ , δ, and laves phases; to close the pores; and to 

produce more γʺ and γʹ phases for hardening of In718 [18]. 

Figure 1-3: SLM process chain [17] 
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One of the benefits of AM is to produce complex shapes [16]. While the challenges of AM are 

reproducibility due to thermal gradient and solidification rates, reliability, anisotropy of 

mechanical properties and low build-up rates of the processes [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4: Schematic of LPBF process [19] 
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1.5.1 Selective laser Melting  

Selective laser melting (SLM) is a powder bed fusion (PBF) technology [17] in which according 

to scan strategy (e.g. island) powder particles are melted and fused with a high laser energy to 

form a part in a powder bed [refer figure 1-5] [21] [22] [23]. 

Also, SLM is known as Laser Beam Melting (LBM), Laser Powder Bed Fusion (LPBF), Laser 

Metal Fusion (LMF), Laser Cusing or Direct Metal Laser Sintering (DMLS) [17].  

Figure 1-5 describes LPBF process in which virgin powder particles from powder reservoir are 

fed into the building platform by recoater arm that moves back and forth. Laser energy is 

selectively directed to the powder particles in the building platform to melt the first layer then 

the building platform goes down. Again, the recoater arm spread again the powder particles, in 

this second time the laser melts the powder particles to fuse this second layer upon the first 

one. So, the process goes on until the desired shape is obtained. 

 

 

LPBF is adopted for production of our experimental In718 superalloys specimens. 

 

 

 

Figure 1-5: Working principle of LPBF processing chamber with main 
components [21] 
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1.5.2 LPBF Process parameters 

LPBF processing  parameters emphasize on controlling parameters, such as laser power (𝑃𝑃 =

𝑃𝑃𝑣𝑣), scan speed (𝑣𝑣), layer thickness (𝑡𝑡), scan spacing (ℎ)  and scan strategies [16] [23].  

In other studies, energy density (𝐸𝐸𝑑𝑑) parameter with a unit of ( 𝐽𝐽 𝑚𝑚𝑚𝑚2⁄ ) without layer thickness 

is used, given by the following equation: 

𝐸𝐸𝑑𝑑 =
𝑃𝑃(𝑊𝑊)

𝑣𝑣(𝑚𝑚𝑚𝑚 𝑠𝑠−1) × ℎ(𝑚𝑚𝑚𝑚)
… … … … … … … … … … … … … … … … .1.1 

Hatch distance (𝑎𝑎1) equation is given by: 

𝐴𝐴1 = 𝑎𝑎1 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝜇𝜇𝜇𝜇)

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ (150 𝜇𝜇𝜇𝜇)
… … … … … … … . … … … … .1.2 

These parameters are directly linked with material properties, such as porosity, strength, 

surface roughness [24].  Hence, in this study, we are using volumetric energy density ( 𝐽𝐽 𝑚𝑚𝑚𝑚3⁄ ) 

equation [25] written as: 

𝐸𝐸𝑑𝑑 =
𝑃𝑃

𝑣𝑣 × 𝑡𝑡 × ℎ
… … … … … … … … … … … … … … … … … … … . . . .1.3 

In their work [25], the authors used layer thickness of 20 𝜇𝜇𝜇𝜇 while in our work a layer thickness 

of 30 𝜇𝜇𝜇𝜇 is used. All layers thicknesses are constant. 

1.5.3 Scan strategy 

The scan strategy is the path in which the laser energy density melt powder particles in a PBF 

to create a layer upon layer at a time. Example of scanning strategies are shown in Figure 1-6.  

 

 

Figure 1-6: Figure: types of scan strategies (a) unidirectional  (b) bi-
directional (c) island scanning (d) spot melting (e)spot melting contours 

with snaking fill (f) line melting contours with snaking fill [26] 
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Figure 1-7 illustrates the  types of scan paths which are contour path and fill path found in LPBF. 

The former is used to fill the edge of the sample while latter melt the powder particles of the 

sample [27]. 

 

 

Scanning strategies with short scanning vectors improve the process stability (refer figure1-8), 

reduce the porosity and lower the residual stresses [28]. In other paper, it was explained that 

scan strategies has effect on the texture  component and texture intensity [29].  

It has been studied that LPBF operation window as shown in figure 1-8 (in red line), is important 

to avoid keyholes, lack of fusion, porosities and droplets [30]. 

 

For example, in case of island strategy shown in figure [1-6 c], no interaction with tranverse 

grain is present and then the structure is similar to many single crystals grouped together (see 

micrographs in section 5.3.3). The idea is that when this layer has independent single crystals 

in an island coupled with low modulus in that plane, it can result in 3 to 5 times improvement of 

rupture life [31].  

Figure 1-7: Two types of scan paths in LPBF [27] 

Figure 1-8:Laser power versus scan speed where Processing window is 
shown in red lines [27] 
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It has been studied that columnar dendrites grow parallel to building direction of the part [32]. 

This means that elongation of grains can cause microstructure anisotropies. However, the 

selection of the correct scan strategy will reduce the heat build up and large island strategy 

starting with 5 mm x 5 mm lowers residual stresses and no visible effects on the part density 

and tensile properties anisotropies [33]. 

Therefore, island scan strategy of 5 mm x 5 mm for a cube specimen of 20 mm x 20 mm x 20 

mm, will be adopted for our work [34]. 
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1.5.4  AM Sample orientations 

ASTM/ISO design rules [35] requirements for cylindrically and symmetric samples are 
reported in figure 1-9.  

 

Part build orientation is the key to obtain the required mechanical properties of components 

[36]. For example, ZX build orientation specimens show lower yield strength compared to XY 

build orientation specimens.  

In this work ZX plane will be used throughout this text meaning that Z axis build direction is  

longer than X axis and  the same definition applies for XY plane. And vertical and hozontal build 

directions will be termed as perpendicular and parallel deposition build directions in that order.   

Figure 1-9: Orientation designation for mechanical testing of AM 
materials 
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 Components post processing 
This step involves (refer Figure 1-4) both powder removal/supports and heat treatment. 

In718 requires heat treatment for residual stress removal. Figure 1-10, TTT illustrates 

strengthen precipitation of the material is under the guidelines of AMS 5662, 5663 and 5664 

[37] [38] in three steps. Also, heat treatment is used to reduce mechanical anistropy and to 

produce more isotropic materials or to take advantage of anistropy for microstructure sensitive 

design. 

 

Three steps heat treatment as shown in Figure1-10: 1) is solution treatment, 2) is ageing 1 and 

3) is ageing 2. 

AMS 2773E has described the following heat treatment steps by considering homogenization, 

solution heat treatment, stress relieving, stabilization heat treatment, precipitation heat 

treatment, air cooling, rapid air cooling and thickness of the component. 

 
According to Caliari et al., [39], heat treatment was performed in three steps (refer to Figure1-

11). At 1095°C/1h residual stress removal is obtained. Then, at 955°C/1 h solid solution 

(carbides and intermetallic phase are fused into γ matrix, boundary segregation is removed) is 

obtained. The last two ageing steps consist in: ageing 1 (𝛾𝛾′precipitates at 720°C formation) and 

ageing 2 (precipitates of 𝛾𝛾′′ at 620°C formation). 

  

Figure 1-10: Transformation time temperature (TTT) diagram of In718 
superalloys [37] 



Components post processing Page 16 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-11: Stages of heat treatment for In718 superalloys [39] 
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1.6.1 Temperature gradient and solidification rate control in AM 

Figure 1-12 b, illustrates the solidification rate (R) and temperature gradient (G) variables, which 

are very important during the AM. An adequate control of these two variables (G and R) results 

in the reduction of anisotropies sources in both microstructure (porosities, melt pools, elongated 

grains, crystallographic texture) and mechanical properties (E, σy, UTS, El). 

Heat input (𝑄𝑄𝑠𝑠) is from laser power (𝑃𝑃𝑣𝑣) for melting powders on the PBF, hence it is represented 

by the following equation [40] [41]: 

𝑄𝑄𝑠𝑠 =
𝑓𝑓 ∙ 𝑃𝑃𝑣𝑣

𝜋𝜋 ∙ 𝑑𝑑2 ∙ ℎ
exp �−3

𝑅𝑅2

𝑑𝑑2
� �1 −

ℎ
𝑧𝑧
�… … … … … … … … 1.4 

Where:  

QS heat input 

𝑃𝑃𝑣𝑣 absorbed laser power 

f factor of heat distribution 

d beam radius 

h depth of the energy source 

R radial distance from the laser beam center 

z current depth in the thickness direction 
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Figure 1-12 a, shows the relation between cooling rates and microstructure: lower cooling rate 

leads to columnar dendrites while faster cooling results in equiaxed dendrites.  

Ongoing research has found that elongated grains results in anisotropic tensile properties and 

microstructure anisotropic. Grain morphology (figure 1-12 b) is given as a ratio of thermal 

gradient, G to the solidification rate, R  [42] [43]. 

  

 

  

Figure 1-12: (a) schematic curve to show relationship between heat 
input, grain growth  and cooling of melt pool (b) graph showing 

solidification rate versus temperature gradient [42] 
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 Types of fracture in monotonic tensile test 
Typical tensile fractures are classified into two groups: brittle and ductile fractures. Brittle 

fracture can be recognized in different forms such as cleavage fracture [44] (figure 1-13 e) 

where red mark and arrow indicate crack initiation point, transgranular (figure 1-13 a) and 

intergranular (figure 1-13 b). Ductile fracture can be recognized by the formation of micro voids 

coalescence (figure 1-13 d) [45] [46].  In our study, cleavage has been mostly observed in all 

fractures because the tensile test was performed at room temperature. It can be theorized that, 

as shown in figure 1-13 c, at room temperatures (15-21° C), cleavages and intergranular 

fractures are prevalent because these fractures absorb less energy than ductile one. 

 

 

 

 

a) 

b) 
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Figure 1-13: (a) brittle fracture due to transgranular fracture, (b) brittle fracture due to 
intergranular fracture, (c) temperature versus energy absorbed during fracture, (d) 

ductile fracture due to micro voids formation (e) cleavage fracture [45] [46] 

c) 
d) 

e)
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 In718 microstructure defects 
By examining the microstructure samples, the quality of parts produced by LPBF can be 

assessed. In most cases, microstructure cracks and porosities (voids) are characterized by 

using OM, SEM, EBSD and TEM. 

Carter, et al. [47] defined pores are defects of 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 > 500 𝜇𝜇𝑚𝑚2 (∅25 𝜇𝜇𝜇𝜇). However, cracks 

(refer to figure 1-14 a) are measured by Feret diameter and are termed as the smaller aspect 

ratio defects [47] along the build direction. According to Carter [47], large voids with partially 

melted powder particles occurs in low energy density configuration (refer figure 1-14 b). 

   

  

Figure 1-14: Characterization by BSE SEM showing (a) cracks (b) 
porosities [47] 

a) b) 
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 State of the art 

   LPBF 
In [9], Laser Powder bed fusion, as shown in Figure 2-1 a, was used to manufacture cylindrical 

rod specimens in three orientations namely perpendicular (ZX), parallel (XY) and inclined at 

45° deposition planes as shown in Figure 2-1 (b). The laser power and scan strategies were 

not stated. As one of the important machines, PBF is widely used in Powder Metallurgy (P/M) 

to manufacture complex and hard material which cannot be manufactured by conventional 

processes such as casting, forging and wrought processes.   

The key parameters in this LPBF process are laser power, scan speed and powder sizes etc. 

in order produce the required product in this case Inconel 718 superalloy. 

In718 superalloy has good welding properties, and this is the reason to be used by AM [2]. 

Cylindrical specimens (Figure 2-1b) were used in tensile testing in order to obtain their yield 

strength, ultimate tensile strength and elongation at fracture. 

 

(a)                                                                (b) 

 

 

 

 

 

Figure 2-1: (a) Laser Powder Bed Fusion(L-PBF), (b) Cylindrical Dog 
bones at different build orientations  Horizontal (XY) build, and vertical 

orientation build (ZX) and at an angle of 45° [9] 



State of the art Page 23 

 

Figure 2-2 shows the specimens obtained with laser power of 950 W and 250 W used during 

manufacturing of cube specimens [9]. Later, these workpieces were etched by Kalling’s reagent 

to reveal their microstructures under OM. No scan strategy was explained. 

 

 Samples in Figure 2-1 and Figure 2-2 are different than the ones of our work because of the 

difference in chemical composition, crystal texture and laser operating parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2: 3D cubes of 2 mm3 showing the top view (XY), right 
view(YZ), front view(ZX) microstructures processed power of  (a) 950 W 

and (b) 250 W at  a magnification of 500 µm [9] 
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 Anisotropic Mechanical properties  
Causes of tensile anistropy properties (including elastic modulus (E), yield strength (𝜎𝜎𝑦𝑦 ), 

ultimate tensile strength (UTS), elongation (𝐸𝐸𝑙𝑙) ) are elongated grains and texture [48] [49]. In 

Table 2-1 the characterization methods to observe and quantify these tensile anisotropies are 

summarized.  

Table 2-1: Overview of anisotropic causes 
Causes of anistropy  Main tensile property 

anisotropy 
Minor tensile property 
anisotropy 

characterization 
instruments  

Cystal texture E, 𝜎𝜎𝑦𝑦 UTS, El EBSD,XRD 
Elongated columnar 
dendrites 

 𝜎𝜎𝑦𝑦 OM, SEM, EBSD 

phases 𝐸𝐸𝑙𝑙   OM,SEM,EDS,EBSD,TEM 
Lack of fusion defects 𝐸𝐸𝑙𝑙   OM, X-ray 

microtomogrphy 
Melt pools 𝐸𝐸𝑙𝑙   OM, SEM 

 

 

2.2.1 Tensile property anisotropy:  

𝐸𝐸𝑙𝑙  anisotropy is due to elongated columnar dendrites, undesirable phases, lack of fusion, 

porosities and melt pools. While 𝜎𝜎𝑦𝑦, UTS and E anisotropies are caused by the crystollographic 

texture. 

 

Tensile properties anisotropies can be quantified by equation 1.5 [50]: 

𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑧𝑧
𝜎𝜎𝑥𝑥

× 100% … … … … … … … … … … . … … … … .1.5 

In our work, 𝜎𝜎𝑥𝑥 means UTS or 𝜎𝜎𝑦𝑦 in X direction while 𝜎𝜎𝑧𝑧 means UTS or 𝜎𝜎𝑦𝑦 in Z direction; same 

applied for the E and 𝐸𝐸𝑙𝑙 . 
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2.2.2 AM of  In718 tensile properties anisotropies from literature review 

Table 2-2: Summary of AM In718 tensile properties anisotropies 
Machine 
type 

Post 
processing 

Speciment 
orientation 

E 
 
(MPa) 

Yield 
strenth  
 
(MPa) 

Ultimate 
tensile 
strength 
 
 (MPa) 

Elongation 
 
 
(%) 

Reference 

SLM HT XY - 1227±1 1447±10 10.1±0.6  
[18] Z 1136±16 1357±5 13.6±.2 

AS XY - 816±24 1085±11 19.1±0.7 
Z 737±4 1010±10 20.6±2.1 

EOS M280 HT XY - 1068 1344 27 [51] 
  Z 1034 1309 27  
EOS M280  AS SS XY - 562.22 720  [29] 

SS X 621.46 821 
- HT Flat built(0°)  1295 1484  [52] 

Upright(90°) 1240 1398 
SLM 
280HL 

AS - - 569 - 646  851 - 1002 9.8-31.7 [53] 
HT - 1160  1350  17,6 

        
        
Laser/wire HT - - 1079 1314 20.4 [54] 
DLD HT - - 1034 1276 12 [55] 
DLD HT   1097.6 1321 9.8 [56] 
EBF3 HT XY 174 986 1114  

- 
[57] 

YX 192 998 1162 
AS XY 138 655 978 

YX 194 699 936 
EBF3 AS XY 159 580 910 22 [58] 
Laser HT - - 1133 1240 9 [59] 

AS 590 845 11 
DLD HT Z - 1257 1436 - [60] 

AS 650 1000 
SMD AS XY - 473±6 828±8 28±2 [61] 

 

The chemical composition from the literature review in Table 2-2 is different from our samples. 

This means that there is difference in order of magnitude results as shown in table 5-1. 

According to Matthew., et al [1], varying microstructures will result in varying test results (such 

as yield strength, UTS, creep strength, stress-rupture strength, fatigue strength, dynamic 

modulus, crack growth rates, fracture toughness thermal expansion coefficient and density). 

Therefore, varying microstructures can be caused by a number of reasons such as sample 

deposition plane (XY or ZX), chemical composition, post processing, quality of powder (virgin, 

used, overflow, spatter), laser power, temperature and so on. 
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 Anisotropic microstructures:  
Main causes of microstructure anisotropies are crystollographic texture, lack of fusion defects, 

elongated grains, melt pools, and residual stresses. A texture is characterized by a component 

(crystal orientation) and its intensity (multiple of uniform distribution or m.u.d.). Wang Y., et al, 

showed nickel base superalloy In718 texture control with laser power and laser power profile 

shape [62]. 

2.3.1 Electron backscattering deffraction (EBSD) 

Microstructure texture or cystallographic texture are characterized by SEM-EBSD. This is very 

important technique to observe the appearance of the grain growth in In718 superalloys. 

Helmer et. al.  analysed the appearance of texture in perpendicular deposition plane and it 

resulted that the elongation of texture can be highlighted  as in figure 2-3 in red colour [36]. 

Elongated grain are obtained with 𝐸𝐸𝑑𝑑=1.8 Jmm-2 and eqiaxed grains are produced at 𝐸𝐸𝑑𝑑=1.9 

Jmm-2. 

 

Figure 2-4,  SEM- EBSD shows microstructure of parallel deposition orientation where an island 

scan strategy is seen and can be compared to figure 5-10 a.  Red color shows elongated 

columnar grain across the microstructure [32]. 

 

Figure 2-3: EBSD orientation maps in longitudinal section to ZX 
orientation (a) elongated columnar grains (b) equiaxed grains 

Figure 2-4: IPF EBSD map showing the effect of the scan pattern on 
grain orientation [32] 
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2.3.2 Transmission Electron Microscope (TEM) 

TEM is used to characterize the phases of alloys as shown in figure 2-5. In this case, what 

phases (for example laves and γ matrix [63]) are in the material and other precipitates 

(𝛾𝛾′, 𝛾𝛾′′𝜎𝜎, 𝛿𝛿, 𝜇𝜇,) can be observed. 

 

 

  

 

 

Figure 2-5: TEM micrographs with SAED patterns of Laves phases [63] 
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2.3.3 Scanning Electron Microscope (SEM) 

2.3.3.1  Fractography analysis 

 

Popov et al., [53], SEM micrograph in Figure 2-6 a and b, shows a ductile transgranular fracture 

due to the micro voids coalescence and dimples. But, in figure 2-6 b, illustrates the HT sample 

with brittle undulate facet (yellow ellipse) surrounded by large number of micropores which are 

ductile.  

 

 

 

 

 

 

 

 

 

Figure 2-6: Fractography surfaces of In718 superalloys samples (a) AS 
sample (b) HT sample [53] 
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2.3.3.2  Microstructures analysis 
Figure 2-7 a, OM illustrates AS perpendicular orientation where elongated columnar dendrites 

grows parallel to the heat input. A transverse section shown in figure 2-7 b, shows melt pool 

with columnar dendrites [53].  

   

 
After ageing the microstructure of In718 as shown in Figure 2-8, uniformly distributed 

precipitates are achieved [53] to both the longitudinal and transverse sections.  

   
Figure 2-8: In718 superalloys samples after homogenization + aging produced by SLM:  

a) longitudinal section, b) transverse section [53] 
 

  

Figure 2-7: In718 superalloys samples AS produced by 
SLM: a) longitudinal section, b) transverse section [53] 

 

a) b) 

a) b) 



Problem and research objective  Page 30 

 

 Problem and research objective 
Motivation question to be investigated: 

• To identify the main sources of tensile and microstructures anisotropies in Inconel 718 

superalloys samples produced by Laser powder bed fusion (LPBF) in AM. 

Specific Objectives: 

• Perform tensile test on cylindrical samples to obtain the fracture surfaces. 

• Analyze AS cylindrical specimens fracture surface on SEM for perpendicular (ZX) 

sample. Note for AS parallel (XY) sample is not available. 

• Analyze HT- cylindrical rod specimen fracture surface on SEM for parallel (XY) 

orientation samples. Note for HT perpendicular (ZX) sample is not available. 

• Analyze the AS cubic microstructures on Optical Microscopy (OM) for both 

specimens in perpendicular (ZX) and parallel (XY) orientations 

• Analyze the HT-cubic microstructures on Optical Microscopy (OM) for both 

specimens in perpendicular (ZX) and parallel (XY) orientations 
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 Materials and methods 

 Experimental plan 

4.1.1 Powder morphologies and size distribution 

                                     

                           

 

                

 

4.1.2 Data acquisition to compute yield strength, UTS, elongation 

 

                                                             

 

 

 

 

 

 

 

 

In718 powder SEM SEM analysis 
Powder 
morphologies 

 

Image J 
Origin Pro 

Fractured 
specimen  

Stress,strain curves In718 specimen 

F 
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4.1.3 Analyse the anisotropic microstructures of fractured surfaces and defects 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matlab  

Microstructructure 

at high magnification  

Microstructructure 

at high magnification  
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4.1.4 In718 superalloy cubes: analysing the anisotropic microstructures and chemical 
composition 

 

 

 

                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EDS/EDX  

SEM  
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 Specimens 

4.2.1 Chemical compositions 

The chemical composition of In718 was obtained from Sophia High Tech s.r.l, table 4-1 and 

were later compared by EDS map as explained in section 5.5. 

Elements  Name  Units  Min  Max  Result 

C Carbon Weight % 0 .08 .03 

Fe Iron Weight % bal 
 

Bal (= 18.924) 

N Nitrogen Weight % 0 .03 .01 

O Oxygen Weight % 0 .03 .01 

Cu Copper Weight % 0 .3 <.1 

B Boron Weight % 0 .006 <.001 

Co Cobalt Weight % 0 1 .1 

Al Aluminium Weight % .2 .8 .53 

Ti Titanium Weight % .65 1.15 1.01 

Nb + Ta Niobium + Tantalum Weight % 4.75 5.50 4.92 

Mo Molybdenum Weight % 2.8 3.3 3.10 

Ni Nickel Weight % 50 55 52.30 

Cr Chromium Weight % 17 21 18.9 

S Sulphur Weight % 0 .015 .001 

P Phosphorus Weight % 0 .015 .004 

Si Silicon Weight % 0 .35 .04 

Mn Manganese Weight % 0 .35 .02 

Total 
 

81.076+ Bal (18.924) 

 

Nickel as the main alloying element has 52.3% by weight followed by Iron and chromium at 

18.92% and 18.9% by weight respectively. This is the reason is called nickel-base superalloy 

because % weight of nickel is  more than half of other alloying elements. 

 

 

 

 

 

Table 4-1: Chemical composition of In718 superalloy 



Materials and methods  Page 35 

 

4.2.2 Specimen orientations and geometry  

Our specimens were produced both in ZX and XY orientations refer table 4-2. Refer for detail 

views in appendix A and B. 

Specimens  ID Post processing 

Cylindrical: 
Parallel orientation(XY) 

Specimen 6 - HT 

Specimen 7 - HT 

Cylindrical: 
Perpendicular orientation(ZX) 

Specimen 1 AS - 

Specimen 2 AS - 

Cube:  
perpendicular orientation(ZX) 

A2.1 AS  

A2.2  HT 

Cube:  
parallel orientation(XY) 

B2.1 AS  

B2.2  HT 

 

 

4.2.3 Laser Process parameters 

The following data (table 4-3) were obtained from The Sophia High Tech s.r.l and Politecnico 

di Torino (DIMEAS) that were used during the production of our In718 superalloy specimens. 

 
 
 
Body 

Layer thickness[mm] 0.03 
Spot size[mm] 0.15 
Trace width [mm] 0.105 
Overlap factor A1 0.7 
Power[W] 192 
Body velocity[mm/s] 600 

 
 
Contour 

Power[W] 192 
Spot size [mm] 0.15 
Beam compensation [mm] 0.075 
Contour velocity[mm/s] 1600 
Hatch zone boarder [mm] 0.065 

 

 

 

Table 4-2: Specimens Geometry and orientation 

Table 4-3: LPBF Processing parameters for In718 superalloys 



Materials and methods  Page 36 

 

4.2.4 Heat treatment of In718 samples 

According to Mostafa, et al., [49] as shown in Figure 4-1, Time-Temperature-Transformation 

(TTT) has been adopted to our work. 

The specimens underwent stress relief 1050 °C/ 1h and then solution annealead approximately 

950 °C/ 1 hours and air cooled (AC). Next, the specimens underwent ageing 1 starting  at 

720°C/8h/FC and at last ageing 2 was applied at 620°C/8 hours/AC.  

According to AMS 2773E the material must undergo homegenezation, solution heat treatment 

and ageing. The first ageing is the formation of 𝛾𝛾′ precipitates on the 𝛾𝛾 fcc matrix and the 

second ageing is to cover 𝛾𝛾′  with precipitates of 𝛾𝛾′′  hence strenghtened hardened by 

precipitates.  

 

 

 

 

 

Figure 4-1: TTT diagram for In718 [49] 
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 Equipments  
 

4.3.1 Tensile test machine 

  

 

 

 

 

 

 

 

 

 

Figure 4-2: Tensile test machine, type Zwick mod 50kN (DIMEAS) 
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4.3.2 Polishing machine 

 

 

 

Figure 4-3: Metallographic preparation machines (a) specimen mold 
machine (b) polishing machine (DIMEAS) (c) Polishing machine (DISAT) 
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4.3.3 Optical microscopy 

 

 

4.3.4  SEM 

   

 

 

Figure 4-4: Optical microscopy (DISAT) 

Figure 4-5: Scanning Electron Microscopy (DIMEAS) 



Materials and methods  Page 40 

 

 Tensile test and characterization of In718 samples 

4.4.1  Tensile test procedure 

In order to reveal the fracture surface of In718 cylindrical specimens, a Zwick mod 50kN tensile 

testing machine (refer figure 4-2) was perfomed at room temperature. Table 4-4, describes the 

tensile test settings that were used. The AS perpendicular and HT parallel deposition build 

specimens with a diameter of 6.249 mm and 6.24 were tested respectively. The strain rate was 

2 mm/min until the fracture occurred. 

Test location Politecnico di Torino Politecnico di Torino 
File name inconel_AD_P2 inconel_AD_P6 
Testing equipment Zwick mod 50kN Zwick mod 50kN 
Speed [mm/min] 2 2 
Diameter [mm] 6.249 6.24 
Area [mm2] 30.67 30.58 
Preload [MPa] 5 5 
L0 gauge length [mm] 20 20 
Deposition direction  Z XY 
TT NO YES 
Test Number 2 1 

 

4.4.2 Acquired data 

After the completion of the tensile test the tensile strain (%) and stress (MPa) data were 

collected. These two parameters will be used for computation of E, 𝑅𝑅𝑅𝑅0.2, UTS, 𝐸𝐸𝑙𝑙. 

 

4.4.3  Tensile test parameters:  

The following parameters were computed  E, 𝑅𝑅𝑅𝑅0.2, UTS, 𝐸𝐸𝑙𝑙. For 0.2% offset strain the following 

equation were used: 
𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏… … … … … … … … … 4.1 

𝜎𝜎 = 𝛦𝛦𝛦𝛦 + 𝑏𝑏… … … … … … … … . .4.2 

𝑥𝑥 = −
𝑏𝑏
𝑚𝑚

… … … … … … … … … … 4.3 

These parameters from equation 4.1 to 4.3 were used to plot the engineering strain versus 

engineering stress, the result graphs are in section 4.2. 

 

Table 4-4: Tensile test parameters 
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4.4.4  SEM: Fracture surface analysis 

   
 
 
 
Procedures:  
1 Wear gloves before touching anything 
2 Vernier caliper: Measure the specimen size in relation to setting the beam height 
3 Dust remover: Spray on the specimen and SEM vice then mount the vice to SEM chamber 
4 Secure the vice onto the SEM chamber with screw driver 
5 Close the SEM ready for visualizing the fracture surfaces/cube and In718 samples 
6 Analyse the fracture surface by SEM software and save the images results 
 
 
 
 
 
 
 
 

SEM vice with broken In718 samples Inside SEM chamber 
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4.4.5  OM : metallography preparation 

  

a Kalling’s chemical bottles 
b Kalling’s reagent (2g CuCl2, 40 ml HCl, 40-80 ml Ethanol) 
c Magnetic mixer 
d Water to clean the cube surface after etching 
e Cube specimens in ZX and XY under chemical etching by Kalling’s 

 
 
 
 
Procedures: 
1 Prepare chemical etchant  
2 Chemical attack the cube surface for 5 seconds 
   (Otherwise, the chemical will burn the surface and start the whole process of polishing) 
3 washes with clean water 
4 dry the specimen before place on OM 
5 place the etched surface to observe/characterize the microstructure  
6 analyse the microstructure and save the images results 

 

 

a 

e 

d 

b 

c 
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4.4.6 EDS maps : Chemical analysis on the microstructure and In718 powder 

  

 
 
 
 
 
 
 
a Double side sole tape 
b In718 powder particles 
c Cube specimens 
d Cube specimens and In718 powder  
e SEM chamber where cube specimens and In718 powder are mounted 

 
 
Procedures: 
1 Sole tape: divide etched area and unetched area of both ZX and XY 
2 In718 powder is spread on top of the sole tape 
3 Secure the specimen into the SEM chamber, close and pressurize the chamber 
4 Analyse the microstructure by EDS/EDX software and save the images results 
  

a 
b 

c 

d 

e 
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 Results and discussions 

 Inconel 718 Powder analysis  

5.1.1 In718 powder particle morphology 

 

In718 powder particles produced by gas atomization method as shown in figure 5-1(a - c) shows 

the morphology such as satellite shape, spherical shape, non spherical shape and dendrites 

while figure 5-1(b) In718 powder particles circumference measured range between 7 -12 µm. 

Figure 5-1: In718 powder SEM images (a - c) virgin (c) high 
magnification showing dendritic features 

Spherical particles 

Satellites  

dendrites  

Non -Spherical particles 

Spherical particles 

a) b) 

c) 
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Image J software (refer Figure 5-2 a & b) is used to characterize the IN 781powder particles 

sizes and morphologies. Then, the data of powder diameters were inserted into excel and by 

Origin pro enabled to draw the particle distribution(PSD).  It is found that most of the particles 

are spherical means that the In718 powder particles used in our work is of virgin state and the 

diameter range from 20-50 µm. Some particles have non spherical shapes due to the defect of 

gas atomization process of this powder particles. 

 

Figure 5-2: (a & b) Image J sample analysis (c)PSD 

a) 

b) 

c) 



Results and discussions  Page 46 

 

Figure 5-3, summarizes the importance of powder particle sizes in order to obtain the required 

mechanical properties in this case tensile strength is improved with grain sizes of 25-50 µm 

during LPBF.  

 

The data in table 5-1, was provided by Sophia high tech s.r.l are comparable to the  SEM image  

and image J characterization results of In718 powder PSD as reported in Figure 5-2.  Dv (10), 

Dv (50) and Dv (90) is the mean the particle sizes at 10% vol, 50% vol, and 90% vol, of samples 

respectively [7].  Laser size diffraction characterized the In718 particles in a range of 21.7 – 

57.8 µm as reported in table 5-1. 

 

Figure 5-3: Normalized life and strength versus grain size [64] 

Table 5-1: In718 powder sizes 



Results and discussions  Page 47 

 

 Tensile test results  

5.2.1 Stress-strain curves of Inconel 718 superalloys: 

 

 
Figure 5-4 shows engineering strain versus engineering stress of AS no. 1 in XY plane 

orientation with 𝑅𝑅𝑅𝑅0.2, 𝐸𝐸, and  𝑈𝑈𝑈𝑈𝑈𝑈 of 732 𝑀𝑀𝑀𝑀𝑀𝑀, 205 𝐺𝐺𝐺𝐺𝐺𝐺 and 1027.87 𝑀𝑀𝑀𝑀𝑀𝑀 respectively. 𝐸𝐸𝑙𝑙  is 

nearly 30% hence it has some properties of ductility. Island scan strategy has improved the 

UTS due to columnar dendrites (refer figure 5-18) as single crystals and no transverse crystals. 

 

Figure 5-4: XY AS n.1 
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Figure 5-5, shows engineering strain vs engineering stress of specimen 6, HT no. 1 in XY 

plane orientation with 𝜎𝜎𝑦𝑦, 𝐸𝐸, and  𝑈𝑈𝑈𝑈𝑈𝑈 of 1304 𝑀𝑀𝑀𝑀𝑀𝑀, 218 𝐺𝐺𝐺𝐺𝐺𝐺 and 1368 𝑀𝑀𝑀𝑀𝑀𝑀 respectively. 𝐸𝐸𝑙𝑙 is 

slightly  9 % hence it has some properties of brittleness, and its fracture surface is smooth. HT 

has improved the E, 𝜎𝜎𝑦𝑦 and  𝑈𝑈𝑈𝑈𝑈𝑈 when compared to AS XY sample. But El has be affected by 

reduction of nearly 21% from AS XY. This can be due to recrystallization of grains during HT. 

 

Figure 5-5: Specimen 6, XY HT n.1 
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Figure 5-6, shows engineering strain vs engineering stress of specimen 1, AS n.1 in ZX plane 

orientation with 𝜎𝜎𝑦𝑦, 𝐸𝐸, and  𝑈𝑈𝑈𝑈𝑈𝑈  of 500 𝑀𝑀𝑀𝑀𝑀𝑀, 136 𝐺𝐺𝐺𝐺𝐺𝐺 and 587 𝑀𝑀𝑀𝑀𝑀𝑀 respectively. 𝐸𝐸𝑙𝑙 is slightly 

1.2 % hence it has properties of brittleness. Melt pools, elongated columnar dendrites, 

porosities and key holes are seen on its microstructure. These are some of the reasons of 

anisotropy between ZX_AS and XY_AS. 

 

 

 

 

 

 

 

 

Figure 5-6: Specimen 1, ZX AS n.1 
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5.2.2 Stress- strain trend for all sumples of Inconel 718 superalloys 

Figure 5-7 shows anisotropies In718 cylindrical rods in ZX and XY orientations for HT and AS 

configurations. Specimen 1 and specimen 2 have lower 𝐸𝐸𝑙𝑙 compared to XY no. 1 and XY no. 

2. While specimen 6, specimen 7 and XY HT no. 3 have higher modulus, yield strength, UTS 

but with low ductility. Table 5-2 summarizes tensile anisotropies properties of In718 of Figure 

5-7. 

 

5.2.3 Summary of tensile anistropies of Inconel 718 samples 

 Tensile anisotropies parameters 

Specimens Orientation 
E 

[GPa] 𝜎𝜎𝑦𝑦 [MPa] UTS [MPa] 
Sigma R 

[MPa] 
Elongation To 
Fracture [%] 

 XY AS n.1 205 732 1027.87 1027.87 29 
 XY AS n.2 224 730 1030 1033 27 
Specimen 1 ZX AS n.1 136 500 587.175605 546 1.17 
Specimen 2 ZX AS n.2 135 561 756 750 4.3 
Specimen 6 XY HT n.1 218 1304 1368 1322 8.7 
Specimen 7 XY HT n.2 212 1303 1417 1417 5.5 
 XY HT n.3 206 1295 1342 1342 6.5 

 

 

Figure 5-7: Engineering Stress - strain anisotropies for all samples of 
In718 superalloys 

Table 5-2: Tensile anisotropies properties of Inconel 718 samples 



Results and discussions  Page 51 

 

 Optical micrography for microstructure analysis  

5.3.1 Sample A2.1: AS  

 

  

Figure 5-8 a, shows melt pools (yellow colour) with key holes (red colour) while in Figure 5-8 b, 

red arrows indicate the random growth of columnar dendrites through the melt pools. And 

Figure 5-8 c, blue circles show porosities in the elongated columnar grains and size of melt 

pool is shown in red colour. Figure 5-8 d, hidden lines indicating melt pool boundaries and red 

arrow shows the growing direction of equiaxed grains while white arrow shows growth of 

columnar dendrites. Random growth can be seen near the melt pool which is the cause of 

cracks. 

Figure 5-8: Sample A2.1 AS showing (a) melt pools, porosities and 
keyhole (b) elongated columnar dendrites and equiaxed dendrites 

growth direction (c & d) melt pool sizes and porosities on elongated 
columnar dendrites and equiaxed dendrites 

a) b) 

c) 
d) 
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5.3.2 Sample A2.2: HT 

   

Figure 5-9 a, describes after heat treatment the columnar dendrites were homogenized and 

uniformly distributed. Figure 5-9 b, can confirm the existence of porosities in In718 as the cause 

of the fracture and this microstructure has  a large number of porosities. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9: Sample A2.2 HT (a) elongated columnar dendrites grows 
randomly (b) porosities in red arrow 

a) 

b) 
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5.3.3 Sample B2.1:  AS 

 

    

Figure 5-10 a, shows the random orientation of island scan strategy. Single crystals are 

observed. The dimension of each island is 5 mm x 5 mm. Also, can be seen that some columnar 

dendrites are longer than the others. Figure 5-10 b-d, shows direction of columnar dendrites is 

shown in red arrow, the track width, and porosities are spotted in blue circle while red circles 

represents keyholes. 

 

Figure 5-10: sample B2.1 showing (a) island scan strategy (b-d) 
direction of cellular dendrites 

a) b) 

c) 

d) 
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5.3.4 Sample B2.2 HT 

   
 
 
 

 
 

 
Figure 5-11 a & c, still show island scan strategy, columnar and equiaxed dendrites are fused 

together and porosities are seen. While Figure 5-11 c, shows keyholes or etchant burnt with 

porosities around. The specimen microstructure is homogenized. 

 
 
 
 
 
 
 
 

Figure 5-11: Sample B2.2 (a & c) island scan strategy and porosities (b) 
sample homogenization with porosities 

a) b) 

c) 
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5.3.5 Microstructure anisotropies charactarization 

 

 Microstructure 
AM 
Process 

Specimens Orientation Post 
process 

Porosity 
[%]  
by 
MatLab 

Grain morphology Crystal 
texture 

Residual 
stresses 

LPBF A 2.1 ZX AS  
0.53 

Elongated columnar 
dendrites with porosities, 
keyholes, melt pools 

- - 

A2.2 ZX HT  
0.0083 

Shortened columnar 
dendrites associated with 
low porosities, invisible 
melt pools 

- - 

B2.1 XY AS  
0.40 

Elongated cellular 
dendrites and short 
culalar dendrites with 
porosities 

- - 

B2.2 XY HT  
0.41 

Columnar dendrites seen 
as scan strategy with 
porosities, key holes 

- - 

 

Table 5-3 summarizes the anisotropies sources such as porosities, elongated grain and melt 

pools that have been seen on the cube specimens in both perpendicular and parallel deposited 

build orientations which were characterized by OM and MATLAB code for porosities. The 

values of the porosities can confirm that there will be different measured values for parallel and 

perpendicular orientation due to the microstructure anisotropy property. 

 

 

 

 

 

 

 

Table 5-3: Microstructure anisotropies 
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 SEM Fracture surfaces analysis  

5.4.1 Specimen 1: ZX orientation  

  

Figure 5-12 a, illustrates the shear surface or facet in green ellipse. Figure 5-12 b, a magnified 

facet can observe cleavage planes (in red arrows) towards the overload zone III, while red circle 

indicates the elongated columnar dendrites on the shear surface and dimples and lack of fusion 

(dashed yellow ellipses). A white ellipse indicates vertical intergranular and transgranular 

fracture. dashed white line shows vertical intergranular fracture at the boundary. 

  

Figure 5-12: Specimen 1 showing (a) shear surfaces/facets (b) 
magnified facet showing the porosities, dimples, cleavages, elongated 

columnar dendrites 

a) 

b) 
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Figure 5-13 a, white circle represents portion of the stair or shear surface or facet and magnified 

into Figure 5-13 b. Cleavages (red arrows) prevail near the top of the shear surface (red curve, 

0.2 mm) and vertical intergranular fractures (blue, red ellipses) where the separation by 

fracturing into zone III and grain boundaries is observed respectively. Brittle vertical 

transgranular fracture (black ellipse) and lack of fusion pores (yellow ellipses, with unmelted 

and partially melted powder particles) with dimensions of  48µm, 0.11mm, 0.15mm and 0.3 

mm.  Porosities are seen with dashed red circle. 

 

 

 

 

 

 

 

Figure 5-13: (a) shear surface (b) magnified shear surface 

b) 

a) 
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Figure 5-14, shows overall peeled columnar dendrites in a shear surface of 163 µm. In a 

maginfied view Figure 5-14 b, there are four selected micro voids coalescence with a length 

range from 4- 9 µm and beneath there are elongated columnar dendrites with the heights that  

range from 11-14 µm. While Figure 5-14 c, shows lack of fusion pore with vertical transgranular 

fracture inside with a size of  103 µm x 28 µm. 

Figure 5-14: Shear surface  

a) 

b 

b) 

c) 
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Figure 5-15 shows the magnified ductile fracture where micro voids are formed due to horizontal 

transgranular fracture. 

 

 

 

 

 

 

Figure 5-15: Ductile fracture 
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Vertical transgranular fracture with cup and cone shape (represented by dark spots) in Figure 

5-16 a-c. It means the fracture is passing through the grains. While around there are vertical 

intergranular fracture which is passing through the layers/ boundaries of the ZX plane. Also 

there are porosities (refer Figure 5-16 b) near the lateral surface with unmelted and partially 

melted powder particles. 

 

Figure 5-16: Vertical Intergranular fracture mixed with vertical 
transgranular fracture with cup and cone   

a) b) 

c) 
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Figure 5-17 a, illustrates the lack of fusion surface has a crack with a length of 43 m and other 

smaller cracks. And Figure 5-17 b, lack of fusion pore of 250 x 114 µm has un-melted and 

partially melted powder particles. It surrounded with vertical intergranular and transgranular 

fracture. 

 

 

 

 

 

 

Figure 5-17: Ductile fracture mixed with brittle fracture 

Crack 

a) 

b) 
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Figure 5-18 a) shows brittle fracture together with split lack of fusion pore. And Figure 5-18 b, 

magnified view describe the dimensions of the split lack of fusion pore size of 130 x 136 µm. 

And this is a very big pore that is responsible for the fracture of this specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-18: (a) Lack of fusion pore split and brittle fracture (b) Lack of 
fusion pore split 

Brittle 
fracture 
bright 
surface 

9 µm 

Half of 
lack of  
fusion 
pore 
split 

a) 

a) 
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Fracture surfaces of In718 can be generally divided by appearance into four areas.  The overall 

appearance of an In718 fracture surface AS (refer Figure 5-19)  at different zones, with the 

initiation sites indicated by red arrows and a dashed circle.  

 In zone I, experience both cracks on the lateral surface and within has porosities filled with 

unmelted powder particles.  In zone II , (width of 1.8 mm) reveals a rough area outside the 
initiation site as visible between red arrows and  dashed yellow lines. It can be demonstrated 

that this region has lack of fusion pores distributed all over the area and has a shear surface( 

height of 0.33 mm). While in zone III ( width of 3.1 mm) is particularly a wide fracture surface 

with visible large lack of fusion pores and are very deep down as a result causes the shear 

surface (height of 0.44 mm) towards the zone IV as can be seen between green solid line and  

dashed yellow line. The stairs/shear surfaces/facets have elongated columnar dendrites as in 

figure above 5-14. Now, it can be hypothesied that elongated columnar dendrites is where  

fracture will happen. At last the Zone IV is the final stage (width 0.6 mm) of the fracture where 

lack of fusion, dimples and rough surface are apparent due to overload.  

 

 

Figure 5-19: Four zones indicating the stages during crack initiation and 
propagation 
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5.4.2 Specimen 6: HT, XY orientation  

 

  

  

Figure 5-20 is divided into four quadrants I,II,III and IV. 

 

 

Figure 5-20: Specimen 6 shows (a) overall view showing a smooth flat 
surface, (b) ductile fracture and dimples (c) horizontal intergranular (d) 
horizontal transgranular 

II I 

III 
IV 

I IV III II 

a) 

b) 
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Figure 5-21 a, shows horizontal intergranular fracture where the fracture passes through grain 

or layer boundaries. While in Figure 5-21 b, lack of fusion pore is observed near the lateral 

surface of the specimen filled with partially or unmelted powders. And Figure 5-21 c, represent 

the horizontal intergranular fracture mixed with quasi cleavages surface fracture.  

Figure 5-21: Specimen 6 shows (a) Horizontal intergranular fracture (b) 
lack of fusion pore near lateral surface (c) horizontal intergranular and 

quasi cleavage  fracture  

b) a) 

c) 
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Figure 5-22 a, red ellipse shows the T shape-horizontal Intergranular fractures equal to a length 
of 185 µm x 88 µm. In Figure 5-22 b & c, describe dimples (in yellow circles) have a diameter 
of 8 – 15 µm.  
 

 

 

Figure 5-22: (a) T shape horizontal intergranular fracture (b) horizontal 
intergranular fracture (layer to layer split) (c) facets, dimples and 

horizontal intergranular fracture 

a) 

b) 

c) 
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In Figure 5-23 a, pore (dashed red circle) of a ∅ 10 𝜇𝜇𝜇𝜇 with horizontal intergranular fracture on 

the inside and micro voids coalescence are outside around the pore. For Figure 5-23 b, 

transgranular fracture (red ellipse), micro voids coalescence and intergranular fracture. And 

Figure 5-23 c, indicates intergranular fracture, micro voids coalescence and cleavages (in 

yellow arrows). 

Figure 5-23:(a) pore (∅𝟏𝟏𝟏𝟏) with horizontal transgranular fracture and 
micro voids coalescence (b) horizontal transgranular fracture inside 
lack of fusion pore, micro voids coalescence (C) integranular mixed 

with cleavages fracture 

∅ 10 𝜇𝜇𝜇𝜇 a) b) 

c) 
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Figure 5-24, illustrates a pore ∅ 6 𝜇𝜇𝜇𝜇 inside revealing brittle intergranular fracture of dendrites. 

Ductile fracture due Micro voids coalescence (effects of elongated grains which causes 

anisotropies) is observed around the pore. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-24: Lack of fusion pore with brittle intergranular fracture mixed 
with ductile fracture (micro voids coalescence) 
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Specimen 7 

 

Figure 5-25, describes the intergranular fracture (in green ellipse), cleavage rivers (in red 

arrows) and facets (red circles), dimples (yellow circles) and micro voids coalescence (blue 

circle) 

 

 

 

 

 

Figure 5-25: Brittle and ductile fracture mixed 

I 
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5.4.3 External surface analysis 

According to Kayak et al., [64] suggest that Transmission electron microscopy or atomic force 

microscopy can reveal the effect of the AM post-process and its ability to modify and enhance 

the microstructure by Finish machining (FM), drag finish (DF) and vibratory surface finish(VSF). 

      

  
 Figure 5-26: Surface enhancement operations (a) Finish machining (b) Drag 

finish (c) vibratory surface finish [65] 
 

Therefore, according to Kayak et al., the following SEM images means that the cracks were not 

due to FM, DM and VSM. Consequently, tensile test is responsible to initiate these cracks due 

to the porosity, lack of fusion, partially and unmelted powder particles beneath the surface of 

cylindrical components.  

More examination will be required to be able to characterize well these specimens surfaces 

before and after tensile testing. In this thesis only the analysis has been done after the tensile 

testing as shown below figures 5-27 to 5-29. 

 

 

 

 

 

 

 

 

a) b) 

c) 
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Specimen 1 (ZX orientaton) 

 

  

In ZX crack are prevalent as shown in Figure 5-27, for eaxample there are more than five 

primary cracks towards the secondary crack ( where fracture ensued). Primary crack has a 

behaviour of specific height of 140 µm.  Figure 5-27 b, dimples/lack of fusion pore of 0.16 mm 

are seen within the specimen and at a height of 0.5 mm from one of the primary crack. It 

means that  perpendicular BD has many crack before failure than parallel BD. Also 

perpendicular  layers (are like pages of a book) opening up because crack is parallel to the 

build direction. Layers are broken up easily. 

Figure 5-27: (a) Primary and secondary cracks (b) magnified primary 
crack magnification 692 x 

a) 

b) 
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Figure 5-28 a, illustrates the primary crack of 1.2 mm. In Figure 5-28 b, shows the magnified 

left hand side of the crack with dimensions of 104 µm x 196 µm which is a lack of fusion pore 

near the lateral surface of the specimen. And Figure 5-28 c,  shows the right hand side of the 

crack with a height of 85 µm which is a lack of fusion filled with unmelted powder particle of 

∅33 µm. 

 

 

Figure 5-28: (a) primary crack (b & c) magnified views  

a) 

b) 

c) 
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Specimen 6 (XY build orientation) 

 
 

Also,  layers of XY build orientation breaking up because crack is perpendicular to the build 

direction. It is very difficult to break layers in XY orientation and can be observed that there are 

less cracks compared to ZX. Primary cracks sizes are 0.4 mm in length and 1.7 mm from the 

secondary crack. Again, it can be hypothesied that primary cracks sizes of 0.9 mm in length 

and 0.3-0.8 mm from the secondary crack is where initiation crack originated becaue they are 

bigger than the other cracks.  

Hence, parallel BD has low number of  cracks before failure than parallel BD. Also parallel  

layers cracks propagate perpendicular  to the build direction. Layers are difficult to break. 

 

 

 

Figure 5-29: specimen 6 display lateral surface crack in XY orientation 
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5.4.4 Tensile anisotropies characterization  

Table 5-4: In-situ tensile test results 
 Tensile test results 

Sp
ec

im
en

  
O

rie
nt

at
io

n 

Po
st

 p
ro

ce
ss

 Modulus 
of 
elasticity 
(GPa) 

Yield 
strength 
(MPa) 

Ultimate 
tensile 
strength 
(MPa) 

Elongation 
(%) 

Fracture 
surface 

Sp
ec

im
en

 1
 ZX AS 

 

136 500 587.175605 1.17 

Elongated 
columnar 
dendrites 
dendrites,  
melt pools,  
lack of fusion, 
porosities 

Sp
ec

im
en

 2
 

135 561 756 4.3 

Sp
ec

im
en

 6
 XY HT 

 

218 1304 1368 8.7 

Elongated 
columnar 
dendrites 
grains,  
melt pools,  
lack of fusion, 
porosities 

Sp
ec

im
en

 7
 

212 1303 1417 5.5 
*Elongation values are highly dispersed 

 

 

 

 

 

 

 

 

 



Results and discussions  Page 75 

 

 Tensile test results 

Specimen 
 O

rie
nt

at
io

n 

Po
st

 p
ro

ce
ss

 Modulus of 
elasticity  
   (E) 
 
(GPa) 

Yield 
strength 
 
 
 
(MPa) 

Ultimate 
tensile 
strength 
(UTS) 
 
(MPa) 

Elongation 
 
 
 
(%) 

Note 

Specimen x1  
 
 
 
ZX 

 
 
AS 
 114 - 134 568 - 684 804-1030 12 - 28 

1 

Specimen x2  
 
HT 155 - 175 900 - 1000 1150-1250 10 - 14 

Specimen x6  
 
 
 
XY 

 
 
AS 
 108 - 178 709 - 830 998-1100 22 - 32 

Specimen x7  
 
HT 155 - 175 900 - 1000 1200 - 1300 10 - 14 

 
 

 
 

 AS HT  
Hardness [HVD.5] 319-344 420-440 2 

Coefficient of 
thermal expansion 
[m/mK] 

14 x 10-6  
 
3 

Thermal 
conductivity 
[W/mK] 

10 - 12 

 

 

 

 

 

 

 

Table 5-5: Mechanical properties (indicative only) [66] 

Note: 
1 Mechanical testing in accordance with ISO 6892 
2 Hardness test in accordance with ASTM E384-11 
3 In the range of 20°C(68°F) to 100°C(212°F) 
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 Tensile anisotropies parameters 

Specimens 
E 

[GPa] 

E [GPa] 
 
Anisotropies 
(%) 

Elongation 
To Fracture 

[%] 

Elongation To 
Fracture 

 
Anisotropies 

(%) 
XY AS n.1 205 

33.7 
29 

96 (14) ZX AS n.1(specimen 1) 136 1.17 (25) 
 

XY AS n.2 224 
39.7 

27 
84.1 (11) ZX AS n.2(specimen 2) 135 4.3 (24) 

 
XY AS n.3  

(Estimated from table 5-7) 

(178) 
24.7 

(32) 
(12.5) ZX AS n.3  (134) (28) 

 
XY HT n.1(specimen 6) 218 

19.7 
8.7 (11) 

(9) ZX HT n.1(estimated from table 5-7) (175) (10) 
 

XY HT n.2(specimen 7) 212 
22.2 

5.5 (13) 
(8) ZX HT n.2 (estimated from table 5-7) (165) (12) 

 
XY HT n.3 206 

24.8 
6.5 (12) 

(17) ZX HT n.3 (estimated from table 5-7) (155) (10) 
 

Anisotropy change 1 14  (5) 
Anisotropy change 2 (17.5)  (3) 
Anisotropy change 3 (-0.1)  (-4.5) 

 

Estimated data are data represented in closed brackets ( ), were taken from table 5-5. The 

reason is that the experimental data are below the limit indicated in table 5-5.  

 

From table 5-6, It can be observed that 𝐸𝐸, the anisotropy of the  HT sample is improved by (43 

MPa) 19.7% reduction compared to AS sample. Also, 𝐸𝐸𝑙𝑙 has shown a slight improvement to 

9% anisotropy reduction after HT. However, it should be noted that elongation was computed 

based on the  the estimated data.  

Anisotropy change  2 and 3 are not used due to estimated data are only for demonstration. 

 

 

 

 

 

Table 5-6: anisotropy change for modulus and elongation 
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Table 5-7: anisotropy change for yield strength and UTS 
 Tensile anisotropies parameters 

Specimens 
𝜎𝜎𝑦𝑦 

[MPa] 

𝜎𝜎𝑦𝑦 [MPa] 
 

Anisotropies 
(%) 

𝑈𝑈𝑈𝑈𝑈𝑈 [MPa] 
 

𝑈𝑈𝑈𝑈𝑈𝑈 [MPa] 
 

Anisotropies (%) 
XY AS n.1 732 

31.7 
1027.87 

42.87 ZX AS n.1(specimen 1) 500 587.175605 
 

XY AS n.2 730 
23.15 

1030 
26.6 ZX AS n.2(specimen 2) 561 756 

 
XY AS n.3  

(Estimated from table 5-7) 
830 

17.6 
1049 

12.6 ZX AS n.3 684 917 
 

XY HT n.1(specimen 6) 1304 
23.3 

1368 
9.4 ZX HT n.1 (estimated from table 5-7) 1000 1240 

 
XY HT n.2(specimen 7) 1303 

23.5 
1417 

11.8 ZX HT n.2 (estimated from table 5-7) 1000 1250 
 

XY HT n.3 1295 
22.8 

1342 
8.3 ZX HT n.3 (estimated from table 5-7) 1000 1230 

 
Anisotropy change 1 8.4  33.5 
Anisotropy change 2 -0.35  18.3 
Anisotropy change 3 -5.9  4.7 

 

It can be observed in table 5-7,  that 𝜎𝜎𝑦𝑦, of HT sample was improved by (304 MPa) 23.3% 

anisotropy reduction compared to AS specimen. Also UTS, has improved by (128 MPa) 9.4% 

anisotropy reduction compared to AS specimen. 

 

In conclusion, the anisotropy change 1 is 14%, 5%, 8.4%, 33.5% for 𝐸𝐸,𝐸𝐸𝑙𝑙 ,𝜎𝜎𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈𝑈𝑈𝑈𝑈 

respectively. 
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 Analyse chemical composition for cube specimens: EDS/EDX map 

 

5.5.1 Sample A2.1: AS  

 

 

Figure 5-30 illustrates the SEM-EDS was utilized to observe the chemical composition in the 

In718 microstructure of a perpendicular deposition plane. Porosities (yellow circles) are seen 

on the microstructure. Then, by EDS map were obtained by EDX method as shown in Figure 

5-31 to Figure 5-32 were obtained. 

 

Figure 5-30: Sample A2.1 AS shows (a) SEM micrograph (b) EDS map 
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Figure 5-31 shows the chemical composition by weight and is comparable from the 

manufacturer as shown in Table 4-1.  

 

 

 

Figure 5-31: EDS map showing chemical compositions 
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Key 
Boundary strengtheners B C Mg Zr      
Partition to 𝛾𝛾 matrix V Cr Mo W Re Fe Co Ni Y 

Partition to 𝛾𝛾′ Al Ti Nb Hf Ta     

 
Figure 5-32 illustrates In718 precipitates and its chemical composition. It is verified that by 

ageing the 𝛾𝛾′ precipitates were formed on the  𝛾𝛾 matrix.   

Figure 5-32: EDS map showing In718 precipitates 
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 Porosity analysis by using MATLAB code 
By using the Matlab code known as SEM porosity app [67] [68], has enabled to obtain the 

porosity in fractions as shown in figure 5-33 to figure 5-38. 

But, it should be noted that this method needs verification by using OM for measuring porosities. 

In this thesis only MATLAB code was used.  
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5.6.1 Cube Sample A2.1: (ZX) AS  

 

 

Figure 5-33 illustrates, pores range from 0.5 to 3.5 µm as shown in the pore size distribution 

plot. 

 

Figure 5-33: Cube Sample A2.1 porosities  
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5.6.2 Cube Sample A2.2:( ZX)  HT 

 

 

Cube sample HT in ZX pores has been reduced compared to AS sample A2.1. It can be proved 

that HT close the pores. In Figure 5-34 reports, pore radius scattered from 0.5 to 1.1 µm as 

shown in the pore size distribution plot. 

 

 

 

Figure 5-34: Cube Sample A2.2 porosities 
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5.6.3 Cube Sample B2.1: (XY) AS 

 

Cube Sample B2.1 AS in XY has pores range from 0.8 to 5.8 µm. But most of the pores are 

concentrated between 0.8 to 3 µm as shown in Figure 5-35.  

 

 

 

 

 

 

 

 

 

Figure 5-35: Cube Sample B2.1 porosities 
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5.6.4 Cube Sample B2.2 (XY) HT 

 

 

Cube Sample B2.2 HT in XY has pores range from 0.7 to 1.7 µm. Again, most of the pores are 

concentrated between 0.7 to 1 µm.  Hence, by HT has improved the microstructure by closing 

the pores as reported in Figure 5-36. 

 

 

 

 

Figure 5-36: Cube Sample B2.2 porosities 
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5.6.5 Cylindrical Specimen 1: (ZX) AS 

 

Cylindrical specimen 1 AS in ZX has pore radius that ranges from 1 to 11 µm. This is a fracture 

surface which is a ductile fracture with micro voids coalescence in Figure 5-37. These micro 

voids are mapped, and pore radius are big. And pore radius is concentrated between 1 to 7µm. 

It can be related to Figure 5-17 and Figure 5-18, where pore diameters are 110-250 µm and 

130-136 µm respectively. 

 

 

 

 

 

 

Figure 5-37: Cylindrical specimen 1 showing porosities 
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5.6.6 Cylindrical Specimen 6 (XY): HT 

 

 

Cylindrical specimen 6 HT in XY has pore radius that ranges from 0.1 to 15 µm as shown in 

Figure 5-38. This is a fracture surface which is a ductile fracture with micro voids coalescence. 

These micro voids are mapped, and pore radius are small due to HT. And pore radius is 

concentrated between 0.1 to 8µm. 

It can be compared to Figure 5-23 and Figure 5-24 where pore diameters are 10 µm and 6 µm 

respectively. 

 

 

 

Figure 5-38: Cylindrical specimen 6 showing porosities 
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5.6.7 Summary of porosity values of In718 superalloys specimens 

It can be deduced that porosities are prevailing within the specimens as can be observed in 

table 5-8 porosities in fraction and table 5-9 porosities in percentages. Meaning the value are 

between 0 and 1.  If we change the porosities from fraction into percentage, meaning values 

are between 0 to 100%. 

Table 5-8: Summary of porosity values in fractions 

O
rie

nt
at

io
n 

Po
st

 p
ro

ce
ss

in
g 

Porosity [fractions] 
 Cube sample 
B2.2  
 
(microstructure) 

Cube sample 
B2.1  
 
(microstructure) 

Cube sample 
A2.2 
 
(microstructure) 

 Cube sample 
A2.1  
 
(microstructure) 

Cylindrical 
specimen 1:  
 
AS 
 
(Fracture 
surface) 

Cylindrical 
specimen 6:  
 
HT 
 
(Fracture 
surface) 

XY     AS 
 

0.0039842 
    

HT 0.0040847 
    

0.20927 

ZX/ZY 
               

AS 
   

0.0052996 0.22693 
 

HT 
  

8.2988e-05 
   

 

Table 5-9: Summary of porosity values in percentages 

O
rie

nt
at

io
n 

Po
st

 p
ro

ce
ss

in
g 

Porosity [%] 
 Cube sample 
B2.2  
 
HT 
 
(microstructure) 

Cube sample 
B2.1  
 
AS 
 
(microstructure) 

Cube sample 
A2.2:  
 
HT 
 
(microstructure) 

 Cube sample 
A2.1  
 
AS 
 
(microstructure) 

Cylindrical 
specimen 1:  
 
AS 
 
(Fracture 
surface) 

Cylindrical 
specimen 6:  
 
HT 
 
(Fracture 
surface) 

XY     AS 
 

0.39842 
    

HT 0.40847 
    

20.927 

ZX/ZY 
               

AS 
   

0.52996 22.693 
 

HT 
  

0.0082988 
   

 

For the XY Cube specimen: HT sample B2.2 has a porosity of 0.41% higher than AS sample 

B2.1 with 0.40%. Here, OM is needed to re check the porosity in this samples. HT sample must 

have lower values of porosities because pores are closed during the heat treatment. 

For the ZX cube specimen: AS sample A2.1 has a porosity of 0.53% lower than HT sample 

A2.2 with 0.0083%. This is consistent with the literature that pores are closed during the heat 

treatment.  

For the cylindrical specimens: AS specimen 1, fracture surface has a porosity of 23% slightly 

lower than the HT specimen 6 with a value of 21%. Not so much different but due to micro voids 
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coalescence in both fractures that is why the values are higher when compared to the cube 

specimen. 

From this results, it can hypothesied that porosity is the the cause of anistropies in tensile 

sumples of In718 superalloys. 

It should be noted that, OM is needed to investigate the porosities in these specimens in order 

to obtain the correct values and better understand. 
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 FEM analysis 
ANSYS software by explicit dynamics is used to simulate the tensile test of specimen 8 

(XY_AS) and specimen 6 (XY_HT) as shown in Figure 6-1 and Figure 6-2  respectively. The 

results are provided below. The same procedure can be used for specimen 1 (ZX_AS), 

specimen 2 (ZY_HT). 

Equations 6.1 to 6.4 were used to obtain the ANSYS setting parameters: 

𝑐𝑐 = �
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑔𝑔′𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= �
𝐸𝐸(1 − 𝑣𝑣)

𝜌𝜌(1 + 𝑣𝑣)(1 − 2𝑣𝑣)
… … … … … … . .6.1 

∆𝑡𝑡 = 𝑓𝑓 ×
𝐿𝐿
𝑐𝑐

… … … … … … … … … … … … … … … … … … . .6.2 

𝜀𝜀 =
∆𝐿𝐿
𝐿𝐿

… … … … … … … … … … … … … … … … … … … . . .6.3 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
𝑣𝑣𝑣𝑣𝑣𝑣 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

… … … .6.4 
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Specimen 8 (XY_AS). XY AS 

 

 

 

 
 

 

 

 

 

 

Figure 6-1: Specimen 8 (XY_AS). XY AS 

Figure 6-2: Specimen 6 (XY_HT) 
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 Conclusion and future work 
The aim of this thesis is to investigate the fracture behaviour of In718 specimens by means of 

fracture surface analysis.  

The investigation was run by means of in situ scanning electron microscopy (SEM) and optical 

microscopy (OM) of specimen fracture surfaces from tensile tests and surfaces of cubic 

samples obtained by LPBF in AM.  

The tensile test operated at room temperature is performed on cylindrical specimens obtained 

with axis parallel and perpendicular to deposition plane. EDX analysis was used to characterize 

the chemical composition of In718 superalloy cube samples and its powder particles.  

The analysis was extended to specimens obtained with axis parallel to deposition direction and 

to perpendicular direction, and before and after heat treatment 

Fracture samples were characterized by SEM, SEM-EDS/EDX and OM. Elongated columnar 

dendrites, lack of fusion, melt pools and porosities were observed.  

The tensile anisotropies range of variation between specimens obtained with axis parallel to 

deposition direction and to perpendicular direction are 14%, 5%, 8.4%, 33.5% for 

𝐸𝐸,𝐸𝐸𝑙𝑙,𝜎𝜎𝑦𝑦  and 𝑈𝑈𝑈𝑈𝑈𝑈 respectively.  

For specimens which underwent heat treatment, microstructure anisotropies resulted to be 

reduced. During HT, recrystallization enabled pores to be closed and hence reduced porosities, 

residual stresses and lack of fusion problems. For the perpendicular and parallel deposited AS 

specimens the porosities were 0.53% and 0.40% respectively. The perpendicular and parallel 

orientation HT specimens with porosities density resulted of 0.0083% and 0.41% respectively. 

For the perpendicular specimens the porosity values are consistent with the literature that pores 

are closed during the heat treatment. However, the parallel deposited build specimens were 

not consistent with the literature because it means pores were not closed after HT or there is 

another problem of elongated grain which can be answered by SEM-EBSD and porosities can 

be measured by OM to recheck these results. 

AS perpendicular and HT parallel deposited cylindrical fracture surfaces have a porosity of 23% 

and 21% respectively. Not so much difference but due to micro voids coalescence. Also, we 

can not compare because heat treated perpendicular and as build parallel deposited cylindrical 

samples were not available for examination. 

In the future work, heat treatment is needed to be redesigned in order to obtain isotropy of 

In718 superalloys. 
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 Appendix 

 Appendix A: In718 cylindrical specimen drawing 
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 Appendix B: In718 cube specimen drawing 
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 Appendix C: SEM Micrograph in Image J and PSD results by Origin Pro: 
 

 

 

 

 

 

 

 

Figure 9-1: (a & c) Image J sample analysis (c) Powder size distribution 
(PSD) 
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 Appendix D: SEM Micrograph: 
Specimen 1 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-2: Lateral surface showing the primary cracks as resulted due 
to the effect of machining, lack of fusion and porosity 
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Specimen 2 (Parpendicular deposition plane) 

  Tensile fracture surface of perpendicular (ZX) built Inconel 718 sample tested AS 

 

 

 

 

 

 

 

 

 

 

Figure 9-3: Tensile fracture surface of perpendicular (ZX) built Inconel 
718 sample tested AS,  

(a) overall view showing a dimple on the surface (b) unmelted powder 
(c) lack of fusion (d) primary cracks on the lateral surface 
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Specimen 7 (Parallel deposition plane) 

 

 

 

 

 

 

Figure 9-4: Tensile fracture surface of horizontally (XY) built Inconel 718 

sample tested Heat treated, (a) overall view showing a smooth flat surface, 
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Figure 9-5: cracks, lateral surface peeled/split, intergranular fracture 
along the boundary 

lateral surface peeled crack intergranular fracture 
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Figure 9-6: Ductile fracture, brittle fracture, intergranular fracture, 
transgranular fracture, quasi cleavage 
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Figure 9-7: intergranular fracture near the lateral surface, Cleavage 
rivers and stairs, micro voids coalescence, dimples, ductile and brittle 

fracture 
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Figure 9-8: Lack of fusion, unmelted particles 
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Figure 9-9: Ductile fracture, Micro voids coalescence 
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 Appendix E: SEM: EDS/EDX for Spectrum results: 
Sample A2.1: AS  spectrums 

 

Figure 9-1, describe the spectrum 1 to 6. Below is shown the composition of each spectrum 

point from page 111-113. 

 

Figure 9-10: SEM micrograph spectrums points 
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