
POLITECNICO DI TORINO

Master’s Degree in Mechanical Engineering

Master’s Degree Thesis

Extraction and Automatic Selection of Modal 
Parameters

Supervisor

Prof. Alessandro FASANA

Candidate

Yang CAO

December 2022





Table of Contents 

Chapter 1 - Definition of a multi-degrees-of-freedom system 1 

Chapter 2 - Comparison of the two different integration procedures 5 

Chapter 3 - Comparison of modal parameters extraction methods 16 



1 
 

Chapter 1 - Definition of a multi-degrees-of-

freedom system 

To implement the modal parameter extraction that will be discussed in the thesis, we need to 
define the system of interest, i.e., the research object, first. It is necessary for two reasons: 

 a defined system, whose modal parameters are already available to the readers, can be a 
good benchmark to the various methods of modal parameter extraction; 

 the very procedure of defining a system can help the readers to understand the physical 
meanings of the modal parameters. 

 
Therefore, in this chapter, the full description of defining a typical multiple-degrees-of-freedom 
(MDOF) mechanical system will present. It will be implemented through examples together 
with corresponding MATLAB codes. 

 
Fig1.1 A typical MDOF mechanical system with masses, springs, and dampers. 

 
Fig.1.1 depicts a typical 4-degrees-of-freedom (DOFs) mechanical system consisting of masses, 
springs, and dampers. To define such a system, two critical constants must be defined first. 
They are: 

- the number of the masses, i.e., number of DOFs, n; 

- the number of the springs and dampers, 𝑛𝑛𝑘𝑘. 
 
Here, the number of springs and of dampers share a same 𝑛𝑛𝑘𝑘 because we consider they are 
always equal. In case they are physically not, for example as shown in Fig.1.1 where only a 
spring but no damper is present between mass 1 and 2, the corresponding damping factor is 
specified as zero so that the number of dampers does not decrease. The MATLAB codes 
corresponding to the example presented in Fig.1.1 can be seen as line-3 and -4 in listing 1.1. 
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After defining the numbers, the mass (M), stiffness (K), and damping (C) matrix can be given. 
Still, we can take the 4-DOF system depicted in Fig.1.1 as an example. The mass matrix is 
hence [4]: 

𝐌𝐌 = �

    𝑚𝑚1    0
   0 𝑚𝑚2

 0     0
 0     0

     0      0
     0      0

𝑚𝑚3   0
 0  𝑚𝑚4

� 

Where 𝑚𝑚1 , 𝑚𝑚2 , 𝑚𝑚3 , and 𝑚𝑚4  are respectively the values of the four masses. See the 
MATLAB codes in line-7 to -11 of listing 1.1. 
 
The definition of the stiffness and damping matrices is slightly trickier, as they are usually non-
diagonal. As shown from line-14 to -19, the first step to define K and C is to specify their 
components 𝑘𝑘𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑝𝑝𝑝𝑝 one by one according to the following rules:  

1) 𝑘𝑘𝑝𝑝𝑝𝑝 refers to a spring connecting DOF-p and -q, the same to the 𝑐𝑐𝑝𝑝𝑝𝑝; 

2) subscript 𝑝𝑝 = 0 indicates fixed supporting; 

3) as mentioned above, 𝑘𝑘𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑝𝑝𝑝𝑝 are equal to 0 if they are not presented. 
 
Therefore, the subscript 𝑝𝑝𝑝𝑝 in fact suggests the links between masses. Furthermore, to help 
the program to access the links, a 𝑛𝑛𝑘𝑘 × 2 matrix, i.e., 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌, should be given by simply 
listing all these subscripts. For instance, in case of a system in Fig.1.1, this matrix can be: 

𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 =

⎣
⎢
⎢
⎢
⎡
0
0
1

1
3
2

1
2
2

3
3
4⎦
⎥
⎥
⎥
⎤

 

whose rows indicates the corresponding subscripts, 𝑝𝑝 and 𝑞𝑞, of 𝑘𝑘𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑝𝑝𝑝𝑝. See the codes' 
details in line-22 and -23 of listing 1.1. 
 
Then we need to assembly all the 𝑘𝑘𝑝𝑝𝑝𝑝  and 𝑐𝑐𝑝𝑝𝑝𝑝  components in the complete stiffness and 
damping matrix. To do so, a local matrix, 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥, is defined first as 

𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 = � 1 −1
−1 1 � 

which acts as a basic unit for a spring or damper between two masses. It comes from a basic 
case where only two masses and their link, a spring or a damper, present. As shown in Fig.1.2a, 
such a simple case owns equation of motion as following [4]: 
 

�𝑚𝑚1 0
0 𝑚𝑚2

� �𝑥̈𝑥1𝑥̈𝑥2
� + � 1 −1

−1 1 � 𝑐𝑐12 �
𝑥̇𝑥1
𝑥̇𝑥2
� + � 1 −1

−1 1 � 𝑘𝑘12 �
𝑥𝑥1
𝑥𝑥2� = �00� 
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Fig1.2 Schematic representation of a (a) 2- and (b) 3-DOF mechanical system with masses and 
springs and dampers in between. 
 
As it can be seen, the matrix local occurs in both the second and third terms. When the number 
of masses increases, for instance for a 3-DOF system as shown in figure1.2b, the global stiffness 
matrix can be assembled as [4]: 
 

�
𝑚𝑚1 0 0
0 𝑚𝑚2 0
0 0 𝑚𝑚3

� �
𝑥̈𝑥1
𝑥̈𝑥2
𝑥̈𝑥3
� + �

𝑐𝑐12 −𝑐𝑐12 0
−𝑐𝑐12 𝑐𝑐12 + 𝑐𝑐23 −𝑐𝑐23

0 −𝑐𝑐23 𝑐𝑐23
� �
𝑥̇𝑥1
𝑥̇𝑥2
𝑥̇𝑥3
� + �

𝑘𝑘12 −𝑘𝑘12 0
−𝑘𝑘12 𝑘𝑘12 + 𝑘𝑘23 −𝑘𝑘23

0 −𝑘𝑘23 𝑘𝑘23
� �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
�

= �
0
0
0
� 

Where the damping matric can be decomposed as 

 
Just like the stiffness matrix. It can be seen from this example how local matrix local performs 
as a basic unit for spring or damper between two masses.  
 

Listing 1: MATLAB codes for system definition 
1. % For a system depicted in fig. 1.1 
2.   
3.  n = 4;  % Number of dof 
4.  nk = 6;  % Number of springs and dampers 
5.   
6.  % Mass 
7.  m1 = 12; 
8.  m2 = 15; 
9.  m3 = 12; 
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10.  m4 = 15; 
11.  m = diag([m1,m2,m3,m4]); % Mass matrix 
12.   
13.  % Stiffness and damping  
14.  k01 = 100; c01 = 1*5; 
15.  k03 = 200; c03 = 2*5; 
16.  k12 = 300; c12 = 3*5; 
17.  k13 = 400; c13 = 0*5; 
18.  k23 = 500; c23 = 5*5; 
19.  k24 = 600; c24 = 6*5; 
20.   
21.  % Links between masses 
22.  mappa = zeros(nk,2);  % Preallocation 
23.  mappa = [0 1; 0 3; 1 2; 1 3; 2 3; 2 4]; % Links between ma

sses 
24.   
25.  local = [1 -1;-1 1]; % Local stiffness and damping matrix 
26.   
27.  % Stiffness matrix 
28.  K = zeros(n+1); % Preallocation 
29.  for j = 1:nk 
30.   coord = mappa(j,:)+1; 
31.   eval(['k = k' num2str(mappa(j,1)) num2str(mappa(j,2)) '; 
32.  ]) 
33.   K(coord,coord) = K(coord,coord) + local*k; 
34.  end 
35.  K = K(2:n+1,2:n+1); % Border condition 
36.  clear k 
37.  k = K; 
38.  clear K; 
39.   
40.  % Damping matrix 
41.  C0 = zeros(n+1);  
42.  for j = 1:nk 
43.   coord = mappa(j,:)+1; 
44.   eval(['c = c' num2str(mappa(j,1)) num2str(mappa(j,2)) ';'

]) 
45.   C0(coord,coord) = C0(coord,coord)+local*c; 
46.  end 
47.  c=C0(2:n+1,2:n+1); % Border condition 
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Chapter 2 - Comparison of the two different 

integration procedures 

In the previous chapter, we got the equations of motion of a typical MDOF mechanical system 
in the configuration space. Take Fig.1.2 (a) as an example, simplified Equation (1.1): 
 

𝐌𝐌{𝑥̈𝑥} + 𝐂𝐂{𝑥̇𝑥} + 𝐊𝐊{𝑥𝑥} = {𝑓𝑓}                                                (2.1) 
 
where {𝑥𝑥} is a vector in which the generalized coordinates are listed, and f is a time-dependent 
vector containing the forcing functions. This equation is from the point of view of mechanics. 
Now, let's look at it from another side, we know all M, C, and K of this system. So, we now 
analyze the same system in state space. Which is more intuitive observation and focus on input 
and output.  
 
In this chapter, we compare two different methods to integrate the system, specifically, the 
discrete time linear system method and the Duncan method. Both of them transform the system 
characteristic equation from configuration space to state space after defining the mass, stiffness, 
and damping matrices.  
 
From the configuration space to the state space, we introduce a set of auxiliary variables. The 
simplest one is to use {𝑥̇𝑥} = {𝑣𝑣}  which is a kinematic equation so that {𝑥̈𝑥} = {𝑣̇𝑣}  and 
therefore 
 

𝐌𝐌{𝑣̇𝑣} + 𝐂𝐂{𝑣𝑣} + 𝐊𝐊{𝑥𝑥} = {𝑓𝑓}                                             (2.2) 
In the monic form is: 
 

{𝑣̇𝑣} = −𝐌𝐌−1𝐂𝐂{𝑣𝑣} −𝐌𝐌−1𝐊𝐊{𝑥𝑥} + −𝐌𝐌−1{𝑓𝑓}               (2.3) 
Then, 

�
{𝑣̇𝑣}
{𝑣𝑣}� = �−𝐌𝐌

−1𝐂𝐂 −𝐌𝐌−1𝐊𝐊
𝐈𝐈 𝟎𝟎

� �
{𝑣𝑣}
{𝑥𝑥}� + �𝐌𝐌

−1

𝟎𝟎
� {𝑓𝑓}            (2.4) 

 
A state vector:  

{𝑧𝑧} =  �
{𝑥̇𝑥}
{𝑥𝑥}� =  �

{𝑣𝑣}
{𝑥𝑥}�                       (2.5) 

 
Then, with reference to the state space, the equation of motion of a linear system can be 
transformed into a set of 2n first-order linear differential equations, the state equations of the 
system: 
 

{𝑧̇𝑧} = 𝐀𝐀{𝑧𝑧} + 𝐁𝐁{𝑢𝑢}                        (2.6) 
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Therefore, 
 

𝐀𝐀 = �−𝐌𝐌
−1𝐂𝐂 −𝐌𝐌−1𝐊𝐊
𝐈𝐈 𝟎𝟎

� ;   𝐁𝐁 = �𝐌𝐌
−1

𝟎𝟎
�                 (2.7) 

 
Where matrix A and B indicate the dynamic and input gain matrix of the system. {𝑓𝑓} is input 
vector usually defines as {𝑢𝑢}. 
 
Base on equation of motion of configuration space (2.1), for the Duncan method, the 
transformation is performed according to equations as follows: 
Set, 

{𝑦𝑦} = �
{𝑥𝑥}
{𝑥̇𝑥}� ;  {𝑦̇𝑦} = �

{𝑥̇𝑥}
{𝑥̈𝑥}�                        (2.8) 

 
Substitute into the Equation (3.1): 
 

(𝐂𝐂 𝐌𝐌){𝑦̇𝑦} + (𝐊𝐊 𝟎𝟎){𝑦𝑦} = {0}                    (2.9) 
 
And, 

�𝐂𝐂 𝐌𝐌
𝐌𝐌 𝟎𝟎�

{𝑦̇𝑦} + �𝐊𝐊 𝟎𝟎
𝟎𝟎 −𝐌𝐌�

{𝑦𝑦} = �00�                 (2.10) 

 
Then, a set of n second order differential equations can be transformed in a set of 2n first order 
differential equations: 
 

𝐀𝐀{𝑦̇𝑦} + 𝐁𝐁{𝑦𝑦} = {0}                       (2.11) 
 
Therefor, 

𝐀𝐀 = �𝐂𝐂 𝐌𝐌
𝐌𝐌 𝟎𝟎� ;  𝐁𝐁 = �𝐊𝐊 𝟎𝟎

𝟎𝟎 −𝐌𝐌�                    (2.12) 

 
The MATLAB implementations of the two different methods are respectively the 
Integration.m and Duncan.m. Their results respect to same working condition will be 
compared in the following part of this section. 
 
Case 1. Only one random input 
Considering the 4-degrees-of-freedom mechanical system that is already defined in Chapter 1, 
only one random force is applied onto the third mass. The MATLAB code of the forcing 
matrix of the discrete time linear system method is attached as following: 
 

1. f=zeros(length(t),n); 
2. f(: ,3)=500*randn(length(t),1); % random input on mass 3 
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where t is the vector of time; n is the number of degrees of freedom. Then save the random 
input and apply it with the Duncan method. The elapsed time in MATLAB of the discrete time 
linear system method and the Duncan method is 0.242s and 0.105s (consider there are no noise 
on measurements). It can still be seen that the Duncan method is faster, even if the difference 
is small. And with such a random force, the two different methods give results as shown in 
Fig.2.1 and Fig.2.2. 

 
(a)                                   (b) 

    
(c)                                   (d) 

   
(e)                                   (f) 

Fig.2.1 For one random input (a) and (b) are from the discrete time linear system method, 
while the figure (c) and (d) are from the Duncan method. (b) is a local zoomed version of (a); 
(d) is a local zoomed version of (c); (e) overlapping the two methods; (f) is a local zoomed 
version of (e); solid line: discrete time linear system method; dash line: Duncan method. 
 

0 50 100 150
Time (s)

-2

-1

0

1

2

3

D
is

pl
ac

em
en

t

yn1
yn2
yn3
yn4

50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55
Time (s)

-1

-0.5

0

0.5

1

1.5

D
is

pl
ac

em
en

t

yn1
yn2
yn3
yn4

0 50 100 150
Time (s)

-2

-1

0

1

2

D
is

pl
ac

em
en

t

u1
u2
u3
u4

50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55
Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D
is

pl
ac

em
en

t

u1
u2
u3
u4

0 50 100 150
Time (s)

-2

-1

0

1

2

D
is

pl
ac

em
en

t

Integration
Ducan

54.4 54.6 54.8 55 55.2
Time (s)

0.2

0.4

0.6

0.8

1

D
is

pl
ac

em
en

t

Integration
Ducan



8 
 

From Fig.2.1, it can be seen that two sets of signals in (a) and (c) are obtained by running 
Integration.m and Duncan.m. In the following analysis, we will only focus on the later part 
of the curve, as the system can be still unstable during the first stage and behave noisily. 
Specifically, to make sure the system is completely stable, we only consider the last 80% of the 
curve. That is to say, for the cases presented above, we will only analyze the curve behavior 
from 30 to 150s, neglecting the first 20%, i.e., from 0 to 30s. Each signal has 4 sets of data, 
because of 4-d.o.f. system. And the curves in the two figures are very similar. But after zooming 
in, compare to the (b), (d) have small time delay. It is more obvious in Fig.2.1 (e)(f), the curves 
obtained by the two methods are highly similar. 

 
(a)                                 (b) 

 
(c)                                 (d)  

 
(e)                                 (f)  
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(g)                                 (h) 

Fig.2.2 In (a)(c)(e)(g), for one random input solid lines are from the discrete time linear 
system method, while dash lines are from the Duncan method; (b)(d)(f)(h) are zoomed 
version. 
 
The purpose of Fig.2.2 is to separate the four sets of curves in Fig.2.1 and then compare them 
separately. The maximum/minimum value of (a)(c)(e)(g) around ±2; and the discrete time 
linear system method has little delay compare to the Duncan method.  
 
Table 2.1 mean value and root mean square root (RMS) of the discrete time linear system 
method and the Duncan method 

Set   1 2 3 4 
Discrete time linear system 

method 
Mean value 0.0071 0.0077 0.0087 0.0074 

RMS 0.6556 0.5754 0.4905 0.6553 

Duncan method 
Mean value 0.0070 0.0075 0.0086 0.0073 

RMS 0.6553 0.5750 0.4901 0.6556 
 
The mean value of both sets of data is positive. The RMS of both sets of data is less than 1. 
Apart from these, the difference in the mean value between the two sets of signals is more 
than ten times. And the root mean square root (RMS) of the two sets of signals has an almost 
20% difference. 
 
Case 2. Two random inputs 
Considering the 4-degrees-of-freedom mechanical system that is already defined in Chapter 1, 
apply two random forces to the second and third mass. The MATLAB code of the forcing 
matrix of the discrete time linear system method is attached as following： 
 

3. f=zeros(length(t),n); 
4. f(:,2)=1000*randn(length(t),1); % random input on mass 2 
5. f(:,3)=500*randn(length(t),1); % random input on mass 3 

 
where t is the vector of time; n is the number of degrees of freedom. Then save the random 
input and apply it with the Duncan method. The elapsed time in MATLAB of the discrete time 
linear system method and the Duncan method is 0.27s and 0.11s. Same as case 1, It can still be 
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seen that the Duncan method is faster, even if the difference is small. And with such random 
forces, the two different methods give results as shown in Fig.2.3 and Fig.2.4. 

 
(a)                                 (b) 

 
(c)                                 (d) 

  
(e)                                 (f) 

Fig.2.3 Two random inputs (a) and (b) are from the discrete time linear system method, while 
figures (c) and (d) are from the Duncan method. (b) is a local zoomed version of (a); (d) is a 
local zoomed version of (c); (e) overlapping the two methods; (f) is a local zoomed version of 
(e); solid line: the discrete time linear system method; dash line: the Duncan method. 
 
As shown in Fig.2.3, two sets of signals in (a) and (c) are obtained by running Integration.m 
and Duncan.m. Each signal has 4 sets of data, because of 4-d.o.f. system. As shown in Fig.2.3 
(a)(c)(e), the curves in the two figures are highly similar. Even after zooming in (as shown in  
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(a)                                 (b) 

 
(c)                                 (d) 

  
(e)                                 (f) 

 
(g)                                 (h) 
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Fig.2.4 In (a)(c)(e)(g), for one random input solid lines are from the discrete time linear 
system method, while dash lines are from the Duncan method; (b)(d)(f)(h) are zoomed 
version. 
 
Same purpose as the last case. From Fig.2.4, the signals in (a)(c)(e)(g), the 
maximum/minimum value around ±4; the frequency of signal in (a)(c)(e)(g) are almost same 
as the signal in (b)(d)(f)(h). 
 
Table 2.2 The mean value and the root mean square root (RMS) of discrete time linear system 
and Duncan method 

Set   1 2 3 4 
Discrete time linear system 

method 
Mean value -0.0065 -0.0072 -0.0080 -0.0072 

RMS 0.5998 0.5956 0.5847 0.7917 

Duncan method 
Mean value -0.0064 -0.0072 -0.0080 -0.0072 

RMS 0.5996 0.6954 0.5846 0.7915 
 
The mean value of both sets of data is negative. The RMS of both sets of data is bigger than 1 
and less than 2. Apart from these, the difference in the mean value between the two sets of 
signals is small, nearly none. Likewise, the root mean square root (RMS) of the two sets of 
signals has no difference.  
 
Case 3. One random input and one harmonic input  
Considering the 4-degrees-of-freedom mechanical system that is already defined in Chapter 1, 
apply one random input and one harmonic input onto the third and first mass. The MATLAB 
code of the forcing matrix of the discrete time linear system method： 
 

1. f=zeros(length(t), n); 
2. f(: ,1)=500*cos(2*pi*20*t)+sin(2*pi*20*2*t)+300*cos(2*pi*20

*3*t)+100*sin(2*pi*20*4*t) ; % harmonic input 
3. f(: ,3)=500*randn(length(t),1); % random input  

 
Where t is the vector of time; n is the number of degrees of freedom. Then save the random 
input and apply it with the Duncan method. The Elapsed time in MATLAB of the discrete time 
linear system method and the Duncan method is 0.244s and 0.103s. Same as before, the Duncan 
method is faster, even if the difference is small. And with such forces, the two different methods 
give results as shown in Fig.2.5 and Fig.2.6.  
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(a)                                  (b) 

  
(c)                                  (d) 

  
(e)                                  (f) 

Fig.2.5 For one random input and one harmonic input (a) and (b) are from the discrete time 
linear system method, while figure (c) and (d) are from the Duncan method. (b) is a local 
zoomed version of (a); (d) is a local zoomed version of (c); (e) overlapping the two 
methods(f)is a local zoomed version of (f). 
 
As shown in Fig.2.5, two sets of signals in (a) and (c) are obtained by running Integration.m 
and Duncan.m. Each signal has 4 sets of data, because of 4-d.o.f. system. As shown in Fig.2.5 
(a)(c)(e), the curves are highly similar, even after zoom.   
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(a)                                 (b) 

 
(c)                                 (d) 

 
(e)                                 (f) 

 
(g)                                 (h) 
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Fig.2.6 In (a)(b)(c)(d), for one random input and one harmonic input, solid lines represent the 
discrete time linear system method, while dash lines represent the Duncan method; 
(b)(d)(f)(h) are zoomed version. 
 
Like before from Fig.2.6, The maximum/minimum value of (a) (c) (e), and (g) around ±2. 
 
Table 2.3 The mean value and the root mean square root (RMS) of discrete time linear system 
and Duncan method 

Set   1 2 3 4 
Discrete time linear system 

method 
Mean value -0.0064 -0.0072 -0.0080 -0.0072 

RMS 0.5998 0.6956 0.5847 0.7917 

Duncan method 
Mean value -0.0065 -0.0072 -0.0079 -0.0072 

RMS 0.5996 0.6954 0.5846 0.7915 
 

The mean value of both sets of data is negative. The RMS of both sets of data is bigger than 1 
and less than 2. Apart from these, the difference of the mean value between the two sets of 
signals is small, nearly none. Likewise, the root mean square root (RMS) of the two sets of 
signals has no difference. 
 
In conclusion, comparing the discrete time linear system method and the Duncan method, the 
results obtained by the two methods are very similar. But the calculation of the Duncan method 
is simpler and faster to calculate. 
 
The above three cases are based on the condition that there is no noise on measurements. 
But if we add 5% of noise on the measurements，the result for the first case (with one random 
input) is obtained as shown in Fig.2.7： 
 

 
(a)                                   (b) 

Fig.2.7 For one random input (a)overlapping the two methods(b)is a local zoomed version of 
(a). solid line: discrete time linear system method; dash line: Duncan method. 
 
It can be seen from Fig.2.7 that the results obtained by the Duncan method are less stable than 
the discrete time linear system. 
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Chapter 3 - Comparison of modal 
parameters extraction methods 
In this part, we will compare the input-output and output-only methods for extracting the 
modal parameters in the case of only one random input. Input-output method indicates those 
modal parameters estimation methods that need both inputs and outputs of a system, while the 
output-only methods are those where the system inputs are not needed and the estimation 
process can be done with only outputs. Both of them are performed through a simple 
modal parameter estimation method in the frequency or Z-domain, namely LIPEZ, which can 
work in both cases of input-output or output-only.  

Furthermore, the comparison is performed in an example case of a 7-degrees-of-freedom 
mechanical system, whose third mass (mass-3) is excited, owing the modal properties in Table 
3.1. 

Table 3.1 Modal parameters of a 7-degrees-of-freedom mechanical system 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 
Natural frequency (Hz) 8.09 24.70 35.32 45.03 47.55 53.46 65.99 

Damping ratio (%) 0.22 1.44 1.43 1.15 1.38 1.61 1.97 

With these modal parameters, we can easily obtain its modal matrix as Table 3.2. 

Table 3.2 Modal matrix of the mechanical system presented in Table 3.1 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 

0.5128 - 
0.0006i 

0.7977 + 
0.0039i 

2.2427 - 
0.0263i 

-1.5912 -
1.1860i

7.4538 + 
0.4177i 

-0.4630 +
0.0208i

-0.2626 +
0.0099i

0.9844 + 
0.0002i 

1.3355 + 
0.0038i 

3.0865 - 
0.1198i 

-1.8243 -
0.2038i

-4.1329 -
0.3381i

-0.6792 +
0.0065i

-0.1024 -
0.0039i

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1.1644 - 
0.0006i 

0.7532 + 
0.0075i 

-2.5286 +
0.1060i

9.8243 + 
2.5085i 

0.3269 + 
0.3887i 

-0.4436 +
0.0249i

-0.1128 +
0.0086i

1.1441 - 
0.0000i 

0.4227 - 
0.0214i 

-0.4809 +
0.0108i

-2.4157 -
0.5334i

-0.5139 -
0.1086i

1.3785 - 
0.0568i 

-0.8201 -
0.0298i

1.2519 - 
0.0008i 

-0.3743 -
0.0075i

-3.0708 +
0.0159i

-8.6309 -
2.0115i

0.2343 - 
0.1948i 

-0.5198 +
0.0182i

0.2128 + 
0.0053i 

1.3562 - 
0.0020i 

-2.9840 +
0.0012i

2.2769 - 
0.0218i 

2.9705 + 
0.7310i 

0.0045 + 
0.0740i 

-0.0331 -
0.0184i

0.0222 + 
0.0097i 

These modal parameters and modes can be seen as the right answer. And will be compared to 
the extracted modal parameters, in the input-output and output-only cases by using the LIPEZ 
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method. LIPEZ is a model parameter estimation method in the frequency domain [2]. This 
approach, which can work for multi-input-multi-output (MIMO) and output-only problems, 
provides a procedure to largely reduce the problem dimensions when dealing with the large 
data sets (i.e., 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 ≫ 1, where 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 is the number of FRFs). 
 
For a n-degree of freedom linear and time-invariant system the z-transformed impulse 
response function (with sampling frequency 𝑓𝑓𝑠𝑠) is: 

 

𝐻𝐻𝑘𝑘 = �𝐴𝐴𝑟𝑟  
𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑟𝑟
=

𝑏𝑏1𝑧𝑧𝑘𝑘 + ⋯+ 𝑏𝑏2𝑛𝑛𝑧𝑧𝑘𝑘2𝑛𝑛

𝑎𝑎0 + 𝑎𝑎1𝑧𝑧𝑘𝑘 + ⋯+ 𝑎𝑎2𝑛𝑛−1𝑧𝑧𝑘𝑘2𝑛𝑛−1 + 𝑧𝑧𝑘𝑘2𝑛𝑛

2𝑛𝑛

𝑟𝑟=1

 

 
It has in total 4n unknown real parameters, i.e., 𝐚𝐚 =  𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎2𝑛𝑛−1 and 𝐛𝐛 =
𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏2𝑛𝑛. To solve for these unknowns, the LIPEZ method does not need to apply the 
Least-square method 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 times. Instead, it only needs to apply the Least-square method 
once by introducing a positive real scalar E, which is defined as the overall sum of the square 
of the errors between the measured and true FRFs: 
 

𝐸𝐸 = � 𝐞𝐞𝑚𝑚H 𝐞𝐞
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑚𝑚=1

= Re � [(𝐀𝐀𝑚𝑚𝐚𝐚 − 𝐁𝐁𝐛𝐛𝑚𝑚 −𝐰𝐰𝑚𝑚)𝐻𝐻(𝐀𝐀𝑚𝑚𝐚𝐚− 𝐁𝐁𝐛𝐛𝑚𝑚 −𝐰𝐰𝑚𝑚)]
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑚𝑚=1

 

 
where all the symbols’ physical meanings can be found in [2] if not specifically stated. To 
minimize E, which is a function of a and 𝐛𝐛𝑚𝑚, where 𝑚𝑚 indicates the m-th FRF, we can set 
the corresponding derivative of E to null as follows: 

⎩
⎨

⎧
𝜕𝜕𝜕𝜕
𝜕𝜕𝐚𝐚

= 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝐛𝐛𝑚𝑚

= 0
 

As the dimension of 𝜕𝜕𝜕𝜕
𝜕𝜕𝐚𝐚

 is 2𝑛𝑛 × 2𝑛𝑛 and the second sub-equation above ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝐛𝐛𝑚𝑚

= 0) can be 

substitute in the first one, the problem dimension is dropped to 2n by using LIPEZ method, 
compared to the normal Least-square method. All the details can be seen in [2]. 
 
3.1 Input-Output Method 
Herein, the LIPEZ method is implemented elaborating the frequency response functions (FRFs) 
of a single input and multiple outputs (SIMO) system. 
 
The time histories of a single input (a time-varying force acting on the third mass) and 7 outputs 
(resultant displacements of seven masses) are supposed to be given, either numerically or 
experimentally. 
 
First, we need to obtain the FRF based on the input and output time histories. It is done by the 
Fast Fourier Transform (FFT). However, the result varies with its number of samples (NFFT)  
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Therefore, to have the suitable FRF, we change the NFFT and plot the obtained FRFs. The results 
are attached in Fig. 3.1, where (a), (b), and (c) indicate NFFT = 212, 214, and 216 respectively with 
sampling frequency 𝑓𝑓𝑠𝑠 = 512 Hz = 29 Hz. 

  
(a)                                  (b) 

 
                  (c) 
Fig.3.1.2 FRFs obtained from Fast Fourier Transform (FFT) onto the input and output time 
histories with different number of FFT, where (a) NFFT = 212, (b) NFFT = 214, and (c) NFFT = 216. 
 
As seen, NFFT = 212, 214, and 216 give similar results between 0 and 100Hz. Generally, we don't 
start from 0Hz, because FRFs may not express well at 0Hz, but not in this case. There are 7 
distinct peaks, even though it can be seen heavier noise for larger NFFT, especially for higher 
frequency band beyond 100Hz. Therefore, we study the frequency range of 0-100Hz, which is 
the most suitable. In such way, in the following numerical experiments we take NFFT=214 and 
only consider 0-100Hz frequency range for comparison and analysis. 
 
Hereafter, the model order should be determined. This can be done by running the LIPEZ.m 
function with different mode numbers (n) within 0-100Hz. The suitable value of the mode 
number can be chosen depending on the obtained results that will be discussed below. Here in 
this example, three different mode numbers, i.e., n = 30, 50 and 100, are tried and the results 
can be seen in Fig.3.1.3 (the example with n=100 contains also n=30 and n=50. So, we only 
keep the result with n=100). The running times are 38.3s, 105.6s and 554.7s. This means that 
the larger the mode number, the more time it takes. 
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(a)                                   (b) 

 
(c)                                   (d) 

Fig.3.1.3 (a) Histogram of all the extracted frequencies, overlaid on the sum of the modulus 
of all the FRFs. (b) The frequencies extracted with an increasing model order overlaid on the 
sum of the moduli of all the FRFs with a model order of 100. (c) Damping ratios as a function 
of the frequencies overlaid on the sum of the moduli of all the FRFs with model order of 100. 
(d) The damping ratios extracted with model order of 100. 
 
As can be seen from Fig.3.1.3 (a), there are 7 peaks located at 8.1, 24.5, 35, 45, 47.5, 55, and 
65Hz, respectively. Fig.3.1.3 (b) to (d) are beneficial to understand which modes are stable, 
whose frequencies are quickly detected and damping ratio is much more valuable. In Fig.3.1.3 
(b) it can be seen that the fourth and fifth peaks located at 45 and 47.5Hz, respectively, are not 
as quickly detected as the others, and they do not appear when the mode number is lower than 
20.  
 
And in Fig.3.1.3 (c)(d), we can find that when the mode number increases, the damping ratios 
approach their corresponding constant values. In this way, n = 100 certainly gives the best result. 
However, it has also the highest time consumption among the three. Furthermore, we can find 
from Fig.3.1.3 (c)(d) that the corresponding natural frequency and the damping ratio of the 
seven peaks are respectively 8.1Hz and 0.3%, 24.5Hz and 1.43%, 35Hz and 1.4%, 45Hz and 
0.78%, 47.5Hz and 1.2%, 55Hz and 1.6%, and 65Hz and 2.1%. Basically, they are exactly the 
same as the data given in Table 3.3. Therefore, considering the balance between the result and 
time expense, n = 50 seems to be a good choice. 
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Definition of the correct modal parameters 
This section aims to describe how the ‘best’ modal parameters can be selected among the set of 
extracted modes. As we already obtained the natural frequencies and damping ratios, here we 
need to check if they are stable. At the same time, their corresponding mode shapes are 
compared through MAC.  
 
For natural frequency stabilization, we compare the relative change between two consequent 
frequencies that can be written in the form: 
 

Δ𝑓𝑓 = 𝑓𝑓𝑖𝑖
𝑚𝑚−𝑓𝑓𝑖𝑖

𝑚𝑚−1

𝑓𝑓𝑖𝑖
𝑚𝑚 ,𝑚𝑚 = 1,2, … ,𝑛𝑛                     (3.1) 

 
If Δ𝑓𝑓 < 0.5% is satisfied, we regard the corresponding 𝑓𝑓𝑖𝑖𝑚𝑚 in plot (for example: Fig.3.1.4 
(b)) as a stable point and mark it as “O”, otherwise it is treated as unstable and marked as 
“X”. 
 
For the damping stabilization, we compare the relative change between two consequent 
damping ratio that can be written in the form: 
 

𝜉𝜉𝑖𝑖
𝑚𝑚−𝜉𝜉𝑖𝑖

𝑚𝑚−1

𝜉𝜉𝑖𝑖
𝑚𝑚 =  Δ𝜉𝜉, ,𝑚𝑚 = 1,2, … ,𝑛𝑛                   (3.2) 

 
If Δ𝜉𝜉 < 5% is satisfied, we regard 𝜉𝜉𝑖𝑖𝑚𝑚 in plot (for example: Fig.3.1.4 (c) and (d)) as a stable 
point and mark it as “Δ”. 
 
For mode shape stabilization, we compare the relative change between two consequent mode 
shape with MAC that can be written in the form: 
 

MAC�{𝜓𝜓}𝑖𝑖𝑚𝑚, {𝜓𝜓}𝑖𝑖𝑚𝑚−1� = �{𝜓𝜓}𝑖𝑖
𝑚𝑚∗{𝜓𝜓}𝑖𝑖

𝑚𝑚−1�
2

�{𝜓𝜓}𝑖𝑖
𝑚𝑚��{𝜓𝜓}𝑖𝑖

𝑚𝑚−1�
              (3.3) 

 
Where * designates the conjugate transpose of a complex vector. MAC, namely Modal 
Assurance Criterion, is a commonly-used statistical indicator to the similarity between mode 
shapes [5]. Its value is bounded between 0 and 1. The closer to 1 the value of MAC between 
two mode shapes is, the stronger the similarity between them exists. In the contrast, the closer 
to 0 the value of MAC, the more different the two mode shapes are [5]. Further details on MAC 
can be found in [5]. 
 
Here we set the threshold of MAC as 95%, i.e., we regard {𝜓𝜓}𝑖𝑖𝑚𝑚 in plot (for example: Fig.3.1.4 
(e)) as a stable point and mark it as “□” if its MAC>95%. 
 
Furthermore, an extended version of the MAC, which is valid for all kinds of vectors, is also 
calculated. Its expression is as follows according to [6]:  
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MACX�{𝜓𝜓}𝑖𝑖𝑚𝑚, {𝜓𝜓}𝑖𝑖𝑚𝑚−1� =
��{𝜓𝜓}𝑖𝑖

𝑚𝑚∗{𝜓𝜓}𝑖𝑖
𝑚𝑚−1�+�{𝜓𝜓}𝑖𝑖

𝑚𝑚T{𝜓𝜓}𝑖𝑖
𝑚𝑚−1��

2

�{𝜓𝜓}𝑖𝑖
𝑚𝑚∗{𝜓𝜓}𝑖𝑖

𝑚𝑚+�{𝜓𝜓}𝑖𝑖
𝑚𝑚T{𝜓𝜓}𝑖𝑖

𝑚𝑚���{𝜓𝜓}𝑖𝑖
𝑚𝑚−1∗{𝜓𝜓}𝑖𝑖

𝑚𝑚−1+�{𝜓𝜓}𝑖𝑖
𝑚𝑚T{𝜓𝜓}𝑖𝑖

𝑚𝑚−1��
   (3.4) 

 
The results of the above formulas are shown beyond Fig.3.1.3. In this case, we can set 0-10Hz, 
20-30Hz, 30-40Hz, 44-46Hz, 47-48Hz, 50-60Hz, and 60-70Hz as Mode 1, Mode 2, Mode 3, 
Mode 4, Mode 5, Mode 6, and Mode 7 to compare the original natural natural frequency, 
damping ratio and modal matrix in Table.3.1 and Table3.2. For reasons of space, we only 
discuss the ‘good’ case and the ‘worst’ case here (it is a better case if the result is closer to the 
ideal modal parameters). In this case, that are Mode 3 and Mode 4. 
 
Mode 3：30-40Hz frequency range with NFFT=214, n=50 

 
(a)                                   (b) 

 
(c)                                   (d) 
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(e)                                   (f) 

 
(g)                                  (h) 

Fig.3.1.4 (a)(b)(c)(e) have same meanning with Fig.3.1.3 in addition to including stabilized 
images.(d) is the zoom of (c). (g) and (h) represent MAC and MACX of this system. 
 
Except for the first point in Fig.3.1.4 (b), the others are stable points. We can read from this 
figure that the natural frequency of Mode 3 is 35.3Hz. Fig.3.1.4 (c) is not good to read so it is 
locally enlarged, as shown in Fig.3.1.4 (d). It can be seen that the damping ratio of the Mode 3 
is located around 1.43%. From the previous section, we know that as the mode number 
increases, the damping ratio tends to stable at a fixed value. Fig.3.1.4 (e) indicates similar trend.  
 
Fig.3.1.4 (f) is the result of MAC between the mode shapes, where the MAC number between 
the mode shape of each mode order and of the next mode order is calculated. According to the 
physical meaning of the MAC values stated above, it can be seen from this figure that the mode 
shape of Mode 3 is stable and similar as almost all their MAC numbers are close to 1. 
 
Fig.3.1.4 (g)(h) present the results of calculated MAC and MACX numbers between the mode 
shape of each mode order and the mode shape of all other mode orders including themself. As 
can be seen from these two figures, except those cases with relatively small mode order, where 
no valid value of MAC and MACX presents as Mode 3 was not detected at this region, most of 
the results are quite close to 1. It demonstrates that these mode shapes are highly similar. 
 
 
 
Table 3.3 Mode shape of 30-40Hz frequency range with NFFT=2^14, n=50 

Mode 
shape 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 
2.4984 - 
0.1575i 

3.3495– 
0.0708i 

1.0000+ 
0.0000i 

-2.7580- 
0.0179i 

-0.4987+ 
0.0335i 

-3.3046 
+0.2650i 

2.4703 - 
0.1406i 

 
Therefore, we can read out from Fig.3.1.4 that the natural frequency and stable damping ratio 
are 35.3Hz and 1.43%. Compared to the corresponding values listed in Table 3.1 for the Mode 
3, it can be seen that the error is smaller than 1%. Furthermore, it is worthy mentioning that the 
value of MAC number using the data provided in Table.3.3 and Table 3.1 for Mode 3 is 0.997. 
All of these suggests a very good agreement between the estimation from LIPEZ method with 
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respect to the actual modal parameters.  
 
Mode 4：44-46Hz frequency range with NFFT=214, n=50 

 
(a)                                   (b) 

  
(c)                                    (d) 

    
(e)                                    (f) 
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(g)                                    (h) 

Fig.3.1.5 (a)(b)(c)(e) have same meanning with Fig.3.1.3 in addition to including stabilized 
images.(d) is the zoom of (c). (g) and (h) represent MAC and MACX of this system. 
 
Similary, we can read from Fig.3.1.5 (b)(c)(d)(e) that the natural frequency and the damping 
ratio of Mode 4 are 45Hz and 0.82%, respectively. The errors are 0 and 28.7% compared to the 
corresponding values provided in Table 3.1 for Mode 4. And it can be seen from Fig.3.1.5 (f) 
that all the MAC number is close to 1, meaning that the mode shape of Mode 4 is stable and 
similar. All the valuable number in Fig.3.1.5 (g)(h) are close to 1, which means that these mode 
shapes are highly similar. 
 
Table 3.4 Mode shape of 44-46Hz frequency range with NFFT=2^14, n=50 

Mode 
shape 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 
0.5558 + 
5.1688i 

-1.8134 + 
8.9897i 

1.0000 + 
0.0000i 

8.2765 -
39.4596i 

-1.5969 + 
8.9927i 

-8.0255 
+33.8346i 

3.0176 -
11.6629i 

 
Furthermore, the MAC value based on Table.3.4 and Table 3.1 Mode 4 is calculated as 0.98, 
approximately 1. All of these prove that the LIPEZ method gives accurate estimations of the 
modal parameters except damping ratio for Mode 4.  
 
In conclusion, when dealing with the input-output cases, the LIPEZ method gives highly 
accurate natural frequency estimation, which is almost the same of the actual value, and fairly 
good mode shapes estimation, while insufficiently reliable damping ratios may occur. 
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3.2 Output-Only  
Normally, we calculate the FRFs by calculating the ratio between the Fourier transform of the 
output and of the input time history. However, in the output-only case, there is no data on input, 
i.e., we can only use the output data to estimate the modal parameter. Therefore, the original 
way is no longer applicable. Here, the ODS method reported in [7] is used. ODS, namely 
Operating Deflection Shapes or Operating Mode Shapes, is a method applicable in output-only 
cases. It can be obtained from the output-only data of two or more DOFs of a system.  
 
And to obtain the ODS, the CPSD (cross power spectrum density) between the two responses 
is needed first. According to [7], the CPSD is calculated as follows: 
 

Gxy(ω) = Fx(ω)Fy∗(ω)                       (3.5) 
 
where Gxy(ω) is the CPSD between DOF-x and DOF-y, Fx(ω) and Fy(ω) are respectively 
the Fourier transform of the roving and the (fixed) reference responses, and * means complex 
conjugate.  
 
Replacing x in y of equation (3.5), Gyy(ω), the auto spectrum of the reference response, is 
obtained. Similarly, the auto spectrum of the roving response, Gxx(ω) , can be obtained by 
replacing y in x.  
 
Hereafter, the ODS FRF can be calculated with only output data as follows [7]: 
 

ODS FRF(𝜔𝜔) =  �Gxx(ω) Gxy(ω)
�Gxy(ω)�

                   (3.6) 

 
3.2.1 ODS (Operating Deflection Shapes or Operating Mode Shapes) 
In this section we discuss the procedure with the same example as before: a 7-DOF mechanical 
system, whose third mass (mass-3) is excited. First, the ODS FRF is computed only based on 
the output time histories according to equation (3.5) and (3.6). Here we set the last point (Point 
7) as the reference. It can be selected from the seven points freely as long as it is not still, which 
would give a null Fy(ω) [7].  
 
However, during the numerical experiments, it is found that the result varies with the number 
of samples (NFFT). Therefore, the NFFT is adjusted to have suitable OSD FRF (the obtained ODS 
FRFs is plotted every time to help to select proper NFFT). The results are attached in Fig.3.2.1, 
where (a), (b), and (c) indicate NFFT = 212, 214, and 216 respectively. 
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(a)                                   (b) 

 
(c) 

Fig.3.2.1 ODS FRFs (Mode 7 as reference) obtained from the output time histories with 
different number of FFT, where (a) NFFT = 212, (b) NFFT = 214, and (c) NFFT = 216. 
 
As seen, NFFT = 212 and 214 give 6 distinct peaks between 0 and 100Hz, while for NFFT = 216 
there is too much noise to see 6 distinct peaks between 0 and 100Hz. And, when NFFT increases 
the noise increases. Same as part 3.1, in the following numerical experiments we take NFFT=214 
and only consider 0-100Hz frequency range for comparison and analysis. 
 
Hereafter, the model order should be determined. This can be done by running the LIPEZ.m 
function with different mode numbers (n) within 0-100Hz frequency range. Here in this 
example, still three different mode numbers, i.e., n = 30, 50 and 100, are tried and the results 
can be seen in Fig.3.2.2. And the running times are 37.7s, 100.6s, and 465.2s, which means that 
the larger the mode number is, the longer time it consumes.  
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(a)                                  (b) 

  
(c)                                  (d) 

Fig.3.2.2 (a) Histogram of all the extracted frequencies, overlaid on the sum of the modulus of 
all the FRFs. (b) The frequencies extracted with an increasing model order overlaid on the sum 
of the moduli of all the FRFs with a model order being 100. (c) Damping ratios as a function 
of the frequencies overlaid on the sum of the moduli of all the FRFs with model order being 
100. (d) The damping ratios extracted with model order being 100. 
 
In Fig.3.2.2 (a), where the mode number 𝑛𝑛 reaches 100, the FRFs only get 3 peaks. It is not 
true, because there are 7 peaks in Fig.3.1.3 (a). It can be caused by the choice of the NFFT, which 
is 214 here. This value is too high, leading to too much noise, hence the last four peaks between 
44-46Hz, 47-48Hz, 50-60Hz and 60-70Hz disappear. Therefore, a lower NFFT is taken. 
Specifically, we take NFFT=212 with 0-100Hz frequency range, and run the LIPEZ.m function 
again. It takes 37.1s when the mode order is 100, the results can be seen in Fig.3.2.3. 
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(a)                                  (b) 

 
(c)                                  (d) 

Fig.3.2.3 (a) Histogram of all the extracted frequencies, overlaid on the sum of the modulus of 
all the FRFs. (b) The frequencies extracted with an increasing model order overlaid on the sum 
of the moduli of all the FRFs with a model order being 100. (c) Damping ratios as a function 
of the frequencies overlaid on the sum of the moduli of all the FRFs with model order being 
100. (d) The damping ratios extracted with model order being 100. 
 
In Fig.3.2.3 (a), where mode number n reaches 100, it can be seen that the FRFs get 6 peaks 
this time. There is still one peak missing. However, it behaves better than Fig.3.2.2 (a), where 
NFFT=214. It means that NFFT = 212 is more suitable compared to 214. Carefully checking the 
peaks, it can be seen that the missing peak is located within 44-46Hz. And in Fig.3.2.3 (b), the 
peaks between 47-48Hz, 50-60Hz and 60-70Hz appear as the mode number beyond 50. In the 
contrast, there is no visible change when the mode number increases in Fig.3.2.2 (a)(b). 
 
But, in order to compare with the previous part 3.1, we still choose NFFT = 214 with mode number 
= 50. 
 
Then, to find the ‘best’ modal parameters, we choose 0-10Hz, 20-30Hz, 30-40Hz, 40-50Hz, 50-
60Hz, and 60-70Hz (as Mode 1, Mode 2, Mode 3, Mode 5, Mode 6, and Mode7) to compare 
the actual natural frequency, damping ratio and mode shape listed in Table 3.1 and Table 3.2. 
For reasons of space, we only discuss the ‘good’ case and the ‘worst’ case here, which are Mode 
3 and Mode 4, specifically.  
 
Based on the current evidence (Fig.3.2.2 (a)(b) only showing 6 peaks, and some peaks appear 
with higher mode order than Fig.3.1.2 (b)), it seems that the ODS of Output-Only Method is 
less accurate than the Input-Output Method. 
 
Mode3: 30-40Hz frequency range with NFFT=214; n=50; 0-100Hz 
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(a)                                  (b) 

 
(c)                                  (d) 

 
(e)                                  (f) 

 
(g)                                  (h) 
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Fig.3.2.4 (a) Histogram of all the extracted frequencies, overlaid on the sum of the modulus of 
all the FRFs. (b) The frequencies extracted with an increasing model order overlaid on the sum 
of the moduli of all the FRFs with a model order being 100. (c) Damping ratios as a function 
of the frequencies overlaid on the sum of the moduli of all the FRFs with model order being 
100. (d) Local enlargement of (c); (e) The damping ratios extracted with model order being 100. 
(f) represents the variation of MAC number with respect to the model order. (g) and (h) 
represent the results of MAC and MACX of this system. 
From Fig.3.2.4 (a) it can be seen that the specific natural frequency of Mode 3 is 35.3Hz, close 
to the actual natural frequency of this system. However, in Fig.3.2.4 (b) the peak appears 
relatively slowly compared to the input-output case (Fig.3.1.4 (b)). In Fig.3.2.4 (c)(d)(e), the 
damping ratio does not perform well as there are only a few points are stable. And they are 
finally stabilized at around 2.45%, which is quite different from the actual damping ratio.   
 
For Fig.3.2.4 (g), it can be seen that all points are close to 1 and belong to stable points. 
In Fig.3.2.4 (g)(h), it can be seen that most values are close to 1, except for those whose mode 
order is too small to discover the valid value of MAC and MACX. It means that these mode 
shapes are similar. 
 
Table 3.5 Mode shape of 30-40Hz frequency range with NFFT=214, n=50, and 0-100Hz 

Modal 
matrix 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 
3.1616- 
0.5342i 

5.1204-
1.0159i 

1.0000+ 
0.0000i 

-3.3384-
1.5922i 

-0.6849- 
0.1438i 

-3.7975-
0.4168i 

1.2434+
1.2741i 

 
Furthermore, the MAC value based on Table 3.6 and the Mode 3 of Table 3.1 is calculated and 
the result is 0.8645, close to 1. It suggests that the two mode shapes are similar. 
 
In one word, as far as the evidence is concerned, ODS of output-only method is less accurate 
than input-output method.  
 
For further analysis of the ODS output-only method, we can narrow the frequency range to 40-
80Hz with NFFT = 214 and mode order = 50, then run the LIPEZ.m function again. There is no 
result. And if we change NFFT to 212 and narrow the frequency range to 40-80Hz with mode 
order = 50, the result is attached as below in Fig.3.2.5. 
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(c)                                  (d) 

Fig.3.2.5 (a)(b)(c)(d) have same meanning with Fig.3.2.2. 
 
As the Fig.3.2.5 shows, there is still no peaks in 44-46Hz. Then, continue to narrow the 
frequency range to 44-46Hz, the elapsed time becomes 1.86s and the result is shown in Fig.3.2.6. 

 
(a)                                  (b) 

 
(c)                                 (d) 

Fig.3.2.6 (a)(b)(c)(d) have same meanning with Fig.3.2.2. 
 
As the subplots (a) and (b) of Fig.3.2.6 depict, when we narrow the frequency range to 44-46Hz 
(with NFFT = 212 and mode order = 50), the peak in 44-46Hz finally appears. Moreover, Fig.3.2.6 
(d) does not show stable damping ratio.  
Mode 4: 44-46Hz frequency range with NFFT=212, n=50, and 44-46Hz 
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(a)                                  (b) 

 
(c)                                  (d) 

 
(e)                                  (f) 

 
(g)                                  (h) 
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Fig.3.2.7 (a)(b)(c)(e) have same meanning with Fig.3.2.2 in addition to including stabilized 
images. (d) enlarge of (c); (f) represent MAC number; (g)(h) represent MAC and MACX of 
this system. 
 
From Fig.3.2.7 (a), it can be seen that the specific natural frequency of Mode 4 is 45Hz. In 
Fig.3.2.7 (b) the peak does not appear sufficiently quickly and there are many unstable points. 
For Fig.3.2.7 (c)(d)(e), it is difficult to read the stable damping ratio.  
 
In Fig.3.2.7 (f), only few points are stable and close to 1, which means that, for mode 4, most 
of the mode shapes are dissimilar as the mode number varies. For Fig.3.2.7 (g)(h), it can be 
seen that, for Mode 4, varying n gives quite different results of mode shapes. 
 
Table 3.7 Mode shape of 44-46Hz frequency range with NFFT=212, and n=50 

Modal 
matrix 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 
0.0811- 
0.2077i 

-1.3743-
0.0113i 

1.0000 
+0.0000i 

-0.2785 
+1.8824i 

0.2535-
0.5612i 

-0.1934-
1.5631i 

-0.0334 
+0.7577i 

 
Furthermore, we can compute the MAC value using data provided by the Table 3.7 and Mode 
4 in Table 3.1, whose result is 0.6946. It means that they are quite different. 
 
In summary, compared with the ODS of the output-only method, the input-output method has 
higher accuracy in terms of the natural frequency, damping ratio, mode shape, etc., whose good 
results are hard to obtain with the output-only condition. 
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3.2.2 CPSD (Cross Power Spectral Density) 
This section describes the numerical results of LIPEZ when cross power spectral density (CPSD) 
function is used instead of ODS-FRF. Same with ODS method, in this case still choose point 7 
as the reference. To obtain the CPSD FRF only based on the output time histories by using 
equation (3.5). 
Then, still change the NFFT and plot the obtained CPSD FRF. The results are attached in 
Fig.3.2.8, where (a), (b), and (c) indicate NFFT = 212, 214, and 216 respectively. 

(a)      (b) 

(c) 
Fig.3.2.8 CPSD FRF (Mode 7 as reference) obtained from Fast Fourier Transform (FFT) onto 
only the output time histories with different number of FFT, where (a) NFFT = 212, (b) NFFT = 
214, and (c) NFFT = 216. 

As seen, NFFT = 212 and 214 give 6 distinct peaks between 0 and 100Hz, while for NFFT = 216 
there is too much noise to see 6 distinct peaks between 0 and 100Hz. And, when NFFT increases 
the noise increases. Same as part 3.1, in the following numerical experiments we take NFFT=214 
and only consider 0-100Hz frequency range for comparison and analysis. 

Hereafter, the model order should be determined. This can be done by running the LIPEZ.m 
function with different mode numbers (n) within 0-100Hz. For this example, still three different 
mode numbers, i.e., n = 30, 50 and 100, are tried and the results can be seen in Fig.3.2.9. The 
running times are 38.0s, 107.7s and 529.2s. This means that the larger the mode number, the 
more time it takes. 
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(a)                                  (b) 

 
(c)                                  (d) 

Fig.3.2.9 (a) Histogram of all the extracted frequencies, overlaid on the sum of the modulus 
of all the FRFs. (b) The frequencies extracted with an increasing model order overlaid on the 
sum of the moduli of all the FRFs with a model order is 100. (c) Damping ratios as a function 
of the frequencies overlaid on the sum of the moduli of all the FRFs with model order is 100. 
(d) The damping ratios extracted with model order is 100. 
 
It can be seen in Fig.3.2.9 (a), there only detected 3 peaks of FRF (that’s not true, because we 
can get 7 peaks at Fig.3.1.2). Furthermore, as can be seen in Fig.3.2.9 (d), when the mode 
number increases, the damping ratios approach corresponding constant values. In this way, 
same as before n is equal to 100 certainly gives the best result. However, it has also the highest 
time consumption among the three. Therefore, considering the balance between the result and 
time expense, mode order is equal to 50 seems to be a better choice.  
 
Like before, to find the ‘best’ modal parameters we set 0-10Hz, 20-30Hz, 30-40Hz (as Mode 1, 
Mode 2, Mode 3) to compare the actual natural frequency, damping ratio and modal matrix in 
Table 3.1 and Table 3.2. For reasons of space, we only discuss Mode1, Mode 3, and Mode 
4(NFFT=212; mode order is 50; 40-80Hz). 
 
Mode 1: 0-10Hz frequency range with NFFT=214; n=50; 0-100Hz  
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Fig.3.2.10 (a)(b)(c)(e) have same meanning with Fig.3.2.2 in addition to including stabilized 
images.(d) is the zoom of (c). (g) and (h) represent MAC and MACX of this system. 
 
From Fig.3.2.10 (a), the specific natural frequency of mode 1 is 8.1Hz. In Fig.3.2.10 (b) the 
peak appears quick and only the first node is unstable. In Fig.3.2.10 (c)(d), the damping ratio 
is located around 0.3%. The same conclusion we can get from Fig.3.2.10 (e). And compare to 
natural frequency and damping ratio in Table 3.1 Mode 1. We will find that the error is 0.12% 
and 36.4%. 
 
For Fig.3.2.10 (f), it can be seen that when the mode order is small, the mode shape of Mode 1 
is unstable. But when the mode order increases, the mode shape of Mode 1 is stable and similar 
because their MAC number is highly close to 1.  
 
In Fig.3.2.10 (g)(h) same as before, we only discuss the valid part. When the mode order is 
small, the mode shapes of Mode 1 are not similar enough. But the similarity will be increased 
as the mode order is increase, once the mode order is large enough, the mode shapes of Mode 
1 are highly similar because the MAC and MACX number is close to 1. 
 
Table 3.8 Modal shape of 0-10Hz frequency range with NFFT=214; n=50; 0-100Hz 

Modal 
matrix 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 

0.5215 
+0.0115i 

0.9985+ 
0.0316i 

1.0000 + 
0.0000i 

1.1576-
0.0078i 

1.1361+ 
0.0645i 

1.2427 
+0.0271i 

1.3687-
0.0008i 

 
Compute MAC number by using Table 3.8 and Table 3.1 Mode 1 to get MAC is equal to 0.9995, 
close to 1, which mean two mode shapes are extremely similar.  
 
Mode 3: 30-40Hz frequency range with NFFT=214; n=50; 0-100Hz 
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(c)                                  (d) 

 
(e)                                  (f) 

 
(g)                                  (h) 

Fig.3.2.11 (a)(b)(c)(e) have same meanning with Fig.3.2.2 in addition to including stabilized 
images.(d) is the zoom of (c). (g) and (h) represent MAC and MACX of this system. 
 
From Fig.3.2.11 (a), the specific natural frequency of Mode 3 is 35.3Hz. For Fig.3.2.11 (c)(d)(e), 
the stable damping ratio is 0.71%. The error between the actual data is close to 0.06% and 51%. 
 
In Fig.3.2.11 (e), all nodes are stable and close to 1, which means most mode shapes of Mode 
3 with different mode number are similar. For Fig.3.1.11 (g)(h), it can be seen that the most 
mode shape of Mode 3 are similar. 
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Table 3.9 Modal shape of 30-40Hz frequency range with NFFT=214; n=50; 0-100Hz 

Modal 
matrix 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 
2.3030-
0.1513i 

3.1144-
0.4280i 

1.0000 + 
0.0000i 

-2.7940 
+0.046i 

-0.1705 + 
0.0161i 

-3.0293 + 
0.2104i 

2.2632 
+0.061i 

 
Compute MAC use Table 3.9 and Table 3.1 Mode 3 get MAC is 0.992, which mean two mode 
shapes are highly similar.  
 
Then, narrow the frequency band to 40-80Hz and running the LIPEZ.m function again. But 
that’s impossible, there is no result at all. For further analysis of the CPSD output-only method, 
we can narrow the frequency range to 40-80Hz with NFFT = 2^12 and mode order = 50, then 
run the LIPEZ.m function again. 

 
(a)                                  (b) 

 
(c)                                  (d) 

Fig.3.2.12 (a) Histogram of all the extracted frequencies, overlaid on the sum of the modulus 
of all the FRFs. (b) The frequencies extracted with an increasing model order overlaid on the 
sum of the moduli of all the FRFs with a model order is 50. (c) Damping ratios as a function 
of the frequencies overlaid on the sum of the moduli of all the FRFs with model order is 50. 
(d) The damping ratios extracted with model order is 50. 
 
As the subplots (a) and (b) of Fig.3.2.12 shows, when we narrow the frequency range to 40-
80Hz (with NFFT is 212 and mode order is 50), the last four peaks appear. 
  
Mode 4: 44-46Hz frequency range with NFFT=212; n=50; 40-80Hz 
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Fig.3.2.13 (a)(b)(c)(e) have same meanning with Fig.3.2.2 in addition to including stabilized 
images. (d) enlarge of (c); (f) represent MAC number; (g)(h) represent MAC and MACX of 
this system. 
 
From Fig.3.2.13 (a) it can be seen that the specific natural frequency of Mode 4 is 45.1Hz, close 
to the natural frequency of Mode 1 in Table 3.1. Except for the first point in Fig.3.2.13 (b), the 
others are stable points. For Fig.3.2.13 (c)(d)(e), It can be seen that the damping ratio of the 
Mode 4 is located around 3.3%, quite different with actual damping ratio of Mode 4. 
 
In Fig.3.2.13 (f), most points are stable and close to 1, which means most mode shapes of Mode 
4 with different mode number are similar. For Fig.3.2.13 (g)(h), it can be seen that, for Mode 4, 
varying n gives similar results of mode shapes. 
 
Table 3.10 Mode shape of 44-46Hz frequency range with NFFT=212; n=50; 40-80Hz 

Mode 
shape 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 
-0.2890 - 
2.4532i 

-1.8171 + 
0.0615i 

1.0000+ 
0.0000i 

1.4323 + 
5.9240i 

-0.8820 - 
1.7624i 

-1.2395 - 
5.0313i 

0.3073 + 
1.7574i 

 
Furthermore, the MAC value based on Table 3.10 and the Mode 3 of Table 3.1 is calculated and 
the result is 0.9253, close to 1. It suggests that the two mode shapes are similar. 
 
Obviously, the ODS of Output-Only Method has lower operability and accuracy than the of 
CPSD Output-Only Method. To conclude, as can be seen from the above part. Whether it is the 
stability seen from the image or the accuracy compared from the calculated data or operability, 
the Input-Output Method have best performance, the CPSD of Output-Only Method second, 
and the ODS of Output only method is the worst. 
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3.3 Automated selection algorithm 
In this section, we use the automated selection algorithm to select the ‘best’ modal parameters 
to deal with the data operated by LIPEZ in 3 cases, respectively input-output case, ODS-FRF 
output-only case, and CPSD output-only case. 

The automated selection algorithm is a fully automatic method of selecting the best modal 
parameter without requiring user participation (including setting thresholds, changing 
parameters, etc.) when estimating modal parameters. It mainly consists of three steps.  

The first step is to select as much data as possible and use soft and hard criteria to remove the 
spurious modes. During this step, numerous modes are divided into two groups, i.e., ‘physic’ 
and ‘numerical’. The former means possibly physical modes, while the latter refers certainly 
spurious ones, which will be removed, hence a preliminary cleared stabilization diagram is 
obtained. The detailed soft and hard criteria used can be found in [3].  

As for the second step, it is to group those similar modes obtained from the previous step, 
realized through a hierarchical clustering approach. This step yields a set of mode groups with 
corresponding number of elements, according to their degree of similarity quantitatized by the 
so-called mutual distances. Based on the groups obtained from the second step, the third step is 
able to select all the certainly physical modes and remove all the remaining spurious ones. It is 
realized through a 2-mean algorithm that is fully explained in [3]. Finally, the best modal 
parameters can be obtained by drawing the latest stabilization diagram.  

As all the above procedures can be automatically operated without needing manual interaction, 
according to the literature, this method realizes a fully automated modal analysis procedure. 
Further details on this algorithm can be found in [3]. 

3.3.1 Input-output case 
Run the script ASA.m in MATLAB, using the data obtained from the LIPEZ method input-
output case. It can be seen that the operation time is 6.83s, and the result can be seen at Fig.3.3.1, 
Table 3.11, and Table 3.12. 
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(c)                                 (d) 

  
(e)                                  (f) 

Fig.3.3.1 the possibly physical modes (blue circle) and certainly spurious modes (red circle), 
obtained after applying the stabilization (a) eigenvalue distance vs. MAC; (b) frequency 
distance vs. MAC; (c) MAC vs. MACX; (d) damping ratio distance vs. the modal scaling 
factors distance; (e) damping ratio distance vs. MACX (the blue cross: final centroids). (f) 
represent the damping ratio vs. natural frequency diagram of all modes in the physical mode 
sets (dots), and their representatives (black crosses). 
 
Fig.3.3.1 (a)(b)(c)(d)(e) show all the points performed after Step 1. For example, (a) eigenvalue 
distance vs. MAC, which first represents the soft criterion VS1[3] and VS4[3]. When VS1 is 
equal to 0, that mode belongs to the ideal physical mode; when VS1 is equal to 1, that mode 
belongs to the ideal spurious mode. If VS1 of this mode is closer to 0, this mode belongs to 
‘physic’, vis versa, this mode belongs to ‘numerical’. The same process for VS4. After, using 
hard criterion VH1, VH2, and VH3[3] eliminate ineligible modes. Blue cross represent the final 
centroids of ‘physic’ and ‘numerical’ group.  
 
Fig.3.3.1(f) is the final result of the natural frequency and damping ratio, in which we are more 
interested. The black cross in Fig.3.3.1(f) is the average of their set, which can better indicate 
the ‘best’ modal parameter located. 
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Table 3.11 Through automated selection algorithm, the final natural frequency and 
damping ratio from Fig.3.3.1 (f) 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 
Natural frequency (Hz) 8.1 24.7 35.3 45.0 47.5 53.4 65.8 

Damping ratio (%) 0.29 1.43 1.41 No value 1.2 1.66 2.11 
𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐍𝐍𝐍𝐍 (%) 0.12 0.00 0.06 0.07 0.11 0.11 0.29 
𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝑫𝑫𝑫𝑫 (%) 31.82 0.69 1.40 No value 13.04 3.11 7.11 
 
The third and fouth rows of Table 3.11 is the error between the final natural frequency and 
damping ratio through the automated selection algorithm and the ideal modal parameters in 
Table 3.1. It can be seen that the final natural frequency are highly similar to the ideal data. But 
not for the damping ratio, the error is quite large. Even more, there is no result of the damping 
ratio in Mode 4.  
 
Table 3.12 The ‘best’ mode shape through automated selection algorithm 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 
0.5127- 
0.0108i 

0.8066 - 
0.0133i 

2.4298 - 
0.1526i 

No value 

7.5377 - 
3.8397i 

-0.4707 - 
0.0081i 

-0.2676 - 
0.0063i 

0.9824-
0.0234i 

1.3429 - 
0.0132i 

3.3105 - 
0.0988i 

-4.0672 + 
2.3463i 

-0.6885 + 
0.0012i 

-0.1029 + 
0.0041i 

1.0000+ 
0.0000i 

1.0000 + 
0.0000i 

1.0000 + 
0.0000i 

1.0000 + 
0.0000i 

1.0000 + 
0.0000i 

1.0000 + 
0.0000i 

1.1609 - 
0.0265i 

0.7555 - 
0.0223i 

-2.7155 + 
0.0146i 

0.5393 - 
0.5180i 

-0.4517 - 
0.0120i 

-0.1117 - 
0.0102i 

1.1428 - 
0.0266i 

0.4269 + 
0.0185i 

-0.4913 + 
0.0187i 

-0.4941 + 
0.2827i 

1.4082 + 
0.0300i 

-0.8329 + 
0.0383i 

1.2499 - 
0.0243i 

-0.3745 + 
0.0167i 

-3.2772 + 
0.2491i 

0.0005 + 
0.0574i 

-0.5319 - 
0.0118i 

0.2179 - 
0.0111i 

1.3581 - 
0.0208i 

-3.0035 + 
0.0289i 

2.4578 - 
0.1304i 

0.1897 - 
0.0094i 

-0.0281 + 
0.0229i 

0.0227 - 
0.0107i 

MAC   
0.9999 0.9998 0.9982 No value 0.9881 0.9986 0.9975 

 
The last row of Table 3.12 is the mac number of the final mode shape of each mode compared 
to the ideal data. And they are all close to 1 (except mode 4). 
In conclusion, the accuracy of automated selection algorithm for mode shape in this case is 
fairly good. 
 
3.3.2 ODS-output only case 
Run the script ASA.m in MATLAB, using the data obtained from the LIPEZ method ODS 
output-only case (case 1: NFFT = 214, mode order = 50, frequency range = 0-100Hz for first three 
modes; case 2: NFFT = 212, mode order = 50, frequency range = 40-80Hz last three modes). It 
can be seen that the operation time are 2.45s and 2.73s, and the result can be seen at Fig.3.3.2, 
Table 3.13, and Table 3.14 for case1 and Fig.3.3.3, Table 3.15, and Table 3.16 for case 2. 
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(a)                                 (b) 

  
(c)                                 (d) 

  
(e)                                 (f) 

Fig.3.3.2 The possibly physical modes (blue circle) and certainly spurious modes (red circle), 
obtained after applying the stabilization (a) eigenvalue distance vs. MAC; (b) frequency 
distance vs. MAC; (c) MAC vs. MACX; (d) damping ratio distance vs. the modal scaling 
factors distance; (e) damping ratio distance vs. MACX (the blue cross: final centroids). (f) 
represent the damping ratio vs. natural frequency diagram of all modes in the physical mode 
sets (dots), and their representatives (black crosses). 
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damping ratio from Fig.3.3.2 (f) 
 Mode 1 Mode 2 Mode 3 

Natural frequency (Hz) 8.01 24.8 35.4 
Damping ratio (%) 0.1403 0.037 0.0046 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐍𝐍𝐍𝐍 (%) 0.12 0.00 0.06 
𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝑫𝑫𝑫𝑫 (%) 36.23 97.43 99.68 

 
From Table 3.13, it can be seen that the final natural frequency is highly similar to the ideal 
data. But not for the damping ratio, the error is quite large. 
 
Table3.14 The final mode shape through automated selection algorithm 

Mode 1 Mode 2 Mode 3 
 0.5116 - 0.0223i 0.7801- 0.0691i 2.3690- 0.9806i 
 1.0030 - 0.1117i 1.2188 - 0.2257i 3.6116 - 2.0047i 
 1.0000 - 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 
 1.1679 - 0.1787i 0.6909 - 0.5074i -4.0867 - 1.3467i 
 1.1496 - 0.1720i 0.3952 - 0.3637i -1.0250 - 0.0563i 
1.2768 - 0.3204i   -0.3880 - 0.5220i -3.82796+ 0.1366i 
1.1958 - 0.3460i -2.4074 - 0.1619i 2.0197 + 2.0784i 

MAC 
0.9898 0.9237 0.8074 

    
The last row of Table 3.14 is the MAC number of the final mode shape of each mode compare 
the ideal data. There are close to 1, which means that the accuracy of automated selection 
algorithm for mode shape in this case is fairly good. 
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(c)                                 (d) 

  
(e)                                 (f) 

Fig.3.3.3 The possibly physical modes (blue circle) and certainly spurious modes (red circle), 
obtained after applying the stabilization (a) eigenvalue distance vs. MAC; (b) frequency 
distance vs. MAC; (c) MAC vs. MACX; (d) damping ratio distance vs. the modal scaling 
factors distance; (e) damping ratio distance vs. MACX (the blue cross: final centroids). (f) 
represent the damping ratio vs. natural frequency diagram of all modes in the physical mode 
sets (dots), and their representatives (black crosses). 

 
Table3.15 Through automated selection algorithm, the final natural frequency and 
damping ratio from Fig.3.3.3 (f) 

 Mode 5 Mode 6 Mode 7 
Natural frequency (Hz) 47.2 53.6 66.9 

Damping ratio (%) 2.1 No value  0.27 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐍𝐍𝐍𝐍 (%) 0.26 1.38 0.26 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝑫𝑫𝑫𝑫 (%) 52.17 No value 86.29 
 
From Table 3.15, it can be seen that the natural frequency is highly similar to the ideal data. 
But not for the damping ratio, the error is quite large. Obviously, there is no result of the 
damping ratio in Mode 6. 
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Table 3.16 The final mode shape through automated selection algorithm 
Mode 5 Mode 6 Mode 7 

0.4055 + 2.8301i -0.2658 + 0.0113i -0.4799 - 0.0625i 
-1.2610 - 0.7721i -0.1275 + 0.0392i -0.5921 + 0.1521i 
1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 
-0.2889 - 0.4314i -0.1313 + 0.0621i -0.4981 - 0.1019i 
0.5112 - 0.2363i -0.7132 - 0.2187i 1.2926 - 0.1948i 

-0.2566 + 1.0363i 0.1626 + 0.0132i -0.4028 + 0.2161i 
0.0099 - 0.0858i 0.0003 + 0.0043i -0.0040 - 0.0049i 

MAC 
0.6920 0.0303 0.0118 

    
The last row of Table 3.16 is the MAC number of the final mode shape of each mode compare 
the ideal data. The MAC number of Mode 6 and Mode 7 are highly close to 0. Which means 
the accuracy of automated selection algorithm for mode shape in this case is bad. 
 
3.3.3 CPSD-output only case 
Running ASA.m in MATLAB by using the data which obtained through LIPEZ method CPSD 
output-only case (case 1: NFFT = 214, mode order = 50, frequency range = 0-100Hz for first three 
modes; case 2: NFFT = 212, mode order = 50, frequency range = 40-80Hz last four modes). It 
can be seen that the operation time are 2.45s and 3.05s, and the result can be seen at Fig.3.3.4, 
Table 3.17, and Table 3.18 for case1 and Fig.3.3.5, Table 3.19, and Table 3.20 for case 2. 
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(e)                                 (f) 

Fig.3.3.4 The possibly physical modes (blue circle) and certainly spurious modes (red circle), 
obtained after applying the stabilization (a) eigenvalue distance vs. MAC; (b) frequency 
distance vs. MAC; (c) MAC vs. MACX; (d) damping ratio distance vs. the modal scaling 
factors distance; (e) damping ratio distance vs. MACX (the blue cross: final centroids). (f) 
represent the damping ratio vs. natural frequency diagram of all modes in the physical mode 
sets (dots), and their representatives (black crosses). 
 
From Fig.3.3.1 and Fig.3.3.2 and Fig.3.3.4, the available data (blue circle) after step 1 are less 
and less.  
 
Table3.17 Through automated selection algorithm, the final natural frequency and 
damping ratio readout from Fig.3.3.4 (f) 

 Mode 1 Mode 2 Mode 3 
Natural frequency (Hz) 8.1 24.7 35.3 

Damping ratio (%) 0.33 1.36 0.62 
𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐍𝐍𝐍𝐍 (%) 0.12 0.00 0.06 
𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝑫𝑫𝑫𝑫 (%) 50.00 5.56 56.64 

 
From Table 3.17, the final natural frequency has highly accuracy, but not for the damping ratio, 
the error is quite large. 
Table 3.18 The final mode shape through automated selection algorithm 

Mode 1 Mode 2 Mode 3 
0.5136 + 0.0057i 0.7771 + 0.0048i 2.4293 - 0.1271i 
0.9880- 0.0005i 1.2916 + 0.0288i 3.3190 - 0.2992i 
1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 
1.1647 - 0.0071i 0.7748 - 0.0261i -2.9200 + 0.0945i 
1.1427 + 0.0391i 0.3889 - 0.0453i -0.2036 + 0.0878i 
1.2573 - 0.0022i -0.3549 - 0.0355i -3.2326 + 0.2958i 
1.3678 - 0.0173i -2.9095 - 0.0559i 2.3735 - 0.0129i 

MAC 
0.9998 0.9995 0.9950 

 
The last row of Table 3.18 is the MAC number of the final mode shape of each mode compare 
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the ideal data. The MAC number of Mode 1 and Mode 3 are close to 1, which means the 
accuracy quite high for available mode. 

 
(a)                                 (b) 

 
(c)                                 (d) 

 

  
(e)                                 (f) 

Fig.3.3.5 The possibly physical modes (blue circle) and certainly spurious modes (red circle), 
obtained after applying the stabilization (a) eigenvalue distance vs. MAC; (b) frequency 
distance vs. MAC; (c) MAC vs. MACX; (d) damping ratio distance vs. the modal scaling 
factors distance; (e) damping ratio distance vs. MACX (the blue cross: final centroids). (f) 
represent the damping ratio vs. natural frequency diagram of all modes in the physical mode 
sets (dots), and their representatives (black crosses). 
 
Table3.19 Through automated selection algorithm, the final natural frequency and 
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damping ratio readout from Fig.3.3.5 (f) 
 Mode 4 Mode 5 Mode 6 Mode 7 

Natural frequency (Hz) 45 No value 53.4 64 
Damping ratio (%) 0.99 No value 0.16 2.83 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐍𝐍𝐍𝐍 (%) 0.16 No value 0.11 3 
𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝑫𝑫𝑫𝑫 (%) 14 No value 90 46.7 

 
From Table 3.19, the final natural frequency has highly accuracy (expect Mode 5), but not for 
the damping ratio, the error is quite large. 
 
Table 3.20 The final mode shape through automated selection algorithm 

Mode 4 Mode 5 Mode 6 Mode 7 
-0.5746 -0.0477i No value -0.5651 - 2.3831i -0.2802 + 0.0201i 
-0.6456 - 0.0021i No value -1.7185 + 0.2423i -0.1378 + 0.0136i 
1.0000 - 0.0000i No value 1.0000 + 0.0000i 1.0000 + 0.0000i 

-0.5195 + 0.0152i No value 1.7556 + 5.3948i -0.1434 + 0.0248i 
1.5817 - 0.1923i No value -1.0515 - 1.4955i -0.7257 - 0.0068i 

-0.5841 + 0.1389i No value -1.5437 - 4.6500i 0.1785 - 0.0238i 
-0.0895 + 0.0012i No value 0.4939 + 1.5619i -0.0071 + 0.0213i 

MAC 
0.9177 No value 0.9878 0.9927 

 
The last row of Table 3.20 is the MAC number of the final mode shape of each mode compare 
the ideal data. There are highly close to 1, which means the accuracy quite high for available 
mode. 
 
In summary, the accuracy of the automated selection algorithm applied with 3 cases from high 
to low are input-output, CPSD output-only, and ODS output-only case 
 
Compared with the previous method, using stabilization chart to finding the ‘best’ modal 
parameter. The automated selection algorithm operation time is shorter, and it does not need 
to manually increase the limit, and the accuracy is high enough. However, data loss is 
unavoidable during operation in some cases.  
 
If user want to analyze the changes in the data more clearly, using the first method, which is 
more intuitive. Although it takes more time and needs to manually set some parameters, it 
shows that the internal logic of modal parameters estimation and is more friendly to user. 
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