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Chapter 1

Introduction

Ovarian cancer accounts for 3.3% of all cancers in women worldwide, but it is
a very aggressive type of tumor responsible for approximately half of the deaths
related to gynecological cancer [1, 2, 3]. This high mortality is principally due to
the difficult diagnosis and differentiation at an early stage [1]. Therefore, early
detection and characterization of ovarian lesions is of utmost importance for an
adequate management of the patient.
Nowadays, the method of choice to detect ovarian neoplasms is the ultrasound
technique that is particularly convenient since it is non-invasive and at low cost.
Specifically, Color Doppler and Power Doppler imaging represent useful tools to
differentiate between benign and malignant neoplasms because the vascularization
of a malignant mass may differ from that of a benign neoplasm [4, 5]. However, the
main disadvantage of these techniques is that artifacts are particularly frequent,
due to either inappropriate settings, anatomic factors or physical and technical
limitations [6].
Since the ultrasound imaging technique is a complex diagnostic tool subject to the
examiner interpretation, in literature several diagnostic standards were proposed
with the aim of making the evaluation of ultrasound videos more objective and
independent from the examiner. In this context, a group of researchers founded, in
1999, the International Ovarian Tumor Analysis (IOTA) with the aim of generating
a standardized terminology to describe the sonographic features of adnexal lesions.
Regarding vascularization, among the definitions introduced by IOTA, the color
score is particularly interesting since it is a scoring system that indicates the degree
of vascularization within ovarian masses. The color score is assigned by clinicians
to the tumor as a whole and it is equal to 1 when no blood flow is detected within
the lesion, 2 when the flow is minimal, 3 if the flow is moderate and 4 if the lesion
is highly vascular [4].
The color score has been proved to be a good predictor of malignancy and, as a
proof of it, has been included in several models (also developed by IOTA) that are
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able to assess the probability that a lesion is malignant or benign.
However, the problem is that the estimation of the color content within a lesion
is based on a subjective evaluation performed by clinicians. This means that
different clinicians, with different levels of experience, may evaluate the same lesion
differently, possibly resulting in a wrong interpretation of the adnexal mass and in
a not satisfactory agreement among clinicians in assigning color score [7].
Moreover, the artifacts present in the doppler videos can influence the assignment
of the color score making more difficult for clinicians to correctly interpret the flow
information.
Therefore, developing an algorithm able to reduce the number of artifacts and to
track, at the same time, the real signal within the mass during the whole doppler
video, may be useful to simplify the clinicians’ evaluation.

1.1 Ovarian Cancer

1.1.1 Epidemiology
Nowadays, ovarian cancer is the eighth of the most frequent cancers in women
worldwide and represents the eighth most common cause of cancer death, with a
mortality of 4.3% [1, 8]. In Europe, it is the main cause of death among gynecologic
malignancies, ranking fifth in incidence (exceeded only by breast, colorectum, lung
and corpus uteri), and it is the sixth bigger killer among all women’s neoplasms
(exceeded by breast, colorectum, lung, pancreas and stomach) [1].
The main issue related to this disease is the difficulty of its diagnosis at an early
stage [9]. As a matter of fact, most of the times patients present ovarian cancer in
advanced stages, mostly because the disease in the early stages is asymptomatic or
associated with nonspecific symptoms. For this reason, the mortality related to
ovarian cancer is high [1, 2].
This type of tumor is diagnosed at an advanced stage in approximately 70% of
cases, otherwise it is very frequent in clinical practice to detect it incidentally
[9]. Once diagnosed, the survival rate after 5 years is <30%; meanwhile if the
ovarian cancer is detected at earlier stage when localized to the ovary, the survival
is longer than 5 years for more than 90% of patients [2, 9]. This means that an
early detection of any adnexal mass1 is of immense importance.
Since the most significant factor for survival is stage at diagnosis, different screening
methods have been developed over the years with the aim of detecting the ovarian
cancer as soon as possible in order to reduce its high mortality [3].

1A mass in tissue near the uterus, usually placed in the ovary or fallopian tube. Adnexal
masses include ovarian cysts, ectopic pregnancies, and benign or malignant lesions [10].
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To treat ovarian malignancies properly, the type of tumor is a factor to be con-
sidered. Indeed, invasive tumors are commonly treated more aggressively than
borderline tumors, especially if it is important to preserve the fertility. In selected
cases, stage I ovarian cancer may be managed more conservatively than disease
at advanced stages, whereas the treatment of cancers metastasized to the ovary
depends on the nature of the primary tumor [3]. An accurate diagnosis of adnexal
tumors before surgery will increase the probability that patients will receive the
appropriate treatment.

1.1.2 Etiopathogenesis
Etiopathogenesis2 of ovarian tumors seems to be multifactorial [1].
The principal risk factor is familiarity; however, only 5–10% of cases are due to
hereditary syndromes, the main being the breast-ovarian cancer. The remaining
cases are sporadic; nulliparity, early menarche and late menopause are risk factors in
this case, while pregnancy, lactation, early menopause and use of oral contraceptives
appear to be protective factors. Hereditary cases occur mainly in premenopausal
age, while the sporadic ones affect mostly older women [1].

1.1.3 Classification of adnexal masses
Characterizing ovarian lesions is a diagnostic challenge of extreme importance
because it allows to plan adequate therapeutic procedures and may influence
patient’s treatment. A multidisciplinary team is required to assess any adnexal
mass properly through physical exams, laboratory tests and imaging techniques [1].
Ovarian neoplasms are distinguished in benign, borderline, or malignant tumors.
An important issue to consider is that they are very common, but they are mostly
benign and only a small part is borderline or malignant: >90% and ≤ 60% of all
cases of ovarian masses detected in premenopausal and postmenopausal women
respectively are benign [9]. Moreover, borderline lesions have both benign and
malignant features, so they are very difficult to detect [1].
Two staging systems have been developed to describe the spread of ovarian tumors:
the TNM (tumor, node, metastasis) and the International Federation of Gynecology
and Obstetrics (FIGO). According to these systems, stage I describes tumors limited
to ovaries, stage II reflects pelvic extension or primary peritoneal cancer, stage
III indicates spread to the peritoneum outside the pelvis and/or metastasis to the

2The cause and development of a disease or abnormal condition [11].
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retroperitoneal lymph nodes, while stage IV refers to distant metastasis [1].
Primary ovarian tumors can be divided into three main groups based on tumor
nature: epithelial, germ cell and sex cord-stromal tumors [1, 12].

Epithelial ovarian cancer arises from the surface of the ovary (the so-called
epithelium), it accounts for 65% of all ovarian tumors and represents approximately
85% of ovarian malignancies [1, 13]. In this type of ovarian tumor, cancer cells
form in the tissue that covers the ovary or lines the fallopian tube or peritoneum,
defined as the serous membrane lining the cavity of the abdomen and pelvis and
covering the abdominal organs. These diseases are referred as carcinomas [13].
Surface epithelial-stromal tumors occur more commonly in middle-age or older
women and are rare in young adults, particularly before puberty [12].
These tumors are considered benign if they show a non-invasive behavior and low
cellular proliferation, they are classified as borderline if there is exuberant cellular
proliferation but no invasive behavior; and as malignant if they behave invasively.
The most part of borderline tumors behave like benign tumors and have a good
prognosis, but some of them can show up again after the surgery, others, instead,
may seed extensive implants within the abdominal cavity [12].
The surface epithelial-stromal cancers can be further divided into the following five
major subtypes: serous, mucinous, endometrioid, clear cell, and transitional cell
(or Brenner type) tumors [12].

Germ cell tumors originate from the reproductive cells of the ovaries. Ovarian
germ cell malignant tumors are rare, they represent about one-fourth of all ovarian
tumors and account for approximately 5% of all cases of ovarian cancer [13].
These tumors frequently affect only one ovary and are curable in about 95% of
cases if they are diagnosed and treated at early stages. They can develop at any
age but more often in young women or adolescent girls [13]. As a matter of fact,
more than half of the ovarian neoplasms that occur in children and adolescents are
germ cell tumors, and one-third of these is malignant. Conversely, germ cell tumors
are relatively infrequent in adults, and the great majority of them are benign, with
most being mature cystic teratomas (dermoid cysts) [12].

Sex cord-stromal neoplasms arise from connective tissue cells. These tumors
account for approximately 8% of all ovarian tumors. Malignant ovarian stromal
tumors are rare and represent approximately 1.2% of all primary malignant ovarian
tumors [12, 13]. In contrast to the other two categories, sex cord-stromal tumors
are frequently characterized by hormonal production, menstrual changes, or early
puberty as well as symptoms of a pelvic mass; they are often found in adolescents
and young adults [13]. Ovarian stromal tumors are often detected early and have a
75% survival rate. Some of these tumors, namely fibromas and thecomas, have a
fibrous appearance, and some derive from the granulosa cells or their testicular sex
cord counterparts, the Leydig and Sertoli cells [12, 13].

4



Introduction

Figure 1.1: Ovarian cancer subtypes and its origin in the ovary [14]

Adnexal masses can be classified, from the morphological point of view, as unilocu-
lar cystic (i.e., a cyst with only one cavity), multilocular cystic (where at least two
cavities are present), complex (cystic and solid that suggests the presence of tissue
in the mass) and predominantly solid lesions [1, 15, 4]. These definitions have been
introduced by the International Ovarian Tumor Analysis (IOTA) group with the
objective of characterizing and describing ovarian neoplasms (see paragraph 1.2.1
for more details).

Unilocular cystic masses are mostly benign and can have non-ovarian or ovarian
origin. The common extraovarian lesions are paraovarian cysts, hydrosalpinx,
pyosalpinx and hematosalpinx, whereas ovarian lesions are usually represented by
functional cysts and serous cystadenomas; finally, cystadenofibromas and mucinous
cystadenomas are less common unilocular ovarian cystic masses.

• Functional cysts are the most frequent cystic masses in women of reproductive
age as a normal part of the menstrual cycle, including follicles, follicular cysts,
and corpus luteum cysts that results from a failure of the corpus luteum to
regress. The corpus luteum cysts may become bigger because of an internal
bleeding: follow-up is able to distinguish between hemorrhagic corpus luteum
cysts and endometrioma.

• Serous cystadenoma is a benign ovarian cancer consisting of an unilocular cyst
with a thin regular wall (less than 3 mm); the lining is flat without internal
septations, papillary protrusions or solid components.

• Cystadenofibroma is an uncommon benign epithelial ovarian tumor with both
epithelial and fibrous stromal components. It may be a purely cystic lesion or,
more often, it presents as a complex cystic mass with thick septa and solid
components [1].
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Multilocular cystic adnexal masses can be benign or borderline; they are repre-
sented by endometriomas, mucinous cystadenomas and borderline tumors.

• Endometriosis is characterized by ectopic implantation of endometrial tis-
sue outside the uterus, often involving the ovaries. Endometriotic cysts (or
endometriomas) are often multifocal and bilateral. Patients suffering of en-
dometriosis may develop ovarian malignancy (estimated risk about 2.5%).

• Mucinous cystadenoma is a benign mucin-containing tumor, often bigger than
serous cystadenoma and monolateral. It usually presents as a multilocular
cystic lesion with a thin regular wall and several septations, with no solid
components.

• Borderline tumors are ovarian tumors characterized by epithelial anaplasia.
They occur in younger patients with respect to malignant ovarian neoplasm,
and they are more frequently serous and mucinous cystadenoma. They usually
show non-invasive behavior, but there can be lymph nodes and peritoneal
implants; however, they are characterized by a better prognosis than cystoade-
nocarcinomas. Borderline tumors have morphological features in between of
benign and malignant ones. Borderline serous cystadenoma usually manifests
as a complex cystic lesion with some septa and papillary projections [1].

If an adnexal mass has a mixed cystic and solid appearance, there is the risk, or
at least the suspicion, of malignancy. However, some benign lesions like mature
cystic teratoma also appear as complex.

• Mature cystic teratoma is the most common ovarian neoplasm, it is a benign
germ cell tumor and affects mostly young patients. It consists of at least two
of the three embryogenic germ cell layers, and usually contains ectodermal
(skin, brain), mesodermal (fat, bone) and/or endodermal (thyroid tissue, gas-
trointestinal and bronchial epithelium) mature tissue. If these components are
all present, the mass appears complex and heterogeneous; however, detecting
fat-tissue inside the mass it is possible to produce a correct diagnosis. Malig-
nant mature cystic teratomas are rare (1–2% of cases), and usually occur in
postmenopausal women due to a squamous cell carcinoma originating from
the cyst wall.

• Struma ovarii is one of the main subtypes of benign ovarian monodermal
teratomas (defined as a type of ovarian teratoma in which one of the three
germ cell layers is predominant). It is mainly composed of thyroid tissue, with
no fat tissue.

• Ovarian metastasis represents about 5% of malignant ovarian tumors, and
there is a potential risk of misjudgment if the primary tumor is not known. The
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most frequent neoplasms that metastasize to the ovaries are stomach, colon,
breast, lung, and contralateral ovary tumors. Ovarian metastases manifest
more commonly as bilateral with a cystic and solid or a predominant solid
morphological appearance.

• Serous cystadenocarcinoma is the most common type of surface epithelial
neoplasms and accounts for about 40% of malignant ovarian tumors, whereas
mucinous cystadenocarcinoma is less common and represents about 10% of
ovarian malignancies. These tumors have a complex multilocular morphology,
usually with thick and irregular walls, septations, solid components and
papillary projections. They can be very large, even greater than 12–15 cm.

• Endometrioid and clear cell tumors are commonly associated with endometrio-
sis. These tumors are usually seen as complex masses with solid and cystic
components, but they can also be predominantly cystic. The rapid growth
of an endometrioma, the multilocularity and the presence of mural nodules
inside the hemorrhagic cyst should raise the suspicion of malignancy.

• Granulosa cell tumors are usually benign neoplasms; but they may also be
malignant. Clinically, they can manifest by producing hormones; they consist
of cystic and solid masses, but they can also appear as multilocular cystic or
predominantly solid. These tumors can be further divided into two subgroups:
adult and juvenile. The adult type is responsible for about 95% of cases and
affects preferentially perimenopausal and postmenopausal women; whereas
the juvenile type is less frequent and occurs in prepuberal children [1].

Predominantly solid adnexal masses can be benign, borderline, or malignant
lesions. They include tumors of different origin: epithelial, germ cell, sex cord and
metastatic lesions.

• Fibromas, thecomas and fibrothecomas are sex cord-stromal tumors and they
represent the most common benign solid lesion of the ovaries. These tumors
usually present with no symptoms and there may be an association with
ascites and pleural effusion. Fibrothecomas consist of both fibrous tissue and
theca cells with lipidic content. Fibromas are rare tumors generated from the
spindled stromal cells that form collagen; in almost all cases they are benign
and curable by surgical excision. Thecomas, instead, are formed by stromal
cells resembling the theca cells that normally surround the ovarian follicles;
most of them are unilateral and affect postmenopausal women [12].

• Sclerosing stromal tumour is a type of sex cord-stromal tumor into the thecoma-
fibroma group. It occurs mostly in young women, manifesting as menstrual
irregularities. This tumor has a predominantly solid appearance [1].
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1.1.4 Diagnosis of ovarian cancer
The imaging technique that is more frequently applied to evaluate a suspected
ovarian lesion is the ultrasound (US) technique because it has the advantages of
being widely available, well accepted by patients, non-invasive and relatively cheap.
Combining the conventional grayscale ultrasonography and Color Doppler fea-
tures, obtained with transabdominal and/or endovaginal scanning, is possible to
investigate both morphological structure and vascular organization of the ovarian
mass, in order to characterize and differentiate ovarian tumors and provide an
early diagnosis of malignancy by means of quantitative blood flow measurements
obtained from tumor vessels [1, 2].
Sonographic evaluation of ovarian masses is based on multiple features - size, exter-
nal contour, internal consistency, and signs of malignancy as ascites and peritoneal
implants - and it correlates morphologic images with macroscopic pathologic fea-
tures of tumor such as nonfatty solid tissue, thick (>2–3 mm) and irregular walls
and septa, and papillary projections [1, 2].
Currently, there is no specific ultrasound criteria to distinguish between benign and
malignant tumors. Several scoring systems based on the morphologic features have
been proposed and developed; however, they concluded that it is not possible to
differentiate benign malignant masses in a reliable way only basing on morphologic
criteria [2].
Regarding the vascularization, thanks to the Color Doppler study, the presence
and, eventually, the localization of new tumor blood vessel are shown. Therefore,
knowing the blood flow characteristics, it is possible to predict if the tumor is benign
or malignant: a mostly central blood flow is more often related to malignancy, while
a peripheral vascularization is more characteristic of a benign lesion. Generally,
the majority of malignant tumors show blood flow; conversely the absence of blood
flow is a sign of tumor’s benignity [1, 2].

1.2 IOTA group
Given the lack of standardized terms and procedures to derive categorical and
continuous variables in gynecological sonography, a group of researchers from
different centers gathered together to address this problem of standardization,
giving rise to the International Ovarian Tumor Analysis (IOTA) group [4].
The group was founded in 1999 by Dirk Timmerman, Lil Valentin, and Tom Bourne
aiming at developing a standardized terminology to obtain morphologic end-points
by B-mode imaging and end-points of vascularity and blood flow by color Doppler
imaging [4].
That is why, in 2000, IOTA published a consensus statement containing terms,
definitions, and measurements useful to describe the sonographic features of adnexal
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lesions, which today is widely used [16].
Afterwards, IOTA has focused its research and activity on the development of
diagnostic methods in order to characterize the adnexal pathology and distinguish
between benign and malignant ovarian tumors. Specifically, IOTA developed
the Easy Descriptors, the Simple Rules, mathematical models based on logistic
regression (LR1 and LR2) and the ADNEX model, which are employed by users
with different levels of experience in the clinical practice to assess the risk of
malignancy since they are very easy to use. These models have been validated
and they showed optimal performances, comparable to the ones of an assessment
performed by an expert sonographer [16, 17].

1.2.1 Standardized Terminology
The IOTA group produced a standardized terminology related to adnexal masses
with the aim of homogenizing and setting a standard of quality, description, and
evaluation of ultrasonography across different centers resulting in an increased diag-
nostic accuracy [17]. In this section, the most significant definitions are introduced.

An adnexal lesion is the portion of an ovary or of an adnexal mass that, ac-
cording to the ultrasonographic results, is not consistent with normal physiology [4].

A septum indicates a thin echogenic strand of tissue running across the cyst
cavity from one internal surface to the contralateral side. The septum is not
considered as a solid component [15, 4].

An incomplete septum is a septum that is not complete in some scanning planes.
If a cyst contains only incomplete septa, it is classified as unilocular, even though
in certain sections the cyst appears multilocular [15, 4].

An adnexal mass is referred as solid when it shows echogenicity that suggests the
presence of tissue (e.g. the myometrium, the ovarian stroma, myomas, fibromas).
In many situations, it is not easy to distinguish between blood clots and solid tissue,
but solid tumors can be detected and identified in the 3 following ways: when there
is no internal movement in the adnexal mass while moving the US transducer; by
the presence of the typical internal texture; by analyzing the vascularization of the
tumor with color Doppler imaging. In particular, if blood flow is detected, the tis-
sue is regarded as solid, whereas, if there is no flow, the diagnosis is not definitive [4].

Solid papillary projections are intended as any solid projections protruding into
the cyst cavity from the cyst wall greater than or equal to 3 mm in height. They can
be smooth or irregular (e.g., cauliflower-like). The hyperechogenic not vascularized
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area that is present in a dermoid cyst or a sludge placed on the internal walls of
endometriotic cysts are not considered papillary projections [15, 4].

Figure 1.2: Pictorials of papillary projections with irregular walls and smooth
walls [15].

The internal cyst wall is described as smooth or irregular. The wall is irregular
if there is a solid papillary projection, a sludge or any irregularity in either the
inner wall of the cyst or in the outer wall of a solid tumor or on the surface. In the
contrary, if no papillary projections are present and the wall lining is flat, cystic
walls are regarded as smooth [15, 4].

Figure 1.3: Pictorials of irregular and smooth cystic walls [15].

The cystic content is described as anechoic (meaning that it is black), low-level
echogenic (as in mucinous tumors), ground glass appearance (where the cystic
contents are homogeneously dispersed and echogenic, as it often happens in en-
dometriotic cysts), hemorrhagic (in which strands show thread-like structures), or
mixed echogenic (as seen in teratomas) [15, 4].

10
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Figure 1.4: Pictorials of cystic contents’ dominant feature [4].

Acoustic shadows are intended as loss of acoustic echo behind a structure that
absorbs the sound [4].

Ascites is the fluid outside the pouch of Douglas, it can be present or absent [4].

Figure 1.5: Pictorials of acoustic shadow [15].

The IOTA group has then introduced the following six categories in which
adnexal lesions can be divided from the quantitative point of view, basing on their
morphological features:

1. Unilocular cyst: a cyst having only one cavity without the presence of septa,
solid parts or papillary structures [4].

11
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Figure 1.6: Pictorials of unilocular cysts [4].

2. Unilocular cyst with solid component: a unilocular cyst containing either
measurable solid components, one or more papillary structures, or both [15,
4].

Figure 1.7: Pictorials of unilocular solid cysts [4].

3. Multilocular cyst: a cyst having at least one septum (so there are at least
two cystic cavities), but without measurable solid components and papillary
projections [15, 4].

Figure 1.8: Pictorials of multilocular cysts [4].

4. Multilocular solid cyst: a multilocular cyst where there is a solid component
or at least one papillary projection [15, 4].
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Figure 1.9: Pictorials of multilocular solid cysts [4].

5. Solid cyst: tumor in which at least the 80% of the mass is solid when assessed
in a two-dimensional section. A solid tumor can be unilocular or multilocular
and it may contain papillary projections [15, 4].

Figure 1.10: Pictorials of solid cysts [4].

6. Not classificable: a lesion falls into this category when the visualization is
poor [4].

Color Score

As mentioned in section 1.1.4, doppler imaging techniques improve the diagnostic
accuracy of gray-scale imaging and are particularly helpful in distinguishing between
benign and malignant ovarian tumors because the vascularization of a malignant
mass may differ from that of a benign neoplasm [4, 5].
In particular, in malignant lesions usually a higher amount of blood flow is shown
due to angiogenesis. The color content of the lesion is strictly associated to its
vascularity that, in turn, reflects the number and dimension of tumor vessels and
their functional capacity [5].
For this reason, the IOTA group introduced a subjective semiquantitative assessment
of the blood flow with the aim of assessing the degree of vascularization within
ovarian masses. This scoring system is called color score and is a score between
one and four that indicates the amount of blood flow within the septa, cyst walls
or solid tumor area. The color score is assigned by the clinicians for the tumor as
a whole and it refers only to the doppler image [4, 5]. It can assume the following
values:

• 1 is given when no blood flow is present in the lesion.
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• 2 is given when the mass contains a minimal flow.

• 3 is given when there is a moderate flow.

• 4 is given when the lesion is highly vascular with marked blood flow.

[4, 17, 15, 5]
Despite color score being a good predictor of malignancy and being employed
in several predictive models also introduced by IOTA (as described in the next
section), assigning the color score to an adnexal mass is complicated since the
estimation of the doppler content within a lesion is influenced by the subjective
evaluation of clinicians. This subjectivity leads to a not satisfactory agreement
among clinicians in color score assignment, as illustrated in section 1.3.4.

Figure 1.11: Pictorials of color score assignment [15].

1.2.2 Diagnostic models: Simple Descriptors, Logistic Re-
gression models, Simple Rules and ADNEX

Simple Descriptors

Since many adnexal masses (like teratomas and endometriomas) are usually identi-
fied relatively easily because they show some typical features that are characteristic
and not shared by other lesions, the IOTA group elaborated six rules named Easy
descriptors (or Simple descriptors), that can be applied to detect these tumors
immediately producing an instant diagnosis, without the necessity of employing
more complex models [17].
There are four features typical of common benign lesions (the so-called benig-
nity descriptors, BDs) and two descriptors suggestive of malignancy (malignant
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descriptors, MDs). These rules take into account morphological characteristics
assessed during ultrasound imaging, the detection of CA 125 tumor marker3 and
the patient’s reproductive age.

The descriptors are:

• BD1: unilocular tumor with ground-glass echogenicity in a premenopausal
woman (suggestive of endometrioma)

• BD2: unilocular tumor with mixed echogenicity and acoustic shadows in a
premenopausal woman (suggestive of benign cystic teratoma)

• BD3: unilocular anechoic tumor with regular walls and maximum diameter
of lesion < 10 cm (suggestive of simple cyst or cystadenoma)

• BD4: remaining unilocular tumors with regular walls

• MD1: tumor with ascites and at least moderate color Doppler blood flow in
a postmenopausal woman

• MD2: age > 50 years and CA 125 > 100 U/mL

[15]

Figure 1.12: Examples of malignancy descriptors [15].

3Carbohydrate antigen-125 (CA-125) is the most commonly used serum tumor marker for
epithelial tumors. It is extensively employed in clinical application for the monitoring of ovarian
cancer, diagnosis, effective evaluation, and recurrence [9]. The CA 125 levels may be influenced
by a high body mass index, ethnicity, the age of the patient, pregnancy, inflammatory processes
and the presence of fibroids or endometriosis [17].
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Figure 1.13: Examples of benignity descriptors [15].

Easy descriptors can be applied to about 43% of adnexal masses, in the remaining
cases it is necessary to use more complex rules and diagnostic models [17].

Logistic Regression models: LR1 and LR2

The IOTA group has then developed and validated two predictive models, namely
LR1 and LR2, based on logistic regression in order to evaluate the risk of malignancy
in adnexal masses [18].
The LR1 model consists of 12 variables that are the patient’s age, the presence
of ascites, the presence of blood flow in a solid papillary projection, the maximal
diameter of the solid component, the presence of irregular internal cyst walls, the
presence of acoustic shadows, personal history of ovarian cancer, current hormonal
therapy, the maximum diameter of the lesion, the presence of pain during the
examination, the presence of a purely solid tumor and the color score of intratumoral
blood flow [19, 20].
The LR2 model, instead, is simpler than the former since it is based only on the
first six variables [19, 20].
It has been proved that both models perform well but LR1, containing all significant
variables (including also the color score), performs better than LR2 [20].

Simple Rules

The Simple Rules represent a classification system for ovarian tumors, they have
been formulated by clinicians and statisticians of IOTA, considering the clinical and
ultrasound data from 1066 women recruited at different centers in Italy, Belgium,
Sweden, France, and UK [21].
The Simple Rules consist of five features characteristic of benign tumors (B-features)
and five rules applicable for malignant neoplasms (M-features). They can be applied
to detect ovarian cancer in women who have at least one persistent adnexal (ovarian,
para-ovarian, and tubal) tumor and require surgery [21].
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The 10 rules on which the classification is based are:

• B1: unilocular cyst

• B2: presence of solid components with largest diameter < 7 mm

• B3: presence of acoustic shadows

• B4: smooth multilocular tumor with largest diameter < 100 mm

• B5: no blood flow (color score 1), no vascularization on color Doppler

• M1: irregular solid tumor

• M2: presence of ascites

• M3: at least 4 papillary structures

• M4: irregular multilocular-solid tumor with largest diameter ≥ 100 mm

• M5: very strong blood flow (color score 4)

Figure 1.14: Examples of Simple Rules’ applications [15].

If at least one B rule applies and no M rule is satisfied, the mass is immediately
classified as benign, while if at least one M rule is present and no B rule is satisfied,
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the tumor is classified as malignant. If both B- and M- features apply or if none of
the ten rules is satisfied, the resulting diagnosis is inconclusive, and the patient
needs second-stage diagnostic exams [21].
It is important to notice that, among the 10 Simple Rules, the ones that do not
involve the evaluation of the lesion’s vascularization employ quantitative parame-
ters that can be measured or counted (for instance diameter, number of papillary
structures, etc.), on the other hand, B5 and M5 features consider a variable -
the amount of blood flow within the lesion, thus the color score - that cannot be
quantitatively and objectively evaluated.

Nowadays, these rules are widely accepted and used on a daily basis in clini-
cal practice as method of choice to assess the risk of malignancy. As a matter of
fact, the simple rules are appliable to approximately 80% of adnexal masses, with
a sensitivity of 95% and a specificity of 91% [17].
Nevertheless, the Simple Rules cannot replace the experience in ultrasonography
and cannot compensate for poor quality ultrasound equipment [21]. Moreover,
they provide a categorical output (either benign, malignant or inconclusive) based
on dichotomized ultrasound features, not an actual estimation of the likelihood
of malignancy, and about 20% - 25% of tested adnexal maxes result inconclusive,
although it is possible to simply consider them malignant and refer them to a
second line diagnostic exam.
The Simple Rules do not give a predicted risk, and so not a level of confidence
in the classification. This limit was overcome by the introduction of a prediction
model, namely ADNEX (see next paragraph), that is able to provide an individual
estimated risk of malignancy for any type of lesion [17].

ADNEX

The IOTA group has also developed and published the Assessment of Different
NEoplasias in the adneXa (ADNEX) model, a multiclass prediction model. This is
the first risk model able to differentiate between benign and four types of malignant
ovarian tumors: borderline, stage I cancer, stage II-IV cancer, and secondary
metastatic cancer [22].
Moving from the previous logistic regression models to ADNEX, the IOTA group
decided to select, as predictors of malignancy, only the more robust and less sub-
jective variables, thus the color score was removed (see section 1.3.4 for details).
Therefore, the resulting indicators that constitute the ADNEX model are nine
among which three are clinical and six are ultrasound variables that can be evalu-
ated by examiners familiar with the IOTA terms and definitions.
The clinical predictors are age (evaluated in years), serum CA-125 (expressed in
U/mL) and type of center (oncology center or other hospitals) to which the patient
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has been referred.
On the other hand, the ultrasound predictors are: maximal diameter of the lesion
(mm), proportion of solid tissue (defined as the ratio of the maximal diameter of
the biggest solid component and the maximal diameter of the mass), number of
papillary projections (that can be 0, 1, 2, 3 or larger than 3), presence of more
than 10 cyst locules, presence of acoustic shadows, presence of ascites [22].
It has been demonstrated that this model can discriminate very well between benign
neoplasms and the four types of malignancies reaching a sensitivity of 96.5% and
specificity of 71.3% on the data employed in the validation studies. Moreover, its
performances seem similar to, or even slightly better than, both LR2 and simple
rules [22].

1.3 Color Doppler and Power Doppler Imaging

1.3.1 Color Doppler Imaging

Doppler evaluation hemodynamics can be employed to study the presence or ab-
sence of flow in a vessel, flow direction, pulsatility, and velocity [6]. Color doppler
technique provides a visual image of the movement of blood through the heart,
arteries, and veins, but it may be also used to image the motion of solid tissues
such as the heart walls [23].
The most common target is blood for color flow imaging (CFI, also known as color
Doppler imaging), while it is the solid tissue for Pulse-Echo (PE) imaging [23].
Standard PE imaging generates anatomical cross-sectional images of the body.
Meanwhile, CFI is an imaging technique that combines anatomical information de-
rived using ultrasonic pulse-echo techniques with velocity information derived using
ultrasonic Doppler techniques to generate color-coded maps depicting movement
superimposed on grey-scale images of tissue anatomy [23]. In this way, this imaging
technique is able to image tissues and detect blood flow at the same time in order
to immediately identify the direction of the different blood flows and circulation
anomalies.
In principle, CFI techniques are similar to PE techniques in which the information
about the position of each target in the body, corresponding to each pixel in
the image, is obtained in the same way, namely by knowing the direction of the
ultrasonic beam and the pulse round-trip transit time. The main difference between
the two methods is that, in the case of CFI, the returning echoes are analyzed in
terms of Doppler shift rather than amplitude [23].
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Figure 1.15: Color Doppler image showing the vascularization in the superficial
femoral artery and the superficial femoral vein [23].

The Doppler Effect

Doppler shift or Doppler effect is defined as the change in frequency of a sound
wave due to a reflector moving towards or away from an object that corresponds
to the trasducer in the case of ultrasound. This phenomenon is named after the
Austrian physicist Christian Doppler, who described it in 1842 [24].
When sound of a given frequency is discharged and then reflected from a source
that is not moving, the frequency of the returning sound waves will be equal to the
frequency at which they were emitted [24].
However, if the reflecting source is in motion either toward or away from the
emitting source - in this case, the ultrasound transducer - the frequency of the
sound waves received will be higher (positive Doppler shift) or lower (negative
Doppler shift) than the frequency at which they were emitted, respectively [24].
In this context, the doppler equation is employed to calculate the magnitude of the
frequency shift when reflectors are moving with respect to the ultrasound beam:

F = 2fov

c
· cos(θ) (1.1)

where:

• F is Doppler frequency shift,

• fo is transmitted frequency from ultrasound probe,

• v is the velocity of moving reflector,

• c is the velocity of sound in the medium,
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• θ is the angle between ultrasound beam and axis of flow [6, 24].

As shown from the equation, the magnitude of the Doppler shift is influenced by
the angle at which the reflecting source is traveling with respect to the transmitting
source. This factor is taken into account in the Doppler equation by the "cos(θ)"
parameter; the maximum Doppler shift occurs when the Doppler angle is of 0
degrees (the cosine of θ = 1) and no Doppler shift will be present when the motion
of the reflecting source is perpendicular [24].
Therefore, in conventional CFI systems, the velocities measured and displayed are
usually not the actual velocities but correspond to the components of the flow
velocity of the target towards or away from the transducer [23].
The color doppler technique evaluates the velocity of the target towards the
transducer from the phase shifts or time delays between echoes from the same
sample volume during subsequent pulses. This changes in time or phase can be
detected and electronically processed to produce a signal containing Doppler effect
information. The frequency of this signal is the Doppler shift in the ultrasound
frequency, hence the velocity of the target can be calculated from this frequency
shift using the Doppler equation described above [23, 25]. In this way, significant
information such as direction of flow relative to the transducer, flow velocity, and
important flow conditions such as turbulence are inferred. Specifically, the direction
of flow information extracted from the sequence of returning echoes is shown in the
images by means of shades of red that normally denote flow toward the transducer
and shades of blue representing the flow away from the transducer [25].

Characteristics of Color Doppler Imaging

Most color flow instruments produce a Color Doppler Velocity Image by applying
signal processing of the Doppler signal, detecting the echo signal waveform and
then estimating the mean velocity of the blood cells [25]. Even if, in principle,
it should be possible to calculate velocity from just two pulse transmissions, in
practice, the methods employed to estimate the velocity require multiple pulse echo
sequences along each beam line in order to have a sufficient amount of data to
estimate the mean Doppler frequency within each pixel [6, 23]. This is partly due
to the stochastic nature of echoes from blood, but also because it is necessary to
filter the returning signal from blood to reject larger signals from the surrounding
solid tissues (which move, but with a much lower velocity) [23].
Nearly all modern CFI systems use array transducer technology, where the trans-
ducer consists of many single elements that transmit and receive ultrasound pulses.
During the transmission, the beam-former is employed to apply the proper com-
bination of signals to the individual transducer elements in order to generate an
appropriate transmitted beam; whereas, during the reception, it is used to correctly
combine the returning echoes to generate the appropriate receive beam. The output
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from the beam-former is amplified in a time-dependent manner (to compensate for
the additional attenuation experienced by echoes from deep within the body), and
then demodulated to generate the components of the Doppler signal [23].

Limits of Color Doppler imaging

Color Doppler imaging is now provided on almost all commercial ultrasound ma-
chines and has been proved to be a powerful technique in assessing blood flow in
many clinical conditions [23]. However, even if the mean frequency color Doppler
is the most commonly used parameter, it also has a number of weaknesses.
The first main issue related with the use of the mean as the parameter of choice
is that random noise can look like flow in any direction since it has a random
frequency shift in the ultrasound imaging. As image noise increases, the more
aberrant flow there appears to be, and the more the background seems to fill up
with flow-related artifact. In the worst cases, this random noise totally dominates
the image, and the identification of true flow becomes impossible [26].
Moreover, being a frequency-detection technique, color Doppler necessarily aliases
(for more details see paragraph 1.3.2). In presence of aliasing, vessels look discon-
tinuous and the directional and speed information are distorted. This problem is
particularly relevant in slow-flow situations where low pulse repetition frequencies
produce aliasing. Therefore, avoiding aliasing, the diagnostic detection of the
presence or absence of flow would improve [26].
Another drawback of this technique is the difficulty to image deep vessels both
because of sensitivity issues (due to the attenuation introduced by overlying tissues)
and because of the increased inter-pulse interval necessary for the ultrasound pulses
to make a round-trip from the transducer to the target (this results in a decreased
pulse-repetition frequency that may lead to inadequate sampling of the Doppler
signal resulting in misinterpretation of the Doppler shift frequency) [23].
Finally, color Doppler is angle dependent since the values of the displayed velocity
components depend on the angle between the true velocity direction and the beam
direction at each sample volume [25]. Doppler devices lose sensitivity to flows that
are perpendicular to the sound field, and the frequency shift is greater when the
object’s surface is parallel to the receiving beam, thus requiring that the beam
should be directed to detect these flows. Since the beam cannot be steered in
all directions, lost segments not containing flow can occur. Consequently, Color
Doppler can underestimate the presence of vessels because some vessels may not
be identified when they course perpendicular to the sound field. This issue, added
to the multiple colors within each vessel caused by varying insonifying angles along
a vessel’s path, can make vessel tracking and identification difficult [26].
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1.3.2 Artifacts
As previously mentioned, Doppler Flow Imaging techniques allow to study and an-
alyze blood flow features resulting in the assessment of tumor vascularity. However,
the main downside of these methods is that artifacts are very frequent.
Artifacts in color Doppler imaging can be confusing and may lead to a wrong
interpretation of flow information. That is why recognizing artifacts is of immense
importance in order to arrive to a correct diagnosis. There are three main causes
that may produce different types of artifacts: inappropriate equipment settings,
anatomic factors, and physical and technical limitations of the modality [6].

Artifacts related to inappropriate settings

Doppler gain setting errors
Setting the gain properly is necessary in Doppler processing to depict the flow
characteristics. As a matter of fact, if the gain is too low, valuable flow information
can be lost since Doppler shifts are not displayed in vessels, especially those with
relatively slow flow. In the contrary, if the gain setting is too high the image
becomes cluttered with color noise in a random pattern [6].
In this context, the blooming artifact can be present in the Doppler image. It
usually occurs in large vessels and it is characterized by the spread of the colored
area beyond the vessel walls. In order to avoid the presence of this artifact, the
gain must be lowered [27].

Figure 1.16: Typical appearance of the ultrasonic blooming artifact [28].

Velocity Scale errors and Aliasing
Another parameter that is crucial to correctly display doppler signals is the velocity
scale. When the velocity range is too high, it is possible that low-flow information is
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not shown. Conversely, if the velocity scale setting is too low for the flow conditions
present, aliasing occurs. This phenomenon is related to the fact that color flow
uses pulsed sound beams [6].
In particular, when blood velocities are high, the measurement of high Doppler
shift frequencies requires that echo signals are collected at a high rate. However,
there is a limit to the rate at which echoes are returned since there should be
enough time must between each pulse transmission in order to collect the related
echoes. There is therefore an upper limit on the Doppler shift (called Nyquist
sampling rate) which can be measured and hence a corresponding upper limit on
velocity [25]. When the frequency of the Doppler signal is higher than the Nyquist
sampling rate (i.e., the half of the pulse repetition frequency), ambiguous or aliased
signals are generated [6, 27]. The aliasing artefact appears as regions of wrongly
colored pixels in a Color Doppler image [25].
Aliasing can be overcome applying the following expedients: increasing the Doppler
angle (that, in turn, decreases the Doppler shift), increasing the velocity scale
(which increases the pulse repetition rate), changing the baseline setting, or using
a lower ultrasound frequency [6].

Figure 1.17: Aliasing artifact with flow reversal [6].

Incorrect wall-filter setting
Filtration is employed in order to remove unwanted Doppler signals at low frequency
originating from soft-tissue reflectors moving slowly. If the filtration is too high,
velocity information significant from the diagnostic point of view can be lost [6].
In the contrary, due to too low wall-filtering settings the edge artifact can appear
in the doppler video. This artifact might also result from high velocity scale
settings, and it occurs when the Doppler signal is identified at the margins of strong
reflectors, therefore blood flow appears along their rim and may mimic vessels [27].
The twinkling artifact is another type of artifact produced by a narrow band of
machine noise, called phase jitter that is usually excluded by wall filters. When in
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presence of a rougher and strongly reflecting surface (such as renal calculi, bladder
calcifications or cholesterol crystals), this noise is amplified, and the artifact results
in a mosaic of different colors quickly changing. In order to identify this artifact
and detect the stones, it is necessary to set color-write priority to a high value and
grayscale gain to a minimum [27].

Figure 1.18: Edge artifact [29]. Figure 1.19: Twinkling artifact [30].

Anatomically related artifacts

Mirror image artifact
Mirror image artifacts occur with color Doppler imaging of any vessel close to
a highly reflective surface, such as the lung. These artifacts are produced when
echoes coming from a reflecting object are directed to another reflector before going
back to the transducer. Because of this, blood flow is displayed identically on both
sides of the reflector, even though the real signal is only on one side [6].

Figure 1.20: Mirror artifact in subclavian vein [6]
.
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Vascular-Motion artifact
When a vessel moves with respect to the transducer, artifactual variation in velocity
can be introduced into the spectral tracing as the sample volume passes through
different velocities in a laminar flow state. This artifact can appear in the portal
vein and its branches. It may be reduced by increasing the size of the Doppler gate
so that the entire vessel is included, by imaging other portal branches, or varying
the angle [6].

Color in nonvascular structures
Color flash artifacts are random bursts of color that fill large portions of the
image, obscuring everything underneath, and they are caused by sudden internal
or transducer motion (figure 1.21). These artifacts can be perceived in areas of low
echogenicity such as cysts or ducts [6, 27].
Most color flow processors incorporate motion discriminators able to separate true
flow from random motion of soft-tissue reflectors. However, the lower-level signals
identified in the hypoechoic soft-tissue regions less effectively trigger the motion
discriminator and so the color flash is not suppressed. This artifactual color signals
can be erroneously considered as real flow, especially if the color sensitivity settings
are high [6].

Pseudoflow artifact
Pseudoflow artifact occurs when any physiological fluid different than blood moves;
the motion produces Doppler signal that can be detected as real blood flow, but, in
reality, no vessel is present (figure 1.22). This type of artifact is frequently shown in
presence of ascites, amniotic fluid (when imaging the uterus), urine (when imaging
the bladder) and also within the walls of serous ovarian cysts [27].

Figure 1.21: Example of color flash
artifact [29].

Figure 1.22: Example of pseudoflow
artifact [29].
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Instrument and processor related artifacts

Grating or side lobe artifact
Electronically focused, phased-array transducers focus the primary beam toward
the Doppler sample volume. However, due to the distance between the array
elements and the sequence of firing, weak secondary lobes of focused sound may
interrogate areas/vessels that are not related to the primary beam. Side lobes occur
in proximity to the primary beam, while grating lobes can be quite far removed
from it [6].
An artifact that might be caused by grating or side lobes of the beam is the partial
volume artifact. It is a transducer-related artifact that appears when the slice
thickness is not infinitesimal, and the reflecting object is partially in the slice and
partially not. Therefore, blood flow is extended to the whole slice and appears in
areas that should be anechoic. This often happens when imaging the ovary and
part of the iliac artery is shown as if there is vascularization inside the cystic walls
but, considering a different plane of imaging, it is demonstrated that blood flow is
outside of the cystic walls [27].

Figure 1.23: Partial volume artifact [27].

1.3.3 Power Doppler Imaging
The Power Doppler technique represents an alternative to mean-frequency Color
Doppler, it encodes the power in the Doppler signal in color. With this imaging
technique it is possible to explore all vessels, typical of growing tumors, allowing a
complete analysis of the tumor vascularization [26].
The power of the Doppler signal is determined by the power of the echoes (derived
from the amplitude of the echoes) related to the number of blood cells in the sample
volume. Power is therefore a readily obtained measure of the number of moving
cells in the sample volume [25].
The principal advantage of using power is the representation of random noise that,
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in the power mode, is different from that in the mean frequency mode. This is
because the noise always has uniformly low power, so encoding power in color
and increasing the sensitivity of the color Doppler unit to image the noise floor,
a uniformly colored background is imaged representing low power instead of a
random distribution of colors representing any possible flow. Any true flow will
have more power in the Doppler signal than the noise, and hence it will emerge
from the noise background [26].

Figure 1.24: Power Doppler image of blood flow in the left ventricle [25].

Advantages of Power Doppler Imaging

The main attraction of Power Doppler Imaging is that it is a sensitive technique
useful to study blood flow in small vessels or vessels that are deeper with respect
to the skin surface; it therefore gives more complete images of vascularity than
Color Doppler Imaging. As a matter of fact, in these cases, Color Doppler is less
informative since the signal appears much weaker [26, 25].
Another significant advantage of this technique is that it is not prone to aliasing
artifacts because it only indicates the presence of flow and does not attempt to
measure velocity [25].
Moreover, compared with mean frequency Color Doppler, Power Doppler Imaging
is relatively angle independent. The reason is that the total power in the signal is
represented by the integral under Doppler power curve (i.e., the power spectrum).
The power in the Doppler signal is related to the number of moving scatterers and
red blood cells. So, changing the angle of insonification relative to the red blood
cells, their mean Doppler shift will change, but the power remains the same. As a
result, a power image will change very little with changing angle [26].
At perpendicular incidence the power will be lower, but it may not be zero. Hence,
vessels look continuous, and, in many cases, there is no need to steer the beam.
Other advantages are better boundary detection (power mode depicts continuous
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smooth representation of boundaries that, in this way, are easy to see), improved
quantification of vascularity, better 3D depiction of blood vessel anatomy, and
advantageous properties of blooming in power mode with contrast agents.
The first two advantages are both explainable with the fact that power mode is a
continuous estimator of the amount of blood in a pixel compared with standard
mean frequency color Doppler, which is a bistable estimator of pixel blood content.
Bistable means that an arbitrary threshold, the color-write echo priority, is defined
for color Doppler below which no flow is shown and above which a pixel is written
as entirely containing flow [26].
The power level at each pixel is presented as a level of brightness and corresponds
to the vascularization that is present: different amounts of blood in a pixel will
appear with different powers giving the possibility to obtain a continuous map of
vascularity. In addition, it is possible to compensate the Doppler power for depth
and transducer affects. By comparing the power in a given pixel to the power
in a neighboring blood vessel, one can normalize the tissue signal for depth and
transducer affects.
Finally, power doppler employs a larger part of the dynamic range of the Doppler
signal, increasing overall sensitivity, which is three times larger than that of Color
Doppler, also because angular difference-based errors are not relevant [26].

Limitations of Power Doppler Imaging

Power Doppler technique has also some limits. The first disadvantage is that it
does not provide any information about flow speed or direction.
Moreover, it is a high-sensitivity technique in which any motion is detected, thus it
is extremely sensitive to motion artifacts, like flash artifacts. Therefore, soft tissue
motion, that can be difficult to distinguish from blood flow, may seriously degrade
the image. This limitation is explained by the high flow intensity of power imaging
and the longer time necessary to build the image [26].
Edge artifacts are also more commonly seen in Power Doppler, due to an increase
in the dynamic range.

1.3.4 Color Score
The color score can be a variable having strong diagnostic value, able to predict
whether an ovarian tumor is benign or malignant by characterizing the amount of
blood flow within the lesion.
For this reason, the color score was one of the possible variables that could be
selected as predictors of the ADNEX model, described in the paragraph 1.2.2.
In particular, the selection of the ADNEX predictors was performed by clinicians
with experience in characterizing adnexal masses, who, in the first phase, identified
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a limited set of variables that could represent useful predictors. This first selection
was based on the variables’ perceived predictive value to distinguish between the
four types of malignancies, subjectivity, dependency on the experience of the
ultrasound examiner, and impact on the patient. In addition, the variables were
selected or discarded basing on an analysis of consistency conducted across the
IOTA study centers from which resulted that color doppler variables, including
color score, and the presence of cyst wall irregularities should not be included as
predictors in the model [22]. From this analysis conducted by Wynants et al. in
2013, the color score of intratumoral blood flow was proved to be a subjective
variable with eight among the forty participant physicians that were detected as
outliers for the color score, five with high and three with low values, possibly due
to the use of Color or Power Doppler ultrasonography by different examiners [31].
After the analysis, ten variables remained, on which further statistical selection
was conducted and, at the end, one variable, namely the family history of ovarian
cancer, was omitted and the ADNEX predictors became nine [22].

Agreement among clinicians in color score assignment

Since the evaluation of the color content within the tumor is subjective, the values
of color score are likely to vary both within and between examiners [32]. This
variability has an influence on the calculation of the risk of adnexal mass malignancy.

A study by L. Zannoni et al. estimated the intra- and inter-observer variability in
assessing the color scores to 103 adnexal masses examined through color/power
doppler imaging. Four expert and three less experienced sonographers evaluated
the lesions twice before and twice after a consensus meeting. During this meeting
emerged that there were some differences in assignment between and within ob-
servers because they had different opinions or were uncertain on how estimating
the color content of the lesion. [32]
No significant differences were obtained in the assignment between more experi-
enced and less expert observers. In particular, the intra-observer repeatability
of color score was considered good or very good, and the consensus meeting did
not produce any relevant improvement. Instead, inter-observer concordance was
estimated as moderate or good with a slight improvement registered thanks to
the consensus meeting; however, neither intra- nor inter-observer agreement were
associated to the level of experience of the sonographers [32].

In the study conducted by R. Massobrio, 70 ultrasound videos of adnexal masses
were evaluated by 11 clinicians having different experience in the diagnosis of
ovarian tumors. The clinicians were asked to assign a color score to each video and
their agreement has been quantified. It was obtained that the concordance among
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all the observers was discrete (54.5%); whereas the agreement of more expert
sonographers was higher, reaching a moderate concordance of 60.9%. Instead,
clinicians with less experience showed an average agreement of 52% [7].
Unlike the other study, in this case the experience of the examiners was proven to
be related to the color score assignment and the agreement among clinicians.

These studies show how difficult is to quantitatively evaluate the color content of
the adnexal masses and that the agreement of different observers in the assignment
of color score is still not optimal mainly because it is a subjective assessment that
can be also influenced by observer’s experience.

Color score as a predictive variable in literature

Given the subjectivity of the color score and the difficult agreement among clinicians
in its assignment, the usefulness of this parameter in the distinction between benign
and malignant ovarian neoplasms has been strongly debated. As a matter of fact,
in literature, there are several studies that support, also with quantitative results,
the use of color score and others which disagree with that mainly because of the
subjectivity and the lack of reliability of this index.

The study of Sharon et al. evaluates prospectively and compares the useful-
ness of color doppler, spectral doppler, and gray-scale sonography in distinguishing
between benign and malignant adnexal masses. In this study, 170 adnexal masses in
161 patients were classified as benign or malignant basing on gray-scale morphology,
internal flow versus peripheral or no flow, and spectral Doppler pulsatility. Among
the 170 masses, 123 were benign and 46 were malignant as revealed by the surgical
pathology, one malignant mass was confirmed by cytologic evaluation.
The grayscale analysis showed that 46 of the 47 malignant masses were suggestive
of tumor and 76 of the 123 benign masses were not. It resulted that a gray-scale
prediction of benignity was reliable (NPV = 99%), whereas a prediction of malig-
nancy was unreliable (PPV = 50%).
It was, then, investigated the use of Color Doppler imaging as a possible tool for
improving the specificity of gray-scale sonography.
Color Doppler imaging detected flow in 153 masses. Internal flow in a solid compo-
nent or septum was present in 36 (77%) of the 47 malignant masses and in 38 (31%)
of the 123 benign masses. Peripheral flow along or within the wall of the mass,
without internal flow, was shown in 69 (56%) of the benign masses and in 21% of
the malignant masses. No flow was identified in 16 (13%) of the benign masses.
Flow was absent in only one malignant mass that had gray-scale characteristics
suggestive of malignancy.
As a result, the presence of internal flow was not useful in distinguishing benign
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from malignant masses (PPV = 49%), the sensitivity and specificity for internal
flow versus either peripheral or no flow were 77% and 69%, respectively. The most
useful information provided by color flow sonography involved patients who have
no detectable flow because it suggested benignity (NPV = 94%), but only in 10%
of the masses the absence of internal or peripheral color flow was verified.
Therefore, from this study it emerges that gray-scale findings, although imperfect,
provide a more useful guide in evaluating these masses, especially in the prediction
of benignity, and color Doppler imaging has limited usefulness in the evaluation of
ovarian masses.
However, it must also be considered that, as proven by other studies (Fleischen
et al., [33]), there is a statistically significant difference between vascularity in
benign lesions (which tend to be peripheral) and that in malignant lesions (which
tend to be internal). This difference is also shown in this study where it was
obtained a higher percentage of malignant lesions with internal flow (77%) than
the percentage of benign lesions with such flow (31%) and this result was highly
statistically significant but, since the PPV was less than 50%, this information is
not useful [34].

In contrast, the study of Timmerman at al. suggests the importance of including
color score and other variables in a logistic regression-based model to distinguish
between malignant and benign neoplasms. In particular, the study describes a
statistical model that estimates the probability of malignancy for individual patients
with a high sensitivity for malignancy while maintaining a high specificity.
This study shows that the most useful parameters for the logistic regression analysis
were the menopausal status, the serum CA 125 level, the presence of one or more
papillary growth, and a color score, from 1 to 4, indicative of tumor vascularity
and blood flow.
Moreover, the presence of measurable arterial blood flow within the adnexal lesion
and a high color score (3 or 4) were proved to be highly discriminating factors for
differentiation between benign and malignant adnexal masses.
The model had a specificity of 87.1% and an accuracy that exceeds the performance
of the widely used Risk of Malignancy Index. Besides that, the most important
feature of the model remains the high sensitivity (95.9%), because clinically it
is worse to have a false-negative test result than a false-positive test result for a
patient with an adnexal mass who might need referral to a gynecologic oncologist
for appropriate surgical intervention [35].

In another study, Abbas et al. developed a multiparameter scoring model us-
ing four gray-scale ultrasound and two color Doppler features (among which there
is the color score) that has shown a high sensitivity and specificity for prediction
of malignancy in adnexal masses compared with other scoring systems thanks to
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the chosen variables. The features that resulted best fitted to predict the adnexal
mass status and allowed statistically significant discrimination of benignity from
malignancy were: volume of mass, type of mass, presence and thickness of septae,
presence and length of papillary projections, location of vessels at color Doppler
and color score. These features were, then, combined to obtain the scoring model,
called Assiut Scoring Model.
Patients were evaluated by 2D ultrasound for morphological features of the masses
combined with color Doppler examination of their vessels.
Among 115 benign masses, Color Doppler study detected 107 masses as benign
(having a color score of 1 or 2) but labelled eight masses as malignant that were
actually benign, while out of 46 malignant masses, only 29 masses were correctly
diagnosed as malignant, the color score assigned to these masses was 4.
Another aspect to be considered is that, also in this study, Color Doppler results
showed predominantly peripheral localization of vessels in benign masses (69.6%)
and predominantly central or septal vessel localization (39.1% and 34.8%) in malig-
nant masses. The 17.4% of masses showed absence of blood flow, while nearly all
the malignant masses showed vascularity (97.8%) [18].

As shown from the described articles and others - [36, 37] - and from the de-
cision to not include this parameter as a predictor in the ADNEX model, the
estimation of the color score, intended as the color content of the tumor scan, to
assess tumor vascularity is based on a subjective evaluation. Moreover, this element
of subjectivity might have a negative effect on the reliability of the ultrasound
methods incorporating doppler variables making them difficult to reproduce.
However, at the same time, it also emerges that this parameter represents a useful
indicator employed in several models to successfully differentiate benign ovarian
tumors from malignant ones.
Therefore, given the importance of this measure and its subjectivity, it is necessary
to find a method that makes the color score a more reliable and effective indicator
of malignancy. In this study, two methods that try to reach this goal, by removing
the several artifacts present in doppler videos that may influence the value of color
score assigned to the lesions, are desccribed.
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Chapter 2

Aim of the study

Ovarian cancer, despite its not so large incidence in women, has a significantly
high mortality, primarily due to the difficulty in identifying and diagnosing this
neoplasm at the early stages [1, 2, 9] (see section 1.1).
In order to overcome this issue, Color Doppler and Power Doppler imaging tech-
niques are employed as powerful, non-invasive and relatively cheap tools to distin-
guish between benign and malignant tumors by evaluating the degree of vascular-
ization within the adnexal mass.
In this context, the IOTA group introduced a scoring system, namely color score,
that indicates the amount of blood in septa, cyst walls or solid areas of the tumor.
The color score assigned by clinicians is 1 when there is no blood flow in the lesion,
2 if the flow is minimal, 3 when the mass contains a moderate flow, 4 if there is a
marked blood flow within the mass [4, 17] (see section 1.2).
However, assigning the color score to a lesion is not always immediate and different
clinicians, with different experience level, may interpret the same adnexal lesion
differently, resulting in the assignment of different color score values and in an
overall low agreement between clinicians.
Moreover, Doppler imaging techniques suffer from several types of artifacts that
can make more difficult for clinicians to interpret the flow information and produce
a correct diagnosis (see section 1.3).
Therefore, in this thesis I will describe two algorithms that have been developed
with the aim of removing the artifacts and easing the clinicians’ evaluation:

• Pixel-based denoising algorithm: algorithm that suppresses artifacts based on
the temporal persistence of colored doppler pixels within the video, assuming
that artifacts are less persistent than real vascularization.

• Connected components-based denoising with component-tracking: algorithm
that takes into account both temporal and spatial persistence, it relies on
connected components, rather than single pixels, to assess signal and artifact
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persistence. It suppresses artifacts while tracking the activations’ clusters –
connected components of colored pixels – during the video.

In this study, a quantitative assessment of the performances of these two artifact-
removal algorithms was performed in order to understand

• if their application can help clinicians in evaluating the vascularization within
the adnexal lesions and in assigning the color score,

• which of the two algorithms performs better.

In order to perform this assessment, a decision tree was trained and tested to
predict the color score based on the estimation of the doppler signal within the
lesion, obtained on 106 videos of ovarian cancer cases. The quantity of doppler
signal was estimated as the number of colored pixels present within the lesion,
whereas the color scores, employed as labels, were assigned by six expert clinicians.
The starting hypothesis was that, by applying the artifact-removal algorithms and,
thus, considering only the doppler activations survived to these algorithms, the
color score prediction is more accurate than the one obtained on the original videos
where the artifacts are not removed.
Three experiments were conducted in which the decision tree was trained and
tested on the original videos (Experiment 1), applying the pixel-based denoising
(Experiment 2) and applying the component-tracking denoising (Experiment 3).
Afterwards, the results obtained for the three experiments were compared with the
scope of identifying the experiment and the denoising algorithm that led to better
classification performances.
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Chapter 3

Artifact removal and color
score prediction: methods
and experimental setup

3.1 Dataset
The data employed in this study derive from the acquisitions performed by the
clinicians of two hospital facilities: A. O. Ordine Mauriziano in Turin and Policlinico
di Sant’Orsola in Bologna.
The dataset consists of 182 clinical cases, and data was obtained by patients
with ovarian adnexal masses enrolled in a clinical study approved by the Ethics
Committee, after providing their informed consent (age 18 and 80 years, average =
51 years). I chose the most representative color doppler or power doppler video
for each of the selected clinical cases that, in general, included one or more videos
representing the flow information. Each video was unpacked into three dimensional
frames having color information encoded in R, G, B.
From the selected videos, two datasets were built: one was used to develop the
artifact-removal algorithms (pixel-based denoising and component-tracking denois-
ing) and to tune their parameters, while the other dataset was employed to assess
the performances of these algorithms based on their capacity to predict the color
scores assigned by six expert clinicians.

3.1.1 Dataset to develop the artifact-removal algorithms
The videos that constitute this dataset have been selected in order to balance as
much as possible the number of selected data acquired from the two hospitals (A.
O. Ordine Mauriziano and Policlinico di Sant’Orsola).
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In particular, the dataset is composed of 101 clinical cases, 55 (54.5%) coming from
A. O. Ordine Mauriziano hospital and the remaining 46 (45.5%) from Sant’Orsola
hospital as shown in figure 3.1.
Among these videos, 63 were acquired using the color doppler, instead 38 videos
are power doppler videos (see figure 3.2).

Figure 3.1: The figure shows the percentage of dataset’s videos coming from the
two hospitals.

Figure 3.2: Percentages of color doppler and power doppler videos in the dataset.

The videos have an average duration of 8.4s and they were composed of approxi-
mately 165 frames on average (see the histograms 3.3a and 3.3b for the duration
in frames and seconds of the videos constituting the dataset). Since these videos
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belong from acquisitions performed in different hospitals where different ultrasound
scanners may be employed, they have different dimensions as shown in the bar plot
of figure 3.4.

(a) (b)

Figure 3.3: Figure (a) displays the number of videos vs the number of frames
in which they were unpacked, whereas the histogram (b) shows the duration in
seconds of the dataset’s videos.

Figure 3.4: The figure shows the size of the frames constituting the dataset’s
videos. The frame size is defined as (width, height) of the images having color
information encoded in R,G,B.

Moreover, both hospitals provided, when available, the hystological reports obtained
for each case of ovarian lesions, as illustrated in figure 3.5. For a number of videos
(27) there was no hystological report, while in 13 cases the adnexal mass was not
surgically removed mainly because the ovarian neoplasm was benign (“no surgery”).
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Furthermore, the table 3.1 shows the number of tumors that were identified as
benign, malignant and borderline (49, 17 and 8 respectively).

Figure 3.5: The histogram displays the results of the hystological reports for this
dataset.

Table 3.1: The table shows the numerosity of benign, malignant and borderline
tumors diagnosed among the 101 videos of the dataset.

Finally, a color score from 1 to 4 was assigned to each video according to the IOTA
guidelines by the Syndiag team and then approved by clinicians. The resulting
distribution of color score in the dataset is shown in figure 3.6. In particular, there
are 39 videos with color score 1, 29 with color score 2, 20 videos having color score
equal to 3 and 13 videos to which a color score of 4 was assigned. The fact that the
great majority of videos has a color score of 1 or 2 suggests that, in this dataset,
malignant ovarian tumors, that normally show higher vascularization (CS = 3 or
CS = 4, with CS meaning color score), are less frequent than benign ones that, in
contrast, are generally less vascularized; this is coherent with the results shown in
table 3.1.
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Figure 3.6: The graph shows how the color score is distributed in the dataset.

3.1.2 Dataset for assessing the performances of the artifact-
removal algorithms

This dataset containing a total of 106 clinical cases was employed to assess the
effect of the artifact-removal algorithms. Specifically, a decision tree was trained
to predict the color score assigned by the clinicians to the cases, and the color
score prediction was based on the doppler estimation obtained from the number of
colored pixels present within the lesion.
The color score was assigned to 54 cases by a panel of six expert clinicians of A.
O. Ordine Mauriziano and Policnico di Sant’Orsola, whereas the Syndiag team
assigned the color score to the remaining 52 cases with the supervision of clinicians.
As illustrated in figure 3.7, the dataset is composed of 90 (84.9%) videos acquired
from clinicians at Mauriziano hospital and 16 videos of Sant’Orsola hospital.

Figure 3.7: The figure shows the percentage of videos in the dataset that has
been selected from the two hospitals.
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These videos are composed, on average, of 88 three dimensional frames and last
4.7 s (see figures 3.8a and 3.8b for the duration in frames and in seconds of the
single videos). Also concerning this dataset, the height and width of the frames
can vary among different videos, as shown in figure 3.9.

(a) (b)

Figure 3.8: Figure (a) displays the number of videos vs the number of frames
in which they were unpacked, whereas the histogram (b) shows the duration in
seconds of this dataset’s videos.

Figure 3.9: The figure shows the size of the frames constituting the 106 videos of
the dataset. The frame size is defined as (width, eight) of the 3D images having
color information encoded in R,G,B.

Also for this dataset the histological reports obtained for the 106 cases were analyzed
and, as seen in figure 3.10, several types of adnexal cancer were identified. The
table 3.2 displays the number of benign, malignant and borderline tumors that
were diagnosed among the lesions included in this dataset, with benign neoplasms
representing around 60% of the lesions.
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Figure 3.10: The histogram displays the results of the hystological reports for
this dataset.

Table 3.2: The table shows the numerosity of benign, malignant and borderline
tumors diagnosed among the 106 videos of the dataset.

Figure 3.11: The graph shows how the color score is distributed in the dataset.
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Moreover, as shown in figure 3.11, the color score is approximately equally dis-
tributed, with 28 videos having CS = 1 and CS = 2, and 35 videos with color score
3; while only 15 highly vascularized videos with CS = 4 could be selected.

3.2 Setup
All the codes have been developed using Python 3.7 as programming language and
run on Mac OS in a dedicated Anaconda environment (version 4.12, [38]). Among
the packages available in Python, the ones used in this study to implement the
codes were: numpy [39], pandas [40], matplotlib [41], scikit-learn [42], imageio [43],
scikit-image [44], cv2 [45], scipy [46], math [47] and graphviz.
A software platform for annotating medical datasets called Redbrick AI [48] was
used to manually label both the adnexal masses and the doppler fan on frames of
the videos included in the dataset described in section 3.1.2.

3.3 Pixel-based denoising algorithm
As discussed in the section 1.3.2, Color Doppler and Power Doppler imaging
are characterized by a high number of artifacts. The presence of these artifacts
may influence the assignment of color score that is a subjective semiquantitative
parameter based, according to IOTA guidelines, on the amount of blood flow within
the lesion [4].
In order to avoid wrong interpretations of the flow information due to artifacts
that may be confused with the real signal, the Syndiag team has developed an
algorithm, called pixel-based denoising algorithm, whose aim is removing artifacts
from the doppler signal so that only the real blood flow remains (a more detailed
description of this algorithm can be found in the master thesis of F. De Simone,
[49]).
The denoising algorithm differentiates between real doppler signal and noise on the
basis of the temporal persistence of color signal throughout the whole video, pixel
by pixel. In particular, it is assumed that artifacts are not persistent, therefore
the pixels that remain colored for a sufficient number of consecutive frames of the
considered video are treated as real signal, the others are flagged as artifacts.
The flow chart of figure 3.12 shows the main steps of the algorithm pipeline.
The algorithm receives as input the frames, conveniently cropped, in which the
doppler video was unpacked. Then, for each frame, a 3D binary mask where all
colored pixels are set to 1 is generated. The temporal persistence is evaluated
by calculating the lengths of all doppler activation sequences for obtaining the
number of consecutive frames in which the investigated activation is persistent. A
chosen threshold is equal to 90th percentile of the distribution of all activation
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Figure 3.12: Flow chart of pixel-based denoising algorithm [49].

lengths of all the pixels. Hence if the length of doppler activations is larger than
the threshold they are considered as real signal, otherwise they are seen as artifacts.
The pixels constituting the artifacts are set to 0 in the resulting blood flow mask
where, consequently, only the real blood flow signal remains. Eventually, the final
mask is applied to the original noisy frames of the video to obtain the denoised
frames that are finally saved.
The figure 3.13 illustrates an example of application of the denoising algorithm
to a US-Doppler video. One frame and the corresponding denoised frame are
represented and the successful suppression of the flash artifact can be noticed.

Figure 3.13: The image at the left represents the original frame, input of the
denoising algorithm, meanwhile the right image shows the denoised frame resulting
from the algorithm application where the flash artifact is removed and the real
blood flow signal remains.

3.4 Component tracking algorithm
The main limitation of the denoising algorithm is that, to remove doppler artifacts,
it only relies on the exact pixel correspondence in a frame sequence, taking into
account only the temporal persistence of doppler activations during the whole video
without considering the spatial persistence.
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This aspect becomes a problem because, due to the movement of the ultrasound
probe during the acquisitions, the investigated region is not static throughout the
video, and individual pixels do not exactly correspond to fixed anatomical regions
across the whole video, thus the spatial correspondence is lost. For the same reason,
individual activation areas of doppler signal also shift through frames, following
the investigated region movements. As a consequence, many real activations are
flagged as artifacts and, thus, suppressed.
To avoid this problem, a component tracking algorithm has been implemented to
be incorporated in the denoising algorithm.
This algorithm identifies every connected component as a doppler activation in the
first frame of the considered video. It then associates a unique fixed identity to
each activation, and is able to track it, i.e. to recognize the same doppler activation
areas in the next frames even if they moved, changing their position. In this way,
it is possible to track the different clusters of activation and follow them while
they move by keeping track of the pixel coordinates occupied by each connected
component – meaning each closed group of colored pixels that constitute a doppler
activation – at each frame. By performing this tracking in combination with the
denoising algorithm, both spatial and temporal persistence of signal activations
during the whole video are considered.
The algorithm is characterized by some parameters:

• the distance between centroids. The centroid of each connected component
is obtained for each frame. For each object (i.e., connected component) in
a frame, the distance between its centroid and the centroids of all possible
objects in the previous frame is calculated. The minimum computed distance
is used to identify two objects in two consecutive frames as having the same
identity.

• the overlap between connected components of consecutive frames. The overlap
is calculated as the number of pixels of the intersection between an object
and the candidate corresponding objects in the previous frame, divided by the
number of pixels of the new object, as shown in equation 3.1

overlap = obj1 ∩ obj2
size2 (3.1)

where obj1 and obj2 represent the object of the previous frame and that of
the current frame, respectively; whereas, size2 is the number of pixels of the
object of the current frame.

• size similarity. In the case of multiple correspondences between objects in
following frames, the pair of corresponding objects is chosen as the one that
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maximizes size similarity. Size similarity is calculated as:

size_similarity = |size1 − size2|
size2 (3.2)

where size1 corresponds to the number of pixels of the smaller object and size2
is the number of pixels of the larger object.

In the next section, the pipeline of the component tracking algorithm is described
in details.

3.4.1 Algorithm Pipeline
1. The inputs of the algorithm are:

• A list of binary masks, one for each frame of the video, where the colored
doppler pixels are set to 1, while the rest are set to 0.

• maxDist, a threshold corresponding to the maximum accepted distance,
in pixels, between centroids of the same object in consecutive frames.

• maxFrames, the maximum accepted number of frames where an object is
still tracked, even though it is not visible.

• minOverlap that corresponds to the minimum accepted value of overlap
for which two objects are considered correspondent.

2. All the objects in the first mask are initialized and registered as new objects.

3. For each following mask:

(a) Disappeared objects, namely objects that are marked as non-tracked, are
updated.

(b) It is checked if the mask is empty (so if all the pixels in the mask are set
to 0 and no objects are present). If so, the frame is registered as empty
and there is a check if there are disappeared objects.

(c) The properties of all objects present in the mask are obtained. These prop-
erties are: coordinates of the object, rectangular bounding box extrema
and centroid coordinates.

(d) The overlap between all possible pairs of objects in current mask and
tracked objects is calculated (this calculation is described in more details
by the flow chart of figure 3.15).
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(e) The distance between centroids of all possible pairs of objects in current
mask and tracked objects is calculated (details of this calculation are
included in figure 3.16). For each object pair:

• If overlap ≥ minOverlap OR distance ≤ maxDist, there is correspon-
dence between the two objects which is registered.

• If overlap < minOverlap OR distance > maxDist, the absence of
correspondence between the two objects is registered.

(f) Every new object can correspond to at most one tracked object. In the
case of multiple correspondences between one object and objects in the
previous frame, size similarity is considered: the correspondence having
the highest value of size similarity is selected as the final correspondence.

(g) All the tracked objects for which no correspondence has been found are
marked as unseen.

(h) A control to check the presence of disappeared objects is performed.

(i) For each tracked object for which at least one correspondence has been
found:

• If the same tracked object corresponds to more than one new object,
the binary mask of the merged new object is created, and the merged
properties are obtained. The tracked object is updated with the
properties of the merged object.

• If the tracked object has one correspondence, it is updated with the
properties of the new object.

(j) Finally, all the new objects with no correspondences are registered as new.

4. The algorithm gives as output a list containing a number of collections equal to
the number of objects that have been identified. Each collection corresponds
to an object and contains the following fiels:

• The unique id assigned to each object in order of appearance in the video.

• The list of coordinates occupied by the object at each frame.

• A list whose elements, one corresponding to each frame of the video, are
set to 1 if the object is identified in the corresponding frame, 0 otherwise.

The flow chart of figure 3.14 shows the pipeline of the component tracking algorithm.
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Figure 3.14: Flow chart of component tracking algorithm.
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Figure 3.15: Flow chart of the function that calculates the overlap between
coordinates of new objects and tracked objects.

Figure 3.16: Flow chart of the function that calculates the distance between
centroids of new objects and tracked objects.

The output of the algorithm is then displayed as images, one for each frame of
the video of interest, that contain the identified objects, each represented with
a different color that remains the same throughout the video. In this way, it is
possible to keep track of the objects intuitively (see figures 3.17e, 3.17f, 3.17g and
3.17h for an example of plot of the tracking output considering four consecutive
frames).
Finally, the tracking algorithm is then integrated with the denoising algorithm
illustrated in section 3.3 resulting in the connected components-based denoising
with component-tracking algorithm (in the following it will be also referred to as
denoising with tracking algorithm or component-tracking denoising). In this case,
the tracked components are the input of the denoising algorithm. The temporal
persistence is evaluated by computing the lengths of doppler activation sequences
for each object identified by the tracking algorithm, i.e. the activation length
for each component is calculated as the number of frames in which that object is
tracked. The activations for each object are then used to describe a distribution and
the threshold to discriminate between real activations and artifacts is calculated as
the 98th percentile of such distribution.
The figure 3.17 displays an example of the application of the component-tracking
denoising algorithm, where, for the same four consecutive frames of the same video,
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the frames obtained from the original video (i.e., video on which no algorithm to
suppress artifacts is applied), the outputs of component-tracking algorithm and
the outputs of the denoising with tracking algorithm are shown. From the figure, it
can be noticed that the component-tracking denoising correctly keeps track of the
real activations associated to the connected components identified by the tracking
algorithm, while removing artifacts (as the one suppressed in the figure 3.17j).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.17: The figure shows an example of component-tracking denoising
application. The images (a), (b), (c) and (d) in the first row correspond to four
consecutive original frames of the same video. In the second row there are the
outputs of the component-tracking showing the connected components identified
for each frame, each represented with a different color that remains the same
throughout the video. The third row of images consists of the corresponding
denoised frames, output of the component-tracking denoising. In frame (b) an
artifact appears, it is identified by the red connected component of figure (f), and
it is correctly suppressed in the denoised frame (j). When the artifact disappears
in frame (d), also the red object is not present anymore in the corresponding
tracking output (h). The blue object identified in the images (e), (f), (g) and (h)
is associated to a real activation that is correctly identified and tracked by the
denoising algorithm in frames (i), (j), (k) and (l).
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3.5 Algorithm’s generalization and harmoniza-
tion of the input data

3.5.1 Qualitative assessment of algorithms’ outputs
In the first stage of the study, it was qualitatively evaluated the capacity of
the component-tracking denoising to suppress artifacts. Therefore, a preliminary
analysis was performed by applying the pixel-based denoising and the component-
tracking denoising to the 101 videos included in the dataset illustrated in section
3.1.1. The outputs of these two algorithms were qualitatively evaluated. The
assessment was performed considering two criteria: the presence of artifacts survived
to the algorithms and the suppression of real blood flow inside and outside of the
adnexal mass.
In particular, if the result of the algorithms’ application led to a case where all
the artifacts were removed while preserving the real doppler activation, it was
positively evaluated as good, otherwise it was evaluated as bad.
As shown in figure 3.18, applying pixel-based denoising more than half dataset
was positively evaluated, while the outputs of denoising with tracking algorithm
resulted negative in almost 80% of cases.

Figure 3.18: The pie chart at the left shows the evaluation of the pixel-based
denoising outputs, while the right chart illustrates the evaluation of the component-
tracking denoising outputs.

An analysis of the most frequent problems related to the denoising with tracking
algorithm was conducted on the cases with negative evaluation.
From this analysis, it resulted that in more than 50% of the cases the component-
tracking denoising did not perform well because there were artifacts overlapped to
real doppler signal. When the connected components of the two overlapped, the
algorithm wrongly recognized them as a single connected component (as seen in
the example shown in figure 3.20).
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Figure 3.19: The figure displays the most frequent problems that led to negatively
evaluated outputs of the component-tracking denoising algorithm.

(a) i-th frame (b) i-th frame

(c) (i+1)-th frame (d) (i+1)-th frame

Figure 3.20: The figure shows two consecutive original frames - (a) and (c) -
and the corresponding outputs of the tracking algorithm depicted in (b) and (d).
Note the presence of the artifact within the adnexal mass at the i-th frame, it
overlaps with the real doppler signal that persists in the successive frame and they
are identified by the same connected component in aqua.

Besides the artifacts that resulted overlapped with the real activations, there
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were also artifacts survived to the component-tracking denoising that were not
overlapped to the real doppler signal. These artifacts, in the following referred to
as "not overlapped artifacts", were found in 18 videos (22.8%); whereas in 12 cases
(15.2%) both types of artifacts were identified. The remaining 3 videos (3.8%) were
characterized by the suppression of real doppler activation.
Moreover, it was also proved that the suppression of real doppler signal and the
presence of the not overlapped artifacts occurred also when the pixel-based denoising
algorithm was applied (as seen in figure 3.21), thus they are not characteristic of
the component-tracking denoising.
In this context, the study proceeded focusing on the overlapping problem and on
other edge cases (related to the component-tracking denoising or to the input data)
that were identified during the development of the component-tracking denoising,
in order to improve the performances of the denoising with tracking algorithm in
terms of correctly tracking the real signal and removing artifacts. In particular,
the main improvements that were implemented are:

• Exclusion of the pixels forming the fan outline that, being colored in some
videos, was erroneously tracked by the component-tracking algorithm (see
section 3.5.2).

• Implementation of a function to be integrated in the component-tracking
denoising in order to manage the problem of large artifacts overlapping with
real activations (see section 3.5.3).

• Managing the presence of empty binary masks where no object is identified
by the tracking algorithm (see section 3.5.4).

• Analysis of several parameters of size and shape of the connected components
to distinguish between real activations and artifacts (see section 3.5.5).

Afterwards, the component-tracking algorithm was tuned as illustrated in section
3.6.

Figure 3.21: Example of flash artifact not overlapped to the real signal. From left
to right: original frame, output of the pixel-based denoising, output of denoising
with tracking algorithm. Note that the artifact is present in the three frames,
despite the application of the denoising algorithms in the second and third image.
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3.5.2 Debugging of videos with colored doppler fan
Some videos in some clinical cases were characterized by having a colored outline
for the doppler fan (the area of the ultrasound image in which the doppler signal is
collected). This caused the pixels in the outline to be included in the connected
component analysis. In most cases this resulted in an identified connected compo-
nent with the size of the whole doppler fan.
This issue is graphically represented in the figure 3.22 that shows a frame of the
video taken as example, the corresponding binary mask obtained by setting to 1
the colored pixels, and the resulting output of the component tracking algorithm
where the connected component associated to the colored fan overlaps with some
doppler activations that, instead of being recognized as objects different from each
others and from the fan, are associated to the connected component of the fan
(indeed, they are represented with the same color of the fan).
This led to a wrong tracking of the doppler signal throughout the video and,
therefore, also to errors in removing artifacts when the tracking algorithm was
applied in combination with the denoising algorithm.

Figure 3.22: The figure shows, from left to right, the original frame, the corre-
sponding binary mask where all the colored pixels are set to 1, and the corresponding
output of the component tracking algorithm where there is the connected com-
ponent associated to the doppler fan that overlaps with the doppler activations
touching the fan.

Therefore, in order to fix this bug, it was implemented a method aimed at excluding
the pixels forming the fan outline. The basic idea of this method is to apply the
morphological operation of erosion to erode the colored pixels of the fan.
The pipeline of the implemented method is the following:

1. For each frame of the video of interest:

(a) Starting from the original not denoised frame (see figure 3.23a), the binary
mask where all colored pixels are set to 1 is obtained (see figure 3.23b).

(b) The holes potentially present in the mask are filled by means of the
function binary_fill_holes from the package scipy [46] (see figure 3.23c).
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2. The masks resulting from point 1.b, obtained for all the frames of the video,
are summed up to obtain a mask in which, afterwards, the pixels having
intensity higher than 0 are set to 1, otherwise they maintain the 0 value. This
way, the mask of the doppler fan is obtained (see figure 3.23d).

3. The morphological operation of erosion is applied with a 9x9 kernel to the
mask of step 2 with the aim of deleting the colored pixels of the fan. In this
way, in the resulting mask only the pixels within the fan are set to 1.

4. The mask is multiplied to each frame of the video to obtain the eroded frames
(see figure 3.23e).

5. For each eroded frame resulting from step 4, the new binary mask of colored
pixels is obtained. In this new mask the pixels of the doppler fan are set to
zero (see figure 3.23f).

(a) (b) (c)

(d) (e) (f)

Figure 3.23: Step by step outputs of the pipeline of the method that eliminates
the colored pixels of the doppler fan. (a) Original frame. (b) Doppler mask,
depicting all pixels containing Doppler signal. (c) Mask where the holes are filled.
(d) Binary mask resulting from the sum of the masks where the holes are filled for
all the frames of the video. (e) Eroded frame, obtained by applying the sum of the
filled masks to the original frame. (f) New doppler mask where the pixels of the
fan are disappeared. Note that (c) and (d) are the same because in the considered
frame the doppler fan was a closed polygon, but this is not necessarily the case.
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The illustrated method was developed considering a small number of videos that
were included in the dataset described in section 3.1.1, then its application was
extended to the whole dataset.
Results were robust with videos having a grayscale doppler outline: the resulting
binary masks remained unchanged with respect to the binary masks of colored
pixels. On the other hand, regarding the 46 videos that presented the problem, in
39 the color was correctly eliminated from the doppler fan, while in the remaining
7 videos some pixels constituting the fan were still colored (see figure 3.24).

Figure 3.24: The figure shows, from left to right, the original frame, the cor-
responding binary mask containing all the colored pixels, and the corresponding
doppler mask obtained after the application of the described method that, in this
case, is not able to remove all the colored pixels constituting the doppler fan.

In order to fix the bug for all the videos, it was tried firstly to remove the small
objects that were placed close to the doppler fan, considering different minimum
dimensions of the objects (64, 128, 256 and 512 pixels). However, this approach
did not solve the issue and the few colored pixels survived.
From the results obtained after the application of the methods that were imple-
mented to try to fix this issue for all the videos, it emerges that these data have
intrinsic complexities that may be related to the ultrasound instrument employed
to perform the acquisitions and its settings. Moreover, further tests and trials are
required to explore this feature more deeply.
The figure 3.25 shows an example of output of the component tracking algorithm
run using the new mask in comparison with the tracking output obtained without
applying the illustrated method, considering the same frame.
In addition, it has to be taken into account that, for the 7 videos where the doppler
fan was still partially visible, the connected components associated to the remaining
colored fan did not overlap with the surrounding doppler activations that were
identified by different objects since the clusters of remaining colored pixels were
spatially distant (see figure 3.26).
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Figure 3.25: Original frame, output of the tracking algorithm where the colored
pixels of the fan are considered as a connected component, tracking output without
the presence of the object associated to the fan, considering the same frame. In
this example, the described method worked well.

Figure 3.26: The figure shows, from left to right, the original frame, the corre-
sponding tracking output that identifies an object in light blue associated to the fan,
and the corresponding tracking output obtained giving as input to the algorithm
the masks resulting from the application of the method. Even if in the third image
there are few remaining pixels of the fan, the different doppler activations that
touch the fan are identified as different objects, instead of what happens in the
second image where they are identified as part of the same connected component
in light blue.

3.5.3 Integration of the minimum distance function in the
tracking algorithm

Afterwards, the component-tracking algorithm was further improved by managing
an edge case that occurred in videos characterized by the presence of an artifact
(for instance a flash artifact) of big dimensions that persists for several consecutive
frames. Large artifacts tend to overlap to different doppler activations which can
be quite distant between each other and, when the artifact disappears, they are
associated to the same connected component (the one of the artifact) even if they
should be identified by separate objects.
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The figure 3.27 displays an example of this problem, where the large artifact present
in the original frame 3.27a is identified by the aqua connected component and it
is overlapped with the doppler activations that, when the artifact disappears in
frame 3.27c, are still associated to the aqua object as shown in figure 3.27d.
This problem could lead to errors in keeping track of the doppler activations
throughout the video.

(a) (b)

(c) (d)

Figure 3.27: The figure shows two original frames of the same doppler video - (a)
and (c) - and the corresponding outputs of the tracking algorithm depicted in (b)
and (d). Note the presence of the large artifact in the frame (a), it covers several
doppler activations that, when the artifact disappears, are identified with the same
connected component in aqua as seen in figure (d), despite they are distant from
each other and not artifacts.

On the other hand, also the opposite situation could occur. In these cases, referred
here as “split-merge problem”, a doppler activation that appears at one frame
splits into two (or more) connected components in the following frames. These new
connected components should not be treated by the algorithm as different objects,
but recognized as parts of the same object.
To account for the overlapping artifacts and the split-merge problem, I calculated
the distances between all the possible pairs of objects in the same frame for which
the algorithm has found a correspondence with the object of the previous frame. If
the minimum distance between one object and the others is lower than a chosen
threshold, the object is recognized as the same object of the previous frame;
otherwise the object is tracked as a different new object.
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(a) (b) (c)

(d) (e) (f)

Figure 3.28: Step by step outputs of the function that calculates the distance
between contours of objects in the same frame. (a) Original frame. (b) Binary
mask containing the objects identified in frame (a), for which the correspondence
with the artifact (present in the previous frame, shown in figure 3.27a) occurred.
(c) Mask depicting the contours of these objects. (d) Calculation of the minimum
distance between the contour of the blue object and the one of all the others. Since
the minimum distance (the one from the red object) is larger than minDist, the blue
object is tracked as a new object. (e) Calculation of the minimum distance between
the contour of the smaller orange object and all the others. Since the minimum
distance (the one between the two orange objects) is smaller than minDist, the two
orange objects correspond to the connected component associated to the artifact.
(f) Tracking output resulting from the function’s application: the objects that
are distant from each other are correctly identified by new connected components
different from each other and from the artifact.

The pipeline of the implemented function is the following:
1. The input to the function consists in the list of the objects for which the

correspondence with the object tracked at the previous frame occurred (i.e. a
large overlapping artifact or a real activation that splits into these objects)
and their coordinates.

2. The binary mask containing these objects is generated, in this mask the pixels
identified by the coordinates of the objects are set to 1 (see figure 3.28b).
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3. For each connected component, the contours are obtained with the function
find_contours from the Python’s package scikit-image [44] (see figure 3.28c
for the mask containing the contours of the objects).

4. The distances between all possible pairs of the contour coordinates of all the
pairs of objects are computed and the minimum distance between each object
and the others is taken (see figures 3.28d and 3.28e).

5. Given a threshold minDist, chosen after tuning the algorithm:

• If the minimum distance between the object and all the others ≤ minDist,
this object corresponds to the tracked object, thus it can be merged with
the others that correspond to the old object.

• If the minimum distance between the object and all the others > minDist,
the object is registered as a new object.

(a) (b) (c)

(d) (e) (f)

Figure 3.29: Example of application of the function that calculates the distance
between contours of objects in the same frame. (a) Original frame where the large
artifact is present. (b) Binary mask of the connected component associated to
the artifact. (c) Tracking output where the artifact is represented by the orange
object. (d) Original frame where the artifact is gone. (e) Binary mask containing
the objects for which the correspondence with the artifact occurred. (f) Tracking
output resulting from the function’s application: the objects that are distant from
each other are identified by new connected components different from the artifact.
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Applying this function, when a large artifact that is persistent overlaps with several
doppler activations that are distant between each other, they are correctly identified
as different objects (see figure 3.29f). At the same time, the function ensures that
if the resulting connected components are part of the same doppler signal they are
still recognized as the same object (see figure 3.30).

(a) (b) (c)

(d) (e) (f)

Figure 3.30: The figure shows an example where, considering two consecutive
frames (a) and (d), the doppler activation identified by the aqua connected com-
ponent in frame (c) splits into different objects that are correctly associated to
the same connected component of the activation by the algorithm, thus they are
both aqua, as depicted in figure (f). (a) Original frame. (b) Binary mask of the
connected component of interest. (c) Tracking output at the frame (a). (d) Original
frame. (e) Binary mask of the same connected component identified at the frame
(d). (f) Tracking output at the frame (d) where the objects in which the activation
split are recognized as part of the same connected component.
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The flow chart of the described function is shown in figure 3.31.

Figure 3.31: Flow chart of the function that calculates the minimum distance
between the objects of the same frame, when these objects correspond to the same
tracked object.

After the integration of this function in the tracking algorithm, the resulting pipeline
is the one illustrated in figure 3.32 in the next page.
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Figure 3.32: Pipeline of the tracking algorithm that incorporates the implemented
function that calculates the minimum distance between objects of the same frame.
The red boxes contain the sections that were modified and updated with respect to
the pipeline of figure 3.14. 63
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In particular, with respect to the pipeline described in section 3.4.1, there is one
more input given to the algorithm that is the threshold minDist, defined as the
minimum distance between contours of objects in the same frame that correspond
to the same object of the previous frame, above which these objects are new objects.
Moreover, in case of split-merge situations, for the objects that correspond to the
same tracked object the merged binary mask is created, and the merged properties
are obtained. The other objects which should not be merged are registered as new.
The tracking algorithm incorporating this new function was applied in combination
with the denoising algorithm to a subset of 20 videos included in the dataset
described in section 3.1.1 and compared with the output of denosing with tracking
algorithm resulting before the new implementation.
From this analysis, it resulted that the split-merge situations were correctly man-
aged; whereas, considering the videos where the large artifact overlapped with real
activations, the implementation solved the problem only when the artifact was
associated to a single connected component of large dimensions. Meanwhile, if the
large overlapping artifact was composed of several small connected components the
problem remained.
This is explained by the fact that, despite the application of the implemented
function, the distance between the residual small connected components of the
artifact and the real activations (that result overlapped with the artifact) is smaller
than the threshold minDist, thus the real activations are wrongly recognized by
the algorithm as part of the artifact. Therefore, as a future development, it will be
necessary to consider these cases as well.
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3.5.4 Managing the empty binary masks in the tracking
algorithm

Other two changes that were performed in the tracking algorithm concerned the
management of the binary masks given as input to the algorithm in the cases where
these masks were empty, i.e., masks in which all pixels are equal to 0 and, therefore,
no objects are identified.
The algorithm described in section 3.4.1 started from considering the binary mask of
colored pixels obtained from the first frame of the video, then the objects contained
within this mask were registered as new objects and their properties were obtained.
However, this version of the algorithm did not take into account the case in which
the very first mask was empty. Therefore, to generalize the algorithm, it was
implemented a function that, given the masks as input, returns the index of the
first not empty mask of colored pixels whose connected components are tracked, so
that the algorithm can start from this mask.
Another identified problem consisted in the fact that the previous version of the
tracking algorithm did not manage the case in which no object was tracked due to
the presence of an empty mask within the video. In particular, it happened that, if
the (i-1)-th mask was empty, when considering the i-th mask which was not empty,
the objects of this mask were correctly identified but the tracking metrics as the
distance between centroids and the overlap between coordinates of these objects
could not be computed since in the (i-1)-th mask no objects were detected and,
thus, no centroids or coordinates could be obtained.
To avoid this issue and properly manage the empty binary masks of colored pixels,
the following check was added to the algorithm before calculating the two metrics:

• if the number of already tracked objects, namely the objects identified in the
previous frame, is larger than 0, the algorithm pipeline remains unchanged,
thus the distance between centroids and the overlap between the coordinates
are calculated;

• if there are no tracked objects it means that the previous mask is empty, thus
every object of the current mask is registered as a new object.

The algorithm pipeline including both changes described in this section and the
function illustrated in the previous one (see section 3.5.3) is presented in figure
3.33 of the next page.
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Figure 3.33: Flow chart of the tracking algorithm that includes the management
of empty binary masks (the corresponding blocks are identified by the purple boxes)
and the function described in section 3.5.3 incorporated inside the red boxes. The
boxes contain the modified blocks with respect to the pipeline of figure 3.14.
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3.5.5 Analysis of connected components over time
As resulted from the qualitative assessment of the outputs of the artifact-removal
algorithms described in section 3.5.1, the presence of artifacts overlapping with
real activations is the most common problem that led to poor performances of the
component-tracking denoising algorithm according to the assessment criteria.
It has to be considered that when an artifact overlaps with a real doppler activation,
it is assumed to be a connected component of high dimension characterized by a low
temporal persistence (i.e., it disappears in a short number of consecutive frames)
while the real signal is generally identified by a smaller connected component that
persists for many consecutive frames of the video. Therefore, several parameters of
size and shape of the connected components over time were analyzed. In particular,
for each frame of the video, these parameters were calculated for the connected
component corresponding to the real signal that, at a certain frame, overlaps with
the artifact. By plotting the difference between these parameters of the connected
component in consecutive frames, it is possible to appreciate when the artifact is
superimposed to the signal because, in this case, the dimension or the shape of the
resulting object changes, and a peak should appear in the graph for that frame.
On the other hand, when the real doppler signal is not overlapped with the artifact,
the value of the analyzed parameter should be approximately constant and, thus,
the difference should approach zero.
This analysis was performed on 8 connected components coming from different
videos of 8 clinical cases, among which 6 were characterized by the overlap between
the doppler signal and an artifact, instead the remaining 2 objects, in which no
overlapping was verified, were considered as a control case.
The parameters chosen to keep track of these connected components over time
were:

• area: the number of pixels of the connected component

• convex area: area of the convex hull image, which is the smallest convex
polygon that encloses the object

• major axis length: the length of the major axis of the ellipse that has the
same normalized second central moments as the object

• minor axis length: the length of the minor axis of the ellipse that has the
same normalized second central moments as the object

• aspect ratio: ratio of minor axis length to major axis length

• eccentricity of the ellipse that has the same second-moments as the object.
The eccentricity is the ratio of the focal distance over the major axis length.
The value is in the interval [0, 1). When it is 0, the ellipse becomes a circle
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• perimeter of the object

• solidity: ratio of pixels in the region to pixels of the convex hull image

(a)

(b) Frame 105 (c) Frame 106 (d) Frame 107 (e) Frame 108

Figure 3.34: Example of the analysis of one connected component over time. (a)
represents the plot of the difference between the areas of the analyzed connected
component calculated for consecutive frames. In the x axis only the frames in
which the connected component appears are inserted. Notice that there are two
peaks: the highest appears when passing from frame 105 to frame 106, the second
when moving from frame 107 to 108. Figures (b), (c), (d) and (e) depict the binary
mask of the connected component at frames 105, 106, 107 and 108 respectively.

As seen from the example of plot shown in figure 3.34a, when the artifact was
overlapped with the real signal, a significant change in dimensions of their connected
component occurred and a peak (negative or positive) emerges in the plot for the
corresponding frames, as expected.
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Analyzing the plots of the difference of the parameters over time for different
connected components, it is also possible to find a value of these parameters that
can be used as a threshold above which the overlapping between the real signal
and the artifact is verified. Below this threshold, the connected component consists
of real signal only.
Therefore, the preliminary data produced during this analysis will be useful in the
future, when a further study will be conducted in order to identify the optimal
values of these thresholds for distinguishing between artifacts and real activations.

3.6 Tuning of the component tracking algorithm
In summary, the updated version of the tracking algorithm takes as input the
binary masks where pixels corresponding to doppler activations are highlighted,
and uses four tolerance values. These tolerance values are:

• maxDist, the maximum distance, in pixels, between centroids of the same
object in two consecutive frames

• maxFrames, the maximum number of frames where an object is still tracked,
even if it is not visible

• minOverlap, the minimum value of overlap for which two objects are considered
correspondent

• minDist, the minimum distance, in pixels, between contours of objects in the
same frame that correspond to the same tracked object above which these
objects are new objects.

These parameters were tuned in order to enable the tracking algorithm to perform
in the best possible way.
I empirically found out that the best tracking results were reached by setting the
tolerance maxFrames equal to 0. That is, there is no tolerance for disappearing
objects: if a tracked object is not seen in the considered frame, it is registered as
disappeared and is not tracked anymore.
Regarding the overlap, it was computed as the number of pixels of the intersection
between the new object and the already tracked object normalized with respect to
the number of pixels of the new object. The selected value of minOverlap was 0.2.
The threshold maxDist was set to 10 pixels because this was proven to be the
optimal value to keep track of the same object throughout the whole video.
Finally, the value of minDist was selected after having tested the performances of
the tracking algorithm on a set of 20 videos included in the dataset described in
section 3.1.1 considering different values of this parameter.
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This dataset was composed of both videos where a doppler activation splits in two
or more connected components passing from one frame to another and videos where
there is a persistent artifact of large dimensions that overlaps with many distant
connected components which, when the artifact disappears, should be recognized
as different doppler activations and, therefore, different new objects.
The tested values of the threshold - applied to the distance between the contours
of the objects present in the same frame - ranged from 20 to 70 at steps of ten.

(a) (b) minDist=30 (c) minDist=40 (d) minDist=50 (e) minDist=60 (f) minDist=70

(g) (h) minDist=30 (i) minDist=40 (j) minDist=50 (k) minDist=60 (l) minDist=70

Figure 3.35: The figure shows an example of a video where at the i-th frame,
shown in (a), there is an artifact that overlaps with the real signal, while in the
(i+1) frame only the real activations remain, as shown in (g). The figures (b), (c),
(d), (e) and (f) represent the outputs of the tracking algorithm at the i-th frame
setting minDist equal to 30, 40, 50, 60 and 70 respectively. Notice that the artifact
is depicted in light blue, blue, blue, orange and yellow in the five images. The
figures (h), (i), (j), (k) and (l) show the output at the (i+1)-th frame obtained for
the different values of minDist. Only when minDist is set to 30, the two connected
components representing the two doppler activations are correctly identified with
different colors, blue and light blue.

It was noticed that, when setting minDist = 40, 50, 60 and 70, objects clearly
corresponding to different doppler activations resulted erroneously associated to
the same connected component, (as seen in the figures 3.35i, 3.35j, 3.35k, 3.35l
representing the outputs of the tracking algorithm obtained for the same frame
using the four different thresholds), thus these tolerance values were too high.
On the other hand, setting the threshold to 20 the split/merge problem occurred,
meaning that, in some videos, the two or more connected components in which a
doppler activation split were wrongly identified as different objects (see figure 3.36
for the example).
Therefore, minDist = 30 was the optimal value that ensured, on one hand, that
the split-merge problem did not appear again, and, at the same time, it allowed to
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partially solve the problem caused by the presence of big and persistent artifacts
during the video, as shown in figure 3.35h.
In summary, this version of the tracking algorithm uses five tracking measures –
distance between centroids, number of frames where an object is tracked, overlap
between coordinates, size similarity measure, distance between contours – and the
following tolerance values:

• maxDist = 10

• maxFrames = 0

• minOverlap = 0.2

• minDist = 30

Figure 3.36: The figure displays an example of a video where a doppler activation,
indicated by the white circle in the frame (a), splits into two connected components
shown in the frame (b). As indicated by the arrows, the figures (c) and (d) show
the outputs of the component tracking algorithm corresponding to the original
frame (b), obtained setting minDist equal to 20 and 30 respectively. While with
minDist = 20 the two objects inside the white circle are wrongly associated to two
different connected components (in green and red), using minDist = 30 they are
correctly identified as the same object depicted in orange.
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3.7 Tuning of the component-tracking denoising
algorithm

Afterwards, the component tracking algorithm was integrated in the denoising in
order to have an algorithm able to suppress artifacts while keeping track of the
real signal throughout the video. The resulting denoising with tracking algorithm
was applied to all 101 videos of the dataset.
The results were compared with the pixel-based denoising algorithm applied on
the same dataset.
The denoising algorithms are characterized by the signal to artifact threshold,
namely, the threshold that was applied to distinguish between artifacts and real
doppler activations, based on the assumption that real signal activations are more
persistent than artifacts. In particular, the 80th, 90th, 95th and 98th percentile
of the distribution of the activation lengths of the pixels and the tracked objects
were tested as possible threshold values for pixel-based denoising and component-
tracking denoising algorithms respectively.
To tune the denoising algorithm and choose the appropriate signal to artifact
threshold, a model was trained to predict the color score based on the estimation of
the amount of doppler signal within the lesion evaluated on a dataset of denoised
videos (the results of this assessment are illustrated in sections 4.2 and 4.3 for
pixel-based denoising and component-tracking denoising respectively).
The signal to artifact threshold was chosen by means of this predictive model
because the quantity of doppler signal within the adnexal mass changes based on
the value of this threshold (this quantity decreases if, applying the threshold, some
real doppler activations are suppressed because they are interpreted as artifacts,
whereas it increases if a large number of artifacts survives to the denoising) thus
leading to a color score prediction, performed by the model, that can be more
or less accurate. Therefore, the optimal value of the signal to artifact threshold
chosen for the denoising algorithms was the one that lead to higher classification
performances.

3.7.1 Definition of the ground truth
The ground truth, selected to perform the quantitative assessment of the denoising,
consisted in the color score values that were assigned by highly experienced clinicians
to a dataset of ovarian cancer cases.
These color scores resulted from a study conducted by Syndiag in collaboration
with A.O. Ordine Mauriziano and Policnico di Sant’Orsola hospitals, where six
expert clinicians (three for each hospital) evaluated 100 cases of adnexal masses
by assigning to them the color score. Afterwards, the Syndiag team evaluated the
agreement among clinicians in assigning the color score.
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From this analysis, 54 cases, on which a good agreement in the color score assignment
was reached among clinicians, were selected. The dataset was then incremented
with other 52 cases, whose color score was assigned by expert labelers with the
supervision of the clinicians. The final dataset, described in section 3.1.2, resulted
in a total amount of 106 videos.

Image segmentation

The color score is defined as the qualitative amount of doppler signal within an
adnexal mass. To extract the amount of estimated doppler signal:

• the doppler colored pixels must be isolated

• it is necessary to identify the region of interest (ROI) where the doppler signal
relevant for the analysis is present. From a medical point of view, this ROI
consists of the intersection between the adnexal mass walls and the area of
the doppler acquisition.

In order to find this ROI, the videos were labeled, then the amount of doppler
signal within the ROI in the original videos and the one survived to the pixel-based
denoising and component-tracking denoising algorithms was quantified (see section
3.7.1) and, finally, from this value, the color score was automatically predicted by
the implemented models described in section 3.7.2.
A total number of 2986 frames were labeled. These frames were taken from the
106 cases of the dataset. It was decided not to label all the frames of the available
cases but only the most representative ones so that the number of videos under
analysis could be maximized. This is consistent with the medical doctors’ usual
assessment of doppler data.

The manual segmentation of the ROI was performed using RedBrick AI [48]
that is a unified labeling platform that allows to label and manage data.
On each frame, two labels were positioned:

• the whole adnexal mass, by means of a pixel-sensitive segmentation tool

• the doppler fan area, by means of a polygon tool.

The platform returned as output the binary masks containing the labeled adnexal
mass and the coordinates (normalized with respect to the size of the image) of the
points that were placed by the labeler to form the closed polygon that contained
the doppler fan.
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Figure 3.37: Examples of labeling performed on RedBrick AI platform. The
adnexal masses are shown in orange, while the areas of the doppler fan are shown
in white.

Calculation of doppler pixel count

After having labeled the doppler fan and the adnexal mass for the selected frames,
the number of colored pixels corresponding to the doppler signal within the ad-
nexal mass in each frame was calculated considering both original, denoised and
denoised+tracked videos 1, this number was referred to as doppler pixel count.
The doppler pixel counts are the inputs given to the model that predicts the color
score based on the amount of doppler signal within the lesion (see section 3.7.2).
According to the IOTA guidelines, the color score is defined as the amount of
vascularization within the adnexal lesion. Therefore, this qualitative parameter was
predicted based on the quantity of doppler signal within the ROI. This quantity
was calculated in terms of doppler pixel count as the ratio between the number of
colored pixels within the ROI and the area of the ROI itself:

doppler pixel count = number of colored pixels within the ROI
area of the ROI (3.3)

Given that the color score is an ordinal variable and its definition is based on the
amount of doppler signal, it is expected that the larger the number of colored pixels
within ROI, the higher the assigned value of color score for the considered video.
The normalization of the number of colored pixels with respect to the area of the
ROI was performed because it is necessary to take into account that for different
doppler videos the acquisition can be performed focusing on masses having different
dimensions and setting different zoom levels.

1Original videos are intended as those videos on which no algorithm to remove artifacts is
applied. Denoised videos are the ones resulting from the application of the pixel-based denoising
algorithm. Finally, denoised+tracked videos are referred to as the videos on which the connected
components-based denoising with component tracking is applied.
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(a) (b) (c)

(d) (e) (f)

Figure 3.38: Pipeline to evaluate the doppler pixel count. (a) Original frame
taken as example. (b) Binary mask of the adnexal mass. (c) Binary mask of the
doppler fan. (d) Binary mask of the intersection between the lesion and the fan,
whose area represents the denominator of equation 3.3. (e) Mask resulting from
the product between (a) and (d), it isolates the colored pixels within the lesion. (f)
Binary mask where colored pixels are set to 1, the number of these pixels is the
numerator of equation 3.3.

The steps performed to obtain the doppler pixel count for each labeled frame are:

1. From the original frame (or denoised frame or denoised+tracked frame), the
binary mask where the pixels corresponding to the adnexal mass are set to 1
and the binary mask of the doppler fan are computed (see figures 3.38b and
3.38c).

2. The intersection between the mask of the adnexal mass and the mask of the
fan is obtained and its area is calculated as the number of pixels constituting
this ROI. (see figure 3.38d).

3. The considered frame is multiplied by the mask of the intersection (see figure
3.38e).

4. In the image resulting from step 3, the colored pixels associated to a doppler
activation are identified as those pixels where there is a difference of at least
30 between R and G, R and B or G and B. The number of colored pixels is
obtained (see figure 3.38f).
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5. The amount of doppler signal within the mass for the considered frame is
calculated as in the equation 3.3.

Applying this pipeline, for each case a list of doppler pixel counts (one value for
each labeled frame) is obtained for both the original video, the video resulting from
the application of the pixel-based denoising algorithm and the video on which the
denoising with component tracking algorithm was applied.

Selection of threshold to apply on doppler pixel count

In the clinical practice, clinicians, in order to assign the color score to a clinical case,
watch the whole video and then refer to those frames where the highest amount
of what they see as real signal is present within the lesion. A similar approach
was applied for the doppler pixel count, with two differences: first, the doppler
pixel count is a quantitative and measurable parameter, while the color score is a
subjective and qualitative variable; secondly, instead of considering the maximum
as the most representative value of doppler pixel count to be given as input to the
color score predictive model, a threshold was applied to the doppler pixel count to
account for random fluctuations in the measurement.
The color score was predicted based on the doppler pixel count values obtained
considering three different conditions:

• on original videos, without applying any artifact-removal algorithm,

• when the pixel-based denoising is applied,

• when the component-tracking denoising is applied.

The number of colored pixels conveniently normalized in original videos includes
both real vascularization and artifacts, while, in the other two conditions, it consists
in the fraction of pixels survived to the artifacts’ suppression.
Different thresholds were proposed and an analysis was conducted in order to
choose the optimal threshold that better characterized the videos.
Firstly, it was represented a bar plot where the average threshold values obtained
for the videos having the same color score and the corresponding standard devi-
ations were displayed as a function of the color scores for original, denoised and
denoised+tracked videos (see figure 3.39 showing the bar plot obtained employing
as a threshold the median of the doppler pixel counts larger than the 80th percentile
of their distribution). This way, possible differences in the number of colored pixels
within the masses in the three conditions could be seen.
The most important aspect emerging from the bar plots was the presence of large
variability of the doppler pixel count values due to the high standard deviations.
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The lowest variability was reached when the pixel-based denoising was applied.
Moreover, the mean of doppler pixel counts for videos having color score 1 was
always larger than zero for the three types of videos. This is in contrast with the
definition of color score introduced by IOTA according to which a color score of 1
is assigned when no vascularization is shown within the mass. This means that the
colored pixels present in those videos are artifacts and that the clinicians were able
to correctly recognize those pixels as artifacts and not real signal.
Considering the three conditions, the doppler pixel count increases as the color
score increases, as expected. For the denoised videos, the doppler pixel count values
for color scores 1 and 2 are similar, therefore they may be difficult to distinguish.
Instead, considering the denoised + tracked videos, the doppler pixel count for CS
(i.e., color score) = 1 is higher than the one resulting from the denoised videos,
hence too many artifacts are still considered as real signal by this algorithm.

Figure 3.39: Bar plot showing the mean of the threshold values applied to doppler
pixel counts of the videos having the same color score for original, denoised and
denoised+tracked videos as a function of color score. The threshold used to obtain
this plot corresponds to median of the doppler pixel count values larger than the
80th percentile of their distribution.

Afterwards, in order to show the correlation between the color scores and the
threshold value for each video of the dataset, three separate scatter plots - where
the threshold value for each video as a function of the color score was displayed -
were made for original, denoised and denoised + tracked videos.
Considering the scatter plot obtained for the original videos (see figure 3.40a), color
score 1 and 2 could not be distinguished and the same happened for color score 3
and 4. When the pixel-based denoising was applied, the doppler pixel count values
were generally lower, and they differed more for the different color scores.
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(a) original videos (b) denoised videos (c) denoised+tracked videos

Figure 3.40: Scatter plot of doppler pixel count values vs color scores for original
(a), denoised (b), and denoised+tracked (c) videos. The threshold applied on the
doppler pixel count values to obtain this plot corresponds to median of the doppler
pixel count values larger than the 80th percentile of their distribution.

Finally, given the large variability that emerged from bar plots, the distributions
of doppler pixel counts for the three conditions and for the videos having the same
color score value were obtained in order to analyze their variability and to identify
more easily the threshold to distinguish between different color scores.
Therefore, four distributions of doppler pixel counts groups each one corresponding
to a color score were generated for the three types of videos – original, denoised,
and denoised+tracked videos.
Considering denoised videos, there was no significant difference between color score
1 and 2 distributions as shown in figure 3.41. This algorithm removes the artifacts,
but it makes difficult to differentiate between the four distributions meaning that
it is also eliminating real activations, especially in videos with CS = 4.

Figure 3.41: Distribution of doppler pixel count groups, each corresponding to
a color score, for denoised videos. Other distributions were obtained also for the
original and denoised+tracked videos.

From the conducted analysis, it resulted that the threshold that maximized the
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difference between the distributions of doppler pixel count values obtained for the
different color scores and that, thus, better represented the single videos was the
median of the doppler pixel count values larger than the 80th percentile of the
doppler pixel count distribution. Therefore the model, described in the next section,
was trained receiving this threshold as input.

3.7.2 Color score predictive model
Once obtained the most representative value of doppler pixel count for each video
of the dataset, it was used as a feature to train a model, which is a classifier, able
to automatically predict the color score.
For the three conditions, the same model was built – only the input changed, i.e.
the doppler pixel counts obtained for the original, denoised or denoised+tracked
videos – performing a supervised learning, meaning that the model gets trained
on a labelled dataset consisting of both the input parameters represented by the
doppler pixel counts and the output parameters that are the corresponding color
scores assigned by clinicians.
The performances of the classifiers were evaluated in terms of accuracy, sensitivity
and specificity and, then, compared to show which method led to better results.
The implemented classifier is a Decision Tree which gives as output three thresholds
that divide the doppler pixel counts in 4 groups each belonging to one of the 4
classes represented by the 4 color scores. After the identification of these thresholds,
they can be applied to assign the color score to completely new samples.

A decision tree is a non-parametric and supervised machine learning algorithm
often employed for classification problems. It has a hierarchical, tree structure
characterized by a root node, branches, internal nodes, and leaf nodes.
In particular, a decision tree starts with a root node from which branches develop
and arrive to the internal (or decision) nodes where a test is performed on an
attribute. The outcomes of these tests are represented by the branches of the tree
that lead to the leaf nodes (or terminal nodes), each one holding a class label.
Decision tree learning uses a divide and conquer strategy by performing a greedy
search where the starting dataset splits into subsets based on the attribute value
test. This process of splitting is repeated in a recursive manner until all, or the
majority of the samples in each subset have been classified under the same class label.

The splitting criterion employed for the built decision trees was the Gini Im-
purity. This score gives an idea of how good a split is by how mixed the response
classes are in the groups created by the split.
Considering a dataset D that contains samples from k classes and defined pi the
probability of samples belonging to class i at a given node, the Gini Impurity of D
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is denoted by the formula:

Gini(D) = 1 −
kØ

i=1
p2

i

A perfect class purity occurs when a group contains all inputs from the same class,
in which case G = 0, whereas a node having a 50–50 split of classes in a group has
the worst purity (G = 0.5).

However, when the decision tree grows in size and, consequently, its complex-
ity increases, it becomes increasingly difficult to arrive to pure leaf nodes where
all the samples belong to the same class. When this increase in complexity and
dimensions occurs, it can often lead to overfitting.
Therefore, to avoid overfitting and start generalizing well to new data, pruning
was employed. In particular, the implemented type of pruning was the minimal
cost-complexity pruning, a process that controls the size of the tree by removing the
branches that have lower importance after that the complete tree was constructed.
In this way, the complexity of the tree is reduced and its predictive power increases.
The algorithm used to apply the pruning is based on the complexity parameter
α used to weigh whether nodes can be removed. The higher the value of α, the
higher the number of nodes pruned and, hence, the lower the tree’s complexity.
This method recursively finds the node with the “weakest link” that is characterized
by an effective α; the nodes with the smallest effective α are pruned first.
In particular, the first step of this pruning algorithm consists in finding the pruning
path which gives the effective αs and the corresponding total leaf impurities at
each step of the pruning process. This means that, for each step, the effective α is
evaluated, and the corresponding node is pruned: this process continues until one
node remains, thus the minimum complexity of the tree and the maximum value
of α are reached. These values of α are then used to train a Decision Tree and, for
each training, the accuracy on both training set and test set is computed. Finally,
the optimal α is selected as the one that leads to the best compromise between
train and test accuracy.

In order to evaluate the model’s fit and make the performances of the classi-
fiers comparable, the cross-validation was performed.
The most used cross-validation technique is K-Fold that divides the dataset into k
subsets called folds. k-1 folds constitute the training set, while the remaining fold
is held for testing, and this split is repeated until each of the folds is employed as
test set. Then, the K folds are fit and evaluated, and the mean accuracy for all
these folds is computed. However, this process works well for balanced classification
tasks, but it fails for imbalance classes. This is because the k folds are obtained by
splitting the data randomly without taking care of the class imbalance.
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In this context, the available dataset is small and unbalanced because it contains a
large number of samples having color score 1, 2 or 3 and only few samples whose
color score is 4. Therefore, the stratified K-fold cross-validation with k = 5 was
performed because it considers the class imbalance by maintaining the same class
ratio throughout the K folds as the ratio in the original dataset.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.42: The figure shows the steps performed to choose the optimal value
of α during the pruning procedure. The figures (a), (b) and (c) were obtained for
the original videos; (d), (e) and (f) for the denoised videos; (g), (h) and (i) for the
denoised+tracked videos. (a), (d) and (g): pruning path with effective αs and the
corresponding number of total leaf impurities. As α increases, more of the tree is
pruned, which increases the total impurity of its leaves. (b), (e) and (h): number
of nodes and tree depth as a function of α. Both variables decrease as α increases.
(c), (f) and (i): accuracy vs α for training and set sets: as α increases, more of the
tree is pruned, thus creating a decision tree that generalizes better. The optimal
values of α are 0.02, 0.05 and 0.04 for original, denoised and denoised + tracked
videos respectively, as they provide the best compromise.
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In summary, each of the three Decision trees was built following these steps:

1. The doppler pixel counts obtained for original videos (denoised, or denoised
+ tracked videos) of the dataset, representing the only feature, and the
corresponding color scores, used as labels, are taken to be given as inputs to
the classifier.

2. The doppler pixel counts are divided into training set and test set (80% and
20% of pixels counts respectively).

3. The pruning path is calculated and the effective αs with the corresponding
impurities are obtained (their relationship is shown in figures 3.42a, 3.42d and
3.42g).

4. The effective αs are used to train a decision tree and the corresponding
accuracies on training and test set are computed (see figures 3.42c, 3.42f and
3.42i).

5. The optimal value of α is chosen as the one that ensures the best compromise
between train and test accuracy. In this case the chosen values were 0.02, 0.05,
0.04 for original, denoised and denoised + tracked videos respectively.

6. The stratified K-fold cross-validation with k = 5 is performed to validate the
model that includes the pruning with the optimal α.
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Chapter 4

Artifacts suppression from
Doppler signal results in an
improved color score
prediction

As described in section 1.2.1, the color score is a scoring system that indicates
the amount of blood flow within the adnexal mass. According to IOTA [4],
vascularization can be described as having color score 1 if no blood flow is present
within a lesion, 2 if the blood flow is minimal, 3 if the flow is moderate and 4 when
the adnexal mass is highly vascular. Medical doctors assign color score considering
the maximum amount of doppler signal (i.e. colored pixels) that is visible within
the lesion. Color score is a powerful yet qualitative measurements, that is user
dependent and, thus, can be affected by the presence of doppler artifacts within
the ultrasound video, leading to low agreement.
In order to ease clinicians’ evaluation of the lesions and improve their concordance
in the assignment of color score, two algorithms that remove doppler artifacts – the
pixel-based denoising algorithm and the connected components-based denoising
with component-tracking – were developed (they are illustrated in sections 3.3 and
3.4 - 3.5) on 101 ovarian cancer cases.
To assess the effect of the artifact-removal algorithms, a predictive model, namely a
decision tree, was trained to predict the color score based on the doppler estimation
on both noisy videos and denoised doppler videos of 106 ovarian cancer cases. Each
video of these cases has its correspondent color score label, assigned by clinicians.
Meanwhile, to estimate the doppler amount, I calculated the doppler pixel count,
defined as the number of colored pixels present within the lesion. The rationale
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was that a well-tuned artifact removal algorithm should lead to more accurate
color score prediction starting from survived doppler activations, than a prediction
simply based on the complete original, not denoised, doppler activations.
In particular, three experiments were conducted: in the first, a predictive model
was trained and tested on original videos; in the second applying the pixel-based
denoising with different signal to noise thresholds; in the third applying the
component-tracking denoising and considering, also in this case, different threshold
values.
The classification performances in terms of accuracy on test and training sets
obtained from the three experiments were then compared and the impact that the
artifact-removal algorithms may have on clinical practice was discussed.

4.1 Experiment 1: Color score prediction from
original videos

The first experiment that was performed consisted in training and testing the
decision tree (whose features are described in section 3.7.2) on the original noisy
videos. Therefore, the doppler pixel count value obtained for each video (calculated
as the median of the doppler pixel counts larger than the 80th percentile of the
distribution of the doppler pixel count values obtained for each frame of the video)
of the dataset included both the colored pixels associated to real doppler activations
and the ones representing doppler artifacts that were not removed in this case.
Before training the model, for the three experiments, the doppler pixel count values
were divided into four groups based on their color score and the characteristics of
these groups were analyzed.
As previously mentioned, the employed dataset is not balanced towards color scores
1, 2 and 3, since only few samples having color score 4 were available, reflecting
the average distribution of this pathology in the clinical practice.
In particular, the numerosity of each class of color scores is the following:

• 28 samples with color score 1

• 28 samples with color score 2

• 35 samples have color score 3

• 15 samples have color score 4

The figure 4.1 shows a box plot of the doppler pixel counts obtained considering
the whole dataset, where on the y-axis there are the doppler pixel count values,
whereas on the x-axis the color scores are displayed.
From the box plot, it is possible to see a trend where the higher median values
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of the doppler pixel counts are associated to higher color scores. However, the
four boxes, each one representing a color score, are partially – or completely, as it
happens for boxes associated to CS = 2 and CS = 3 - overlapped, meaning that
when considering original noisy videos it is difficult to distinguish between different
color scores (especially 2 and 3) on the basis of the doppler pixel count values.
Moreover, the doppler pixel counts for the samples having color score 1 (i.e. absence
of doppler activation within the lesion) are larger than zero, suggesting that these
values include doppler artifacts.

Figure 4.1: Box plot of doppler pixel count values for original videos vs color
scores.

The Decision Tree including minimal cost complexity pruning and validated using
the stratified K-fold was then trained on a 80% - 20% train - test partition of the
106 videos of the dataset.
The accuracy on the training set was calculated for each cross-validation “cycle”
(see table 4.1a), the obtained values were averaged, and their standard deviation
was calculated and the resulting accuracy is equal to 0.62 and +/- 0.02.
Moreover, the test accuracy was evaluated for each of the 5 folds that constituted,
in turn, the test set. The overall accuracy was computed as the mean of these
accuracy values +/- their standard deviation and it resulted equal to 0.53 (standard
deviation = +/- 0.06).
The cumulative confusion matrix of table 4.1b was obtained by summing up the
confusion matrices of each fold constituting the test set, hence considering all the
samples of the dataset. It can be seen that there is a high number of samples, 13,
that have color score 2 but they are misclassified as color score 3. Moreover, 10
samples with color score 1 are misclassified as class 3.
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(a) (b)

Table 4.1: Classification performances for the first experiment conducted on
original videos considering 4 labels, each one corresponding to one color score value.
(a) Train and test accuracy values for each fold used in cross-validation of the
model. (b) Cumulative confusion matrix on whole dataset.

Table 4.2: The table shows the accuracy values on train and test sets obtained
testing different configurations of the decision tree on the original videos. The trial
named start refers to the model whose characteristics are described in section 3.7.2.
In trial 1 the criterion to measure the quality of a split was changed from gini to
entropy. In trial 2 the weights associated with the classes were adjusted based on
the proportion of each class frequencies. In trial 3 the best random split was chosen
at each node. In trial 4 and 5, the minimum number of samples required to split a
node and the maximum depth of the tree were respectively changed, they were set
to all the integers ranging from 3 to 10. In trial 6, the maximum number of leaf
nodes was set to all the integers ranging from 4 to 10.

The obtained value of test accuracy suggests that in almost the half of the cases
the classifier is not able to assign the correct color score when it receives as input
the doppler pixel count values of the original noisy videos.

In this context, in order to improve the classification performances, I tuned the
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model considering different values of the following parameters given as input to
the classifier:

• the criterion to measure the quality of a split. It was changed from the Gini
Index to the Entropy (trial 1 of table 4.2)

• the weights associated with the classes. In trial 2 of table 4.2, the weights
were balanced, meaning that they were adjusted according to the proportion
of each class frequencies

• the strategy used to choose the split at each node. It was changed from best
where the best split is chosen, to random in which the best random split is
chosen (trial 3)

• the minimum number of samples required to split a node. It was set to all the
integers ranging from 3 to 10, the default value was 2 (trial 4)

• the maximum depth of the tree. It was set to all the integers ranging from 3
to 10 (trial 5)

• the maximum number of leaf nodes. It was set to all the integers ranging from
4 to 10 (trial 6).

However, tuning of these parameters did not improve the classification performance
(see table 4.2).
Considering the large overlap between the distribution of pixel count for color score
2 and 3 (as seen in the boxplot of figure 4.1) and the consequent misclassification
between the two (as shown in the confusion matrix of table 4.1b), I considered a
new prediction model trained merging cases with color score 2 and 3 in a unique,
intermediate, condition. This decision was supported by the fact that, differently
from CS = 2 and CS = 3, 1 and 4 represent the color score values that are more
significant from the clinical and diagnostic point of view because the absence of
vascularization (to which a CS = 1 is associated) is a sign of benignity, while
an highly vascularized lesion is identified as a malignant tumor, as suggested by
IOTA’s Simple Rules illustrated in section 1.2.2.
In this context, the doppler pixel count values were divided into three groups with
the following numerosities: 28 videos having color score 1, 63 samples with color
score 2 or 3, 15 videos with color score equal to 4.
In the resulting box plot shown in figure 4.2, the groups appear more separated
than the previous one, but still partially overlapped.
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Figure 4.2: Box plot of doppler pixel count values for original videos vs the three
labels (1, 2-3, 4).

(a) (b) (c)

Table 4.3: Classification performances for the first experiment conducted on
original videos. (a) Train and test accuracy values for each fold used in cross-
validation of the model. (b) Cumulative confusion matrix on whole dataset. (c)
Sensitivity and specificity values for each of the three color score classes.

The classification accuracy on training set resulted equal to 0.74 +/- 0.02, whereas
the test accuracy is 0.73 +/- 0.06 (see table 4.3a for accuracies obtained for each
fold), both values are higher than the ones obtained considering the four color scores
as separate classes meaning that a high portion of wrong color score predictions
performed by the model involved classes 2 and 3, now merged into one.
The corresponding confusion matrix of table 4.3b shows that the large majority of
samples having color scores 2 or 3 are now correctly classified; while class 1 has the
highest number of misclassified samples, all assigned to class 2-3. Considering color
score 4, more than the 50% of samples belonging to this class are misclassified and
identified as belonging to class 2-3.
In addition, the sensitivity and specificity values for each color score class were
calculated and they are shown in table 4.3c. Color score 4 has the lowest sensitivity
(0.47) meaning that a high number of samples having CS = 4 were erroneously
assigned to another class; while class 2-3 has the highest sensitivity equal to 0.86.
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Meanwhile, both color scores 1 and 4 have high specificity (0.94 and 0.96) meaning
that, when the model classifies the clinical cases into class 1 or 4, the majority of
these cases actually have color scores 1 or 4 respectively. In the contrary, class 2-3
has a specificity of 0.53, so the majority of the misclassified samples belonging to
class 1 and 4 were predicted as having color score equal to 2 or 3.

X ≤ 0.029
gini = 0.553
samples = 85

value = [22, 51, 12]
class = 2-3

gini = 0.346
samples = 18

value = [14, 4, 0]
class = 1

True

X ≤ 0.377
gini = 0.462
samples = 67

value = [8, 47, 12]
class = 2-3

False

gini = 0.362
samples = 55

value = [8, 43, 4]
class = 2-3

gini = 0.444
samples = 12
value = [0, 4, 8]

class = 4

Figure 4.3: The figure shows the structure of the decision tree trained on original
videos: class 1 node is depicted in orange, class 2-3 in green and class 4 in purple.
Each node indicates the test that is performed on the samples at that node, the
purity of the node defined by the Gini index, the number of samples that reach
that node, the number of samples for each class, and the predominant class label.

The tree structure obtained for this experiment is shown in figure 4.3. Only 3 nodes
were not pruned, hence the tree has a depth of two levels. Each leaf node shows
the count of all samples that reached that node during the training, for a total of
85 samples, as the tree structure was obtained training the 80% of the dataset.
Notice that 8 samples having CS = 1 and 4 with CS = 4 reached leaf nodes not
associated to class 1 and 4 respectively, coherently with the low values of sensitivity
obtained for these two classes with respect to class 2-3. Moreover, the final node
depicted in green, associated to class 2-3, contains the highest number of videos
that actually belong to the other classes, as shown by the low value of specificity
obtained for this class.
From the three leaf nodes left in the tree structure, it was possible to obtain the
two thresholds that divide the dataset into the three classes:

• doppler pixel count ≤ 0.029 → color score = 1
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• 0.029 < doppler pixel count ≤ 0.377 → color score = 2 or 3

• doppler pixel count > 0.377 → color score = 4

4.2 Experiment 2: Assessment of pixel-based de-
noising in color score prediction at different
threshold values

In the second experiment, the pixel-based denoising algorithm was applied to the
106 ovarian lesion cases constituting the dataset, considering different values of
the threshold that discriminates between artifacts and real doppler signal (referred
to as signal to artifact threshold) in order to establish the one that led to better
classification performances. The tested values were: 80th, 90th and 98th percentile
of the distribution of the activation lengths of the pixels.
Similarly to what was done in the first experiment, the doppler pixel count values
were firstly separated into four groups based on the color score and the box plot
showing the doppler pixel counts vs color scores was obtained (see figure 4.4 for
the box plot where the 90th percentile is used as threshold).

Figure 4.4: Box plot of doppler pixel count values for denoised videos vs color
scores.

The box plot shows that the values of doppler pixel count clearly increase as
the color score becomes higher, thus the four pixel count groups are distributed
coherently to the color score values. Moreover, the box representing denoised videos
having color score 1 is characterized by doppler pixel count values that are close
to zero, suggesting that the pixel-based denoising algorithm is able to suppress a
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significant portion of doppler artifacts identified within the lesion. However, the
four boxes are still partially overlapped as in the previous experiment.

Table 4.4: The table manifests the values of test mean accuracy and standard
deviation obtained for the experiment conducted applying the pixel-based denoising
at different threshold values. Here the 80th, 90th and 98th percentile of activation
lengths’ distribution were considered as thresholds.

The decision tree was trained and validated on the denoised videos for the different
threshold values. The overall test accuracies and their corresponding standard
deviations obtained for the 3 tested signal to artifact thresholds are shown in table
4.4. It is possible to notice that, employing the 90th percentile of the activation
lengths’ distribution as threshold, the highest accuracy, equal to 0.62 +/- 0.08,
was reached (see table 4.5a for the accuracy values for each fold), thus the 90th
percentile was chosen as final threshold. Meanwhile, the mean accuracy on the
training set resulted equal to 0.69 +/- 0.01.

(a) (b)

Table 4.5: Classification performances for the second experiment conducted on
denoised videos considering 4 labels, each one corresponding to one color score
value. (a) Train and test accuracy values for each fold used in cross-validation of
the model. (b) Cumulative confusion matrix on whole dataset. The tables are
obtained using the 90th percentile of the activation lengths’ distribution as signal
to artifact threshold.

From the cumulative confusion matrix of table 4.5b, it emerges that, while almost
all the samples having CS = 1 are correctly classified, the other three classes –
(CS = 2, 3 and 4) have a high number of misclassified samples (14, 12 and 8

91



Artifacts suppression from Doppler signal results in an improved color score prediction

respectively) with respect to their numerosity.
In this context, in order to improve the classification performances, the predic-
tive model was tuned by changing the values of the following parameters that
characterize the decision tree:

• the criterion to measure the quality of a split,

• the weights associated with the classes,

• the strategy used to choose the split at each node,

• the minimum number of samples required to split a node,

• the maximum depth of the tree,

• the maximum number of leaf nodes.

However, no significant improvement of the classification performances occurred
(see table 4.6).

Table 4.6: The table shows the accuracy values on train and test sets obtained
testing different configurations of the decision tree on the denoised videos. The
trial named start refers to the model whose characteristics are described in section
3.7.2. In trial 1 the criterion to measure the quality of a split was changed from gini
to entropy. In trial 2 the weights associated with the classes were adjusted based
on the proportion of each class frequencies. In trial 3 the best random split was
chosen at each node. In trial 4 and 5, the minimum number of samples required to
split a node and the maximum depth of the tree were respectively changed, they
were set to all the integers ranging from 3 to 10. In trial 6, the maximum number
of leaf nodes was set to all the integers ranging from 4 to 10. The tuning was
performed employing the 90th percentile as signal to artifact threshold.

For a more accurate comparison with experiment 1, I merged CS = 2 and CS = 3
into a single, intermediate class, thus obtaining three classes: 1, 2-3, 4.
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The resulting box plot where the doppler pixel counts are divided into the three
groups basing on their color score is illustrated in figure 4.5. The boxes associated
to color score 1 and class 2-3 appear well separated and not overlapped, and the
pixel count groups are distributed coherently to the color scores. Moreover, the
doppler pixel count values belonging to class 1 are nearly zero, thus the majority
of the artifacts was suppressed by the algorithm.

Figure 4.5: Box plot of doppler pixel count values for denoised videos vs the three
labels (1, 2-3, 4).

At this point, the decision tree was trained and tested on the videos on which the
pixel-based denoising with the 90th percentile as threshold was applied, being this
the threshold with an associated higher accuracy (see table 4.4).

(a) (b) (c)

Table 4.7: Classification performances for the second experiment conducted on
denoised videos. (a) Train and test accuracy values for each fold used in cross-
validation of the model. (b) Cumulative confusion matrix on whole dataset. (c)
Sensitivity and specificity values for each of the three color score classes.

The resulting accuracy on training set and that on test set are 0.80 +/- 0.01 and
0.75 +/- 0.07 respectively (see table 4.7a for accuracy values obtained for the
individual folds). Thus, treating the two intermediate color scores as a single class
led to improved classification performances and this aspect emerges also from the
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confusion matrix of table 4.7b and from the sensitivity and specificity values for
each class shown in table 4.7c.
The high sensitivity of class 2-3 reflects the fact that, among the 63 samples
belonging to this class, 55 are correctly classified, only 1 is classified as class 4 and
the remaining 7 are assigned to class 1 by the model. The other two classes have
lower sensitivity values because 11 samples among the 28 samples having CS = 1
and 8 among the 15 samples with CS = 4 are assigned by the model to another
class (i.e. class 2-3). Concerning specificity, class 4 has the highest value (0.99),
thus almost all the samples to which the model assigned CS = 4 actually belonged
to this class. Instead, class 2-3 has a specificity of 0.56 because the majority of
samples having color score 1 or 4 are wrongly associated to this class.
The resulting tree - whose complexity and dimensions were reduced thanks to the
pruning process - is depicted in figure 4.6. From the tree, it can be seen that almost
all the samples having CS = 2 or CS = 3 are assigned to class 2-3 by the model,
this result justifies also the high value of sensitivity. Instead, class 1 and class 4
have 10 and 4 misclassified samples respectively, all of them assigned to class 2-3.

X ≤ 0.0
gini = 0.553
samples = 85

value = [22, 51, 12]
class = 2-3

gini = 0.142
samples = 13

value = [12, 1, 0]
class = 1

True

X ≤ 0.153
gini = 0.471
samples = 72

value = [10, 50, 12]
class = 2-3

False

gini = 0.361
samples = 64

value = [10, 50, 4]
class = 2-3

gini = 0.0
samples = 8

value = [0, 0, 8]
class = 4

Figure 4.6: The figure shows the structure of the decision tree trained on denoised
videos: class 1 node is depicted in orange, class 2-3 in green and class 4 in purple.
Each node indicates the test that is performed on the samples at that node, the
purity of the node defined by the Gini index, the number of samples that reach
that node, the number of samples for each class, and the predominant class label.

Finally, also for this experiment, from the remaining leaf nodes were identified the
two thresholds that divided the videos of the dataset into three groups:

• doppler pixel count = 0.0 → color score = 1
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• 0.0 < doppler pixel count ≤ 0.153 → color score = 2 or 3

• doppler pixel count > 0.153 → color score = 4.

4.3 Experiment 3: Assessment of component-
tracking denoising in color score prediction
at different threshold values

In the third experiment, the color score predictive model was trained and tested
on the videos output of the component-tracking denoising algorithm at different
values of the signal to artifact threshold, the parameter that determinates how
much the artifact-removal is conservative, which needed to be tuned. The optimal
threshold value was chosen - among the 80th, 90th, 95th and 98th percentile of the
distribution of the activation lengths of the objects tracked by the algorithm - as
the one that led to a more accurate prediction of the color score.
The steps to perform this assessment are the same as those applied to the previous
experiments.
In particular, initially the box plot showing the four doppler pixel count groups as
a function of their color scores was obtained considering the different thresholds.
In figure 4.7 there is the one obtained using the 95th percentile. Again, the four
boxes result overlapped, meaning that there is not a range of doppler pixel count
values that is representative of a single color score value, this is particularly true
for color scores 2 and 3.

Figure 4.7: Box plot of doppler pixel count values for denoised + tracked videos
vs color scores.

The accuracy values obtained after training and testing the decision tree on
denoised+tracked videos at the different thresholds were not satisfactory, they
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reached a maximum of 54% for 80th and 95th percentile and similar standard
deviations (see table 4.8). This means that almost the 50% of ovarian cancer cases
were wrongly classified by the model.

Table 4.8: The table displays the values of mean accuracy and standard deviation
obtained for the experiment conducted applying the component-tracking denoising
at different threshold values. Here the 80th, 90th, 95th and 98th percentile of
activation lengths’ distribution were considered as thresholds.

In table 4.9a, there are the values of accuracy on train and test sets obtained for
each of the 5 folds in which the dataset was divided during the cross-validation,
considering 95th percentile as signal to artifact threshold. The corresponding
cumulative confusion matrix, instead, is shown in table 4.9b and it is evident that
class 2 is the most misclassified, with a total of 22 samples - among 28 - that are
assigned by the model to classes different than class 2. Also the number of samples
belonging to class 1 and wrongly associated to color score 3 is high (8).

(a) (b)

Table 4.9: Classification performances for the third experiment conducted on
denoised+tracked videos considering 4 labels, each one corresponding to one color
score value. (a) Train and test accuracy values for each fold used in cross-validation
of the model. (b) Cumulative confusion matrix on whole dataset.

Also for this experiment, to improve the performances, I changed the values of the
parameters that characterize the decision tree. The tuned parameters were: the
criterion to measure the quality of a split, the weights associated with the classes,
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the strategy used to choose the split at each node, the minimum number of samples
required to split a node, the maximum depth of the tree and the maximum number
of leaf nodes. However, as seen in the table 4.10, the classification performances
did not substantially improve.

Table 4.10: The table shows the accuracy values on train and test sets obtained
testing different configurations of the decision tree on the denoised+tracked videos.
The trial named start refers to the model whose characteristics are described in
section 3.7.2. In trial 1 the criterion to measure the quality of a split was changed
from gini to entropy. In trial 2 the weights associated with the classes were adjusted
based on the proportion of each class frequencies. In trial 3 the best random split
was chosen at each node. In trial 4 and 5, the minimum number of samples required
to split a node and the maximum depth of the tree were respectively changed, they
were set to all the integers ranging from 3 to 10. In trial 6, the maximum number
of leaf nodes was set to all the integers ranging from 4 to 10. The tuning was
performed employing the 95th percentile as signal to artifact threshold.

Figure 4.8: Box plot of doppler pixel count values for denoised+tracked videos vs
the three labels (1, 2-3, 4).
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For comparison with the previous experiments, the classification task was performed
using only three labels instead of four, by putting color scores 2 and 3 into the
same class, referred to as class 2-3.
By dividing the doppler pixel count values into three groups on the basis of the
color score class (1, 2-3, 4), the doppler pixel count groups appear distributed
coherently to the color score values with the higher doppler pixel counts correctly
associated to higher color score values, as shown in figure 4.8.
Only 80th and 95th percentiles were tested as thresholds in this case because they
were the ones that previously conducted to the highest accuracy.
The resulting accuracy on training set was equal to 0.74 +/- 0.02 and 0.75 +/-
0.02, while the cross-validation accuracy resulted 0.69 +/- 0.05 and 0.72 +/- 0.07
for 80th percentile and 95th percentile respectively. Therefore, the 95th percentile
of the distribution of the components’ activation lengths was chosen as optimal
signal to artifact threshold due to the higher classification performance (see table
4.11a for accuracy values obtained in the 5 folds separately). The tables 4.11b and
4.11c illustrate the confusion matrix and both the sensitivity and specificity values
respectively. It can be noticed that, firstly, class 4 has the lowest sensitivity due to
the fact that 7 samples - among the 15 videos having color score equal to 4 – are
assigned to class 2-3. On the contrary, this class has high specificity (0.98) because
nearly all the videos that the model associated to this class actually have color
score 4. Instead, the specificity of class 2-3 is only 0.58 because a high number of
samples belonging to the other classes are assigned to the class 2-3 by the model.
Regarding color score 1, 11 samples of this class are misclassified as class 2-3, thus
resulting in a sensitivity of around 60%.
From these tables, it emerges that, grouping together class 2 and class 3 into a
single label, the number of misclassified samples significantly decreased with respect
to that obtained considering 4 separate classes of color score (30 vs 49 samples),
and this brought to higher accuracy in color score prediction.

(a) (b) (c)

Table 4.11: Classification performances for the third experiment conducted on
denoised+tracked videos. (a) Train and test accuracy values for each fold used in
cross-validation of the model. (b) Cumulative confusion matrix on whole dataset.
(c) Sensitivity and specificity values for each of the three color score classes.
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As seen from the figure 4.9, the final node associated to class 2-3 contains the
highest number of samples belonging to the other two classes, coherently with the
low specificity of this class. As a matter of fact, 6 samples with CS = 1 and 4 with
CS = 4 are associated to the wrong class (class 2-3) by the tree, this confirms the
low sensitivity values obtained for these labels.
Finally, also in this case, the two thresholds that separate the cases of adnexal
masses into three classes were obtained:

• doppler pixel count ≤ 0.025 → color score = 1

• 0.025 < doppler pixel count ≤ 0.351 → color score = 2 or 3

• doppler pixel count > 0.351 → color score = 4

X ≤ 0.025
gini = 0.553
samples = 85

value = [22, 51, 12]
class = 2-3

gini = 0.444
samples = 24

value = [16, 8, 0]
class = 1

True

X ≤ 0.351
gini = 0.455
samples = 61

value = [6, 43, 12]
class = 2-3

False

gini = 0.334
samples = 51

value = [6, 41, 4]
class = 2-3

gini = 0.32
samples = 10
value = [0, 2, 8]

class = 4

Figure 4.9: The figure shows the structure of the decision tree trained on
denoised+tracked videos: class 1 node is depicted in orange, class 2-3 in green and
class 4 in purple. Each node indicates the test that is performed on the samples at
that node, the purity of the node defined by the Gini index, the number of samples
that reach that node, the number of samples for each class, and the predominant
class label.

4.4 Comparison of the experiments
I compared the results obtained in the three experiments conducted by training
and testing the model on the original videos (Experiment 1), applying the pixel-
based denoising (Experiment 2) and applying the component-tracking denoising
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(Experiment 3).
From the boxplots obtained by dividing the doppler pixel count values into three
groups based on the color score class, some important aspects emerged (see figures
4.2, 4.5 and 4.8).
Firstly, for the three box plots, the higher median values of the doppler pixel
counts are associated to higher color scores, thus the three doppler pixel count
groups are distributed coherently to the color score values. However, the groups
result partially overlapped, in particular when considering the first and the third
experiment, hence for some cases different color scores are associated to the same
values of doppler pixel count making difficult for the model to predict the true
color score based on this parameter.
Moreover, despite color score 1 being assigned to a lesion if no blood flow is present
according to the IOTA guidelines, the doppler pixel count group associated to
color score 1 includes values larger than zero when considering original videos
and denoised+tracked videos. This was expected for the first experiment since no
artifact-removal algorithm was applied to the original videos, thus doppler pixel
count values also included the pixels that are colored due to the artifacts. However,
the non-zero values appear also in the doppler pixel count group of CS = 1 obtained
in the third experiment, meaning that the component-tracking denoising was not
able to remove a significant portion of artifacts. Instead, applying the pixel-based
denoising, almost all the artifacts were removed, and the doppler pixel count values
for CS = 1 stand around zero, as expected.
In addition, the overlap between color score 1 and color score 2, that can be seen
in the box plots of the first and the third experiment, is explained by the fact that
CS = 2 is assigned if there is minimal flow within the lesion, thus samples with
this color score may have very small doppler pixel count values. However, if there
are artifacts in videos having CS = 1, similar values of doppler pixel count can be
reached, so these doppler pixel counts for CS = 1 and CS = 2 overlap.
Furthermore, color scores 2 and 3 overlapped in the three cases. Distinguishing
when the vascularization is minimal (CS = 2) and when it is moderate (CS = 3)
is complex, qualitative and based on the clinician’s perception. For this reason, I
merged color score 2 and 3 in a single, intermediate, class for further analysis.
Eventually, in the three experiments the overlap between color score 3 and 4 oc-
curred. According to some clinicians in contact with Syndiag, a possible explanation
of this overlap is that clinicians tend to assign color score 4 to adnexal masses
where the vascularization is equally distributed, and CS = 3 to the cases in which
the amount of doppler signal is high but limited to a small portion of the lesion.
However, the parameter used in this study to predict the color score (i.e., the
doppler pixel count) does not consider the dispersion of colored pixels within the
ROI, thus the same doppler pixel count can be associated to these two cases even
if their color score is different, resulting in the overlap of CS = 3 and CS = 4.
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The performances of the classifiers were also compared. The bar plot of figure
4.10b shows the values of train and test accuracy and their standard deviations
resulting from the three experiments. From this figure, it can be noticed that
all the classification performances are larger than the 70%, and the application
of pixel-based denoising algorithm is associated to the higher accuracy both on
training and test set. It is important to underline that the performances obtained
for the three experiments increased when the intermediate color score values were
considered as a unique class, with respect to the performances - shown in figure
4.10a - that were reached using 4 classes, one for each color score value.
Nevertheless, the experiments suggest that the pixel-based denoising algorithm
generally improved classification performances with respect to original noisy videos
and provided a more accurate estimate of doppler signal for color score assessment.
Indeed in the second experiment, class 1 and class 2-3 have the highest number of
correctly classified samples; while in the third experiment class 2-3 contains the
highest number of misclassified samples (12) that actually have CS = 1 or CS = 4.
Moreover 8 samples of class 4 are correctly classified (they are 7 in the first two
experiments) and the number of samples of class 1 that are correctly classified is
equal to that obtained applying the pixel-based denoising algorithm (see figures
4.7b and 4.11b).
In addition, the pixel-based denoising algorithm produced better results than the
component-tracking one whose performances were comparable to the ones obtained
on the original noisy videos, suggesting that this artifact-removal algorithm needs
to be improved and further tuning of its parameters is required.

(a) (b)

Figure 4.10: The bar plots show the accuracy values on training and test sets
and their corresponding standard deviations obtained for the three conducted
experiments. (a) shows the classification performances reached when the four color
scores were used as labels. In (b) there are the results obtained considering three
classes (1, 2-3 and 4) with color scores 2 and 3 constituting a single label.

101



Artifacts suppression from Doppler signal results in an improved color score prediction

4.5 Assessment of clinical impact

Moreover, we evaluated the impact that the denoising algorithms could have on
the clinical practice as tools that support clinicians in performing the assessment
of the ovarian lesions vascularization.
In the clinical practice, particular attention is given to CS = 1 and CS = 4. This
is because the absence of vascularization within the mass, to which a CS = 1 is
associated, is a sign of benignity, while an highly vascularized lesion, and thus
a color score equal to 4, is characteristic of a malignant tumor, as stated in the
IOTA’s Simple Rules illustrated in section 1.2.2.
Therefore, when assigning the color score to a video, discriminating between when
there is no blood flow within the lesion (color score equal to 1) and when the
vascularization is minimal (CS = 2) is, at the same time, of outmost importance
and complex for clinicians. In the same way, distinguishing between color score 4
(highly vascular mass) and 3 (moderate vascularization) becomes essential.
In this context, removing the artifacts through the application of denoising algo-
rithms can simplify the work of clinicians who, this way, when assigning the color
score have to distinguish only between the survived artifacts and the real signal.
As a matter of fact, as seen in tables 4.3c, 4.7c and 4.11c, class 1 has a sensitivity of
0.61 in the second and third experiment, and the sensitivity becomes 0.57 when the
non processed videos are considered. This means that, when artifacts are partially
removed, more videos having color score 1 are correctly associated to class 1 by the
model, with respect to the original videos. Meanwhile, the sensitivity value of class
4 remains the same for the first two experiments (0.47) and increases to 0.53 in
the third. This value is justified by the fact that, applying the component-tracking
denoising, there are 8 videos with color score 4 that are correctly assigned to class
4 by the model, instead of 7. However, this sensitivity remains non satisfactory
because there is still a high number of samples that are wrongly assigned to class 3.
At the same time, class 4 maintains a high specificity value for the three experiments
(0.96, 0.99, 0.98), because almost all the samples to which the model assigned CS
= 4 actually belonged to this class. This occurs also for class 1, but with slightly
lower values (0.94, 0.91, 0.87) since few samples of class 2-3 were assigned to class
1, underestimating the degree of vascularization within the mass and treating the
real doppler activations as artifacts.

In this context, given the classification performances obtained for the three experi-
ments, the corresponding specificity and sensitivity values evaluated for each class
and the role of subjectivity in the color score assignment, applying the pixel-based
denoising on the noisy ovarian cancer cases can be useful to suppress a good portion
of artifacts that occur within the lesion, allowing clinicians to more clearly assign
the color score by reducing the risk of confusion between artifacts and real signal.
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This consideration is confirmed by the results of a study conducted by the Syndiag
team in collaboration with Mauriziano and Sant’Orsola hospitals. In this study, 20
clinicians with different levels of experience (6 expert clinicians, 5 clinicians with
less than 10 years of experience and 9 juniors) were asked to evaluate 100 videos
coming from 100 unique clinical cases of ovarian lesions before the pixel-based
denoising was applied and, then, evaluate the same videos after the application of
the denoising algorithm. The videos were randomly presented to the doctors. The
clinicians’ evaluation of the videos was performed through the assignment of color
score and of an index ranging from 1 to 5 indicating the quality of the analyzed
video, with 1 meaning poor quality and 5 optimal quality.

(a) (b)

Figure 4.11: Results of the study performed to assess the clinical impact of the
pixel-based denoising algorithm. (a) The bar plot shows the number of clinicians’
responses vs the videos’ quality before (blue bars) and after (orange bars) the
denoising application. The quality index is 1 when the quality is poor, 2 when it
is not sufficient, 3 if it sufficient, 4 if it is decent, 5 if the quality is optimal. (b)
The bar plot shows the number times that clinicians assigned a certain color score
before (blue bars) and after (orange bars) the denoising application.

As seen from figure 4.11a, the quality of the videos perceived by clinicians increases
when denoising is applied since the number of responses equal to 1 and 2 is decreased
while a higher number of responses where quality = 4 and 5 was registered.
Regarding the color score assignment, instead, a relevant trend emerges: when
the pixel-based denoising was applied, a lower number of CS = 4 responses was
given by clinicians, while they tended to assign more often a color score equal
to 1 (see figure 4.11b). This proves the presence of a clinical impact due to the
application of this denoising algorithm. Specifically, these results suggest that,
when artifacts were not removed, clinicians tended to assign higher color score
values. Therefore, this study demonstrates that the presence of doppler artifacts
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influences the assignment of color score and the clinicians’ evaluation.
On the other hand, the component-tracking denoising algorithm, as it is today, has
lower performance and possibly a lower impact on the clinical practice. Indeed,
when applied to the 106 videos of the dataset, a number of artifacts still survives,
thus further improvements are needed.
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Chapter 5

Conclusions, limitations and
future developments

Ovarian cancer is the eighth most common cancer in women worldwide and it is
a very aggressive type of tumor characterized by a mortality of 4.3%. Indeed, in
Europe, it is the main cause of death among gynecologic malignancies [1, 2].
The low survival rate associated to this neoplasm is explained by the difficulty of
its diagnosis at early stages since it is usually asymptomatic, or symptoms are not
specific. Ovarian cancer is diagnosed at advanced stages in about 70% of cases,
and its survival rate after 5 years is lower than 30%. In contrast, if the ovarian
cancer is detected early the survival becomes longer than 5 years for more than
90% of patients [2, 9].
Therefore, detecting the adnexal masses as soon as possible in combination with
an adequate discrimination between benign and malignant lesions is of outmost
importance for a correct management of the patient.
Nowadays, ultrasound represents the method of choice to evaluate the adnexal
masses thanks to its non-invasiveness, low-cost and widely diffusion. Moreover, the
advent of Color Doppler and Power Doppler imaging techniques allowed clinicians
to evaluate the lesions’ vascularization that is an important indicator of malignancy.
In this context, a group of researchers founded the International Ovarian Tumor
Analysis (IOTA) group with the aim of producing a standardized terminology that
characterizes adnexal masses and developing diagnostic tools in ultrasound for the
prediction of malignancy.
Regarding vascularization, among the definitions introduced by IOTA, the color
score is particularly interesting since it is a scoring system, ranging from 1 to 4,
employed to assess the amount of blood flow within the septa, cyst walls or solid
tumor area. The color score is assigned by clinicians to the lesion and can assume
the following values: 1 if no blood flow is shown in the mass, 2 if the flow is minimal,
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3 when moderate flow is present, 4 is assigned to highly vascular lesions [4].
The color score was proven to be a good predictor of malignancy and it has been
included in several models that assess the probability that a lesion is malignant or
benign (the IOTA’s Simple Rules for instance). However, the main issue is that the
estimation of the color content within an adnexal mass is based on the subjective
evaluation of clinicians.
Moreover, Doppler techniques are characterized by the presence of several types of
artifacts that make color score assignment even more complex for clinicians because
the flow information becomes more difficult to interpret.

Consequently, two algorithms were developed in order to remove artifacts from
doppler signal with the aim of easing clinicians’ assessment of adnexal lesions. The
first is the pixel-based denoising algorithm that suppresses doppler artifacts on the
basis of the temporal persistence of doppler activations during the whole video, pixel
by pixel; assuming that artifacts are less persistent than real activations. However,
this algorithm has the limit of relying only on the exact pixel correspondence in a
frame sequence, thus some real activations are identified as artifacts because they
shift through frames due to the movement of the probe during the acquisitions.
To overcome this limitation, a second artifact-removal algorithm was developed:
the connected components-based denoising with component-tracking that considers
both temporal and spatial persistence and relies on connected components rather
than single pixels. In this case, the component tracking algorithm is integrated with
the denoising giving rise to an algorithm that suppresses artifacts while keeping
track of the activations’ clusters during the video.
These two algorithms were developed on 101 ovarian cancer cases resulting from
the acquisitions performed by expert clinicians of two hospitals: A.O. Ordine
Mauriziano in Turin and Policnico di Sant’Orsola in Bologna.
During the development of the component-tracking denoising several edge cases
were identified and treated during this study. The solutions that were implemented
to address the identified edge cases are:

• A method that excludes the pixels of the doppler fan that, for some data,
resulted colored and, therefore, it was recognized by the component-tracking
algorithm as an object to be tracked.

• A function to be integrated in the component-tracking algorithm that solves
the problem of overlapping between a large artifact and real activations that,
due to the overlap, were not correctly tracked.

• A function to be integrated in the component-tracking algorithm that manages
the presence of empty binary masks, i.e. masks where all the pixels are set to
0 and, thus, no object is identified by the algorithm.

106



Conclusions, limitations and future developments

Moreover, the tuning of the tolerance values employed in the component-tracking
algorithm was performed.
Afterwards, the updated version of the component tracking algorithm was inte-
grated in the denoising and the effect of the two artifact-removal algorithms (i.e.,
pixel-based denoising and component-tracking denoising) was evaluated.

In order to quantitatively assess the performances of the artifact-removal algorithms,
a Decision Tree was trained to predict the color score based on the doppler estima-
tion obtained on both original and denoised doppler videos included in a second
dataset. This dataset contained 106 ovarian cancer cases and the corresponding
color scores, used as labels, were assigned by 6 expert clinicians. The resulting
dataset reflected the distribution of malignancy of this tumor in the clinical practice,
with only 15 cases having color score 4, while 28 videos with color score 1 and 2
and 35 videos having color score equal to 3 were selected.
To estimate the amount of doppler signal within the lesion, i.e. the input to the
decision tree, the videos of the dataset were manually segmented to identify the
region of interest (i.e. the intersection between the mass and the doppler acquisition
fan). The doppler pixel count was calculated as the ratio between the number of
colored pixels within the ROI and the area of this region.
The model was trained on the original noisy videos in a first experiment, applying
the pixel-based denoising at different signal to artifact threshold values in a second,
and applying the component-tracking denoising at different thresholds in a third.
The results of the three experiments were compared.

The resulting cross-validation accuracies obtained when the Decision Tree model
was tested were equal to 53% (standard deviation = +/- 6%), 62% (standard
deviation = +/- 8%) and 54% (standard deviation = +/- 8%) for the first, second
and third experiment respectively. These classification performances were reached
using the optimal values of signal to artifact thresholds coinciding with the 90th
percentile and the 95th percentile of the distribution of the activations’ lengths
in the pixel-based denoising and the component-tracking denoising algorithms
respectively.
However, in almost the half of the ovarian cancer cases the classifier was not able
to correctly predict the color score.
Tuning of the decision tree did not improve the performance, but a closer look at
the data revealed that the doppler pixel count groups associated to scores 2 and
3 resulted strongly overlapped. I consequently merged the intermediate values of
color score into a single class and trained the Decision Tree model using three labels
(1, 2-3 and 4). Another reason that brought to this choice concerns the definition
of color score and its relevance from the diagnostic point of view. Scores 1 and 4
are the ones with a clearer diagnostic value because, when assigned to a lesion,
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they are characteristic of benignity and malignancy respectively, as indicated by
IOTA’s Simple Rules 1.2.2.
Using three labels, the dataset consisted of 28 videos having color score 1, 63
samples with color score 2 or 3 and 15 videos with color score equal to 4.
In this way, the model showed good performances in the three experiments where
overall accuracy values of 73%, 75% and 72% were reached on original, denoised
and denoised+tracked videos respectively. In the three cases, the class 2-3 had the
highest sensitivity (above 80%), while the lowest sensitivity of approximately 50%
occurred for color score class 4 with a high number of samples (7 or 8, depending
on the considered experiment, among the 15 total samples) being assigned to color
score 3.
Finally, what emerges from results obtained using three and four labels is that, in
this study, applying the pixel-based denoising algorithm improved the classification
performances with respect to original noisy videos. On the contrary, the accuracy
of the model trained after denoising with tracking algorithm is comparable to the
one obtained when the model was trained on original noisy videos.

These results suggest that further studies and tuning are needed to improve and
optimize the tracking approach.
In particular, the analysis, described in section 3.5.5, where several parameters of
size and shape of single connected components were calculated for each frame of
the video, could be further deepened in order to find values of these parameters
useful to distinguish between when the analyzed connected component includes
only the real signal and when it includes both the real activation and the artifact.
Moreover, the function that was introduced in the tracking algorithm to manage the
presence of large artifacts overlapping with real activations (see section 3.5.3) solved
this problem - and thus allowed the algorithm to keep track of the real activations
that were correctly distinguished from each other and from the artifact - only if
the artifact was composed by a single connected component of large dimensions.
In the future, this overlapping problem needs to be solved also when the artifact is
composed of several small connected components, so that all the types of artifacts
can be suppressed.
Other future developments involve the model’s construction.
In particular, it must be considered that clinicians might assign the color score
not only on the basis of the amount of doppler signal within the lesion (that is a
quantitative and objectively measurable parameter whose estimation is given by
the pixel count) but also taking into account other factors that are not considered
by the implemented model, such as the dispersion of the real signal within the
region of interest, the number of ramifications of the vessels and their localization.
Therefore, in the future, these factors can be included in the model as new features,
together with the doppler pixel count, to be used to estimate the doppler signal in
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order to improve the color score prediction. This improvement can be particularly
useful in contributing to reduce the dependence of the model from the employed
dataset.
In addition, it would be interesting to conduct the three experiments training a
random forest (i.e. a classification algorithm that combines the output of multiple
decision trees to reach a single result), instead of using a single decision tree, in
order to see if this model brings to more accurate color score predictions.
Moreover, due to the low numerosity of the dataset and its imbalance – which
represent strong limitations – the performances of the model decrease a lot if few
samples are removed from the dataset or few label values are changed, despite
the application of the pruning procedure. Beside this, the starting labels result
particularly noisy due to the fact that the it is difficult for clinicians to assign the
color score to the adnexal lesions. Therefore, including more videos with color
score 4 and, in general, increasing the number of ovarian cancer cases to include in
the dataset would bring to more robust performances and cushion the noise.
Furthermore, it must be also considered that clinicians, when performing the acqui-
sitions of doppler videos, often focus not on the whole adnexal mass but only on the
portion of the mass in which they are interested in. Therefore, the dataset results
biased from this point of view, with the bias being the assumption of what part of
the adnexal mass should be examined according to the clinician. This means that,
when the six expert clinicians had to assign the color score to the videos, they were
influenced by this choice.
Finally, another relevant step to be performed is increasing the number of expert
clinicians who are going to evaluate the original videos and assign them a color
score, and, afterwards, asking them to evaluate also the videos on which the pixel-
based denoising is applied and the ones where the component-tracking denoising is
applied. This way, it is possible to see whether clinicians are effectively helped in
their evaluation by the artifact-removal algorithms and measure their agreement in
color score assignment when the two algorithms are applied on the noisy videos
in order to understand if it increases or not with respect to when non processed
videos are evaluated.
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