
Politecnico di Torino
Corso di Laurea Magistrale

in INGEGNERIA BIOMEDICA

Tesi di Laurea Magistrale

A Deep Learning Approach for
Segmentation of Ovarian Adnexal Masses

Relatori

Prof. Filippo MOLINARI

Prof. Massimo SALVI

Tutor aziendale

Daniele CONTI

Candidata

Cecilia MARINI

Anno Accademico 2021-2022



Abstract

Ovarian cancer is the eighth most widespread cancer in the world among women.
Due to the absence of a specific symptomatology and the lack of a defined screening
protocol, this disease is usually diagnosed at an advanced stage, leading to the
increase in the corresponding mortality rate. At present, transabdominal sonog-
raphy (TAS) and transvaginal sonography (TVS) are generally recognised as
the main diagnostics techniques for the first identification of the neoplasm. However,
it is well known that their diagnostic effectiveness can be seriously compromised
by the intrinsic noisy and operator-dependent nature of ultrasound images. In
addition, the identification of ovarian structures is a time-consuming task in clinical
practice, almost always repetitive and prone to errors when manually performed
by medical doctors. New diagnostic approaches based on artifical intelligence algo-
rithms have started to be investigated for the automatic detection, segmentation
and classification of medical images, aiming at the development of Computer
Aided Diagnosis and Detection (CAD) models. Although these protocols are
commonly employed in the examination of other image acquisition modes, such as
CT or MRI, their application is also expanding to ultrasound images. Nowadays,
the majority of artificial intelligence algorithms in gynaecological ultrasound is
mostly focused on the classification of ovarian mass types. Indeed, despite many
advances have already been made to identify anatomical structures of the same
district, such as ovarian follicles, very few has been done concerning ovarian mass
segmentation. An increasingly widespread idea in medical imaging is that the
automatic segmentation of ovarian masses could be consistently helpful for the
development of CAD systems. For instance, the emerging field of radiomics could
strongly benefit from the development of such segmentation protocols: the iden-
tification of ROIs within medical images is a mandatory step for the extraction
of quantitative descriptors useful for tumor discrimination. The purpose of this
thesis project is the development of an automatic algorithm that deals with the
segmentation of ovarian masses. Given the success of Deep Learning models in
the medical field, and, in particular, of Fully Convolutional Neural Networks
(FCNNs) in image segmentation tasks, the learning model proposed in this work
makes use of a modified U-Net network with MobileNetV2 as encoding block
and simple transpose-deconvolutional-based upsampling as decoding block. Being
one of the few attempts to the segmentation of ovarian masses, its future potential
has been here evaluated on an easier segmentation task, that is the identification of
cysts of unilocular serous type. The model showed to be perfectly suitable to
perform the proposed task and confirmed the improvement over the current state-
of-the-art. Its performance have been further improved with both the introduction



of Data Augmentation and a refining post-processing stage. The success of this
segmentation algorithm encourages as a next step its subsequent application to the
segmentation of histotypes with more complex morphology than those covered in
the present study. Another possible implementation could be aimed at multiclass
segmentation of different cystic components. The automatic identification of these
substructures would contribute to the development of a more interpretable and less
“black-box” algorithm for differential diagnostics of ovarian lesions.
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Chapter 1

Ovarian Tumor

1.1 Epidemiology and risk factors

Ovarian cancer is the eighth most common cancer among women; in 2020,
around 313 959 cases and 207 252 deaths (66%) were reported worldwide for this
disease [1]. In Italy, according to an estimate drawn up in 2020 by the Italian
Association of Medical Oncology (AIOM) and the Italian Cancer Registry
Association (AIRTUM), ovarian cancer affects approximately 5200 women every
year [2]. Currently, it is considered one of the most difficult cancers to treat among
gynaecological malignancies, due to the absence of symptoms in the initial stages
and the lack of an accurate screening strategy, leading, in most cases, to a late
diagnosis. The five-year survival rate stands at 43%, which is significantly low if
compared to the same statistic registered for breast cancer (around 87%) [2]. When
symptoms are present, they can include abdominal or pelvic pain and swelling, but
also changes in normal bowel function (with bloating or constipation). However,
the ambiguity of these symptoms, which are common in several other conditions,
makes it difficult to correctly diagnose the disease.
Age is one of the main risk factors of ovarian cancer. In postmenopausal women,
the likelihood of cancer increases greatly, with a peak incidence of 50-69 years.
Other risk factors concern aspects of the female reproductive cycle: an early period,
or more generally a high number of ovulations throughout life, can be a predisposing
factor for the onset of an ovarian neoplasia. The ovary is damaged during ovulation,
increasing the risk of uncontrolled proliferation within tissue renewal. Other cancer-
related endocrine factors include infertility, nulliparity, and late pregnancy, elements
related to ovarian stimulation. Having a family history of ovarian and breast cancer
has also been shown to increase women’s risk of ovarian cancer. Hereditary genetic
mutations in the genes BRCA1 (Breast Cancer 1) and BRCA2 (Breast Cancer 2) are
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frequently responsible for the disease transmission and manifestation. According to
the European Society of Medical Oncology (ESMO), the probability of developing
OC increases by 24-40% for women with BRCA1 mutation and by 11-18% for
women with BRCA2 mutation, respectively [3]. Lastly, lifestyle factors, like obesity
and alcohol consumption, contribute to increase the risk of developing ovarian
cancer, as it happens for other malignancies.

[4]

1.2 Anatomy of ovaries

In order to achieve a better understanding of the subsequent classification of ovarian
tumors, a brief description of the ovary is reported (Figure 1.1).

Figure 1.1: Anatomy of the female reproductive organs, showing the uterus,
fallopian tubes and ovaries.

The ovary is an organ composed of two glands, known as ovaries, which to-
gether with the uterus, the fallopian tubes, the vagina and the vulva form the
female reproductive apparatus. The ovaries, also called "female gonads", are
two organs of ovoid shape whose size can vary from 3.0 to 5.0 cm, placed on
the sides of the uterus and near the lateral pelvic wall. These glands perform
two main functions: they deal with the production of oocytes, indispensable for
reproduction (gametogenic function), and secrete hormones that regulate the
stages of female reproductive life, i.e. estrogen, progesterone and partly androgen
(endocrine function).

Histologically, the ovary consists of three layers (Figure 1.2):
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Ovarian Tumor

• a superficial epithelium, often called improperly germinative epithelium,
composed of epithelial cells of celomatic origin (cylindrical or flat);

• an intermediate zone, the cortex, made of fibroblastic stroma, a connective
tissue responsible for the production of steroid hormones;

• an inner zone, the medulla, also composed of connective tissue, in which are
distributed the nerve fibres, blood vessels and lymphatics that branch out
inside the organ.

Figure 1.2: Ovarian structure.

In the outermost area of the cortical zone, immediately beneath the superficial
epithelium, the stroma is rich in collagen fibres and low in cells (tunica albuginea).
Instead, the stroma surrounding the ovarian organelles (ovarian follicles and luteal
bodies), has a high cellular component, capable of differentiating into different
endocrine elements, partly responsible for the production of female hormones in
synergy with the cells of the granulosa (theca cells), and partly of male hormones
(scattered steroidogenic elements). Stroma also contains germ cells, which give rise
to oocytes.

[5]

1.3 Classification of ovarian adnexal masses

Ovarian adnexal masses are the hallmark of ovarian cancer and originate from the
uncontrolled proliferation of cells in the organ; epithelial cells are the most common
to undergo this abnormal growth, but germ cells and stromal cells can also give

3
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rise to a tumour.
Ovarian tumours can thus be classified according to the type of cells from which
they originate. Three main histotypes are distinguished:

• Epithelial tumours: originate from the surface celomatic epithelium and
constitute more approximately 90% of malignant ovarian neoplasms; they
affect women of both reproductive and post-menopausal age [6];

• Germinal tumours: originate from germ cells (oocytes), and represent about
5% of malignant ovarian neoplasms; in 40-60% of cases they are diagnosed in
women under the age of 20 [2];

• Sex-cord stromal tumour: originate from the cortical stroma, and account
for about 8% of all ovarian cancers [7]. Over half of these cancers occur in
women over the age of 50, although the affected age group remains wide.
Since the cells of these tumours are responsible for the production of ovarian
steroid hormones, this class of tumours is usually associated with diseases
characterized by hyperandrogenic or hyperestrogenic manifestations [8].

The categories described above belong to the group of primary ovarian tumours,
as they originate from the three constituent elements of the ovary itself. Secondary
ovarian tumours refer to extra ovarian neoplasms whose metastasis reach the ovary.
Based on distinctive features of the mass, each of these categories has a number of
more specific subtypes. Figure 1.3 below presents the most widespread classification
of ovarian cancer.

Figure 1.3: Classification of ovarian cancer.
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The presence of an adnexal mass does not always coincide with the presence
of a neoplasm: as with other types of tumours, it is always possible to distinguish
between malignant and benign tumours. Consequently, each histotype can be fur-
ther classified according to its benignity. In addition to the two standard categories
(benign - B and malignant - M), in the context of ovarian masses, the borderline
category (BOT) is also introduced. These tumours, also known as low malignant
potential (LMP) tumours, are ovarian masses with intermediate characteristics,
but generally benefit from a better prognosis than the malignant counterpart. A
previous study of literature carried out within the company led to the following
classification of the most common histotypes, reported in Table 1.1.

Epithelial Tumours (Type I)
Mucinous Cystadenoma B
Endometrioma B
Brenner Tumour B
Borderline Endometrioid Tumour BOT
Borderline Mucinous Tumour BOT
Borderline Bowel Mucinous Tumour BOT
Mucinous Adenocarcinoma M
Endometrioid Adenocarcinoma M
Clear Cell Tumour M

Epithelial Tumours (Type II)
Cystadenofibroma B
Serous Cystadenoma B
Borderline Seerous Tumour BOT
Low grade Adenocarcinoma M
High grade Adenocarcinoma M

Stromal Tumours
Teratoma B
Monodermal B
Dysgerminoma M
Yolk Sac Tumour M
Mixed Germ Cell Tumour M

Germinal Tumours
Tecoma-Fibroma Group B
Sertoli-Leydig Tumour B/M

Table 1.1: The most common histotypes and their associated malignancy risk.
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1.4 IOTA Standard

The accurate discrimination of malignant and benign masses is of paramount im-
portance for the definition of appropriate treatment. Although the exact diagnosis
requires a biopsy of the mass, most frequently the physicians need to provide a
diagnosis through less invasive examinations, such as ultrasound based-screening
or blood tests, before entering a surgical context.

Nowadays, doctors rely on different certified protocols to provide a pre-operative
diagnosis, including IOTA (International Ovarian Tumor Analysis), O-RADS
(Ovarian-Adnexal Reporting and Data System) and GI-RADS ( Gynecologic
Imaging Reporting and Data System) prediction models. Several studies are cur-
rently investigating the diagnostic accuracy of these system [9, 10]; among the
mentioned, IOTA standard is probably the most widely used.

The work of the IOTA group, a team of experts in ovarian diseases, started
in 2000, with the definition of terms useful for the description of adnexal masses,
given the lack of a standard reference for this purpose [11]. In Table 1.2 and
Table 1.3 some of the main characteristics of the ovarian masses addressed by the
IOTA group are reported.

In 2008, the IOTA Group proposed the Simple Rules model, a diagnostic pre-
diction system based on ultrasound-detectable features of ovarian masses [12].
Following a study upon ultrasound data from 1066 clinical cases in different coun-
tries (Italy, Belgium, Sweden, France and the United Kingdom), five typical traits
of benign and malignant tumors were identified (Figure 1.4). The proposed classifi-
cation model is extremely simple: a mass is diagnosed as benign if it shows at least
one of the typical characteristics of a benign tumor, and none of the characteristics
of malignancy; the opposite applies to a neoplasm. It follows that any mass not
conform to these rules makes the prediction model not applicable.
Although the Simple Rules model allowed to label the ultrasound image, it could
not provide the physician with the confidence with which the resulting class could
be assigned to the tumour.

In order to overcome this issue, an advanced system was released in 2016. This new
prediction model not only can return the confidence percentages of the classification
but, if the tumour has been identified as malignant, also the relative probability
of belonging to a certain stage is given. The algorithm is called ADNEX, and it
differs from the previous one for the greater number of clinical cases that have been
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Terminology Description Figure

Unilocular cyst
A unilocular cyst without
septa and without solid parts
or papillary structures

Unilocular solid cyst
A unilocular cyst with a mea-
surable solid component or at
least one papillary structure

Multilocular cyst

A cyst with at least one sep-
tum but no measurable solid
components or papillary pro-
jections

Multilocular-solid cyst

A multilocular cyst with a
measurable sold component or
at least one papillary projec-
tion

Solid tumour

A tumour where the solid com-
ponents comprise 80% or more
of the tumour when assessed
in a two-dimensional section

Table 1.2: Standard morphological terminology for ovarian lesions.

included for its development (about 6000), certifying its clinical validity, and for
the use of metadata instead of images. Among the included descriptors considered
useful for differential diagnosis are the age of the patient, the level of CA-125 found
in blood tests, the size of the lesion and a number of other parameters.
The use of numerical descriptors instead of qualitative descriptors may be beneficial
if a detailed mass identification is sought; however, the retrieval of the required
information (blood exam results, manual measurements of the mass) inevitably
leads to an increase in the time needed for diagnosis. The performances of the
two models have proved to be generally optimal, with an AUC of around 83%
for the Simple Rules [13] and around 90% for the use of the ADNEX model [14].
The IOTA protocols constitute the first preoperative differential diagnosis system
and are now widely used also by not-experts physicians [15], thanks to their high
reproducibility.
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Terminology Description Figure

Anechoic Completely black cyst

Low-level
Homogeneous low-level
echogenic cyst, as seen in
mucinous tumors

Ground glass

Homogeneously dispersed
echogenic cystic content, as
often seen in endometriotic
cysts

Hemorragic
Cyst with internal thread-like
structures, representing fibrin
strands

Table 1.3: Cystic content terminology.

Figure 1.4: IOTA B-rules and M-rules with visual examples.
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1.5 Diagnostic and screening approaches

One of the main reasons for the low survival rates following the identification of
ovarian neoplasm, even after the treatment, is the late diagnosis of the disease.
Unfortunately, to date, there is no screening protocol for early detection of ovarian
cancer, since no diagnostic method attempted so far showed enough sensitivity.
In most cases, the diagnostic process starts with a medical visit carried out by the
family doctor. According to the clinical history of the patient and the reported
symptoms, the physician can prescribe further medical investigations or a specialist
examination.
Blood tests are commonly prescribed in case of suspected ovarian cancer, as
the finding of specific substances (tumour markers) can be a clue of the presence
of a malignant tumour. As concerns ovarian cancer, high values of the CA-125
antigen (Carbohydrate Antigen 125) have been historically associated with the
presence of the neoplasm, with some desire for it to be used as a “screening” tool.
This protein is produced by neoplastic cells of epithelial ovarian cancer, the most
frequent typology. Nevertheless, elevated serum CA-125 levels are only seen in 50%
of patients presented with early-stage ovarian cancer [16, 17], and are common in
several other diseases, non-ovarian gynecologic cancers and other non-epithelial
malignancies [18, 19, 20]. Despite its flaws, the CA-125 marker is still widely
used for differential diagnosis purposes [21, 22], and for monitoring the progress of
anticancer therapies as it has proven helpful for detecting relapses [23].
Together with CA-125, HE4 (Human Epididymis Protein 4) is currently being
studied for the diagnosis of ovarian cancer. Several publications have reported
that the combination of information derived from both markers is more effective in
diagnosis than CA-125 alone [24, 25, 26].
Although the use of markers has been quite successful in the differential diagnosis
of ovarian cancer in recent years, usually, the first examinations performed in the
diagnostic process of ovarian tumours, are Transvaginal Sonography (TVS) and
Transabdominal Sonography(TAS). These techniques allow for the detection
of adnexal masses, which are the typical manifestations of this cancer. TVS and
TAS can be commonly prescribed for screening, in the absence of symptoms, or for
diagnostic purposes. Since ultrasound images are the primary data source for the
thesis project, the sonography technique will be treated in more detail in the next
chapter (Chapter 2).
Other imaging techniques that can be performed for diagnostic purposes are CT
and PET/CT. However, their use is more often associated with preoperative as-
sessments, to evaluate mass extension and consequently choose the best modality
of intervention, or to monitor the effects of anticancer therapy.
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CT is the most accurate technique in the detection of cancer metastases, for this
reason it is frequently employed for staging purposes (clinical staging). Thanks to
the high spatial resolution, CT is known to predict the success of cytoreduction
operations effectively [27], whose main issue is the punctual localization of the
tumour. The CT-based diagnostic approach instead has seen two major limita-
tions: the impossibility of tracing small lesions (less than 2cm) [28], and the low
discrimination of the different tissue components within the mass.
Combined PET/CT is a particular imaging mode, where the patient undergoes
PET and CT in a single session, and the functional and anatomical images are
merged together to maximize the information content of the examination. Unlike
CT scan, PET reveals functional changes in tissues showing the distribution of
glucose FDG (2-(F-18)-floide-2-deoxy-D-glucose); typically, malignant cells have
higher absorption of FDG due to increased glycolytic turnover than the surrounding
healthy tissue, thus PET is often exploited for cancer detection. However, this
imaging technique is not recommended for primary detection of ovarian cancer,
given the high rate of false positives due to absorption of FDG by healthy organs;
endometrial absorption is also dependent on alternating ovulatory and menstrual
phases in premenopausal women [29]. Although it is not the preferred technique
for cancer detection, the PET/CT combination is playing a key role in treatment
planning and follow-up, and is very successful in relapse detection [27, 30].
Finally, as with any neoplasm, the true diagnosis is made by biopsy. Depending
on which treatment the patient is subjected to after the identification of the mass,
the biopsy can be performed in different ways. In fine-needle aspiration (FNA),
the patient is given local anaesthesia, and the doctor, with the help of imaging
techniques (ultrasound or CT), guides the needle towards the tumour; the con-
tent of the mass is extracted and then analyzed in the laboratory. If the patient
undergoes laparoscopy or laparotomy directly, a mass tissue sample is taken
during the operation and then analyzed in the laboratory to certify the benignity
or malignancy of the mass.

Despite ongoing diagnostic and screening research, 75-80% of cancers are already
at an advanced stage at the time of diagnosis (FIGO III-IV)[2]. The current
recommended screening procedure involves a transvaginal ultrasound examina-
tion once a year along with CA-125 tumor marker analysis. A recent UK study,
however, found that this approach, while reducing the incidence of cancer diagnosed
in stage III-IV, was not effective in reducing the mortality rate [31].
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Chapter 2

Ultrasound Imaging

2.1 Introduction

Ultrasonography (also known as Echotomography) is an imaging technique
that allows the investigation of the body’s internal structures through the use
of ultrasound. The procedure is non-invasive, provides real-time results, and
does not require any special preparation from the patient: it is thus globally
acknowledged as first-level diagnostic examination, extremely powerful for
preliminary diagnosis. The use of ultrasound instead of ionizing radiation makes
this technique safe for the patient, allowing the investigation to be repeated and
performed longer without damaging biological tissues. Other advantages offered by
Ultrasonography include the low cost of the equipment and its ease of transport,
which make the examination accessible to many people and replicable even outside
the hospital environment.
The equipment is composed of:

• a transducer(the probe), that acts as emitter and receiver;

• a central console(the computer), which continuously elaborates the data
coming from the probe;

• a video monitor, that displays the final ultrasound image.

As concerns ovarian pathologies, transabdominal and transvaginal pelvic
sonography are the most used ultrasound examinations. In abdominal ultrasound
the probe is moved down the lower abdomen, previously covered with a conductive
gel to facilitate the passage of ultrasound from the transducer to the tissue. In the
transvaginal approach, instead, the probe, wrapped in a sterile shell and gel, is
inserted inside the vagina, and is therefore closer to the organs of interest. This
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latter mode allows to obtain more precise and detailed images of the anatomical
structures, both for the proximity and for the reduction of the barriers (and
therefore of the interferences) that separate the source of the ultrasound from the
tissues of interest [32].

Figure 2.1: TAS (left) and TVS (right) showing a hypoechoic area located in the
uterine shape; TVS modality reveals finer details of the mass ( i.e. endometrial
nature, presence of necrotic-colliquative material within the mass).

2.2 Ultrasound definition

Ultrasound is defined as a mechanical wave characterized by a frequency greater
than the upper limit of human hearing ability. Like all sound waves, ultrasounds
propagate through the conduction medium carrying vibrational energy, which moves
the particles away and near, interchanging compression zones with rarefaction
zones (Figure 2.2).

Figure 2.2: Sound wave representation.

Having wave characteristics, ultrasound can be defined according to the funda-
mental physical notations of wave mechanics: wavelength, frequency, and speed
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propagation.

• wavelength: is the distance between two consecutive peaks. The wavelength
range used in ultrasound is 1,5 to 0,1 nm;

• frequency: is defined as the number of complete oscillations, or cycles, which
particles perform in the unit of time and is measured in Hertz (Hz). The
frequency range used in ultrasound is between 2 and 15 Mega Hertz (MHz);

• speed: is the velocity at which the wave propagates and depends on the me-
chanical properties of the medium it passes through. The speed of propagation
of a wave is given by:

v(m/s) = f(cycle/s) · λ(m/cycle) (2.1)

The propagation speed inside a medium depends on the resistance of the medium to
the compression phenomenon, which in turn is defined by its density and elasticity
(firmness). The speed is higher in tissues with increased stiffness and reduced den-
sity. Fortunately, soft body tissues share similar propagation rates and in clinical
diagnostics it is therefore assumed that the average speed of ultrasound is 1540
m/s (Table A.1). This hypothesis is critical for the ultrasound computer console
to calculate the depth of a reflective surface; however, it remains an approximation:
each tissue has actually its own propagation speed. Adnexal masses may contain
different sorts of materials, including fibrous, blood, serum, and microcalcifications.
It follows that within these cysts, assuming constant velocity, will inevitably lead
to the production of artifacts in the resulting image.

Material or Tissue Speed (m/s)
Air 331
Fat 1450
Water (50°C) 1540
Average soft tissue 1540
Brain 1541
Liver 1549
Kidney 1561
Blood 1570
Muscle 1585
Crystalline lens 1620
Bone 4080

Table 2.1: Ultrasound propagation speed in human body tissues.
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The passage of ultrasound through the medium always encounters a resistance,
which can be expressed in the form of acoustic impedance:

Z(kg/(m2 · s)) = v(m/s) · ρ(kg/m3) (2.2)

The acoustic impedance value is a fundamental element of diagnostic ultrasound,
as the amplitude of the return echo is proportional to the difference in acoustic
impedance between the two adjacent tissues encountered by the ultrasound wave.
As it is reported, the impedance depends on both velocity and density of the
medium. If the speed is assumed constant (as previously stated), the acoustic
impedance will be completely determined by the tissue density. Therefore, the
information going back to the transducer and then turned into image, represents
the difference in tissue densities encountered along the path of the ultrasound
scanning line.

In accordance with the laws of physics that regulate the propagation of waves in
media, ultrasounds mainly face:

• Reflection: occurs at the interface with a new medium; the incident wave
reverses the direction of propagation and returns toward the transducer with
the same incidence angle;

• Refraction: occurs at the interface with a new medium when the incidence
of the wave is not perpendicular to the surface; it consists in a deviation of
the incident radius;

• Scattering: occurs when the width or lateral dimension of the tissue boundary
is less than one wavelength; if a large number of small tissue boundaries occurs,
the scattering can radiate in all directions;

• Attenuation: is the result of an ultrasound wave losing energy and depends
largely on the absorption (dispersion of energy in the form of dissipated
heat) but also on reflection and scattering. The attenuation phenomenon is
proportional to the characteristic frequency of the sound wave.

In order to maximize echo collection at the probe, specular reflection must be
pursued, where incident US rays hit the surface perpendicularly. In the case of
non-perpendicular incidence, some of the signals generated at the interface are lost
due to refraction. Due to the numerous phenomena taking place at the interface,
only a small part of the incident ultrasound will be correctly transmitted to the
tissue, thereby maintaining the same direction and almost the original speed of
propagation.
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Figure 2.3: Specular reflection (A), Non-specular reflection (B), Scattering (C)
phaenomena.

2.3 Ultrasound image acquisition

The process of image acquisition begins with ultrasounds generation, which take
place within the transducer. The probe contains an array of piezoelectric ele-
ments, typically made of lead titanate-zirconate (PZT), capable of deformation
when electrically stimulated. Viceversa, the crystals also manage to transform
mechanical stress into electrical potential. This dual behaviour is to be found in
the microscopic structure of the PZT crystals, whose asymmetry leads to shape
and ions alterations following external stimulations. The mechanical vibration
associated with the deformation of the crystal results in the production of the
ultrasound. As the frequency of the generated US is inversely proportional to the
thickness of the piezoelectric materials, depending on the value of the stimulation
voltage and the morphology of the crystals, it will be possible to generate pulses of
different frequencies, capable of reaching certain depths of exploration.

The ultrasound produced propagates following the principles governing the in-
teraction of a mechanical wave in a medium; therefore, at each interface with a
new tissue it is mainly reflected and refracted. The reflected component completely
reverses its direction and returns to the probe, carrying with it the information
content that will help provide the final image (echo). The component that is
actually transmitted propagates in the original direction with much less energy
than the original incident beam, mainly due to attenuation. Refraction phenomena
can give rise to echoes that can return to the probe with information that is not
representative of the actual depth of an object, and are therefore responsible for
producing artifacts.
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As anticipated, the echo produced is the more energetic the greater the differ-
ence in acoustic impedances in contiguous tissues. Consequently, if the second
medium has a density much greater than the first, the signal returning to the probe
will be highly energetic, and it will not be possible to investigate the structures
below that interface, since the energy is mainly returned via reflection. In the
event that the tissue discontinuity is such as to allow the further propagation of
the ultrasound beam, this will continue until it encounters the next discontinuity,
where beam splitting will occur again .

Therefore, the information collected and processed in real-time by the probe
are:

• the energy with which the ultrasounds return to the detector, index of the
attenuation:

• the time interval that separates the sending of the beam from its reception,
an index of the depth at which the discontinuity was found.

Ultrasound reaching deeper depths will return to the probe highly attenuated,
thus the computer console is equipped with complex compensation systems
capable of amplifying the signal coming from distant sources. All the information
collected by the transducer is processed by the central console to output the typical
ultrasound image. The conical shape that defines the scan corresponds to the
ultrasound fan, which is the area investigated by the set of ultrasounds produced
by the probe. Its shape may vary depending on the probe used. The image is
grayscale, and the intensity of each pixel is directly proportional to the intensity of
the echo returning to the transducer. Areas that record more intense echoes are
called hyperechoic, and are the brighter areas in the image. Since reflection is
the prevailing phenomenon for these structures, hyperechoic zones correspond to
high-density media (solid components, calcifications). The areas without echoes,
called hypoechoic, are the darker areas. These indicate the presence of liquid
collections (water, serum, urine).

2.4 Pulsed-echo

The ultrasound image is based on the pulse-echo principle. In order to create the
image and keep it updated in real-time on the monitor, the transducer constantly
sends and receives ultrasounds, using a pulsed mode to excite the crystals. This
modality consists in stimulating the piezoelectric elements with a discontinuous
current to have an equally discontinuous ultrasound emission. There will therefore
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be a period during which the piezoelectric element is involved into ultrasonic beam
generation, and will be unable to transduce stimuli from outside ( Pulse Duration,
PD), and a period during which the crystal is at rest, and can thus be stimulated
by the incoming echo (Receiving Period, RP). The sum of these time intervals
constitutes the Pulse Repetition Period (PRP), whose reciprocal is the Pulse
repetition Frequency (PRF), i.e. the frequency with which the probe investigates
the tissues.

Figure 2.4: Echo pulsed mode.

The duration of the pulse strongly affects the axial resolution of the US beam: if
the time interval between two echo signals originating from two different objects is
less than the duration of the pulse, the return signals can overlap and prevent the
correct display of the two objects as distinct.

2.5 Echography modes
There are several ways in which ultrasound can be arranged to display information
extracted from tissues: these can vary according to the specification it is intended
to examine.
A-mode (Amplitude - mode): consists of a one-dimensional scan in which a single
transducer sends a single pulse that propagates through the tissue. It is the simplest
acquisition of an ultrasonic echo and can be represented on a cartesian plane in
which the vertical axis is an index of signal intensity and the horizontal axis
represents the depth reached. It is still exploited today, but only in ophthalmology
and neurology applications.
B - mode (Brightness - mode): is a two-dimensional scanning mode in which a
transducer array transmits pulses to the tissue. The resulting image is the traditional

17



Ultrasound Imaging

grayscale ultrasound image, in which each pixel takes on a color depending on
the energy of the echo returning to the probe. The resulting image shows the
anatomical substructures of the area of interest, represented in different shades
depending on their density and depth. This is the most common modality used for
diagnostic purposes in various applications (cardiological, breast, gynaecological).
M-mode (Motion - mode): is a modality based on B-mode. It offers the possibility
to select a single transducer to isolate the sequence of grey tones related to a specific
scanning line and to plot it over time. It’s exploited to examine the movement of
anatomical structures and is currently used in cardiology, for the analysis of valve
movement.
Eco-color-doppler mode: this modality shares with the previous the usage of US to
build the image, however, the focus is shifted from the morphology of anatomical
structures to the analysis of blood flow. The theory of the Doppler effect is exploited
for this purpose. The resulting image is a B-mode image superimposed with a
colorimetric map of the blood flow, where the color represents directionality (
red for approaching blood flow, blue for departing flow) and the brightness is
proportional to the intensity.

(a) A-mode. (b) B-mode.

(c) M-mode (d) Eco-color-doppler mode.

Figure 2.5: Ultrasound modes.

18



Ultrasound Imaging

2.6 Limitations

Ultrasound imaging is affected by several drawbacks, some related to the inherent
limitations of the equipment, others to external factors. First of all, the spatial
resolution of ultrasound imaging is among the lowest in diagnostic imaging.
Spatial resolution is the ability of an ultrasound system to correctly detect and
display adjacent structures. It can be broken into its components, axial resolution,
measured along the direction of propagation of the beam, and lateral resolution,
measured along the plane perpendicular to the direction of propagation. Both
of these components depend on the frequency of US wave, and the overall effect
is that the spatial resolution diminishes in value (optimal condition) when the
frequency is high. However, the frequency can not be increased without taking
into account the attenuation effect, therefore the common compromise sees as
chosen frequency the highest allowing to reach the desired depth. The second
major drawback of ultrasound imaging is its applicability, limited to soft tissues.
Hard tissues show high reflection, preventing the ultrasound to propagate to
underlying structures. This technique also suffers from numerous artifacts whether
not correctly identified, they could lead to misdiagnosis. Given their variety and
their relevance for segmentation tasks, they will be covered in the next section.
Lastly, ultrasound imaging is a highly operator-dependant examination. The
results vary significantly according to the person conducting the examination and
his experience. This is one of the limitations artificial intelligence aims to overcome
through the design of algorithms trained on the basis of the experiences of most
expert physicians.

2.7 Artifacts

Image artifacts are frequently found in clinical ultrasound and consist of false
or distorted representations of internal structures, resulting in an output image
not corresponding to reality. The characteristics and causes of the most common
artifacts are listed below; visual examples are provided in Figure 2.6.

• Beam width artifact: occurs when a highly reflective object falls within the
distal zone of the beam and produces a detectable echo. The display assumes
that this echo comes from within the focal area and displays it together with
the correct one.

• Side lobe artifact: the main ultrasonic beam is accompanied by beams of lower
energy that propagate in the radial direction in the vicinity of the transducer.
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The presence of highly reflective structures in the propagation field of these
minor beams can generate detectable echoes in the image.

• Mirror artifact: structures placed in close proximity to curved and highly
reflective surfaces are reproduced in the image both in their real position and
beyond the reflective interface acting as a mirror.

• Reverberation artifact: occur when the beam hits two nearby highly reflective
surfaces perpendicularly. The echo generated by the first interaction can
be reflected several times between the two interfaces before returning to the
transducer. When this happens, the system records multiple echoes and brings
them back to the image: the first recorded echo will be positioned correctly,
the subsequent ones will be placed at a greater depth, depending on the time
taken to return to the probe.

• Speed displacement artifact: the image reconstruction process works on the
assumption that ultrasounds propagate through the body tissues with a
constant speed, equal to 1540 m/s. As anticipated in Section 2.2, the real
velocity differs from tissue to tissue even if slightly. The different propagation
speed results in different times needed to return to the transducer, therefore
a part of an identified object could appear broken or disconnected from its
surroundings.

• Posterior acoustic shadowing: highly reflective or attenuating structures can
cause complete ultrasonic beam reflection. Beyond the interface, there will be
a zone free of echoes, thus completely anechogenic, the "shadow cone".

• Lateral acoustic shadowing: the tangential encounter of the ultrasonic beam
with the ends of solid or liquid round formations results in the production of
anechogenic bands, extending from the meeting point in the distal direction
from the probe.

• Posterior enhancement: in presence of a homogeneous liquid collection, or a
poorly reflective structure, the ultrasound undergoes minimal attenuation. At
the lower wall of the same structure, the ultrasound will therefore appear
more intense than those that are at the same depth but have not crossed the
liquid zone. This artifact is presented as a hyperechoic nuance that follows a
completely anechogenic structure.

In diagnostics, some of these artifacts are considered beneficial as their presence
can sometimes help in the recognition of some peculiarities of the structures. The
speed displacement artifact, for example, can help in determining the composition
of the lesion (solid, liquid). Others remain simple noise. In the context of image
segmentation, the artifacts are always attributed a negative connotation, since the
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(a) Beam width artifact. (b) Side lobe artifact.

(c) Mirror artifact. (d) Reverberation artifact.

(e) Speed displacement ar-
tifact.

(f) Posterior acoustic shad-
owing.

(g) Lateral acoustic shad-
owing.

(h) Posterior enhance-
ment.

Figure 2.6: Common artifacts in US imaging.
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algorithm that works to isolate individual structures, if not well trained, could
behave indifferently for real and fictional representations.
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Chapter 3

Artificial Intelligence

Artificial intelligence (AI) deals with the development of technologies exhibiting
behaviours that normally require human intelligence. Speech recognition, deci-
sion making and visual perception are just some of the tasks that have been
successfully tackled by AI. The corresponding algorithms can then be exploited for
the implementation of complex technologies, such as automated guidance systems
or banking services. The terms Machine Learning and Deep Learning are frequently
misused in the field of artificial intelligence. Considering that both can be used in
medical applications, a brief distinction is reported here.

Machine Learning (ML) is a branch of AI, whose models are capable of di-
rectly learning from a set of examples the salient traits needed to accomplish a
given task, rather than resort to explicit coding instructions. The main feature of
ML algorithms is thus the skill of autonomously adapting the learning according
to variations in the input data.

Deep Learning (DL) is, in turn, a subcategory of Machine Learning that makes
use of Deep Neural Networks to process a large amount of data for learning. The
structure and depth of these models mimic the architecture of neuronal organization
characteristic of the nervous system in the brain. In this perspective, it can be thus
stated that Deep Learning is closer to the original definition of AI than Machine
Learning is. The main advantage brought by this second class of algorithms is the
automatic extraction and selection of the features useful to task fulfilment. This
ability proves to be extremely powerful in high-feature problems, or generally when
the combination of features that leads to the best performance is still not known.

While most ML algorithms are considered intrinsically interpretable by humans,
DL models work at a higher-abstraction level, such that their internal behaviour
is not well traceable. These models are thus often assimilated to black-boxes
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[33, 34]. DL performs efficiently in the domain of high-dimensional data. In this
regime, Deep Neural Networks typically outperform Machine Learning algorithms
in most applications [35]. However, for low dimensional inputs, and especially
in cases of limited availability of training data, ML algorithms can still produce
optimal results [36]. Finally, while DL’s performance may potentially outweigh
human performance, problems requiring strong AI capabilities, such as common
sense and intentionality, cannot be solved yet [37].

3.1 Artificial Intelligence and Medicine

Artificial intelligence is making its way into biomedical research and clinical prac-
tice, showing its potential in several applications, such as personal screening,
diagnosis, prediction of treatment response and prognosis. The ability of
these algorithms to integrate multiple streams of data, also from heterogeneous
sources, and to use them for their continuous updating, is definitely encouraging
the integration of AI in the health system as a powerful support in medical practice.
AI, and specifically Deep Learning, possess the ability to "learn" a behavior after
training, much like a doctor learns a clinical practice over time. Since experience
derives from dealing with a wide variety of cases and situations, also AI algorithms
need consistent amounts of data to improve their own skills.
Data availability is a recurring issue in DL: DL models are intrinsically data-
hungry. In principle, this should not pose a problem in healthcare, where a great
amount of data is constantly produced every day. The data format can vary from
simple numerical values, such as concentrations resulting from blood tests, to
modular information, such as medical records, or to images, like the outcome of
a radiological examination. Therefore, an extraordinary amount of data would
already be available for AI applications, taking into account not only data collected
in recent years, but also the thousands of clinical histories of patients stored over
the past years. The medical sector would thus be one of the most suitable for
the application of DL technology. However, despite the huge amount of collected
data in health care, only a small portion of them can directly feed DL models.
The reasons behind such a data scarcity include the lack of adequate resources by
health systems to share vast amounts of medical images, the lack of an automatized
system for labelling and the bureaucratic procedure needed to approve the usage
of the data[38].
Coupled with the data problem, the ethical issue is also slowing down the usage
of AI within the medical field. Healthcare decisions made by intelligent algorithms
have always been considered controversial. In order to shed light on the future ulti-
mate entrance of AI within Medicine, the World Health Organization published the
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guidance "Ethics and Governance of Artificial Intelligence for Health" [39]. Among
the various points addressed, the first one directly concerns human autonomy,
that is, how intelligent systems should be placed in support of physicians and not
in their place, and how the decision-making task related to reporting should always
be entrusted to the physician. These ethical issues bring to light a second concern,
which is the growing apprehension of radiologists to lose their jobs.

Certainly, the introduction of AI in medicine will inevitably affect the work of
physicians, however, the common hope among DL practitioners is that DL can lead
to the evolution of the figure of doctors rather than their disappearance. Indeed, by
being relieved of lower-level activities (such as segmentation activities), radiology
physicians will thus be able to increase their work efficiency, allowing them to
raise the number of cases processed within a time window, thereby reducing the
waiting time for the performance of a diagnostic examination. At the same time,
however, they will need to continue to monitor the activity of intelligent algorithms.
Together with healthcare facilities, the European community is also making major
strides in the area of artificial intelligence, working to introduce a CE marking
system specifically dedicated to these systems. With such regulations, the use of
AI in medicine could be revolutionized, allowing safer integration of automatic
softwares into healthcare facilities.

3.2 Computer Aided Detection and Diagnosis

The use of images with artificial intelligent algorithms finds its main application
in the development of CAD (Computer Aided Detection and Diagnosis) systems.
Automatic interpretation of medical images has been investigated for the past few
decades with the goal of minimizing operator dependence in the diagnostic process.
The physician’s analysis of a medical image can be influenced by various subjective
factors, including the operator’s experience but also fatigue and distraction caused
by long hours of work. Furthermore, even intrinsic features of the image, such as its
poor quality, can negatively affect the interpretation of the result of a radiological
examination. The implementation of CAD systems could therefore help to improve
the accuracy and the effectiveness of the diagnostic process and reduce the physi-
cian workload. Within the CAD models, two subgroups can be identified: CADe
(Computer Aided Detection) and CADx (Computer Aided Diagnosis) algorithms.
CADe methods are directed to the detection, localization and segmentation of
elements within the medical image, and can therefore be used as a support tool
for tracking lesions. Instead, CADx algorithms aim at the characterization of le-
sions and can be employed by radiologists to determine the nature of a given disease.
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CAD system can make use of both ML and DL algorithms. Machine Learn-
ing classifiers have been exploited for detection [40] but also for diagnostic
purposes[41]. Deep Learning models have great applicability both in diagnos-
tic[42] as well as in segmentation tasks[43].

It follows, that according to the chosen model (ML or DL), the image work-
flow within the algorithm will be different.

Figure 3.1: Workflow of different AI systems for CADx application.

The figure shows the possible strategies to deal with a predictive problem. As can
be noticed, the use of a total Machine Learning approach requires starting from
a pre-segmented image, different from the Deep Learning case. Furthermore, the
use of ML classifiers for prediction requires feature extraction, which may or may
not be done through Deep-type approaches. The main advantage of the use of
an End-to-End Deep Learning strategy is to bypass the feature extraction and
selection steps, speeding up the whole pipeline. However, the lack of knowledge
concerning the elements believed meaningful for task completion leads to the
algorithm resembling a "black box".

3.3 Machine Learning Approaches for medical
imaging

The usage of traditional Machine Learning algorithms in CAD imperatively re-
quires as primary step the definition of the features used to train the algorithm.
Radiomics is the emerging field for the conversion of the image in mineable data
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(features) and therefore plays a fundamental role in the employment of ML classifiers
for CAD applications [44]. Radiomics is usually considered a CADx extension, as
it performs organ characterization through the extraction of qualitative features
from ROIs (Regions of Interest), previously manually or automatically identified.
The computed features are characterized by a higher predictive value if compared
to standard clinical predictors (such as age, sex, family history, and potential
indicators of pathology not derived from the image). These features usually consist
of morphometric characteristics (i.e., size, shape, and diameter of the lesion), as
well as measurements of tissue heterogeneity (including first-, second-, and higher-
order statistical descriptors), which efficiently represent the lesion. The whole
collection of "radiomic" features is also known as "tumour signature". The two
steps following feature extraction, are feature normalization and feature selection.
The former helps to avoid model bias toward high-value features and is achievable
through different methods, such as min-max rescaling or standardization. The
latter serves to remove features with a low-diagnostic impact for the task to be
performed. Once the maximum level of abstraction is reached, a ML classifier can
be exploited for the desired task.

Among popular ML algorithms, Logistic regression is one of the most used, prob-
ably due to its simplicity and the capacity to lend robustness to classification.[45,
46]. Logistic regression employs the logistic function to differentiate binomial
distribution and is usually used as a classifier.

Another frequently employed predictive models are Decision Trees; they of-
fer a substantial advantage as they reproduce human reasoning by choosing to
take a decision (a ramification) when the hypothesis is confirmed ("if-then"). If
more than one decision tree is used to build the prediction model, the algorithm
becomes Random Forest[47], which has usually higher performances. Moreover,
unlike standard decision trees, in random forests only a subset of the total number
of examples is used to train each tree within the forest (bootstrapping) and each
tree is trained by random selection of all available features(feature bagging). The
result is an uncorrelated forest of trees whose prediction is more accurate than that
of any single tree.
Support Vector Machines (SVMs) are supervised learning models used for
binary classification tasks that use a representation in the space of examples based
on their features to find a law that can separate them based on their class. If an
immediate division is not achievable, SVMs are able to map the input data into a
multidimensional space where the examples are linearly separable. They are mainly
used for CADx and have proven to be effective in the diagnosis of breast cancer,
when coupled with an accurate method of feature selection [48].
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Lastly, also Artificial Neural Networks (ANNs) belong to the category of
ML algorithms employed in the classification of medical images [49]. ANNs are
massively parallel systems with large numbers of interconnected simple processors.
Their main feature is the ability to use interconnected layers to autonomously
extract the features needed to accomplish a given task. They will be discussed in
more detail in the next chapter, as they constitute the crossing point from the ML
to the DL.

3.4 Deep Learning Approaches for medical imag-
ing

In Machine Learning approaches, the search for distinctive features and their
selection has a great weight in determining the final performance of the model,
which therefore depends only partly on the type of classifier chosen. Thanks
to Deep Learning models, this issue is left behind, in favour of the research of
the optimal Neural Network architecture achieving the best performance for a
specific task. Among the Deep Learning architectures employed in medical con-
text there are Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Generative Adversarial Neural Networks (GANs) and Autoencoders (AEs).

Convolutional Neural Networks are the most popular neural network ar-
chitecture for medical image processing. Their distinctive feature is the use of
layers that implement convolution operation (linear) and activation layers (non-
linear) that act as powerful extractors of the image characteristics. End-to-end CNN
architectures directly associate images to a target class and have been employed to
perform image classification tasks for both screening and diagnosis purposes [50,
51]. In particular, several CNN architectures pre-trained on large natural image
data sets, such as ImageNet, have been used to classify medical images by making
use of already trained layers to overcome data scarcity problems [52]. Moreover,
Convolutional Neural Networks show their potential also in segmentation tasks,
and therefore can play a role even in the CADe field. The U-Net, a convolutional
network introduced for the first time in 2015 [53], represents the starting point of
various segmentation approaches in the medical field [54].

Recurrent neural networks have also been combined with CNNs to extract
spatial-temporal features from imaging data series. RNNs introduce a recurrent
layer whose main function is to provide the Network with a memory ability. There-
fore, these Networks allow for the processing of new data while being aware of
older inputs. In medical image analysis, they have been used to predict the shape
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of anatomical structures in new images based on a sequential series of previous
images [55].

Generative Adversarial Networks are frequently employed for the genera-
tion of realistic datasets starting from original medical images (data augmentation),
addressing the problem of data scarcity. Their architecture is composed of two
adversarial networks, one dedicated to new data generation and the other to its dis-
crimination control. Lately, they have also seen application in segmentation tasks,
in which they attempt to generate a segmentation map close to the ground truth [56].

Autoencoders are also frequently employed in medical image processing. These
are unsupervised models whose hidden layers are used partly to compress the input
into a low-dimensional representation (encoding path), and partly (decoding path)
to reconstruct the original input from the learned features. They have been used
for anomaly detection and also segmentation tasks [57].

As can be noticed, Deep approaches are able to perform different tasks directly
from raw data, without the need for a pre-segmented image. Consequently, since
most of them can effectively handle segmentation, they could be used in radiomics
approaches as powerful ROI identifiers. The combination of DL and ML algorithms
could therefore be a winning strategy for CAD systems, avoiding the black box
problem usually associated with Deep Learning algorithms and speeding up the
whole image pipeline (Figure 3.2).

Figure 3.2: Illustration of CAD pipeline for COVID-19 diagnosis based on the
combination of classic Machine Learning and Deep Learning techniques.
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Chapter 4

Neural Networks

Neural Networks constitute the first attempt of artificially mimicking the flow of in-
put signals within the nervous system. In particular, artificial neural networks model
the spiking activity of neurons in the brain through a weighted sum of the signals
coming from the neighbouring neurons. At the same time, neuronal plasticity is
also replicated, i.e. the ability of neurons to strengthen or weaken their connections
with the surrounding elements, changing their own activity.

4.1 Artificial Neural Networks

The fundamental unit of Artificial Neural Networks is the Perceptron, the first
example of an artificial neuron. This model was presented in 1958 by the psychol-
ogist Frank Rosenblatt [58], as a continuation of the work of neurophysiologist
Warren S. McCulloch and mathematician Walter Pitts.

Figure 4.1: The model of an artificial neuron.

As its biological equivalent, the perceptron works as a processor, combining the
inputs to produce an output signal. Each link with the input units has its own
weight and contributes differently to the Perceptron output.
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In particular, the output is produced as follows: each input xi is multiplied by the
weight of its connection wi; a bias b is then added to the output to mimic the effect
of the spiking thresholds in biological neurons. This sum goes through a trans-
fer function f , determining the Perceptron output. As a result, the relationship
between input and output is described as:

Y = f(
nØ

i=1
wixi + b) (4.1)

The Perceptron is a single-layer network that implements a linear type classifi-
cation. Its capabilities are therefore extremely limited, being able to distinguish
only linearly separable elements. In order to achieve more complex tasks, multiple
Perceptrons are assembled to compose a network (ANN).
The minimal architecture of any ANN consists essentially of three types of layers:
the input layer, the hidden layer and the output layer. The input layers
receive the examples that are intended to be processed within the network, and
their dimensionality depends on the shape of the input data to the algorithm, while
the output layer yield the classification for the input example, and has a number
of neurons equal to the number of possible categories to which the input can be
assigned. Intermediate layers, also called hidden layers, connect the input layer to
the output layer through a series of connections characterized by weights. Hidden
layers serve to extract increasingly abstract and complex representations of the
input, allowing the identification of the salient features from the input data needed
to solve a given task.

Figure 4.2: Artificial Neural Network.

The Perceptron solved classification problems with a single hyperplane; thus, a
multilayer network uses multiple hyperplanes to solve elaborate multi-class clas-
sification tasks. As the number of hidden units increases, so does the number of
connections, and the overall model complexity rises as well. If that is the case,
there is a transition from Artificial Neural Networks to Deep Neural Networks, and
the traditional Machine Learning field is left in favour of Deep Learning.
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4.2 Learning and Neural Network Optimization

Neural Networks are provided with different training modes depending on the
task to be implemented. Classification and regression tasks, the most popular
in the medical field for diagnostic and prognostic purposes respectively, employ
supervised learning. In contrast to unsupervised learning, where examples are the
only input required for an algorithm to return an internally generated categorization
(Clustering), supervised learning needs both examples and their correct labels to
learn externally provided classifications. According to Rosenblatt mechanism [59]
the NN training process requires the weights of connections to be modified in order
to bring the output label closer to the correct one. Therefore, the training model
requires a loss function R(ŷi, yi), sometimes called cost or fitness function,
to assess how close the model prediction ŷi fit the desired value yi. The training
process aims at minimizing the loss. Among the most popular loss functions there
is the Mean Squared Error (MSE), defined as:

RMSE(ŷi, yi) =
KØ

k=1
(yi,k − ŷi,k)2 (4.2)

Also, Cross Entropy (CE) is frequently employed in DL approaches:

RCE(ŷi, yi) = −
KØ

k=1
(yi,klog(ŷi,k)) (4.3)

Minimisation of the CE is optimal in situations which require accurate estimation
of small probabilities and is suited to predict class probabilities, whereas MSE is
more suited to predicting values [60]
The goal of training is to find a set of parameters θ that minimize R(θ). Since this
leads back to a minimum search problem, the most immediate strategy is to solve
it through a derivative operation. Therefore, to obtain the optimal parameters, a
system based on derivatives of loss functions for each parameter theta has to be
solved. The algorithm which implements the search of the loss function minimum
is commonly known as Gradient Descent. The gradient of the loss function,
computed each time during the training process, provides the direction in which
the function has the steepest rate of increase. Each parameter θ is thus updated in
the negative direction of the gradient, with an arbitrary step size, identified by the
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learning rate hyper-parameter. Generally, the space of the network parameters,
i.e. the domain where the search for the minimum takes place, is multi-dimensional,
and depends on the number of parameters defining the system.
Mathematically, the correction of the parameters at each update is formulated as

Figure 4.3: Gradient Descent representation.

follows:

θ = θ − α · ∂R

∂θ
(4.4)

where θ stands for each learnable parameter, α stands for the learning rate, and R
stands for the loss function. It is of note that, in practice, the learning rate is one
of the most important hyper-parameters to be set before the training starts.
The way the correction extends across the network from the last layers back to the
first one is also known as backpropagation [61].
Usually, for reasons such as memory limitations, the gradients of the loss function
with regard to the parameters are computed by using a subset of the training
dataset called mini-batch, and applied to the parameter updates. This method is
thus called Mini-batch Gradient Descent, whose mini-batch size represent an
additional hyper-parameter to tune. Many improvements to the gradient descent
algorithm have been proposed and widely used, such as RMSprop and Adam. Often
in simple models, the initial parameters θ are simply taken to be random numbers.
In modern neural nets, the parameters are instead frequently initialized to those of
other networks that have already been trained on standard and huge image dataset,
like ImageNet. This practice is known as transfer learning. One of the most
frequent problems occurring at the end of the training is overfitting, which consists
of an excessive adaptation to the training dataset. Among the strategies to avoid
overfitting, such as the application of penalties during the training phase or the
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imposition of the process to stop when the loss on the validation set increases, Data
augmentation is also frequent. Using this technique, low variability is overcome by
adding mock but similar examples to the train dataset, preventing the model from
overfitting small amounts of data. Cross-validation technique is also helpful, as it
allows the identification of any biases present within the possible combinations of
data composing the training set.

4.3 Convolutional Neural Networks

Convolutional Neural Networks are deep learning architectures which make use of
convolution as feature extraction operation. These models have become dominant
in various computer vision tasks and are attracting interest across various domains,
including radiology. Their main advantage is the ability to automatically and
adaptively learn spatial hierarchies of features, from low- to high-level patterns.
Moreover, the convolution algorithm captures prominent features preserving spatial
relations within the image. The degree of feature abstraction derives from the
number of convolutional layers: first layers identify simple patterns, such as lines
or waves; moving towards deeper layers, the network recognizes more complex
shapes, such as well-defined objects. Differently from standard ANN, where each
neuron is connected to all the units of both the previous and following layers, CNN
neurons have sparse connections, as the convolutional filter is normally set to be
of smaller size than the input and consequently only a local patch is connected
to one pixel of the next layer. This means that fewer parameters need to be
calculated and stored, which improves computational efficiency. Moreover, kernel
parameters may be shared by more than one input/connection, reducing the total
amount of independent parameters (weight sharing). This leads to an overall
reduction in the number of parameters defining the model; however, the deep struc-
ture of CNN usually implies that the overall parameter count will be higher for CNN.

A standard CNN architecture consists of several convolution layers and a pooling
layer, followed by one or more fully connected layers (FC). The pooling and convo-
lutional operations presented below apply to 2-D CNN (Equation 4.5); however,
equivalent operations also apply to 3-D input volume data.

Convolutional layers perform feature extraction. They make use of a feature-
specific filter (kernel) to investigate the different areas in the image in search of the
defined pattern. Consequently, the elements involved in the convolution operation

34



Neural Networks

Figure 4.4: Example of Convolutional Neural Network architecture.

are the image pixel I(x, y) and the filter F (x, y) of K x K dimension:

H(x, y) = I(x, y) ∗ F (x, y) =
K−1Ø
i=0

K−1Ø
j=0

I(i, j)F (x − i, y − j) (4.5)

The output of each single convolution operation is a scalar value, as high as the
investigated sub-section of the image presents the searched pattern. The convolution
is repeated until the whole image has been covered: in order to achieve it, each time
the kernel is moved to a new sub-area of the image. The result of the investigation
across all the image is a feature map H(x, y) (also called heatmap) for the
searched pattern.

Figure 4.5: Convolution computation across the image

The resulting matrix has therefore reduced dimension if compared with the original
image: the repetition of convolutional layers across the network leads to the
reduction of the resolution in favour of more informative features.
Output dimensionality depends on three factors:

• Kernel depth: stands for the number of filters used for the convolution, so
the numbers of researched patterns;

• Stride: stands for the number of pixels separating contiguous areas of the
image to be investigated;
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• Zero-padding: stands for the number of pixels added at the image border to
preserve image input size.

The final feature maps dimensions (Mx,My,My) are computed as follows:

Mx = Ix − Kx + 2 ∗ Px

Sx

+ 1 My = Iy − Ky + 2 ∗ Py

Sy

+ 1 Mz = n◦of filters (4.6)

where (Ix,Iy), (Kx,Ky) are the image input dimension and the kernel dimension
respectively, while (Sx,Sy) stand for horizontal and vertical stride, and (Px,Py) for
the padding.
Outputs of a linear operation such convolution are then passed through a non-
linear activation function. In Deep Neural Networks, the most used activation
function is Rectified Linear Unit, also known as ReLU ( f(x)=max(0,x) ),
since it helps to avoid the vanishing gradient problem following multiple training
iterations [62].

Pooling operation is placed immediately after the activation layer. It provides
features with displacement-invariance and reduces their dimensionality. Among the
possible reduction functions (Average-pooling, L2-normalization-pooling), Max
pooling is the most commonly used: it preserves only one of the features related
to a specific sub-region of the activation map. Similarly to convolutional layers,
also for pooling layers it is possible to define a pooling filter characterized by a
certain size, stride and padding.

The output feature maps from the last pooling layer are usually flattened and given
as input to a Fully Connected layer (FC), which returns the final predicted
value. Each layer of FC employs ReLU as activation function, exception made for
the last layer. The activation function of the last layer is usually a softmax, which
transforms the output values into the probabilities for each example to belong to
the corresponding target class.

4.4 Fully Convolutional Neural Network

The typical use of Convolutional Neural Networks is on classification tasks, where
the output of an input image is a single class label. However, in many visual tasks,
especially in biomedical image processing, the desired output should include
localization, i.e., a class label is supposed to be assigned to each pixel.
The main reason that prevents a standard CNN network from being used to directly
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achieve segmentation is the usage of the final FC layer. This layer requires the input
to be flattened, thus losing any spatial information preserved by the convolution
operations.
In order to overcome this issue, Long et al.[63] proposed to replace the FC layer with
a convolutional layer, thus obtaining a Fully Convolutional Neural Network
(FCNN). However, the function of this last layer differs from those used in the
rest of the network, as it is not intended for the recognition of a specific pattern,
but it aims at condensing together the feature maps extracted before to generate
an activation map representative of the whole extraction process. The kernel of
the last layer will therefore have unit dimensions and depth equal to that of the
input feature maps tensor. The heatmap resulting at the end of the network is at
the origin of the segmentation process.

Figure 4.6: Fully Convolutional Neural Network (FCNN).

As shown in the Figure 4.6, although it is not yet able to correctly identify the
contours of the image, it can be seen that the greater activation of the pixels
is recorded in correspondence with the object of interest (the cat in the original
picture).

The main issue of this feature map is its size: the convolution process inevitably
leads to a resizing of the original image, condensing its information as it proceeds
through the network, a process known as "downsampling". To obtain a segmen-
tation mask to be superimposed on the original image, it is therefore necessary to
restore the original dimensions of the image, and, at the same time, to retain the
information content extracted from the previous layers: this is achievable thanks
to layers performing "up-sampling" operations. Among the possible techniques
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performing "up-sampling" operations, there are those involving layers which imple-
ments the inverse operations of pooling and convolution.

In particular, Unpooling restores the original image dimensions by mapping
the content of the input map to a larger one. This will result into an enlarged but
distributed activation map, where activations occur in enlarged approximations
of the areas where the desired pattern is actually found. Examples of upsampling
methods are Nearest-Neighbor, Bed of Nails, Max Unpooling. Instead, the decon-
volution process (also called transposed convolution) is meant to densify these
scattered activations. Through deconvolutions, activations strictly related to the
classes defined by the filters are amplified, while noisy ones from other regions are
effectively suppressed. Thanks to the combination of unpooling and deconvolution,
the network generates accurate segmentation maps.

Figure 4.7: Example of a transpose convolution with 3x3 kernel and unit stride
over a 2x2 input padded with a 2x2 border of zeros.

However, there are two major problems still affecting the FCNN’s performance:
firstly, the proposed architecture cannot preserve the finer details of the image: the
final mask is still a coarse representation of the desired output; secondly, not all the
generated masks are correct. In order to overcome the first issue, Long et al. [63]
proposed the use of skip connections to combine the upsampled activations with
the downsampling activations, improving the accuracy of the border segmentation.
The second problem was solved subsequently by the work of Ronneberger et al.
[53]. He realized that the upsampling steps provided by FCNNs architectures were
too approximate, as they made use of a minimum number of layers to obtain the
segmented mask from the decoding path output , resulting in loss of segmentation
accuracy and insufficient integration of context information.. Therefore he pro-
posed a new architecture, called U-Net, whose main feature was the usage of the
same number of convolutional layers in upsampling and downsampling. The skip
connections were then installed between each level of the upsampling layer and the
symmetrical downsampling layer. The above-mentioned improvements make U-Net
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more accurate in the aspect of pixel positioning and segmentation. The structure
of U-Net is described in detail in the following section.

4.4.1 U-Net

U-Net entered the world of Fully Convolutional Neural Networks only recently, in
2015. Olaf Ronneberger, Philipp Fischer, and Thomas Brox [53] resumed the work
on Long et al’s FCNNs and developed the first FCNN intended for a segmentation
task in the biomedical field. The architecture is shown in Figure 4.8 and it
consists of a contractive path (encoding path) and a symmetrical expansive
path (decoding path), whose similarity to the letter "U" is an inspiration for the
network name.

Figure 4.8: U-Net architecture

The contracting path follows the typical structure of a convolutional network
and consists of repetitions of 2 convolutional blocks (of 3 x 3 kernels), each followed
by a rectified linear unit (ReLU) and a max pooling with a 2x2 filter and stride 2.
As downsampling proceeds, the number of feature maps increases while the map
size decreases, resulting in a reduction of spatial resolution.
At the end of the encoding path, which is the bottleneck of U-Net, there are two
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consecutive convolutions, which however do not foresee any max-pooling operation.
Instead, the expansive path consists of an up-convolution step (of 2 x 2 kernel)
which halves the number of feature maps, condensing their activations; a concate-
nation step realized through skip connections, which take up a part of the spatial
information contained in the respective contraction step; 2 convolutions (of 3 x 3
kernel), each having a ReLU activation function. Being a full-fledged FCN, the
last layer consists of a 1 x 1 convolution used to map the vector of features in each
of the classes to which it belongs.
The performances of U-Net were evaluated in two different biomedical applica-
tions[53]: the identification of neuronal structures in electron microscopy images
and the segmentation of cells derived from contrast microscopy. In both situations,
the performances were found to be comparable, if not better than the techniques
normally used to perform the same task.
[53]

4.4.2 Segmentation performances

The performance of a segmentation algorithm is evaluated by comparing the mask
produced by the network, which may or may not be followed by a general post-
processing operation, and the correct mask, usually drawn manually by experienced
radiologists. Metrics computation usually demands a binary mask. It implies that
in the case of multi-class segmentation, it is necessary to isolate the class of interest
each time, estimate its metrics, and finally average over the total number of classes,
to obtain the averaged trend on the image. By comparing two binary masks it is
possible to refer to the case of binary classification and draw a confusion matrix as
follows:

Figure 4.9: Confusion matrix.
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where:

• Class 1 will be the positive class, belonging to the ROI

• Class 0 will be the negative class, usually the background

Similarly to how binary classification is evaluated, it is then possible to define
Accuracy, Specificity, and Sensitivity. The metrics are computed on the basis of
the correspondence of the single pixel, as the segmentation can be interpreted as a
classification of the point units that make up the input image.

The first analyzed metric is Pixel Accuracy. It provides the percentage of
pixels correctly classified within the image and can therefore be expressed as:

Pixel Accuracy = TP + TN

TP + TN + FP + FN
(4.7)

In the context of segmentation, however, accuracy does not have a great discriminat-
ing power in distinguishing an optimal segmentation from a poor one, especially if
there is a large disproportion between the ROI and the background. For this reason,
the metric that is usually used in place of Pixel Accuracy is the Intersection
Over Union (IOU), also called Jaccard Score Coefficient (JSC). This metric
is computed as the ratio between the intersection of the masks and their union:

IOU = Area of the overlap
Area of the union = TP

TP + FP + FN
(4.8)

Together with the IOU coefficient, another widely-used segmentation metric is the
Dice Score Coefficient (DSC):

DSC = 2 · Area of the overlap
Area of the union + Area of the intersection = 2 · TP

2 · TP + FP + FN
(4.9)

This metric is almost equivalent to the previous one, however, it tends to penalize
segmentation errors to a lesser extent and provides a representation of an average
performance trend of the algorithm.
Concerning Sensitivity and Specificity, e.g. the two most common binary clas-
sification metrics, they are usually not defined in segmentation tasks. In their
place, Machine Learning practitioners typically use the metrics Precision and
Recall. These are indicators of the tendency of an algorithm to over-segment
or under-segment, respectively. It can be noticed, however, that the definition of
Sensitivity is equivalent to that of Recall.

Precision = TP

TP + FP
Recall = TP

TP + FN
(4.10)
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In the event that an elevated area of the image is segmented when it should not,
a high number of FP is recorded and the Precision is lowered. Conversely, in the
event that the algorithm fails to segment the area of interest, the FN rate rises and
the Recall drops.
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State of the Art

5.1 Automatic Segmentation in Medical Imaging

Image segmentation is a classic problem in computer vision research and has become
a hotspot in the field of image understanding.
Segmentation consists in the division of an image into several areas according
to features such as grayscale, colour, spatial texture, and geometric shapes, so
that each area shares similar features. The field of image segmentation includes
semantic segmentation, instance segmentation and panoramic segmentation, each
one requiring a different level of coarse-graining. However, the segmentation of
medical images is regarded as a semantic segmentation task, where each pixel
is assigned to a defined label, aiming at discriminating different anatomical struc-
tures (e.g. blood vessels, valves, organs, tumours). There is a high demand for
automatic segmentation in the medical industry, since many medical procedures
require imaging examinations (CT, MRI, PET, ultrasound) on daily basis. The
isolation of the areas of interest from the background is frequently required in
the medical field: it is performed by radiologists to estimate the dimensionality
of anatomical structures within images; it is mandatory in radiotherapy, for the
definition of patients’ treatment plans; but it is also necessary for the reconstruction
of three-dimensional volumes in medical computer vision applications. In addition,
the elimination of the background from the image allows for a more accurate anal-
ysis of what is contained within the ROI. Newer applications agree in identifying
Fully Convolutional Neural Networks as the best choice for segmentation
operations. Depending on the technology behind the image generation and the
anatomical district of interest, several solutions have been developed. The starting
point for many of these applications was U-Net, but many others made later use of
more complex algorithms. These models find a wide applicability in healthcare:
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from the segmentation of whole organs, to the isolation of vascular trees, or the
segmentation of tumour masses.
Whatever the case, it should be pointed out that DL-based segmentation applica-
tions that make use of CT and RMI images are much more numerous than those
employing ultrasonic images. Due to low contrast, point noise, low signal-to-noise
ratio, and artifacts typically associated with ultrasonic images, automatic segmen-
tation of US images poses a considerable challenge for AI algorithms, compared
to other acquisition modes [64]. Being the gynaecological ultrasound sector the
one of interest in the present work, the next section will provide a brief review of
automatic algorithms employed for the segmentation of gynaecological structures
in ultrasound images.

5.1.1 Automatic Segmentation of Ovarian Follicles

The following is a brief overview of approaches used for the automatic segmentation
of ovarian follicles, sharing with the aim of the thesis project both the use of
ultrasound images and the proximity to the anatomical district of interest. The
reason for this choice is mainly due to the scarcity of direct approaches to the
segmentation of adnexal masses.

In 1993 Muzzolini et al. [65] used a split and merge segmentation method
to isolate ovarian follicles from 2-D ultrasound images. In split and merge seg-
mentation technique, the entire image is initially iteratively split into quadrants,
following a parent-child relationship; the sub-blocks derived from the final split
are subsequently condensed together to form the segmentation according to homo-
geneity criteria. In Muzzolini experiment, a simulated annealing algorithm was
responsible for the control over the split and merge operation (Metropolis), aimed
at the minimization of an energy function depending on the resolution of the size
of the texture blocks within the image.
Sarty et al. [66] proposed in 1998 a semi-automatic approach to detect both internal
and external walls of ovarian follicles in US images. Their technique consisted of
three steps: the interactive definition of an A-ROI (anular region of interest) placed
around the follicle, the minimization of a loss function based on edge prominence
and direction to find the inner wall; the detection of the outer border based on the
predicted inner wall.
Potocnik and Zazula [67] made use of a region growing algorithm for the auto-
matic segmentation of follicles. This algorithm requires prior identification of the
points that belong for sure to the area of interest; surrounding pixels are gradually
added to the first identified according to affinity criteria defined in advance. The
process stops when none of the surrounding pixel can be further added to the
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growing segmentation. In this experiment, watershed technique and thresholding
methods were initially used to automatically detect seed points on pre-filtered
images. The region-growing algorithm was then used as second step to accurately
define the boundaries of the follicles. The final step was aimed at eliminating
non-follicle detected regions, based on a priori knowledge of ovarian follicle charac-
teristics (shape, size, localization).
In most recent years Active Countours have also been employed for detection of
ovarian follicles, even without the use of any previous edge based method [68].This
models aims to achieve segmentation through the minimization of an energy func-
tional that depends on two components: one used to control the deformability
of the model, the other dependent on the force of attraction to the desidered
contour. Among other attempted approaches was K-means Clustering, which
was efficiently applied to the ultrasound image for the detection of the follicles after
a pre-processing phase based on Colour-space and Wavelet transformations [69].
Deep learning techniques have been employed in follicular segmentation tasks
just in recent years. Two studies in 2019 employed End-to-End DL approaches to
ovarian structures segmentation. D. S. Wanderley experiment [70] was based on
the use of a U-Net for the segmentation of the follicles and the surrounding ovary.
The study resulted in 95% and 85% DSC for the two components, respectively.
The study of Marquez Sonia et al.[71] in 2019 made still use of a U-Net, but was
aimed at assessing the importance of defining the hyper-parameters of the network
and the presence of a post-processing phase on the performance of an entirely Deep
architecture. In 2020 Haoming Li at al. [72] proposed a CR-Unet model destined
to follicle segmentation whose backbone is a standard U-Net, but with spatial RNN
modules embedded between the encoder and decoder path. The ovary and follicles
segmented masks achieved a Dice Similarity Coefficient (DSC) of 91.2% and 85.8%,
respectively.

Nevertheless, although the follicle segmentation still shares similarities with ad-
nexal masses, the comparison cannot be ever fair, both because of the possible
presence of solid or semi-solid components within the cyst, and for the difficulty of
segmentation of an object that does not have a well-defined pattern (as it instead
happens in the case of the ovarian follicles, which are easy to recognize because
consist of anechogenic segmentations grouped in close proximity to each other).

5.1.2 Automatic Segmentation of Ovarian Adnexal Masses
With regard to ovarian cancer identified by ultrasound examination, the interest is
currently focused on their classification in diagnostic terms rather than on their
segmentation [73, 74]. However, a wide-spreading idea is that the preventive isola-
tion of the adnexal mass may favour a subsequent diagnostic classification step,
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no matter if based on a CNN network or on a radiomic analysis followed by a ML
classifier.

One of the first and few approaches to the segmentation of ovarian masses in
ultrasound images was the work of Zimmer et al. in 1996 [75]. This study used a
bivariate extension of an entropy-based thresholding method known as “Minimum
Cross Entropy thresholding”(MCE), in which the variable for segmentation
(grey level) is replaced by a linear combination of the grey level and the local
entropy. The method was tested on ovarian cysts and was used as segmentation
step for a malignancy detection of ovarian masses in a later work [76]. Over the
years, few other approaches have followed, mainly based on pre-processing pipelines
and thresholding operations [77] or the use of Active Contours[78].
Among further non-Deep approaches for the isolation of ovarian masses there is
the OvAi Focus segmentation module,developed in SynDiag and representing
the current baseline reference within the company. The product is commercially
available and is already being used by physicians to extract information from
ultrasound videos. As for the possibility of achieving the segmentation of the
adnexal masses with a Deep model, the above-mentioned studies of Wanderley
[70] and Marquez[71] can already be considered as valid starting points. Their
works demonstrated that these techniques can be exploited for the segmentation of
the gynaecological structures and could therefore also be tested for ovarian masses.
A unique example of a Deep Learning implementation study focused on the segmen-
tation of ovarian masses is the experiment of Juebin Jin [79]. The study is aimed at
comparing the performance of different Deep Fully Convolutional Networks for the
segmentation of ovarian neoplasms. Among the tested architectures are the classic
U-Net, U-Net+++, U-Net with Res-Net as encoding network and CE-NET.
The U-Net+++ is a U-Net characterized by a greater depth, with a dense network
of connections between layer and layer.The use of Res-Net as a backbone for U-Net
means that for this model, in addition to the long skip connection between each
level of contraction and expansion paths, also local skip connections are introduced
between the convolutions of each level. These additional skip connections help to
achieve a smooth loss curve and help to avoid gradient vanishing and explosion.
Lastly, CE-NET differs from the standard U-Net architecture for the introduction
of a context extraction module at the bottle-neck of the NN.
The performance of the different algorithms has not only been evaluated on IOU
and DSC metrics, but also on the basis of the comparison of radiomic features
extracted from the correct mask. The average values of IOU and DSC for all
networks were above 70% and 80% respectively. The highest values were recorded
for CE-NET and U-net with Res-Net as backbone.
This study, performed on ovarian tumours of different histotypes, constitutes a
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starting point for the application of fully convolutional networks for the segmen-
tation of ovarian tumours, suggesting that they can be effectively used for the
development of more complex diagnostic pipelines.
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Operative Context

6.1 SynDiag

As part of the Polytechnic of Turin Incubator i3P, SynDiag was founded
in 2019 by Daniele Conti (CEO), Rosilari Bellacosa (Research and Developer
Director) and Federica Gerace (Artificial Intelligence Director). The mission of
the company is the development of AI-based software to support radiologists and
gynaecologists in the diagnosis of ovarian cancer. These tools aim, on the one
hand, at the minimization of the inter-operator dependency errors, frequent in
sonography. On the other hand, they can favour early diagnosis, providing the
physician with accurate information extracted from the image. Not only the
patients could thus benefit from these products, but also healthcare facilities, since
the optimization of diagnostic tests would allow more efficient targeting of hospital
resources. Physicians’ opinion is considered of fundamental importance for the
development of the product, hence the relationship with the doctors is frequent,
both in the evaluation of the performance of algorithms and in the design of the
software interface. Currently, several services are already made available on the
market:

• Education: SynDiag hosts an Archive composed of clinical cases from sev-
eral centers of excellence; the huge collection of ultrasound videos and their
histological reports allows the development of a learning algorithm, helpful
for less experienced doctors and called OvAi Tutor;

• Management: the organization of the data flow of reports between doctors
and patients is handled by the DiGyn - Management platform; while the
DiGyn - Telemedicine platform has been conceived in order to favour the
exchange of opinions among physicians on various clinical cases;
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• Diagnosis: OvAi Focus is aimed at identifying the attached masses and their
irregularities, it is currently well performing in the analysis of serous cysts;
OvAi X is a proper diagnostic tool of ovarian lesions.

6.2 Baseline reference: Focus Algorithm

The segmentation algorithm currently employed in SynDiag for ovarian cyst seg-
mentation is a module within OvAi Focus, i.e. the above-mentioned tool designed
in the company for the processing of ultrasound videos.

Figure 6.1: OvAi Focus interface.

Aside from isolating ovarian masses, the software can also perform cleaning, abstrac-
tion, and representation of the information content in order to assist the physician
in analyzing ultrasound videos. A basic explanatory workflow is shown in Figure
6.2.
The software is capable of processing both Doppler and simple B-mode videos, but
exclusively in the latter case it addresses cyst segmentation, which is performed
after a dedicated AI-based module attesting the probability of the presence of the
lesion. In particular, in the event that the probability of the mass is higher than a
certain threshold, the internal mass components are analyzed and a colorimetric
map is created to enhance their different localization within the lesion. At the end of
this analysis on the individual frames, the video is reconstructed with the extracted
information and their visual representation. The true reference for segmentation
is thus the OvAi CV module ( highlighted in red in Figure 6.2), which is based
upon a non-DL algorithm. One of the main difficulty this system encounters more
frequently is the segmentation of acoustic shadows, which, being anechogenic areas
of the image, can frequently be likened to serous material within the cysts. Hence
the need for the development of a new algorithm capable of minimizing errors
relative to this issue.
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Figure 6.2: OvAi Focus workflow.
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6.3 Project Hypothesis and Goals

Considering the rapid spread of Deep Learning algorithms for the segmentation of
anatomical structures in radiological images and their satisfying performances, this
project of thesis proposes an alternative algorithm for ovarian masses segmentation,
based on a Fully Convolutional Neural Network (FCNN), with the aim of
overcoming some of the limitations of Ovai Focus. In light of a fair comparison, since
OvAi Focus does not include pre-processing steps for noise filtering, these steps will
be equivalently omitted in the DL model. Furthermore, it was decided to limit the
case of interest to unilocular serous cysts just as a proof of concept. Indeed, they
represent the easiest cyst morphology type which OvAi Focus still have some trou-
bles to detect in presence of acoustic shadows or sharp curvature of the cyst elliptic
shape 7.3.2. Considering the literature review, comparable or better performance is
expected from the DL algorithm. The ability of Convolutional Neural Networks lies
precisely in the automatic identification of the features needed to correctly isolate
the ROI. Nevertheless, it is not possible to foresee the behaviour of the network re-
garding image artifacts, in particular the ones related to acoustic shadowing. Being
generally anechogenic shapes with defined contours it cannot be excluded a-priori
that the model will efficiently avoid their segmentation. Indeed, a great influence
on final performance will have the dataset numerosity and the variability of the
cases included in the study, as it frequently highly affects Deep Learning algorithms.

Although primarily intended for the improvement of the state-of-the-art in image
segmentation of the company, the developed segmentation pipeline is neverthe-
less independent from that of OvAi Focus. Thus, the proposed approach involves
the interaction with the data sources autonomously and the conduction of ad hoc
experiments.
Indeed, the DL segmentation approach could be also employed to improve the
detection of the ROIs, in such a way that the other modules in the detection
pipeline, like OvAi Focus or Radiomics, can enhance their performances.
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Methods

7.1 Equipment and tools

The equipment used for the development of the thesis project has the following
specifications:

• Windows Subsystem for Linux (WSL): Ubuntu®20.04 and Miniconda3
vv. 4.12

• Processor: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz;

• Ram: 8GB

The development of the model and the corresponding simulations requires instead
the following softwares:

• Microsoft Visual Studio Code (MVSC) 1.73.0: main code editor;

• VcXsrv 1.20.14 : open-source display server for Microsoft Windows, used to
plot images from MVSC;

• Gitlab: open-source web platform, employed to maintain the code updated
and accessible to other team members;

• Amazon Web Services (AWS): S3 storage cloud service served as clinical
data storage, as well as result repository; EC2 platform was exploited to run
model simulations.

• RedBrick AI: a purpose-built application to support healthcare AI teams in
the annotation of medical data; used to perform labelling.
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7.2 Data Ingestion Workflow

The data provided for this thesis project come from a retrospective study conducted
with some of the hospitals with which SynDiag is currently cooperating. In
particular, clinical cases included in this study derive from Mauriziano Umberto
Hospital (Torino,Piemonte).
These data are uploaded on the SynDiag main platform OvAi at the hands of
physicians. Each clinical case usually consists of several ultrasound videos (B-mode
or Doppler) and a series of other metadata (ultrasound evaluation, subjective
assessment, histological report and others). The agreed acquisition protocol
requires to provide at least two B-mode TVS scans of frontal and sagittal planes;
some of the uploaded videos can also include power-doppler or eco-doppler signals.
The echographic evaluation consists of a straightforward description of the adnexal
lesion and includes some of the first clinician’s hypotheses. Together with the
subjective assessment, which is the first provided diagnosis, it contributes to the
clinical picture of the disease. While it is rare for this type of information to be
missing, it is not uncommon for the histological report to be absent, since not all
of the patients undergoing a TVS exam require further investigation, such as a
biopsy or a surgical operation. Regardless of the data completeness, at the time
of data upload on OvAi platform, they undergo an anonymization process which
ensures patients’ privacy. As soon as the data loading request from a clinician is
approved, three events take place:

• Unique ID generation : A univocal identifier is associated with the clinical
case;

• Metadata storage: The metadata associated with the case are stored as
objects in Mongo DB;

• Video storage: Each video is saved as an object within the AWS storage
platform;

In parallel to the upload of new clinical cases, a data curation process also takes
place; this procedure will subsequently increase the data usability for the different
applications under development. First, the information about the new clinical
cases is reported in a file, which collects metadata related to all the clinical cases
from the different hospitals. This file is constantly updated upon the arrival of
new data on the platform. Until now, as the data flow was quite limited, this
was considered as the optimal solution to the internal usability problem; however,
further improvements regarding the use of Database software for data management,
will be taken into account in the next future.
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The main features identifying a clinical case are reported as follows :

• Case ID: the unique ID associated with the clinical case;
• External ID: external ID of clinical case;
• Item ID: the unique ID associated with the object belonging to the clinical

case;
• Item Type: the data type of object associated with the clinical case (it was

introduced to allow doctors to upload also images);
• Doppler: flag identifying Doppler acquisition mode;
• Histological Report: the confirmed taxonomy (histotype) for the clinical

case in question;
• Subjective assessment: first diagnostic hypothesis provided by the physician

immediately after the TVS examination;
• B /BOT/M: the final diagnosis (in accordance with the histological report);
• Overall morphology: corresponds to the general morphology of the lesion(s).

Figure 7.1: Data management of information related to clinical cases.

This file allows, on the one hand, to provide an overview of the data situation
within the OvAi platform, on the other hand, to efficiently filter clinical cases for
the development of a specific application.
However, along with the pure data, supervised learning models, such as Fully
Convolutional Neural Networks, require appropriate labels to accomplish a given
task. Labels are assigned to individual frames extracted from the video, since

54



Methods

the frames are usually exploited in the development of algorithms that abstract
information from ultrasound videos. Generally, the labelling activity should be
carried out by expert radiologists and gynaecologists. In the context of this thesis
project, a considerable part of the labelling procedure, as will be clarified later,
was carried out by myself.

There are different types of labels that can be assigned to frames extracted from
the video; those relevant for the current project are listed below:

• Morphological label: The activity of morphological labelling consists in
the analysis of the video ultrasound and in the subdivision of the different
time intervals (and consequently of the frames) corresponding to the different
morphology of the mass. Five categories have been identified, equivalent to
those addressed by the IOTA group: uniloc, uniloc-solid, multiloc, multiloc-
solid, and solid. The morphological label of a video comes in the form of a
CSV file, one-hot encoded.
The entire video is then assigned an Overall Morphologycal label, based on
the following hierarchy:

uniloc < multiloc < uniloc − solid < multiloc − solid (7.1)

The hierarchy is established in function of the risk of malignancy associated
with the cyst morphology.

• Segmentation label: Segmentation labelling consists in the isolation of the
mass components within the single frame. The lesion may contain serum,
mucin, hemorrhagic content, papillary projections or solid components. In
accordance with the purpose of the segmentation task, the label has different
granularity. In the simplest case of cyst identification, as it is the one of the
thesis, the output is a simple full-cyst perimeter binary mask.

Generated labels are then transferred back into the S3 storage, within a label-
intended bucket, to be ready-to-use for the different AI projects under development.
Below is a summary of the flow of data from their arrival in the platform to their
use (Figure 7.2).
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Figure 7.2: Data Ingestion Workflow.

7.3 Data preparation

The data preparation phase involves the retrieval of relevant data for the develop-
ment of the DL model, i.e., the videos related to the chosen morphology and the
ground-truth masks for segmentation necessary for NN training.

7.3.1 Data selection

At the time of the beginning of my internship, the available clinical cases within
the OvAi platform amounted to 316.
As stated in Section 6.3, the cases object of the thesis project are unilocular
serous cysts. Along with all other mass morphologies, also Doppler images were
excluded. The Doppler signal, even if turned into greyscale, could prevent the
correct cyst recognition. Moreover, Doppler is usually exploited to determine the
vascularization level within solid components of adnexal masses. It is thus not so
relevant for the detection of serous cysts.
A filter was therefore applied to the clinical cases in the metadata sheet in order
to isolate only cases marked with "uniloc" as Overall Morphological label and
without a Doppler flag. After the filtering, the number of available cases dropped
to 35, corresponding to a total number of 70 videos. Subsequently, the extracted
cases followed a more accurate control, aimed at verifying that the characteristics
required for their use in the study were actually met. As a result of this evaluation,
9 cases and 5 videos not matching the required features were removed, in particular,
due to the following issues:

• the presence of anechogenic structures attached to the main cyst, which could
be assimilated to a multilocular cyst type;
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• the presence of solid, mucinous or haemorrhagic components within the cyst.

Some examples are shown in Figure 7.4.

Figure 7.3: Data preparation pipeline

(a) Multiple anechogenic
zones

(b) Hemorragic cyst

(c) Endometroid cyst (d) Semisolid cyst

Figure 7.4: Ultrasound modes.

The final dataset consisted of 26 clinical cases and a total of 50 ultrasound videos.
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7.3.2 Data labelling

The segmentation labelling activity focused on the generation of the ground truth
masks needed for model training. At the time of my arrival in SynDiag, a dataset
of masks of unilocular cysts serous was still to be built. Indeed, until that time,
the priority had been given to the examination of the different tissue components
present within the mass, and therefore only cysts with at least one solid component
had been segmented.
Since OvAi Focus is a Syndiag tool already available on the market for the detec-
tion of ovarian cysts in real-time, it was decided to make use of its segmentation
algorithm to have masks immediately available.

Automatic labelling

The videos belonging to the cases of interest were therefore given as inputs to
the automatic segmentation algorithm for the extraction of the masks (OvAi CV
module - Section 6.2). From the video, one mask every three frames was selected,
within the interval in which the cyst appeared in its entirety within the video.

Figure 7.5: OvAi Focus automatic mask generation.
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The total amount of extracted masks was 4887. The result of OvAi Focus segmen-
tation was however only partially satisfactory: in several of the proposed cases,
the algorithm committed multiple errors during the segmentation process. This
is indeed partly the motivation behind the inception of this thesis project 6.3.
The main detected flaws are presented in Table 7.1 according to the following
classification:

• Segmentation of acoustic shadows and nearby anechogenic zones:
the algorithm correctly identifies the cyst but extends the binary segmentation
also to acoustic shadows and anechogenic zones that are in the vicinity of the
cyst;

• Inhomogeneity errors: even when the cyst is serous, it may not appear
completely anechogenic within a single frame; the causes are the transient
nature of the images, extracted from ultrasound videos, and the artifacts that
characterize the ultrasound examination;

• Cut errors: occasionally, the algorithm does not identify the full cyst but
only part of it, separating it with well-defined cuts;

• Inferior border errors: the algorithm often struggles to recognize the lower
curved edge of the cyst, while correctly detecting the entire upper part;

• General detection errors: in some frames, the algorithm fails to recognize
the cyst and thus detects a different object.

The distribution of errors within the masks to be corrected in the source dataset is
shown in Figure 7.6.
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Error type Original Image Automatic Mask

Shadows segmentation

Inhomogeneity errors

Cut errors

Inferior border errors

General detection errors

Table 7.1: Example of common segmentation errors made by OvAi Focus algo-
rithm.

Figure 7.6: Errors distribution at frame and video level.
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Manual labelling

The segmentation performance of the Focus algorithm for the task was therefore
below expectations, preventing it from moving directly to model development. It
was therefore required a step of manual selection aimed at the elimination of
masks whose quality was not sufficient for the training of a neural network.

After the manual filtering operation, the 3312 labels (67,7% of total) needing
a manual correction were isolated. Until that moment, Redbrick AI software had
been used for the creation of masks starting from the image, so the possibility of
uploading images with a pre-segmentation had not yet been considered. However,
thanks to the create_datapoint_from_masks Redbrick method, it was possible
to load into the software also masks derived from a previous segmentation pipeline,
with the only care of transforming the binary mask into an RGB mask, replicating
the information content of the single channel on the three channels.

Figure 7.7: Redbrick AI software for labelling.
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The activity of segmentation labelling for the thesis project was carried out by
myself in an autonomous way. In the first months I spent in SynDiag I was trained
on the labelling of cysts with solid and non-solid components: every week a meeting
was held with a member of the team together with a gynaecology specialist, with
the aim of learning the basics of this type of labelling. This training period allowed
me to replicate the activity on a simpler task, such as the segmentation of serous
cysts. Once the process of labelling serous cysts was completed, the resulting masks
were downloaded from RedbcrickAI software, converted to single-channel grayscale
images and uploaded to S3 together with the original right masks obtained from
OvAi Focus.

7.4 Segmentation Pipeline

The whole proposed pipeline from the raw data to a fully-trained DL model is
presented below.

Figure 7.8: Redbrick AI software for labelling.
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As shown in the figure, the first part of the pipeline is involved in data retrieval
from the storage S3. The raw data are then assembled and pre-processed to build
the datasets needed to train the network and assess its generalization performances.
Only afterwards the NN training and testing take place. Finally, a post-processing
step is added to refine the predictions computed by the network.

7.4.1 Dataset Composer

Ideally, the pipeline should be generic enough to be used for other tasks, similar
to the one addressed by this study. For this purpose, the first part of the pipeline
must allow the gathering of the data useful for a given experiment. In this case,
it follows that the data that contributed to the final dataset were those discussed
in Section 7.3. The class responsible for the data retrieval and their consequent
organization is RawDatasetComposer, employed within DataComposer module.
The input files are the metadata sheet containing the general information of the
cases in OvAi platform and a JSON file, in which are specified the data to be
filtered in light of the cases of interest. Filtering is performed before the actual
data download from S3; this allows the minimization of the time associated with
the information retrieval as well as the amount of data occupying the memory.
DataComposer script also deals with the extraction of frames from the videos and
the organization of all data locally, according to the hierarchical structure shown
in Figure 7.9.

Figure 7.9: Local Data Organization.
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7.4.2 Dataset Generation

Once the data collection and organization have been completed, the central phase
of dataset generation can start. In order to minimize the computational time, the
images and the related masks are loaded as array only at the pre-processing level;
until that, images and masks paths are used as data pointers instead.

The operations performed on the raw data to generate a suitable dataset for
DL models are the followings:

• Train-Validation-Test Splitting: as usually expected in the development
of DL algorithms, the entire dataset is divided into training, validation and
test sets. The split is made with respect to cases and not with respect to
individual videos, to prevent information relative to the same clinical case
from being distributed in different splits. The proportions followed for the
division are 80%, 10%, 10% respectively for train,validation and test;

• Filtering frames without masks: the frames in the folders derive from the
extraction operation performed at the previous level. For subsequent steps,
only the frames for which a mask was actually generated must be carried
forward. The output of this step is a tuple containing the path to the image
and the path to the corresponding mask;

• Pre-processing: starting from this point the array of masks and images
are actually loaded and a series of pre-processing operations, which will be
detailed in the next section, is performed;

• Date Augmentation: Data Augmentation step helps in increasing data
variability and can be selected through a proper flag. It will be covered in the
next section;

• Normalization: normalization step is mandatory to correctly provide input
images to the network. Image values are scaled between [-1,1], the range
required by the employed encoding network;

• Tfrecord Generation: the pre-processed data is serialized according to a
specific example and saved inside a proper folder. The advantage of choosing
tfrecord format to save datasets is its efficient storage, which minimises
occupied memory, and the ability to enclose different types of data together
(images and masks arrays, as well as their paths). Uploading and downloading
operations are also more rapid thanks to the lower memory weight. Each run
of the DatasetGeneration script is associated with an alphanumeric code that
uniquely identifies the dataset. Together with the output datasets, a CSV file
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is updated to keep track of the datasets generated across the experiment: it
matches each identification code with the set of parameters (related to the
pre-processing steps and Data Augmentation) used to generate that dataset.

To ensure the validity of the algorithm, independently from the choice of a particu-
lar train/test/validation split of the original dataset, a cross-validation approach
has been implemented. The dataset generation is thus repeated a number of times,
defined by the seed parameter.

Figure 7.10: Cross validation pipeline.

Data preprocessing

The pre-processing step involves cropping and resizing operations. These two stages
are necessary in order to remove useless information from the original image and
bring it back to the input size expected from the pre-trained U-Net backbone.
Ideally, a proper cropping operation would require the use of an object detection
algorithm, able to automatically detect the area where the lesion is approximately
located. Instead, in this approach, the crop is performed manually in two steps:
the first makes use of a fixed-size window and is aimed at the exclusion, from the
image, of the majority of the lateral annotations characteristic of the ultrasound
image; in the second step, the image is made square by centered cropping of a size
equal to the smaller side of the image. These steps aim to preserve as much as
possible the cyst area within the image.
From the original size of 566 x 800, the cropping operation returns 498 x 498
images, and the final resize operation adjusts the height and width to the input size
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chosen for the network, which in the present work has been set to 224 x 224. Depth
remains altered in the case of both images (3 channels) and masks (1 channel).
Since mask values are altered by the resizing operator, they undergo an extra step
that consists of binarization (Otsu).

Figure 7.11: Result of preprocessing.

As stated in Section 6.3, since the objective of the present project is to com-
pare a DL approach with Ovai-Focus and since Ovai-Focus does not include any
noise-filtering step, no noisy-cleaning stage is provided within this pre-processing
pipeline as well. In addition, it is believed that for the solely unilocular serous cyst
identification, speckle noise filtering has a limited effect on the model performance.
On the other hand, in the case that the same algorithm is used for the segmentation
of cysts with solid components, the implementation of noise-filtering is believed to
be mandatory.

Data Augmentation

The problem of little variability of the data could constitute one of the reasons
for the low performance of a DL algorithm. The state-of-the-art study of J. Jin
et al.[79] achieved high performances with a number of images 10 times lower
but a number of cases definitely higher. Data variability is linked to a variety
of factors, such as the morphological characteristics of the cyst (shape, position,
content) but also the device used to carry out the radiological examination. Data
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Augmentation is a widespread technique used in the preparation of medical datasets
consisting of few data [80]. The goal is to apply transformations to images in order
to generate new data; however, caution must always be placed for such operations,
since the generated image must always be plausible and respectful of the true data
statistics. Here, the implementation of Data Augmentation is a slight variant of
the Deep Stacked Transformation illustrated by Ling Zhang et al. in [81]. The list
of implanted plausible transformations is reported below.

Group Tranformation Variability Source

Appearance Gamma Contrast Gain and dynamic range knobs
Brightness Shift Gain and dynamic range knobs

Quality

Gaussian Blur Focus knobs
Sharpen Focus knobs
Spekle Noise US equipment electromagnetic interferences
Additive Noise US equipment electromagnetic interferences

Spatial

Rescaling Magnifying factor knob
Rotation Probe orientation
Horizontal flip Probe orientation
Horizontal shift Probe movements
Vertical shift Probe movements

Table 7.2: Data augmentation transformation and their variability source.

Each transformation is applied to the image according to the following law:

(x̂s, ŷs) = τn
mn

(τn−1
mn−1(...τ 1

m1(xs, ys))) (7.2)

where xs and ys are the training data and the associated label respectively, τ is
the applied transformation and m is its magnitude.
As for the number of possible transformations applicable to each image and the
corresponding intensities, both are defined randomly within a predefined range. In
the present case, it was decided to limit the number of applicable transformations
between 2 and 5, while the intensities are defined in the Appendix (A.2). Only
the training dataset undergoes Data Augmentation, since variability improvement
is needed during the learning phase. The transformations have been applied to
both images and masks; however, some of the alterations (such as noise addition or
saturation changes) did not affect the masks, as they do not involve any spatial
transformation, e.g. translations or rotations. A proper sub-function of the
augmenter is responsible for applying to the masks only the transformations
necessary to maintain consistency with the altered image.
The augmentation produces a number of images depending on the chosen ratio
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of increase K; considering an input tensor of dimension B × M × N , where B
stands for the batch number and M and N for the image height and width, the
output tensor dimension after augmentation will be:

B′ = (B + K · B) × M × N (7.3)

In experiments involving Data Augmentation, K was set equal to 3. Some examples
of the result of the transformations applied to the images are shown in Figure 7.3.

Original Image Original Mask Augmented Image Augmented Mask

Table 7.3: Data Augmentation: result on random images and the corresponding
binary masks.

7.4.3 Model Architecture

The model employed in this thesis project to tackle the segmentation of serous
cysts is a variant of the U-Net architecture, proposed by Ronneberg et al. [53].
As previously stated, other few architectures have been tested for this same task
(Section 5.1.2). However, since this was the first SynDiag attempt at segmentation
of ovarian adnexal masses using a Neural Network approach, it has been decided
to start with the simplest and reliable network architecture. Indeed, the selected
learning model had already been successfully tested in the company when dealing
with segmentation of liver in CT scans. The chosen network architecture therefore
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represents the baseline on which more complex learning model will be designed in
the next future.
The encoding path of this neural network consists of a MobileNetV2, while the
decoding path is made up of up-sampling blocks composed of deconvolutional
(Conv2DTranspose), batch normalization (BatchNormalization) and activation
(Relu) layers. MobileNetV2 is a Convolutional Neural Network characterized
by an inverted residual structure, whose residual connections are between the
bottleneck layers. It outperforms MobileNetV1 in both latency and accuracy, and
it also benefits from a lighter structure. Among the others CNNs implemented by
Tensorflow, MobileNetV2 ranks second for the time needed for an inference step.
This was essential for reducing both the time associated with simulation and their
computational cost.

7.4.4 Model Training

Despite training a neural network from scratch on the target dataset would be the
preferable choice, the dataset numerosity and variability available for this project
are believed to be insufficient for efficiently train the network from random initial
conditions. In order to speed up the simulation time, it is therefore decided to take
advantage of pre-trained weights for the encoding network. This is a widely used
technique in DL applications that is known under the name of transfer learning.
The weights are transferred from a MobileNetV2, previously trained on the data-
abundant ImageNet dataset. Given the Imagenet numerosity, this dataset is often
chosen for transfer learning purposes even in the medical field, despite the poor
similiraty between its natural images and the medical images in healthcare datasets.
The hyper-parameter setting is reported in Table 7.4.

Hyper-parameter Value
Loss function Sparse Categorical Cross-Entropy

Optimizer and Learning rate Adam [10−2, 10−3, 10−4]
SGD with CosineDecay [10−2 - 10−5]

Batch size 64
Epochs 100
Shuffling Yes
Seeds 10

Table 7.4: Hyper-parameters setting.

In order to optimize the computation time related to the data flow across the
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pipeline, it was decided to make use of dummy masks instead of one-hot
encoded masks. Therefore, each mask does not consists of a tensor where the
number of channels corresponds to the number of classes (one binary mask for
each class), but rather a unique channel contains information for multiple classes.
That is, each pixel of the mask is assigned a numerical index related to the class
to which it belongs (0 = background, 1 = cyst). This choice leads the usage of
Sparse Categorical Accuracy as loss function. The decision also favours the future
implementation of the model for multi-class segmentation, since the labels are
always contained within one channel depth. Across the training epochs, a callback
custom class takes care of the evaluation of the validation loss through a moving
average computation. Monitoring the behaviour of the validation loss across the
epochs is not only suitable for hyper-parameter tuning (e.g. batch-size, learning rate
and many more) but also for implementing an early-stopping protocol. According
to early-stopping, the network training should be stopped once the validation loss
starts keeping on growing in a given time window (patience). The loss reference
value computed at each iteration is given by the average of the last three epochs
seen so far, while the number of patience epochs can be set within the configuration
file (here equal to half of the total epochs). However, the EarlyStopping Tensorflow
class does not allow to go on with training once the best epoch, corresponding to
the smaller error on the validation set, is found. Since when training a network
there are two important check-points, e.g. the one detected by early stopping and
the one reached at convergence, a custom implementation of early-stopping was
set-up in order to save the configuration of the network also at the last epoch.
Both Stochastic Gradient Descendent (SGD) and Adam optimizer (Adam)
were tested for the model optimization. Adam optimizer is derived from the
RMSProp and AdaGrad optimizers and is thus able to adapt the learning rate for
each neural network weight based on the first and second moments of the gradient.
SGD has been instead used with a variable learning rate, and in particular with
a CosineDecay across the epochs. At the beginning of the training, the model
must be able to move through the solution space with ease (thus with a high
learning rate); as the training progresses, while approaching a global minimum, the
"mobility" of the research must be restricted, in order to prevent the model from
straying away from the solution. The decay steps are computed according to the
batch size and the decay extends to all the training epochs. Both type of optimizer
protocols are widely-used in neural network training, and because of that it was
decided to test both of them.
The first trials of the algorithm have been run locally on a reduced-dimension
dataset. As soon as the pipeline functionality was attested, the desired and
complete simulation has been run to a remote AWS instance (EC2). Once the
whole simulation was completed, the results were transferred back to the local
machine to be displayed and analysed.
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7.4.5 Post-processing

Simple post-processing steps were applied to the output image, with the aim of
isolating, in case of multiple segmentations, the one corresponding to the cyst. The
class that has been created for this purpose allows the composition of a specific
post-processing pipeline. Currently, it only consists of the filling of the holes
within the segmentations found within the output mask (maxArea =250) and
of the isolation of the biggest segmented area (cyst area). The first operation
was implemented through the remove_small_holes function (skimage.morphology
library); the second makes use of findContours and contourArea operators of the
Open CV package. The post-processing phase is not aimed at modifying the output
of the network but rather at its refinement.

7.5 Experiment Traceability and Observability

Each experiment performed within the proposed segmentation pipeline must be as
modular and trackable as possible. To this end, the different operations within the
segmentation pipeline take in and out a variety of information, which is exchanged
between modules in different formats. The different data formats, together with
their functionality, are listed below.

• JSON: JSON files are the key players in the information flow. They are
used as input files, to set the configuration of a given operational block
(for example the pre-processing and Data augmentation design of the hyper-
parameters in the Dataset Generation module, or the ones associated to the
learning model in the Training module) and as outputs files, to store the
output metrics resulting from the model simulations. However, their content
is not just limited to the settings of the individual experiment: since the code
is constantly evolving and the network of users is expanding, JSON files also
contain metadata related to the boundary conditions of the experiment, such
as the simulation user, the versioning information of the environments, the
Gitlab branch referenced by the codes on which the simulations are actually
being run, and a series of others useful metadata.

• JSONL: JSONL files store information printed within the editor’s terminal
during the execution of a single module. Logs are exploited to keep track of the
outcome of single operations carried out by the executed block (whether they
were successful, or whether problems that prevented their completion arose).
The use of logs is particularly advantageous during simulations performed on
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virtual EC2 instances, since no direct interface with the code is possible, and
given the time required for a simulation to end, it would otherwise be hard to
discover inconsistencies during the run of the simulation.

• TFRECORD: TFRECORD files are the data format used to store train/test
and validation datasets, produced as a result by the Dataset Generation
module.Tfrecords allow data of different format (strings, arrays...) to be saved
through appropriate serialization; corresponding deserialization examples are
also saved, allowing the datasets to be correctly unpacked when needed.
Each dataset generation assigns a unique alphanumeric code to the produced
tfrecord file types. Thus, for each run of the GenerateDataset script at least 3
tfrecord files (Training, Test, Validation) sharing the same id are generated.
If cross-validation is also scheduled, the unique id is also followed by the seed
index.

• CSV: CSV files are used both to store information inherent to ultrasound
data (e.g. morphological labelling) and to keep track of the type of datasets
created during the course of the experiments. In the latter case they associate
the unique identification code of the tfrecord with the dataset configuration
declared in the JSON file and used for its generation.

• INDEX: INDEX files are simply the weights generated during training for a
simulation.

The combination of this information enables the complete reproducibility of an
experiment. At the same time, being able to keep track of the results of the different
experiments completed on a virtual EC2 instance, contextually with the informa-
tion that led to their generation, allows for the avoidance of repeated experiments,
thereby saving money and time.

In order to allow direct observability of the simulation results, JSON output
files of the training and validation processes are then given as input to a custom-
made OvAi Experiment Dashboard (Figure 7.12) for performance analysis. This
interface was built in such a way as to expect a precise data format for the automatic
plotting of the simulation output metrics.
Thanks to the completeness of the data enclosed in the JSON files, it is possible to
provide each experiment with name and description in the dashboard, thus enabling
the ease of its tracking within the interface. Two main plots are automatically
computed: one displays the trend of the metrics of interest during the training, e.g.
train and validation loss and accuracy, the second shows the final performance on
the test set. The former represents the metrics of interest as a function of epoch
trends. If multiple seeds are identified within the folder containing the results, the
resulting plot will be the average performance obtained over the different seeds, with
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Figure 7.12: OvAi Experiment dashboard.

the possibility of also showing maximum and minimum values and the standard
deviation for each epoch. The latter illustrates test performances via a boxplot
chart and therefore displays the median, 25th and 75th percentiles for each metric,
along with the performance of individual seeds.
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Results and Discussion

8.1 Design of Experiments

The final dataset, cleaned of cases not conforming to the chosen morphology con-
sisted of 26 cases, for a total of 50 videos (Section 7.3.1).
OvAi Focus was employed to extract 4887 masks from the source videos, taking
one frame every three within the time window containing the cyst. After the visual
inspection of the labels, 3312 of them were chosen to be manually corrected on
Redbrick AI software.
The wrong masks have therefore been replaced with the fixed ones, and together
with the unmodified masks produced by OvAi Focus, composed the final dataset.
As soon as the dataset was ready, the first simulations started.

The goal of the first simulations was to find the best method of optimization
and an adequate learning rate. For this reason, these first experiments were
performed on a limited number of seeds (3 seeds). Once the setting of these
hyper-parameters was established, the focus was directed at the possible improve-
ment of the overall performance of the algorithm; for this purpose, taking into
account the low variability of the original dataset, Data Augmentation was
introduced. The post-processing step was then added at the end of the pipeline,
as its first goal was not so much to bring a concrete increase in performance, but
to visually improve the predictive output of the Neural Network.

Standard accuracy metrics for segmentation were used to assess the performance of
the algorithm, i.e. Intersection Over Union (IOU) and Dice Score Coefficient
(DSC) as general accuracy metrics, together with Precision and Recall as indices
of over- and under- segmentation (defined in Section 4.4.2).
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8.1.1 Overall Performances

The results of the first simulations immediately demonstrate the great ability of
the model in tackling the segmentation of serous cyst type, as the averaged metrics
stay above 90% (Figure 8.1)

Figure 8.1: Averaged performance comparison with different optimizer configura-
tions.

Optimizer DSC IOU Precision Recall
Adam 10−3 95.9%±0.1% 92.3%±0.3% 95.5%±0.5% 96.4%±0.5%
Adam 10−2 95.7%±0.2% 92.0%±0.3% 95.4%±0.4% 96.1%±0.6%
Adam 10−4 95.3%±0.5% 91.3%±0.8% 96.3%±0.5% 94.5%±1.4%
SGD 10−2-10−5 95.5%±0.2% 91.7%±0.4% 94.9%±0.4% 96.4%±0.2%

Table 8.1: Averaged performance comparison with different optimizer configura-
tions.

As the intent is to observe the performance solely based on the selected optimizer
configuration, the comparison is made using the last _weights, e.g. the weights of
the model at convergence. The boxplot (Figure 8.1) shows that the performance of
the two optimizer protocols taken into account is generally comparable with each
other. Only the use of a learning rate equal to 1 · 10−4 for the Adam optimizer
seemed to negatively affect the variability between the seeds and the average per-
formance in the accuracy metrics (IOU and DSC). From the Recall and Precision
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metrics, it is clear that this is primarily due to a moderate under-segmentation
error (low Recall but good Precision). The training loss and the learning rate
trends across the epochs are reported in Figure 8.2a and Figure 8.2b respectively.

Figure 8.2: Average IOU (up) and Loss (down) across training epochs for training
set.

As expected, the models trained with Adam and with the highest learning rate
converge fastest in the learning phase. Instead, the SGD optimizer associated to
the cosine learning rate scheduler seems to get stuck at higher values of the training
loss.
From Table 8.1, it can be noticed that the combination of Adam optimizer with
1 · 10−3 as LR turns out to be the optimal choice, having the highest average
performances together with the smallest variability for IOU and DSC metrics
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computed on the test set.

The winning optimizer configuration was then chosen for the simulations with
10 seeds. The increase in the number of seeds is meant to perform a more re-
liable application of cross − validation and thus a better convergence towards
the typical case. This technique allowed to truly evaluate the variability between
seeds according to the different possible combinations of the dataset, and there-
fore to test the robustness of the model. Results look promising, as can be seen
looking at the violet box plot in Figure 8.3. Indeed, the variability between
seeds remained very low even if the distribution of clinical cases varied within
the train/test and validation sets. Moreover, as shown in Table 8.3, the use of
transformations on images introduced with Data Augmentation further improved
cyst segmentation capabilities, leading to an increase of about 1% in IOU (red
box plot). A final post-processing step was then added to the pipeline including
data augmentation. As mentioned above, the post-processing phase was primar-
ily aimed at visual improvement of the masks and only secondarily at actual
performance improvement. However, it can be noticed that the introduction of
cleaning operations contributed to a slight increase in performance too (green
box plot). In particular, removal of minor segmentation area resulted in a small
raise in Precision, indicative of a diminished over-segmentation error; the Recall,
on the other hand, saw no appreciable improvement after the post-processing stage.

Figure 8.3: Performance comparison after the introduction of Data Augmentation
(DA) and postprocessing.
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Configuration DSC IOU Precision Recall
Baseline 95.7%±0.03% 92.0%±0.1% 95.9%±0.2% 95.8%±0.1%
DA 96.3%±0.04% 93.1%±0.1 % 96.7%±0.1% 96.2%±0.01%
DA & postpr 96.5%±0.03% 93.4%±0.1% 97.0%±0.1% 96.2%±0.03%

Table 8.2: Performance comparison after the introduction of Data Augmentation
(DA) and postprocessing.

In addition to the above comparison, it is possible to observe the result relative
to the best epoch detected by the custom early-stopping callback class.

Figure 8.4: Last epoch and best epoch performance comparison: without DA
(left), with DA (right).

The performances of the best epochs are computed as the average of the metrics
corresponding to the minimum validation loss recorded for each seed. Consequently,
they are the result of the average over different best epochs, i.e. one for each seed.
It can be noticed that independently from the execution of data augmentation
within the pipeline (the post-processing step does not influence the NN weights),
the metrics recorded using last epoch weights and best epoch weights were almost
comparable. As a result, the performance of the model was already satisfactory
even before reaching the end of the training; this information could be used to
slightly decrease the number of total training epochs, in accordance with the aver-
age number of epochs needed to achieve the best performances. In the pipeline
achieving the highest performance, e.g. the one including data augmentation
and post-processing, the metrics at the best and the last epochs can therefore be
considered approximately equivalent.
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Figure 8.5: Average curves and standard deviation intervals for IOU (up) and
Loss(down) across training epochs for validation set computed as mean ± std.
deviation.

The loss and IOU trends calculated for the validation set over the training epochs
confirmed the model’s improvement. The introduction of data augmentation de-
creased the loss by a considerable factor and also reduced the seed variability with
respect to the original dataset. Similarly occurred for the Intersection Over Union,
where its averaged value increased more or less of a delta of 11% at the end of the
training with respect to the non-augmented case.
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8.2 Model comparison : U-Net-MobileNetV2 vs
OvAi Focus

The comparison between the performances of the two automatic algorithms for
segmentation was compulsory. For a fair comparison, however, the mask sizes
generated by OvAI Focus and MobileNetV2 ∗ had to be consistent. Initially, it
was considered to restore the output dimension of the FCNN algorithm to the
original image size. A simple resize, however, would not have been sufficient to
overcome the issue, because of the cropping operation applied in the pre-processing
step. Moreover, even attempting to restore the dimension through a combination
of both resize and padding would have been equally unfair, since the information
added by padding does not come from the Neural Network algorithm, and it would
inevitably affect the metrics. For all these reasons, the most practical solution
was to pre-process the images produced by OvAI Focus according to the same
pre-processing in the DL segmentation pipeline.

In addition, not all the images could be included in the comparison. A por-
tion of the images composing the final dataset directly derive from the OvAi Focus
segmentation module (the masks that at Section 7.3.2 were considered correct
enough to act as ground truth). Thus, these masks were excluded, as the perfor-
mance metrics evaluated on them would have inevitably resulted in 100% accuracy.

To summarize, the steps necessary for the comparison are: of the total masks
produced by the model under the best conditions (e.g. best optimizer with data
augmentation and post-processing step) on 10 seeds, masks with OvAi Focus mask
as reference ground truth were excluded. The remaining were pre-processed and
then grouped according to the main errors highlighted in Section 7.3.2. Minor
errors were not considered for the purpose of this analysis.

Regarding the overall performance trend evaluated by considering the average over
the 10 seeds (Table 8.3), a substantial improvement is immediately observable. Not
only the segmentation accuracy metrics registered a significant increase (almost
10% for both IOU and DSC), but also the Recall and Precision values suggest
that the proposed segmentation pipeline generally commits fewer over- and under-
segmentation errors with respect to the original algorithm.

∗From now on we will refer to the U-Net-MobileNetV2 network simply as MobileNetV2, and
any following comparison with the state-of-the-art will be made on the basis of the best model
configuration (with Data Augmentation and postprocessing).
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Metric OvAI Focus MobileNetV2
DSC 86.9%±8.1% 96.1%±0.8%
IOU 80.8%±8.0% 92.8%±1.1%
Precision 89.0%±7.5% 97.0%±0.8%
Recall 86.5%±8.6% 95.3%±1.0%

Table 8.3: Averaged model performance.

Table 8.4 shows the same metrics of Table 8.3 grouped by the main error types
committed by Focus and highlighted in Section 7.3.2.
As can be seen, the DL approach described in the present project generally increased
the overall performance in all identified error categories, though for some errors
we observe a greater delta with respect to OvAi-Focus performances than others.
Delta values exceeding 10 % are highlighted in the table.
As can be deduced from this analysis, first, the Deep model had a better ability to
recognize the cyst (general detection errors), aligning the values of the metrics
for these images with the others. The second error class lessened by the new model
is the segmentation of acoustic shadows, which was significantly reduced. For
this error, Precision (over-segmentation index) rose by 16.6%, leading to an increase
in the corresponding Intersection Over Union as well. The algorithm also performed
better in identifying the correct cyst edges, decreasing the cut errors and those
related to the inhomogeneity of the cyst itself. Unlike the previous case, this
time the metric showing an improvement is Recall, since these errors typically
consist of segmentation defects within the ROI. The result of the improvement in
the segmentation task can be observed in Figure 8.5.

It is still to be questioned whether the proposed solution always outperforms
Focus. In order to make this assessment, masks with lower performance than
those of the original algorithm have been selected. Within the 10 possible test sets
available for the 10 seeds, an average of 11.7% masks per seed registered higher IOU
and DSC for the OvAi-Focus algorithm. However, this is a very rough estimation,
since the number of images per seed is highly variable. For the purposes of this
consideration only, all the masks that make up the 10 seeds test set are considered
as a single set of different elements. Despite the possibility that some masks are
repeated across seeds, it remains true that these were generated under different
training conditions and are thus characterized by different performances. Of the
total number of masks composing the 10 seeds, amounting to 4212, 415 were found
to have higher IOU and DSC for OvAi Focus algorithm (around 10%). In most
of these cases, the performance of OvAi Focus very slightly exceeds that of the
proposed algorithm (for the 89% of the predicted masks outperformed by OvAi
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Shadows Segmentation
OvAi Focus MobileNetV2 Delta

DSC 85.9% 95.3% + 9.4%
IOU 76.7% 91.2% + 14.5%
Precision 80.1% 96.7% + 16.6%
Recall 94.8% 94.2% - 0.6%

Inhomogeneity errors
OvAi Focus MobileNetV2 Delta

DSC 92.3% 96.6% + 4.3%
IOU 86.1% 93.6% + 7.5%
Precision 97.6% 97.6% -
Recall 88.1% 95.8% + 7.7%

Inferior border errors
OvAi Focus MobileNetV2 Delta

DSC 94.3% 97.2% + 2.9%
IOU 89.4% 94.7% + 5.3%
Precision 94.3% 97.9 +3.6%
Recall 94.6% 96.6% + 2.0%

Cut errors
Ovai Focus MobileNetV2 Delta

DSC 87.6% 97.0% + 9.4%
IOU 80.3% 94.4% + 14.1%
Precision 98.7% 98.3% - 0.4%
Recall 81.2% 96.0% + 14.8%

General detection errors
OvAi Focus MobileNetV2 Delta

DSC 4.7% 93.8% + 89.1%
IOU 2.8% 89.7% + 86.9%
Precision 12.7% 95,4% + 82.7%
Recall 3.2% 92.6% + 89.4%

Table 8.4: Performance improvements related to error class.

Focus algorithm the difference is less than 5% ), thus remaining comparable.
What is of interest to identify, however, are the images for which the DL algorithm
completely failed to identify the cyst, i.e., IOU=0. Among the masks belonging
to the 10 seeds, this same condition occurred only in one clinical case, shown in
Figure 8.6. For this same images, also OvAi Focus recorded a null IOU.
In this circumstance, the network correctly succeeded in detecting the cyst, but due
to the post-processing operation, aimed at the isolation of the largest connected
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Figure 8.6: Example of the main adversarial effect of postprocessing on the
segmentation label.

component, the shadow was finally returned instead. This was therefore one of the
major limitations of the proposed segmentation pipeline.
This error, although very limited within the current dataset (only 4 images, all
belonging to the same clinical case), could however represent a considerable problem
for future usage of the model. In this regard, a possible solution would be the
implementation of a function in the post-processing module, designed to identify
the roughness of the connected components. This roughness metrics could be based
on the computation of the average distance, or the area ratio, between a polygonal
contour approximation of the segmentation and the segmentation itself. However,
this implementation and its corresponding tests are left for future work.
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Shadows Segmentation

Inhomogeneity errors

Inferior border errors

Cut errors

General detection errors

Table 8.5: Visual comparison of the original images (first column), the ground
truth label (second column), the output of OvAi Focus Algorithm (third column),
the output of the MobileNetV2 without postprocessing (fourth column), and after
postprocessing (fifth column).
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Conclusion

The purpose of this thesis project was the realization of a dedicated pipeline for the
segmentation of serous cysts from B-mode images, making use of a Deep Learning
algorithm. Despite a reference standard already existing for this purpose in SynDiag,
i.e. the OvAi-Focus segmentation module, the DL approach has been designed to
try to overcome some of the main limitations of Ovai-Focus segmentation.
The development of the proposed system required the integration of data prepara-
tion and selection steps along with the programming of a fluid code interconnected
with different data sources (local computers, AWS, OvAi platform). Traceability of
the data characterizing the algorithm allows ease of reproduction of specific experi-
ments, while the OvAi Experiment Dashboard takes care of their corresponding
visualization. Coding was performed with the aim of minimizing computation costs
and timing of data retrieval. Regarding the Deep model exploited for segmentation
and its configuration, the use of a U-Net with MobileNetV2 as encoding network
was found to perform well for the purpose. In addition, the use of transfer learning
from ImageNet resulted still valid in the context of serous cyst segmentation. All
of the tested optimizers generally proved capable of accomplishing the required
task; the introduction of Data Augmentation as a palliative for data-scarcity led
to a moderate increase in performance, followed by a slight increase brought by a
preliminary post-processing step. The proposed new alternative pipeline surpasses
the state-of-art model, by reducing the issues connected to missed cyst detection,
acoustic shadows, and edge detection. The algorithm is therefore a likely candidate
to be introduced within OvAi products, as well as to be used by other projects
currently under development in SynDiag, that need to properly isolate the edge of
serous cysts.

85



Conclusion

9.1 Future Improvements and Applications

It is possible to list several future improvements and applications that were not
directly addressed in this study due to time constraints or that are going to be
investigated in the next future.

• The first planned step for the proposed segmentation pipeline consists in
its validation. To ensure that the algorithm works properly and it is not
overfitting on the custom dataset, a re-training phase on the entire dataset
would be needed. The resulting model would then be tested on completely
new test cases, coming from different hospitals and ultrasound providers. Two
test datasets are currently being prepared for this purpose. One contains
unseen unilocular serous images, while the other consists also of cysts with
solid components. The first serves to evaluate the performance of the proposed
algorithm on an equivalent task but with a different set of test data; the
second is meant to evaluate the generalization capabilities of the model for
more complex mass morphologies.

• The segmentation pipeline could be improved in several aspects. The lack of
adequate filtering operations was here intentional in order to achieve a fair
comparison with the Ovai-Focus algorithm. However, for this type of image,
an adequate filtering step would be necessary. Speckle noise filtering as
well as equalization steps should be introduced within the pre-processing
phase, since ultrasound images can not only be noisy but also very different
in contrast and brightness, due to display options available in the ultrasound
scanner. In addition, the cropping and resize operations, although succeeding
in broadly isolating the location of the adnexal mass correctly, could also
be improved. For instance, they could be replaced by a customized object
detection algorithm aimed at finding automatically the bounding box around
the cyst, preventing the loss of information caused by the fixed cropping. The
post-processing step should also be revised, to avoid shadow segmentation
in images containing small area cysts. To overcome this issue, a function
estimating roughness of the edges could be advantageous.

• The Neural Network itself could be further optimized with a proper hyper-
parameter tuning. In this case study, only two optimizers have been tested
to evaluate model performances. However, other combinations could still be
investigated. Moreover, the model currently employs transfer learning with
the ImageNet database. The employment of pre-trained weights of learning
models trained on medical datasets, preferably composed of ultrasound images,
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could constitute another possible advance. Improvement in this sense would
probably be major appreciated in more difficult segmentation tasks.

• Data flow across the whole pipeline is still to be optimized. The use of a
proper Database software instead of a metadata sheet to store useful data
related to clinical cases could greatly improve data filtering and retrieval steps,
speeding up the whole data collection pipeline.

A future application of the proposed Deep approach proposed in this work would be
its extension to multi-object segmentation. The use of dummy masks instead of
one-hot encoded ones makes the current implementation easy to adjust to this more
complex case and inexpensive in terms of required memory and code adaptation.
In this regard, the main differences with respect to the experiments performed in
the thesis project would be: the evaluation of the model performances, which would
require a multi-class IOU and DSC instead of their binary counterpart, and the
intrinsic difficulty of a multi-object segmentation, which would probably require
much more efforts in the proper hyper-parameter fine-tuning.
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Appendix

A.1 Dataset preprocessing options

Parameter Value Resultant dimensionality
Original dimensionality - 566 x 800
Cropping window [56, -11, 45, -75] 499 x 680
Squaring and Centering - 498 x 498
Resize [224, 224] 224 x 224

Table A.1: Cropping and resizing options.

Tranformation Min Max
Gamma Contrast 0.75 1.5
Shift -20 20
Gaussian Blur 0.5 2.5
Sharpen 0.1 0.25
Speckle Noise 0.01 0.05
Additive Noise 8 15
Rescaling 0.85 1.25
Rotation -10 10
Horizontal flip 1.0 1.0
Horizontal shift -15 15
Vertical shift -15 15
Number of transformations per image 2 5
Augmentation rate K 3 3

Table A.2: Data augmentation transformation and their range intensities.
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A.2 Model Architecture

Figure A.1: MobileNetV2-UNet Architecture.
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A.3 Results

OvAI Focus MobileNetV2
Dice IoU Precision Recall Dice IoU Precision Recall

seed 0 64.0% 58.5% 68.7% 62.8% 96.6% 93.7% 97.2% 96.2%
seed 1 90.9% 85.4% 91.8% 91.5% 96.2% 92.8% 96.8% 95.7%
seed 2 91.8% 86.0% 89.9% 94.7% 96.5% 93.3% 97.6% 95.5%
seed 3 90.0% 83.7% 92.4% 89.3% 96.4% 93.1% 97.7% 95.3%
seed 4 92.7% 86.7% 94.5% 91.8% 96.6% 93.6% 97.1% 96.2%
seed 5 90.4% 83.8% 92.1% 90.3% 97.3% 94.9% 97.8% 97.0%
seed 6 86.7% 78.4% 94.8% 82.8% 95.4% 91.3% 98.1% 93.0%
seed 7 87.2% 81.6% 86.7% 89.3% 95.2% 91.0% 95.9% 94.6%
seed 8 91.6% 85.8% 94.7% 89.6% 95.8% 92.1% 96.6% 95.3%
seed 9 83.3% 78.5% 84.1% 83.5% 94.7% 92.2% 95.4% 94.2%

Table A.3: Comparison of per-seed performance of OvAi Focus with
MobileNetv2∗(AGandpostprocessingincluded)limitedtomasksmissedbyOvAiFocus.

Figure A.2: Error distribution within each seed.

90



Appendix

91



Bibliography

[1] World Cancer Research Fund International. «Ovarian Cancer Statistics». In:
(2020) (cit. on p. 1).

[2] Associazione Italiana di Oncologia Medica (AIOM). «I numeri del cancro in
Italia». In: (2020) (cit. on pp. 1, 4, 10).

[3] S. Chiara Cecere et al. «BRCA1 and BRCA2 in ovarian cancer: ESMO
biomarker factsheet». In: (2016) (cit. on p. 2).

[4] C. Stewart et al. «Ovarian Cancer: An Integrated Review». In: Seminars in
Oncology Nursing 35.2 (2019), pp. 151–156 (cit. on p. 2).

[5] C. Bulletti et al. «Aspetti morfo-funzionali dell’ovaio». In: Caleidoscopio :
rivista monografica di medicina 8 (1984) (cit. on p. 3).

[6] C. Mimoun et al. «Masse ovariche: tumori benigni e maligni». In: EMC -
AKOS - Trattato di Medicina 18.2 (2016), pp. 1–7 (cit. on p. 4).

[7] Associazione Italiana di Oncologia Medica (AIOM). «Linee guida CARCI-
NOMA DELL’OVAIO». In: (2021) (cit. on p. 4).

[8] M. Horta et al. «Sex cord-stromal tumors of the ovary: a comprehensive
review and update for radiologists». In: Turkish Society of Radiology 21 (4
July 2015), pp. 277–86 (cit. on p. 4).

[9] Abd Alkhalik Basha M. et al. «Comparison of O-RADS, GI-RADS, and IOTA
simple rules regarding malignancy rate, validity, and reliability for diagnosis
of adnexal masses». In: European Radiology 31 (2020), pp. 674–684 (cit. on
p. 6).

[10] Lai H. et al. «Comparison of O-RADS, GI-RADS, and ADNEX for Diagnosis
of Adnexal Masses: An External Validation Study Conducted by Junior
Sonologists». In: Journal of ultrasound in medicine : official journal of the
American Institute of Ultrasound in Medicine 41.6 (2022), pp. 1497–1507
(cit. on p. 6).

92



BIBLIOGRAPHY

[11] D. Timmerman et al. «Terms, definitions and measurements to describe
the sonographic features of adnexal tumors: a consensus opinion from the
International Ovarian Tumor Analysis (IOTA) group». In: Ultrasound Obstet
Gynecol 16 (5 2000), pp. 500–505 (cit. on p. 6).

[12] D. Timmerman et al. «Simple ultrasound-based rules for the diagnosis of
ovarian cancer». In: Ultrasound Obstet Gynecol 31 (6 2008), pp. 681–690
(cit. on p. 6).

[13] WT. Xie et al. «Efficacy of IOTA simple rules, O-RADS, and CA125 to
distinguish benign and malignant adnexal masses». In: Journal of Ovarian
Research 15 (1 2022) (cit. on p. 7).

[14] S.n Szubert et al. «External validation of the IOTA ADNEX model performed
by two independent gynecologic centers». In: Gynecologic Oncology 142.3
(2016), pp. 490–495 (cit. on p. 7).

[15] D. Tinnangwattana et al. «IOTA Simple Rules in Differentiating between
Benign and Malignant Adnexal Masses by Non-expert Examiners». In: Asian
Pacific journal of cancer prevention 16.9 (2015), pp. 3835–8 (cit. on p. 7).

[16] R. Molina et al. «A Prospective Study of Tumor Markers CA 125 and CA
19.9 in Patients with Epithelial Ovarian Carcinomas». In: Tumor Biology 13
(1992), pp. 278–286 (cit. on p. 9).

[17] R. C. BAST. et al. «New tumor markers: CA125 and beyond». In: Interna-
tional Journal of Gynecologic Cancer 15.Suppl 3 (2005), pp. 274–281 (cit. on
p. 9).

[18] P. Buamah. «Benign conditions associated with raised serum CA-125 con-
centration». In: Journal of surgical oncology 75.4 (2000), pp. 264–5 (cit. on
p. 9).

[19] C. Miralles et al. «Cancer Antigen 125 Associated With Multiple Benign and
Malignant Pathologies». In: Ann Surg Oncol 10.2 (2003), pp. 150–154 (cit. on
p. 9).

[20] R. Molina et al. «Mucins CA 125, CA 19.9, CA 15.3 and TAG-72.3 as Tumor
Markers in Patients with Lung Cancer: Comparison with CYFRA 21-1, CEA,
SCC and NSE». In: Tumor Biol 29 (2008), pp. 371–380 (cit. on p. 9).

[21] G. Funston et al. «The diagnostic performance of CA125 for the detection of
ovarian and non-ovarian cancer in primary care: A population-based cohort
study». In: PLoS Med 17.10 (2020) (cit. on p. 9).

[22] K. Boyeon et al. «Diagnostic performance of CA 125, HE4, and risk of Ovarian
Malignancy Algorithm for ovarian cancer». In: Journal of Clinical Laboratory
Analysis 33.1 (2018) (cit. on p. 9).

93



BIBLIOGRAPHY

[23] S. Pignata et al. «Follow-up with CA125 after primary therapy of advanced
ovarian cancer: in favor of continuing to prescribe CA125 during follow-up».
In: Annals of Oncology 22.8 (2011) (cit. on p. 9).

[24] A. Fawzy et al. «Tissue CA125 and HE4 Gene Expression Levels Offer
Superior Accuracy in Discriminating Benign from Malignant Pelvic Masses».
In: European Journal of Cancer Prevention 17.1 (2016), pp. 323–33 (cit. on
p. 9).

[25] S. U. Wei et al. «The diagnostic value of serum HE4 and CA-125 and ROMA
index in ovarian cancer». In: Biomedical Reports 5.1 (2016), pp. 41–44 (cit. on
p. 9).

[26] A. A. Ahmed et al. «Diagnostic accuracy of CA125 and HE4 in ovarian
carcinoma patients and the effect of confounders on their serum levels». In:
Current Problems in Cancer 43.5 (2018), pp. 450–460 (cit. on p. 9).

[27] V. R Iyer et al. «MRI, CT, and PET/CT for ovarian cancer detection and
adnexal lesion characterization». In: American Journal of Roentgenology 194.2
(2010), pp. 311–21 (cit. on p. 10).

[28] A. Sahdev. «CT in ovarian cancer staging: how to review and report with
emphasis on abdominal and pelvic disease for surgical planning». In: Cancer
Imaging 16.19 (2016) (cit. on p. 10).

[29] Signe R. et al. «The diagnostic value of PET/CT for primary ovarian cancer–a
prospective study». In: Ginecologic Oncology 105.1 (2007), pp. 145–9 (cit. on
p. 10).

[30] M.A.G ElHariri et al. «Usefulness of PET–CT in the evaluation of suspected
recurrent ovarian carcinoma». In: Egyptian Journal of Radiology and Nuclear
Medicine 50.2 (2019) (cit. on p. 10).

[31] U. Menon et al. «Ovarian cancer population screening and mortality after long-
term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening
(UKCTOCS): a randomised controlled trial». In: Lancet 2021 197.10290
(2021), pp. 2182–2193 (cit. on p. 10).

[32] I. A. Qureshi et al. «Transvaginal versus transabdominal sonography in the
evaluation of pelvic pathology». In: Journal of the College of Physicians and
Surgeons– Pakistan : JCPSP 14.7 (2004), pp. 390–393 (cit. on p. 12).

[33] D. S. Watson. «Clinical applications of machine learning algorithms: beyond
the black box». In: BMJ 364 (2019) (cit. on p. 24).

[34] C. Rudin. «Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead». In: Nat Mach Intell 1 (2019),
pp. 206–215 (cit. on p. 24).

94



BIBLIOGRAPHY

[35] Y. LeCunn et al. «Deep learning». In: Nature 521.7553 (2015), pp. 436–444
(cit. on p. 24).

[36] Y. Zhang et al. «A strategy to apply machine learning to small datasets
in materials science». In: npj Computational Materials 4.25 (2018) (cit. on
p. 24).

[37] S. Tsimenidis. «Limitations of Deep Neural Networks: a discussion of G.
Marcus’ critical appraisal of deep learning». In: () (cit. on p. 24).

[38] S. Tsimenidis. «Preparing Medical Imaging Data for Machine Learning». In:
Radiology 295.1 (2020), pp. 4–15 (cit. on p. 24).

[39] World Health Organization. Ethics and governance of artificial intelligence for
health: WHO guidance. World Health Organization, 2021, xvi, 148 p. (Cit. on
p. 25).

[40] I. El Naqa et al. «A support vector machine approach for detection of
microcalcifications». In: Medical Imaging 21 (12 Jan. 2002), pp. 1552–1563
(cit. on p. 26).

[41] M. Abdar et al. «A new machine learning technique for an accurate diagnosis of
coronary artery disease». In: Computer methods and programs in biomedicine
179 (2019), p. 104992 (cit. on p. 26).

[42] S. Wang et al. «Classification of Alzheimer’s Disease Based on Eight-Layer
Convolutional Neural Network with Leaky Rectified Linear Unit and Max
Pooling». In: Journal of Medical Systems 42 (5 2018), pp. 1–11 (cit. on p. 26).

[43] D. Karimi et al. «Accurate and robust deep learning-based segmentation of
the prostate clinical target volume in ultrasound images». In: Medical image
analysis 57 (2019), pp. 186–196 (cit. on p. 26).

[44] Gillies J.R. et al. «Radiomics: Images Are More than Pictures, They Are
Data». In: Radiology 278.21 (2015), pp. 563–77 (cit. on p. 27).

[45] V. F. van Ravesteijn et al. «Computer-Aided Detection of Polyps in CT
Colonography Using Logistic Regression». In: Transactions on Medical Imag-
ing 29 (1 2010), pp. 120–131 (cit. on p. 27).

[46] T. W. Cary et al. «Comparison of naïve Bayes and logistic regression for
computer-aided diagnosis of breast masses using ultrasound imaging». In:
Medical Imaging. 2012 (cit. on p. 27).

[47] B. He et al. «MRI-based radiomics signature for tumor grading of rectal
carcinoma using random forest model». In: Journal of cellular physiology 234
(11 2019), pp. 20501–20509 (cit. on p. 27).

[48] «Classification of mammogram for early detection of breast cancer using SVM
classifier and Hough transform». In: Measurement 146 (2019), pp. 800–805
(cit. on p. 27).

95



BIBLIOGRAPHY

[49] J. Ren. «ANN vs. SVM: Which one performs better in classification of MCCs
in mammogram imaging». In: Knowledge-Based Systems 26 (2012), pp. 144–
153 (cit. on p. 28).

[50] M. Ghaderzadeh et al. «Deep CNN-Based CAD System for COVID-19 Detec-
tion Using Multiple Lung CT Scans.» In: Journal of medical Internet research
(2021) (cit. on p. 28).

[51] N. Antropova et al. «A deep feature fusion methodology for breast cancer
diagnosis demonstrated on three imaging modality datasets». In: Medical
Physics 44 (2017), pp. 5162–5171 (cit. on p. 28).

[52] Y. Bar et al. «Deep learning with non-medical training used for chest pathology
identification». In: Medical Imaging. 2015 (cit. on p. 28).

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-Net: Convolutional
Networks for Biomedical Image Segmentation». In: vol. 9351. Oct. 2015,
pp. 234–241 (cit. on pp. 28, 38–40, 68).

[54] N. A. Siddique et al. «U-Net and Its Variants for Medical Image Segmentation:
A Review of Theory and Applications». In: IEEE Access 9 (2021), pp. 82031–
82057 (cit. on p. 28).

[55] X. Yang et al. «Fine-Grained Recurrent Neural Networks for Automatic
Prostate Segmentation in Ultrasound Images». In: AAAI. 2017 (cit. on p. 29).

[56] P. Luc et al. «Semantic Segmentation using Adversarial Networks». In: ArXiv
abs/1611.08408 (2016) (cit. on p. 29).

[57] B. Christoph et al. «Deep Autoencoding Models for Unsupervised Anomaly
Segmentation in Brain MR Images». In: Brainlesion: Glioma, Multiple Scle-
rosis, Stroke and Traumatic Brain Injuries. Cham: Springer International
Publishing, 2019, pp. 161–169 (cit. on p. 29).

[58] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65 6 (1958),
pp. 386–408 (cit. on p. 30).

[59] F. Rosenblatt at al. The perceptron : a theory of statistical separability in
cognitive systems. Buffalo, N.Y.: Cornell Aeronautical Laboratory, 1958 (cit.
on p. 32).

[60] J. A. Nichols et al. «Machine learning: applications of artificial intelligence
to imaging and diagnosis». In: Biophysical Reviews 11 (2019), pp. 111–118
(cit. on p. 32).

[61] Yann Lecun. «A Theoretical Framework for Back-Propagation». In: (Aug.
2001) (cit. on p. 33).

96



BIBLIOGRAPHY

[62] H. Wang et al. «The Role of Activation Function in CNN». In: 2020 2nd In-
ternational Conference on Information Technology and Computer Application
(ITCA). 2020 (cit. on p. 36).

[63] J. Long et al. «Fully convolutional networks for semantic segmentation». In:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2015, pp. 3431–3440 (cit. on pp. 37, 38).

[64] J.A. Noble and D. Boukerroui. «Ultrasound image segmentation: a survey».
In: IEEE Transactions on Medical Imaging 25.8 (2006), pp. 987–1010. doi:
10.1109/TMI.2006.877092 (cit. on p. 44).

[65] R. Muzzolini et al. «Multiresolution texture segmentation with application to
diagnostic ultrasound images». In: IEEE transactions on medical imaging 12
(Feb. 1993), pp. 108–23. doi: 10.1109/42.222674 (cit. on p. 44).

[66] E. Gordon Sarty et al. «Semiautomated segmentation of ovarian follicular
ultrasound images using a knowledge-based algorithm.» In: Ultrasound in
medicine biology 24 (1 1998), pp. 27–42 (cit. on p. 44).

[67] B. Potonik et al. «Automated analysis of a sequence of ovarian ultrasound
images. Part I: segmentation of single 2D images». In: Image Vis. Comput.
20 (2002), pp. 217–225 (cit. on p. 44).

[68] J. R. Tegnoor et al. «Automatic Detection of Follicles in Ultrasound Images
of Ovaries using Active Contours Method». In: 2010 (cit. on p. 45).

[69] V. Kiruthika et al. «Automatic Segmentation of Ovarian Follicle Using K-
Means Clustering». In: 2014 Fifth International Conference on Signal and
Image Processing (2014), pp. 137–141 (cit. on p. 45).

[70] D. S. Wanderley et al. «End-to-End Ovarian Structures Segmentation». In:
CIARP 2018: Progress in Pattern Recognition, Image Analysis, Computer
Vision, and Applications. 2018, pp. 681–689 (cit. on pp. 45, 46).

[71] S. Marques et al. «Segmentation of gynaecological ultrasound images using
different U-Net based approaches». In: 2019 IEEE International Ultrasonics
Symposium (IUS). 2019, pp. 1485–1488 (cit. on pp. 45, 46).

[72] H. Li et al. «CR-Unet: A Composite Network for Ovary and Follicle Segmen-
tation in Ultrasound Images». In: IEEE Journal of Biomedical and Health
Informatics 24 (2020), pp. 974–983 (cit. on p. 45).

[73] et al. F. Christiansen. «Ultrasound image analysis using deep neural networks
for discriminating between benign and malignant ovarian tumors: comparison
with expert subjective assessment». In: Ultrasound in Obstetrics & Gynecology
57.1 (), pp. 155–163 (cit. on p. 45).

[74] M. AKAZAWA et al. «Artificial Intelligence in Ovarian Cancer Diagnosis».
In: 40.8 (2020), pp. 4795–4800 (cit. on p. 45).

97

https://doi.org/10.1109/TMI.2006.877092
https://doi.org/10.1109/42.222674


BIBLIOGRAPHY

[75] Y. Zimmer et al. «A two-dimensional extension of minimum cross entropy
thresholding for the segmentation of ultrasound images». In: Ultrasound in
Medicine Biology 22.9 (1996), pp. 1183–1190 (cit. on p. 46).

[76] Y. Zimmer et al. «An automatic approach for morphological analysis and
malignancy evaluation of ovarian masses using B-scans.» In: Ultrasound in
Medicine Biology 29.11 (2003), pp. 1561–70 (cit. on p. 46).

[77] S. Rihana et al. «Automated algorithm for ovarian cysts detection in ultra-
sonogram». In: 2013 2nd International Conference on Advances in Biomedical
Engineering (2013), pp. 219–222 (cit. on p. 46).

[78] I. J. Hussein et al. «Fully Automatic Segmentation of Gynaecological Ab-
normality Using a New Viola-Jones Model». In: Computers, Materials &
Continua (2021) (cit. on p. 46).

[79] J. Jin et al. «Multiple U-Net-Based Automatic Segmentations and Radiomics
Feature Stability on Ultrasound Images for Patients With Ovarian Cancer».
In: Frontiers in Oncology 10 (2021) (cit. on pp. 46, 66).

[80] Ph. Chlap et al. «A review of medical image data augmentation techniques
for deep learning applications». In: Journal of Medical Imaging and Radiation
Oncology 65 (2021) (cit. on p. 67).

[81] L. Zhang et al. «Generalizing Deep Learning for Medical Image Segmentation
to Unseen Domains via Deep Stacked Transformation». In: IEEE Transactions
on Medical Imaging 39.7 (2020), pp. 2531–2540 (cit. on p. 67).

98


	List of Tables
	List of Figures
	Acronyms
	Ovarian Tumor
	Epidemiology and risk factors
	Anatomy of ovaries
	Classification of ovarian adnexal masses
	IOTA Standard
	Diagnostic and screening approaches

	Ultrasound Imaging
	Introduction
	Ultrasound definition
	Ultrasound image acquisition
	Pulsed-echo
	Echography modes
	Limitations
	Artifacts

	Artificial Intelligence
	Artificial Intelligence and Medicine
	Computer Aided Detection and Diagnosis
	Machine Learning Approaches for medical imaging
	Deep Learning Approaches for medical imaging

	Neural Networks
	Artificial Neural Networks
	Learning and Neural Network Optimization
	Convolutional Neural Networks
	Fully Convolutional Neural Network
	 U-Net
	Segmentation performances


	State of the Art
	Automatic Segmentation in Medical Imaging
	Automatic Segmentation of Ovarian Follicles
	Automatic Segmentation of Ovarian Adnexal Masses


	Operative Context
	SynDiag
	Baseline reference: Focus Algorithm
	Project Hypothesis and Goals

	Methods
	Equipment and tools
	Data Ingestion Workflow
	Data preparation
	Data selection
	Data labelling

	Segmentation Pipeline
	Dataset Composer
	Dataset Generation
	Model Architecture
	Model Training
	Postprocessing

	Experiment Traceability and Observability

	Results and Discussion
	Design of Experiments
	Overall Performances

	Model comparison : U-Net-MobileNetV2 vs OvAi Focus

	Conclusion
	Future Improvements and Applications

	Appendix
	Dataset preprocessing options
	Model Architecture
	Results

	Bibliography

