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Abstract

Open Partial Horizontal Laryngectomies (OPHL) are diffuse surgeries for laryngeal
carcinomas, leading to post-intervention complications in the execution of primary
activities, as phonatory abilities. In worst cases, the surgery encompasses the
removal of both vocal cords (type II, III OPHL) and the outcome is a very hoarse
and breathy voice, named “substitution voice”. Patients must follow a rehabilitation
path to partially restore the abilities impaired by the surgical procedures, and
auditory perceptual evaluation scales as the INFVo are commonly used in the clinical
field to assess the effectiveness of the rehabilitation on the voice quality. The goal of
this work is to define a procedure based on voice analysis of patients, by extracting
representative parameters and providing objective data on rehabilitation results.
The data set used in this thesis was supplied by San Giovanni Bosco Hospital (Turin)
and consists of 85 patients divided among the type of operations they underwent:
22 for OPHL-I, 32 for OPHL-II, and 31 for OPHL-III. All the acquisitions were
made with an in-air microphone system and include vocalization of the sustained
vowel /a/ and a phonetically balanced speech for each patient. First, signals were
pre-processed with the software Audacity and Matlab (R2022a); then parameters
were extracted for the whole recordings, but only those related to harmonic frames
were considered for feature extraction. The harmonic frames were selected using
two different criteria: the first one is based on the Harmonic-to-Noise Ratio (HNR)
and the second one on the Spectral Kurtosis (SK). Examples of extracted features
are SK, HNR and fundamental frequency (f0), and other parameters in the spectral
and cepstral domains, such as Cepstral Peak Prominence Smoothed (CPPS) and
Mel-Frequency Cepstral Coefficients (MFCC). Each parameter is represented as a
probability distribution, through descriptive statistics (indices of central tendency
and range, measures of variability). To these, nine parameters were added for
the vowel /a/ to evaluate period and amplitude stability, resulting in 198 features
for the vowel /a/ and 189 for the balanced speech. Data were classified by the
Logistic Regression (LR) model, by comparing first the type of intervention (OPHL
I vs OPHL II, III) and then the patients within the worst cases (OPHL II, III)
by dividing them into two classes based on index I (intelligibility) of the INFVo



scale. Feature selection relied on the accuracy (Acc) or Area Under The Curve
(in case of a tie) of the LR model, trained using a single feature and then a
combination of 2,3,4 features with low (R2< 0.5) and statistically significant (p-
value< 0.05) correlation. Eventually, a method was proposed to quantify the role
of the expanded uncertainty U(p) of the probability p provided by the LR model,
considering variances and covariances of model parameters; confidence intervals
were created for each probability, thus the "non-classified" class was introduced, to
be excluded in Accuracy evaluations. New metrics as Fraction Of Classified (Foc)
and Realistic Accuracy (Accreal) were proposed to test classification performances.
Classification gave good results, mainly by SK method, balanced speech, OPHL I
vs II,III with Acc values up to 96.5%, selecting Spectral Entropy (95-th percentile),
f0 (5,95-th percentile). New metrics were effective. For instance, a case of HNR
method, balanced speech, OPHL I vs II,III selecting f0 (range), HNR (skewness):
Acc=94.1%, Accreal=95.9%, Foc=0.87.
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Chapter 1

Introduction

This chapter will provide an overview of the phonatory system and the mechanisms
involved in the production of the human voice. There will be also an introduction
to the major diseases affecting the larynx and to surgical techniques to treat them.
Rehabilitative technics and classical methods used in clinical practice to evaluate
the assessment of voice quality after rehabilitation will also be discussed, to better
understand the new approach based on acoustic analysis on which this thesis work
is based. Eventually, parameters related to the cepstral domain will be introduced.

1.1 Anatomy of the Phonatory system

The production of the human voice is the result of the cooperation between the
Respiratory system, the Phonatory system, and the Resonatory system. The
lungs are the main organs of the Respiratory system, they can be seen as the fuel
behind voice production since they are responsible for the airflow that enables
breathing. The Resonatory system includes the vocal tract from the trachea to
the mouth, and it is fundamental in shaping the tone of a voice; all the organs
in the oral cavity (tongue, teeth, lips, palate) are responsible for the generation
of the consonants, by stopping the flux of air coming from the lungs. The nasal
cavity has an active role as well in the production of the human voice [1]. The key
element of the Phonatory system is the larynx, also known as the "voice box" and
it is located in the anterior neck, between the pharynx and the underlying trachea,
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Introduction

and anterior to the esophagus (fig. 1.1). The larynx is a mucous membrane formed

Figure 1.1: Anatomical position of the larynx in the neck [2].

by nine cartilages (figure 1.2), three unpaired (thyroid, cricoid, epiglottis), and
six paired (arytenoid, corniculate, cuneiform). The thyroid cartilage is the largest
cartilage and functions as a protective shield. The cricoid cartilage is basically a
ring that encircles the trachea and is found in the inferior part of the larynx. The
epiglottis is an elastic flap, that allows the passage of air into the larynx, trachea,
and lungs. The epiglottis plays an important role in the protection of the lower
respiratory tract; as a matter of fact, it lets the air in towards the trachea during
breathing, but it closes while swallowing, to block food and drinks from going down
into the trachea [2][3]. The larynx is divided into three sections: the supraglottis,
which goes from the epiglottis down to the ventricular folds (false vocal cords), the
glottis, which contains the true vocal cords and the subglottis, that goes down to
the cricoid cartilage (beginning of the trachea). The vocal cords (or vocal folds)
are located within the larynx at the top of the trachea and they are part of the
glottis, a portion of the laryngeal cavity formed by the vocal folds and the rima
glottidis, an opening between them. There are actually four vocal cords, but only
two are directly involved in the phonation process. Indeed, above both sides of
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Figure 1.2: Arrangement of cartilages within the larynx [3].

the glottis there are two ventricular folds, also referred to as false vocal cords, and
used to produce deep sonorous tones. As evidence, the true vocal cords appear
to be thicker, wrapped in muscular fibers, and with a narrow gap between them,
while the ventricular folds look thinner (figure 1.3). The phonation cycle is divided
into the opening phase when the vocal cords are separated (inspiration, figure 1.3)
and the closing phase, when the space between the vocal cords is slightly reduced
(exhalation). The airflow produced by the lungs creates pressure below the glottis,
which increases as the vocal cords are in complete adduction, during the closing
phase. The vocal cords remain closed until the subglottal pressure gets high enough
to push them apart, producing a negative intraglottical pressure, which pulls the
vocal folds back and closes the glottis. The cycle is then repeated and it allows
sustained vibration of the vocal folds, by creating an acoustic wave that propagates
through the vocal tract between the trachea and the mouth [4]. Human sounds
can be divided into two categories, according to the way they are produced: voiced
sounds came from the vibration of the vocal folds, and originate during exhalation,
typical examples are vowels /a/ and /i/; unvoiced sounds, also called "voiceless
consonants" (for instance f, k, p, t, and s in the Italian language), on the opposite,
originate in the opening phase of the phonation cycle: the airflow goes from the
lungs to the mouth, where the tongue, teeth, and lips engage to modulate the
sounds [5].
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Figure 1.3: Laryngoscopic view of the interior of the larynx during the opening
phase of the vocal folds. [6]

1.2 Diseases and surgeries

Excessive use of the vocal folds can cause laryngeal trauma and lead to laryngitis.
Laryngitis is an inflammation of the larynx and may be chronic or acute (in this
case is related to a viral upper respiratory tract infection). It can cause dysphonia,
leading to hoarseness, pain, and coughing [7]. In worst cases, dysphonia, dysphagia,
and dyspnea can be symptoms of laryngeal cancers. The carcinoma is usually
found after a visual inspection with a laryngoscopy, which is possibly followed by a
biopsy to confirm the diagnosis. The main risk factors include smoking and alcohol
abuse [8]. Laryngeal cancers have been treated throughout the years both with
radiotherapy and surgeries. The total excision of the larynx was a very common
practice back in the years, but it led to complications in swallowing and in the
quality of the voice. From the 90s it became quite popular the use of radio-chemo
therapies in substitution of the total exportation of the larynx or in cooperation
with less invasive surgeries, known as subtotal laryngectomies. Laser cordectomy
has also emerged in the last decade in the treatment of glottic carcinomas, but it
suffers from more difficult reproducibility of results. Subtotal laryngectomies are
very delicate surgical interventions that must be planned very carefully, evaluating
variables related to the patient and the type of carcinoma involved in the treatment.
To actuate a laryngectomy it is necessary to create an opening in the trachea,
named tracheostoma. This allows the patient to breathe during the operation
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and in the postoperative period, through a cannula. Meanwhile, the tracheostoma
is permanent for total laryngectomies, it is not in subtotal ones [9]. One of the
less-invasive operations is the Open Partial Horizontal Laryngectomy (OPHL) a
useful tool in the management of radio-resistant laryngeal cancers. There are three

(a) OPHL-I (HSL) (b) OPHL-II (SCL) (c) OPHL-III (STL)

Figure 1.4: Different OPHL types [9].

types of OPHL (figure 1.4) which take their names after the lower limit of resection,
and each of them is involved in the treatment of a specific laryngeal cancer [10].
Supraglottic carcinoma extends from the epiglottis to the top of the glottis and
rarely attacks the thyroid cartilage and the vocal folds. Type I OPHL (supraglottic
laryngectomy) is suitable for tumors in the upper section of the larynx; the surgery
encompasses the removal of the whole supraglottis (epiglottis and upper half of
the thyroid cartilage) but preserves the arytenoids and the true vocal cords, while
the vestibular folds are removed. Glottic carcinomas go deeper down the larynx
and may extend into the cryco-arytenoid cartilages, so more invasive surgeries are
needed in their treatment. Type II OPHL (supracricoid laryngectomy) includes the
resection of the entire thyroid cartilage, down to the upper edge of the cricoid ring.
Type III OPHL (supratracheal laryngectomy) consists of the resection of the whole
supraglottis, glottis (vocal folds included), and the cricoid ring. Depending on
the location and the severity of the cancer, the surgeries listed above may change
the amount of supraglottis excised, in particular, the upper part of the epiglottis
may not be or be preserved. Both type II, III OPHL encompass the removal
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of the vocal folds, and the patients have to resort to a new way of producing
sounds through "substitution voices". Hence it is fundamental for the patient to
be involved in a rehabilitation path during the postoperative period. The primary
goal of this journey is to help the patient to restore his swallowing abilities. After
decannulation, the patient has to learn to breathe again and the last aim is to
restore the phonatory function [11].

1.3 Vocal tasks and perceptual scales

Voice quality is a definition that includes all the perceptual dimensions of the
spectral envelope and its changes in time; when patients undergo invasive surg-
eries such as total laryngectomies or partial laryngectomies, they have to follow
a rehabilitation path to partially restore the abilities impaired by the surgical
intervention; the evaluation of the quality of voice is an important milestone to
assess the effectiveness of the rehabilitation on the voice quality, or simply to
investigate the presence of a certain dysphonia. Voice quality may be affected by
the irregularity in the vibrations of the vocal cords, giving an auditory perception
of roughness [12]. The main methods used by speech-language pathologists to
evaluate the quality of voice after rehabilitation involve perceptual rating scales.
The most common perceptual rating scales are:

• GRBAS scale (Global Roughness Breathiness Asthenia Strain): voice quality
is rated along five parameters; each one is scored from 0 (normal voice) to
3 (pathological voice). G stands for the global hoarseness and gravity of
the voice, R stands for the roughness, B stands for the extent of air during
phonation, A stands for the lack of power in voicing, and S for the strain
(hyperfunction). Recently was added parameter I to indicate the instability of
the voice over time [13] [14].

• INFVo: this scale rates the parameters I (overall impression, intelligibility),
N (unintended additive noise), F (fluency), and Vo (quality of voicing, sound
voiced or unvoiced). All parameters are evaluated from 0 (good perception)
to 10 (bad perception) [15] [16].
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• MPT (Maximum Phonation Time): this is not a scale, but an index of
time (usually s) that gives information about the efficiency of the respiratory
mechanism during phonation. The patient is asked to take a deep breath and
produce an /a/ vowel for as long as he can [17]. It is often used to measure
the assessment of a voice since it is a fast and non-invasive method. Moreover,
its value is expected to be related to the fluency parameter (F) of the INFVo
scale: the longer MPT, the higher the fluency in the speech [16].

Perceptual scales are usually combined with self-assessment scales, which do
not require the presence of a clinician but rely on the self-evaluation of the patient
who underwent the surgical intervention. These scales suffer from the bias that
comes from the self-evaluation of the patients; it is not uncommon for patients
to perceive their vocal qualities as better than they turn out to be. Examples of
auditory self-evaluation scales are:

• VHI (Voice Handicap Index): This test consists of 30 statements on voice-
related aspects. Each statement is evaluated by the patient with a score that
goes from 0 (total reliability to the issue) to 4 (no reliability to the issue)
and spaces from emotional, and physical to functional issues. The amount of
handicap perceived increases as the final score obtained increases. Specifically,
0-30 indicates a low level of handicap, 31-60 medium level, and 61-120 serious
amount of handicap [18].

• SECEL (Self-Evaluation of Communication Experiences after Laryngectomy):
it consists of 35 specific questions split into general, environment, and attitude,
to asses the communication skills of laryngectomized patients. One example of
a question might be "Do you have difficulty yelling or calling out to people?"
and the subject has to answer the question with a number from 0 (never) to 3
(always). Higher scores are an index of perceived difficulty with communication
after the surgery, so further rehabilitation may be needed. This questionnaire
was originally made in English but further translated into multiple languages
[19].

The use of these auditory-perceptual scales is usually associated with a visual
judgment based on a laryngeal examination. Both methods can be affected by the
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subjectivity of the clinician (or the patient, if self-evaluated) or also by the type of
vocal task analyzed. Commonly the rated vocal tasks include a sustained vowel and
a continuous speech; the continuous speech has temporal and spectral variations
due to voice onsets, vocal pauses, fluctuations in the fundamental frequency (f0),
and other factors; the sustained vowels, instead are held relatively constants.
These different vocal behaviors of the tasks might lead to perceived differences
in the severity of dysphonia; therefore it is appropriate to associate these as well
with an acoustic analysis, providing objective, qualitative and quantitative data
[20]. Several authors have proposed a method for the evaluation of pathological
voices and substitution voices, based on the extraction and analysis of certain
parameters from the vocal tracks of the involved subjects. Patients are usually
asked to vocalize a sustained vowel and to utter a continuous speech, which could
be free speech or a text to be read; a number of parameters deemed significant for
evaluating the effectiveness of rehabilitation are then extracted from the recorded
traces. Examples of suitable parameters extracted from uttering of sustained vowels
are the fundamental frequency (f0) and the Harmonic-To-Noise-Ratio (HNR) or
measures of perturbation over time and frequency (shimmer and jitter). As far as
concerns speech tasks, the most common parameters are HNR, f0, Soft Phonation
Index (SPI), MPT, and the Spectral Tilt. Alongside these parameters from the
spectral and time domains, there are also parameters from the cepstral domain
[21].

1.4 The cepstrum and its main parameters

To explain the parameters in the cepstral domain, it is necessary to take a step back
on the origin of the human voice. Voiced sounds originate from the vibrations of
the vocal folds and are then propagated through the vocal tract. The vocal signal
has two main components: one related to the glottal pulses and another related to
the vocal tract (real speech signal). The glottal pulses carry out a high-pitch signal,
that is very noisy and is assumed as quasi-periodic. This signal is then filtered in
the vocal tract to create the real speech signal, which carries information about the
timbre of the voice (formants) [4]. Within this domain, it is common to use terms
that are anagrams of spectral domain terminology (spectrum becomes "cepstrum",
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frequency becomes "quefrency", harmonic becomes "rhamonic"). The cepstrum is
mathematically represented as the spectrum of a logarithmic spectrum of a time
waveform; whereas a spectrum gives information about the energy at harmonically
related frequencies, a cepstrum brings information about the regularity of the
harmonic peaks. The cepstrum operates within the domain of quefrency (which is a
measurement of time) and its peaks are called rhamonics. Rhamonics occur at the
quefrency at which the original time waveform has the fundamental frequency; the
greater the regularity of a signal, the higher and more defined the rhamonic peak
appears [20]. In figure 1.5 there are two examples: the upper graphic shows the
smoothed cepstrum of a healthy voice and the lower graphic contains the smoothed
cepstrum for an unhealthy voice; the first rhamonic peak at 5.8 ms is of easy
detection in the upper graph, while it is not easily detectable in the lower graph.
The cepstrum can be used for pitch detection, specifically, the first rhamonic can be
used to go back to the frequency domain and understand what is the fundamental
frequency of the vocal signal. A parallelism can be found between rhamonics in
quefrency domain and the Dirac delta in the frequency domain when applying
Fourier transform on a sinusoidal wave.

Figure 1.5: A smoothed cepstrum of a vocal signal of a healthy voice against the
smoothed cepstrum of an unhealthy voice.

The speech signal x(t) can be mathematically described as the convolution in time
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represented in eq. 1.1
x(t) = g(t) ∗ v(t) ∗ r(t) (1.1)

where g(t) is the glottal component (modeled as an indefinitely long train of pulses),
v(t) is the impulse response of the vocal tract and r(t) represents the effect of
the acoustic wave radiation at the lips. The result is a quasi-period signal with a
fundamental frequency equal to the one of the glottal signal. Fourier transformed is
then performed and the convolution becomes a product, then the power spectrum
is estimated as in eq.1.2

X(f)2 = G(f)2 · H(f)2 (1.2)

where H(f) contains the contributes of the vocal tract and the acoustic wave
radiation. By calculating the logarithm, the product is converted into the sum of
two components

log(X(f)2) = log(G(f)2) + log(H(f)2) (1.3)

As a matter of fact, the spectrum of a vocal signal is a quasi-periodic signal
multiplied by an envelope, that shows the slow variations of the signal and represents
the signal in the vocal tract. The logarithmic trick comes to the rescue to separate
the two components of the voice signal, which can be easily isolated with a filter.
The most important information of the speech is contained in the envelope of
the spectrum and this somehow explains why cepstrum is the result of a Fourier
transform applied to a logarithmic spectrum. The filtering technique is called
"liftering" and was introduced to emphasize the periodic components of the log
spectrum and to enhance the detectability of echoes from a signal. The helpful
information about the speech can be found in the lower end of the quefrency axis
(below the first rhamonic peak) while the higher end (rhamonics peaks in general)
carries out information about high-pitch noise (glottal pulses) [22] [23]. One of
the most reliable cepstral measures of dysphonia severity is the CPP (Cepstral
Peak Prominence). CPP was first introduced to assess the quality of breathy voices
but then extended to the evaluation of overall voice quality. A variant was later
proposed, called smoothed CPP (CPPs, figure 3.3) that provided higher correlation
with breathiness, by adding smoothing operations both in temporal and cepstral
domains. Both variants are expressed in dB and represent the difference between
the most prominent peak of the smoothed cepstrum (first rhamonic) and the value
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Figure 1.6: Graphic representation of CPPs of a random subject with a healthy
voice.

at the same quefrency on the line of regression that correlates the quefrency and the
amplitude of the cepstrum. CPPs appears to be meaningful in voiced signals rather
than unvoiced signals, due to the direct relationship between their amplitude and
the fundamental frequency. Furthermore, has been found evidence of an inverse
relationship between the cepstral peak and perturbation measures, such as jitter
and shimmer [23].
MFCCs (Mel Frequency Cepstral Coefficients) come from the cepstral domain as
well. They are obtained through a series of steps applied to the original signal, and
they were developed with the purpose of developing a system as close to model
human hearing as possible. This model is based on a bank of triangular filters
that will be better explained in the following chapter. MFFC have often been used
in speech recognition systems and even in the clinical field, in the detection of
Parkinson’s disease [24]. MFCCs seem to be useful parameters in the evaluation of
substitution voices of patients subjected to OPHL as well, alongside other spectral
parameters (Spectral kurtosis and Spectral Entropy) [21].
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Chapter 2

Materials and methods

This work has been the prosecution of a work already done in a previous master’s
thesis, which analyzed the phonetically balanced speech of 32 subjects that un-
derwent type II, and III OPHL. In this study, the data set has been extended to
all kinds of OPHL (type I, II, III) and both for phonetically balanced speech and
sustained vowel /a/. The following chapter is set to describe the methods used,
following the guidelines of voice analysis. The used data sets will be presented
alongside the voice parameters considered appropriate. The two methodologies
(HNR, Spectral Kurtosis) used to distinguish harmonic from unharmonic frames
will also be explained in detail. There will then be a theoretical introduction to
the Logistic Regression (LR) model used for classification, and on the Kolmogorov-
Smirnov Test. It will be described the method of feature selection based on the
accuracy of the LR model and the validation method used in the Matlab (R2022a)
environment, Classification Learner App. Eventually, the proposed method to
investigate the role of the expanded uncertainty U(p) of the probability p provided
by the LR model will be discussed.

2.1 Data

The used data set was provided by San Giovanni Bosco Hospital (Turin) and
includes a total of 85 Italian subjects with an average age of 63 years and mostly
male. Subjects are divided among the type of operations they underwent: 22 for
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OPHL-I, 32 for OPHL-II, and 31 for OPHL-III. All the acquisitions were made
with an in-air microphone system, with a resolution of 16-bit at a sample rate of
50 kSa/s, and include vocalization of the sustained vowel /a/ and the phonetically
balanced speech "Notturno":

"Notturno. Vi è un profondo silenzio nel buio della notte. Vicino al pozzo, nella
cui acqua si specchiano la luna ed una scia di stelle, la magnolia stende i suoi

rami, cespugli di rose olezzano nell’aria. Il temporale è cessato e la pioggia, ormai,
non cade più. Solo le rane gracidano nei fossi oltre quel prato"

A phonetically balanced speech is a type of continuous speech in which the words
have the phonemes occurring at the same frequency at which they occur in normal
conversations in that specific language (Italian, in this case) [25]. All files are
presented in .wav or .mov format. The main purpose of the study was to find
some valid vocal parameters that could be representative of the vocal quality of
substitution voices and thus give an objective evaluation of the rehabilitation course
of post-laryngectomized patients. Type I OPHLs preserve the vocal cords, while
type II, and III OPHLs remove them completely, hence the patients have to speak
with "substitution voices". It turns out to be intuitive that a substitution voice
could sound noisier and less harmonic than a traditional voice, and this can be
ascertained more objectively by certain parameters. So the subjects were divided
into categories to be distinguished, first by comparing the type of intervention
(22 OPHL-I vs 63 OPHL-II, III) and then by dividing the patients within the
worst cases into two categories based on index I (intelligibility) of the INFVo scale.
INFVo scale values range from 0 to 10, increasing as vocal perception worsens [15];
I=5 was seen as a reasonable value to discriminate between good and bad voices.
Three data sets (table 2.1) were created with this indicator: two with threshold
I=5 (one balanced, the other not) and one (balanced) with threshold I=2.8, to
separate the ones with the best vocal quality. Generally, as can be seen in table
2.1 the number of subjects categorized with a good quality of voice exceeds the
worst ones. This trend continued in the distinction among the good ones, with
I=2.8; in fact, in order to obtain a balanced data set, it was necessary to remove
a random patient between the ones with an excellent vocal quality (according
to I-index). The decision to use the I-index of the INFVo scale as a method to

14



Materials and methods

Table 2.1: Summary of the three data sets obtained within patients who underwent
type II, III OPHL (classification based on voice quality).

23 (I ≥ 5) vs 40 (I<5, good quality of voice)
23 (I ≥ 5) vs 23 (I<2.8, the best within the good ones)

23 (I ≥ 5) vs 23 (I<5, random extraction within the good ones)

discriminate between good-quality voices and bad-quality voices was taken after a
review of the literature [15] and a check of the information that came along with the
recordings of the patients. This information involves personal data such as gender,
age, profession, and values of different perceptual scales, including the INFVo. The

Figure 2.1: INFVo scale index I for patients submitted to OPHL-I (blue dots,
Imean= 1.9), OPHL-II (yellow dots, Imean= 3.4), OPHL-III (red dots, Imean= 5.2)

I values were collected and represented in a scatter plot (figure 2.1): blue dots refer
to patients who underwent OPHL-I, yellow dots refer to OPHL-II and red dots
refer to OPHL-III. It is noticeable at first sight how I values are almost all under
the threshold at I=5 for OPHL-I, and more than the average have been given a 0,
which means a very good perception of the voice. OPHL-II and OPHL-III have
higher values, in particular, OPHL-III values are mostly above the threshold; this
was not a surprise, since substitution voices are expected to appear less clear and
defined when listening. The trend of index I among the patients confirmed the
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reliability of the INFVo scale in the evaluation of substitution voices and therefore
allowed the creation of the three data sets according to index I.

2.2 Pre-processing

The pre-processing phase is common to both tasks (sustained vowel /a/ and
balanced speech). All the recordings were listened to and manipulated with the
aid of the software Audacity, to remove the parts at the beginning and at the
end of the tracks, that were not useful for the purpose of this study. After that,
the files were further pre-processed in Matlab (R2022a). All files were loaded in
the Matlab environment and re-sampled at 44.1 kHz, which is the typical sample
rate in digital audio. Subsequently, a control on the mean value for each signal
was performed. Whenever the mean value was higher than the 20% of the RMS
value, it was removed. This step was followed by normalization with respect to
amplitude: specifically, the signal was normalized to the absolute value of the
maximum of the original signal. As the last thing, silences were removed from
the signal with the use of a fixed threshold, equal to a half of the RMS value of
the whole signal. A fixed window of 1024 samples was shifted over the signal, to
verify if the samples within the window were above the set threshold. In case of
a positive test result, the portion of the signal was considered valid and saved in
a specific array, otherwise, it was discarded. The risk of using a fixed threshold
resides in the fact that voices with low intensity, due to phonatory problems might
be identified as silent and therefore canceled, by committing an error; anyways this
technique proved to be effective when listening to the audio tracks. The signal
was then divided into harmonic and unharmonic frames, so as to proceed with
the feature extraction step only on the portion of the signal deemed valid. To
effectuate this separation, two criteria were used. The first method relied on the
Spectral Kurtosis (SK) parameter and the second on the Harmonic To Noise Ratio
(HNR). The methods, which will be extensively described in the next chapter,
involve considering the above-threshold portion of the signal as harmonic and the
below-threshold portion as unharmonic, thus invalid.
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2.3 Feature extraction

All signals, already unbundled from silences, were previously divided into blocks of
1024-sample each (23.2 ms with sr= 44.1 kHz) and smoothed with a Hanning-type
window. The extraction of the parameters coming from the spectral, cepstral, and
time domains was then carried out for every block of signal, for all signals (unless
specified otherwise); anyways, only the parameters related to the harmonic frames
of the signal were saved and taken into account for feature extraction. In this way,
each parameter was seen as a probability distribution over time and was represented
through nine descriptive statistics: mean, median, mode, 5-th percentile, and 95-th
percentile as measures of central tendency; range, standard deviation, as indices
of variability; and skewness, kurtosis as shape parameters. For both tasks, the
distributions of twenty-one parameters of quality (table 2.2) represented with the
aforementioned statistics were extracted, while for the sustained vowel /a/ task
nine perturbation parameters were added (table 2.3), to evaluate signal stability
over time and frequency. The following description and terminology of all the
perturbation parameters and SPI refer to the one contained in the software instruc-
tion manual of MDVP, Model 5105 [26]. The mathematical formulas contained in
the manual have also been used as a reference to implement the realization of the
aforementioned parameters in Matlab (R2022a).

2.3.1 Quality parameters

Mel Coefficients, MFCCs (no 13)
Spectral Entropy, SEn
Spectral Kurtosis, SK

Logarithmic Spectral Tilt, STdB (dB)
Soft Phonation Index, SPI (dB)
Root Mean Square value, RMS

Smoothed Cepstral Peak Prominence, CPPs (dB)
Fundamental frequency, fo (Hz)

Harmonic to Noise Ratio, HNR (dB)

Table 2.2: Quality parameters.
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Quality parameters evaluate the quality of voice and include parameters from time,
cepstral and spectral domains. Among these, the root mean square (RMS) value
was also calculated for each of the 1024-sample frames, into which the signals
unbundled from the silences were divided.

Mel coefficients (MFCCs)

These coefficients are representative of the vocal tract part of speech (with slow
variation in frequency) and exclude the component related to glottic pulses; the
aim is to compress the information about the vocal tract into numeric coefficients.
MFCCs are calculated with the Mel scale, which connects each value of frequency
(Hz) with a subjective pitch in the Mel scale, trying to emulate as close as possible
the perception of the human ear. The relation between frequency and Mel domain
can be approximately described with Eq.2.1

Mel(f) = 2595 · log10

A
1 + f

700

B
(2.1)

roughly associating 1000 Hz to 1000 Mel. As far as concerns this work, it felt
appropriate to consider only the first 13 MFCCs, as substitution voices usually do
not have helpful components at high frequencies; so the scale was approached by a
bank of 13 triangular band-pass filters (Fig.2.2) spaced up to 1 kHz, specifically
the first centered at 133 Hz and the last centered at 1.7 kHz. In the Mel scale, the
filters are narrow in the lower frequencies and widen toward the higher frequencies
to achieve better resolution at low frequencies as in the human auditory system
[27]. MFCCs are obtained through a defined procedure, whose steps may slightly

Figure 2.2: Frequency response of the bank of Mel filters [27].
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vary according to the specific algorithm; here is reported a summary account of the
necessary steps, after the review of a few algorithms [28][27]. The speech signal is
first segmented into blocks of equal size, then each of the above frames is smoothed
with a window (e.g. Hamming-type) and it is converted from the time domain to
the frequency domain by implementing a FFT algorithm; to facilitate the FFT
implementation, the signal is typically subdivided into frames of size equal to a
power of two. Afterward, the magnitude frequency response is filtered by the bank
of filters, to get a smooth magnitude spectrum. The last step before obtaining
MFCCs is to move from the frequency domain to the quefrency domain and this is
possible with the aid of DCT (Discrete Cosine Transform). Since the higher-order
coefficients have a smaller amplitude than the first ones, an additional "liftering"
(filtering in the quefrency domain) step may be needed, to rescale the coefficients
and have comparable magnitudes between them. In Matlab R2022a there is the
built-in function mfcc that performs these steps and returns the MFCCs. The
function takes as basic input parameters the signal and its sample rate and gives as
the default output 13 coefficients, which was appropriate for the case study. In this
work, coefficients were calculated on signal portions of 1024 samples, previously
windowed with Hanning-type windows and with 50% overlap; this process was
repeated for the entire signal length, for all signals.
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Spectral Kurtosis and Spectral Entropy

The AudioToolbox package in Matlab (2022a) provides built-in functions (spec-
tralKurtosis and spectralEntropy) to calculate the spectral descriptors. Both func-
tions have been implemented using Hanning windows of 1024 samples.

Spectral Kurtosis (SK): it measures the non-Gaussianity of the spectrum of a
signal around its centroid; it is computed from the 4-th order moment, which can
indicate the presence of series of transients and their positions in the frequency
domain. When the background noise in the spectrum is reduced, the SK is likely
to increase [21]:

SK =

b2q
k=b1

(fk − µ1)4sk

(µ4
2)

b2q
k=b1

sk

(2.2)

where

• b1, b2 are the bin limits of the interval analyzed (1024 samples in this case)

• fk is the frequency at a specific bin

• µ1, µ2 are respectively the spectral centroid and the spectral spread

• sk is the spectral value at a specific bin

In figure 2.3 are portrayed a few seconds of two vocal signals and their SK in
that range of time, from patients having undergone OPHL type I and with little
damage to their phonatory abilities. Figure 2.3a represents a short time portion
of a balanced speech vocal signal, leading to an alternance between harmonic
and noisy frames. As expected, SK is close to zero within the noisy portion of
the signal (vocalization of the voiceless consonant /s/) and its values increase as
the noise is reduced, reaching values greater than three orders of magnitude. On
the opposite, for the sustained vowel /a/ case in figure 2.3b, it leaps to the eye
the harmoniousness of the vocal signal in the time domain, mainly composed by
harmonic frames, and SK shows values all above 50.
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(a) Balanced speech, in red the pronunciation of consonant /s/

(b) Sustained vowel /a/

Figure 2.3: Spectral Kurtosis (calculated on the whole signal, unbundled from
silences) of two random OPHL-I patients, in the cases of balanced speech and vowel
/a/.

Spectral Entropy (SEn): is the Shannon entropy calculated on the normalized
power distribution of the signal in the frequency domain. It is largely used in
speech recognition to distinguish between voiced and unvoiced since regions of
voiced speech have lower entropy compared to regions of unvoiced speech:

SEn =
−

b2q
k=b1

sk · log(sk)

log(b2 − b1)
(2.3)
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(a) Balanced speech, in red the pronunciation of consonant /s/

(b) Sustained vowel /a/

Figure 2.4: Spectral Entropy (calculated on the whole signal, unbundled from
silences) of two random OPHL-I patients, in the cases of balanced speech and vowel
/a/.

where

• b1, b2 are the bin limits of the interval analyzed (1024 samples in this case)

• fk is the frequency at a specific bin

• sk is the spectral value at a specific bin

In figure 2.4 are reported examples of SEn evaluation over time either for a balanced
speech case, either for a sustained /a/ vowel case of a random OPHL-I patient,
with low vocal impairments. As expected, the chart associated with the balanced
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speech (fig 2.4a) has SEn values varying according to the pattern of the signal over
time, having its peak during the utterance of the voiceless consonant /s/.
In the sustained vowel case instead, (fig 2.4b) SEn sways among the same low value
for all the duration of the signal (in the figure is displayed a small portion of time)
and has no great variations; this due to the fact that the signal is composed by a
harmonic pattern that is repeated over time.
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Logaritmic Spectral Tilt and Soft Phonation Index

For both parameters the Fast Fourier Transform (FFT) was derived in specific
intervals, then the RMS value for each interval was taken as the Energy. Each
parameter is represented as the logarithm in base ten of the ratio among energy at
low and high frequencies.
Spectral tilt: it shows a comparison between energy at low frequencies E1= (60
Hz ÷ 1 kHz) and high frequencies E2= (1 ÷ 5) kHz in the logarithmic scale.

StdB = 20log
3

E1

E2

4
(2.4)

Soft Phonation Index: it is the average ratio of the lower frequency E1spi=
(60 ÷ 160) Hz harmonic energy to the higher frequency E2spi= (1.6 ÷ 4.5) kHz
computed in dB. It is an index of how strongly vocal folds adduct during phonation;
an increase in value is an index of incomplete or absent adduction.

SPI = 20log

A
E1spi

E2spi

B
(2.5)

CPPs

It comes from the cepstral domain and it is the absolute difference between the
rahmonic peak of a cepstrum and the value on the regression line at the same
quefrency. The CPPs was extracted through a Matlab script, based on the definition
of cepstrum described in section 1.4. The routine takes as input the original signal,
which is firstly down-sampled at 22.05 kHz, and then CPPs is estimated on frames
of 2 ms using a 1024 Hanning-type analysis window (of duration 46 ms). For each
window, FFT is computed twice: the first time to obtain the spectrum from the
time domain and the second time it is performed on the logarithmic spectrum to
obtain the cepstrum. Thereafter the cepstra of each analysis window are smoothed
in time (using a window of 14 ms) and in quefrency (using a seven bin averaging
window). As the next-to-last step, a regression line has been calculated between 1
ms and the maximum quefrency value. In fact, the quefrency at the cepstral peaks
corresponds to the inverse of the fundamental frequency that happens to be in
the range of (60 ÷ 300) Hz and 1 ms might be set as the imaginary threshold that
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divides contributes of the spectral envelope of the spectrum (below the peak) from
periodic contributes (above the peak). Finally, the CPPs is evaluated in dB as the
difference between the cepstral peak and the value on the regression line at the
same quefrency [29].

HNR (Harmonic to Noise Ratio) and fo (fundamental frequency)

Harmonic to noise ratio is an index of the harmoniousness of the voice signal, and
it is evaluated in dB. In this work, the HNR was computed in the time domain of
the signal, with the method of auto-correlation (AC) [30].

AC =
Ú

x(t)x(t + τ) dt (2.6)

Assuming the signal to be stationary (the statistical properties of the signal do not
change in time) AC can be described with Eq. 2.6 as a function of delay τ .

HNR = 10 log10
ACv(T )

ACv(0) − ACv(T ) (2.7)

Still assuming the signal to be periodic and corrupted by white noise, there is
a global maximum in AC at zero lag (corresponding to the power of the signal)
and a local maximum in AC at lag T (period of the signal). By normalizing the
AC of the signal to the maximum AC value at zero lag, the relative power of the
harmonic components at the numerator and the relative power of the noise at the
denominator are obtained. In this way it is possible to rewrite the HNR formula
in Eq.2.7 in terms of relative power, shown in Eq. 2.8 and taken as a reference to
implement the Matlab routines to obtain the parameter.

HNR = 10 log10
ACv(T )/ACv(0)

1 − ACv(T )/ACv(0) (2.8)

The AC maximum has to be searched within the time interval that includes the
expected f0 range. Fundamental frequency encounters variations according to
gender and age; a range from 90 to 400 Hz was chosen to implement the Matlab
algorithms. Two different algorithms were used for sustained vowel /a/ uttering
and balanced speech, which differ from each other for the length of the signal
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in which looking for the maximum AC. As for the balanced speech task, AC is
calculated once for the whole selected portion of the signal of 23.2 ms and the
search of AC maximum occurs here. As far as concerned the sustained vowel /a/
task was performed more accurate distinction within the pseudo-periods: initially
the is an estimation of the length of the pseudo-period from the AC computed on
the original signal, but then further research is performed. The signal is divided
into several intervals shorter than the estimated period and, for each one, AC is
calculated and the maximum value is researched. At the end of the process, there
is a distinction between harmonic and unharmonic frames through control of the
HNR value: whether HNR> -6dB the frame is considered harmonic, and HNR and
f0 estimations are taken into account, otherwise, they are discarded.

2.3.2 Perturbation parameters

Relative Jitter, Jitt (%)
Absolute Jitter, Jita (µs)

Relative Average Perturbation, RAP (%)
Pitch Period Perturbation Quotient, PPQ (%)

Shimmer Percent, Shim (%)
Shimmer, ShdB (dB)

Amplitude Perturbation Quotient, APQ (%)
Coefficient of Fundamental Frequency Variation, vf0 (%)

Coefficient of Amplitude Variation, vAm (%)

Table 2.3: Perturbation parameters.

APQ, ShdB and Shim are equally measurements of shimmer, which shows the
irregularity of the peak to peak amplitude of the voice signal. ShdB and Shim both
evaluate the same type of amplitude perturbation, but with different measures.

APQ (Amplitude Perturbation Quotient)

It measures the irregularity of the peak-to-peak amplitude of the voice, by applying
a smoothing factor of 11 periods. APQ increases in breathy and hoarse voices, it
can be associated with the presence of a turbulent noise in the signal or with the
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inability of the cords to support a periodic vibration.

APQ =
1

N−10

N−10q
i=1

---- 1
11

10q
r=0

A(i+r) − A(i+5)
----

1
N

Nq
i=1

A(i)
(2.9)

ShbB (dB)

It evaluates the period-to-period variability of the peak-to-peak amplitude within
a voice sample. It is an index of amplitude stability.

ShdB = 1
N − 1

N−1Ø
i=1

-----20log

A
A(i+1)

A(i)

B----- (2.10)

Shim (%)

It is the evaluation of the average absolute difference between the amplitudes of
two consecutive periods, divided by the average amplitude:

Shim =
1

N−1

N−1q
i=1

---A(i) − A(i+1)
---

1
N

Nq
i=1

A(i)
(2.11)

According to [30], adult voices with Shim values that are above 3.81% are considered
pathological voices.

Jita, Jitt, RAP, PPQ are equally jitter parameters, used to quantify the fre-
quency variation from cycle to cycle within the vocal signal (stability in frequency).
Variations may occur as a consequence of the inability of the vocal cords to support
a periodic vibration for a defined period and are usually typical of horse voices.

Jita (Absolute Jitter)

It is an absolute measure given in microseconds, thus its values are strongly related
to the fundamental frequency of the voice signal. Feminine voices, (with higher fo)
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result in lower Jita values than male voices (lower fo).

Jita = 1
N − 1

N−1Ø
i=1

|T (i)
0 − T

(i+1)
0 | (2.12)

Jitt (Jitter Percent)

It is a relative measure (%) widely used in literature to analyze pitch perturbation.
The fundamental frequency of a vocal signal has a low influence on the determination
of the Jitt parameter:

Jitt =
1

N−1

N−1q
i=1

|T (i)
0 − T

(i+1)
0 |

1
N

Nq
i=1

T
(i)
0

(2.13)

According to [30] adult voices with a jitter percentage higher than 1.04 % are held
to be considered pathological.

RAP (Relative Average Perturbation)

It is a relative measurement (%) and estimates the irregularity of the pitch period
of the signal with a smoothing factor of 3 periods.

RAP =
1

N−2

N−1q
i=2

----T (i−1)
0 +T

(i)
0 +T

(i+1)
0

3 − T
(i)
0

----
1
N

Nq
i=1

T
(i)
0

(2.14)

0.68% is usually set as a threshold to discriminate between healthy and pathological
voices [30].

PPQ (Pitch Period Perturbation Quotient)

It is a relative evaluation (%) of the period-to-period variability of the pitch within
the signal, with a smoothing factor of 5 periods. Hoarse and breathy voices may
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have an increased PPQ.

PPQ =
1

N−4

N−4q
i=1

----15 4q
r=0

T
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0 − T
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0
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N

Nq
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T
(i)
0

(2.15)

vAm and vfo are relative parameters that reflect the variation of the fundamental
frequency within vocal signals. The changes might be related to periodic or
non-periodic frequency tremors, high jitter, or rising and falling pitch during the
analysis.

vfo (Coefficient of Fundamental Frequency Variation)

It reveals any variation of the fundamental frequency within the voice signal.

vf0 = σ

f0
=

öõõô 1
N

Nq
i=1

A
1
N

Nq
j=1

f
(j)
0 − f

(i)
0

B2
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Nq
i=1

f
(i)
0

(2.16)

vAm (Coefficient of Amplitude Variation)

It is the relative standard deviation of the fundamental frequency and reflects the
variation of fo within the analyzed voice signal. The vAm increases either with
random or regular variations of the signal.

vAm =

öõõô 1
N

Nq
i=1

A
1
N

Nq
j=1

A(j) − A(i)

B2

1
N

Nq
i=1

A(i)
(2.17)

2.4 Spectral kurtosis method

According to [21] spectral kurtosis might be a good parameter to discriminate
among harmonic and unharmonic frames of a vocal signal. As a matter of fact, it
is related to the flatness of the spectrum around its centroid and its value decreases
as the noise increases. The threshold value of 2 was the one implemented in the
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previous thesis work, selected among the means of the statistical distributions
evaluated for 10 healthy subjects, as the one with the lowest standard error (SE).
By referring to figure 2.3 reported in section 2.3.1 it should be noted how the
behavior of the SK varies according to the nature of the signal. As far as concerns
the balanced speech in 2.3a the noisy portions of the signal, as uttering of the
consonant /s/ have SK values way below the threshold at 2, almost always close
to zero; the harmonic components instead shows SK values above the 2 threshold,
occasionally even above 1000. On the opposite, for the sustained vowel /a/ case in
figure 2.3b, it leaps to the eye the harmoniousness of the vocal signal in the time
domain, mainly composed by harmonic frames, and SK shows values all above the
set threshold at 2. This SK threshold method did a good job within the balanced
speech task, whilst it encountered some issues in the vowel /a/ task. This might be
related to the nature of the vocal signals: when vocalizing the vowel /a/ in normal
vocal conditions, the output ought to be a train of harmonics or at least something
that resembles it in the worst cases. Consequentially, the values of SK should be
quite similar among them and above the threshold at 2, leading to complications
in separating frames with this technique. During an early stage of the work, voiced
and unvoiced parameters (Eq.2.18,2.19) for both tasks were also calculated [31].

• Percentage of phonation time:

Dt% = 100 · nvoiced

nvoiced + nunvoiced

(2.18)

• Percentage of silence:

Dt_v_s% = 100 · nsilence

nvoiced + nunvoiced + nsilence

(2.19)

An unusually high percentage of phonation time was found within the balanced
speech task (almost all above 98%) and so it was decided to raise the SK threshold
to 200, which is the mean of the distributions of the median from the healthy
subjects in the previous work, to exclude more frame and obtain more realistic
phonation time percentage values. The percentage of phonation time got lower
than the previous outcomes, but this method was set aside since the results were
too imprecise at the hearing. With a higher threshold, a great number of frames
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was excluded from the harmonic ones, therefore classifying as unharmonic an
excessive load of voiced sounds. So the chosen threshold at 2 was kept to perform
classification, but Dt % and Dt_v_s % were precautionarily excluded from the
classification parameters.

2.5 HNR method

HNR as previously described in Eq. 2.8 can be seen as the ratio between relative
signal power and relative noise power and can be used as an index of the harmo-
niousness of the signal. Because the definition is written as a logarithm in base
ten, to obtain negative HNR values it is necessary that the power related to the
noisy component is higher than that related to the harmonic component of the
signal. As far as concern a healthy voice, the harmonic component is expected to
carry more power than the noisy one, which results in HNR> 0 dB [32]. According
to this assessment, first an attempt has been made with an HNR threshold at 0
dB to discriminate within harmonic and unharmonic portions of the signal. No
troubles were encountered with the balanced speech case, and the method worked
well, confirmed by listening to the vocal tracks. In contrast, problems were found
in the case of the sustained vowel /a/, since an HNR value above 0 dB appeared to
be too optimistic for patients who underwent OPHL-II and III; in fact, due to the
severe damage of the phonatory system as a result of such invasive operations, the
substitution voices could be affected more by hoarseness and roughness, and the
level of harmonicity of the vocal signal could be seriously impaired. As a matter
of fact, when the quality of voice of the patients was very bad, there was nearly
no frame with an estimated HNR above 0 dB, so the threshold was lowered to -6
dB, so as not to lose the information of those patients. This fact can be checked
by looking at the histograms of HNR distributions in Fig. 2.5; here are reported
the distributions related to the harmonic components of the sustained vowel /a/
signal for all patients that underwent OPHL-I,II, III. The distributions for type
II, and III OPHL show a high number of negative HNR, despite having lowered
the threshold to -6 dB; however, this trend is not seen for the type I OPHL case,
whose values are mostly positive. Moreover, the distribution for type I OPHL is
quasi-symmetric, while in type II, and III OPHL cases are asymmetric, both with
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positive skewness.

Figure 2.5: Histograms of the HNR distributions for the whole set of patients,
who underwent type I, II,III OPHL.

2.6 Two-sample Kolmogorov-Smirnov test

This test was performed to research a discriminatory power among the features
and to find features that might be representative of their own class; refer to the
following Chapter, section 3.1 to look at the obtained results. The two-sample
Kolmogorov-Smirnov test is a non-parametric hypothesis test that evaluates the
differences among the cumulative distribution functions (cdfs) of the two sample
data vectors over the range of values in each data set. The two-sided test uses the
maximum absolute difference between the cdfs of the distributions of the two data
arrays; the one-sided test uses the actual value of the difference, rather than the
absolute value [33].

D∗ = maxx(|F̂1(x) − F̂2(x)|) two-sided
D∗ = maxx(F̂1(x) − F̂2(x)) one-sided

(2.20)

The test was executed with the Matlab (R2022a) ktest2 built-in function, which
receives as an input the two arrays x1 and x2 and returns a decision made for the
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null-hypothesis (H0) test; as H0 was taken that two samples belong to the same
population, at 5% significance level (p-value < 0.05). The built-in function returns
h=0 if the null hypothesis is not rejected and h=1 if it is rejected. The test was
performed within each parameter among the subjects either belonging to the same
class or different classes, excluding null values. During intra-class comparisons, the
patients were compared two by two at a time, considering all the combinations
obtained with Eq.2.27. In this case, all times when the test yielded h=0 were
noted, to search for features that might be representative of their own class. As
for inter-class comparison, all subjects in a class were compared to each patient
belonging to the other class, resulting in a higher number of comparisons; the total
number of tests is obtained by multiplying the number of subjects in both classes.
In the OPHL-I (22) vs II, III (63) case it resulted in 1386 tests; in the OPHL-II,
III cases (divided with I-index) resulted in 920 tests for the unbalanced data-set
920 tests and 529 for the balanced ones (refer to table 2.1 to see the data-sets). In
this case, was noted when the test yielded h=1; in this way, it was possible to find
out whether there were features with a particular discriminatory power that would
allow the two classes to be distinguished.

2.7 Logistic Regression

Logistic regression (LR) is a non-linear statistical model, belonging to the class of
Generalised Linear Models, that uses a logistic function (link function) to model
a binary dependent variable. The logarithm of the odds in Eq.2.21 is a linear
combination of independent variables Xi (predictors), and regression coefficients
(βi), where β0 represents the intercept.

log( p

1 − p
) = ΘT x

ΘT x = β0 + β1x1 + βix2 + ... + βNxn

(2.21)

The probability p returned by the model is a continuous function that can be
described with the sigmoid function in Eq.2.22, obtained by inverting Eq.2.21. In
binary classification problems, the probability can be seen as an ideal step function
between 0 and 1, and the purpose of the LR model is to reduce the distance between
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the sigmoid functions and the ideal step function [34]. This can be done by solving
a minimization problem on the log-likelihood, by using deterministic or stochastic
approaches, such as the least square difference, gradient descent, and the Newton
method. The search for the best-regressed coefficients gives a set of best estimates
of the coefficients and also an estimate of the coefficient variances and covariances
which can be used to evaluate the goodness of the model.

p = eΘT ·x

1 + e(ΘT ·x) = 1
1 + e−(ΘT ·x) (2.22)

Since the probability returned by the LR model is a continuous function, to obtain
a binary classification, it is compared to a threshold, typically set to 0.5. Whether
p<= 0.5 the element is assigned to Class 0, else to Class 1. In this study, the
negative Class 0 is associated with the healthiest possible condition in the data set
analyzed and positive Class 1 with the worst possible condition (e.g in the data
set OPHL-I vs II, III the healthiest condition is linked to OPHL-I that becomes
the negative class, whilst OPHL-II, III becomes the positive class). The LR is
part of a bigger family of learning algorithms, very popular in machine learning,
called supervised learning algorithms; these have the characteristic to train the
algorithm to make predictions with a data set of known features and responses. The

Figure 2.6: Example of a confusion matrix (0= Negative Class, 1= Positive Class)

probabilities returned by the LR model can be therefore compared with the known
responses, to derive the quantities represented in a table named confusion matrix
(Fig.2.6). True Positive (TP) is the total of subjects correctly classified as part of
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the positive class 1, whilst True Negative (TN) is the number of subjects correctly
classified in class 0. False Positive (FP) is the number of subjects incorrectly
classified in class 1 and False Negative (FN) is the number of subjects incorrectly
classified in class 0. These quantities are useful to evaluate metrics to assess the
goodness of the classification. Common metrics are:

• Accuracy:
TP + TN

TP + TN + FP + FN
(2.23)

it is a measure of observational error, and it indicates how close the predictions
are to their real value.

• Precision:
TP

TP + FP
(2.24)

it is a measure of observational error as well and indicates how close the
predictions are to each other.

• Sensitivity:
TP

TP + FN
(2.25)

also called true positive rate (TPR), it measures the fraction of data belonging
to the positive class. As far as concerns this work, a high TPR means the
classifier has a good ability to correctly identify patients with worst voice
conditions (Class 1).

• Specificity:
TN

TN + FP
(2.26)

also called true negative rate (TNR), it measures the fraction of data belonging
to the negative class. According to this work, a high TNR reduces the likelihood
that a patient with a healthy voice, will be classified as impaired; this allows
the introduction of a metric called False Alarm = 1-Specificity.

• Area Under The Curve (AUC): it is the underlying area of the ROC curve,
it can be estimated in the Matlab environment with the built-in function
perfcurve. AUC values vary from 0, which is the worst measure of separability,

35



Materials and methods

Figure 2.7: Example of a ROC curve.

to 1, which is the best measure of separability possible; when the AUC is
0.5, the model has no ability to distinguish classes. The ROC it is created by
plotting the Sensitivity (TPR) against the False Alarm (FPR); an example is
reported in Fig. 2.7

2.7.1 Feature selection

The feature selection (FS) algorithm was implemented in the Matlab (R2022a)
environment and relied on the evaluation metrics computed after the training
of a Logistic Regression model. The total amount of available features to train
the LR model was 189 for the balanced speech and 198 for the sustained /a/
vowel task, but only the ones with low correlation and deemed to be statistically
significant were taken into account. In fact, the FS algorithm was in charge of
training the LR model with a single feature or a combination of 2, 3, or 4 features;
but before proceeding, a check on the R2 values of each pair of feature and their
p-values was performed. Only features with R2< 0.5, which means a correlation
R value in the interval (0 ÷ 0.7), and p-value < 0.05 were considered valid for
training. Once the training of the model was done, the FS indicated the more
suitable feature (or combination of features) to validate the LR model, with 5-fold
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cross-validation in the Classification Learner App, Matlab (R2022a). To select
the feature (or combination of features) by which to validate the model, the FS
algorithm compared the values of the accuracy extracted from the training case
of the model and automatically indicated the feature (or combination of features)
with the highest accuracy value.
In this thesis, the LR was implemented for binary classification with the built-in
function fitglm. The function receives as input: the data to be classified, their
real classes (0 and 1), and other settings, that allow the LR model to define the
distribution of the response variable as binomial (’Distribution’, ’binomial’) and
to set the logit function (Eq. 2.21) as the link function to utilize (’Link’, ’logit’).
The function returns as output the LR model, complete with probabilities and an
estimate of the coefficient standard errors and covariances, useful to evaluate the
goodness of the regression model. The implemented algorithm roughly follows a
pattern that starts with the selection of the number of features k to combine and
the creation of the combinations with the binomial coefficient in Eq. 2.27. The
work was completed with the built-in Matlab (R2022a) function nchoosek that
returns either the binomial coefficients or all the combinations; it receives as input
the number k of features considered (1,2,3,4) and the number of total features n
(198 for vowel /a/ and 189 for the balanced speech).

A
n

k

B
= n!

k!(n − k)! (2.27)

The number of chosen features k was set to range from 1 to 4 since an attempt
was made with k=5 features, but the computational cost was so high that caused
trouble in the Matlab environment. The number of the obtained combinations is
listed in table 2.4 for both tasks. At a glance, it is noticeable how the number
is very high in the case of k=4. The algorithm provides a double check on the
features before performing LR, one based on correlation values and one based on
their p-values. The coefficient of determination R2 was easily calculated for each
feature as the square value of the correlation, computed with the Matlab function
corr that also returns the p-values of correlations. All features having a smaller
p-value than the fixed threshold at 0.05 were assigned their R2 values, otherwise,
they were set to 1, to be further excluded in the following criterion based on R2.
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selected features balanced speech sustained vowel /a/
k=1 189 198
k=2 17766 19503
k=3 1107414 1274196
k=4 51494751 62117055

Table 2.4: Number of combinations for both tasks.

This second control was performed by taking the selected parameters two by two,
a common practice in machine learning training: if the values of R2 of the pair
remained within the interval, LR was performed with the function fitglm with the
set parameters explained before; else the combination of features was discarded
and the algorithm moved to the next combination. The following step, whether all
conditions were satisfied, was to carry out the predictions, by using the built-in
Matlab function predict, which takes as input: the LR model, the matrix with the
data to be classified, and other settings as ’Alpha’, by which was set the condition
on the maximum p-value to 0.05. This further condition on p-value was set to be
sure to take into account only models with statistically significant coefficients. The
probabilities values returned by predict were compared to the real responses to
obtain the confusion matrix. At the end of the algorithm, with the values reported
in the confusion matrix, the typical measures of classification for each combination
were computed as well: Accuracy, Precision, Sensitivity, Specificity, and AUC. The
algorithm automatically indicated a combination of features (for each k) with the
best accuracy obtained in the training phase and this was used to validate the
algorithm. Checking carefully, however, there were cases where multiple feature
sets had the same maximum accuracy value. In this situation, validation was
performed both with the combination of features returned by the algorithm with
the highest accuracy and by selecting the combination of features with the highest
AUC values among the ones with the highest accuracy.
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2.7.2 Validation of the LR Model

The validation of the LR Model was carried out within the Classification Learner
App, within the Matlab (R2022a) environment, using k-fold cross-validation, with
k=5. This technique partitions data into five subsets of equal size; the process
consists of using one subset among the five to validate the model trained with
the other subsets; it is repeated five times so that each subset is used once for
validation.
To perform the validation of the LR model, it was first necessary to load the matrix
with the features and their classes in the Classification Learner App; after that, the
features previously chosen with feature selection were manually selected, and the
validation of the LR model was executed. The Classification Learner App returns
the confusion matrix relative to the validation phase of the model and the values
of the main metrics, such as the accuracy, and the ROC curves, with the relative
AUC values; the App also gives the opportunity to recreate the Validated Model
in the Matlab environment with the "Generate Function" button in the Export
section.
Within the Classification Learner App, it is possible to get visual feedback on the
features that are able to separate the two classes well, by means of a scatter plot
comparing pairs of features. This was a useful tool to assess the goodness of the
feature selection model proposed. Figure 2.8a is reported as an example of a pair
of features selected in the prior feature selection phase, where it can be clearly seen
the division between the two classes; on the opposite, in figure 2.8b there is a pair
of features that demonstrates absolutely no ability to separate the two classes.
Cross-validation is a model assessment technique that works with any kind of
supervised learning algorithms, so an attempt was made to use it as well with the
Medium Tree model, using the features selected with the LR model; the method
was then rejected, due to the poor performances obtained.
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(a) f0 (5-th percentile) against SEn (95-th percentile)

(b) SPI (mean) against f0 (skewness)

Figure 2.8: Scatter plot for couples of features from type I vs II, III OPHL,
balanced speech, SK method.

2.7.3 Expanded uncertainty for the LR model

As the last step in this work, a method was proposed, according to [34], to quantify
the role of the expanded uncertainty U(p) of the probability p provided by the
LR model during the validation phase in the Classification Learner App, Matlab
(R2022a). The LR-validated model was generated by the exported function from
the Classification Learner App, which received as input the data set with features
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and classes. The sensitivity coefficients were obtained by unwinding the partial
derivatives of the probability function in Eq. 2.22 concerning the model coefficients
(β) and are reported in equation 2.28:

∂pi

∂β0
= pi · (1 − pi)

∂pi

∂βj

= Fj · pi · (1 − pi)

j ∈ [1...NF ]

(2.28)

where NF is the number of considered features.
In this way, the standard uncertainty u(p) was estimated through the uncertainty
propagation formula, taking into account both variances and covariances of the
model coefficients, which were all extracted from the validated LR model; each β

coefficient is in fact associated with an uncertainty value (SE) and with a covariance
value. The formula is reported in equation 2.29:

u(p) =
ñ

Jβ · COVβ · JT
β

Ji,j(β) = ∂pi

∂βi

; j ∈ [1...NF + 1]; i ∈ [1...NS]
(2.29)

where NF is the number of considered features, Ns is the number of samples in
the data set and Ji,j(β) is the Jacobian matrix of the model coefficients, COV
is the variance-covariance matrix of the coefficients. The expanded uncertainty
U(p) was then obtained by multiplying u(p) by a coverage factor of 2; this allowed
the creation of intervals of confidence for each probability value returned by the
LR-validated model. The expanded uncertainty was graphically represented by
error bars, an example is given in figure 2.9.
According to the example in the figure, in general, the error bars of probabilities
closer to 0 tend to narrow, while they tend to widen as they approach 0.5.
All subjects with probabilities ranges that intersected the set threshold at 0.5
were considered too doubtful to be involved in the binary classification, and the
third class of "non-classified" was therefore introduced. For instance, subjects
2 and 20 in fig. 2.9 fall in this class. To have an objective perception of the
effect of "non-classified" subjects on the overall classification performance, new
metrics were introduced, such as the Realistic Accuracy (Accreal) and Fraction
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Figure 2.9: Examples of intervals of confidence for subjects of Class 0.

of Classified (FoC). The Realistic Accuracy is nothing but the calculation of the
accuracy (as reported in eq. 2.23) by excluding the elements belonging to the
"non-classified" class. The Fraction of Classified, on the other hand, is the ratio
between the classified elements and the total number of elements, it is an index
of the percentage of the subjects held to be classifiable. All results found during
this analysis based on the expanded uncertainty of the probability returned by the
LR-validated model are reported in the following chapter, section 3.3.
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Results

This chapter contains the most significant results found during this thesis work.
All tables report the information in the columns according to the following legend:
"Task" is the analyzed task, bs= balanced speech, sv= sustained vowel /a/; "Selected
features" are the outcomes of feature selection, as explained in section 2.7.1;
"Method" is the method used to discriminate among harmonic and unharmonic
frames, with Spectral Kurtosis (SK) or Harmonic to Noise Ratio (HNR); the
metrics as Area Under The Curve (AUC), Sensitivity (TPR), Specificity (TNR),
Accuracy (Acc) refer to the training phase unless specified. To facilitate the reading
of the reported data, refer to 2.1 which contains a summary of the data sets
used during classification with the LR model and during the performances of the
Kolmogorov-Smirnov test.

3.1 Kolmogorov-Smirnov results

The Kolmogorov-Smirnov test was performed with the distributions of the parame-
ters, as a first attempt to look for features representative of a certain class. The test
performances in some cases yielded interesting results, which were also confirmed
in the classification with the LR model. Note to readings, the brown text in the
following tables highlights a correspondence between the results of the Kolmogorov
test and the ones from the feature selection, which relied on the training of the LR
model with 1, 2, 3, and 4 features.
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3.1.1 Inter-class comparisons

The most relevant results obtained during the performances of the inter-class
Kolmogorov-Smirnov test are reported in this section. The total number of tests
computed differs according to the data-sets numerosity and only the features with
the highest amount of H0 rejected (test yielded h=1) are reported. Generally
looking at the tabulated values, there are features that appear more often than
others, thus indicating a strong discriminatory power. For what concerns the
balanced speech cases, looking at the examples in tables 3.1, 3.2, recurrent features
are the fundamental frequency f0, the Mel Coefficients (MFCC5, MFCC7, MFCC8,
MFCC9, MFCC12, MFCC6), and the Spectral Entropy (SEn). These insights of
the test were also reflected in the results of feature selection of the balanced speech
cases, reported in section 3.2.2, table 3.8 (for the type I vs II, III OPHL data set,
SK method) in which the selected features happened to be statistics of SEn and f0.
Still, with regard to the case shown in table 3.1 the Kolmogorov-test rejected the
null hypothesis 1385 times out of 1386 with the feature HNR, hence suggesting a
strong discriminatory power of the feature; anyway, the classification result with
the LR model did not confirm this insight.

Table 3.1: Kolmogorov-Smirnov test results for 22 OPHL-I vs 63 OPHL-II, III,
SK method, balanced speech. Total number of tests: 1386.

H0 rejected Feature H0 rejected Feature
1385 HNR 1381 SK
1384 f0 1379 MFCC12
1381 SEn 1379 MFCC6

Table 3.2: Kolmogorov-Smirnov test results for OPHL-II,III, I<5 (40) vs I ≥ 5
(23), SK method, balanced speech. Total number of tests: 920.

H0 rejected Feature H0 rejected Feature
912 MFCC5 909 SEn
911 MFCC7 909 f0
909 MFCC8 908 MFCC9

Figure 3.1 is an example of poor correlation between f0 distributions, coming from
pairs of patients belonging to the two different classes of the case described in table
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3.1; each class has a particular distribution, which diverges from that of the other
class in terms of central tendencies and variability as well.

Figure 3.1: Examples of poor correlation among f0 values for the balanced speech
case reported in table 3.1.

As far as concerns the sustained vowel /a/ case (tables 3.3, 3.4), the fundamental
frequency f0 and the Mel Coefficients (MFCC5, MFCC7, MFCC8, MFCC9, MFCC3,
MFCC11) pop up among the other parameters. The statistics of MFCC5 (mean)
and MFCC9 (range) were two of the four parameters chosen (in the k=4 combination
case) by the feature selection algorithm, as reported in the following section 3.2,
table 3.9 (for the type II, III OPHL, 23 with I ≥ 5 and 40 with I<5, HNR method).
The skewness of MFCC5 was also selected in the k=2 combination case, reported in
table 3.6 (for the type I vs II, III OPHL, HNR method). Figure 3.2, is given as an
example of the different behavior of MFCC9 distributions between pairs of patients
of two different classes, for the case reported in table 3.3. The distributions have a
similar central tendency behavior but differ in terms of variability; for instance,
the figure at the top right clearly shows that MFFC9 values are centered around 0
for the Class 1 subject while are distributed over multiple values in the case of the
Class 0 subject.
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Table 3.3: Kolmogorov-Smirnov test results for OPHL-II,III, I<5 (40) vs I ≥ 5
(23), HNR method, vowel /a/. Total number of tests: 920.

H0 rejected Feature H0 rejected Feature
903 f0 895 MFCC3
902 MFCC7 894 MFCC5
896 MFCC9 891 MFCC8

Table 3.4: Kolmogorov-Smirnov test results for OPHL-I vs OPHL-II, III, HNR
method, sustained vowel /a/. Total number of tests: 1386.

H0 rejected Feature H0 rejected Feature
1385 f0 1376 HNR
1378 MFCC11 1374 MFCC5
1376 MFCC3 1374 MFCC9

Figure 3.2: Examples of poor correlation among MFCC9 values for the case
reported in table 3.3

3.1.2 Intra-class comparisons

As far as concerns the intra-class comparisons, the obtained results were not so
meaningful. All cases in which the test did not reject H0 were noted (considering
two samples belonging to the same class as H0). The results in table 3.5 are the
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sum of times the test returned h=0 for the OPHL-I and OPHL-II, III case, for a
total of 2184 runs (for each parameter).

Table 3.5: Intra-class comparisons for balanced speech, SK method, type I and II,
III OPHL.

Feature h=0 Feature h=0 Feature h=0
CPPs 291 STdB 83 MFCC7 42
HNR 174 MFCC3 76 MFCC6 41
SPI 118 SEn 71 MFCC12 38
MFCC1 116 MFCC13 66 MFCC9 37
RMS 112 MFCC10 61 f0 33
MFCC2 86 MFCC11 43 MFCC5 31
SK 85 MFCC4 42 MFCC8 28

Figure 3.3: Distributions of CPPs values for OPHL-I, balanced speech, SK method

Recall that the total number of combinations in the intra-class comparison is
obtained by calculating the binomial coefficient, comparing patients two by two at
a time and there is a different number of patients for each data set. No charac-
teristic features able to distinguish their own class were found, with a very feeble
exception for the CPPs, which counted 291 out of 2184 occurrences. In figure 3.3
CPPs distributions among pairs of patients that underwent OPHL-I are reported
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as an example, and they actually show common trends. Anyway, as the results
in the following sections will show, CPPs almost never appeared in feature selection.

These results indicate strong variability among distributions of the same class,
making it impossible to find a feature with a strong class recognition character.
However, the results of the inter-class comparisons showed that the distributions
have some features with good discriminatory power that allow the two classes to
be distinguished.

3.2 Logistic Regression results

It is recalled that in the Feature Selection (FS) phase, the algorithm was trained
with the combination of k features (k= 1, 2, 3, 4) and the FS algorithm indicated
a combination of features for each k value; the following tables contain the cases
thought to be most significant, indifferently with k= 1, 2, 3, 4 features.

3.2.1 Feature Selection results

During the Feature Selection (FS) phase, the algorithm automatically indicated
a combination of features with the best accuracy obtained in the training phase
and this was used to validate the algorithm. Checking carefully, however, there
were cases where multiple feature sets provided the same maximum accuracy
value. In this situation, validation was performed both with the combination of
features returned by the algorithm with the highest accuracy and by selecting the
combination of features with the highest AUC values among the ones with the
highest accuracy.
In table 3.6 few examples cases of this scenario are reported. In detail, the top two
couples refer to type I vs II, III OPHL, while the last couple refers to type II, III
OPHL, 40 (I<5) vs 23 (I ≥ 5).
The highest accuracy value in the validation phase of the model was obtained with
the set of features with the highest AUC values; in particular, the best validation
accuracy was reached in the balanced speech case, SK method, with an accuracy of
96.5%, by selecting the features SEn (95-th percentile), f0(5,95-th percentile). In
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Table 3.6: Examples where the FS algorithm identified multiple features with
the same accuracy. The text in purple denotes the cases with the highest accuracy
of the validated model.

Task Selected Features Method AUC Accuracy Accuracy (valid)

bs
SEn (95-th percentile)

SK 0.99 98.8% 96.5%f0 (5-th percentile)
f0 (95-th percentile)

bs
SEn (5-th percentile)

SK 0.96 98.8% 82.4%f0 (5-th percentile)
f0 (95-th percentile)

sv STdB (5-th percentile) HNR 0.97 94.1% 92.9%HNR (median)

sv MFCC5 (skewness) HNR 0.96 94.1% 90.6%Jitta

bs
MFCC3 (skewness)

SK 0.93 88.9% 84.1%CPPs (5-th percentile)
f0 (skewness)

bs
f0 (95-th percentile)

SK 0.94 88.9% 84.1%f0 (skewness)
HNR (median)

the last couple at the bottom, instead, the accuracy value after the model validation
does not change according to AUC values.
It proves to be interesting the sustained vowel /a/ case, in which the feature selection
algorithm went for Jitta, a perturbation parameter, and for MFCC5 (skewness); the
choice of a statistics of MFCC5 confirmed the insight of the Kolmogorov-Smirnov
test, that was pointed out in table 3.4.
Generally looking at the selected parameters, it should be noted the recurrence of
parameter f0 (5,95-th percentile, skewness) for the balanced speech cases. More-
over, the triplets of features selected in the first couple (balanced speech case, SK
method) only differ for the SEn statistic, which switches from 5-th percentile to
95-th percentile.
By looking at the accuracy values relative to the training phase in table 3.6, it is
possible to ascertain the LR model performed satisfactorily during the training
phase of the model. The best results were obtained in type I vs II, III OPHL, in
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particular for the balanced speech, SK method, with accuracy values of 98.8%.
Nevertheless, an accuracy of 88.9% was obtained for the bottom couple.
In the balanced cases of classification based on index I (23, I ≥ 5 vs 23, I<5 and
23, I ≥ 5 vs 23, I<2.8) worst results were found than the previous case; as an
example, the values in table 3.7.

Table 3.7: Accuracy values (pre, post validation) for the balanced data sets
among patients who underwent type II, III OPHL (23, I ≥ 5 vs 23, I<5 and 23,
I ≥ 5 vs 23, I<2.8).

Task Selected Features Method Accuracy Accuracy (valid)

sv MFCC4 (skewness) HNR 69.6% 67.4%SPI (range)

sv MFCC10 (skewness) HNR 80.6% 76.1%
f0 (95-th percentile)

bs f0 (5-th percentile) SK 84.1% 82.6%HNR (median)

bs
f0 (mean)

SK 93.5% 89.1%f0 (standard deviation)
HNR (95-th percentile)

bs
MFCC6 (skewness)

HNR 78.3% 73.9%CPPs (standard deviation)
HNR (95-th percentile)

As far as concerns sustained vowel /a/ the accuracy values do not exceed 80.6%
and in certain situations are below the 70%, as in the first top case. Regarding
the balanced speech cases, the situation is slightly better, with accuracy values
around the 90% and the best situation for SK method, trained with f0 (mean,
standard deviation), HNR (95-th percentile) which gave an accuracy of 93.5%. In
all the reported cases, the results were lowered during the 5-fold cross-validation
of the LR model; the highest accuracy of 89.1% is found in the aforementioned
balanced speech case, with the combination of three features. Generally looking
at the selected parameters for the balanced speech cases, the most common is f0

(mean, 5,95-th percentile, median, standard deviation) and HNR (95-th percentile,
median). The CPPs instead was selected only ones, with the standard deviation, a
statistical measure of variability.
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3.2.2 Best results of the Validation phase

The following tables summarize the best accuracy values obtained after the 5-fold
cross-validation of the Logistic Regression model in the Classification Learner Tool,
Matlab (R2022a). Specifically, only the validation outcomes for the models that
obtained the highest accuracy values during the training phase of the LR model are
reported, hence the cases for the balanced data sets (see table 3.7) among patients
who underwent type II, III OPHL (23, I ≥ 5 vs 23, I<5 and 23, I ≥ 5 vs 23, I<2.8)
were not taken into account.
In table 3.8 the OPHL-I vs II, III case is reported. This was the situation with the
highest accuracy values, up to 96.5% for the SK method, selecting the features SEn
(95-th percentile), f0 (5-th,95-th percentile). This particular set of features was
confirmed in the Kolmogorov-Smirnov inter-class tests results, as seen in section 3.1,
table 3.1. Other statistics of SEn (median, standard deviation) were selected for the

Table 3.8: Best accuracy values of the model validation, case OPHL-I vs II,III.

Task Selected Features Method AUC TPR TNR Accuracy

bs
SEn (95-th percentile)

SK 0.96 96.8% 95.5% 96.5%f0 (5-th percentile)
f0 (95-th percentile)

bs f0 (range) HNR 0.96 96.8% 90.9% 94.1%HNR (skewness)

sv SEn (median) SK 0.90 96.8% 81.8% 92.9%SEn (standard deviation)

sv STdB (95-th percentile) HNR 0.97 96.8% 81.8% 92.9%HNR (median)

sv

MFCC1 (kurtosis)

HNR 0.96 93.7% 81.8% 94.1%MFCC5 (skewness)
HNR (5-th percentile)
vAm

sustained vowel /a/ case, SK method, obtaining an accuracy of 92.90%. The same
accuracy value was obtained for another vowel /a/ case, HNR method, selecting
STdB (95-th percentile) and HNR (median). In the case of the last row, vAM, a
perturbation variability parameter, appears among the four selected features, and
the validation accuracy is 94.1%. All Validation model shows AUC values above
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0.90, indicating a good measure of separability and at least a 90% chance that the
model will be able to distinguish between positive and negative class.
TPR values are 96.8% for all cases, except the last one, and are higher than TNR
values; this highlights that these classifiers are more able in identifying patients
with the worst vocal condition, and it is possible that a healthy patient would be
incorrectly identified in the wrong class, creating a False Alarm.
In table 3.9, the values relative to OPHL-II,III with 23 (I ≥ 5) and 40 (I<5, good
quality of voice) are shown.

Table 3.9: Best classification metrics obtained with validation of the LR model,
classification between OPHL-I vs II, III based on index I, case 40 (I<5) vs 23
(I ≥ 5)case.

Task Selected Features Method AUC TPR TNR Accuracy

bs
f0 (95-th percentile)

SK 0.89 69.6% 92.5% 84.1%f0 (skewness)
HNR (median)

bs SEn (mean) HNR 0.77 60.9% 87.5% 77.8%StdB (5-th percentile)

sv

MFCC3 (95-th percentile)

SK 0.74 52.2% 87.5% 74.6%MFCC5 (mode)
MFCC7 (median)

sv

MFCC2 (mean)

HNR 0.68 65.2% 75.0% 71.4%MFCC5 (mean)
MFCC9 (range)
MFCC13 (mean)

At a glance, it can be seen that the accuracy values are ten percentage points lower
than those of OPHL-I vs II, III cases, reaching 84.1% as the highest value. This
was an expected result, since OPHL-I preserves almost the entire phonatory system,
whereas OPHL-II, III are more invasive operations; it this therefore logical to
assume that the classifier provides better performance in distinguishing classes with
very different characteristics from a case where they have similar characteristics.
It is possible to notice how different statistics of Mel Coefficients MFCCs were
always selected for the two sustained vowel /a/ cases reported.
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As far as concerns the balanced speech task, SK method, as in the case in table 3.8,
the f0 (5, 95-th percentile) appears in the selected features, with HNR (median)
obtaining an AUC value of 0.89, being the highest among these data set examples.
The minimum AUC value is 0.68, in the case of the sustained vowel /a/, HNR
method, with the mean of MFCC 2, 5, 13 and the range of MFCC 5, as selected
features. MFCC5 and MFCC9 were confirmed in the execution Kolmogorov-Smirnov
inter-class tests results, reported in section 3.1, table 3.3.
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3.3 Uncertainty evaluation for the LR model

This section reports the most relevant results obtained with the method to obtain
the Expanded Uncertainty U(p) of the probability p returned by the validation of
the LR model, described in Chapter 2.7.3. For convenience, the computation of
the Expanded Uncertainty of the model was carried out on the LR models with
k=2 features selected, having a total of three β coefficients. This trick made it
possible to ease the calculation of sensitivity coefficients (via the partial derivative
of the probability formula with respect to the β coefficients). The following sections
report two cases that gave the best accuracy values during the validation phase,
among the ones with k=2 selected features; they both refer to the type I vs II, III
OPHL.

3.3.1 Balanced speech

The first model is a case of balanced speech, HNR method, with f0 (range) and
HNR (skewness) as selected features. Figure 3.4 shows the probabilities returned
by the LR-validated model, as in the Classification Learner App, Matlab (R2022a),
without their uncertainties. Blue elements are associated with Class 0, red ones are
associated with Class 1. By looking at the graph, it should be noted some subjects
whose probability values sway around the threshold at 0.5.
To evaluate the standard uncertainty u(p) of the LR validated model, uncertainty
propagation was implemented on the probability Eq. 2.22, in section 2.7.3:

p = eΘT ·x

1 + e(ΘT ·x) = 1
1 + e−(ΘT ·x)

ΘT x = β0 + β1x1 + βix2 + ... + βNxn

(3.1)

All β coefficients are affected by uncertainty (SE) which are provided in the LR-
validated model, returned by the function generated in the Classification Learner
App, Matlab (R2022a).
Sensitivity coefficients were derived by unwinding the partial derivatives of the prob-
ability p with respect to the β coefficients. Subsequently, the standard uncertainty
of the probability returned by the LR model was obtained from the uncertainty
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Figure 3.4: Probabilities returned by the LR-validated model without expanded
uncertainty, balanced speech, HNR method, OPHL-I vs II, III.

propagation formula Eq. 2.29, in section 2.7.3:

u(p) =
ñ

Jβ · COVβ · JT
β

Ji,j(β) = ∂pi

∂βi

; j ∈ [1...NF + 1]; i ∈ [1...NS]
(3.2)

The propagation formula includes the sensitivity coefficients of the model and
the variances and covariances of the β coefficients. The covariance values of the
coefficients were extracted from the LR-validated model, returned by the function
generated in the Classification Learner App, Matlab (R2022a). In the present
case, the uncertainty formula in 3.2 was applied with the contributions of three
sensitivity coefficients and three covariances. The expanded uncertainty U(p) was
obtained by multiplying the uncertainty u(p) by a coverage factor 2; in this way,
an interval of confidence for each probability value of the model was obtained,
graphically represented by error bars in figure 3.5.
The uncertainty is directly related to sensitivity coefficients (see equation 2.28,

section 2.7.3), which tend to increase for probability values around 0.5 and decrease
for probabilities near 0 and 1; the graph in figure 3.5 confirmed the insight. In the
figure it should be noted some elements whose error bars intersect the threshold
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Figure 3.5: Probabilities returned by the LR-validated model with expanded
uncertainty, balanced speech, HNR method, OPHL-I vs II, III.

at 0.5; in particular, six subjects for Class 0 and five subjects for Class 1. The
LR-validated model classified all subjects regardless of their uncertainty values; all
of them were classified as TP and TN, beside subject 4, who was classified as FP
(see confusion matrix in fig. 3.6).

Figure 3.6: CM, balanced speech, HNR method, OPHL-I vs II, III.
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The expanded uncertainty associated with these subjects suggested that their
probability values were too doubtful to be considered in the binary classification.
Hence, the third class of "non-classified" was introduced. For the case in point, the
"non-classified" subjects were a total of 11, so the total number of subjects held to
be classifiable changed from 85 to 74, as shown in fig. 3.7.
To have an objective perception of the effect of "non-classified" subjects on the

Figure 3.7: Probabilities returned by the LR-validated model with expanded
uncertainty, balanced speech, HNR method, OPHL-I vs II, III, after the removal of
"non-classified".

overall performance of the classifier, new metrics were introduced, such as Realistic
Accuracy (Accreal) and Fraction of Classified (FoC).
The Realistic Accuracy is nothing but the calculation of the accuracy (as reported
in Eq. 2.23) by excluding the elements belonging to the "non-classified" class; hence
considering the elements in the confusion matrix in fig. 3.8.
The Realistic Accuracy value resulted to be 95.9%, improving of about two per-
centage points the accuracy value of 94.1% provided by the original LR model.
The fraction of Classified instead is an index of the number of elements labeled as
"non-classified" and resulted to be 0.87. In table 3.10 the results of the Uncertainty
evaluation are summarized.
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Figure 3.8: CM, balanced speech, HNR method, OPHL-I vs II, III, after the
removal of "non-classified".

Table 3.10: Summary of the evaluation metrics before and after the removal of
"non-classified" subjects.

TPR TNR Acc TPR TNR Accreal FoC
96.8% 90.9% 94.1% 98.3% 87.5% 95.9% 0.87
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3.3.2 Sustained vowel /a/

The second model refers to a case of uttering of the sustained vowel /a/, SK method,
with SEn (median, standard deviation) as selected features. Similar considerations
to the ones reported in the previous section were made.
In fig. 3.9 the probabilities returned by the LR-validated model are shown. It

Figure 3.9: Probabilities returned by the LR-validated model without expanded
uncertainty, sustained vowel /a/, SK method, OPHL-I vs II, III.

already jumps to the eye the presence of a doubtful subject, whose probability
value is on the threshold of 0.5; this subject is part of Class 0 but was assigned by
the LR model to Class 1, creating a FP (see confusion matrix in fig. 3.10).
Figure 3.11 reports the probabilities with the computed expanded uncertainties;
the doubtful subjects with probabilities values around 0.5 were five for Class 0 and
three for Class 1. As expected, the aforementioned subject on the threshold at 0.5
has the widest uncertainty among the other subjects.
After the removal of the "non classified" subjects, shown in figure 3.12 the total

number of subjects was reduced from 85 to 77. The elimination of the critical
patient on the threshold value, which carried a strong uncertainty component,
remodeled the number of FP by one (see confusion matrix in fig. 3.13).
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Figure 3.10: CM, sustained vowel /a/, SK method, OPHL-I vs II, III.

Figure 3.11: Probabilities returned by the LR-validated model with expanded
uncertainty, sustained vowel /a/, SK method, OPHL-I vs II, III.

The model provided a Realistic Accuracy of 94.8%, increasing with respect to
the accuracy value of 92.9% provided by the original LR model. The Fraction
of Classified turned out to be 0.91. In table 3.11 the results of the Uncertainty
evaluation are summarized.
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Figure 3.12: Probabilities returned by the LR-validated model with expanded
uncertainty, sustained vowel /a/, SK method, OPHL-I vs II, III, after the removal
of "non-classified" subjects.

Figure 3.13: CM, sustained vowel /a/, SK method, OPHL-I vs II, III, after the
removal of "non-classified" subjects.

Table 3.11: Summary of the evaluation metrics before and after the removal of
"non-classified" subjects.

TPR TNR Acc TPR TNR Accreal FoC
96.8% 81.8% 92.9% 98.3% 82.4% 94.8% 0.91
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Chapter 4

Conclusions

In this work, two different vocal tasks (reading of a phonetically balanced text
and vocalization of the sustained vowel /a/) of 85 subjects who underwent open
partial horizontal laryngectomy were examined, to identify vocal features that are
representative of the vocal quality of substitution voices. These features should
allow clinicians to have an objective assessment of both post-surgery phonatory
impairment and the effectiveness of rehabilitation.
The available vocal material was pre-processed according to two different methods,
which relied on the Harmonic-to-Noise Ratio (HNR) and the Spectral Kurtosis
(SK), in order to select the harmonic frames that were used to extract vocal features
in the time, spectral and cepstral domains. The subjects were classified according
to two criteria: the first based on the severity of the surgery (22 OPHL-I subjects vs
63 OPHL-II, III subjects), the second based on the voice quality according to index
I (Intelligibility) of the INFVo scale, among patients with the worst vocal conditions
(23 OPHL-II, III subjects with index I ≥ 5 vs 40 OPHL-II, III subjects with index I
< 5). The discriminatory power of the extracted features was initially assessed using
the two-sample Kolmogorov-Smirnov test, which made it possible to compare the
distributions of the extracted features between each pair of subjects. The outcomes
of the test indicated the features Harmonic-to-Noise Ratio (HNR), fundamental
frequency (f0), Mel Frequency Cepstral Coefficients (MFCCs), Spectral Entropy
(SEn), and Spectral Kurtosis (SK) as the best candidates to assess the quality
of substitution voices. Some of the results obtained in the previous phase were
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confirmed with an analysis based on the classification performance of a Logistic
Regression (LR) model, trained using a single feature or a combination of 2, 3, and
4 uncorrelated features. Out of the trained models, the combination of features (or
the single feature) that provided the best classification performance (in terms of
accuracy) for each of the tested comparisons was selected. The selected features
were used to validate the LR model with 5-fold cross-validation, directly in the
Classification Learner App, Matlab (R2022a). If there were multiple features with
the same maximum accuracy value, validation was performed with both the features
selected by the algorithm and the features with the largest area under the curve
(AUC), among those with the highest accuracy. However, the results showed that
this detail turned out to be rather irrelevant to the performance of the validated
model.
The best classification results achieved, summarized in the previous chapter, make it
clear that the balanced speech task is the most suitable vocal material for assessing
the quality of substitution voices. In addition, the SK criterion was proven to be the
most effective method for selecting harmonic frames from patients’ voice recordings.
In the comparison between OPHL − I and OPHL − II, III subjects (balanced speech,
SK method), a classification accuracy of 96.5% (sensitivity 96.8% and specificity
95.5%) was obtained using a 5-fold cross-validation technique to prevent over-fitting
phenomena. The selected features were f0 (5-th percentile),f0 (95-th percentile)
and SEn (95-th percentile). As expected, worse results were obtained in the
comparison between the classes OPHL − II, III(I < 5) and OPHL − II, III(I ≥ 5),
as both categories include patients who underwent a very severe surgery. Again,
the balanced speech task, pre-processed through the SK method, provided the
highest accuracy of 84.1% (sensitivity 69.6% and specificity 92.5%) using a 5-fold
cross-validation technique. The selected features were f0 (95-th percentile), f0

(skewness) and HNR (median).
Eventually, to evaluate the classification performance more realistically, a procedure
that relies on the confidence interval evaluation of the probability provided by the
logistic regression model was proposed. As a first thing, the sensitivity coefficients
were derived as the partial derivatives of the probability function with respect to the
model coefficients. The interval was then created by applying a coverage factor 2
to the standard uncertainty, previously estimated with the uncertainty propagation
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formula, with the contribution of the variances and covariances of the model
coefficients. Confidence intervals with values that intersected the threshold set at
0.5 suggested that their probability values were too doubtful to be considered in the
binary classification, hence the third class of "non-classified" was introduced. To get
objective feedback on the effect of "non-classified" subjects on overall classification
performance, the new metrics Realistic Accuracy (Accreal) and Fraction of Classified
(FoC) were created. By way of example, the balanced speech task, pre-processed
through the HNR method, with f0 (range) and HNR (skewness) as selected
features, provided a Fraction of Classified of 0.87 and a Realistic Accuracy of 95.9%,
improving of about two percentage points the original accuracy value of 94.1%.
This procedure can clearly be extended to any type of study involving classification
based on a logistic regression model.
To clarify, this thesis work was done with a view to providing an objective support to
clinicians in evaluating the rehabilitation pathway of post-laryngectomized patients
and is in no way intended to be a substitute for conventional methods. Future
developments could certainly involve expanding the dataset analyzed so that the
characteristics identified as representative can be verified with greater certainty.
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