

POLITECNICO DI TORINO

Thesis

Master’s Degree of Communications and Computer

Networks Engineering

 Automatic classification of healthy / diseased
plants using multispectral images

Supervisors: Candidate:

Prof. Morisio Maurizio José Doumet

Prof. Ardito Luca

Academic year 2022-2023

1

2

Contents
Introduction .. 4
Chapter 1... 6

1.1 Multispectral and Hyperspectral images ... 6
1.2 Spectral Reflectance of Vegetation ...10

Chapter 2...13
2.1 Vegetative Indices ...13

2.1.1 NDVI ..14
2.1.2 GNDVI ...15
2.1.3 GCI ...16
2.1.5 RECI ...17
2.1.6 NRI ...18
2.1.7 GI ..19
2.1.8 TCARI ..20
2.1.9 SAVI ...21

Chapter 3...22
3.1 The Dataset ..22
3.2 Programming Tools and Language Used ..26
3.3 Exploring the Dataset ..28
3.4 Possible Solutions ..31

3.4.1 Manual editing ..31
3.4.2 Automated editing ..31
3.4.3 Semi-Automated editing ..35

3.5 Implementation of Automated Editing ..36
3.6 Implementation of Semi-automated Editing ...41
3.7 Processing the Carrù Dataset ...44
3.8 Processing the Farigliano Dataset ...46

Chapter 4...48

3

4.1 Image Subdivision ...48
4.2 Grid Subdivision ..49

4.2.1 Problems with Grid Subdivision ..52
4.3 k-means Clustering Subdivision ..54

4.3.1 Comparison with the Grid Subdivision Method58
4.4 Labeling and Application of Vegetative Indices59

Chapter 5...65
5.1 Application of Classical Machine Learning Models65
5.2 Random Forest ...69

5.2.1 Implementation and Results ...71
5.3 Logistic Regression ...72

5.3.1 Implementation and Results ...73
5.4 K-Nearest Neighbors ...74

5.4.1 Implementation and Results ...75
5.5 Models Comparison ...76

Chapter 6...78
6.1 Application of Convolutional Neural Networks78
6.2 Deep Learning ...79
6.3 Architecture of Convolutional Neural Networks80
6.4 Training process...82
6.5 Transfer Learning and Data Augmentation ...83
6.6 Choice of Architecture ...85
6.7 Implementation and Results ..86

Conclusion and Final Remarks ..90
Bibliography ...94

4

Introduction

The advancements in drone technology in recent years have led their use to be

widespread for different applications, ranging from search and rescue, weather

monitoring, mapping and surveying to multipurpose videography. In agriculture,

one of the most prominent uses for drone imagery is for monitoring plantation

health. As the size of plantations expands so follows the complexity of monitoring

the health status of every single plant. This can be attributed to the fact that the

traditional evaluation of plants is based on visual checks that go along possibly

laboratory analyses which can prove costly in not only in terms of time but also

economics terms.

This thesis carries on the Dronuts Project which proposes a software and hardware-

based solution in order to provide plant classification and monitoring via remote

sensing with the aim of assessing the health status of each individual plant relying

on collected multispectral drone images. Different software approaches will be

applied in for the evaluation, analysis and processing of the drone shots taken over

multiple dates to classify independently the health status of a hazelnut plant.

We will discuss at first in Chapter 1 multispectral images, how they are acquired

and what type of information they carry in the agricultural sector.

Subsequently, in Chapter 2 we will introduce the different Vegetative Indices used

in this project with a brief description about each one of them. These indices will

allow us to study and assess the health conditions of any crop. Based on these

Vegetative Indices we will extract some metrics, which numerically describe the

characteristics of the plant on which will be used in later chapters to build and train

machine learning algorithms that will allow a classification of the plant in healthy

or diseased.

5

Later in Chapter 3, we will explore the dataset available, its characteristics and

possible inadequacies and what approaches can we use to remedy its criticalities.

Chapter 4 will consist mainly of subdividing the images of the dataset into smaller

regions using two different methods: Grid subdivision and k-means clustering.

Subsequently vegetative indices will be calculated, and labels will be applied so we

can proceed to the next chapter.

In Chapter 5, we will investigate the applied classical machine learning algorithms

like Random Forest, Logistic Regression and K-Nearest Neighbors that will be

used to classify the plants, we will highlight their training process, and evidently

assess the performances they have achieved.

In Chapter 6, we will look into the application of Convolutional Neural Networks

to our dataset. This different approach will be independent of the vegetative indices

analysis, using only RGB images as input to the network.

And finally we will try to summarize the steps taken, to give some final

considerations and try to list a set of strategies aimed at improvement of the

processes seen.

6

Chapter 1

1.1 Multispectral and Hyperspectral images

Multispectral images are composed of multiple image layers where each of them is

taken at a particular wavelength band. Multispectral image camera sensors

generally operate in the following bands:

- Blue, 450–520 nm

- Green: 520- 600 nm

- Red: 600–690 nm

- Red-Edge (RE): 670–750 nm

- infrared (NIR): 750–900 nm

Multispectral images can used for remote sensing applications with the aim to

acquire information on objects by measuring the electromagnetic radiation

reflected or transmitted from their surfaces on the visible sensor used. There are a

multitude of ways to obtain multispectral images for remote sensing applications,

for instance: drones, planes, satellites, etc.

Hyperspectral images on the other hand are the images in which one (almost)

continuous spectrum is measured for each pixel. Contrary to the limited number of

bands that multispectral images can have (normally 3 to 10), hyperspectral images

deliver a greater number of bands that are extremely adjacent to one another, hence

the continuous aspect of these images.

7

Figure 1.1: Difference between Multispectral and Hyperspectral imaging

In agriculture, hyperspectral imaging can have advantages over multispectral

imaging such as, the capacity to acquire and analyze subtle differences in the

electromagnetic radiation emitted by disease and soil moisture that cannot be

extracted in multispectral imaging due to the limited number of bands available.

However, some disadvantages arise with the implementation of hyperspectral

images such as, the much greater image size compared to multispectral images

(factor of 10 to 1000) and significantly higher cost of equipment and sensors.

Nonetheless, with the technology on the market today, it is possible to obtain a

type of more accurate and rich information using hyperspectral sensors. However,

for this project, the dataset will solely consist of multispectral images.

8

Remote sensing of objects in principle are carried out firstly by the acquisition of

the electromagnetic radiation through the visible sensors of the necessary

instrumentation, followed by data processing of the received signal and its

subsequent conversion to a digital image. Finally, the acquired visual information

will be interpreted and analyzed.

In this project, multispectral images shots were carried out on a hazelnut plantation

by means of a drone. The first phase of the project was completed, and it provided

the dataset of images required for interpretation and analysis. The drone used to

take the multispectral images is a DJI P4 Multispectral, it is equipped with six

sensors, having the following characteristics:

Figure 1.2: DJI P4 camera sensors technical characteristics

9

The drone sensor can take RGB images, Red-Edge (RE) characterized by a

wavelength of 730 nm ± 16nm and NIR (Near Infrared) to one wavelength of

840nm ± 26nm.

Therefore, the DJI drone is able to deliver a multispectral image consisting of a

total of five bands that will be crucial for the study and health assessment of the

hazelnut plants. Each band will bring different types of information that will be

subsequently used in order to calculate and obtain the Vegetational indices.

Figure 1.3: Electromagnetic spectrum

10

1.2 Spectral Reflectance of Vegetation

We have seen previously, that in addition to the visible spectrum (RGB), the

sensors of the DJI drone are able to take measurements to two different

wavelengths: Red-Edge (RE) and Near-Infrared (NIR).

- The (RE) Red-Edge band refers to a range of the electromagnetic spectrum

between Red and NIR, where rapid change can be observed in the

reflectance property of the vegetation.

- NIR (Near Infrared): is a region of the electromagnetic spectrum that ranges

from a wavelength of 780 nm to 2500 nm. It belongs to the infrared band,

but at the same time it is the region closest, in terms of wavelength, to the

visible spectrum. NIR is applied in spectroscopic analysis, used for the

analysis of the radiation absorbed and reflected by a surface (soil, trees,

etc.). Given its properties, it sees wide use not only in the agricultural field,

but also in the field of medical and physiological diagnostics, in the study of

atmospheric characteristics and in astronomy.

Chlorophyll is a green pigment, present in all green plants which is responsible for

the absorption of light to provide energy for photosynthesis. The chlorophyll

absorbs most of it of light in the visible spectrum (400 nm - 700 nm), but the

structure cellular structure of the leaves, on the other hand, is characterized by a

strong reflectance when moving towards the near infrared band (700 nm-1100 nm).

Chlorophyll is a good indicator of the plant’s production potential. It can be also

used to understand the plant’s nutrient status, stress due to water, disease outbreak,

and more.

11

Figure 1.4: Spectral signatures of water, vegetation and soil

We can observe from figure 1.4 how green and healthy vegetation is characterized

by a lower light reflectance in the visible spectrum. The low reflectance in the

spectral regions of blue and especially red, which are in fact the ranges most

involved in the photosynthesis process. The reflectance, however, begins to

substantially rise showing as a maximum range variation of the band called Red-

Edge. This can be attributed to the fact that historically the cells of the leaves have

evolved to disperse the solar radiation in the range of the NIR, as the level of

energy per photon in this domain is not sufficient for the synthesis of organic

molecules. The solar radiation that plants use as an energy source in the

photosynthesis process, is called photosynthetically active radiation (PAR).

Therefore, the plants will look quite dark in the images taken in the PAR range and

relatively bright in the near infrared.

12

Interestingly, knowing the spectral reflectance curve of healthy vegetation it is

possible to go and identify the vegetation which instead turns out to be suffering,

as it will be characterized from lower reflectance percentages in the NIR band (and

beyond), and higher percentages in the visible bands.

It is also possible to discriminate from vegetation, both the ground and the possible

presence of water. In fact, we note how the reflectance curve of the water is

characterized by a very high percentage of absorption in the infrared range and

beyond. While that of the ground devoid of vegetation has a lot of curves more

uniform, showing no obvious spikes at any spectral range.

However, it should be noted that the spectral signature of the terrain is anyway

subject to several of its characteristics, such as: the content of humidity, its

consistency, surface characteristics (rocky, sandy, clayey), the possible presence of

iron oxide and finally the organic material present on it.

13

Chapter 2
2.1 Vegetative Indices

We discussed in the previous chapter the importance of multispectral and

hyperspectral imagery providing a multitude of electromagnetic bands in order

contribute to a wide range of information necessary for the evaluation and

examination of a crop’s state of health. Using these spectral bands, we can infer

distinct characteristics from the image into consideration, semantically

differentiating different aspects (vegetation vs soil, healthy plant vs sick plant,

etc.). The set of tools required in order to extrapolate the multispectral and

hyperspectral vegetation image properties are called Vegetation Indices (VIs).

In simple terms Vegetation Indices (VIs) are combinations of surface reflectance at

two or more wavelengths designed to highlight a particular property of vegetation.

They emphasize mainly photosynthetic activity in crops and therefore are

ubiquitously implemented in remote sensing agriculture applications. The majority

of Vegetation Indices make use of the inverse relationship between red and NIR

bands reflectance associated with healthy green vegetation. There exists a plethora

of Vegetation Indices in the scientific literature, each one can be calculated using a

combination of different spectral bands (in multispectral and/or hyperspectral

imaging), can yield different functionalities and accentuate a wide range of

characteristics.

A few of these Vegetation Indices have been considered in this project in order to

evaluate the status of the plants. The choice of the selected Vegetation Indices was

based upon the two mains semantic considerations required in order to process the

images provided in the dataset:

14

- Vigor Indices used to differentiate the plants from their surrounding (ground,

soil, roads, people, etc.).

- Chlorophyll Indices required to evaluate the health status of the plants

(greenness of the plants, chlorophyll content, nitrogen reflectance, etc.).

2.1.1 NDVI

NDVI (Normalized Difference Vegetation Index), is one of the most used

Vegetative indices used in remote sensing measurements. It quantifies vegetation

by measuring the normalized difference between near-infrared band, which

vegetation strongly reflects, and red band.

It is usually calculated by pixel-to-pixel basis and is quantified using this formula:

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷

NDVI can assume a minimum value of -1 and a maximum value of +1

While positive values can signify the presence of vegetation, strictly negative value

can be attributed to water (or clouds in case of satellites imagery), values around 0

represent properties of the soil (dirt, rock, sand, etc.).

On the other hand, values exceeding 0.3 can characterize a green area such as

plantation fields, forests.

15

NDVI can also indicate if a plant is sick if it falls below a certain threshold, which

can be attributed to a low reflectance of the NIR band.

Figure 2.1: Vegetation spectral bands reflectance

2.1.2 GNDVI

The second vegetative index used in this project is GNDVI (Green Normalized

Difference Vegetation) is an indicator of the plant photosynthetic activity, and it is

commonly used vegetation index to assess the nitrogen and water content of the

plant. Compared to the NDVI, it is a chlorophyll index normally applied at later

stages, as it saturates later than NDVI.

Like NDVI, GNDVI will also assume values in range from -1 to 1:

GNDVI uses the near infrared (NIR) and green band (GREEN) of the

electromagnetic spectrum. As opposed to NDVI, GNDVI is also more sensitive to

chlorophyll variation, hence a better determinator of the plant health status, and has

a higher saturation point. While NDVI is more sensible for estimating crop vigor

during the early stages, GNDVI can be used in crops with dense canopies or in

more advanced stages of development.

16

GNDVI is calculated using the following formula:

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁

Figure 2.2: GNDVI transformation

2.1.3 GCI

GCI (Green Chlorophyll Vegetation Index). This index is used to assess the health

condition of the crop by estimating its chlorophyll content. It is dependent on the

NIR and Green spectral bands and is calculated using the following formula.

It can assume values from -1 to + infinity

GCI is computed as follows:

𝐺𝐶𝐼 =
𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
− 1

17

2.1.4 NDREI

NDRE (Normalized Difference Red-Edge Index) is another index that is

commonly used to determine the amount of chlorophyll in plants. It is calculated

using a combination of a Near-InfraRed (NIR) band and the Red-Edge range

between visible Red and NIR.

NDREI is calculated using the following formula:

𝑁𝐷𝑅𝐸𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷_𝐸𝐷𝐺𝐸

𝑁𝐼𝑅 + 𝑅𝐸𝐷_𝐸𝐷𝐺𝐸

The choice of using this vegetative index can be attributed to the fact that the

optimal time to apply NDRE index is mid-to-late growing season when the plants

are starting to mature, which fits parts of the dataset to be analyzed.

2.1.5 RECI

This fifth index (Red-Edge Chlorophyll Index) is an estimator the chlorophyll

abundance of leaves. Like NDRE, it is determined using the ratio of reflectivity in

the near-infrared (NIR) and red-edge (RE) bands.

𝑅𝐸𝐶𝐼 =
𝑁𝐼𝑅

𝑅𝐸𝐷_𝐸𝐷𝐺𝐸
− 1

18

2.1.6 NRI

NIR (Nitrogen Reflectance index) is an index responsible for determining the

nitrogen content in plants. Nitrogen is an indispensable macronutrient for plant

growth and function and is a key component in plant production of proteins and

enzymes. Nitrogen is also a part of the chlorophyll molecule, and it ensures the

availability of energy when and where the plant needs it to optimize yield.

Figure 2.3: Chlorophyll molecule

Nitrogen deficiency, however, can manifest symptoms which includes:

- Poor plant growth.

- Small Leaves.

- Low abundance of chlorophyll which make the leaves become pale green or

yellow.

Nitrogen Reflectance Index can highlight these symptoms using a combination of a

green and red bands expressed in the following formula:

19

𝑁𝑅𝐼 =
𝐺𝑅𝐸𝐸𝑁 − 𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁 + 𝑅𝐸𝐷

It should be noted that the lower the value of the NRI, the higher the reflectance is.

Consequently, healthier plants will exhibit lower NRI values.

2.1.7 GI

GI (Greenness Index) highlights the level of greenness in plants. It is directly

correlated with the chlorophyll content on the plants and therefore their health

status (the lower the value the higher is the green reflectance).

Greenness Index is calculated using this formula:

𝐺𝐼 =
𝐺𝑅𝐸𝐸𝑁

𝑅𝐸𝐷

Similar to NRI, healthy vegetation will have lower GI values than unhealthy one.

The higher the reflectance the lower NRI values.

20

Figure 2.3: GI Transformation

We can clearly from figure 2.3 that the vegetation highlighted is darker compared

to the ground, therefore having lower values.

2.1.8 TCARI

TCARI (Transformed Chlorophyll Absorption and Reflectance Index), is another

index that allows to identify the areas of the field affected by chlorosis, which

could be caused by nutritional deficiencies or attacks of plant diseases. It makes

use of the red, green and red-edge bands.

21

TCARI is calculated by the following formula:

𝑇𝐶𝐴𝑅𝐼 = 3(𝑅𝐸𝐷_𝐸𝐷𝐺𝐸 − 𝑅𝐸𝐷)
0.2(𝑅𝐸𝐷 − 𝐺𝑅𝐸𝐸𝑁)

𝑅𝐸𝐷_𝐸𝐷𝐺𝐸 − 𝑅𝐸𝐷

2.1.9 SAVI

The last used vegetative index is SAVI (Soil-Adjusted Vegetation Index) which

applies a correction Normalized Difference Vegetation Index (NDVI) for the

influence of soil brightness in areas where vegetative cover is low. The correction

factor is designated by L.

It makes use of the NIR (near infra-red) and red bands, it is calculated by the

following formula:

𝑆𝐴𝑉𝐼 = (1 + 𝐿)
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿

The L correctness factor can range from 0 to 1. We can notice that for L = 0 we get

the NDVI formula. Normally, for areas with scarce vegetation we can set L = 1. L

can assume different values depending on the environment in question. However, a

good compromise is to set L = 0.5.

22

Chapter 3
3.1 The Dataset

After having discussed and examined the vegetative indices, these evaluative tools

can be applied to our dataset.

The dataset is comprised of 3330 images of hazelnut trees taken from a DJI drone.

The images relate to about 185 plants taken in hazelnut plantation fields in the

Province of Cuneo in the Italian region Piedmont, an area renowned for hazelnut

farming. The images were taken in 2022.

The dataset consists of two fields shootings, and therefore can be divided in to 2

subsets:

The Carrù dataset and the Farigliano dataset.

- The Carrù dataset consisting of 127 hazelnut trees with 3 drone shooting

days for each tree over a period of around 2 months (30/05/2022, 22/06/2022

and 15/07/2022 respectively). The images were taken in a hazelnut tree field

in Carrù (Carrù is a comune in the Province of Cuneo in the Italian region

Piedmont).

23

Figure 3.1: Carrù photo areal image

Figure 3.2: First example of a Carrù plant images over the three shooting sets

Figure 3.3: Second example of another Carrù plant images over the three

shooting sets

24

- The Farigliano dataset consisting of 58 hazelnut trees with 3 drone shooting

days for each tree over a period of around 2 months (03/06/2022, 24/06/2022

and 16/07/2022 respectively). The images were taken in a hazelnut tree field

in Farigliano (Farigliano is also a comune in the Province of Cuneo in the

Italian region Piedmont).

Figure 3.4: Carrù photo areal image

Figure 3.5: First example of a Farigliano plant images over the three shooting

sets

25

Figure 3.6: Second example of a Farigliano plant images over the three

shooting sets

For every drone shooting set and for each hazelnut tree, we have 6 different images

consisting of 1 .JPG that includes all RGB channels and 5 multispectral images:

- 3 .TIF format image for RGB (Red, Green and Blue) bands.

- 1 .TIF format image for RE (Red-Edge) band.

- 1 .TIF format image for NIR (Near-Infrared) band.

Figure 3.7: Set of multispectral images for one plant (From left to right: RGB,
Blue, Green, Red, Red-edge, NIR)

26

For every shooting, each plant has its own folder consisting of these images. The

datasets also include 5 additional aerial multispectral images of the field for every

drone shooting set. No labeling regarding the health status of the trees was given at

this stage.

As previously mentioned, our main objective is to be able to explore different

analysis approaches in order to classify diseased from healthy hazelnuts trees using

an automated process. We should therefore try to mimic an expert botanist on the

field trying to visually assess the health status of trees. The latter requires a

semantically driven approach in order to isolate the tree from its surroundings

before applying our vegetative indices for evaluation.

3.2 Programming Tools and Language Used

Due to the large size of the dataset previously presented (3330 images). The choice

of our programming tools used in order to analyze and explore the dataset will be

the Google offered products: Google Colab for programming along with Google

Drive for storage.

Colab is a free Jupyter notebook environment that runs entirely in the cloud. It

does not require a setup and can be accessed directly from any browser using a

gmail account. The programming language used is Python 3.7 which has a

multitude of practical libraries that can be applied to make the coding experience

shorter and more efficient. Python also supports many popular machine learning

libraries which can be easily loaded in the notebook such as TensorFlow, scikit-

learn, PyTorch.

27

The main benefit and advantage of Colab is making use of cloud computing: The

code will be executed on Google servers. This means that the execution of the code

will be independent from its coding environment which will allow less-performing

computers in the development and execution of the code, more importantly saving

on spatial and temporal resources.

Figure 3.8: Jupyter and Google Colab logos

Google Drive is a free cloud-based storage service that enables users to store and

access files online. It will be used as our storage drive in which the input and

output of our code will be saved. The usage of a cloud-based storage with direct

access to our coding environment and the execution of our code will prove crucial

in terms of saving resources on downloading and uploading our data every time we

execute our code. A cloud-based storage means that the data we are using in our

project will not be limited to a single localized storage but can be accessed at any

time and at any place using a gmail account.

28

3.3 Exploring the Dataset

As we saw earlier, our dataset is made of multiple multispectral images belonging

to hazelnuts plants, the images of these trees were taken from a DJI drone.

We notice however a few problems in our dataset:

- Most of the images do not appear to have only one tree as their subject,

instead, multiple trees can be present in a single image.

Figure 3.9: Example of image containing many trees

This makes it sometimes hard to differentiate the outline of trees from one another

(overlapping leaves and/or branches).

29

Figure 3.10: Example of image with overlapping trees

The image above figure 3.10 shows how difficult defining the contour of a plant

can be.

- Image lighting conditions can differ greatly between shooting sessions

including brightness and sun angle and it can be shown across all

multispectral bands.

Figure 3.11: Same plant with different lighting conditions

Looking at the image figure 3.11 on the left we can almost distinguish no shadows

in the image, however in the image of the right we can almost directly notice that

30

the sun hits the tree unevenly, creating areas of shade. In consequence, this will

lead to a loss of details in the images and eventually information loss.

– For some plants, photos taken across the different bands do not seem to line

up perfectly on top of one another.

Figure 3.12: GNDVI transform showing artifacts due to multispectral

bands not being superimposable

We can clearly see from figure 3.12 artifacts along the contour of the tree, the

artifacts signify a low value for the vegetative index, which in practical terms can

be considered erroneous. This discrepancy in alignment between multispectral

images (which can be vertical and horizontal) can be attributed to the delay and the

drone movement between the shots, making some of the multispectral images not

superimposable. This might pose a challenge in the image processing phase of our

project.

31

3.4 Possible Solutions

Solving the dataset problems requires the use image processing tools on our

dataset. These tools will prove necessary in defining and isolating subject trees

regardless of their surroundings, lighting conditions and the misalignment of the

multispectral images drone shots. This step is necessary in order to proceed in our

project

We suggest three approaches that can be applied:

3.4.1 Manual editing

Editing the picture manually which consists of:

- In case of the multispectral images being misaligned: Manually aligning all

the multispectral images to the RGB photo for each plant using a photo editing

software so they become superimposable.

- Manually drawing the contour of subject tree on the RGB photo hence

removing other trees not under consideration, extracting the RGB drawn mask

and applying it to rest of the multispectral images.

3.4.2 Automated editing

Creating a script that can automatically predict the boundaries of the subject tree

regardless of lighting conditions and misalignment of multispectral bands, then

removing trees not under consideration. In this approach, vegetative indices come

into play.

32

 Our first step is to highlight the vegetation present in the image using a vegetative

index. The choice of our vegetation index is the commonly used NDVI that, as

described in the previous chapter, can detect vegetation in multispectral imaging

using the red and NIR spectral bands.

In our dataset, the NDVI mask will be applied in order to differentiate the trees

from their surroundings (soil, ground, water), where according to the NDVI

formulation, a value below 0, is not considered as vegetation, so 0 and negative

values can be assumed to be non-vegetation.

Figure 3.13: NDVI transform with threshold = 0.2

In figure 3.13¸the NDVI is computed with a specific threshold. If the value of the

NDVI computed for every pixel falls below 0.2, the NDVI pixel value will be

automatically set to a normalized negative value (-1 in our case). Using this

technique we can solely highlight the vegetation present in the image while

omitting everything else (ground, soil, road, etc.).

33

In order to account for uneven lighting conditions and misalignment in the

multispectral images, a higher threshold for the NDVI will be selected. This will

allow the NDVI mask to be more conservative in terms of contouring and masking

the vegetation and therefore the misalignment effect between the multispectral

bands will be reduced. The NDVI threshold described in figure 3.13 could be set

for instance to 2.5 or 3, consequently reducing the number of artifacts considered

within the tree boundaries.

It should be noted that this approach may lead to information loss as we are

trimming portions of the edges of the tree. However, the removed portion will only

consist of a small fraction relative to the whole tree and consequently this method

seems to be a plausible compromise for our analysis.

The next step will be differentiating and isolating the subject tree relative to other

trees or vegetation in an image. The difficulty of the implementation of this step is

entirely dependent of the vegetative content of the images. Let’s say for instance

the tree under consideration is the only vegetation present in the image, an NDVI

mask will solely be sufficient in isolating the tree figure 3.14.

Figure 3.14: Tree image where NDVI (threshold = 0.2) mask alone is sufficient
for its isolation

34

In another example if there are multiple unconnected trees, we can predict vertical

and horizontal bounds to the tree under consideration and therefore we will be able

to isolate it from the rest of the vegetation (figure 3.15).

Figure 3.15: Image where an NDVI (threshold = 0.2) mask is not sufficient for
the tree isolation, but boundaries can be predicted

However, if our subject tree is surrounded by other trees where they appear to be

intertwined and overlapped, it becomes almost impossible to establish an

automatable method to be able to distinguish the contour of the tree under

consideration (figure 3.16).

35

Figure 3.16: Image where an NDVI (threshold = 0.2) mask is not sufficient for
the tree isolation and boundaries are impossible to predict

3.4.3 Semi-Automated editing

Semi-automated editing consists of using a combination of manual and automated

editing. For instance, we can apply an automated contour delimiter based on a

vegetative index in order to define the body of the tree and then we can manually

define horizontal and vertical boundaries respectively. The automated contour

delimiter in that case will also account for the multispectral images misalignment.

36

Figure 3.17: Manually defining boundaries on NDVI (threshold = 0.2)
calculated image

Due to the massive number of images in our dataset, manual editing will not be

considered as it will take an absurd amount of time to edit the images by hand,

therefore defying the purpose of the project. Depending on the dataset, the images

will be edited using an automated and/or semi-automated editing process.

3.5 Implementation of Automated Editing

In this approach we will apply an automatic editing process to the images. The

process applied consists of multiple steps implemented in Python where each of

the steps will be explained as follows:

37

Let’s say we want to automatically edit this image in order to isolate the tree under

consideration (in this case the tree in the middle):

Figure 3.18: Input of automated editing process

The first step consists of applying the NDVI transform pixel-by-pixel to our image.

The NDVI will have a variable threshold for which pixel values can be considered

or rejected and a variable added bias value that can be useful in images containing

an excessive amount of vegetation around the considered tree. The chosen

threshold will assume values of 0.2 or 0.3 depending on the dataset to be analyzed.

Given that the values of the NDVI transform belong to [-1,1], if a NDVI pixel

value is under the threshold, it will automatically assume a value of -1 (figure

3.18).

38

Figure 3.19: NDVI transform with threshold

The output of the NDVI mask will be used as an input to our contour delimiter.

This step will draw a contour around the NDVI image using the Python Open CV

library. It will then consider hierarchically the biggest contour drawn and neglect

the other ones, due the fact that for instance, small bushes or foliage scattered on

the ground formulate a smaller area compared to the subject tree, nonetheless, they

might yield an NDVI value greater than the threshold applied, however, these

insignificant vegetation patches do not belong to the tree under consideration and

hence should not be considered in our analysis. The drawn contour is then filled

and passed to the next step.

Figure 3.20: Drawn contour around vegetation

39

This next step aims to estimate the horizontal boundaries around the hazelnut tree

under consideration. Only horizontal boundaries estimation was considered and

implemented in our project since we will discuss subsequently the different image

processing methods applied to our separate datasets including the fact that

horizontal boundaries estimation will be sufficient for most of the automated

editing process that will be applied to the major portion of images studied.

In consideration of the fact that in the given dataset images the plant under

consideration is almost always at the center of the image, the boundaries are

estimated by firstly considering the middle of the image as our starting point. We

apply 2 well defined left and right horizontal sliding windows (SW) with a

window size and an overlap factor as parameters. We compute the total pixel count

that belong to these windows given that the pixels under consideration belong to

the contour estimated in the previous step. Once all the considered windows are

computed, we find the first minimum from the center on each side and set the

horizontal boundaries accordingly.

𝑙𝑒𝑓𝑡 𝑏𝑜𝑢𝑛𝑑 = 𝑖𝑛𝑑𝑒𝑥(𝑚𝑖𝑛 (𝑆𝑊𝑙𝑒𝑓𝑡))

𝑟𝑖𝑔ℎ𝑡 𝑏𝑜𝑢𝑛𝑑 = 𝑖𝑛𝑑𝑒𝑥(𝑚𝑖𝑛 (𝑆𝑊𝑟𝑖𝑔ℎ𝑡))

 In order to correct for rare cases where the contour drawn of the subject tree does

not belong to the center of the image, we add a shifting starting point parameter

aiming to let the user manually decide the position of the horizontal starting point

of the algorithm.

We finally obtain two bounds that will delimit our tree horizontally, so we can

proceed to the next step of our process.

40

Figure 3.21: Added boundaries

The output of the vertical tree boundaries estimator will become the input of the

mask extractor. In this step we will be able to isolate the subject hazelnut plant by

extracting the NDVI mask defined by the vertical boundaries that were estimated

in the previous step.

Figure 3.22: Extracted tree mask

41

In the final step, we use the NDVI mask extracted as our reference for the now

isolated plant, we save the pixel coordinates of the mask in a specific file for every

plant. The saved pixel data points coordinates will be used in the next chapters of

our project in order to extract the mask of subject plants in all multispectral bands.

Figure 3.23: Contoured tree

3.6 Application of Semi-automated Editing

The Semi-Automated Editing can be described in 2 steps.

1 – Automatically applying vegetative Indices in order to delimit and extract the

vegetation in the bounded area.

2 – Manually defining vertical and horizontal boundary lines.

42

In order to highlight the vegetation present in the image, in the first step, the NDVI

transform is applied. The chosen threshold for the NDVI transform will assume

values of 0.2 or 0.3 depending on the images. Values below that threshold will be

set to -1 to enhance the contrast between vegetation and non-vegetation. This step

is necessary in order to facilitate the manual definition of the boundaries. With

only vegetation emphasized compared to the rest of the image we will be able to

define the horizontal and vertical bounds much more accurately.

After displaying the image, we will be able to enter the minimum and maximum

boundaries (the edge borders) horizontally and vertically, defining a rectangular

shape around the plant under consideration. The defined boundaries will be used in

the next step in order to delimit the contour of the plant present in the bounded

area.

Once thing to note here is that trees can have all sort of shape geometry, and when

in some images, some trees tend to overlap with one another, it will be rather

difficult to well define the contour of the subject tree. As a consequence, at first

glance, strictly rectangular shaped bounds around the tree will be assumed as non-

ideal, however, as we will eventually see, given the nature of the datasets

containing a lot of images where trees are generally massively overlapped and

intertwined, will make the overall plant contour rather challenging to outline even

for the human eye (Farigliano dataset). The best approach will be to remain

conservative in delimiting the tree boundaries, so we don’t mistakenly include

vegetation (neighboring trees or grass) in our analysis that do not belong to the

plant under consideration. That being the case, we will choose to follow the

rectangular based approach for manually delimiting the boundaries of the plant

under consideration.

43

After defined the bounds of the tree in question, we apply a contour around the

tree. Then we follow by extracting the pixel coordinates points belonging to that

contour and saving the obtained data points in a specific file for every plant.

Figure 3.24: Manually entering the boundaries

The automated and semi-automated process can be illustrated in the following

diagram:

44

Figure 3.25: Automated and semi-automated editing processes

Having described the implementation of the different possible image editing

methods that can be applied to our dataset. We proceed by presenting the different

photographic contexts in which the images presented by each dataset were taken.

3.7 Processing the Carrù Dataset

As we have seen in the previous chapter, the Carrù dataset consists of 381 images

taken by a DJI drone. These images do not exclusively contain only the plant under

consideration as their subject, conversely the images include additional vegetation

like grass or small bushes, and they additionally contain other neighboring trees

(figure 3.2, 3.3).

Another apparent feature of the Carrù dataset is the discrepancy in the sun angle

between the different shooting sets (figure 3.2, 3.3). While the 30/05/2022 images

45

appear to be taken when the sun is at zenith, the 22/06/2022 and 15/07/2022

shootings have significantly more shadows around the vegetation. The

inconsistency in the exposure balance in the 22/06/2022 and 15/07/2022 images

can lead to loss of details and eventually loss of information. However, regardless

of the lighting conditions, the NDVI transform applied, seem to detect decently the

contour of the trees.

We can observe a particular feature of the Carrù dataset that stands out, is that all

the plants that appear in the images, regardless of their significance to our analysis,

appear to fall horizontally in the image. For Instance, looking at figure 3.26 below,

we notice that the plants are spread out from left to right. We notice in that image

the absence of plants that are vertically spaced, therefore we can conclude that any

vertical line drawn on the image can generally belong to a single tree or to no tree

at all. This statement holds true of the entire Carrù dataset. Despite the existence of

some overlap between neighboring trees present in the dataset, we can cut

vertically on both sides of the plant under consideration, thus isolating it from the

rest of the trees and vegetation present in the image.

Figure 3.26: Carrù dataset trees general layout

Considering the lay out of the Carrù dataset images, we can use the automated

process described previously in order to isolate our subject tree from the rest of the

46

vegetation in the image. As illustrated above, the automated editing process will

apply the NDVI transform to the image where a masking of the vegetation will be

applied. Subsequently will be able to estimate the vertical boundaries at each end

of the tree. The two boundaries will cut the image vertically where the NDVI

transformed contour will be at a minimum (where the tree in the middle of the

image ends). Finally, we will obtain the isolated and contoured plant under

consideration.

The automated editing process will be applied to all the Carrù dataset:

Carrù 30/05/2022 shooting, Carrù 22/06/2022 shooting and Carrù 15/07/2022

shooting.

3.8 Processing the Farigliano Dataset

The Farigliano dataset consists of 174 images taken by a DJI drone. Compared to

the Carrù dataset, the Farigliano dataset images contain much more overlapping

and intertwined neighboring trees and other vegetation, making a totally automated

process for isolating the subject plant in each image seem impossible, even for the

human eye, the majority of the drone images taken of the plants in the Farigliano

dataset will pause a challenge to properly define tree contours (figure 3.5, 3.6).

Analogous to the Carrù dataset we also notice different shadows in the different

shooting sets. While the 03/06/2022 images appear to be taken when the sun is at

zenith, we can observe that in the 22/06/2022 and 15/07/2022 shootings have

significantly more shadows around the vegetation. However, similar to the Carrù

47

dataset, regardless of the lighting conditions, the NDVI transform applied, seem to

detect decently the contour of the trees.

However, in contrast to the Carrù dataset, the layout of the trees in the images

taken in the Farigliano dataset, do not a follow a horizontal pattern, or any

particular pattern for that matter, consequently, in order to isolate the subject tree,

it will be necessary to manually define horizontal and vertical boundaries.

Due to the complexity and heterogeneity of the Farigliano dataset. We will apply a

semi-automated editing process, where we manually define a rectangular shape

around the tree under consideration before automatically proceeding in delimiting

the contour using the NDVI transform of the bounded image.

The manually applied boundaries will be strictly chosen in order to minimize the

inclusion of neighboring vegetation in our NDVI transformed contour, owing to

the nature of the dataset. This decision will therefore prevent the introduction of

erroneous data to our defined image, even at the expense of leaving out portions of

the subject tree that might not be considered, like branches or leaves that overlap

from neighboring trees (figure 3.2, 3.3).

The semi-automated editing process will be applied to all the Farigliano dataset:

Farigliano 03/06/2022 shooting, Farigliano 24/06/2022 shooting and Farigliano

16/07/2022 shooting.

48

Chapter 4
4.1 Image Subdivision

In order to properly assess the health status of a plant, botanists generally do not

base their evaluation on the plant as whole, rather, they try to discern and isolate

specific parts of the plant that might appear to be sick. Typically, given that a

portion of a plant is sick, does not necessarily imply the compromise of the whole

plant. This will enable the identification and isolation of sections of the plant that

might be suffering and act exclusively on them.

From this practice, we can try to apply the same evaluation process to our dataset,

dividing the image of the plants into subsections on which we can apply a label

either “healthy” or “sick”.

In the first step of this process, we should define the criteria for the image

subdivision. Two approaches will be explored:

- Grid subdivision: Dividing the image of the plant into an NxN grid and

applying labels accordingly.

- K-means subdivision: applying k-means clustering to the image of the plant

and then dividing it correspondingly, labels will also be also applied.

We must note that the labels that will be applied to the subdivided images will be

provided by a team of expert botanists on hazelnuts trees. These labels will be

indispensable for the application of machine learning methods in the next phase of

our project.

49

4.2 Grid Subdivision

This first explored method involves subdividing the processed images from the

previous step into an NxN grid pattern, where each section will contain one portion

of the plant. This approach allows to identify which portions of the tree appear to

be sick so the labels will be applied to each sub-plane accordingly. Proceeding

with the next phase, the vegetative indices will be calculated and applied for each

of the boxes using the pixels that belong to the subject plant computed from the

previous step. The evaluated vegetational indices for each of the sub-planes along

with their respective label will serve as the input to the machine learning

algorithms adopted in the following step of this project.

Our first step in the image subdivision is to decide on the criteria required to crop

and cut the image. After some experimentation with the dataset, we define an

upper threshold = 300,000 pixels and a lower threshold = 100,000 pixels. These

defined thresholds will be used to propose quasi-optimal rules that will be based on

the delimited plant pixel count in order to extrapolate the quantity N, we obtain the

following:

- If the contoured tree contains more than the upper threshold, we set N = 3

therefore obtaining a 3x3 matrix of the image (9 boxes).

- If the pixel count of the contoured tree contains falls between the lower

threshold, and the upper threshold, we set N = 2 therefore obtaining a 2x2

matrix of the image (4 boxes).

- If the contoured tree contains more less than the lower threshold, we set N

= 1 therefore obtaining a single box containing the plant (1 box).

50

Figure 4.1: Grid subdivision for different N

The choice of these thresholds was based on the resolution of the obtained sub-

planes. For instance, large boxes may include wider sections of the plant for which,

the majority of the vegetation seems healthy, but a small part is sick, therefore

defeating the purpose of the plant subdivision process. Conversely, small clippings

of the plant will result in a low definition. This in turn can lead to inaccuracies and

inefficiencies in the interpretation process of the images, like calculating vegetative

indices and applying labels.

After having applied the grid subdivision process to the images, we proceed by

numbering each sub-plane of the image starting from the upper left corner and

ending at the bottom right corner as shown in figure 4.1.

Having divided the image and labeled its subsections, we crop the image around

the plant, then we proceed to add a title as follows: “Pianta” followed by the

51

number of the plant in the dataset. Finally, the grid-subdivided image is saved in a

folder where it can be examined and evaluated by a team of expert botanists.

Figure 4.2: First plant of Carrù 22/06/2022 subset grid-subdivided

This procedure will be repeated for all the plants. Subsequently, we created an .xls

sheet where the botanists can insert the “healthy” (0) or “sick” (1) labels for each

sub-plane for every plant in the dataset.

Figure 4.2: First 18 entries of Carrù 15/07/2022 subset

52

The last step of our process is to save the pixel data for each of the sub-planes

inside a specific folder belonging to every plant. This procedure will allow the

computation of the average vegetational indices values for every specific

subsection of the plant under consideration.

Figure 4.3: Highlighted pixels representing the subdivided region 8 in plant 33
from the Carrù 15/07/2022 subset

4.2.1 Problems with Grid Subdivision

The major drawback of a grid-based tree subdivision is the absence of

conformance to the plant geometry. A strictly based rectangular subdivision will

not account for the various distinct features of a tree. For instance, we can have

multiple branches with different health status belonging to the same divided sub-

plane and thus they must be holding the same label. This can prove inaccurate for

the labeling process, and moreover, can lead to imprecise data input in the machine

53

learning phase of our project, as the “healthy” and “sick” parts of the subregion

may cause the respective vegetative indices values to be averaged out (figure 4.4).

Figure 4.4: Example of subregion (4) containing healthy and sick leaves

On the other hand, a subsection might contain very little to even no vegetation at

all. The latter can cause a major discrepancy in the pixel-to-pixel “importance”.

For every subsection the vegetative indices will be computed pixel-by-pixel using

the pixels that belong to the subject plant, then averaged out over the entire sub-

plane. This indicates that the average vegetative indices computed for each section

along with the respective labels, will be considered independently from the number

of plant-pixels included in these subsections. This will lead to some pixels having

more significance and influence over other ones and will generally cause an

inaccurate model representation of the plant under consideration.

In order to mitigate this problem, we can for instance set a lower bound for the

minimum plant-pixel count necessary to belong in a specific sub-plane so that

section can be considered in our testing data in the next phase of our project (let’s

say 1000 pixels belonging to that plant).

54

On the other hand, we can explore a more accurate tree representation model by

applying the k-means clustering method.

4.3 k-means Clustering Subdivision

k-means clustering is a data partitioning method and a combinatorial optimization

problem. It is a technique for vector quantization that performs the partitioning of n

observations into k clusters in which each observation belongs to the cluster with

the nearest mean, serving as a prototype of the cluster. This lead in a partitioning of

the data space into Voronoi cells.

Figure 4.5: Example of k-means clustering

Voronoi cell are a region that belong to a Voronoi diagram that consists of

dividing a plane into regions close to each of a given set of objects. These objects

consist of many points in the plane where for each point (or seed) there is a

corresponding region, called a Voronoi cell. These cells consist of all points of the

plane closer to the seed than to any other.

55

Figure 4.6: Example of Voronoi cells

The goal of the k-means partitioning method is to minimize some particular

function. We consider the distance of a point to the mean of the points of its

cluster, the function to be minimized is the sum of the squares of these distances.

K-means clustering is used in unsupervised machine learning where it can

classify unlabeled data into a predetermined number of clusters based on

similarities (k). Despite that the k-means clustering problem is computationally

difficult (NP-hard), there exist efficient heuristic algorithms converge quickly to a

local optimum.

Given a set of observations (x1, x2, ..., xn), where each observation is a d-

dimensional real vector, k-means clustering aims to partition the n observations

into k (≤ n) sets S = {S1, S2, ..., Sk} so as to minimize the within-cluster sum of

squares. The objective is to find:

where μi is the mean of points in Si.

In view of the k-means clustering method that just described above, we can apply

k-means clustering to our case so we can subdivide the contoured trees into k

clusters, we obtain equivalently:

56

- The n observations are the pixel coordinates that belong to the tree under

consideration.

- k clusters are the number of the subdivided regions to be considered for our

tree.

- Si is an area (or a tree subdivided plane in our case) that belongs to our

subdivided image.

Analogous to the grid subdivision-based approach, the k-means method allows to

identify which portions of the tree appear to be sick by dividing the tree into

clusters (sub-planes) so labels can be applied accordingly. Vegetative indices will

be then calculated and applied for each of the areas using the pixels that belong to

the contoured plant computed from the previous step. The evaluated vegetational

indices for each of the sub-planes along with their respective label will be used as

the input to the machine learning algorithms applied in the following step.

K-means clustering will be implemented in our project using sklearn.cluster from

the scikit-learn library in Python

We can illustrate the k-means clustering method using the following function:

S = k-means (k, n)

In the first step is to decide on the number of clusters k required for every tree. We

will describe the k as the rounded ratio between the total number of pixels that

belong to the contoured tree, and a predetermined cluster size, we can write it as

follows:

k = round (total number of contour pixels / cluster size)

k belongs to Z+

57

Following some experimentation with the dataset, we define the cluster size to be

100,000 pixels. Naturally the actual size of the sub-planes will not be exactly that

amount, however, the more clusters we have the more the subsections size will

converge close to 100,000 pixels.

Having predefined k, we can proceed by dividing the contoured plant into k

clusters, we obtain the following graph:

Figure 4.7: Example of k-means subdivided tree mask

For each cluster obtained, we will draw its respective contour. Subsequently we

add numbering for each of the sub-planes, and finally the mask of the k-means

clusters will be applied to our original image. We also include the plant number as

a title.

58

Figure 4.7: Contoured and numbered k-means divided tree

The following image is saved in a folder where it can be examined and evaluated

by a team of botanists. This procedure will be applied for all the plants. An .xls

sheet will also be created where the botanists can insert the “healthy” or “sick”

labels for each sub-plane for every plant in the dataset. Finally, the pixel data will

be saved for each obtained cluster inside a specific folder belonging to every plant.

This procedure will consequently allow the computation of the average

vegetational indices values.

4.3.1 Comparison with the Grid Subdivision method

Compared to the grid-subdivision method, the k-means clustering approach can be

more accurate in creating a tree representation model that will better conform to

the plant’s shape. This can be attributed to the fact that using the k-means method

59

will result in the division of the tree into sub-regions that will not be limited to

rectangular sub-planes, instead, k-means creates clusters using the pixels in the

image that belong to tree as observations. The result will imply a subdivision that

follows the tree’s geometry, making it more optimal. Moreover, the clusters

obtained will be very similar in size, resulting in a more balanced pixel datapoints

distribution into the divided regions.

For the same image, a more balanced distribution means a lower number of

subdivided areas compared to the grid-subdivision method, allowing fewer sub-

planes to be evaluated by the botanists, hence making the labeling process more

efficient.

Having considered both methods for image subdivision, our dataset will use a mix

of both grid subdivision and k-means subdivision methods in creating subdivided

images for the labeling process.

4.4 Labeling and Application of Vegetative indices

After having obtained the labels for our subdivided dataset, we proceed by

applying the vegetative indices and other related metrics to the sub-regions.

We can see in the figure below the ratio between the healthy and sick labels

applied to our dataset for the different shooting sets. We observe that with every

shooting set the trees become more sick.

60

Figure 4.8: Healthy and sick labels distribution for every shooting set

However, we notice that the presented dataset across all shootings sets is fairly

balanced.

Figure 4.9: Healthy and sick labels distribution across all the dataset

The last phase required before the implementation of the machine learning

algorithms is the calculation of the vegetative indices of our dataset.

61

We calculate pixel-by-pixel the vegetative indices for every subdivided region for

each plant in all the datasets. The computed values will be stored in a .csv file, the

respective label for every subdivided region will also be added.

We will also add for the dataset thresholds for the NDVI, SAVI and GCI metrics

that will be used to differentiate healthy from unhealthy vegetation. Three more

metrics will be created for each of the vegetative indices:

- Healthy mean: is the mean of the total number of pixels having a value

above the threshold

- Unhealthy mean: is the mean of the total number of pixels having a value

below the threshold

- Healthy Ratio: the ratio between the number of pixels having a value above

the threshold and the number of pixels having a value below the threshold

After some experimentation we add the following thresholds: ThNDVI = 0.5, ThSAVI

= 0.25 and ThGCI = 0.6

These added metrics will help highlight the status health of the vegetation and the

amount of it present in the images compared to other objects.

We proceed by calculating the correlation matrix between the different attributes of
the image.

62

Figure 4.10: Vegetative indices correlation matrix

We can notice from the table above (figure 4.9) that some of the vegetative indices

attributes have a strong correlation between them. For instance, GCI and GNDVI

seem to be strongly correlated with a correlation of 96%. On the other hand, we

can see different attributes showing a low correlation, like for instance the NRI

and RECI, having only -3.7% correlation.

Below we can see the distribution between the different calculated vegetative

indices attributes of the image relative to their labels.

63

Figure 4.11: Vegetative indices values distribution for healthy and sick labels

For the GCI, GNVI and NDREI metrics, we can clearly observe a general trend

that shows higher values for healthy plants and lower values for sick ones. In the

contrary, for the NRI and GI metrics the sick plants have higher values, this can be

related to the fact that the lower the values are in NRI and GI, the higher the

reflectance of the leaves of the plants (2.1.6, 2.1.7). However, the SAVI, RECI

and TCARI indices, the distribution is the same for both healthy and sick plants

64

for the following reasons: SAVI is not a good indicator of the plants health, rather

its main purpose is to highlight vegetation in images compared to the ground or

soil. RECI and TCARI are the only vegetative indices used that include the Red-

Edge in the calculation of their formulas. Both having the same distribution for

healthy and sick plants signify that the Red-Edge band for our case holds little to

no valuable information regarding the health status of the plants.

It was decided to remove the SAVI, RECI and TCARI from our calculation while

keeping the rest, as their number is not very excessive for the applied machine

learning algorithms.

65

Chapter 5
5.1 Application of Classical Machine Learning
Models

Machine learning is a branch of computer science which uses methods and

algorithms in order to mimic the way that the human brain learns, gradually

improving its accuracy. The used methods can use data to learn and improve its

performance on a set of tasks. Machine learning is seen as part of artificial

intelligence.

In the past decades, technological advances in storage and processing power have

led to breakthroughs machine learning research. These advancements allowed the

development of a variety of new tools that can be applied to solve data

classification problems.

The baseline of our project is to be able to classify a tree into two categories:

“healthy” or “sick”. This classification will be decided by data provided based on

multispectral images shot in multispectral bands. Given that the classified images

can fall into two categories, the problem to solve, is a binary classification

problem.

We recall the steps of our project in the following diagram.

66

Figure 5.1: Classification process diagram

For this chapter we will consider classical machine learning algorithms, of which,

many can be applied to solve our problem. However, in this chapter we will

consider three supervised leaning algorithms that fit well our case.

1 - Random Forest

2 - K-Nearest Neighbors

3 - Logistic Regression

The first step of our process is to divide the data into training set and a testing set.

We have decided that given the size of our data, an 80% of the data will for

training and 20% will be for testing. The partitioning of the data will be achieved

using stratified random sampling. For each of the used algorithms, the best

combinations of hyperparameters will be achieved through parameter optimization

67

methods such as Random Search and Grid Search. Moreover, each model will

utilize a k-fold cross validation process in order to validate the data.

It is necessary to define a confusion matrix table for the evaluation of the machine

learning algorithms implemented. The latter means that it will be required to

choose model performance criteria that will create a clearer understanding about

the machine learning models performance.

Figure 5.2: Confusion matrix

The criteria required for evaluation will be:

- Accuracy

- Precision

- Recall

- F1 score

Accuracy:

Accuracy is defined as the following:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑢𝑒𝑠𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑔𝑢𝑒𝑠𝑠𝑒𝑠
 =

𝑇𝑃+ 𝑇𝑁

 𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

68

Accuracy is simply the number of right guesses expressed as a portion of all the

guesses. The main shortcoming of accuracy in measuring performance and that

will become obvious when working with biased datasets. For instance, in our case,

we have all the labels being “healthy” labels and only say 1% of them are actually

“sick” if the model then decides to only output “healthy” predictions and

absolutely zero positive guesses the model will achieve 99% accuracy.

Precision:

We can express precision as the following:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑔𝑢𝑒𝑠𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑔𝑢𝑒𝑠𝑠𝑒𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Precision is a measure of how well the model guessed the label. It is calculated by

dividing the number of correct positive guesses by all the positive guesses. The

objective of a model that optimizes for this metric would be to make as few

mistakes as possible when guessing the positive labels. Moreover, the precision

score penalizes the model with the score of 0 if it fails to guess any positive labels.

However, the main issue regarding the precision score is that it doesn't consider

any of the negative labels.

Recall:

Recall is expressed in the following equation:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑔𝑢𝑒𝑠𝑠𝑒𝑠

𝐴𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑎𝑏𝑒𝑙𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

69

Recall measures how many positive labels are guessed correctly out of the total

number of positive labels available in the dataset. The objective is therefore to try

and find every positive. However, in some extreme cases recall can label

everything as positive and this will result in no false negatives.

F1-Score:

F1-Score is defined in terms of Precision and Recall:

𝐹1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

F1- Score is defined as the harmonic mean between precision and recall. F1-score

can check on how good the quality of the predictions is and how completely and

accurately the labels were predicted. The F1-score serves as a good indicator of

how the performance of model as it tries to maximize both precision and recall.

5.2 Random Forest

The first model used in this project will be based on the Random Forest algorithm.

Random Forest is a supervised machine learning classification algorithm that

combines the output of multiple decision trees to achieve a single result.

Decision trees is a learning algorithm that make use of tree-like model of

decisions. This tree structure has lead nodes that represent different classifications.

70

Each node can be seen as a class that can be connected to a parent node and

possibly having multiple child subclasses. The dataset is split recursively using the

decision nodes unless the node is a leaf node. The decision tree then finds the

optimal split by maximizing the entropy gain. If a data sample satisfies the

condition at a decision node, then it moves to the child node that holds that

condition. Finally, it reaches a leaf node where a class label will be assigned to it.

Figure 5.3: Decision Tree example

Random forests are a collection of multiple random decision trees. In order to

create a random forest, the first step required to build new datasets from the

original data where every dataset will contain the same number of features as the

original one. The process adopted to create new data is called Bootstrapping. The

following step will be training the decision trees on each of the bootstrapped

datasets independently. For every tree, a random subset of features for will be used

for training. After evaluating each tree independently, the predictions of all the

trees will be combined. This process of combining results from the multiple

71

decision trees is called Aggregation. Bootstrapping helps the model to be less

sensitive to the original training data as different parts of the data are used for

every decision tree. This method will help reduce the correlation between the trees.

Regarding the ideal size of the feature subset, a good rule of thumb will be a

number of features per decision tree which is close to the square root of the total

number of features. 𝑚 ≅ √𝑝

5.2.1 Implementation and Results

In order to optimize our model, it is necessary to fine tune the hyperparameters.

Due to the high number of hyperparameters, we used hyperparameter optimization

through Random Search. Random search is a process that utilizes random

combinations of the hyperparameters in order to obtain the best solution for the

built model. For each combination of the chosen hyperparameters, a model will be

built, tested and evaluated using classification performance metrics (precision,

recall, f1 score). Finally, the model with the highest performance will be adopted.

The results of the Random Forest model are presented below after the tuning of the

hyperparameters (k-fold = 5).

Figure 5.4: Random Forest confusion matrix

72

Figure 5.5: Random Forest results

5.3 Logistic Regression

Our third machine learning algorithm to be applied to our dataset is Logistic

regression. Logistic regression is a special case of regression analysis, it is used to

find the probability of an instance belonging to a particular class. For our binary

classification problem, dichotomous variables with 0 and 1 or “healthy” and “sick”

in our case, can be predicted by using a Logistic Regression.

Logistic regression creates a model based on the Logistic Function. A logistic

function allows only values between 0 and 1 to be possible. The Logistic function,

like linear regression models are based on the weighted sum of the input variables.

A logistic function will be applied on these features: The sigmoid function:

Figure 5.6: Sigmoid function

73

The training phase of the model will try to find the probability that an instance

belongs to a certain class. Looking at the sigmoid curve in (figure 1.23) if the result

of the logistic function is less than 0.5 than the instance belongs to the class ‘0’ or

if it is greater or equal to 0.5 than the instance belongs to ‘1’. Particularly, given a

parameter vector β and considering N samples with labels 0 or 1:

- For samples with label 1: Estimate β such that p(X) is as close to 1 as

possible.

- For samples with label 0: Estimate β such that p(X) is as close to 0 as

possible.

Where p(X) € [0,1]

5.3.1 Implementation and Results

Like the previous model, it is necessary to fine tune the hyperparameters in order

to optimize our model. Similarly, Random Search was used for this model.

The results of the Logistic Regression model are presented below after the tuning

of the hyperparameters (k-fold = 5).

Figure 5.7: Logistic Regression confusion matrix

74

Figure 5.8: Logistic Regression results

5.4 K-Nearest Neighbors

K-nearest neighbors algorithm or KNN is a supervised machine learning method is

used for classification and regression. In our case the k-nearest neighbors

algorithm will be applied for classification.

For classification in k-nearest neighbors, an instance is classified by a vote of its

neighbors, making the output is a class membership. The object is assigned to the

class with the most common among its k nearest neighbors (k belongs to Z+). For

instance, if k = 1, the instance will be assigned to the class of the closest neighbor.

Figure 5.9: K nearest neighbor example

75

Weights can be assigned to the contributions of the neighbors, so that the nearer

neighbors will contribute more to the average than the more distant ones. For

example, a common weighting method consists in giving each neighbor a weight

of 1 over the distance to the neighbor (1/d), making the weighing effect of more

distant neighbors less prominent.

The training set of the k-nearest neighbor algorithm is taken from a set of objects

for which the class is known. The classes in our binary classification can fall into

“healthy” or “sick”.

5.4.1 Implementation and Results

In view of a smaller number of hyperparameters Grid Search was used to optimize

our model. While Random Search chooses randomly from the defined search

space, Grid Search tests for all the possible combinations available in the

hyperspace. Although Grid Search is more computationally expensive, it usually

yields the best results.

The results of the k-nearest neighbors model are presented below after the tuning

of the hyperparameters (k-fold = 5).

Figure 5.10: K-Nearest Neighbors confusion matrix

76

Figure 5.8: K-Nearest Neighbors results

5.5 Models Comparison

Figure 5.9: Model performance comparison

Looking at the implemented models results (figure 5.9), we can see that each of the

models presented results that slightly differ to each other. While Logistic

77

Regression performed best with an accuracy of 0.66 and f1-scores of 0.62 and

0.69 respectively for “healthy” and “sick”, it took the most amount of time to run

despite the use of the faster Random Search method for hyperparameter fine

tuning. Random Forest follows directly next with an accuracy of 0.65 and f1-

scores of 0.61 and 0.69 for “healthy” and “sick” respectively using also Random

Search method for hyperparameter fine tuning. And Finally k-nearest neighbors

came in third achieving an accuracy of 0.64 with f1-scores 0.61 and 0.67 for

“healthy” and “sick” classes using Grid Search in order to tune the

hyperparameters.

78

Chapter 6
6.1 Application of Convolutional Neural Networks

In this chapter we explore a new approach that moves away from traditional

vegetative indices-based evaluation towards the application of artificial neural

networks

The main problem with a classification based vegetative indices is the reliance on

multispectral or hyperspectral imagery in order to calculate the necessary features

required for the evaluation. This latter requires the use of expensive equipment and

will result in the creation of a large amount of data for each photo taken. Moreover,

misalignment between different multispectral shots can create inaccuracies in the

calculation of the vegetative indices and will therefore introduce errors to our data.

Given our case, the labeling process was accomplished by a team of experienced

botanists relying solely on the RGB photo of the plant. We can therefore assume

for this step that all the necessary information required to evaluate and classify the

images of the plants can be reliably found in the RGB photos. As a result, in this

chapter we will apply artificial neural networks to our case that will be solely

based on the information found in RGB photos. Particularly, the types of the

networks that will be applied are Convolutional Neural Networks.

Convolutional Neural Networks (or CNNs for short) are a subset of machine

learning and a class of Artificial Neural Networks (ANNs). Convolutional Neural

Networks is a specific type of network architecture for deep learning algorithms.

CNNs are applied for image recognition tasks that make use of the processing of

pixel data.

79

6.2 Deep Learning

Deep learning is a subset of machine learning. Neural networks are considered to

be the backbone of deep learning algorithms. Compared to classical machine

learning algorithms, deep neural networks consistently improve as the amount of

data to be processed increases, making them better performers for large amounts of

data. Moreover, the application of deep learning algorithms does not require the

manual extraction of features from the data. In classical machine learning

algorithms, the relevant features are extracted in a first step, then based of these

features, the model will carry out the predictions. On the other hand, with deep

learning, this step is skipped and instead the data is directly fed into the deep

learning algorithm.

However, deep learning can have some disadvantages compared to classic machine

learning algorithms. In particular, deep learning is generally requires a large

amount of data to perform well. For instance, a typical deep learning neural

networks needs at least a few thousand images to get reliable results. Moreover,

deep neural networks are heavy on computational resources. They often require a

high-performance GPUs and a good amount of RAM resources. Compared to

classical machine learning algorithms, they take a considerable amount of time to

run. In order to mitigate the aforementioned drawbacks, transfer learning and data

augmentation can be employed, these two techniques will be explored in the

application of the CNNs to our dataset.

80

6.3 Architecture of Convolutional Neural Networks

The general aim of CNNs is to process the information present in images. The

architecture of the CNNs is generally based on biological neural networks that

represent the cellular structure of the brain. This architecture tries to imitate the

way a biological brain processes visual information.

CNNs follow an architecture similar to artificial neural networks, they are

comprised of a node layers. The first layer is called input layer, it is followed by

one or more hidden layers, and finally an output layer. The input layer is used to

insert the pixel data of the images, and the output layer will return the final result

computed by the neural network.

Figure 6.1: Example of a neural network with 2 hidden layers

In each layer, every node is connected to the nodes from the previous and the

following layers and has an associated weight and a given threshold. If the output

of any individual node is above the specified threshold, that node is activated, and

in turn, will forward the information to the next layer of the network. The node

architecture can be represented in the following diagram.

81

Figure 6.2: Neural network node

A neuron's activation status is determined by an activation function. The latter will

determine whether the neuron's input to the network is significant during the

prediction process. The Activation Function's main objective is to convert the

node's weighted input sum into an output value that will be fed into the following

hidden layer or used as output. One of the most used activation functions is the

Sigmoid activation function shown in the formula below.

Convolutional neural networks and artificial neural networks differ primarily in the

type of hidden layers used in the network. While the standard artificial neural

network uses fully connected layers, CNNs, additionally, make use of partially

connected layers. CNNs generally make use of 3 types of layers: Convolutional

layers, pooling layers and fully connected layers.

A convolutional layer is considered as the major building block of a CNN. It is

comprised of filters (or convolution kernels) with parameters that will be learned

throughout the training process. Each filter convolves with the image and creates

82

an activation map. This map can highlight the locations and strength of the

perceived features in an input.

Figure 6.3: Example of convolutional layer

Pooling layers are used alongside the convolution process. Pooling layers

compresses images summarizing the existence of features in individual feature

map patches, pooling layers offer a method for down sampling feature maps.

Average pooling and Max pooling are two popular pooling techniques that

summarize a feature's average presence and its most active presence respectively.

6.4 Training process

The process of training a neural network can be characterize as an optimization

problem. The basic idea is to optimize the weights of connections between the

nodes in every layer of the network. Each connection between neurons starts with

an arbitrary weight assigned to it during the beginning of the training phase. These

weights would be constantly updated in order to reach their optimal values. There

83

exist a multitude of methods to update and optimize weights, the most widely used

is called stochastic gradient descent (SGD).

The main objective of stochastic gradient descent is to minimize a given loss

function. SGD would be updating the weights with the aim of making the loss

function as close to zero as possible. The loss function could be defined for

instance as the mean squared error (MSE), which calculates the difference

between the predictions made by the neural network and the true actual label value

of the tested sample, averaged it out across the whole dataset.

SGD will try to minimize this error to maximize the model’s accuracy in its

predictions. Through a Cross-validation resampling process of repeatedly sending

the same data into the model, is when the model will actually learn with SGD,

updating the weights of the model accordingly until the loss function is at a

minimum.

6.5 Transfer Learning and Data Augmentation

Before implementing the CNN the model, it is crucial to choose the correct

architectures to be used. As stated previously, one of the main drawbacks of CNNs

is the large amount of data required in order to achieve good performance and

results. Consequently, it is necessary to apply CNNs architectures that can mitigate

this problem. Given the case of our project, it was therefore decided to implement

architectures that supports the prior mentioned techniques: transfer learning and

data augmentation.

Transfer learning allows the transfer the information learned from models already

extensively trained, in order to solve a different problem that belongs to the same

84

domain. The main objective of transfer learning is therefore to adapt a pre-trained

CNN that will be able to generally extract features within an image (object

detection). This technique will be applicable to our case regardless of whether the

used transferred model was trained on trees or not. This can be attributed to the

fact that transfer learning is based on features that are commonly present in all

images in general like horizontal and vertical edges, object contours, etc. allowing

the usage of fewer computational resources and less training data required

compared to the case where the CNN is trained from scratch.

Data augmentation is used to artificially increase the amount of training data. This

includes making minor adjustments to the data or creating new data points using

deep learning models. This technique will create additional datapoints to be used

by a CNN, therefore increasing the size of the dataset and helping reduce

overfitting. Different methods of data augmentation can be applied to the images

such as: random rotation, flipping, padding, translating, etc.

Figure 6.4: Example of data augmentation

85

6.6 Choice of Architecture

Considering the mentioned techniques above, architectures that provide both

transfer learning and data augmentation will be implemented. These architectures

will be adopted from the Keras library in Python.

Figure 6.5: Keras architectures

Given the limited available resources in both computation terms and terms of time.

We decided to implement ResNet50 and DenseNet121.

We should also bear in mind that the optimization of the hyperparameters (batch

size, epochs, learning rate, etc.) will require tremendous computational power

therefore much longer running time, consequently, random search and grid search

will not be applicated in this case. As for the transfer learning adopted in our

model, we can apply fine tuning which allows CNN to learn on some or on all

levels of the adopted basic model. This can be achieved by using a low learning

rate in order to better optimize the model.

86

6.7 Implementation and Results

Before we proceed with the execution of our models, it is necessary to divide our

dataset into different sets: training set, test set and validation set accordingly:

- Training set: 70%

- Test set: 15%

- Validation set: 15%

We then proceed by defining the hyperparameters of our network (Network

architecture, Batch size, learning rate, epochs, etc.). Due to the complexity of this

step due to hardware and time limitations, the hyperparameters will be manually

tuned and optimized for every architecture considered.

We therefore implement the following architectures:

Figure 6.6: DenseNet121 architecture

87

Figure 6.7: ResNet50 architecture

After training our network, we will proceed to our next phase: fine tuning. This

step described previously can also improve the performance of our network further

by allowing the activation of the learning of all or some levels of the basic model.

We obtain the following results for the ResNet50 and DenseNet121 applied to tour

dataset:

Figure 6.8: ResNet50 confusion matrix

88

Figure 6.9: ResNet50 results

Figure 6.10: DenseNet121 confusion matrix

Figure 6.11: DenseNet121 results

89

From the results presented in figure 6.8 and figure 6.9 we can clearly see that the

ResNet50 model achieved the best performance overall in terms of accuracy and f1

scores compared to the DenseNet121 model.

Finally the performance between all the models implemented in chapters 5 and 6 is

shown in the following histogram:

Figure 6.12: Performance comparison of all implemented models

90

Conclusion and Final Remarks

Based on the results obtained in figure 6.10, from the classical machine learning

classification models we notice that Logistic Regression model performed best

with a 66% overall accuracy followed by Random Forest with 65% and lastly k-

nearest neighbors achieving 64% overall accuracy. Compared to CNNs, we

observe a greater performance overall with ResNet50 performing the best with an

accuracy of 72%.

Comparing the classical machine learning models to CNN it is necessary to clarify

that while the classical models can work well on small datasets, neural networks

require generally a large amount of data in order to perform well, the more data

they have to learn from, the more they will be able to generalize. For smaller

datasets several techniques can be employed on the architectural level of CNNs

such as applying data augmentation on the dataset and adding dropout layers in the

network to prevent overfitting. Conversely, classical machine learning algorithms

that were applied can be more efficient in computational resources and more

accurate in classifying smaller datasets with a specific set of features based on the

well-defined and selected vegetative indices. Applying smaller datasets will also

make these models tend to be less prone to overfitting. Additionally classical

machine learning algorithms can be more extensible, meaning that features can be

easily added and integrated. For instance, given a wider range of multispectral

bands, it may be possible to add new metrics that make use of a wider set

vegetative indices that can quantify and represent more information of the

vegetation.

However, a noticeable contrast between classical machine learning algorithms and

CNNs, is the required amount of data employed for each of the methods applied.

91

While CNNs require only the RGB photo of the plant as input, traditional machine

learning algorithms rely on a set of features that were pre-computed in advance. In

our case the features used were a set of vegetational indices computed from five

multiple spectral bands. For comparison, for each plant tested, the single RGB

image is around 1 Megabytes while the combined size of the multispectral images

is around 20 Megabytes. Given this observation, we can deduce that for every

plant, classical machine learning algorithms make use of around 20 times the

amount of data required compared to CNNs.

Considering that CNNs algorithms performed best in terms of accuracy and f1

scores while requiring less data to be processed and pre-computed, we can

conclude that Convolutional Neural Networks, despite requiring more

computational resources, are the optimal performing algorithm for our project.

Nevertheless, even if we only employed CNNs as our solution, we cannot solely

rely on RGB images to achieve the desired results, given that multispectral images

were necessary for achieving our goal in this project, that being the automated

plant extraction and subdivision. Being one of the crucial steps of our project, the

automated plant extraction and sectioning phase relies solely on multispectral

bands in order to detect vegetation of the image before isolating the plant under

consideration. Although in this step, it is important to note that only the Red and

NIR bands were used in order to compute the NDVI index. However there exist in

the literature a number of solutions that only utilize RGB photos as their input in

order to highlight vegetation in a specific image. One of the proposed solutions is

the use of suitable augmentations on images so the defined model learns semantic

representations that are invariant to photometric and geometric shifts and employ

an adaptive sampling technique, which determines the training images based on a

pixel-wise distribution of classes measurement and real network confidence

92

(Tavera, Antonio, et al., 2022), thus providing an approach that moves away from

classical handcrafted vegetative indices towards more robust computer vision

methods.

A final remark should be made on the application of the labels on the provided

dataset. Being conducted by the human eye, the labeling process can be prone to

the element of subjectivity. For instance, for every shooting set, we can notice that

the images were evaluated and labeled relative to their surroundings (other

subsections of the same tree or other trees belonging to the same subset of images).

For example, given that in May and June trees appear to be generally healthier than

in July, an image labeled “sick” in May/June may be considered “healthy” if it

belonged to a shooting set in July. Moreover, the labeling process was solely based

on the RGB photos, thus lacking the additional information provided on the NIR

and Red-Edge bands and also making the evaluation process more susceptible to

lighting conditions. We must also add that it is essential for the labeling process to

be cross-checked by a team of experts in order to avoid discrepancy in the data and

reduce the human error attributed to subjectivity.

In conclusion, the best implemented solution was able to achieve an accuracy of

72% allowing the identification and classification of healthy and sick subregions of

each plant tested. A higher accuracy proves impossible to achieve due to the

fuzziness of the labels applied.

Therefore, any future developments should certainly include:

- A finer and more accurate labeling process from a team of expert botanists

that should be thoroughly cross-checked to avoid any bias or subjectivity.

- More precise shots taking into consideration perfect lighting conditions and

overall good exposure.

93

- The capture of higher resolution images for more detail, and better framing

of trees under consideration.

- Use of better sensors that can capture more bands therefore providing the

possibility to exploit more vegetative indices (for instance hyperspectral

sensors).

- A larger and more diverse dataset in order to enhance the performance of

CNNs.

- More computational power that will allow the application of a greater

number of hyperparameters in order to achieve better optimization of the

machine learning algorithms.

94

Bibliography

[1] The Nature of Geographic Information - Spectral Response Patterns:

https://www.e-education.psu.edu/natureofgeoinfo/c8_p5.html

[2] DJI P4 Multispectral:

https://www.dji.com/it/p4-multispectral/specs

[3] L3Harris – Broadband Greenness:

https://www.l3harrisgeospatial.com/docs/broadbandgreenness.html

[4] Agricolus site:

https://www.agricolus.com/en/vegetation-indices-ndvi-ndmi/

[5] Auravant site:

https://www.auravant.com/en/blog/precision-agriculture

[6] EOS Data Analytics – Precision Agriculture:

https://eos.com/industries/agriculture/

[7] Koch Agronomic - Knowledge Center:

https://kochagronomicservices.com/knowledge-center/

[8] IBM- Machine Learning:

https://www.ibm.com/cloud/learn/machine-learning/

[9] IBM – Random Forest:

https://www.ibm.com/cloud/learn/random-forest

[10] Scikit-learn – KMeans:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

[11] TechTarget – Logistic Regression:

https://www.techtarget.com/searchbusinessanalytics/definition/logistic-regression

[12] IBM – K-Nearest Neighbors Algorithm:

https://www.ibm.com/topics/knn

https://www.e-education.psu.edu/natureofgeoinfo/c8_p5.html
https://www.dji.com/it/p4-multispectral/specs
https://www.l3harrisgeospatial.com/docs/broadbandgreenness.html
https://www.agricolus.com/en/vegetation-indices-ndvi-ndmi/
https://www.auravant.com/en/blog/precision-agriculture
https://eos.com/industries/agriculture/
https://kochagronomicservices.com/knowledge-center/
https://www.ibm.com/cloud/learn/machine-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://www.techtarget.com/searchbusinessanalytics/definition/logistic-regression

95

[13] EXSILIO - Accuracy, Precision, Recall & F1 Score: Interpretation of Performance
Measures:

https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-

measures/

[14] V7labs - Activation Functions in Neural Networks:

https://www.v7labs.com/blog/neural-networks-activation-functions

[15] AI Multiple – Data Augmentation:

https://research.aimultiple.com/data-augmentation/

[16] Keras – Keras Applications:

https://keras.io/api/applications/

[17] Mobasheri, M. R., M. Chahardouli, and M. Farajzadeh. "Introducing PASAVI and
PANDVI methods for sugarcane physiological date estimation, using ASTER images."
(2010): 309-320.

[18] Bausch, Walter C., and Jorge A. Delgado. "Impact of residual soil nitrate on in-season
nitrogen applications to irrigated corn based on remotely sensed assessments of crop nitrogen
status." Precision Agriculture 6.6 (2005): 509-519.

[19] Liao, Kuo, et al. "Detection of Eucalyptus Leaf Disease with UAV Multispectral
Imagery." Forests 13.8 (2022): 1322.

[20] Tavera, Antonio, et al. "Augmentation Invariance and Adaptive Sampling in Semantic
Segmentation of Agricultural Aerial Images." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2022.

https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/
https://research.aimultiple.com/data-augmentation/

