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Abstract 

Running temporal parameters, i.e. running cycle, stance and swing durations, are an effective 
way to evaluate running performances. Running characterization can be useful to predict the 
advent of injuries, enabling to reduce their entity or prevent them. [1] During the last decades, 
magneto inertial measurements units (MIMUs) have become the most widespread wearable 
solution to investigate running in outdoor conditions, evaluating the runner’s actual performances 
[2] . In the literature there is an extensive number of different methods for the detection of 
temporal events; however, each method is usually targeted to a restrict range of running speeds 
due to the high variability of the morphology of the inertial signals varying running paces.  

The aim of the present work is to perform a comparative evaluation of different state of the 
art methods [61-64, 66-70] for the estimation of running temporal events (i.e. instants of initial, 
IC, and final contacts, FC, with the ground) across different running paces. Nine methods selected 
from the literature were implemented and adapted to the collected data based on the different 
sampling frequencies and sensor locations.  

In addition, an original template-based method, using Wavelet Transformations [26]  and 
Dynamic Time Warping [22] suitable for accurately defining and segmenting the running cycle on 
a wide speed range (8-32 km/h) was implemented. 

For the aim of this thesis, three datasets were analysed. All the recruited subjects were 
equipped with a MIMU fixed to the shoelaces of each shoe. The first dataset included 11 subjects 
that ran at two different constant speeds (8 km/h and 10 km/h) in outdoor and indoor conditions, 
equipped with MIMUs and sensorised pressure insoles, considered as a portable gold standard 
[55] , both sampled at 100 Hz. The second dataset included data of 10 amateur runners who were 
asked to run at 14 km/h on a treadmill, instrumented with MIMUs sampled at 200 Hz and retro-
reflective markers, since the stereophotogrammetric system was taken as the gold standard. 
Lastly, the third dataset included 9 elite runners, whose speeds ranged from 20 to 32 km/h and 
was on an outdoor running track, adopting sensorised pressure insoles as gold standard, acquired 
at 100 Hz. 

Comparing the performances on the three datasets in terms of root mean square errors 
(RMSE) of running events and mean absolute percentage errors (MAPE) of running phases 
against the available gold standard, Blauberger et al. (2021) [61] was selected as the best tradeoff 
for the temporal parameters estimation, resulting in a RMSE lower than 0.04 s on IC, and lower 
than 0.06 s on FC for all the speeds analysed.   

Furthermore, the results obtained via the novel method were compared to the performance 
obtained with the one proposed by Blauberger et al. The proposed method reported a RMSE lower 
than 0.033 s on the detection of ICs, and an RMSE lower than 0.049 s on the detection of FCs for 
all the different running paces. These results were deemed comparable to the ones achieved with 
the most suitable method from the literature for different paces, thus the proposed method is 
promising for the detection of temporal parameters on a wide speed range and in out-of-lab 
applications. 

. Results coming from the first and the last datasets were compared to the ones obtained with 
sensorised pressure insoles, considered as a portable gold standard. 
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Introduction 

Running is an activity for which people have been increasingly showing more and more 
interest. The need to study the movement in detail is ever growing, and advances in 
technology have made the devices needed to analyse the movement accessible to anyone and 
easy to use. In particular, temporal parameters have been studied over the years to have a 
better understanding of the movements made by the athletes, in order to intervene if necessary 
to fix any erroneous movements, or to assess the performances of athletes in general. 

Over the years, lots of studies have been conducted over this subject, usually constrained 
to a specific speed, or using very high sampling frequencies, which may not be available to 
anyone. The aim of this thesis is that of testing the performances of nine state of the art 
methods over a wide running speed range (8-32 km/h) and that of providing a new method 
that could be suitable for the detection of temporal events through the very different running 
speeds, even at lower sampling frequencies. The structure of the present work is further 
described in the following paragraphs. 

In Chapter 1 a brief introduction to the theory behind this study is provided. In particular, 
in the first section, a summary on gait analysis, with focus on running, is presented, followed 
by a review of the state of the art regarding running analysis and an explanation of the 
different validation methods that have been employed over the years.  

In Chapter 2 the description of the protocols for the data acquisitions brought on to build 
the wide range datasets is presented, followed by brief descriptions of the nine methods 
implemented from the literature that have been put to the test. At the end of this chapter, a 
description of the newly template-based method is provided. 

In Chapter 3 the results obtained from the nine literature methods over the three datasets 
are provided. In particular, a method for each dataset is highlighted as better performing, and 
one among all is selected as best performing on the whole speed range. After that, a 
comparison between the results obtained via the newly proposed method and the best trade-
off is provided, together with a t-test to check whether the two methods yielded a statistical 
difference. 

Finally, in Chapter 4, the results are further discussed, then conclusions are drawn, ending 
with some examples of possible future developments and insights on the subject analysed in 
this work. 

 

 

  



  

 

 



  

 

 

 

Chapter 1  

Background 

1.1 The biomechanics of running 

Worldwide, one of the most practiced sport activities has always been running, the 
popularity of which has been increasing in the last decade. As a matter of fact, even though 
the world has been plagued with a pandemic and its subsequent lockdowns in the last few 
years, more and more people chose running as the perfect way to escape their routine and 
remain in shape. Recent statistics, based on data aggregated from various fitness tracker apps 
and devices, show that lockdowns resulted in a raise in the activity level of people worldwide, 
as stated by the Strava 2020 report. [3]  

The interest for this kind of activity has not emerged recently, but it dates way back, as 
proven by paintings and studies from Ancient Greece. During the years, people have been 
trying to study and analyse running as a movement, in order to understand it better and be 
able to improve the performances of athletes that compete in sprinting, for instance, avoiding 
at the same time despicable injuries. As technology develops further, so have the appliances 
used to study the movements, which have become more and more precise and complex. 
Injuries provoked by running are not, as one may think, due to physical abnormities or 
different skeletal features one may have, but they are a consequence of repetitive wrong 
applications of significant loads, even for a very short amount of time, which, if brought on 
for a long time, will inevitably lead to said injuries. [4]  

Although different people will run in different ways based on their anatomical 
differences, there are some main features that will be found in each period of running. 

1.1.1 Gait and running cycle 

A gait cycle is the basic unit of measurement in gait analysis [5] , and it is composed by 
the ensemble of movements that intercurs between the contact of one foot to the ground and 
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the subsequent contact of the ipsilateral foot. It can always be divided into two different 
phases: 

- Stance phase: the period in which the foot remains in contact with the ground. It 
begins with the foot strike, called initial contact (IC) and it ends with the toe off, 
terminal contact, called final contact (FC). 

- Swing phase: in this phase, the lower limb swings forward in advancement from a 
final contact, which marks the beginning of the phase, to the subsequent initial contact 
of the other foot, which marks its ending. [6]  

These two phases can be found in both running and walking, although differences in timings 
occur.  In walking, there is a phase of double support, when moving from a foot to another, in 
which both lower limbs are in contact with the ground; on the other hand, in running there is 
no double support phase, which is replaced by a double float phase, happening two times per 
cycle, in which both lower limbs are not in contact with the ground, thus increasing the time 
spent in swing phase at the expense of the stance phase. As speed increases, runners tend to 
have shorter stance phases, since the propulsion the runner needs to move forward is given by 
the constant swinging of both upper and lower limbs, in opposite to walking, in which the 
forward momentum is given by the stance leg. [7] In Figure 1-1, the different phases of the 
running gait cycle are shown, while in Figure 1-2 the differences in the running and walking 
gait cycle are presented. 

 

Figure 1-1 - The phases of the running gait cycle [8]  

Generally, as speed increases moving from running to sprinting, the types of initial contact 
changes from rearfoot contact to forefoot contact. Competitive runners are usual to hit the 
ground with the forefoot only, without ever touching the ground with the rearfoot, with the 
main purpose of covering as much distance as possible in the least amount of time; in running 
at lower speeds the whole foot gets in contact with the ground: as shown by statistics, the vast 
majority of runners are rear-foot strikers (80%), the remaining are mid-foot strikers. [8]    

On the other hand, the swing phase is made out of initial swing, at the beginning of which 
the first float phase occurs, and terminal swing, at the end of which the second float phase 
takes place. [7]   
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Figure 1-2 - The phases of the gait cycle. (A) Walking, (B) Running 

Running at any speed is an alternation of accelerations and decelerations. The first half of 
the stance phase is absorption (pronation), the second half propulsion (supination). [7] The 
two phases are divided by the mid-swing event. [8]  

1.1.2 Gait and running spatio-temporal parameters 

Spatio-temporal parameters over the years have shown a very strong connection to the 
performance of the athletes, which makes them perfect indicators of one’s activity, allowing 
coaches and athletes to better understand their movements. [10]  

In gait analysis, a stride is defined as the ensemble of events that take place between a 
contact of the foot with the ground and the subsequent contact of the same foot, the stride 
duration, or running cycle, is defined as the time that intercurs between said contacts. 
Accordingly, a step is defined as the ensemble of events that take place between the contact of 
the foot to the ground and the contact of the other foot. It follows that a stride is made up of 
two steps. 

Gait parameters can be divided into spatial and temporal parameters. Spatial parameters, 
or distance parameters, can be described as [11] : 

 Stride length: the distance between two consecutive contacts with the ground of 
the same foot. Its direction defines the direction of the gait; 

 Step length: the distance between the contact of one foot to the ground and the 
consecutive contact of the other foot; 

 Stride width: the distance, computed perpendicularly to the direction of the gait, 
between the contact of one foot to the ground and the consecutive contact of the 
other foot. 
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Temporal parameters can be further divided into [12] : 

 Stride Rate, the number of strides per unit of time;  
 Stride Duration, the duration of the stride;   
 Speed, the distance covered by the subject per unit of time;  
 Step Duration, the duration of the step;  
 Stance Duration, the duration of the stance phase;   
 Swing Duration, the duration of the swing phase.  

1.2 Running Analysis 

In this section, a brief summary of the papers utilised to redact this master thesis is 
presented. The aim of the subsequent paragraphs is that of outlining the present state of the art 
regarding the analysis of the running motion via inertial measurement units (IMU) or magneto 
inertial measurements units (MIMU).    

The references utilised to redact this section are reported in the dedicated section at the 
end of the present work, in order of appearance in the text. 

1.2.1 State of the art for the identification of running events 

The analysis of the human movement has been a topic of interest for many years. In 
particular, the gait analysis in the last decades has shifted from being merely an academic 
discipline, to gaining a certain clinical relevance, as from it some observations about a subject 
health could be made. [13]  

 As of running, the increasing interest that people have shown toward this activity has 
led to the necessity to evaluate the motion in detail, with the aim of evaluating performances 
to improve them, prevent injuries or even monitor the rehabilitation process after an injury. 
The proliferation of technology has made the devices needed for said evaluation accessible to 
a wider range of people, and this allowed for the running analysis to be feasible even outside 
clinical gait analysis centres. [14] Through the years, motion analysis systems, force 
platforms, inertial measurements units, in-sole pressure sensors and electrogoniometers have 
been used, with different aims, a summary of which has been presented in  Table 1.1. 
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Table 1.1 – In the table, different systems for the running evaluation and their usages are listed. [14]  

However, as running tends to be a more fast-paced movement compared to walking, 
various studies has been conducted on the appropriate way to analyse it in terms of correct 
sampling frequency, sensor positioning, gold standard utilised, and so on. In terms of 
temporal parameters estimation, as stated in Table 1.1, IMUs and MIMUs, that include 
accelerometers, gyroscopes, and magnetometers, are broadly used. Sensors have been 
positioned on the tibia, on the lumbar spine and on the foot for the evaluation of the running 
events. A systematic review made by Horsley et al. [15] suggested that the positioning of the 
sensor is not the most critical factor for the accurate detection of the events, that depends 
more on the mathematical approach followed. Moreover, Zrenner er al. [8] conducted a 
comparative study with focus on the positioning of the IMU on the foot for the estimation of 
running gait parameters, with the result that the best positioning would be under the arch of 
the feet, in a cavity created in the sole of the shoe. In Figure 1-3 a depiction of the different 
positioning evaluated is presented. Anwary et al. [16] investigated the same issue but on bare 
feet as they believed that the wear and tear of the shoes could affect the accuracy of the 
detection of the events. Their findings suggest that the best positioning for the sensor on bare 
feet is the metatarsal region.  
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Figure 1-3 – Visualization of the different positioning of the IMUs on a running shoe. [7] 

When speaking of sampling frequencies, many studies have attested that for a movement 
as fast paced as running can be, a higher sampling frequency than the ones normally 
employed for walking should be adopted. Diaz et al. [17] stated that the most appropriate 
sampling frequency for the accurate acquisition of running movements should be between 200 
Hz and 300 Hz, because of the very high peaks the accelerometer can present when put under 
very high velocities, Blauberger et al. [55] also supported their findings by attesting that the 
most suitable sampling rate for sprinting motions should be of around 200 Hz. Macadam et al. 
[18] attested that for sprinting the minimum sampling frequency of 200 Hz should be adopted, 
even though even at 100 Hz reliable data could be acquired. In the following chapters of the 
present study, an attempt to detect temporal events during running at 100 Hz has been made, 
to reduce computational requirements and allow the running analysis even though IMUs with 
a sampling frequency constraint are employed. 

Concerning the actual detection of the temporal events, different approaches have been 
adopted. The most common one is based on peaks detection coming from the inertial signals 
acquired by the IMUs. Blauberger et al. [55] , Reenalda et al. [66] and Yang et al. [70] used 
the norm of the accelerometer and the gyroscope, Benson et al. [69] used solely the norm of 
the accelerometer, Schmidt et al. [62] used the vertical acceleration and the mediolateral 
gyroscope, Falbiard et al. [63] used different combinations of signals to conclude that the 
mediolateral angular velocity resulted in the best performances, similarly to Mo et al. [67] 
that, among all, chose the norm of the accelerometer and the vertical acceleration to be the 
best performing. Moreover, Bailey et al. [64] used the vertical acceleration and the 
mediolateral gyroscope, Chew et al. [68] opted for the anteroposterior acceleration. 

Other different detection techniques have also been used for walking, but not in running. 
Dynamic Time Warping is a technique that has been used for the detection of temporal events 
in walking or slow running. Dot et al. [19] developed a greedy template-based step detection 
algorithm by exploiting the mediolateral angular velocity and a singular step as template for 
the detection of temporal events during walking. Oudre et al. [20] and Vienne-Jumeau et al. 
[21] developed a database of templates for the walking gait detection, with the help of a gold 
standard to annotate the templates. Chakraborty et al. [22] exploited dynamic time warping 
for the identification of temporal events during running at 8 km/h.  To this date, no method 
exploiting dynamic time warping or templates has been developed for the detection of the 
temporal events during running on a wide speed range. 

Furthermore, the use of wavelet transformations in terms of detection and denoising is 
becoming increasingly popular. Aung et al. [23] and Gouwanda et al. [24] used discrete 
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wavelet transformations for the identification of the gait events, Aminian et al. [25] and 
Soangra et al. [26] used it as a form of peak enhancement and Dautov et al. [27] analysed its 
potential as a denoising technique. The potential of this technique in the detection of running 
temporal events is yet to be investigated. 

All the different methods available for the detection of running temporal parameters were 
targeted toward a specific running speed, or a narrow range of speeds. 

Finally, for validation purposes, a different range of systems have been adopted. Some 
papers used a high-speed video acquisition system for reference [28] others opted for a 
optoelectronics systems, for example stereophotogrammetric systems, [30] [31] [55] [62] 
force plates [29] [67] [69] instrumented treadmills [32] [63] foot switches [6] and pressure 
insoles [55] .[48]  

1.3.1 Instrumentation 

In this section, a brief explanation of the different instrumentations usually exploited for 
the running analysis is presented. 

1.3.1.1 Magneto Inertial Measurement Units (MIMU) 

Human movement has been increasingly monitored by using wireless sensors, either to 
assess the performances of athletes [36] [37] [38] or to prevent injuries. [39] [40] The main 
reasons for which one may opt for a wireless sensor are the low cost, ease of use which makes 
the presence of a technician useless and the fact that they can be used in out-of-lab 
assessments, making them suitable for the analysis of the actual performances of the athletes. 
Among the different types of wireless sensors, two of the most used ones are IMU (inertial 
measurements units), that measure acceleration and angular velocity via exploiting the 
concept of inertia (mass and acceleration), and MIMUs (magneto inertial measurements 
units), that in addition to that measure the magnetic field as well. These are the only type if 
instrumentation that allow the extraction of both temporal and spatial parameters. They are 
composed of tri-axial sensors such as: accelerometer, gyroscope and magnetometer.  

Being a low-cost equipment, a MIMU is affected by a variety of issues, mainly caused 
by the limitation of the sensors when looked at singularly. Specifically, the accelerometer is 
affected by gravity and other types of accelerations that may be present in the environment, 
the gyroscope is affected by different biases depending on the axis and finally the 
magnetometer is sensible to ferro-magnetic disturbances and is also the most difficult to 
calibrate. In this section, a detailed explanation of the components of a MIMU is presented.  

1.3.1.1 Accelerometer 

 The accelerometer is a sensor that measures the linear acceleration 𝑎 along one of its 
sensible axes, from which the proper acceleration can be computed, that is the difference 
between the acceleration the sensor senses 𝑎௦ and the gravity acceleration g, as in (1.1). It 
underwent a wave of popularity due to its miniaturization following the advent of 
microelectromechanical systems (MEMS) technology. They can either be single or multi 
axial, but, with focus on the MIMU, miniaturized multi-axial accelerometers are mainly used. 

𝑎 = 𝑎௦ − 𝑔 (1.1) 
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 The physical principle exploited by these sensors is the linear velocity change of the 
mass affected by the acceleration. There is a frame, to which a mass m is connected through a 
spring with elastic constant k. In parallel to this system, linked to the mass, there is a damper 
with damping coefficient b, as shown in Figure 1-4.  When an acceleration 𝑎 is applied to the 
mass, the force applied can be computed following the inertia principle, as in (1.2): 

෍ 𝐹௜

ே

௜ୀଵ
= 𝑚𝑎 (1.2) 

where the first term indicates all the forces applied on the mass, which are the applied 
force 𝐹௔௣௣௟௜௘ௗ, the spring force 𝐹௦௣௥௜௡௚ = 𝑘𝑥, where x indicates the displacement of the mass, 
and the damper force 𝐹ௗ௔௠௣௘௥ = 𝑏𝑣, where v indicates the speed at which the mass moves. 
From (1.2): 

𝐹௔௣௣௟௜௘ௗ + 𝐹௦௣௥௜௡௚ + 𝐹ௗ௔௠௣௘௥ = 𝑚𝑎 (1.3) 

Given that the speed of the mass can be computed by deriving its displacement, and the 
acceleration can be obtained by deriving the speed, the equation in (1.3) becomes as in (1.4): 

𝐹௔௣௣௟௜௘ௗ = 𝑚𝑥̈ − 𝑏𝑥̇ − 𝑘𝑥 (1.4) 

From which it can be stated that, in order to obtain the acceleration of the mass, the 
displacement of the same has to be known, which is exactly the principle on which 
accelerometers are built. [41]  

 
Figure 1-4 – Accelerometer spring-mass-damper system [41]  

The accelerometers, even if they all rely on the same physical principle, can be built in 
different ways, in particular different transducers can be adopted such as: piezoelectric 
crystals, servo force balance transducers, electronic piezoelectric sensors, piezoresistive 
sensors and variable capacitance sensors. The last two are the mostly used in gait analysis. [8]  

In capacitive accelerometers the displacement of the mass is converted into a capacitance 
change which gets converted and amplified into a voltage signal. In piezoelectric 
accelerometers, the mass travels on the surface of a piezoelectric crystal that, if subjected to 
the movement of the mass, will be deformed, and thus generate a proportional electric current. 

An accelerometer has different parameters such as: 
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 Bandwidth (Hz) which indicates the frequency range to which the accelerometer is 
sensible. A bandwidth of 40-60 Hz is usually adequate for the analysis of the 
human movement. 

 Sensitivity which measures the minimum change in the output corresponding to a 
mechanical change. 

 Voltage noise density that is the noise associated to the measurement. 
 Dynamic range (g) that is the range of measurements feasible with the sensor. 

The output of the accelerometer varies based on the way it is mounted on the subject and the 
motion. In Figure 1-5 an example of a tri-axial accelerometer output acquired via a foot-
mounted MIMU during a running trial is shown. 

 

Figure 1-5 – sprint trial acceleration. In blue, the vertical acceleration, in orange the mediolateral acceleration and in 
yellow the anteroposterioir acceleration during a sprinting trial. The hatched lined indicates a change in motion: in the first 
part, the subject was standing, in the central part the subject was sprinting and, lastly, the subject began to walk. 

1.3.1.2 Gyroscope 

 Gyroscopes are sensors that measure and maintain the orientation and the angular 
velocity of an object in motion. They usually are composed by three orthogonal axes on 
which the measurements are performed. They can be very useful when one needs to compute 
the rate of turn of an object without a fixed point of reference.  

There are three different types of angular rate measurements that can be achieved via the 
gyroscope, illustrated in Figure 1-6: 

 Yaw, that is the horizontal rotation of an object seen from above 
 Pitch, the vertical rotation of an object 
 Roll, the horizontal rotation of an object seen from the front. 
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Figure 1-6 – visual rapresentation of the three different angular rate measurements: Roll, Pitch and Yaw [42]  

There are different commercially available classes of gyroscopes, but the more commonly 
used are mechanical and optical gyroscopes, which differ on the operating physical principle 
they use to measure the angular velocity. [43]  

A mechanical gyroscope is made out of a spinning mass that rotates around one of its 
axes. This movement the mass in subjected to, i.e. the rotation, makes it so that the mass tends 
to oppose to any changes in its orientation, it tends to remain parallel to itself, and this 
happens even if the mass changes its rotation direction.   

Most gyroscopes rely on Coriolis’ force, that is an apparent force: when an object travels 
on a rotating surface, from an external point of view the object trajectory will seem straight, 
while from a point of view belonging to the rotating surface, that rotates with it, the trajectory 
will seem curved, as if some kind of force has been applied to it – that is the Coriolis’ force. 
This force is dependent on the angular velocity 𝜔 as stated in (1.5), and the displacement of 
the object is proportional to the Coriolis’ force. By measuring the displacement, the angular 
rate can be obtained, which is then converted into an electric signal. 

𝐹௖ = −2𝑚 ∙ (𝑣 × 𝜔)  (1.5) 

The working principle is strictly linked to the inertia principle, as the accelerometer. Since 
the working principle is based on the detection of the displacement of the mass, the 
transducers used in them must be sensible to it, by relying on different sensing technologies: 
electrostatic, which exploits the capacitance changes to detect the motion; piezoelectric that is 
based on direct piezoelectric effect; and piezoresistive, which detects the change of the 
resistance in response to a mechanical deformation. 

One of the most important parameters for gyroscopes is the drift rate, that is the 
phenomena for which the gyroscope returns a value different than zero when the expected 
value should be null. It is mainly composed by: 

 Bias, that indicates the measurement the sensor returns when it is still. It indicates 
the initial rotation of the sensor. 
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 Environmentally sensitive drift rate, that are the components sensitive to the 
environment conditions, such as temperature, acceleration, vibration, etc. 

Gyroscopes are usually divided into three groups: navigation, that are usually exploited in 
mobile phones and cars; tactical-grade, that are used for military applications, and rate-grade 
devices, typically used in rockets, with a crescent precision degree. [44] Just like the 
accelerometers, the output of the gyroscopes depends on the way they are mounted and on the 
motion they are subjected to, as shown in Figure 1-7. 

 

Figure 1-7 – Gyroscope signals acquired along three ortogonal axis during a sprinting trial. In blue, the vertical axis, in 
orange the mediolateral axis, in yellow the anteroposterioir axis. The hased lines indicates a change in motion: in the first 
part, the subject was standing, in the middle part running, and finally walking. 

1.3.1.3 Magnetometer 

 The magnetometer was firstly invented by Friederich Gauss to measure the magnetic 
field. The measure of the magnetic field components along its three axes allows for a univocal 
definition of the magnetic field vector in the point in which the measure is held. It relies on 
the Lorentz force. 

Let’s consider a charge q moving with a certain speed v on a conductive surface on which 
a constant magnetic field B is applied. The charge will be subjected to a force, known as 
Lorents force, described by the equation in (1.6). 

𝐹௅ = 𝑞(𝑣 × 𝐵)     (1.6) 

Because of this force, the charge starts moving transversally, causing an electric field 
𝐸௛௔௟௟ to form on the sides of the conductive surface, which leads to the production of an 
electric force. The total amount of forces to which the charge is subjected can be described as 
in (1.7). 

𝐹 = 𝑞(𝑣 × 𝐵) + 𝑞𝐸௛௔௟௟ (1.7) 

which leads to (1.8) in equilibrium conditions: 
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(𝑣 × 𝐵) = −𝐸௛௔௟௟ (1.8) 

This is called the Hall Effect which creates a voltage 𝑉ு on the conductive surface that is 
proportional to the magnetic field applied. A visual representation in provided in Figure 1-8.  

 

Figure 1-8 – Visual representation of the Hall effect. The red signs (- and +) represent the charge buildup on the sides of 
the conductive surface, which result in an electric field. Based on the charge of the aprticle traveling on the surface, it will 
tend to accumulate on one side or the other. Source: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/Hall.html 

However, not all the magnetometers rely on the Hall effect. Some of them use magneto 
induction methods, that calculate how magnetized a material becomes when exposed to a 
magnetic field; or magnetoresistance methods that consider the capacity of the object to 
change its resistance when exposed to a magnetic field.  

Magnetometers are, as one may think, very sensible to ferro-magnetic disturbances, 
making them useful for outside evaluations, but less for indoors, since in those conditions 
more disturbances are present. Due to its problems, in gait analysis the magnetometer is often 
neglected, but there are a few examples of how it could be useful in the events detection, such 
as for stride segmentation, [34] or gait phase detection. [35] Usually they are used in 
combination with gyroscopes and accelerometers in MIMUs. 

 The output coming from a magnetometer changes based on where it is mounted and 
the motion of the subject, a visual representation of this is provided in Figure 1-9. 
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Figure 1-9 – Magnetometer signal acquired during a running trial along three orthogonal axes: in blue the vertical axis, 
in orange the mediolateral axis, in yellow the anteroposterior axis. The hashed line indicates a change in motion. In the first 
part the subject was standing, then running and in the end the subject began to walk. 

1.3.2 Validation systems 

 As stated before, in literature different validation systems have been employed. In this 
section, a brief explanation of each system is provided. 

1.3.2.1 Optoelectronic systems 

   The optoelectronic systems are very accurate motion-capture tools. They are often 
utilized as gold standard, indeed. Usually, the aim of the movement analysis is to obtain 
information about the movement of the body parts during the motion, such as the movement 
of the centre of mass, the movement of adjacent bones or joint kinematics, which is feasible 
through stereophotogrammetric systems. [45]  

Optoelectronic stereophotogrammetry is based on the steps here defined: 

 the acquisition of 2D images through cameras, the number of which can vary from 
a minimum of two (for the 3D reconstruction) to about fifty, that are used to 
capture the positioning of markers on the subject, which will be labelled to 
identify the body segment in the planes of the image. 

 a transaction to 3D models in order to obtain the position of each marker in a 
global reference system.  

 The definition of a local reference system for each body segment, that will allow 
the identification of their positioning thanks to the definition of a human body 
mathematical model.  

A visual representation of the system is provided in Figure 1-10. 
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Figure 1-10 – Optoelectronic setup for the motion capture. Source: 
https://assistiverobotcenter.github.io/images/toolbox/sensors/qualysis.jpg 

Optoelectronic system can either be active or passive. Passive markers are covered in a 
reflective material that will reflect the IR light coming from the cameras, while active markers 
are a direct source of light, as they are usually IR LEDs. This type of marker implies that the 
light has to travel the distance between the camera and the marker only once, which results in 
an enlarged volume of acquisition in respect to the ones achievable through passive markers. 
The main drawback of this type of marker is that it requires an active power supply for each 
marker to allow the emission of the light. 

The main issue related to optoelectronic systems is that they are relegated to a laboratory 
environment, which limits not only the movement in exam, that is confined to a constricted 
acquisition area, but also the utility of the device, since it will not be able to monitor motions 
happening during daily activities. Nonetheless, it still is a very accurate motion-capture 
system, which makes it a go-to gold standard when it comes to gait analysis.  

1.3.2.2 Force plates 

Force plates are a tool that has been broadly adopted for motion analysis and allow the 
measurement of the different components of the ground reaction force vector, while also 
allowing the establishment of the point of application of the same. [46]  

By knowing the frequency of the force data acquired, additional measures can be 
computed, such as: 

 Speed 
 Power 
 Displacement 
 Temporal parameters 
 Left/Right Asymmetry 
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They can be either single axial, that allows the measurement of only one component of 
the ground reaction force, or multi-axial, which enable the detection of all the components of 
said vector. Over the years, they have gained popularity when it comes to the evaluation of 
athletes, to monitor training effectiveness. [47] A force plate visual representation is provided 
in Figure 1-11. 

 

Figure 1-11 – Example of force plate. Source: https://www.technogym.com/wpress/wp-content/uploads/2019/04/Force-
plate.jpg 

Force plates usually rely on load cells containing piezoelectric elements, strain gauges, 
capacitance gauges, piezoresistive elements or rely on the Hall effect. All of these 
technologies make it so that when a force is applied a proportional voltage is generated. To 
obtain a reliable measurement, the force plates should be installed below the floor level, so 
that they could not be sensed by the subject when walking. Other applications involve the use 
of instrumented treadmills, with force plates embedded. Because of their ease of use, they 
have been broadly considered as gold standard in gait analysis. The use of instrumented 
treadmills, however, calls for a laboratory environment and, furthermore, it is not adequate for 
the evaluation of a subject’s speed, as it has a set speed which gets imposed on the subject. 

Apart from being limited to controlled environments, these devices are not portable and 
can be expensive, which limits the analysis to a few strides and straight walking. 

1.3.2.3 Foot switches 

 Foot switches are very popular devices implied as gold standard in gait analysis. They 
are a very inexpensive tool to obtain gait events. There are two different types of foot 
switches: 

 Compression closing switches: they are made of thin pieces of brass separated by a 
compressible layer of rubber. When pressure is applied, the rubber gets in contact 
with the two brass layers, which leads to the closing of an electrical circuit. 

 Force sensitive resistors: they are made out of thin layers of plastic on which circuits 
are engraved. When pressure is applied, a resistive electrical circuit is created. [48]  
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Foot switches are a great way to estimate gait events, and they have been previously 
adopted in different studies [6] , however they are usually limited to two to three sensing 
elements, that have to be singularly placed on the foot, thus limiting their repeatability and 
spatial resolution. In Figure 1-12, an example of foot switch is provided. 

 

Figure 1-12 – example of foot switch and their positioning. Source: https://www.motion-
labs.com/prod_access_footswitches.html 

1.3.2.4 Pressure insoles 

 In-shoe instrumented devices are becoming more and more popular in the domain of 
gait analysis, mainly due to their low cost and portability. They usually tend to be based on 
different technologies and configurations, similar to the foot-switches ones, with the aim of 
providing a high-resolution pressure map, which needs a very dense grid of sensors, whose 
number varies from 99 to 960, making them more expensive and computationally complex as 
the number of sensors goes up. Such a high number of sensing elements is not needed for the 
gait events estimation.  

However, recently, Salis et al. [55] developed a new type of pressure insole especially 
thought for the gait events estimation, which includes only sixteen sensing elements. These 
sensing elements are based on force sensing resistor, which exhibit a resistance which is 
inversely proportional to the force that is applied to them. The resistance is then converted to 
voltage. This new type of pressure insoles is what has been used in this study for two of the 
three datasets analysed. In Figure 1-13, a visual representation of the pressure insole is 
provided.   For the way they are thought, pressure insoles compensate the drawbacks of foot 
switches, since they have a better spatial resolution, and the placement is way more 
repeatable. 
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Figure 1-13 – Pressure Insole developed by Salis et al. [48] 

1.3.3 Algorithms for the identification of gait and running temporal 
parameters 

The detection of running temporal parameters has been of great interest in the latest years. In 
this section, a short explanation of the techniques cited above is provided. 

1.3.3.1 Traditional techniques based on peak detection 

 Traditional algorithms rely on peaks detection. These techniques exploit the 
morphology of the different signals acquired via the inertial sensors to detect the events. This 
is made possible because the movement of the athlete causes abrupt changes in both the 
accelerometer and gyroscope signals, which result in peaks. Because of the nature of the 
movement itself, the easier event to detect is the initial contact, since it usually results in very 
prominent peaks, especially in the accelerometer signals; on the other hand, since the final 
contact is not linked to strong changes in the movement, its detection can be more complex.  

During the years, all sorts of different peak detection algorithm have been developed, 
changing the signals exploited and the detection strategy employed. Detection strategies 
include: 

 Stride segmentation to ease the detection: 
 The use of thresholds to discriminate between the peaks of the signals. The 

thresholds could be numeric or parametric; 
 The identification of global minimums and maximums between certain search 

windows. 
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 Exploitation of the signals zero crossings, either to detect the events or to define 
some search windows, to allow a better identification. 

1.3.3.2 Wavelet transformations 

Wavelets can be used in many ways. In the gait analysis field, wavelet transformations 
have been mainly adopted for the events detection [23] [24]  and for the denoising of the 
signals [25]. Wavelet transformations are mathematical tools used to divide the original 
signals in different component based on frequency. To perform a wavelet transformation, 
many different waves can be used, called mother wavelets 𝜓, that are portions of signals that 
will travel forward in time. Each mother wavelet must meet the condition indicated in (1.9).  

න 𝜓(𝑡) 𝑑𝑡 = 0 (1.9) 

Different types of mother wavelets can be used based on the application in exam. [49] In gait 
detection, it has been proved that the most suitable are the mother wavelets belonging to the 
Daubechies family. [26] [71]  

The core of the wavelet transformations is the decomposition of the signals in different 
frequency levels of coefficients, allowing the analysis of the signals for different frequency 
bands. There are two types of wavelet transforms: 

 Continuous Wavelet Transform (CWT): it can be defined as in (1.10). It returns a 
complete representation of a signal by letting the scale and translational 
parameters, called coefficients, vary continuously. The daughter wavelets will be a 
translated and scaled versions of the mother wavelet. 

𝑋௪(𝑎, 𝑏) =
1

𝑎
ଵ
ଶ

න 𝑥(𝑡)
ାஶ

ିஶ

𝜓ത ൬
𝑡 − 𝑏

𝑎
൰ 𝑑𝑡     (1.10) 

Where 𝜓(𝑡) is the mother wavelet, a is the scale factor and b the translational 
value. It uses every possible wavelet, so there can be an infinite number of scales 
and locations. 

 Discrete Wavelet Transform (DWT): it is any wavelet transform that uses 
discretely sampled wavelets. It decomposes the signal into a set of orthogonal 
wavelet functions. They are, as the CWT, translated and scaled versions of the 
mother wavelet, but the variations are discretized to integers power of 2.[50] It is 
invertible, which makes it possible to recover the original signal from its 
transform. It can only use a definite set of wavelets. It can be defined as in (1.11). 

𝑋௪(𝑎, 𝑏) =
1

𝑎
௠
ଶ

න 𝑥(𝑡)
ାஶ

ିஶ

(𝑎଴
ି௠𝑡 − 𝑛𝑏଴)𝑑𝑡 (1.11) 

Where 𝜓(𝑡) is defined as in (1.12), 𝑥(𝑡) is the series analysed. 

𝜓௔,௕(𝑡) =  𝑎଴

ି
ଵ
ଶ𝜓 ൬

𝑡 − 𝑏

𝑎
൰ (1.12) 

where 𝜓(𝑡) is the mother wavelet, t indicates time, 𝑎 represents the scale factor, 
which is usually an integer power of 2 and indicates how the signal will be 
distorted. Each wavelet works on different frequency spans, which are dictated by 
the scale factor: high scale factors correspond to low frequencies, while low ones 
correspond to high frequencies. The parameter 𝑏 allows the signal to move in 
time, which is strictly linked to 𝑎: 

𝑎 = 2௝ , 𝑤𝑖𝑡ℎ 𝑗 ∈  ℤ  
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𝑏 = 2௝𝑚, 𝑤𝑖𝑡ℎ 𝑚 ∈  ℤ      
The scale and time factors transform the mother wavelets in daughter wavelets. 
Wavelet transform basically is the convolution of the signal with the mother 
wavelet, hence it can be seen as linear filtering and successfully implemented via 
an analogue filter bank. The signal is put through two filters: a high pass filter, 
which returns detail coefficients, and a lowpass filter, which return approximation 
coefficients. After the filtering, the signal is down sampled with base 2. The 
process can be repeated a number of times, defined by the parameter ‘levels’, 
which indicates how many time the signal will be filtered, as indicated in Figure 
1-1. This is how the discrete wavelet transformation is computed in MATLAB, 
where an orthogonal filter is built based on the mother wavelet chosen. The 
parameters needed for this type of computation are the mother wavelet to be used 
and the level to which the decomposition must go down to. 

 

Figure 1-14 -  representation of the discrete wavelet transformations. In the picture, g[n] represents low pass filters, 
while h[n] represents high pass filters. The signals are down sampled after each filtering step. 

In order to apply some denoising to the signals, a DWT based wavelet decomposition 
has to be brought forward for which one of the most important parameters to choose is the 
level of decomposition. A common approach to the denoising involves the decomposition 
of the signals to a certain level and the choice of a threshold to apply to the coefficients: all 
the coefficients larger than the threshold would be discarded. From the thus obtained 
coefficients, the denoised signals will be reconstructed. There are many already existing 
threshold techniques that are commonly used to define the threshold value. 

1.3.4 Dynamic Time Warping 

 Dynamic Time Warping (DTW) is a technique commonly employed to measure the 
similarity between two signals, firstly thought for speech analysis. It has been broadly used in 
gait analysis for validation purposes, or to identify the phases of the gait based on the shape of 
the signals acquired. It consists in measuring the similarity of two signals through a distance 
metric, which could be of different types (Euclidean, squared, etc.), and it does not require the 
signals involved to be of the same length. Any linear sequence of data can undergo dynamic 
time warping. 

When measuring the distance between two signals by using the Euclidean distance, for 
example, the two analysed series must have the same length, as there will be a one-to-one 
relationship between each of the samples. However, DTW does not maintain this constraint, 
as the one-to-one relationship is demolished, as shown in Figure 1-15. That happens because 
the DTW searches for the combination of the two signals that minimises the Euclidean 
distance, or in general the distance used to compute it. 
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Figure 1-15 – On the left, example of a comparison between two signals when using the euclidean distance, on the right 
by using the dynamic time warping. Source: https://rtavenar.github.io/blog/fig/dtw_vs_euc.svg 

Since it is capable of identifying similarities in the signals and since running, just like 
walking, tends to be a very repetitive movement, DTW can be a useful tool for the detection 
of phases and parameters through different subjects and speeds, as it will be analysed in the 
following chapters of the present work. DTW works on the following rules: 

 Each sample of each signal must be matched with at least one sample from the 
other signal. 

 The first samples in both signals must be matched with each other. 
 The last samples in both signals must be matched with each other. 
 The indices which indicate the mapping of the first signal must be monotonically 

increasing. 

The two signals, to minimise the distance, are non-linearly warped, that is they get 
deformed so that the differences between them get minimised.  
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Chapter 2  
 

 

Materials and methods 

2.1 Experimental setup 

In this section the experimental sessions involving running trials at different speeds 
and conditions are described. 

2.1.1 Amateurs protocol – 8 and 10 km/h 

Eleven recreational runners (6 M, 5F, age: 21±1.3 years, height: 167±7.1 cm, weight: 
63±8.6 kg) with familiarity with the treadmill system volunteered to run at 8 km/h and 10 
km/h on treadmill and running track on different days. After an initial 3 minutes warming up 
session, each subject was asked to run at 8 km/h for 400 m, and then, after a period of rest, at 
10 km/h again for 400 m [55]. All subjects were equipped with an INDIP multisensory system 
[54]  sampling at 100 Hz, attached to the shoelaces of each shoe, and sensorised insoles (mod. 
YETI, 22le Srl, Padua, Italy, sixteen pressure sensors; element area = 310 mm; force 
threshold = 5 N [55] ), considered as a portable gold standard for temporal events. Some of 
the subjects were further equipped with a protective leather insole. In Figure 2-1 an example 
of equipment is shown. 
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Figure 2-1 – Subject wearing the INDIP multisensory sistem and sensorised insoles. 

  

2.1.2 Amateurs protocol – 14 km/h 

Ten subjects (M, age: 32.3±9.9 years, height: 172.5±4.3 cm, weight: 69.4±4.9 kg) were 
recruited following these inclusion criteria; i) all subjects had to be aged between 18-50 years, 
ii) be recreational rearfoot striker runners, iii) be familiar to treadmill running, iv) wear 38 or 
42 shoe size (EU), v) be injury-free for at least three months preceding the acquisition, and vi) 
be able to run effortlessly for 55 minutes straight. All the subjects were asked to perform 
different 6 minutes running trials on a treadmill, at 14 km/h, in eight different running 
conditions, simulated through the usage of a different shoe model, with varying midsole 
thickness [31] . Each subject was equipped with a foot-mounted MIMU (mod: Opal v2, 
APDM, Portland, USA), sampling at 200 Hz affixed to the arch of the feet over the shoes with 
a strap, and retro-reflective markers of stereophotogrammetric system, which was the adopted 
gold standard. In Figure 2-2 a visual representation of the equipment is provided. 

 

Figure 2-2 – Subject wearing the Opal system and retro-reflective markers. 

2.1.3 Sprinters protocol 

The data acquisition for the sprinters took place on outdoors official running tracks. 
Nine elite runners (M, age: 23.4±3.5 years, height: 182.4±8.5 cm, weight: 72.8±6.9 kg) with a 
score of over 700 points in the tables of World Athletics were recruited, that is covering 100 
meters in less than 11.66 s [57] In addition, no musculoskeletal injuries were reported for 
each runner at least in the preceding six months.  
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After an initial 40 minutes warming-up period to avoid any injury, each subject was asked 
to perform six 80 m sprint trials along the lane of an official 400 m track at three different 
speeds: 70%, 85% and 100% of their maximal speed. The timing was measured via a hand 
chronometer (Sasso Marconi (Bo), Italia, Motus chronometry millennium MTS50, sensitivity 
1/1000) [58] . Reached speeds ranged from 20 km/h to 32 km/h. 

Each subject wore their own running shoe model and was equipped with a MIMU, in 
particular an INDIP multisensory system [54] , sampling at 100 Hz, attached to the shoelaces 
of each shoe. In addition, subjects were equipped with sensorised insoles (mod. YETI, 22le 
Srl, Padua, Italy, sixteen pressure sensors; element area = 310 mm; force threshold = 5 N [55] 
), considered as the gold standard. An ad-hoc study was conducted to identify the best cover 
insole to shield the sensorised ones and a very thin insole (thickness ~1 mm) was selected and 
fixed with tape to avoid any unwanted movement of the insole. An extensive analysis 
regarding the procedure of evaluation of different types of protection for the insoles is 
provided in Appendix 1. In Figure 2-3 a visual representation of the equipment is shown. 

 

Figure 2-3 – Subject equipped with MIMUs affixed to the shoelaces of each show and with sensorised insoles. 

2.2 Literature methods for the detection of temporal parameters 

After a literature review, nine methods were selected, as they provided the best results in 
the estimation of running temporal parameters using foot or ankle mounted MIMUs, a 
summary of which is presented in Table 2.1. All the methods were implemented using 
MATLAB. 

Method Description Location 
# of 

subjects 

Sampling 
frequency 

(Hz) 

MIMU 
position 

Speeds 
Declared 

errors 

Blauberge
r et al. 
(2021)  

IC identified 
as local 

minimum in 
the 

acceleration 
norm, FC al 

local 
minimum in 
the angular 
rate norm. 

Running 
track 

5 512 Ankle 
~ 

32.724 
km/h 

ME: 3.55 ± 
6.16ms 
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Schmidt et 
al. (2016) 

IC as local 
maximum 
while the 

mediolateral 
gyroscope 

yields a 
constant slope 

and FC as 
local 

minimum in 
the vertical 
acceleration 

Running 
track 

12 1000 

In line with 
the ankle, 
on the side 
of the shoe 

30 km/h 

MAD (on 
stance 

duration): 
4.3ms 

Falbiard et 
al. (2018) 

IC and FC as 
minimums in 

the 
mediolateral 
angular rate 

Treadmill 
and 

running 
track 

41 500 Shoelaces 
8-20 
km/h 

Inter-trial 
median 
(bias) ± 
IQR on 
stance 

duration:  
15 ± 12ms 

Mo and 
Chow 
(2018) 

IC as 
maximum in 

the 
acceleration 
norm, FC as 
minimum in 
the vertical 
acceleration 

Running 
track 

11 200 Shoelaces 
Up to 
14.76 
km/h 

MAD: IC= 
0.006±0.00

5s; FC= 
0.020 ± 
0.008s 

Benson et 
al. (2019) 

IC and FC as 
maximum in 

the 
acceleration 

norm 

Treadmill 
and 

running 
track 

54 200 Shoelaces 
Up to 
12.96 
km/h 

MAD: 
IC=0.06±0.

2s; 
FC=0.01±0

.06s 

Bailey and 
Harle 
(2015) 

IC as the point 
in the 

mediolateral 
gyroscope that 

surpasses a 
certain 

threshold 
before a local 
minimum, FC 

as local 
maximum in 
the vertical 
acceleration 

Treadmill 5 1000 
In line with 
the ankle, 
on the heel 

Up to 
12.24 
km/h 

ME: IC= 
9.89±3.37
ms FC= 

0.47±3.84
ms;  

Reenaldae
IC and FC as 

local 
Marathon 3 1800 Shoelaces ~ 13 Not 



41 

 

t al. (2016) maximums in 
the 

acceleration 
norm 

track km/h declared 

Chew et 
al. (2018) 

IC and FC as 
zerocrossings 

in the 
anteroposterio
r acceleration 

Treadmill 10 128 Shoelaces 
Up to 
11.2 
km/h 

MAE of -
0.3±14.7ms 

on the 
detection of 

ICs and 
4.45±18.04
ms on the 

detection of 
FCs. 

Yang et al. 
(2022) 

IC as local 
maximum in 

the 
acceleration 
norm, FC as 

local 
maximum in 
the angular 
rate norm 

Running 
track 

38 500 Ankle 

Self 
selected 
maximu
m speed 

MAE 
between 5 
and 37 ms 
on both IC 

and FC 

Table 2.1 – Summary of the implemeted methods. MAD = Mean Absolute Difference, MAE = Mean Absolute Error, 
ME = Mean Error, IQR = Interquartile Range 

 

2.2.1 Methods proposed for high speeds 

  There are a very few studies that investigate sprinting running speeds with inertial 
sensors. [59-62] It has to be noted that, to the knowledge of the author, as of December 2022, 
hitherto no other method for higher speeds at 100 Hz has been developed. 

2.2.1.1 Blauberger et al. 

The method proposed by Blauberger et al. [61] was developed for the extraction of ground 
contact time (GCT) from inertial sensor signals in sprinting, by studying the performances of 
five elite athletes.  

They analysed a total of 1140 steps obtained from two IMUs, positioned above the ankle 
of each athlete. The IMUs used in this study included an accelerometer with ±16g operating 
range and a gyroscope with a ±2000°/s operating range, both sampling at 512 Hz. Through 
the method here described, they achieved a mean error of 3.55 ± 6.16ms. 
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Figure 2-4 – In this figure, taken from [55] , the position of the MIMU on one of the athletes’ shoes is shown. 

After being instrumented with the MIMUs, the athletes were asked to perform 34 sprints 
at maximum speed for 50 and 100 m each. The data thus obtained was then analysed to 
estimate the ground contact time (GCT) of each step based on the features of the recorded 
IMU signals. For the purposes of this study, only the analysis of the temporal parameters is 
taken into consideration. 

Both the accelerometer and the gyroscope outputs were summarized as one vector by 
obtaining the norm of the signals as in (2.1): 

𝐴௡௢௥௠ =  ට𝐴௫
ଶ + 𝐴௬

ଶ + 𝐴௭
ଶ  (2.1) 

The resulting vectors were then filtered using a 2nd order Butterworth low pass filter with 
a cut-off frequency of 70 Hz, which for out data has been brought down to 6Hz, given that the 
data obtained at 100 Hz did not have any component over 70 Hz, to obtain signals similar to 
the ones shown in the article. Since the running cycle segmentation was not described in 
detail, we purposefully applied an autocorrelation approach to the division of the running 
portion into the single different strides described by Falbiard et al. [63]   

The running events detection algorithm takes into consideration the cyclical nature of the 
running movement. The authors had observed that the contact of the foot with the ground, that 
is the initial contact caused a rapid change of the acceleration, which is the reason why they 
identified the IC as a local minimum in the acceleration. After the detection of the IC, the 
final contact was then found by looking for two peaks in the combined angular velocity: the 
FC is identified as the minimum that lies between these two peaks.  

 

2.2.1.2 Schmidt et al. 

In the paper published in 2016, Schmidt et al. presented an IMU-based wearable 
measurement system for performance analysis in-the-field and online monitoring [62] Each of 
the twelve athletes recruited in the study was asked to perform maximal sprints while wearing 
the IMU device attached to their ankles. Their aim was to compute the stance duration of the 
athletes, on which they achieved a mean absolute difference of 4.3 ms. 
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Figure 2-5 In the figure, taken from [62] , the IMU device used in this paper and its positioning on one of the athletes is 
shown. 

For the development of their algorithm, they analysed the data acquired from the 
accelerometer, with a range of ±16g, and the gyroscope, with an operative range of ±1000 °/s, 
both sampling at 1000 Hz. The signals were processed without applying any further filtering.  

The detection algorithm was based on peak detection, and it exploited the vertical 
component of the acceleration to find both the temporal parameters. The autocorrelation 
method described in Falbiard et al. [63] was applied to this method. The IC was searched in 
the area in which the vertical acceleration surpassed a certain threshold (usually 5 g, but it has 
been modified in certain subjects) and, at the meantime, the mediolateral angular velocity had 
a continuous slope. When the condition was met, the IC was set as the minimum that 
preceded the peak in the vertical acceleration. After a certain amount of time from the IC, 
which is a scalable deadtime set to 0.25 s for 8 km/h and 10 km/h, 0.16s for 14 km/h and 0.10 
s for sprints based on previous observations, a global minimum in the vertical acceleration 
within a time window that went from half the mid-swing to mid-swing cycle to its end was set 
as FC.  

2.2.1.3 Falbiard et al. 

In 2018 Falbiard et al. published a paper with the aim of assessing the performance of 
different kinematic features measured by wearable inertial sensors, in order to estimate the 
inner-stride phases duration (e.g. contact time, flight time, swing time, step time). [63]  

They asked forty-one healthy amateur runners to run multiple trials on an instrumented 
treadmill while wearing a MIMU on the shoelaces of each shoe. In the paper, different 
algorithms were proposed, evaluated, and compared. For the sake of the present work, the one 
that has been deemed the best has been replicated. The IMUs with which the runners were 
equipped consisted of both a 3D accelerometer (range ±16g) and a 3D gyroscope (range 
±2000 °/s), sampling at 500 Hz. The performances of their method were tested via the 
computation of the inter-trial median (bias) ± Interquartile range on the stride duration, which 
amounted to 15 ± 12ms. 
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Figure 2-6 – The figure, taken from [63] shows both the technical frame of the foot-worn IMU (XT, YT, ZT) and the 

functional frame of the foot (XF, YF, ZF) and the positioning and the attachment of the IMU to the foot.  

 They implemented a mid-swing to mid-swing segmentation. A 2nd order lowpass 
Butterworth filter was designed with an adaptive cut-off frequency based on the stride 
frequency, estimated using autocorrelation over a 5 s sliding window. The adaptive filter thus 
developed was proposed to be suitable for different speeds. Once the gait had been segmented 
into the singular mid-swing to mid-swing periods, a further segmentation on filtered signals 
was done to identify the research windows for both the IC and the FC by exploiting zero-
crossings.  

The IC was searched for between the first zero-crossing of the anteroposterior angular 
velocity and the mid stance, while the FC between the mid stance and the last zero crossing. 
The minimum of anteroposterior angular velocity in the proper research window was selected 
as IC and FC, respectively. 

2.2.2 Methods proposed for recreational runners 

Running at lower to moderate speeds has been more thoroughly studied, which leads to a 
definitely higher number of records that met the research criteria. The methods that have been 
studied were all tested over datasets at low/medium speeds (4-15 km/h). 

2.2.2.1 Bailey et Harle 

With the aim of developing a threshold free algorithm to assess temporal running 
parameters, Bailey et Harle in 2015 provided a new method exploiting IMUs, especially 
thought to provide the opportunity to monitor changes in sporting techniques to prevent 
injuries [64]  

Each participant to the study was equipped with an IMU composed by a 3D 
accelerometer (±16g) and a gyroscope (±2000 °/s). All the IMU signals were sampled at 
1kHz, the device was attached to the lateral side of the shoe, in line with the ankle, as seen in 
Figure 2-7. The events detected via their method had a mean error of 9.89±3.37 ms on the 
detection of the ICs and 0.47±3.84 ms on the detection of FCs. 
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Figure 2-7- In the figure, taken from [64] , the IMU and its placement on the shoe is shown. 

Five participants were asked to run for 90 seconds at 4 different self-selected speeds. For 
each participant and each speed, 90 steps were extracted for further analysis, which lead to the 
detection of 1800 steps in total. In the method described, first a modified version of the 
Normalised Autocorrelation based Step Counting (NASC) algorithm [65] was used to detect 
the running period and to roughly segment the signals into individual steps. Based on the 
intrinsic nature of gait signals, which are periodic, the base assumption is that their auto-
correlation value should be the highest in correspondence of the period of the gait cycle. The 
anteroposterior angular rate g୸

௜௢௡ was used, based on the high repeatability and the low 
amount of noise present on this axis, to compute the normalised autocorrelation χ for lag τ at 
the mth sample, as in (2.2): 

χ(m, τ) =
∑ [𝛼(𝑚, τ, k)α(m + τ, τ, k)]௞ୀதିଵ

௞ୀ଴

τσ(m, τ)σ(m + τ, τ)
 (2.2) 

𝛼(𝑖, τ, k) = g୸
௜௢௡(𝑖 + 𝑘) − 𝜇(𝑖, τ) (2.3) 

Where 𝜇(𝑘, 𝜏) 𝑎𝑛𝑑 𝜎(𝑘, 𝜏) are the mean and standard deviation of the samples. Since 𝜏 is 
unknown, the algorithm tries many values of 𝜏 between two selected values to find the lag for 
which the autocorrelation is maximum. Once the highest value of the autocorrelation is found, 
two pieces of information can be gathered:  

 a high value for the autocorrelation, closer to one, represents a walking or running 
movement; 

 the value of 𝜏 for which the autocorrelation is at its maximum is the exact 
periodicity of the subject’s gait. 

A further moving average filter with a 5 second window is used; the period of running is 
detected by means of a threshold of 0.8 on the autocorrelation. Next, running cycles were 
segmented without the use of thresholds, so that the method could be robust to speed changes. 
To segment the cycle, the maximum value of the anteroposterior angular rate in the first two 
seconds is detected, which represents the beginning of the first stride. Subsequent cycles are 
found, by exploiting the periodicity computed beforehand to find research windows in which 
the maximum value of the anteroposterior angular rate can be found. Each segment is 
guaranteed to contain an IC and a FC, given that the anteroposterior angular rate is maximum 
during the swing phase. 

The initial contacts are detected by searching for changes in the anteroposterior angular 
rate signal. The IC is detected by the identification of rough changes in the signals, that can be 
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highlighted with the computation of the first differential. A first estimation of the IC is made 
by identifying the minimum in the differential signal, which corresponds to the maximum rate 
of change that happens right after the initial contact. For this reason, the estimation of the IC 
is refined by looking backwards for the point where the angular rate rises above constant 
threshold. If heel strikes cause abrupt changes in the signals, the same cannot be said for the 
toe off events, which causes a small local maximum in the vertical acceleration, difficult to 
detect, which leads to the need for a further segmentation of the stride to allow an easier peak 
detection. The segmentation relies on the zero-crossing of the filtered angular rate signals. 
After the detection of the zero-crossings, the extremities of the FC research window were 
defined as in (2.4) and (2.5): 

𝑤௦௧௔௥௧ = 𝑧଴ +
(𝑧ଵ + 𝑧଴)

2
 (2.4) 

𝑤௘௡ௗ =
4(𝑧ଵ − 𝑤௦௧௔௥௧)

5
+ 𝑤௦௧௔௥௧ (2.5) 

Where z0 and z1 indicate the first and the second zero crossings found. In the window thus 
found, the minimum in the vertical acceleration can be more reliably found, especially at 
higher speeds.  

2.2.2.2 Reenalda et al 

In 2016 Reenalda et al. proposed a peak detection-based algorithm for the identification of 
running events. [66]   

Three well trained marathon runners were equipped with different inertial measurements 
units, with two attached to the feet by means of clips attached to the shoelaces and secured 
with tape. Each MIMU contained a 3D accelerometer (±16g), a 3D gyroscope (±1200 °/s) and 
a 3D magnetometer (±1.5 Gauss), all sampling at 1800 Hz. Their study was bereft of any gold 
standard, so no information about its performance is available. Stride detection was based on 
raw inertial data but, since no further explanation has been given, the stride segmentation 
implemented was the same as Falbiard et al. [63]   

The peak-detection based algorithm exploited the accelerometer norm to detect maxima 
within the segmented stride identified as ICs. The peak in the gyroscope norm that comes 
right after the peak in the accelerometer was identified as FC. 

2.2.2.3 Mo and Chow 

Mo and Chow evaluated the accuracy of three different methods for temporal events during 
jogging and running. For the purposes of the present work, from their result, the best 
performing one has been selected, which was the combination of the S-method, for the 
detection of the ICs, and the M-method, for the FCs, defined in the reference paper. [67]  

 

Eleven runners were recruited for the study and asked to jog (3.1±0.1 m/s) and run 
(4.1±1.2 m/s) on a 10m running track in a random order. Each of them was equipped with five 
IMUs, two of which attached to the dorsal surface of each foot by means of a tight strap. Each 
IMU comprised a triaxial accelerometer (±16g) and sampled at 200 Hz. The thus defined 
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combination was deemed to be capable of detecting temporal events with a MAD of 
0.006±0.005s on the detection of the ICs and 0.020±0.008s on the detection of the FCs. 

 

Figure 2-8- Figure taken from [67] that shows the positioning of four of the IMUs used in their study. 

In the S-method, the IC was defined by searching for the moment in which the norm of 
the acceleration exceeded a certain threshold (2g). The FCs were found by means of the M-
method, which consists of detecting a minimum in the acceleration norm in the region of 
interest, which comes after the second maximum in the acceleration signal. 

2.2.2.4 Chew et al. 

With the final goal of detecting stride length and running speed, Chew et al [68] recruited ten 
healthy subjects that were instructed to run on a treadmill for two 10-mintues sessions at six 
different walking to running speeds: 1.3, 4, 8, 9, 10 and 11 km/h. The subjects were all 
provided with two IMUs, attached to the shoelaces, (Figure 2-9) which were able to measure 
acceleration, with a range of ±16 g, and angular velocity for a range of ±2000 °/s with a 
sampling rate of 128 Hz. Their method reported a MAE of -0.3±14.7 ms on the detection of 
ICs and 4.45±18.04 ms on the detection of FCs. 

 

 

Figure 2-9- In the figure, taken from [68] , the positioning of the IMU is shown. 

The anteroposterior acceleration was analysed for the detection of the temporal events, 
since it presented two prominent local minimums, the first of which represents the IC while 
the second the FC. To detect these events, the first derivative of the anteroposterior 
acceleration is computed; then, the zero crossings of the derivative are found and considered 
as a possible event. Subsequently, a constant threshold (-8 m/s2) is applied: if the acceleration 
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in correspondence of the zero crossing is less than the threshold, then the zero crossings are to 
be considered running events. After all the events in the cycle have been found, the events 
with greater amplitude are identified as ICs, the others as FCs.  

2.2.2.5 Benson et al. 

Benson et al in 2019 developed an algorithm for the definition of running events based on 
data collected via IMUs placed on the feet. [69] Their method performed with a MAD of 
0.06±0.2 s on the detection of ICs and 0.01±0.06 s on the detection of FCs. 

Three different experiments were held, each in a different setting. All of the subjects were 
wearing triaxial accelerometers with a range of ±16 g, sampling at 200 Hz: 

1. Instrumented treadmill: Twelve recreational runners were recruited for the study 
and asked to run at slow, intermediate and fast self-selected speeds for 90 s. 

2. Indoor track: Twenty recreational runners were asked to run two 60-m trials for 
each of the three different self-selected speeds and to perform two different types 
of heel strike (rearfoot or forefoot) for a total of 12 trials. 

3. Outdoor: Twenty-two healthy runners were asked to run for 600m at a self-
selected speed, for 16 trials (4800 m total for each subject). 

The accelerometer signals were first pre-processed via a fourth order zero-lag Butterworth 
filter, cut-off 10 Hz, and they were trimmed by eliminating the beginning and the end of each 
trial, to ensure that all the signals analysed came from a steady run. The accelerometer method 
developed was based on different assumptions:   

1. The time between ipsilateral steps would be between 0.5 s and 1s, half for the 
contralateral ones; 

2. FC would occur not before 0.1 s after the detected IC. 

The norm of the accelerometer is exploited to search major positive peaks, distant at least 
0.5 s between each other, which are considered to be ICs. Once all the ICs are detected, a 
research window is defined by setting the lower bound at 0.1 s after the ICs, and the upper 
bound at the midpoint between the last and the next IC. In the thus defined research window, 
peaks are searched for: if a peak exists, it is set as FC, otherwise the maximum of the signal in 
that region is considered to be the FC. 

2.2.2.6 Yang et al. 

The research for more and more precise methods for the detection of temporal parameters 
during in-field running is currently evolving; in fact, recently, Yang et al. published a paper 
proposing two new methods for the detection of initial and final contacts [70] For their 
purpose, they collected data from thirty-six healthy players of an Australian football league 
team who underwent 30 m running efforts at three different speeds: 75%, 85% and 95% of 
their maximum speed, all while wearing the IMU device attached to their ankle, as shown in 
Figure 2-10. Said device was sampling with a 500 Hz sampling rate and measured both 
acceleration via a 3D accelerometer (±16 g) and angular velocity via a 3D gyroscope 
(±2000°/s). In total, they managed to collect 53280 steps, that were used to build the 
algorithm. The best performing combination returned a MAE between 5 and 37ms. 



49 

 

 
Figure 2-10- Figure taken from [70] showing the placement of the IMU on the ankle 

A pre-processing algorithm was first applied to the raw data, to eliminate the non-running 
sections from the signal. To successfully detect the running portion, first the square value of 
the acceleration in the three directions 𝐴௦௤௨௔௥௘ is computed as in (2.7): 

𝐴௦௤௨௔௥௘ = 𝐴௫
ଶ + 𝐴௬

ଶ + 𝐴௭
ଶ (2.7) 

This was done to enhance the peaks in the signal, making the difference between running 
and non-running phases more prominent. On the signal thus obtained, a sliding window of 
0.5s was applied. In each window, the average square value 𝐴௔௩௚ of the sum was computed as 
in (2.8): 

𝐴௔௩௚ =
∑ 𝐴௦௤௨௔௥௘

௡ା௦∗௙
௡

𝑠 ∗ 𝑓
 (2.8) 

Where f is the sampling frequency, s the amplitude of the sliding window. If 𝐴௔௩௚ exceeds a 
certain threshold for more than three consecutive seconds, that point is set as the beginning of 
the running period, while the end of said period is marked when the 𝐴௔௩௚ value drops below 
the set threshold.  

Two different algorithms were elaborated, one based on the accelerometer data and one based 
on the gyroscope. For the current work, only the method deemed to be the best performing 
was considered, which resulted to be a combination of the two: accelerometer based for the IC 
detection, and gyroscope based for the FC detection. In the accelerometer-based method, the 
vertical acceleration was exploited. First, the norm of the accelerometer was calculated, then 
the difference sample per sample was computed, as shown in (2.10): 

 

𝑆𝑞𝐷𝑖𝑓𝑓 = 𝐴௡௢௥௠(𝑖 + 1) − 𝐴௡௢௥௠(𝑖) (2.10) 

The local maximum in the square difference was then set as IC. To ease the detection, a 
stride segmentation algorithm was applied. Since in the paper no further segmentation method 
was described, the same autocorrelation-based segmentation presented in Falbiard et al. [63] 
was applied. The gyroscope-based algorithm exploited the norm of the gyroscope signals, 
filtered via a 2nd-order Butterworth low-pass filter with cut-off frequency of 10 Hz. The first 
local maximum in each window was then considered to be a FC. 
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2.3 Newly proposed method 

The method hereby proposed uses a set of templates to search for and identify the running 
temporal events. A summary of the method is provided via flowchart in Figure 2-11. 

 

Figure 2-11 – Flowchart highlighting the steps of the template-based method 

Before any kind of elaboration, the raw inertial signals have been rotated so that the 
vertical component would be perpendicular to the ground.  
Then, instead of a traditional filtering, the re-aligned accelerations and angular velocities have 
been denoised by means of a wavelet transformations-based method. This method has been 
chosen to avoid the selection of a numerical threshold for the cut-off frequency, which could 
be dependent on running speed. For the sake of clearness, the implementation of the method 
is performed via a filtering cascade made by low-pass and high-pass filters, which all share 
the same cut-off frequency whose value depends on the mother wavelet chosen. After each 
level (i.e. a filter), a down sampling of the signals is performed, which halves the number of 
the samples. In particular, the mother wavelet chosen was one of the Daubechies, ‘db6’, stated 
to be the most suitable for gait analysis by Ji et al [71] who analysed the performances of 32 
different mother wavelets in term of gait events detection through the computation of time-
errors with respect to foot switches events and F1score, based on the definition of precision 
and recall.   
Signals were decomposed to the second level, choice made empirically after a preliminary 
tuning of the level parameter by looking at the effects of the decomposition at different levels: 
level 1 was deemed to have almost no effect on the signals, which was the same as applying a 

low pass filter with a cut-off frequency of 0.5 ∗
௙௦

ଶ
 Hz (that is 25 Hz for the signals acquired at 

100 Hz and 50 Hz for the signals acquired at 200 Hz) to the signals, while level 3 erased too 

much valuable information from them, as if the 0.5 ∗
௙௦

ଶ
 Hz lowpass filter had been applied to 

the signal three times in a row, halving the sampling frequency for each step (e.g. 25 Hz, then 
12.5 Hz, then 6 Hz for the signals acquired at 100 Hz). For instance, in Figure 2-12, Figure 
2-13 and Figure 2-14 a visual representation of the results of the decompositions cited on the 
anteroposterior acceleration of a sprinter is provided. Thus, to denoise inertial signals (with 
maximum frequency component equal to ~ 15 Hz for signals acquired at 100 Hz and ~30 Hz 
for signals acquired at 200 Hz), they were firstly decomposed into approximation and detail 
coefficients at second level, which correspond to low and high frequency coefficients 
respectively.  

At this point, in the literature, a fine tuning of the denoising method is usually performed, 
in order to choose a threshold to apply on both the approximation and the detail coefficients: 
all the coefficients that surpass the set threshold would be discarded. However, to avoid the 
tuning of a further parameter, the implemented denoising is based on the one proposed by 
Soangra et al. [26] , which considers only the approximation components. Thus, all the detail 
coefficients were discarded, and the signals were reconstructed starting from the 
approximation coefficients. 
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Figure 2-12 – DWT decomposition of a portion of the anteroposterior acceleration at level 1 using s ‘db6’ mother 
wavelet. In red, the original signal, in blue the approximation coefficients (which are equal to the denoised signal in the 
tecnique used in this work) and in greed the detail coefficients. 

 

Figure 2-13 - DWT decomposition of a portion of the anteroposterior acceleration at level 2 using s ‘db6’ mother 
wavelet. In red, the original signal, in blue the approximation coefficients (which are equal to the denoised signal in the 
tecnique used in this work) and in greed the detail coefficients. 
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Figure 2-14 - DWT decomposition of a portion of the anteroposterior acceleration at level 3 using a ‘db6’ mother 
wavelet. In red, the original signal, in blue the approximation coefficients (which are equal to the denoised signal in the 
tecnique used in this work) and in greed the detail coefficients. 

To allow an easier evaluation, each trial has been segmented by means of the stride 
segmentation as presented by Falbiard et al. [63] which provides a mid-swing to mid-swing 
segmentation using the maxima in the mediolateral component of the gyroscope signals, 
filtered at a stride-frequency dependant cut-off frequency (0.6*stride Frequency), so that it 
would automatically adapt to the different speeds. 

After the denoising procedure, a template-based method was implemented to estimate the 
initial and final contact of running cycles coming from trials at different paces. Twenty 
templates were extracted: 5 mid-swing to mid-swing running cycles for each speed dataset 
(i.e. at 8 km/h, 10 km/h, 14 km/h and sprints), by annotating the signals with IC and FC with 
the help of the data acquired with the gold standard. The different combinations of signals for 
the template construction were to select the best performing one, which consisted of the 
adoption of acceleration norm and mediolateral angular velocity. The subjects from whom the 
strides templates where taken (i.e. training set) were not considered in the evaluation of the 
performance of the method.  

For each segmented stride, an algorithm based on the dynamic time warping was 
developed. This choice was made to ensure that the algorithm would be speed adapting, since 
the dynamic time warping is a technique which highly relies on the similarity between two 
signals, which can also be of different lengths: as long as it has the templates of the 
morphology in exam, it should not incur in any problem. This comes from the idea that, by 
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covering as many morphologies as possible, the algorithm would be able to detect the running 
temporal events of different subjects running at different speeds. The dynamic time warping 
takes the two signals and deforms them so that the distance computed between them would be 
the least.  

The distance measure was chosen empirically, by comparing the performances of the 
algorithm with all the different types of distances available: squared, absolute and Euclidean. 
The distance chosen did not affect significatively the performances of the method, but the 
Euclidean distance, defined as in (2.11), reported slightly better results (~1.3% decrease in the 
RMSE values).  

𝑑௠௡(𝑋, 𝑌) =  ඥ(𝑥௠ − 𝑦௡)ଶ   (2.11) 

where X and Y are both signals, it returns the distance between the mth sample of X and 
the nth sample of Y, 𝑑௠௡ is a MxN matrix. After computing the distances between the current 
stride and all the templates, the algorithm assigns the most similar template to each stride, that 
is the one that returned the shortest distance. Within the matrix, the algorithm finds a 
continuous path, called warping path, that corresponds to the minimum distance. The 
identification of the warping path results in two deformation vectors, defined as in (2.12), one 
for each signal, that indicates how the samples of each signal should be rearranged to 
maximise the similarity between the two signals.  

𝑦ଵ(𝑥ଵ) → 𝑌ଵ ቀ𝑥ଵ௪௔௥௣௘ௗ
ቁ ; 𝑦ଶ(𝑥ଶ) → 𝑌ଶ ቀ𝑥ଶ௪௔௥௣௘ௗ

ቁ (2.12) 

where 𝑦ଵand 𝑦ଶ are the two signals, 𝑥ଵ and 𝑥ଶ are the original way the samples are sorted, 
𝑌ଵand 𝑌ଶ are the warped signals and lastly 𝑥ଵ௪௔௥௣௘ௗ

 and 𝑥ଶ௪௔௥௣௘ௗ
 are the two deformation 

vectors, as in Figure 2-15.  
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Figure 2-15 – Description of the method for the identification of the events. The way the two signals are deformed is 
shown graphically at the top of the image, while at the bottom a sample-wise representation is shown. To deform the signal, 
some sample will be repeated, as defined by the deformation vector, indicated by the figure as ‘Original Sample’, so the 
positioning of the events will not match exacltly what is in the template sample-wise, but the value of the signal in that 
instance will still be the same. When the two signals are both warped, they are ‘equal’, which means that finding the event on 
the template signal when is warped is the same of finding the event on the new signal, as it will happen on the same sample. 

Once the template is identified, the algorithm takes note of the IC as it was in the 
template, and it translates it so that it could transfer onto the stride in exam. This is possible 
because the dynamic time warping algorithm returns the distances between the signal as well 
as the way they should be deformed to obtain the highest similarity. In order to find the exact 
location of the IC on the analysed signal, the algorithm takes note on where the IC is on the 
template sample-wise (Figure 2-16). After the deformation, it investigates the deformation 
vector to find the new position of the template IC. Since after the deformation the signals are 
ideally equal, what happens on the nth sample for the template, happens for the same sample 
on the newly analysed signal. Therefore, the IC is detected on the warped analysed signal. 
(Figure 2-17) Finally, the information is translated to the non-warped analysed signal by 
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taking into consideration its deformation vector (Figure 2-18), as described in (2.13).The 
same is then performed for the final contact. 

𝑌൫𝐼𝐶௪௔௥௣௘ௗ൯ → 𝑦(𝐼𝐶)(2.13) 

where the value of the signal in 𝑌൫𝐼𝐶௪௔௥௣௘ௗ൯ equals the value in 𝑦(𝐼𝐶). 

 

 

Figure 2-16 – First step, non warped signals. The signal is matched with the template with the highest similarity. 

 

 

Figure 2-17 – Second step, signals warping. The signals are deformed to obtain the highest similarity. The IC is 
traslated by the deformation. The algorithm takes note of the new IC sample, and translates the information on the analysed 
signal. 
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Figure 2-18 – Step three, the information is reported on the orininal non-warped signals. The event is detected. 
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Chapter 3 

Results 

The comparison between the nine different methods from the literature [61-64, 66-70] 
lead to the production of a set of descriptive statistics by exploiting the available gold 
standard data, e.g. pressure insoles or stereophotogrammetry system. 

The errors on the events have been computed in terms of root mean square error (RMSE) 
defined as follows: 

𝑅𝑀𝑆𝐸 (𝑠) =  ඨ∑ ൫𝐺𝐸ெூெ௎೔
− 𝐺𝐸ீௌ೔

൯
ଶே

௜ୀଵ

𝑁
   (3.1) 

where N is the number of observations, 𝐺𝐸ெூெ௎ represents the temporal events identified 
via the methods based on the inertial signals and 𝐺𝐸ீௌ represents the temporal events 
identified by the gold standard. 

Additionally, the percentage of missed events, that is the percentage of events that the 
method failed to detect, was computed as in (3.2). The percentage of extra events, that is the 
number of events detected by the methods but not detected by the gold standard, computed as 
in (3.3), was not reported as it remained under a 2% threshold with all the analysed methods. 

𝑀𝑖𝑠𝑠𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠 (%) =
# 𝑚𝑖𝑠𝑠𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

# 𝑡𝑟𝑢𝑒 𝑒𝑣𝑒𝑛𝑡𝑠
∗ 100 (3.2)  

𝐸𝑥𝑡𝑟𝑎 𝑒𝑣𝑒𝑛𝑡𝑠 (%) =
# 𝑒𝑥𝑡𝑟𝑎 𝑒𝑣𝑒𝑛𝑡𝑠

# 𝑡𝑟𝑢𝑒 𝑒𝑣𝑒𝑛𝑡𝑠
∗ 100 (3.3)  

The errors on the durations, i.e. stride duration, stance duration and swing duration, have 
been computed in terms of mean absolute percentage error (MAPE) by using the formula in 
(3.4): 

𝑀𝐴𝑃𝐸 (%) =

∑ ฬ
𝐷ெூெ௎೔

− 𝐷ீௌ೔

𝐷ீௌ௜
ฬே

௜ୀଵ

𝑁
∗ 100 (3.4) 
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where N is the number of observations, 𝐷ீௌ is the duration obtained from the gold 
standard, and 𝐷ெூெ௎ is the one computed from the inertial data. 

For the novel method, sensitivity has been computed as in (3.5) by considering the 
number of missed events for each dataset compared to the total number of strides analysed. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) =
# 𝑠𝑡𝑟𝑖𝑑𝑒𝑠

# 𝑠𝑡𝑟𝑖𝑑𝑒𝑠 + # 𝑚𝑖𝑠𝑠𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠
∗ 100 (3.5) 

In this chapter, the above-mentioned results are shown, highlighting which method for the 
estimation of running events is the most suitable for each analysed dataset. Furthermore, a 
method was selected as the best trade-off method across all the tested running paces.  

Lastly, the performances of the novel template-based method presented in this work were 
computed and compared to the results obtained via the best trade-off method. The comparison 
was carried out through Student’s t-tests on grand mean values of running cycle, stance and 
swing durations.  

3.1 Results of methods from the literature 

In this section, the results of the nine methods from the state of the art described in 
Chapter 2 are presented. In Table 3.1 the number of total running cycles analysed for each 
speed is reported. 

 

 8 km/h 10 km/h 14 km/h Sprints 

Running cycles (#) 19014 17337 22991 2091 

Table 3.1 – Summary of the number of total running cucles analysed for each speed 

3.1.1 Comparison of methods performances at 8 km/h 

The first dataset to be analysed is the one composed by trials at 8 km/h. In this dataset, 
both outdoor and indoor conditions are included. The results, that were obtained by 
comparing the temporal events computed to the ones acquired thanks to the gold standard, are 
shown in Table 3.2. RMSE ranging from 0.013 s to 0.025 s are reported on the detection of 
the IC, from 0.022 to 0.090 s on the detection of the FC, and a percentage of missed events 
that ranges from 0% to 3.6%. This leads to MAPEs ranging from 1.1% to 2.5% on the 
Running cycle, from 5.9% to 24.9% on the stance duration and from 4.7% to 20.1% on the 
swing duration. 

The best method for the identification of the ICs, based on the RMSE, is the one proposed 
by Schmidt et al. [62] . Even if this method was proposed by the authors for higher speeds, 
the different sampling frequency and sensor positioning adopted for the data acquisition made 
the signals morphology at 8 km/h in this application suitable for the GE definitions by 
Schmidt et al.  This method enabled an RMSE of 0.013 s and a 3.1% of missed events. As for 
FCs, the method by Blauberger et al. [61] was identified as the most suitable for 8 km/h, 
reporting an RMSE of 0.022 s and a 0.7% of missed events. In terms of general performance, 
the two methods are comparable as they return similar errors. Overall, the method proposed 
by Blauberger et al. [55] is suggested for running analysis at 8 km/h sampled at 100 Hz as it 
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reported the least amount of missed events on both ICs and FCs and a MAPE of 1.4%, 17% 
and 13.4% on the stride, stance and swing durations respectively.  

A visual representation of the performances of the nine different methods on 8 km/h is 
shown in Figure 3-1, where a running cycle between two consecutive mid-swing instants is 
shown.  

 

   8 km/h   

Method 

IC FC Stride Duration Stance Duration Swing 
Duration 

RMS
E (s) 

Missed 
events (%) 

RMSE 
(s) 

Missed 
events 
(%) 

Mean ± 
std (s) 

MAPE 
(%) 

Mean ± 
std (s) 

MAPE 
(%) 

Mean 
± std 
(s) 

MAPE  
(%) 

Blauberger 
et al 

0.016 0.1 0.022 0.7 0.486± 
0.019 

1.4 0.179± 
0.058 

17 0.307± 
0.054 

13.4 

Schmidt et 
al 

0.013 3.1 0.025 0.1 0.486± 
0.176 

1.5 0.130± 
0.014 

24.9 0.356± 
0.015 

20.1 

Falbiard et 
al 

0.022 0.3 0.036 0.3 0.486± 
0.011 

0.8 0.155± 
0.009 

17.7 0.221± 
0.011 

14.3 

Bailey et al 0.016 3.6 0.029 0.3 0.486± 
0.020 

2 0.195± 
0.024 

5.9 0.292± 
0.024 

4.7 

Reenalda 
et al 

0.024 0.3 0.064 0.3 0.486± 
0.024 

2 0.144± 
0.023 

21.1 0.342± 
0.030 

16.9 

Mo et al 0.023 0 0.066 0.1 0.486± 
0.027 

2.5 0.165± 
0.035 

17 0.321± 
0.035 

14 

Chew et al 0.017 0 0.090 0.3 0.486± 
0.014 

1.1 0.193± 
0.013 

7.9 0.293± 
0.020 

7 

Benson et 
al 

0.023 0.1 0.040 0.3 0.487± 
0.019 

1.8 0.188± 
0.030 

6.6 0.298± 
0.031 

5.4 

Yang et al 0.025 0.3 0.049 13.9 0.486± 
0.014 

1.4 0.166± 
0.033 

17.2 0.320± 
0.037 

13.5 

Table 3.2 - RMSE and missed events for IC and FC, MAPE for stride, swing and stance duration obtained via each of 
the tested method over the 8 km/h dataset 
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Figure 3-1 – Example image of a mid-swing to mid-swing cycle with the events detected via each of the different 
methods over the medio-lateral projection of the angular velocity at 8 km/h. The two different colors of the points 
differentiate ICs, in blue, and FCs, in red. Each method is associated to a different symbol, as stated in the legend. The two 
black filled points are the actual events, detected via the gold standard. The black lines show the signal acquired via the 
pressure insoles. 

3.1.2  Comparison over 10 km/h 

The remaining trials of the first dataset, e.g., the ones at 10 km/h, were then analysed 
separately in respect to the 8 km/h, so that any possible difference dictated by the slightly 
higher speed could be underlined.  

Table 3.3 shows the results obtained with the methods from the literature. RMSE ranging 
from 0.014 s to 0.025 s are reported on the detection of the IC, from 0.021 to 0.087 s on the 
detection of the FC, and a percentage of missed events that ranges from 0% to 4.6%. This 
leads to MAPEs ranging from 1.1% to 2.6% on the Running cycle, from 6% to 24.1% on the 
stance duration and from 4.5% to 18.5% on the swing duration. 

For this set of data, the best performance in both terms of IC and FC detection is achieved 
by Schmidt et al. [62] with a RMSE of 0.014 s and a 2.1% of missed events on the IC and a 
RMSE of 0.022 s and a 0.1% of missed events on the FC. This method also provided a low 
MAPE on the durations, which adds up to 1.2% for the stride duration, 7.6% for the stance 
duration and 6.3% for the swing duration. 

By means of example, in Figure 3-2 a mid-swing to mid-swing running cycle with the 
annotations of the detections of all the methods is shown. 
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10 km/h 

Method 

IC FC Stride 
Duration 

Stance 
Duration 

Swing Duration 

RMSE 
(s) 

Missed 
events (%) 

RMSE 
(s) 

Missed 
events 
(%) 

Mean± 
std (s) 

MAPE 
(%) 

Mean± 
std (s) 

MAPE 
(%) 

Mean± 
std (s) 

MAPE  
(%) 

Blauberger 
et al 

0.016 0.1 0.021 0.5 0.485± 
0.019 

1.5 0.169± 
0.051 

16.8 0.316± 
0.054 

12.4 

Schmidt et 
al 

0.014 2.1 0.022 0.1 0.485± 
0.015 

1.2 0.190± 
0.011 

7.6 0.295± 
0.019 

6.3 

Falbiard et 
al 

0.022 0.3 0.038 0.3 0.485± 
0.011 

0.9 0.148± 
0.008 

18.2 0.338± 
0.012 

13.9 

Bailey et al 0.017 4.6 0.027 0.4 0.485± 
0.021 

2 0.192± 
0.022 

6 0.293± 
0.024 

4.5 

Reenalda et 
al 

0.025 0.3 0.061 0.3 0.485± 
0.025 

2.2 0.140± 
0.023 

21 0.345± 
0.031 

16 

Mo et al 0.024 0 0.063 0.1 0.485± 
0.027 

2.6 0.166± 
0.035 

15.8 0.319± 
0.035 

12.2 

Chew et al 0.018 0.3 0.087 0.3 0.485± 
0.016 

1.4 0.129± 
0.019 

24.2 0.356± 
0.015 

18.5 

Benson et al 0.024 0 0.036 0.3 0.485± 
0.020 

1.8 0.178± 
0.28 

6.1 0.308± 
0.031 

4.9 

Yang et al 0.025 0.3 0.044 15.4 0.485± 
0.015 

1.4 0.162± 
0.029 

17.2 0.321± 
0.034 

12.2 

Table 3.3 - RMSE and missed events for IC and FC, MAPE for tride, swing and stance duration obtained via each of 
the tested method over the 10 km/h dataset 
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Figure 3-2 - Example image of a mid-swing to mid-swing period with the events detected via each of the different 
methods over the medio-lateral projection of the angular velocity at 10 km/h. The two different colors of the points 
differentiate ICs, in blue, and FCs, in red. Each method is associated to a different symbol, as stated in the legend. The two 
black filled points are the actual events, detected via the gold standard. The black lines show the signal acquired via the 
pressure insoles. 

3.1.3 Comparison over 14 km/h 

The results of the nine methods over the 14 km/h trials is reported in Table 3.4. RMSE 
ranging from 0.026 s to 0.054 s are reported on the detection of the IC, from 0.020 to 0.066 s 
on the detection of the FC, and a percentage of missed events that ranges from 0% to 9%. 
This leads to MAPEs ranging from 1% to 2.5% on the running cycle, from 12.8% to 25.7% 
on the stance duration and from 4.5% to 12.6% on the swing duration. 

 Overall, the best method for the detection of the ICs for this speed is Benson et al. 
[69] which reported an RMSE of 0.026 s and a 0.04% of missed events, while Falbiard et al. 
[63] was the best performing on the detection of FCs, with an RMSE of 0.020 s and a 1.2% of 
missed events.  

All-embracing, the choice for the most fitting method for this dataset falls on Benson et al. 
that also resulted in a MAPE of 1.3% on the stride duration, 13.3% on the stance duration and 
4.7% on the swing duration.  

An example mid-swing to mid-swing cycle is reported in Figure 3-3, where the events 
identified by each method are shown against the vertical displacement of the foot. 

14 km/h 
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Table 3.4 - RMSE and missed events for IC and FC, MAPE for tride, swing and stance duration obtained via each of 
the tested method over the 14 km/h dataset 

14 km/h 

Method 

IC FC Stride 
Duration 

Stance 
Duration 

Swing 
Duration 

RMSE 
(s) 

Missed 
events (%) 

RMSE 
(s) 

Missed 
events 
(%) 

Mean± 
std (s) 

MAPE 
(%) 

Mean± 
std (s) 

MAPE 
(%) 

Mean± 
std (s) 

MAPE  
(%) 

Blauberger 
et al 

0.040 0.9 0.059 1.7 0.689± 
0.015 

1.2 0.234
± 

0.019 

17.3 0.455
± 

0.023 

8.2 

Schmidt et 
al 

0.041 1.8 0.031 0.8 0.690± 
0.021 

1.3 0.208
± 

0.013 

14.5 0.483
± 

0.020 

7.1 

Falbiard et 
al 

0.048 1.3 0.020 1.2 0.069± 
0.010 

1 0.188
± 

0.008 

17.3 0.501
± 

0.012 

8.9 

Bailey et al 0.035 4.6 0.066 1.2 0.689± 
0.020 

2.1 0.263
± 

0.023 

12.8 0.426
± 

0.025 

4.5 

Reenalda et 
al 

0.055 1.3 0.024 1.4 0.689± 
0.018 

1.1 0.185
± 

0.013 

23.4 0.503
± 

0.021 

11.9 

Mo et al 0.032 0.5 0.056 0.7 0.689± 
0.021 

1.8 0.116
± 

0.091 

21.8 0.439
± 

0.086 

10.6 

Chew et al 0.027 0.5 0.057 0.6 0.689± 
0.027 

2.5 0.197
± 

0.019 

19.3 0.491
± 

0.019 

9.7 

Benson et al 0.026 0 0.038 0.8 0.689± 
0.013 

1.5 0.267
± 

0.026 

13.3 0.422
± 

0.027 

4.7 

Yang et al 0.054 1.2 0.052 9 0.689± 
0.015 

1.4 0.193
± 

0.032 

25.7 0.596
± 

0.035 

12.6 
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Figure 3-3- Example image of a mid-swing to mid-swing period with the events detected via each of the different 
methods over the medio-lateral projection of the angular velocity at 14 km/h. The two different colors of the points 
differentiate ICs, in blue, and FCs, in red. Each method is associated to a different symbol, as stated in the legend. The two 
black filled points are the actual events, detected via the gold standard. The black line shows the vertical displacement of the 
foot. The vertical displacement presents a offset equal to ~10 cm due to the treadmill height. 

3.1.4 Comparison over sprinters 

The data acquired on sprinters (20-32 km/h) were analysed using all the nine different 
methods from the literature described in Table 2.1. The data thus obtained, that is the 
identification of ICs and FCs for each method, was then compared to the gold standard data, 
acquired from pressure insoles for this specific dataset.  

For the final results, 11 trials were discarded due to the deterioration of the pressure 
insoles while running because of the high impact with the ground. This problem arose at the 
very beginning of the data acquisition, thus was further investigated (see Appendix 1) to 
cover the sensorised insoles and reduce the likelihood of any damage during the trials. 
RMSEs computed for each running event, reported in Table 3.5, illustrate the accuracy of 
each algorithm. RMSE ranging from 0.022 s to 0.083 s are reported on the detection of the IC, 
from 0.046 to 0.094 s on the detection of the FC, and a percentage of missed events that 
ranges from 0.9% to 16.7%. This leads to MAPEs ranging from 2.1% to 13.3% on the 
running cycle, from 20% to 35.5% on the stance duration and from 12.2% to 28.8% on the 
swing duration. 

Starting from the IC, the best performing method is Falbiard et al. [63] with an RMSE of 
0.022 s for the IC, even though it reported a 4.9% of missed events. Speaking of FC, on the 
other hand, the best performing method is the one proposed by Yang et al. [70] with an 
RMSE of 0.044 s with a 7.3% of missed events. Grouping IC and FC results, the best method 
on this dataset is the one proposed by Falbiard et al. [16] with a RMSE of 0.022 s on the 
detection of the IC (e.g., the second best RMSE on the IC) and 0.047 s on the detection of the 
FC (e.g., the best RMSE on the FC). This method reported a MAPE of 2.1%, 31.1%, 20% on 
stride, stance and swing duration respectively. A single mid-swing to mid-swing period has 
been visually represented to give a hint of the performances of each method at higher speed in 
Figure 3-4. 
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Table 3.5 – RMSE and missed events for IC and FC, MAPE for stride, swing and stance duration obtained via each of 
the tested method over the sprinters dataset (20-32 km/h) 

Sprint 

Method 

IC FC Stride Duration Stance Duration Swing Duration 

RMSE 
(s) 

Missed 
events 

(%) 

RMSE 
(s) 

Missed 
events 
(%) 

Mean
± 

std 
(s) 

MAPE 
(%) 

Mean 
± 

std (s) 

MAPE 
(%) 

Mean 
± 

std (s) 

MAPE  
(%) 

Blauberger 
et al 

0.035 1.9 0.056 3.3 0.560
± 

0.062 

5.7 0.200± 
0.048 

25.1 0.358± 
0.052 

15.3 

Schmidt et 
al 

0.038 16.7 0.046 2.1 0.558
± 

0.038 

3.1 0.133± 
0.029 

28.5 0.423± 
0.029 

17.8 

Falbiard et 
al 

0.022 4.9 0.047 5.1 0.558
± 

0.035 

2.1 0.129± 
0.031 

31.1 0.429± 
0.026 

20 

Bailey et al 0.052 6.5 0.059 8 0.556
± 

0.068 

6.9 0.201± 
0.060 

22.1 0.362± 
0.053 

12.4 

Reenalda et 
al 

0.048 0.9 0.065 3.4 0.558
± 

0.056 

5.1 0.158± 
0.036 

23.8 0.400± 
0.046 

15.9 

Mo et al 0.082 1.2 0.086 4.5 0.554
± 

0.110 

13.3 0.116± 
0.091 

51.5 0.439± 
0.086 

28.8 

Chew et al 0.047 3.8 0.094 6.8 0.560
± 

0.052 

5.4 0.175± 
0.038 

20 0.383± 
0.039 

12.2 

Benson et al 0.083 14 0.083 16.2 0.599
± 

0.050 

8.7 0.214± 
0.052 

35.6 0.377± 
0.081 

22.3 

Yang et al 0.038 4.7 0.044 7.3 0.559
± 

0.048 

4.4 0.165± 
0.041 

23.2 0.394± 
0.048 

15.7 
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Figure 3-4 –Example image of a mid-swing to mid-swing segment with the events detected via each of the different 
methods over the medio-lateral projection of the angular velocity of a sprinter. The two different colors of the points 
differentiate ICs, in blue, and FCs, in red. Each method is associated to a different symbol, as stated in the legend. The two 
black filled points are the actual events, detected via the gold standard. The black lines show the signal acquired via the 
pressure insoles. 

3.1.5 Choice of the best trade-off method 

 After analysing the performances of each method on the entirety of the data acquired, 
a further choice was made to identify the method that provided acceptable performance on all 
four datasets. The choice was made by considering the RMSE, by looking for a method which 
resulted in a RMSE lower than 0.030 s for both the IC and the FC, and a MAPE lower that 
5% for the running cycle, 20% for the stance duration and 15% for the swing duration for all 
the speeds considered, while maintaining a percentage of missed events below 4%. 

By following this criterion, the trade-off method can be identified as the one proposed by 
Blauberger et al. [61] that majorly met the criterion utilise, whose results on all datasets are 
summarized in Table 3.2. 
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Blauberger et al 

Dataset 

IC FC Stride Duration Stance 
Duration 

Swing 
Duration 

RMSE 
(s) 

Missed 
events 

(%) 

RMSE 
(s) 

Missed 
events 
(%) 

Mean± 
std (s) 

MAPE 
(%) 

Mean± 
std (s) 

MAPE 
(%) 

Mean± 
std (s) 

MAPE  
(%) 

8 km/h 0.016 0.1 0.022 0.7 0.486± 
0.018 

1.5 0.179± 
0.058 

17 0.307± 
0.060 

13.5 

10 km/h 0.016 0.1 0.021 0.5 0.485± 
0.019 

1.5 0.169± 
0.051 

16.8 0.316± 
0.054 

12.4 

14 km/h 0.040 0.9 0.059 0.5 0.689± 
0.015 

1.5 0.234± 
0.019 

16.8 0.455± 
0.023 

12.4 

Sprint 0.035 1.9 0.056 3.3 0.559± 
0.062 

5.7 0.200± 
0.048 

25.1
2 

0.358± 
0.052 

15.3 

Table 3.6 – Summary of the results obtained by the best method identified for all the four speed ranges. The results are 
shown in terms of RMSE and missed events for IC and FC, and in terms of MAPE for the durations (stride, stance and 
swing) 

3.2 Novel method results 

After identifying the best method suitable for a wide speed range among the ones 
proposed in the literature, the new method has been investigated. 

First of all, different combinations of signals were tested for the definition of the 
templates:  

 only accelerometer norm both for the identification of IC and FC,  
 accelerometer norm for the IC and gyroscope norm for the FC,  
 vertical accelerometer for the identification of the IC and mediolateral gyroscope 

for the identification of the FC, 
 accelerometer norm for the IC and mediolateral gyroscope for the FC. 

In Table 3.7 the results obtained via the new method with the use of the accelerometer 
norm are shown. The RMSE for the IC detection is always lower than 0.033 s on the detection 
of the IC, while it appears to be higher for the detection of the FC, with a maximum RMSE of 
0.057 s on the detection of the FC for the sprinter dataset. 
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Template-based method – IC and FC on acceleration 
norm 

Dataset 

IC FC 

RMSE 
(s) 

Missed 
events (%) 

RMSE 
(s) 

Missed 
events (%) 

8 km/h 0.020 0 0.035 0 

10 km/h 0.021 0 0.037 0 

14 km/h 0.033 0.5 0.032 0.6 

Sprint 0.033 0.9 0.057 1.5 

Table 3.7 – Table showing the results of the template-based method while using the accelerometer norm for the 
detection of both IC and FC. 

Results from the second set of templates (e.g., adding the gyroscope norm) are shown in 
Table 3.8. It can be noted that the RMSE for the detection of the IC rose up to 0.053 s, which 
is higher than the one obtained when using the accelerometer norm alone. 

Template-based method – IC on the acceleration 
norm, FC on the angular rate norm 

Dataset 

IC FC 

RMSE 
(s) 

Missed 
events (%) 

RMSE 
(s) 

Missed 
events (%) 

8 km/h 0.020 0 0.053 0.1 

10 km/h 0.021 0 0.048 0.1 

14 km/h 0.033 0.5 0.038 0.6 

Sprint 0.033 0.3 0.053 1.3 

Table 3.8 – Table showing the results of the template-based method while using the accelerometer norm for the 
detection of the IC and the gyroscope norm for the detection of the FC 

. In Table 3.9 the results concerning the search of the IC on the vertical acceleration and 
the FC on the mediolateral gyroscope are shown. In this table, it can be noted that the RMSE 
on the detection of the IC reached 0.034 s, while it resulted to be lower than 0.049 s for the 
FC. 
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Template-based method – IC on vertical acceleration 
and FC on medio-lateral angular rate 

Dataset 

IC FC 

RMSE 
(s) 

Missed 
events (%) 

RMSE 
(s) 

Missed 
events (%) 

8 km/h 0.024 0 0.026 0 

10 km/h 0.021 0 0.024 0 

14 km/h 0.034 0.4 0.046 0 

Sprint 0.034 1.2 0.049 0.7 

Table 3.9 – Table showing the results of the template-based method when using the vertical acceleration for the 
detection of the IC, and the mediolateral gyroscope for the detection of the FC 

By comparing these results in terms of RMSE, we can conclude that the best combination 
for the detection of both temporal events is the one achieved by the use of the acceleration 
norm (which performed 20% better than the vertical acceleration norm in terms of RMSE on 
the 8 km/h dataset – 0.020 s of RMSE using the acceleration norm and 0.024 s using the 
vertical acceleration) for the detection of the IC, and the mediolateral gyroscope for the 
detection of the FC, that yields the lower RMSE for all the speeds on the detection of the FC 
(e.g., 0.049 s using the mediolateral gyroscope, 0.054 s using the gyroscope norm and 0.057 s 
using the acceleration norm). 

All considered, the selected templates, whose results are reported in Table 3.10, enabled a 
RMSE lower than 0.033 s and a missed events percentage lower than 0.5% for the detection 
of the IC across the whole speed range, and RMSE lower than 0.049 s and missed events 
percentage lower than 0.7 s for the detection of the FC.  

Moreover, the MAPE results lower than 4% for the stride duration, lower than 26% for 
the stance duration and lower than 15% for the swing duration. 
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Selected template-based method – IC on the acceleration norm, FC on the mediolateral angular rate 

Dataset 

IC FC Stride Duration Stance Duration Swing 
Duration 

RMSE 
(s) 

Missed 
events (%) 

RMSE 
(s) 

Missed 
events 
(%) 

Mean± 
std (s) 

MAPE 
(%) 

Mean± 
std (s) 

MAPE 
(%) 

Mean± 
std (s) 

MAPE  
(%) 

8 km/h 0.020 0 0.026 0 0.486± 
0.014 

1.2 0.208± 
0.021 

6.9 0.278
± 

0.020 

5.5 

10 km/h 0.021 0 0.024 0 0.485± 
0.016 

1.3 0.199± 
0.019 

7.1 0.286
± 

0.020 

5.4 

14 km/h 0.033 0.5 0.046 0.6 0.684± 
0.033 

3.4 0.238± 
0.030 

16.1 0.444
± 

0.030 

7.6 

Sprint 
0.033 

0.3 0.049 0.7 0.560± 
0.041 

3.7 0.196± 
0.045 

26 0.362
± 

0.040 

14.3 

Table 3.10 - Summary of the results obtained by the template method for all the four speed ranges. The results are 
shown in terms of RMSE and missed events for IC and FC, and in terms of MAPE for the durations (stride, stance and 
swing). 

Finally, the specificity for this method was computed and reported in Table 3.11. The 
value is equal or higher than 95% on all the speeds considered. 

Dataset Number of total strides Number of total missed events Specificity (%) 

8 km/h 38028 176 99.5 

10 km/h 34674 176 99.5 

14 km/h 45982 316 99.3 

Sprint 4182 220 95.0 

Table 3.11 – Specification used for the computation of the specificity. In the table, the total number of strides analysed 
and the total number of missed events is shown for each speed, together with the specificity derived from these data. 

3.2.1 Sensibility analysis 

To test the sensibility of the method to changes made to the denoising method, a 
preliminary investigation on the denoising parameters has been made by varying the 
denoising level and the mother wavelet exploited. In particular, the method was 
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further tested by employing: no filtering method, whose results are reported in Table 
3.12, decomposition to level 1 and level 3 using Daubachies 6, in Table 3.13 and 
Table 3.14 respectively, and Symlets 5, in Table 3.15 and Table 3.16, which was the 
second best mother wavelet recommended by Ji et al [71]  for gait analysis. Variations 
ranging from 3.6 to 130% on the RMSE of the events (IC and FC) and from 7 to 127% 
on the MAPE of the durations (running cycle, stance duration and swing duration) 
with respect to the results obtained via the decomposition to level 2 using Daubachies 
6 are observed. 

No filtering method employed 

Dataset 

IC FC Stride 
Duration 

Stance 
Duration 

Swing Duration 

RMSE (s) RMSE (s) MAPE (%) MAPE (%) MAPE (%) 

8 km/h 0.029 0.037 2.6 10.2 7.7 

10 km/h 0.029 0.039 2.7 11.1 8.1 

14 km/h 0.028 0.049 2.7 14.7 7.1 

Sprint 0.034 0.044 3.0 22.8 12.7 

Table 3.12 – Results obtained via the template-based method bereft of any filtering 

Daubachies 6 – level 1 

Dataset 

IC FC Stride 
Duration 

Stance 
Duration 

Swing Duration 

RMSE (s) RMSE (s) MAPE (%) MAPE (%) MAPE (%) 

8 km/h 0.031 0.038 2.6 10.6 8.1 

10 km/h 0.031 0.036 2.6 10.6 7.7 

14 km/h 0.028 0.048 2.4 13.9 6.4 

Sprint 0.037 0.044 3.5 21.8 11.8 

Table 3.13 - Results obtained via the template-based method by using Deubachies 6 and decomposing to the first level 
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Daubachies 6 – level 3 

Dataset 

IC FC Stride 
Duration 

Stance 
Duration 

Swing 
Duration 

RMSE (s) RMSE (s) MAPE (%) MAPE (%) MAPE (%) 

8 km/h 0.026 0.035 2.0 9.4 6.9 

10 km/h 0.030 0.038 2.1 10.8 7.8 

14 km/h 0.052 0.028 4.0 26.9 12.5 

Sprint 0.043 0.047 3.5 21.7 11.7 

Table 3.14- Results obtained via the template-based method by using Deubachies 6 and decomposing to the third level 

 

Symlets 5 – level 1 

Dataset 

IC FC Stride 
Duration 

Stance 
Duration 

Swing 
Duration 

RMSE (s) RMSE (s) MAPE (%) MAPE (%) MAPE (%) 

8 km/h 0.033 0.031 2.6 10.7 8.0 

10 km/h 0.033 0.025 2.7 9.6 6.8 

14 km/h 0.029 0.048 2.3 14.5 6.9 

Sprint 0.035 0.044 3.5 20.5 11.4 

Table 3.15- Results obtained via the template-based method by using Symlets 5 and decomposing to the first level 
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Symlets 5 – level 3 

Dataset 

IC FC Stride 
Duration 

Stance 
Duration 

Swing 
Duration 

RMSE (s) RMSE (s) MAPE (%) MAPE (%) MAPE (%) 

8 km/h 0.027 0.056 2.0 12.9 10.0 

10 km/h 0.029 0.054 2.1 14.3 10.1 

14 km/h 0.052 0.045 4.7 33.3 15.8 

Sprint 0.040 0.049 4.0 26.8 13.5 

Table 3.16 - Results obtained via the template-based method by using Symlets 5 and decomposing to the third level 

 

3.3 Comparison of the novel method with the best trade-off from 
the literature 

In order to highlight the differences between the hereby proposed method and 
Blauberger et al.  (i.e. the best trade-off from the literature) a first a Shapiro-wilk test to 
check on the distribution of the different population has been carried out. Then, if the 
populations resulted in a normal distribution, a Student’s t-test has been employed, 
otherwise, a Wilcoxon signed rank test has been performed on the results of both methods, 
in particular by taking into considerations the stride, stance and swing duration computed 
via them for each dataset. 

A t-test is a statistical test commonly used to evaluate whether there is a difference 
between two distinct groups, usually employed when the number of samples available is too 
small to perform other more precise statistical analysis.  

To perform the t-test, the first step is to infer the mean of the parameter which one wants 
to investigate. After computing the grand mean of the parameter, which is the mean across all 
trials, conditions and subjects composing a population, a hypothesis test has been brought on. 
The aim for this test was to highlight whether the two methods returned statistically different 
results in terms of durations, which lead to the formulations of the two hypotheses to test: 

− 𝑯𝟎: 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝑡ℎ𝑒 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡, 𝑥ଵതതത − 𝑥ଶതതത = 0 

− 𝑯𝟏: 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝑡ℎ𝑒 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 𝑟𝑒𝑡𝑎𝑖𝑛 𝑎 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑥ଵതതത − 𝑥ଶതതത
≠ 0. 

With 𝑥 ഥ  being the grand means for the parameters of each population and 0 being the 
expected value for the null hypothesis, 𝑥଴. 

Subsequently, the test statistic can be computed as in (3.4): 
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𝑇𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝑥ଵതതത − 𝑥ଶതതത) − 𝑥଴

ඨ
𝑠ଵ

ଶ

𝑛ଵ
+

𝑠ଶ
ଶ

𝑛ଶ

   (3.4) 

Where 𝑠 represents the overall standard deviation of the whole population, and 𝑛 the size 
of it. The value thus computed must be compared to a p-value, that indicates the probability 
for the result of the test to be correct. To each p-value chosen, a certain confidence interval is 
associated. The most commonly used p-value is 0.05, which is associated to a 95% 
confidence interval [26]. Each p-value leads to a certain value of significance, that is to be 
researched in the t-table [73] by looking for the p-value wanted and the degrees of freedom 𝜈 
the population has, that equals to the total number of the least numerous population minus 
one, as stated in (3.5). 

𝜈 = min(𝑛ଵ − 1, 𝑛ଶ − 1) (3.5) 

Given the p value and the degrees of freedom, the value of significance can be 
extrapolated from the t-table by intersecting rows and columns. If the test statistics computed 
in (3.4) is higher that the value of significance, the null hypothesis is rejected, which means 
that the methods are statistically different. On the other hand, if the test statistic is lower than 
the value of significance, the null hypothesis cannot be rejected, so the two methods analysed 
do not retain a statistic difference. 

The t-test has been performed by taking into consideration the stride duration, stance 
duration and swing duration obtained via the newly proposed method and the method 
proposed by Blauberger et al. [61] over the four different speeds analysed. It relies on the 
hypothesis that the distributions of the data on which it is used is normal, hence a check on 
the distributions of the data has been performed through a Shapiro-Wilk test. As a result, the 
data coming from the 14 km/h and the sprinters all yielded a normal distribution, on the other 
hand the results obtained via Blauberger et al. for the stance duration on 8 km/h and the swing 
duration on 10 km/h didn’t have a normal distribution. Moreover, the results computed via the 
template-based method on the swing duration at 8 km/h and all three the duration on 10 km/h 
didn’t have a normal distribution, which made the t-test unsuitable. Subsequently, for the 
stance and swing durations at 8 km/h and all the duration at 10 km/h a non-parametric 
Wilcoxon signed rank test was performed, which does not rely on the normal distribution 
hypothesis. 

Speaking of the results, for the stride durations, they are shown in Table 3.17, in Table 
3.18 for the stance duration and lastly Table 3.19 for the swing duration, where it can be noted 
that the value of the p-value is higher than the chosen p-value (0.05) for all the speeds for 
which the t-test was employed, leading to the conclusion that the null hypothesis cannot be 
rejected for all the parameters considered, thus no statistical difference between the two 
methods was detected. However, the Wilcoxon signed rank test for the remaining data 
rejected the null hypothesis for the stance and swing duration at 8 km/h and 10 km/h, leading 
to a statistical difference. 
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Running cycle duration 

 Blauberger et al Template-based Test specifics 

Dataset Grand mean 
(s) 

Grand Std  
(s) 

Grand mean 
(s) 

Grand Std 
(s) 

Test name P-value Differences 
(s) 

8 km/h 0.486 0.035 0.485 0.014 T-test 0.43 <0.001 

10 km/h 0.485 0.019 0.485 0.016 Wilcoxon 
signed 
rank 

0.13 <0.001 

14 km/h 0.689 0.015 0.684 0.033 T-test 0.18 0.002 

Sprint 0.559 0.062 0.560 0.041 T-test 0.58 0.002 

Table 3.17 – statistical test results over the three speeds on the stride duration. The values indicated with a * are the 
ones lower than the reference p-value, leading to a statistical difference. The differences reported are referred to the means of 
the parameters for the speeds where a t-test was employed, and for their medians otherwise. 

 

                              Stance Duration 

 Blauberger et al Template-based Test specifics 

Dataset Grand mean 
(s) 

Grand Std  
(s) 

Grand mean 
(s) 

Grand Std 
(s) 

Test name P-value Difference 
(s) 

8 km/h 0.179 0.058 0.208 0.021 Wilcoxon 
signed rank 

<0.01* 0.021 

10 km/h 0.169 0.051 0.199 0.019 Wilcoxon 
signed rank 

<0.01* 0.029 

14 km/h 0.234 0.019 0.238 0.019 T-test 0.79 0.002 

Sprint 0.200 0.048 0.196 0.045 T-test 0.69 0.003 

Table 3.18 – statistical tests results over the four speeds on the swing duration. The values indicated with a * are the ones lower 
than the reference p-value, leading to a statistical difference. The differences reported are referred to the means of the parameters for 
the speeds where a t-test was employed, and for their medians otherwise. 
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Table 3.19 – statistical tests results over the four speeds on the swing duration. The values indicated with a * are the 
ones lower than the reference p-value, leading to a statistical difference. The differences reported are referred to the means of 
the parameters for the speeds where a t-test was employed, and for their medians otherwise. 

 

 

 

  

Swing Duration 

 Blauberger et al Template-based Test specifics 

Dataset Grand mean 
(s) 

Grand Std  
(s) 

Grand mean 
(s) 

Grand Std 
(s) 

Test name P-value Differences 
(s) 

8 km/h 0.307 0.060 0.278 0.020 Wilcoxon 
signed rank 

<0.01* 0.030 

10 km/h 0.316 0.054 0.286 0.020 Wilcoxon 
signed rank 

<0.01* 0.030 

14 km/h 0.455 0.023 0.444 0.030 T-test 0.72 0.003 

Sprint 0.358 0.052 0.362 0.040 T-test 0.50 0.004 
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Chapter 4 

Discussion and conclusions 

4.1 Discussion 

The analysis of the running parameters during actual training sessions could help in 
identifying the problems and fix them, before they lead to a subsequential injury, that could 
quite possibly hurt the athlete and their ability to perform [1] . 

The aim of the present work has been to firstly compare and evaluate the performances of 
nine different methods identified from the literature [60-63], [65-69] for the identification of 
running events, on three running datasets which differ for running conditions, paces and 
sampling frequency, and then propose a novel template-based method. The first dataset 
comprised 11 subjects running at 8 km/h and 10 km/h, equipped with a MIMU attached to the 
shoelaces and pressure insoles. The second one was composed by 10 recreational runners, 
equipped with a MIMU and retroreflective markers, running at 14 km/h on a treadmill. Lastly, 
the higher speeds dataset contained data acquired from 9 elite athletes running at 70%, 85% 
and 100% of their maximal speed while wearing a MIMU on the shoelaces and pressure 
insoles. 

The inertial-based methods from the literature were proposed to be utilised under specific 
running condition, either outdoor or indoor. They all had either different sensor positioning, 
different sampling frequency and/or were developed for different speeds with respect to the 
datasets analysed in this work. Thus, the implemented methods were adapted to the different 
positioning and sampling frequency.  

It has to be noted that all the methods that were developed for higher velocities (i.e. 30-32 
km/h) involved higher sampling frequencies for the data acquisition, as it has been proven 
that the sprint running investigation led to higher accuracies using at least 300 Hz [74] . Thus, 
a sub-aim of the present work was to test whether the running analysis at 100-200 Hz would 
be sufficiently accurate, given that there are some commercially available MIMUs that have a 
sampling frequency constraint. 



78 

 

The morphology of the signals changes a lot as the speed increases the accuracy of all the 
methods seemed to deteriorate when shifting from lower to higher speeds, which can be noted 
by comparing the RMSE reported in Table 3.2, Table 3.3, Table 3.4 and Table 3.5. However, 
the solutions provided in the literature for the sprint investigation heavily relied on peak 
detection, which lead to the necessity to set different thresholds for the peak identification. 
Peaks in sprinters tend to be enhanced, especially the ones in the acceleration signals, on the 
other hand the height of said peaks changes drastically based on subject and speed, which 
makes the definition of a threshold more complex. No method for sprint evaluation at 100 Hz 
has been developed yet.   

Regardless of the speed, the detection of the FCs always leads to worse performances 
than the ones obtained for the ICs (e.g. in Table 3.5 for Falbiard et al. the RMSE on IC was 
0.022 s and the one on the FC was of 0.047, for Schmidt et al. 0.038 s vs 0.046 s and so on), 
underlining the difficulty for each algorithm to identify the final contact event, mainly 
because it is not linked to abrupt changes in the signals [64] , unlike the IC.  

On the choice of the best method for the detection of events at 8 km/h, Blauberger et al. 
[61] was chosen as the best performing. This choice was made by taking into consideration 
the errors on the events in terms of RMSE, MAPE and missed events. Even though the chosen 
method was proposed for higher speeds (i.e. 32 km/h), the difference in positioning and 
sampling frequency made the inertial signals for this speed, shown in Figure 4-1, suitable to 
be analysed with this algorithm. In fact, in the acceleration norm in Figure 4-1 a great peak 
can be identified, preceded by a minimum that is aligned with the initial contact identified by 
the gold standard. Similarly, the norm of the gyroscope presents two maximums with a 
minimum between them that is aligned with the final contact detected via the gold standard. 
All of these characteristics can also be found in Figure 4-2.  
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Figure 4-1 – Example of inertial signals acquired during an 8 km/h run. In the picture, the acceleration norm (in red) 
and the gyroscope norm (in blue) are shown since they are the signals considered by Blauberger et al. for the detection of the 
events. The black lines represent the pressure insoles signal. The black vertical lines highlight the points in which the events 
were identified by the method, while the blue and red filled circlued idicate the events detected via the gold standard 
(pressure insoles). 

 

Figure 4-2 –ector magnitude unit (VMU) of x, y, and z acceleration (A) and angular velocity (B) throughout one single 
sprint step, that is the norms of the signals, from dataset used in [14]. The blue dashed line marks the initial contact event; the 
red dashed line the terminal contact. The solid red line indicates the resulting ground contact period for the inertial 
measurement unit (IMU). The photo-electric-measured (Optogait) ground contact time is represented by the solid blue line. 

The same can be said for the choice of Schmidt et al. [62] as the best performing for trials 
at 10 km/h, but in this case, it resulted in the least amount of errors on the durations. This 
method was proposed for higher speeds (i.e. 31 km/h), but again changing sensor positioning 
and the sample frequency the recorded inertial signals at 10 km/h and 100 Hz had a 
morphology suitable to the running events definitions by Blauberger et al. Figure 4-3 
illustrates that in correspondence of the zone in which the vertical accelerometer presents a 
high peak, the mediolateral gyroscope yields a constant slope, and that is around the time 
when the IC happens, as it was stated in the reference paper. Additionally, FCs occurred 
approximately in correspondence of a local maxima in the vertical acceleration. 



80 

 

 

Figure 4-3 – Mid-swing to mid-swing cycle from the 10 km/h trials. In the picture, the vertical acceleration, in pink, and 
the medio-alteral angular velocity, in light blue, are shown, since these are the signals used in Schmidt et al. [62] for the 
events identification. The shape of the inertial signals closely resembles the one described in the paper. 

At 14 km/h the best performing method of choice has been identified in the one proposed 
by Benson et al. [69] implemented by the authors for 12 km/h running. When compared to the 
performances of the second method identified, that is Falbiard et al. [63] it provided a better 
RMSE on the IC (0.026 s vs 0.048 s) and a slightly worse RMSE on the FC (0.038 s vs 0.020 
s), but it provided a better MAPE on the durations (1.3% vs 1% on the running cycle, 14.5% 
vs 17.3% on the stance duration and 7.1% vs 8.9% on the swing duration), which lead to the 
choice made.  

Finally, for the sprinters, the method deemed to be the best working was the one by 
Falbiard et al. [63] as it provided the minor RMSE on the IC while also providing a slightly 
worse RMSE on the FC than Yang et al. [70] which was the best performing in terms of FC 
on this dataset (0.047 s vs 0.044 s). The chosen method was tested by the authors on a range 
of speeds (up to 20 km/h). In Figure 4-4 a sprint mid-swing to mid-swing cycle is shown. It 
can be noted that in correspondence of the events, two local minimums in the angular velocity 
can be identified, which makes the morphology of the signals compatible to what has been 
described in the paper, even if the original method was tested on data acquired at 500 Hz.  
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Figure 4-4 – Mid-swing to mid-swing cycle from a sprinter running at 32 km/h . The mediolateral angular velocity has 
been pictured as it is the intertial signal used in Falbiard et al. [63] for the identification of the events. As shown by the 
results, the performances in the identification of the FC seem to be worse than the ones on the IC. 

Furthermore, the method which enabled the best trade-off performances on the whole 
speed range has been identified, based on the accuracy it provided via the RMSE. It was the 
one proposed by Blauberger et al [61]  and for which the only parameter to be adapted is the 
filtering cut-off frequency. In Figure 4-5 a depiction of the performances of this method on all 
four the speed analysed is provided. Even though its performances were the best trade-off 
across the nine methods [61-64, 66-70], it still showed high MAPEs for the estimation of the 
durations (1.2 to 5.7% on the running cycle, 16.8 – 25.2% on the stance duration and 8.2 – 
15.3% on the swing duration), hence a new method has been developed to try to improve the 
estimations.  
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Figure 4-5 – Mid-swing to mid-swing cycles for all the four speeds analysed. The events identified by Blauberger et al. 
are shown as well as the events detected via the GS. It can be noted that the performance for the method for all four dataset 
seem to be acceptable based on the distance between the GS and the method-detected event.   

Overall, we confirmed that methods for the detection of running events depend on the 
running pace and the main cause of errors is the highly different morphology of the inertial 
signals varying speed. Thus, to try to overcome the main limitations of the methods in the 
literature, the novel proposed method is template based. Twenty templates were constructed, 
considering 5 running cycle (i.e. mid-swing to mid-swing) of a single subject per dataset. We 
observed that namely the 30% of the analysed running cycles matched with a template which 
did not belong to its own population (e.g. a mid-swing to mid-swing cycle from the 8 km/h 
was used to identify the events of a sprinter or the events coming from a 14 km/h trial). 

The proposed method proved to be comparable to the best trade-off from the literature 
(i.e. Blauberger et al.), which was further confirmed by the results of the statistical analysis 
lead via t-test and Wilcoxon signed rank tests, which showed no statistical difference between 
the performances of the two algorithms in terms of durations estimation, except for the stance 
and swing duration at 8 km/h, where the template based method reported a MAPE of 6.9% 
and   5.5% on the stance and swing duration respectively, while Blauberger et al. reported a 
MAPE of 17% on the stance duration and 13.4% on the swing duration,  and 10 km/h, where 
the MAPE for the novel method amounted to 7.1% and 5.4% for the stance and swing 
duration respectively, while Blauberger et al. yielded a MAPE of 16.8% on the stance 
duration and 12.4% on the swing duration. The novel method performed better on medium to 
high velocity (14 km/h with RMSE of 0.033 s vs 0.040 s on the IC detection, 0.046 s vs 0.059 
s on the FC estimation, and sprints with RMSEs of 0.033 s vs 0.035 s on the ICs, and 0.049 s 
vs 0.056 s on the FCs) and slightly worse on lower paces (8 km/h with RMSEs of 0.020 s vs 
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0.016 s on the ICs and 0.026 s vs 0.022 s for the FCs; 10 km/h with RMSEs of 0.021 vs 0.016 
s for the IC detection and 0.024 s vs 0.021 s for the FC detection) than Blauberger et al. 
Moreover, the results obtained by using the method proposed by Blauberger et al. on the three 
datasets employed in this work reported higher errors than the ones declared in the original 
paper. This is probably due to the sampling frequencies adopted in the data acquisitions, 
which limit the resolution of the results to 1/100 s and 1/200 s for 100 and 200 Hz 
respectively, while in the original paper they could obtained a 1/500 s resolution. 

Finally, a preliminary analysis on the parameters of the denoising methods was 
performed, extensively reported in Chapter 3. Overall, the variations in terms of both mother 
wavelet and level of the decomposition lead to an increase in the errors, which ranged from 
3.6 to 130% on the RMSE of the events (IC and FC) and from 7 to 127% on the MAPE of the 
durations (running cycle, stance duration and swing duration). From this, it can be stated that 
the method is very sensible to the parameters chosen and that a further fine-tuning of the 
parameters of the denoising method should be performed. 

The main drawback of the proposed method is that it needs to know when the true 
running events occurred for at least a pair of running cycles of a subject to label the templates. 
On the other hand, it enables to avoid the dependence of the running events detection on 
thresholds, which frequently needs ad hoc fine-tuning. The only parameters on which the 
proposed method rely concern the initial denoising (i.e. mother wavelet chosen and level of 
decomposition). Furthermore, we observed that results did not significantly change between 
indoor and outdoor acquisitions.  

In conclusion, it showed promising results for accurately detecting temporal events on a 
broad speed range. 

 

4.1 Conclusion 

In the present work, the performance of nine methods from the literature for the 
identification of the instants of initial and final contacts with the ground while running using 
foot-mounted MIMUs were compared. They were proved to be speed-dependent since the 
inertial signals morphology highly varies increasing the running speed which is not optimal 
for the detection of temporal events on a wide speed range, as expected. The best performing 
method (i.e., the one proposed by Blauberger et al.) on the whole running speed range did not 
rely on any threshold except for the definition of the cut-off frequency for the filtering of the 
signals, which was removed in the adaption phase. Furthermore, an innovative template-based 
method has been developed. It was based on the matching of each running cycle with the 
most similar mid-swing to mid-swing template to overcome the limitation of the highly 
variable signals morphology varying speed and subject.  Templates were built with 
accelerations norms and mediolateral angular velocities and labelled with the events 
calculated from the available gold standards. Obtained results are in line with the best trade-
off from literature (Table 3.10), making it promising for the detection of temporal events on a 
broad speed range. The main advantage of using the proposed method instead of traditional 
techniques is that it is automatically speed-adapting. 
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However, the main drawback is that it is strictly template-dependant, meaning that the 
number of available templates for a certain speed defines its capability to correctly detect the 
temporal events for that specific running pace. Furthermore, the datasets used to test its 
performances contained data acquired at a lower sampling frequency than suggested for 
running trials, and the number of templates provided to the algorithm may be not sufficient 
for its optimal functioning. 

Future work should concern the increase of the sampling frequency for all the datasets, the 
inclusion of more templates for each speed on the library which may lead to an improvement 
in the accuracy of the hereby proposed method and the acquisition of more data at different 
running speeds than the ones included in the three datasets analysed, to fill the gap between 
the different speeds (i.e. 10 km/h to 14 km/h and 14 km/h to 20 km/h). 
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Appendix 1  

Cover Insole analysis 

In this section, the analysis brought on to identify the best cover insole for running 
acquisition is provided. The pressure insoles exploited during the data acquisitions tend to be 
fragile, so under the high sheer stress to which they are subjected during running, they tend to 
get damaged, thus not allowing the correct acquisition of the signals. 11 sprinting trials were 
discarded due to the poor insoles quality, so an analysis on a solution has to be performed. 

N.B. For some subjects, it is noted that some sensory units stop functioning after a certain 
amount of incorrect stimulation. 

To discriminate the activation or non-activation of a sensory unit, a threshold of 0.2 was 
used.  

Hereafter the numerical reference for each sensor unit on the sensorised: 

- S1 - toe 
- S2 – forefoot 
- S3 – forefoot 
-  S4 – forefoot  
-  S5 - forefoot 
- S6 – forefoot 
- S7 – forefoot 
- S8 – forefoot 
- S9 – midfoot 
- S10 – midfoot 
- S11 – midfoot 
- S12 - rearfoot 
- S13 – rearfoot 
- S14 – rearfoot 
- S16 – rearfoot 
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1.  Analysis of pressure insoles data quality without any 
cover insoles 

Examples of the acquired signal in the absence of any type of protective insole.  Insoles 
of size 42/43 were used for each subject (41 to 43). At the time of the acquisitions, the insoles 
had already been used for: 120 minutes, including 14 minutes of actual running time. Three 
sensors from the forefoot showed no activation, one sensor from the mid-foot showed odd 
activation, lastly two of the sensors from the rearfoot remained active for the whole time. 

 

Examples of the signal acquired with the leather insole interposed between the foot and 
the sensorised insole. Insoles of size 42/43 were used for each subject (41 to 43). At the time 
of the acquisitions, the insoles had just been replaced. Five sensing units from the forefoot 
activates when they shouldn’t, two sensors from mid-foot and two from the rearfoot show 
constant activations. 

 

2. Analysis of pressure insoles data quality with leather 
cover insoles 
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Examples of signals acquired with the chlorophyll insole interposed between the athlete's foot 
and the sensorised insole. The sensor insole used was size 36/37 for a size 41 subject. At the 
time of the acquisitions, the insoles had just been replaced. One sensing unit from the forefoot 
and one from the mid-foot showed constant activation, two from the mid-foot and all the 
rearfoot sensors returned little to no activation. 

N.B. the images in this configuration refer to an acquisition in which slightly lower 
speeds were achieved compared to the other acquisitions. 

 

3.  Analysis of pressure insoles data quality with 
Chlorophyll cover insoles 
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Examples of signals acquired using a chlorophyll insole with a layer of cotton in contact 
with the foot as a protective insole. At the time of the acquisitions, the insoles had just been 
replaced. Insoles 36/37 were used on subject 41. One sensor from the forefoot shows no 
activation, while five of them show little activation and three rearfoot sensors show constant 
activation. 

 

 

Examples of the signal acquired with the noene rubber insole interposed between the foot 
and the sensorised insole. Insoles 36/37 were used for a subject 41.  Cost: 26 €/pair. At the 
time of the acquisitions, the insoles had already been used for: 30 minutes, of which 8 minutes 
of actual running. All the sensors returned proper activation, additionally the rearfoot sensors 
were the least active ones. 

4. Analysis of pressure insoles data quality with cotton 
cover insoles 

5. Analysis of pressure insoles data quality with Noene 
Insoles 
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Examples of signals acquired with the insole interposed between the athlete's foot and the 
sensorised insole. The sensor insole used was size 36/37 for a size 41 subject. Cost: 1.5€/pair. 
At the time of the acquisitions, the insoles had already been used for: 15 minutes of which 4 
minutes of actual running. All the sensors showed proper activation, except two on the 
rearfoot that showed some activation during the swing phase. 

 

 

 

6. Analysis of pressure insoles data quality with Podovis 
Insoles 
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In this section, a table with a brief summary of the sensor units activation is provided. 
Each color corresponds to a behaviour, specified in the adjacent legend. 

 

Table 1 - Comparison of the performances of the sensors with different protection insoles 

Sensor activation is often due to the very narrow shoe shape that athletes have to wear 
during trials. [1] 

From this analysis, as detailed in Table 1, the most suitable protection insole for the 
purpose was Podovis, as it was one of the two best performing (Noene and Podovis), but less 
expensive and therefore more suitable for use as consumables. It was noted, however, that the 
quality of the signals varies greatly from athlete to athlete, probably due to the different shoe 
conformation. To demonstrate this, signals acquired under the same conditions on different 
subjects are shown below. For each subject, 36/37 insoles were used. The positioning of the 
sensorised insole inside the shoe does not differ significantly between athletes. 

[1] - Barnett S, Cunningham JL, West S. A comparison of vertical force and temporal 
parameters produced by an in-shoe pressure measuring system and a force platform. Clin 
Biomech (Bristol, Avon). 2001 May;16(4):353-7. doi: 10.1016/s0268-0033(01)00026-2. 
PMID: 11358623. 

  

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 
Naked                                 

Leather                                 
Clorophyll                                 

Clorophyll+paper                                 
White                                 
Noene                                 
Pedovis                                 

 Forefoot Midfoot Rearfoot 
 

7.  Comparison Table

8. References 
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Appendix 2  

 The work brough on in this thesis work has highlighted the need to enhance the 
sampling frequency for the acquisition of running trials. However, the pressure insole, which 
contains 16 sensing elements, was made with a sampling frequency of 100 Hz. In order to 
doble the MIMU sampling frequency, to 200 Hz, the number of sensing elements must be 
halved. This section goes into detail into the analysis made to identify which should be the 
sensing elements to discard to enhance the sampling frequency based on the data acquired at 
lower and sprinting speeds. 
 
The numerical reference for each sensor unit is the same as in Appendix 1. 

The INDIP multisensory system [1] allows to record inertial and 16-unit pressure insole 
data at 100 Hz. In the literature, in order to analyse the running and identify contact instants, 
methods starting from higher sampling frequencies are proposed, such as Schmidt et al [2] using 
a sampling frequency of 1000 Hz, Reenalda et al [3] 1800 Hz, Benson et al [4] 200Hz and many 
others. 
In order to increase the fs of the INDIP system, the number of sensor units considered must be 
decreased. For example, to double the fs it is necessary to record the signal of 8 units instead of 
16 in order to maintain optimal temporal resolution. 
The estimation of contact instants is based on the adaptation to running speeds of the method 
proposed by Salis et al. [4], which discriminates the rising and falling edges of the pressure 
signals that define the beginning and end of the support phase, respectively. 
The signal acquired by the individual unit is considered to be of poor quality when the insole 
itself crumples, slips inside the shoe towards the toe, in cases where the signal acquired by that 
sensor never goes to zero or if it has near-zero values for less than 15% or more than 90% of the 
total running time. 
In order to analyse the performance of the individual sensory units, and thus decrease their 
number to a sampling frequency of 200 Hz [5], they were evaluated on two different datasets, 
taking into account the number of times each unit is considered for the identification of running 
events (initial contacts IC and final contacts FC) and the number of times it is eliminated due to 
the poor quality of the signal acquired by it. 
The data refer to a dataset in which subjects ran at speeds ranging from 20 to 32 km/h (sprinters) 
and a second dataset in which subjects ran at 8 km/h and 10 km/h (amateurs). 
 
 

Sampling frequency enhancement

1. Analysis protocol 
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1.1 – Sprinters  

The analysis was carried out considering a total of 4 subjects, for 3 of which (0001, 0002, 
0003) both feet were taken into account, while for the fourth subject (0007), only the left foot 
was considered due to problems occurring during the acquisition of data from the right foot. 
The acquisitions for the three complete subjects were carried out without any type of lining 
insole, whereas for the subject for whom only the right foot data were available, a Podovis 
lining insole was used. 

Each subject was asked to run on an 80 m long outdoor track at different speeds (70%, 85% and 
100% of their maximum speed). A total of 446 steps were taken into account in this analysis. 

For each subject, the total number of occurrences of the selection of sensors for contact 
identification and one to identify the occurrences of the elimination of sensors due to the poor 
quality of the signal acquired by them was taken into account. The results are summarized in 
the Table 1. 

 
Table 1 - Colour table on sprinters dataset showing selection/elimination occurrences divided by 
subjects for each individual sensor. 

Figure 1 shows the image of the insoles on which the sensory units were coloured 
according to the colour code used in Table 1, so that the positioning of the sensory units can 
also be seen at a glance. 

Tested professional runners usually impact with the forefoot, followed by a short heel 
strike. However, overall, due to the slippage of the insole in some cases and the narrow 
design of the running shoe [4] the quality of the forefoot signals does not always allow for 
unambiguous discrimination of contacts, so some of the most useful and least rejected sensors 
for the identification of running events belong to the rearfoot. Furthermore, in order not to 
damage the insoles, size 36/37 EU insoles were used, although the participants wore greater 
sized shoes. This leads to partial uncertainty of the relative position of the sensor chosen for 
the definition of the initial contact in relation to the foot. In fact, the s16 is one of the sensors 
most frequently chosen for the identification of initial contacts. 

In this dataset, it can be seen that the most frequently discarded sensors are located near 
the forefoot (s5, s8, s9, s10, s11). The instants are most easily identified with the sensors in 
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the forefoot. In particular, the final contact is most often identified with the help of sensors in 
the forefoot, as expected. 

 

 

Figure 1 - Representative insole of sensors 
and their positioning, coloured according to the 
selection occurrences of the individual sensors. 
On the left, the selection occurrences for initial 
and final contact identification, on the right the 
elimination occurrences. 

 
 
 
 

1.2 – Amateurs 

The analysis was repeated on the dataset at 8 and 10 km/h. Each subject was asked to 
perform four trials on an outdoor and an indoor track. For both, the trials had a total duration 
of 45 minutes, divided as follows: 

 running at 8 km/h for 400 metres; 
 running at 8 km/h for 400 metres; 
 running at 10 km/h for 400 metres; 
 running at 10 km/h for 400 metres. 

Of the 11 subjects, 5 were not equipped without protective insoles (subject IDs: 
1,2,7,31,38) and the rest of them wore leather protective insole (subject IDs: 22, 25, 29, 30, 
32,44). For each subject, data obtained from both feet was considered. In particular, a total of 
18166 steps were analysed. The results thus obtained have been summarised in Table 2, 
where the occurrences of the selection or the elimination of each sensor has been colour 
coded. 
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Table 2 - Colour table on amateurs dataset showing selection/elimination occurrences 
divided by subjects for each individual sensor. 

In this dataset, the sensory units with the most 
reliable and most selected data for the identification 
of initial and final contacts were divided between the 
rearfoot and forefoot zones. Since the subjects 
impact with the heel at the analysed velocities, this is 
a result in line with what is expected (IC -> rearfoot, 
FC -> forefoot). 

In this dataset, the sensors most frequently chosen 
for the discrimination of instances are s3, s7, s8, s12, 
s14 and s16, divided between forefoot and rearfoot. 
The most frequently discarded sensors are always 
those in the forefoot and midfoot area, probably due 
to the sliding of the insole inside the shoe. In Figure 
2, a visual representation of the behaviour of the 
sensors is provided. 

Figure 2 - Representative insole of sensors and their 
positioning, coloured according to the selection occurrences of the individual sensors. On the 
left, the selection occurrences for the identification of initial and final contacts, on the right 
the elimination occurrences. 
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Given the above analysis, the following were considered to be the most 
reliable sensory units: 

- S2 

- S3 

- S7 

- S8 

- S10 

- S12 

- S14 

- S16 
This result was obtained by jointly evaluating the performance of the 16 

sensors on both datasets. Although from the analysis carried out all the most 
selected sensors for the identification of events turn out to be in the forefoot 
or rearfoot area, in order to maintain a homogeneous spatial distribution of 
sensors over the entire foot area, s10 was also included. 

 

Figure 3 - Representative insole of 
the    sensors selected from this survey. 
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