
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Autonomous Precision Landing for UAVs

Supervisors Candidate
Prof. Alessandro RIZZO Claudio Roberto DE CEGLIA
Dr. Stefano PRIMATESTA
Dr. Orlando TOVAR ORDOÑEZ

December 2022

Abstract
In modern industry, automated technologies are particularly useful in simplify-

ing several applications. This benefit is emphasized for performing dangerous and
difficult-to-handle operations. Especially, Unmanned Aerial Vehicles (UAVs) are de-
veloped for operations without a pilot on board and can be used in contexts where
human intervention is not directly possible. These types of vehicles have several
features including safety, rapid data extraction, and accessibility to remote loca-
tions. These also enable new application opportunities in both indoor and outdoor
environments (such as emergency situations following a catastrophic event, search
and rescue missions, or even aerospace applications). All these case studies share
the requirement of using fully autonomous aerial vehicles in such a way as to, par-
tially or totally, eliminate human intervention. In addition, there are many benefits
such as speed, safety, efficiency, low cost, quality, and accuracy as a result of the
ever-increasing growth in market demand in recent decades.

The present master thesis work aims to realize an architecture of an octocopter
drone and its autonomous behaviour in the FIXIT project. In particular, regarding
the precision landing of the UAV on board the rover. The FIXIT project is being
developed by the Competence Industry of Manufacturing 4.0, located in Turin, Italy.
The drone is an unmanned system capable of flying in industrial environments, both
outdoors and indoors by managing specific missions, collecting and processing data,
performing a stable and autonomous flight in any scenario thanks to an integrated
obstacle avoidance algorithm, and, at the end of the task, perform a precision land-
ing on-board an autonomous ground robot. Among the many solutions currently
available to perform a precision landing, some use optical guidance systems, predic-
tive control model methods, computer vision-based recognition systems, and systems
using GNSS/RTK or UWB positioning. The solutions analysed, have considerable
errors in the landing phase that would cause a failed landing. In order to provide
a precision landing with an adequate accuracy, a combined approach of the above
solutions, considerably improves the accuracy.

At the preliminary stage, the adopted solution uses two localization systems hav-
ing at most 10 cm of error, which is considered an optimal threshold for the project.
In the outdoor environment, GNSS positioning with a Real Time Kinematics sys-
tem was used, which allows a correction factor to be sent from the ground station to
the moving aircraft, which will improve the data received from the satellite; in the
indoor environment, on the other hand, UWB technology with a tag and a POZYX
anchor system was chosen, which allows its localization in the absence of signal from
GNSS satellites. Once the accurate location was obtained, a computer-vision based
system was developed, which uses a camera to identify a unique marker placed on
board the rover. Following the identification of the marker, the landing phase will
be carried out by keeping the marker in the field of view of the on-board camera;
this will allow it to remain on the landing site during the deployment even in the
presence of external disturbances that could displace it from the final target.

Table of Contents

Abstract ii

List of Figures vi

1 Introduction and State of the Art 1
1.1 UAV applications . 1
1.2 DRONE Architecture . 2

1.2.1 Main characteristics . 2
1.2.2 RTK GPS . 3
1.2.3 UWB antenna . 3
1.2.4 PIXHAWK Autopilot . 4
1.2.5 Companion Computer . 5
1.2.6 Depth Camera . 5
1.2.7 Architecture and Hardware Updates 6

1.3 Literature Review . 9
1.3.1 Vision-based recognition systems 9
1.3.2 Fiducial/composite landmark systems 10
1.3.3 Optical guidance systems . 12
1.3.4 Mathematical approaches . 12
1.3.5 Global positioning systems . 13
1.3.6 Neural networks approaches 14

1.4 Possible solution of precision landing 14

2 Building the new Drone 15
2.1 Drone Frame . 15
2.2 Electronic components . 17
2.3 First Calibration and Configuration 22

2.3.1 Firmware Installation . 22
2.3.2 Connection to the Pixhawk AutoPilot 22
2.3.3 Frame Type and Initial Parameters 23
2.3.4 Accelerometer and Compass Calibration 23
2.3.5 Radio and ESCs Calibration 23
2.3.6 Flight Modes, Failsafe and Battery Monitor Setup 23
2.3.7 Motor Test . 25

2.4 Planning flight missions with Mission Planner 26
2.5 Improvements and Updates on the Hardware 27

2.5.1 Cube Orange Autopilot . 27

iv

TABLE OF CONTENTS

2.5.2 Motors T-Motor AT2312 1150KV Long Shaft 28
2.5.3 Bashing Gens-Ace Battery 4S 5000mAh 29
2.5.4 Holybro SiK Telemetry Radio V3 29
2.5.5 Carbon Fiber Multistar Propeller 9x5 30

2.6 Advanced Tuning . 32
2.6.1 Battery Setting . 32
2.6.2 Motors setup . 33
2.6.3 PID Controller Initial Setup 33
2.6.4 First Flight and Initial Tune 35
2.6.5 Test AltHold . 35
2.6.6 Measuring Vibration with IMU Batch Sampler 36

2.7 Advanced Compass Setup . 38
2.8 RTK GPS Correction . 40
2.9 Quadcopter Drone Setup . 42

3 On-Board Companion Computer 45
3.1 Companion Computer First Configuration 45
3.2 Autopilot and Computer Communication 47

4 Marker Recognition 50
4.1 Aruco Original Marker . 50
4.2 OpenCV Configuration . 51
4.3 Camera Calibration . 52
4.4 Aruco Pose Estimation . 59

5 Precision Landing Algorithm 65
5.1 Precision Landing Logic . 65
5.2 Precision Landing Script . 67

5.2.1 Aruco Recognition into Library 67
5.2.2 Camera frame to UAV frame Conversion 67
5.2.3 UAV frame to North-East frame conversion 68
5.2.4 Obtaining marker location Latitude and Longitude 68
5.2.5 Marker Position to Angle . 69
5.2.6 Main Script . 69
5.2.7 Adding Details . 73

6 Experimental Results 75
6.1 Descending Speed . 76
6.2 Air/Ground Speed . 76
6.3 GPS tracking Error . 76
6.4 Incorrect Altitude Measurement . 77
6.5 Light Conditions . 77
6.6 Marker Size . 78
6.7 Type of Camera . 78

v

TABLE OF CONTENTS

7 Conclusions and Future Implementations 79
7.1 Conclusion . 79
7.2 Future Implementations . 79

7.2.1 Robustness . 79
7.2.2 Computer Vision . 80
7.2.3 Tracking Performance . 80

Bibliography 82

vi

List of Figures

1.1 Prototype of FIXIT drone final design 1
1.2 Testing drone . 2
1.3 Outdoor/Indoor Positioning Devices 3
1.4 Pixhawk 2.4.8 . 4
1.5 Nvidia Jetson Nano . 5
1.6 Intel RealSense D435i Depth Camera 5
1.7 Example of coaxial configuration Quadcopter 6
1.8 RM3100 Magnetometer . 7
1.9 Benewake TFmini Lidar . 7
1.10 Ultrasonic Sensor HC SR-04 . 8

2.1 Readytosky ZD550 Frame 550mm Folding Carbon Fiber 16
2.2 Configuration Cable between Pixhawk and Power Module 19
2.3 I2C configuration between Pixhawk and Drotek Magnetometer 20
2.4 TELEM1 configuration between Pixhawk and Air Telemetry Module 20
2.5 Configuration Cable between Pixhawk and Lidar TFmini 21
2.6 Motors Configuration for Octacopter 26
2.7 Cube Orange Hex Autopilot . 28
2.8 T-Motor AT2312 1150KV Long Shaft 28
2.9 Bashing Gens-Ace Battery 4S 5000mAh 29
2.10 Holybro SiK Telemetry Radio V3 433MHz 29
2.11 Carbon Fiber Multistar Propeller 9x5 30
2.12 Final Configuration of the Octacopter Drone 31
2.13 Approximate relationship between MOT_THST_EXPO value and

props size in inches . 32
2.14 Approximate relationship for tuning phase 34
2.15 IMU Batch Sampler Before Filtering 36
2.16 IMU Batch Sampler After Filtering 38
2.17 Compass Motor Calibration . 39
2.18 Accurate Localization on Mission Planner 41
2.19 GPS M8N Holybro . 42
2.20 Raspberry Pi 4 Model B . 43
2.21 Raspberry Pi NoIR Camera V2 . 43
2.22 Final Configuration of the testing Quadcopter Drone 44

3.1 Connection Pinout between Pixhawk 2.4.8 and Raspberry Pi 4 47
3.2 Output from 01_connection_parameters_reading.py 49

vii

LIST OF FIGURES

4.1 Object Detection by using OpenCV 50
4.2 Example of Markers Images . 51
4.3 Example of Lens Distortion . 53
4.4 Original ChessBoard . 53
4.5 Snapshot Examples for Calibration 53
4.6 Correct/Wrong Calibration Path . 56
4.7 Camera and Marker Reference Frames 60
4.8 Camera and Marker Flipped Reference Frames 60
4.9 Aruco Marker Recognition, Attitude and Position Estimation 64

5.1 Precision Landing Algorithm . 66
5.2 Upper View of Reference Frames . 67
5.3 Rear View of Reference Frames . 68

viii

Chapter 1

Introduction and State of the Art

1.1 UAV applications
Nowadays, in the industrial environment, the automated technologies are very useful
to simplify many applications part of modern society that may be dangerous or dif-
ficult to be managed manually. In particular, the Unmanned Aerial Vehicles (UAVs)
are intended for operation without an onboard pilot and are used in those contexts
where the human intervention is not possible directly. These types of vehicles have
many capabilities such as secure, rapid extraction of data and accessibility to remote
locations and these ones allow still new opportunities for drone applications both in
indoor and outdoor solutions (like emergency situations after a catastrophic event,
search and rescue missions and, also, aerospace applications). All these applications
share the desire to use highly autonomous aircraft to eliminate partially or totally
the human intervention. Moreover, there are a lot of benefits such as swiftness,
safety, cost efficiency, quality and precision as the result of the rapid growth in
market’s requests in the last few decades.

The present master thesis is aimed to the autonomous behavior of the FIXIT’s
drone in figure (1.1), in particular, about the precision landing of the UAV on the
rover. The FIXIT is a project developed by CIM 4.0, the Competence Industry of
Manufacturing 4.0, which is based in Turin. The drone consists of an UAV that
can fly in an industrial environment, both in indoor and outdoor situations: it can
manage specific missions, collecting and elaborating data, providing a stable and
automated flight in every scenario with an integrated obstacle avoidance algorithm
and, when it completes the task, has to land on an autonomous mobile robot.

Figure 1.1: Prototype of FIXIT drone final design

1

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

1.2 DRONE Architecture

1.2.1 Main characteristics

The actual testing drone in figure (1.2) has a quadcopter configuration using only
brushless motors. The brushless DC electric motors are synchronous motors that
use a direct current (DC) power supply; they use an electronic controller to switch
DC currents to the motor windings producing rotating magnetic fields which the
permanent magnet rotor follows. Fundamental is the choose of coherent components
in our application. The motors are chosen on the base of desired thrust/weight
ratio: this value is influenced by the final payload, which is the overall weight at the
take-off (by including also battery and sensors). Then, the correct ESC (Electronic
Speed Controller) must be connected to each motor (or, eventually, is possible to
use a single 4in1 ESC for all the motors): these are devices that allow drone flight
controllers to control and adjust the speed of the aircraft’s electric motors. A signal
from the flight controller causes the ESC to raise or lower the voltage to the motor
as required, thus changing the speed of the propeller. The LiPo battery is chosen
in order to be able to provide the correct amount of current to all the connected
devices: it is defined by two parameters, the discharge rating C and its capacity in
mAh. Then, knowing the dimension of the frame we can choose the diameter for
our propellers.

Figure 1.2: Testing drone

The UAV is composed by several sensors and systems that consents many fea-
tures, like autonomous driving system, precise localization in both outdoor and
indoor environments and obstacle avoidance functionality.

2

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

1.2.2 RTK GPS

The element 1 in the figure (1.2) is an RTK GPS receiver/antenna.
Real-time kinematic positioning (RTK) is the application of surveying to correct

for common errors in current satellite navigation (GNSS) systems. It uses measure-
ments of the phase of the signal’s carrier wave in addition to the information content
of the signal and relies on a single reference station or interpolated virtual station to
provide real-time corrections, providing up to centimetre-level accuracy of the mov-
ing station. RTK systems use a single base-station receiver and a number of mobile
units. The base station re-broadcasts the phase of the carrier that it observes, and
the mobile units compare their own phase measurements with the one received from
the base station; this allows the units to calculate their relative position to within
millimeters. In our application, we decide to use a TAOGLAS HP5010A in figure
(1.3 a).

(a) RTK GPS (b) UWB Module

Figure 1.3: Outdoor/Indoor Positioning Devices

1.2.3 UWB antenna

The element 2 in figure (1.2) is an Ultra Wide Band module.
UWB is a technology for transmitting information across a wide bandwidth

(>500 MHz). This allows for the transmission of a large amount of signal energy
without interfering with conventional narrowband and carrier wave transmission
in the same frequency band. UWB is useful for real-time location systems, and its
precision capabilities and low power make it well-suited for radio-frequency-sensitive
environments. UWB is also useful for peer-to-peer fine ranging, which allows many
applications based on relative distance between two entities. So, it is used in indoor
environment where the GNSS navigation is not available due to the absence of signal
from satellites and the presence of ferromagnetic disturbances. In our application,
we decide to use a DECAWAVE DWM1001C module in figure (1.3 b) inside a white
protection case. Ultra Wide Band represents a good solution, but it does not always
return perfect results. In order to improve the measurements of the position, a
sensors fusion is needed.

3

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

1.2.4 PIXHAWK Autopilot

The element 3 in figure (1.2) is a Pixhawk Board. Pixhawk autopilot is an open-
source autopilot system oriented that allows a remotely piloted aircraft to be flown
out of sight. The benefits of the Pixhawk system include integrated multithreading,
a Unix/Linux-like programming environment, completely new autopilot functions
such as sophisticated scripting of missions and flight behaviour, and a custom PX4
driver layer ensuring tight timing across all processes. These advanced capabilities
ensure that there are no limitations to autonomous vehicle. Moreover, all hardware
and software is open-source and freely available to anyone. In our application, we
decide to use a PIXHAWK 2.4.8 in figure (1.4).

Figure 1.4: Pixhawk 2.4.8

For what the autopilot software is concerned, the choice is made between PX4
and ArduPilot. They are very similar, however the main two differences are that
Arudpilot is older and, as a consequence, with a slightly more progressed and stable
code. The second big difference is the license: ArduPilot has a GPL (General Public
License) one, while PX4 has the BSD (Berkeley Source Distribution) one. Thus,
every change made to the ArduPilot code must be push on Github and it becomes
public, while the code cloned by PX4 can be maintained private. The latter is also
one of the reasons for which the ArduPilot code is more thorough between the two.
So that, the drone is controlled by the PixHawk 2.4.8 with Ardupilot. Moreover,
inside the Pixhawk, there is also the Inertial Measurement Unit (IMU): it is based on
the accelerometers and gyroscopes that are used to detect rotation and movements
around the three main axes, in particular it is possible to define the angles for yaw,
roll and pitch. The flight controller hardware has also a barometer.

However, since the 2.4.8 version has not a very powerful processor, an on-board
companion computer is added, used to handle the Intel RealSense depth camera and
the UWB module.

4

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

1.2.5 Companion Computer

The element 4 in figure (1.2) is the Companion Computer Jetson Nano.
The CC is an additional unit used to obtain more power in terms of processing

data and instructions in real time. This is fundamental during flight, especially when
autonomous behavior is needed. The used CC is connected and communicates, with
the Pixhawk board, via MAVLink protocol over a serial connection. The CC software
refers to the programs and tools that run on it: they can read, understand and run
the telemetry data. Since the Robotic Operating System (ROS) is very common
and flexible, it is chosen for this use’s case.

In our application, we decide to use the Nvidia Jetson Nano in figure (1.5).

Figure 1.5: Nvidia Jetson Nano

1.2.6 Depth Camera

The element 5 in figure (1.2) is the Depth camera Intel RealSense.
The Intel RealSense is an RGB camera with a stereoscopic depth technology

able to measure distances and thus it is considered as a reliable component for the
obstacle avoidance. The camera has its own microprocessor and IMU, in this way it
is able to understand its position and orientation. The combination of a wide field
of view and global shutter sensor make it a good solution for applications such as
robotic navigation and object recognition. The wider field of view allows a single
camera to cover more area resulting in less “blind spots”. The global shutter sensors
provide great low-light sensitivity allowing robots to navigate spaces with the lights
off.

In our application, we decide to use an Intel RealSense D435i in figure (1.6).

Figure 1.6: Intel RealSense D435i Depth Camera

5

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

1.2.7 Architecture and Hardware Updates

Frame Configuration

Since in our application, the total payload is bigger than the maximum offered by the
thrust/weight ratio, in the past experiences, there are some stability problems and
thrust loss. So, it is necessary to redefine some parameters that allow to improve the
ratio and stability during the flight. To obtain this result, it is possible to use more
powerful motors that guarantee a bigger thrust; this may leads to higher energy
consumption and faster battery discharge, so less autonomy. Another solution is
to implement an hexacopter or, even, octacopter frame configuration: the better
distributed weight for each arm of the drone, allows a better stability during its
utilization and more total thrust; as a disadvantage, the frame dimension should
be increased to guarantee the minimum distance between propellers, so becomes
difficult to flight in indoor environments. The chosen solution, is to maintain the
actual quadcopter concept but in coaxial configuration: this means that, for each
arm of the drone, there are two motors that rotate in counter-rotating way, as in
figure (1.7). The proposed solution, guarantees almost the same efficiency, in terms
of thrust, and stability obtained from the octacopter design by maintaining the same
dimension of the drone; moreover, with this configuration, the octa-copter drone is
capable of lifting about 4kg total, thus 1.3kg extra to the weight of the drone itself.
Another advantage that can be achieved in the forthcoming improvements concerns
battery sizing; in fact, the current batteries have been chosen as a result of the
quadcopter configuration. By doubling the motors per arm, however, they will share
the power required to lift the same weight and this leads into less discharge factor
required by the battery and therefore less weight of the battery itself. In future
upgrades to the drone, therefore, it will be possible to correctly size the battery
used in such a way as to avoid carrying unused weight and oversizing the batteries,
but above all to guarantee greater flight autonomy.

Figure 1.7: Example of coaxial configuration Quadcopter

6

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

Magnetometer

Another improvement proposed, is to use an external magnetometer (in addition to
the Pixhawk’one). Despite the fact that, inertial sensors provide good quality for
the collection of data, regarding the drone orientation and movement, the implemen-
tation of an additional magnetometer is essential for precise heading measurements.
In this application, it is considered the RM3100 magnetometer, in figure (1.8).

Figure 1.8: RM3100 Magnetometer

It provides no drift, low noise, high sensitivity, no hysteresis, and it can be
integrated with I2C or SPI interfaces. Although it represents a good element for
outdoor missions, indoor it can show some problems due to ferromagnetic material.
Furthermore, is shown the dependencies of height in the indoor positioning precision;
such uncertainties must be taken into account during the analysis and validation of
the sensor accuracy.

Lidar

To get better identification of the environment, it is useful to add LIDAR sensor: it
makes the distance measurement from the objects: its functional principle is based
on time of flight (ToF), which consists of sending a laser in a narrow beam and
measuring the time taken by the pulse to be reflected by surrounding objects. The
previous implementation foresees two of these sensors, one on top of the drone, and
one on the bottom in order to obtain the height of uav in indoor, by measuring the
distance from the ceiling and from the floor. Building up the accuracy, it is possible
to use just one lidar, in particular the Benewake TFmini Lidar in figure (1.9), at
the bottom to measure the distance from the ground. It has also a good integration
with ArduPilot and is very thin in terms of weight (only 5g).

Figure 1.9: Benewake TFmini Lidar

7

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

Optional sensors

The previous solutions are very important to obtain the precise indoor/outdoor lo-
calization and stability during the flight. Besides, it can be possible to add other
sensors to improve the localization and cover the blind spots. In fact, by adding
ultrasonic sensors, on both sides of the drone and on rear, is possible to recognize
the presence of obstacles that the camera cannot see, since they do not come from
the front. For example, the cheap sensor HC SR-04, in figure (1.10) emits high
frequency sound wave (40 kHz) via one of its piezoelectric transducers, detects the
returning pulse (echo) and converts it to a proportional voltage variation. The ac-
curacy depends on the light conditions, the absorption of reflecting material and,
also, noise, temperature and humidity. Due to these drawbacks, the sensor is not
use as main device for obstacle avoidance nor for height measure.

Figure 1.10: Ultrasonic Sensor HC SR-04

At the end of drone architecture, the following step is analyze how to achieve
the precision landing and which technologies, hardware and software, can be useful
to realize it correctly. So, in the next section there will be analyzed the solutions
present in the state of art.

8

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

1.3 Literature Review
Several analyses are done to know and understand which are the different solutions
in order to obtain the accurate landing of an UAV on the ground or on a landing
station. These solutions present many methods to reach the aim, like Vision-based
recognition systems, Global positioning systems, Mathematical approaches, Opti-
cal guidance systems, Composite or fiducial landmark methods, Model predictive
control methods, RTK positioning approaches, etc. Most of the solutions, in litera-
ture, are developed by means of vision-based architecture since this is, in many uses
case, the best solution which gives good results in terms of accuracy and precision
landing. Some approaches prefer the faster solution, by using only GNSS position-
ing or, alternatively, a differential GNSS positioning to reduce measurement errors.
Since, the past experiences describe the presence of many drawbacks due to light-
ning conditions, environment noises and disturbances, technology limitations (like
the absence of signal in indoor for the applications which use the GNSS positioning),
some of the cited solutions are implemented simultaneously to prevent and cover all
the blind spots that a single technology may have. In this way, it is possible to reach
the desired result in most of the cases.

1.3.1 Vision-based recognition systems

In the solution proposed by [1], a visible light camera integrated with a Digital Signal
Processing (DSP) processor is installed on the UAV and an optical filter is fixed in
front of the camera lens. In addition, four infrared light-emitting diode (LED) lamps
are placed behind ideal landing site on the runway. In this way, the infrared lamps
in the image are distinct even if the image background is complicated. The function
of the camera is to capture images of the infrared lamps, and the function of the
DSP processor is to process the images, calculate pose parameters of the UAV and
export the calculation results. Finally, high precision space position of the UAV
can be calculated according to the installation relationship between the camera and
the UAV. This solution leads to a good precision landing but, as a disadvantage,
requires the presence of infrared lamps at the landing site which, in our case, is a
mobile rover; due to its size, it is difficult to add further devices that would increase
both the computational cost and the hardware needed to add to the rover.

In the study presented by [2], an autonomous landing point retrieval method for
UAV in unknown environment is proposed. Firstly, plane extraction is carried out
on the point cloud of real-time three-dimensional reconstruction of binocular. The
extracted results are mapped into two-dimensional images, and the landing point
is identified by using random forest classifier. Finally, the UAV flight sampling
at a certain height and the sampling results are discriminated. The results show
that the UAV can achieve the perception of autonomous landing, but this solution
requires a high-definition camera pointing at the floor and an on-board computer
that processes the images taken in order to understand whether it is possible to
initiate the landing phase.

The same hardware requirements are present in [3], where the application is the
autonomous landing of UAV on a ship. The solution consists of two parts, a sensor

9

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

framework to estimate the state of quadrotor using vision based approach and a con-
troller design which generates appropriate actuator commands. A computer vision
approach is proposed which tracks the pre-specified oriented roundel object contin-
uously while maintaining a fixed distance from the roundel and also simultaneously
keeping it approximately in the center of the image plane. For stable position esti-
mation system, an oriented roundel is used as an external reference. The position
estimation is done on the image pattern coordinates, allowing hovering over a fixed
position, and takeoff and landing on the oriented roundel. For this whole process,
the coordinates of roundel are calculated and fed to the controller. Quadrotor’s rela-
tive pose is estimated through dead reckoning and control approach is implemented
which seeks for full autonomy of the robot, by considering only internal sensors and
processing unit. The limitation of the present algorithm to track the moving object
is limited to 1.5 meter altitude. This can be removed by changing the algorithms
and a better camera.

1.3.2 Fiducial/composite landmark systems

In the paper proposed by [4], it is presented a quadrotor system capable of au-
tonomously landing on a moving target using only onboard sensing and computing
without a-priori knowledge about the location of the moving landing target. The
system detects the landing target using an onboard camera that detects an already
known marker on target. The correct result is reached using two on board comput-
ers: the first one for the downward-looking camera and the inclined camera and, the
second one, for data recording and rapid prototyping.

In the study carried out by [5], a special design for the marker to be placed on
the landing site was designed. This is because, in previous experiments, it was seen
that the approach of the drone to the landing plane resulted in the complete marker
leaving the field of view and, therefore, recognition was lost. The solution presents
a concentric triangular marker that is recognizable at different distances allowing a
correct landing phase.

The solution performed by [6], presents a combined system from a composite
marker (a notched ring with an R2D landmark inside) and a prediction system for
landing on a moving site. Thanks to the fusion of GPS and IMU sensors it is possible
to estimate the pose of the MAV while, through an encoder and the R2D landmark,
it is possible to estimate the pose of the landing platform. By merging these two
estimates, it is possible to implement a landing strategy and plan a trajectory that
will be monitored through a controller.

The paper by [7], proposes a vision-based target following and landing system
for a quadrotor vehicle on a moving platform. The system is consisted with vision-
based landing site detection and locating algorithm using an omnidirectional lens.
Latest smartphone was attached on the UAV and served as an on-board image
acquisition and process unit. In order to land on the specific visual landing pad in
outdoors, fisheye lens and its calibration model helped the shrinking FOV problem
while descending above the visual pad. Measurements from the omnidirectional
camera are combined with a proper dynamic model in order to estimate position
and velocity of the moving platform. An adaptive control scheme was implemented

10

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

on the flight computer to deal with unknown disturbances in outdoor environment.
In the study presented by [8], is used a multiple markers landing pad, which is a

kind of simplified Apriltags. Small markers are overlaid on the large marker, make
it possible to have a wide detection range in a limited pad area. In this way, marker
recognition is possible from both distant and close-up positions.

In the solution by [9], for the autonomous landing task, a novel landing pad was
designed for robust detection, ensuring the detectability from both high and low
altitudes. A 3D points cluster algorithm for pose estimation was presented to solve
the problem of mirror effect and occasional misidentification. A simplified dynamic
model for quadrotors in landing phase was proposed and thus a PD controller was
designed accordingly to ensure the landing on an either static or moving pad.

In the method of [10], QR code image with strong error correction ability is
adopted as the cooperation target, Unreal Engine 4 (UE4) is used to build UAV
landing simulation scene, and the UnrealCV plug-in is installed to enable UE4 to
communicate with external programs. Finally, an object detection algorithm based
on deep learning is implemented to detect the cooperative target position on the
runway. So, in the process of autonomous landing, QR image is adopted as the
cooperative target, combined with the object detection algorithm YOLOv3 to detect
the cooperative object position placed on the runway, the UAV is then guided to an
accurate and robust autonomous landing.

The paper proposed by [11], presents an autonomous landing method for un-
manned aerial vehicles, aiming to address those situations in which the landing pad
is the deck of a ship. Fiducial markers are used to obtain the six-degrees of free-
dom (DOF) relative-pose of the UAV to the landing pad. In order to compensate
interruptions of the video stream, an extended Kalman filter (EKF) is used to es-
timate the ship’s current position with reference to its last known one, just using
the odometry and the inertial data. The EKF performs well enough in providing
accurate information to direct the UAV in proximity of the other vehicle such that
the marker becomes visible again. Due to the use of inertial measurements only
in the data fusion process, this solution can be adopted also in indoor navigation
scenarios, when a global positioning system is not available.

In the work presented by [12], a fully autonomous vision-based system addresses
the wind disturbances by tightly coupling the localization, planning, and control,
thereby enabling fast and accurate landing on a moving platform. The platform’s
position, orientation, and velocity are estimated by an extended Kalman filter using
simulated GPS measurements when the quadrotor-platform distance is large, and
by a visual fiducial system when the platform is nearby. The landing trajectory is
computed online using receding horizon control and is followed by a boundary layer
sliding controller that provides tracking performance guarantees in the presence of
unknown, but bounded, disturbances. To improve the performance, the character-
istics of the turbulent conditions are accounted for in the controller. The landing
trajectory is fast, direct, and does not require hovering over the platform, as is
typical of most stateof-the-art approaches.

The paper by [13], presents an approach for precise UAV landing using visual
sensory data. A new type of fiducial marker called embedded ArUco (e-ArUco)
was developed specially for a task of a robust marker detection for a wide range

11

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

of distances. E-ArUco markers are based on original ArUco markers approach and
require only ArUco detection algorithms.

1.3.3 Optical guidance systems

In the solution carried out by [14], it is used an optical guidance architecture to
generate the guidance signal and then control the landing of the UAV along an
ideal trajectory. Optical guidance is an automatic UAV landing system which can
measure the position of the UAV continuously. These measurements are transmitted
to flight control system and will be used as feedback in the speed or position control
loop. This method is only functional in cases where the landing point is fixed in
time, such as airport runways.

In the study of [15], it is developed an algorithm to estimate the target position
with respect to the flying vehicle through an infrared camera and beacon. Next, by
using Kalman filter theory, is it possible to estimate the velocity of the target from
its position information.

1.3.4 Mathematical approaches

In the paper proposed by [16], it is made an intense observations of the data con-
cerning the autonomous landing approach such as the intersection point between
the two moving bodies, the position of the platform/UAV and the inclination angle
required to land. Here, a mathematical approach to this problem is presented in
the X-Y plane based on the inclination angle and state position of UAV during the
landing procedure. So, to achieve an autonomous landing robust control algorithm
on a moving platform, the inclination angle is simultaneously calculated according
to the platform parameters. The actual and predicted intersection points between
the UAV and platform and also the position of a UAV during this process including
inclination angle are used in planning an accurate and precise landing trajectory.

In the work of [17], it is presented an autonomous landing method that can be
implemented on micro UAVs that require high-bandwidth feedback control loops
for safe landing under various uncertainties and wind disturbances. The system
architecture, includes dynamic modeling of the UAV with a gimbaled camera, im-
plementation of a Kalman filter for optimal localization of the mobile platform, and
development of model predictive control (MPC), for guidance of UAVs.

The solution presented by [18], contains a vision based autonomous landing con-
trol approach for UAVs. The 3D position of an unmanned helicopter is based on the
homographies estimated of a known landmark. The translation and altitude esti-
mation of the helicopter against the helipad position are the only information that
is used to control the longitudinal, lateral and descend speeds of the vehicle. The
control system approach consists in three Fuzzy controllers to manage the speeds of
each 3D axis of the aircraft’s coordinate system. Also in this case, the solution is
valid when the landing spot is fixed in time.

The scope of the study by [19], is a proof-of concept methodology which uses a
signal prediction algorithm to facilitate safer autonomous UAV-ship landings. This
study uses laser ranging and detecting devices (LIDAR) in conjunction with a signal

12

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

prediction algorithm (SPA) to forecast when the ship motion is within safe landing
limits. The results show that with the use of the SPA, the number of UAV landing
attempts was decreased by an average of 2 attempts, per test case, when compared
to a system that did not use an SPA. Moreover, the results indicate that with revised
tuning of the SPA, the likelihood of a safe landing can be further improved.

In the solution by [20], is implemented a PI regulator used for the tracking
problem while descending is made by controlling relative vertical velocity. A finite
state machine (FSM) approach is chosen to manage multiple robot states and recover
from failures. A software framework is also developed in order to manage general
flight missions and, in this case, the landing assignment. So, it is proposed a simple
but effective method for horizontal tracking by closing the internal controller with
an external position loop (with target as reference) including a velocity feed-forward
term (with target velocity as reference). On the other hand, descending is performed
by forcing the relative vertical velocity to a reference, which is linearly decremented
with respect to the distance from the landing surface until touchdown. The entire
procedure was modeled with a FSM dividing the problem in different states and, this
method, appeared to be convenient for the tasks where some unpredictable event
may occur.

The paper by [21], explain a development of the automatic landing of a Micro Air
Vehicle (MAV) on a moving vehicle. A Proportional Navigation controller was used
for the long range approach, which subsequently transitioned into a PID controller
at close range. A Kalman filter was used to estimate the position of the MAV relative
to the landing pad by fusing together measurements from the MAV’s onboard INS,
a visual fiducial marker and a mobile phone.

1.3.5 Global positioning systems

In the paper proposed by [22], is estimated the position and velocity of the UAV
by RTK positioning, the quaternion that describes its attitude, the carrier phase
integer ambiguities related to both the attitude and position, and the accelerometer
bias with a Kalman filter. The raw measurements were obtained from the ANavS
Multi-Sensor RTK module with its 3 Multi-frequency, Multi-GNSS receivers and a
MEMS-based Inertial Measurement Unit (IMU).

In the analysis presented by [23], the combination of GPS and visual recognition
through the camera is exploited. Since the information obtained through GPS has
an unacceptable error in precision landing, ultra-wideband ranging measurement is
used to locate and approach the landing station. Then, once the UAV locates the
marker, the GPS is deactivated and the UWB is activated which, along with the
visual information, will result in an accurate landing phase.

In the study of [24], the precise position of the unmanned aerial vehicle at landing
is provided by an image analysis where the specially designed landing platform is
detected. All calculations for precision landing guidance are performed directly on
board. An infrared (IR) camera is used as the main sensor for monitoring the IR
light beam; so, the core of the landing system consists in a visual camera scanning
the modulated IR beam to facilitate smart navigation onto a precisely landing spot.
This aircraft guidance technique does not necessitate data transfer to and from the

13

CHAPTER 1. INTRODUCTION AND STATE OF THE ART

landing station. More complex but expensive systems is RTK GPS which can be
suitable solution to replace visual sensor.

1.3.6 Neural networks approaches

The solution presented by [25], uses a deep convolutional network based vision
pipeline to detect the landing mark and estimate system state in real-time. The
landing sequence is controlled by vehicle trajectory points using a linear predictive
algorithm. The trajectory points are fed to a low level position controller and ve-
locity controller.

1.4 Possible solution of precision landing
At the end of a thorough analysis of the state of the art, it is possible to set up
a procedure to carry out a precise landing phase. The first step is to understand
if the rover is stationary or moving; based on this state, the landing process will
be more or less complex in computational terms and accurate. In this thesis work,
the rover will be considered stationary and then the solution will be improved to
make it work also for the moving situation. The second step to be analyzed is the
localization of the landing point with respect to the drone: this phase will have
to be developed exploiting the technologies already present on board the drone;
in particular, the RTK gps for outdoor environments and the UWB for indoor
ones. Both localization methods mentioned, guarantee high precision (range of a few
centimeters) and therefore, in the third and last step, a not too complex technology
will be needed for the correct identification of the landing point. From the previous
studies, it has been seen that the use of a medium resolution camera, is sufficient
to support the previous localization mechanisms, for the identification of a unique
marker present on the rover that will be recognized in the first place, and used as a
reference point of the landing spot. Then, the drone will position itself and stay on
the marker, reducing little by little the power to the engines. To further support the
camera, there will be a LIDAR that will allow to understand the distance between
the drone and the landing spot and, at a certain height considered safe, it will be
possible to turn off the engines and complete the landing.

14

Chapter 2

Building the new Drone

2.1 Drone Frame
The first step to be addressed in the construction phase of the new drone is the
assembly of the new frame, in the figure (2.1). Unlike the most common frame on
the market, the chosen frame is made of carbon fiber, so as not to increase the total
weight of the drone; this choice was made in order to obtain a very strong chassis
and, at the same time, with a similar weight to the previous one while increasing
its diameter and the number of motors and ESCs on board. In addition, the frame
chosen, allows manual folding of the arms so as to reduce the space during transport.
Shown is the assembled frame that will be used in our application: a Readytosky
ZD550 Quadcopter/Octacopter Carbon Fiber Frame. It is possible to view videos
of the assembly at the following [26].

During the frame assembly phase, problems were encountered, which are de-
scribed below regarding the following parts of the drone:

• Frame Plates;

• Space for the Battery;

• Space for the PCB distribution board;

• Space for the Intel Realsense camera and Jetson Nano companion computer.

First, it was seen that the frame in question, and especially the plates where to
attach the motors, did not have the holes in the correct positions for housing the
motors positioned upside down. This is because, the supplier specifies that the same
frame can be used for an octacopter by buying plates similar to those for upward
positioned motors. In our application, the owned plates were adapted by drilling
them in the correct positions. This made it possible to mount the motors on both
plates and complete the coaxial quadcopter. A second issue, which arose during
the frame assembly phase, is related to the spaces dedicated to the PCB and the
battery. For the first one, it was not possible to fit it in the space dedicated to it by
default, because it is narrower than the width of the board designed ad-hoc for the
drone. The second, on the other hand, turns out to be bulkier than the intended
slot. In addition, there is the lack of a dedicated space where we can attach the

15

CHAPTER 2. BUILDING THE NEW DRONE

high-level controller (Jetson Nano) and the camera used for obstacles avoidance
and precision landing. To solve the aforementioned problems, carbon fiber sheets
of certain dimensions were purchased, drilled in the necessary places and used as
housing for the distribution board, the cameras and the Jetson Nano. While the
battery was placed in the housing originally designed for the PCB and secured with
cable ties. An important observation, to be verified after the chassis assembly is
completed, is that the slots where the motors are housed, are perfectly horizontal
(parallel to a horizontal plane) so that the thrust generated by the motors is totally
vertical and not tilted, which would cause thrust losses.

Figure 2.1: Readytosky ZD550 Frame 550mm Folding Carbon Fiber

16

CHAPTER 2. BUILDING THE NEW DRONE

2.2 Electronic components
After completing the frame assembly, the electronic components (e.g. motors, ESCs,
distribution board, Pixhawk, ...) were assembled. The procedure followed is given at
the following [27]. During the electronics assembly phase, several problems occurred
as described below:

• Motors Screws;

• Positions of Motors Housing;

• Cables from ESCs to Pixhawk;

• PCB Extensions;

• Integrated Circuit on the PCB in Protection mode;

• Plastic Screws and Bolts;

• On-board Wiring.

Particular attention should be paid to the assembly of the motors on the add-on
housings: on the official manufacturer site of the Readytosky 2212 920KV motors it
is indicated that, the same are attached to the frame by means of 9mm hexagonal M3
screws; this information is partially correct, since these indications refer to a generic
rigid plastic frame for a quadcopter, which has housings about 6mm thick. By
using 9mm screws, therefore, about 3mm will enter the stator of the motor, which
will allow it to function properly. In our case, however, the motor housings are
2mm thick so, using the indicated screws, about 7mm of screw will enter the stator,
touching and bending the brushless motor windings. Following an initial power-up,
the bent windings crossed by current will be damaged and will not ensure proper
operation and rotation of the brushless motor. Basically, great attention must be
paid to the length of the screws that are used, in relation to the thickness of the
frame housings, to fix the motors since, they must absolutely not touch the motor
windings otherwise they will irreversibly damage it. In our application, therefore,
5mm hexagonal M3 screws have been used, which allow the correct rotation of the
motors and do not damage them.

A further check to be made on the frame used, is related to the position of the
motor housings: in fact, they should be positioned at the ends of the arms and in
a perfectly horizontal position so as to guarantee purely vertical thrust, as already
described in the previous section; in this way, there will be no imbalance or loss of
thrust during flight. A spirit level was used to verify correct positioning.

Another problem occurred with regard to the connection of the ESCs with the
Pixhawk autopilot; in particular, it was noted that the ESCs used had a connection
cable to the autopilot that was too short. To solve this issue, the factory dupont
connectors were cut, the ground and voltage cables that are not needed were iso-
lated, separately (they already come from the PBC), extensions were soldered to
the signal cable (white cable) at the ends of which new female pins were crimped,
later inserted into new Dupont connectors; this operation was performed only for

17

CHAPTER 2. BUILDING THE NEW DRONE

the ESCs connected to the front motors, whose initial cables did not reach the Pix-
hawk. Having finished, then, the modification to make the extension, it was possible
to correctly connect all the ESCs to the ports on the back of the autopilot; all the
cables were, then, tied with a cable tie to prevent the air displacement during the
flight phase from causing them to move and could become entangled with the pro-
pellers or be damaged. Another issue regarding the ESCs used, is related to their
type: they are ESCs usually intended for fixed-wing aircraft and also have the 5V
cable in the Dupont connector. This cable turns out to be problematic as it has
unnecessary power consumption due to the linear voltage regulator: in particular,
they plan to deliver 5V each but, if someone has a lower/higher voltage, since they
are placed in parallel, they try to regulate themselves and this results in dissipation
to each other. In our application there is no need for this self-regulation and, to
avoid unnecessary waste of energy, the red 5V wires were removed keeping only the
signal wires (or at most, the ground and signal wires).

Because the location of the PCB turns out to be lower than that provided on
the frame, extension cables for powering the ESCs were soldered onto it with XT30
connectors at the ends.

Another major problem encountered during the electronics assembly phase con-
cerns the integrated circuit that provides the switch between charging mode (drone
at rest and battery charging) and drone mode (drone in use and battery use). It
was observed that, at the time of power on and connection to the battery, the PCB
would short circuit/protect: this was due to the presence of capacitors on the ESCs
that start out discharged and, at the time of power on, require a high peak cur-
rent to charge them. The IC seeing this current spike would go into protection and
block the whole circuit to avoid burning components. Even adding a second inte-
grated in parallel (thus higher current carrying) did not bring solution to the issue at
hand. Therefore, two alternative solutions present each on each drone were thought
of. On one drone, the integrated that was sending the circuit into protection was
short-circuited leaving the ESCs with capacitors while, on the second drone, the
capacitors of the ESCs were removed and the integrated circuit allowing the two
modes of operation at the PCB was left. Only in the first case, the solution worked
and the PCB no longer shorted but maintained the correct voltage at the ends of
the different outputs (about 12V for the ESCs and about 5V for the Pixhawk and
the Jetson Nano). In the second one, instead, the absence of capacitors on the ESCs
proved critical since they contain some of the charge needed to start the motors;
Without the capacitors, in fact, the motors had difficulty starting and hiccupped
during movement due to the voltage not being too stable/linear. An alternative so-
lution was devised by placing a parallel of NTC resistors between the PCB and the
battery; NTCs are resistors that change their operation according to their tempera-
ture: when cold, they behave as simple resistors thus reducing the current reaching
the PCB while, when hot, they behave as a short circuit presenting no resistance
and consequent no current reduction. This solution turned out to be invalid because
the peak current was required by the capacitors of the ESCs and not by the battery,
so it was necessary to place these resistors downstream of the integrated (between
the integrated and the ESCs) and not upstream of it (between the integrated and
the battery); for this reason, in future versions of the PCB Fixit, a soft start system

18

CHAPTER 2. BUILDING THE NEW DRONE

will be thought of that involves the presence of NTC resistors that once the peak
current that sends the integrated into protection at power-on has been attenuated,
will be shorted automatically. This solution allows us to maintain both the ability to
switch modes of operation of the PCB and the presence of capacitors on the ESCs,
which ensure a constant voltage in case there is an instant of voltage that is not too
constant.

For the attachment of the PCB to the carbon fiber plate, it was initially thought
to use metal spacers that would ensure rigidity of the structure once assembled.
However, this turned out to be problematic in terms of conduction: in fact, the
PCB being made of copper, conducts anywhere on the PCB, even in the holes for
attachment to the frame. So by using metal spacers, it was seen that they conducted
and overheated, burning the carbon fiber plate. To avoid this inconvenience, plastic
screws and bolts were used between the PCB and the metal spacers. With this
solution, a rigid structure and proper insulation was ensured to cause damage to the
frame structure.

A final special focus, concerning the electronics on board the drone, is on the
connecting cables between the sensors and the autopilot. In particular, with the
exception of the cables already supplied by the manufacturers and working properly
(buzzer cable, safety switch cable, GPS RTK cable, and radio control cable), many
cables were configured and modified ad-hoc, following the indications on the sites of
Ardupilot or the vendors of the sensor under analysis.

The first cable under analysis is the power cable to be connected between the
Pixhawk’s Power port and the 5V connector on the PCB (or possible Power Module):
it has the configuration as shown in the link [28] and depicted in the image (2.2).

Figure 2.2: Configuration Cable between Pixhawk and Power Module

As can be seen in the figure, the cable configuration appears to be mirrored, and
following the description, the 6-pin connector cable was modified as depicted.

Another connection cable that needs attention is the one that connects the

19

CHAPTER 2. BUILDING THE NEW DRONE

Drotek magnetometer to the Pixhawk’s I2C port. It comes with an I2C connec-
tor that is not compatible with the one on the Pixhawk and therefore needs to
be modified; however, you must pay attention to the position of the wires in the
connector by following the diagrams in the figure (2.3) and making them match.

(a) Pixhawk I2C port (b) Drotek Pinout

Figure 2.3: I2C configuration between Pixhawk and Drotek Magnetometer

Attention must also be paid to the connection of the Air Telemetry Module,
which will be connected to the Telem1 port of Pixhawk. It has 4 pins while the
Telemetry 1 connector has 6 pins: two therefore will not be used and will remain
empty (CTS and RTS ports). For proper cable configuration, the pin legend in the
figure (2.4) will be followed:

(a) Pixhawk TELEM1 Port (b) Air Telemetry Module Pinout

Figure 2.4: TELEM1 configuration between Pixhawk and Air Telemetry Module

20

CHAPTER 2. BUILDING THE NEW DRONE

A final configuration concerns the SERIAL 4/5 port to which the TFmini Lidar
will be connected according to the configuration described at the Ardupilot link [29].
As in the case of the Telem1 port, in this connector, two pins will not be used and
the configuration will be as in the figure (2.5).

Figure 2.5: Configuration Cable between Pixhawk and Lidar TFmini

All remaining ports and configurations related to Pixhawk are shown on the
official Ardupilot website at the following link [30].

21

CHAPTER 2. BUILDING THE NEW DRONE

2.3 First Calibration and Configuration
The last step, after building the chassis and assembling all the on-board electronics,
concerns the first calibration and configuration of the drone by using Mission Planner
software. The procedure followed is given at the following [31]. This last step is also
divided into steps to be followed carefully to achieve proper and stable operation
during flight:

• Install Firmware;

• Connect Mission Planner to the AutoPilot;

• Select Frame Type;

• Set the Initial Parameters;

• Calibrate Accelerometer;

• Calibrate Compass;

• Calibrate Radio Control System;

• Calibrate ESCs;

• Set the Flight Modes;

• Set FailSafe situation;

• Set Battery Monitor;

• Motor Test.

2.3.1 Firmware Installation

Even before connecting the autopilot to the pc using the mission planner, it is
necessary to install the correct firmware on board the Pixhawk. So, in the Setup
tab of the mission planner, we need to select "Copter V4.2.1 OFFICIAL" (or the
newest one) by clicking on the frame we are using, i.e. that of the coaxial quadcopter,
following the instructions, and completing the installation.

2.3.2 Connection to the Pixhawk AutoPilot

After installing the firmware, we proceed to connect the Mission Planner with the
autopilot, either via the USB cable or via the ground radio telemetry module. Once
the USB or Telemetry Radio is attached to the pc, Windows will automatically
assign to the autopilot a COM port number; The appropriate data rate for the
connection is also set (typically the USB connection data rate is 115200 and the
radio connection rate is 57600). After selecting the port and data rate, clicking on
the connect button, top right, we will connect to Pixhawk via Mavlink.

22

CHAPTER 2. BUILDING THE NEW DRONE

2.3.3 Frame Type and Initial Parameters

Once the connection is made, the Setup tab will update, showing the Mandatory
Hardware section; the latter will contain much of the necessary configurations to
be made. The first item indicates the Frame Type and, within it, we will go to
verify that the frame type selected, matches the one in use. Next, we will check the
information in the Initial Parameter Setup tab, checking or entering the propeller
size (in inches), the battery type, the number of battery cells, and the voltage value
per cell relative to the full charge/discharge of the battery.

2.3.4 Accelerometer and Compass Calibration

Moving on, the first actual calibration is carried out in the Accel Calibration tab.
In this section, we will level the drone, setting offsets on the default accelerometer
levels, placing the drone on a flat surface, and following the different positions of the
drone as indicated (horizontal, on the left side, on the right side, etc.). On the next
Compass tab, however, we will perform compass/magnetometer calibration. Before
doing this calibration, we need to verify that the compass with the highest priority
in the list, is the one we want to use and perhaps disable the others we do not
want to use. After that, we start with the calibration, by making random rotational
movements of the drone (possibly 360◦), on all rotational axes (yaw, pitch and roll),
so that the system will self-calibrate correctly.

2.3.5 Radio and ESCs Calibration

The calibrations conclude with these last two. First, to calibrate the Radio Control
System, we will need to turn it on and connect it with the receiver on board the
drone; if this procedure fails, we will need to either re-bind the remote control with
the receiver or verify that the same remote control is connected in PPM (not PWM),
as the receiver is connected to the Pixhawk via the PPM port. If the connection is
successful, start the calibration into Radio Calibration tab and we will have to move
all the remote control sticks, reaching the most extreme positions, to calibrate the
limit points of the same sticks. Second, the calibration of ESCs is done in the ESC
Calibration tab, where we will need to start it, disconnect the USB connection (if
there is one) and the power supply via a battery, reattach the battery, and press the
safety switch on board the drone; an audible confirmation will assure us that the
calibration was successful.

2.3.6 Flight Modes, Failsafe and Battery Monitor Setup

These latter setups are to be carried out to keep the drone and flight missions safe,
both for the drone and the surrounding environment. The first item, in the Flight
Modes tab, is used to set the safe flight modes accessible via the three positions
(high, middle, low) of Switch C on the radio control; in our application, three flight
modes were set: Stabilize, PosHold and AltHold (in case of missing GPS signal) in
Flight Mode 1, 4 and 6 respectively. Also, from the same radio control, the other
switches have been enabled: with the receiver off on the drone, hold ok on the radio

23

CHAPTER 2. BUILDING THE NEW DRONE

control and you will enter the menu, go to System Setup and scroll down to Aux
Switches; here the switches you want to use can be enabled and, increase the active
channels, if not enough for the active switches (Roll, Pitch, Yaw and Throttle are
the first 4 occupied channels, if it is desired to enable other switches you have to
take into account that each "active" position corresponds to an occupied channel),
once the change is made you hold down the cancel button to save and return to the
previous menu. After that it is possible to go from the main menu to Functions
Setup, Aux Channels and select the radio channel to which we want to associate the
switch: in our application we have associated switch C to radio channel rc5, switch
A to rc6, switch D to rc7 and switch B to rc8; holding Cancel on the radio control,
we save the changes just made. Finally, the configuration in Mission Planner’s full
parameter list is completed by entering the values of the functions we want to achieve
in that particular switch: in rc6 we put the command 31 which corresponds to Motor
Emergency Stop that will stop the engines immediately (activate it only in case of
emergency because it can seriously damage the aircraft), in rc5 we left the value 0
because the modes were associated in the Flight Modes window, in rc7 we entered
the value 18 which corresponds to Land and in rc8 we can enter any value for the
desired function (RTL, Smart RTL, Circle, etc.). With these configurations, the
Safety Pilot can safely manage the flight phase and switch to manual mode should
an emergency situation arise in autonomous flight. The second setting is used to set
failsafe cases and, in our application, is set to land in case of low battery or critical
voltage level. To properly configure the former situation, we set in the Optional
Hardware->Battery Monitor tab the voltage and current value that the battery is
delivering, using the multimeter and current clamp; With this configuration, voltage
and current values can be monitored directly in the Data window of the Mission
Planner, during the flight phase. An important observation should be made about
the battery monitor. It was found, in fact, that the voltage reading with the motors
on and the throttle at a value above 50%, was found to be wrong on Mission Planner.
In the same, the voltage was found to have a drop of about 3/4V and this, could
be attributable to some issue on the PCB, drone electronics, power module or even
the autopilot voltage port. After numerous tests with an oscilloscope, with different
batteries, with other autopilots and with, even, buffers on the voltage divider port
of the Pixhawk it was verified that there was no problem at the circuit level. The
misreading issue was caused at the Dupont connections on the back of the autopilot,
coming from the ESCs; The ESCs used, in fact, turn out to be usable for both drones
with brushless motors and fixed-wing aircraft having, in the Dupont connector, the
white cable for the signal, the red cable of the 5V and the black cable of the ground.
The red 5V cable was, however, removed from all connectors as it could cause extra
power consumption on the battery; the voltage to the speed controllers comes from
the PCB so this additional power supply can be removed. For the ESCs closest to
the autopilot, those related to the motors on the back of the drone, both the white
signal and ground cables were left. For ESCs further away from the autopilot (those
of the motors on the front of the drone), an extension cable was made for the signal
cable only; the ground turns out to be virtual and, therefore, no extension cable is
needed for it. This was precisely the cause of the problem in the voltage reading on
the Mission Planner battery monitor; the presence of the grounds in the rear ESCs

24

CHAPTER 2. BUILDING THE NEW DRONE

connectors only, caused an imbalance in the voltage when the circuit was under
load. The solution to this problem was then to remove the ground from the Dupont
connectors coming from the rear ESCs, and the reading was found to be correct.
As a result of this, it was preferred to reduce the unused wires by isolating them
separately for cleaner and clearer onboard wiring; also, at the rear of the autopilot,
it was preferred to plug in the signals with a single 8-pin Dupont connector so that
there were not 8 individual connectors. With correct on-screen voltage and current
values, a failsafe can be set in case of low battery capacity. In addition, failsafes
are also set in case of signal loss with the radio control or ground telemetry module
(the latter solution is not recommended, since in the vast majority of cases, the
ground station will be out of range of the UAV and, therefore, its activation is not
recommended so as not to incur unanticipated failsafes). In the future, a geofence
failsafe could also be added, i.e., if the drone were to leave a predefined geographical
area, it will go into failsafe and perhaps land immediately or return to home position.
All these additional configurations are described in the guide at the following [32].

2.3.7 Motor Test

The last step to be performed before conducting a first autonomous/manual flight
mission is related to engine verification. Specifically, before flying, you will need to
verify that the signal connections to the ESCs, on the back of the Pixhawk, match
the correct numeration found on the Ardupilot website at the link [33]. On this
page, referring to the diagram of the OctoQuad X8, you will also need to check the
directions of rotation of the motors and their propellers. They will necessarily have
to follow the direction of rotation in the figure (2.6). To see the current direction
of rotation, we need to go to the Motor Test tab in Optional Hardware and set the
throttle to, at least, 20% and click on "Test motor X" to start the rotation; if the
motors do not turn in the correct direction, it will suffice to randomly reverse two
of the three phases of the brushless motor so as to obtain the opposite direction of
rotation. The ideal direction of motor rotation is also indicated by the color of the
cap above the propeller; this color indicates the direction of reverse threading. In
other words, the silver cap is present on motors manufactured for Counterclockwise
rotation while the black cap is present on motors intended for Clockwise rotation:
in both, the direction of the threading is opposite to the direction of rotation; this
ensures that, during flight, the screws do not unscrew risking the propeller coming
out of the housing on the motor.

25

CHAPTER 2. BUILDING THE NEW DRONE

Figure 2.6: Motors Configuration for Octacopter

For the propellers, on the other hand, they will need to be observed laterally:
if the propeller cutout has the top on the right, the propeller is set up for clock-
wise rotation, otherwise if it has the top on the left, the propeller is set up for
counterclockwise rotation.

2.4 Planning flight missions with Mission Planner
After completing all safety calibrations and configurations, initial autonomous flight
tests can be conducted using the Plan tab of Mission Planner. With this feature, it
is possible to plan a mission that can be simple takeoff and land, but also by adding
waypoints via GPS that the drone will follow, along the planned route. For planning
using this tool, it is possible to see the following links [34].

26

CHAPTER 2. BUILDING THE NEW DRONE

2.5 Improvements and Updates on the Hardware
After numerous configurations and initial flight tests, it was necessary to go for
hardware improvements; this ensures us a better performing device and devices that
will continue to be supported in the future by developers. The changes made are as
follows:

• Cube Orange Autopilot;

• Motors T-Motor AT2312 1150KV;

• Bashing Gens-Ace Battery 4S 5000mAh;

• Holybro SiK Telemetry Radio V3;

• Carbon Fiber Multistar Propeller 9x5.

2.5.1 Cube Orange Autopilot

The Cube autopilot, in the figure (2.7), is a further evolution of the Pixhawk au-
topilot. It is designed for commercial systems and manufacturers who wish to fully
integrate a autopilot into their system. On top of the existing features of Pixhawk,
it has the following enhancements:

• 3 sets of IMU sensors for extra redundancy;

• 2 sets of IMU are vibration-isolated mechanically, reducing the effect of frame
vibration to state estimation;

• IMUs are temperature-controlled by onboard heating resistors, allowing opti-
mum working temperature of IMUs;

• The entire flight management unit (FMU) and inertial management unit (IMU)
are housed in a relatively small form factor (a cube). All inputs and outputs
go through a 80-pin DF17 connector, allowing a plug-in solution for manu-
facturers of commercial systems. Manufacturers can design their own carrier
boards to suite their specific needs.

An additional difference with Pixhawk 2.4.8 is the presence of ports with GH1.25
connectors; this made it necessary to change all wiring from the previous configura-
tion (MX1.25) to these new connectors. In addition, the different peripherals have
been placed in different ports from the previous configuration: to the POWER port
is connected the power module that provides power to the autopilot, to the GPS1
port is connected the GPS module and the safety switch, to the GPS2 port is con-
nected the lidar, to the I2C port is connected the magnetometer, to the TELEM2
port is connected the telemetry module for the ground station, and finally to the
USB port is connected the buzzer and a microUSB connector for connection via
Mavlink. More information on the pinouts of all ports and Ardupilot support can
be found at the following link [35].

27

CHAPTER 2. BUILDING THE NEW DRONE

Figure 2.7: Cube Orange Hex Autopilot

2.5.2 Motors T-Motor AT2312 1150KV Long Shaft

A necessary improvement concerned the engines used; it was observed, after a test
phase, that the previous ReadyToSky 2212 920KV engines, did not provide sufficient
thrust to our aircraft, which, during mixed or hovering flight phases, lost power-to-
weight ratio and struggled to maintain altitude. Therefore, it was concluded that,
for the current weight of the drone, more powerful motors were needed in terms of
thrust and RPM. The motors chosen, shown in the figure (2.8), are the 1150KV
Long Shaft T-Motor AT2312, which were found to be very high performing in terms
of thrust. To these motors, however, a modification to the long shaft was mandatory,
which did not allow them to be mounted in a counter-rotating configuration on our
chassis; therefore, the shafts were cut with a Dremel taking great care to cover the
motor cases with scotch paper so that residue and steel dust, caused by the cut,
would not enter the copper windings of the motor, permanently damaging it.

Figure 2.8: T-Motor AT2312 1150KV Long Shaft

28

CHAPTER 2. BUILDING THE NEW DRONE

2.5.3 Bashing Gens-Ace Battery 4S 5000mAh

Another hardware improvement, related to the choice of motors, concerns the choice
of batteries; in particular, the batteries in the previous configuration (3S) did not
provide sufficient power to the motors. Therefore, four-cell (4S) 5000mAh batteries
were chosen in the figure (2.9). These provide up to 8 minutes of mixed flight mission
time with the current configuration; if the same weight was to be maintained, it
would be necessary to consider using six-cell battery packs with at least 10000mAh
capacity in order to increase flight time and lengthen mission duration.

Figure 2.9: Bashing Gens-Ace Battery 4S 5000mAh

2.5.4 Holybro SiK Telemetry Radio V3

As a result of signal loss between ground station and drone, consideration was
given to replacing the on-board telemetry module with a higher-performance, better-
quality one. The Holybro module in the figure (2.9) was chosen, which is lightweight,
small in size, and allows very high ranges (unobstructed) that can be extended with
the use of additional antennas. This module also turns out to be plug-n-play and
uses open source firmware designed to work with MAVLink packages and be in-
tegrated with Mission Planner, Ardupilot, QGroundControl, and PX4 Autopilot.

Figure 2.10: Holybro SiK Telemetry Radio V3 433MHz

29

CHAPTER 2. BUILDING THE NEW DRONE

2.5.5 Carbon Fiber Multistar Propeller 9x5

The last hardware modification, concerns the choice of propellers of the right size
and pitch. For our configuration, 9x5 carbon fiber propellers were chosen, shown in
the figure (2.11). This choice was made based on the size and weight of the drone
but also based on the rotational speed of the motors and the power delivered by the
batteries. If the previous propellers were used with the new motors, it would result
in a lower thrust than the maximum thrust achievable with properly sized propellers.
Similarly, if the new batteries had been used with the previous motors and propellers,
the motors could have overheated to the point of burning out. Thus, the choice of
battery, motors and propellers is to be made based on the final configuration of the
drone and are closely related to each other.

Figure 2.11: Carbon Fiber Multistar Propeller 9x5

30

CHAPTER 2. BUILDING THE NEW DRONE

After all hardware modifications and upgrades are completed, and all wiring of
all devices is completed, the completed drone is shown in the figure (2.12):

Figure 2.12: Final Configuration of the Octacopter Drone

31

CHAPTER 2. BUILDING THE NEW DRONE

2.6 Advanced Tuning
Upon completion of the hardware design of the new drone and its basic configu-
ration/calibration, an advanced tuning procedure was carried out. This process is
necessary if to optimize the operation of the drone and avoid possible in-flight issues,
due to a lack of adaptation of parameters; and it is essential to adapt the ArduPi-
lot firmware and its parameters to one’s application since, the firmware itself, is
designed generically and may not work properly on one’s hardware configuration
(just think of the different sizes of the drones, their weight, the power of the motors
chosen and the batteries used: different UAVs have, for example, different throttle
parameters in hovering phase due to the above-mentioned reasons. The following
parameters should be set correctly based on the specifications of our aircraft. Each
one impacts the quality of the tuning process.

2.6.1 Battery Setting

It is very important to ensure that the thrust curve of your VTOL motors is as linear
as possible. A linear thrust curve means that changes in the actual thrust produced
by a motor is directly proportional to the thrust being demanded by ArduPilot. If
the thrust curve is badly non-linear then it is not possible to produce a good tune,
and in some cases may end up with such a bad tune that the vehicle can become
completely unstable and crash. It typically starts by setting the voltage range to
cope with a possible voltage drop. Valuing these parameters linearizes the motor
thrust curve.

• MOT_BAT_VOLT_MAX: 4.2V×No.Cells

• MOT_BAT_VOLT_MIN: 3.3V×No.Cells

The next step is to set the thrust expo. In a professional application, you need to
accurately measure the true thrust for the motor/ESC/propeller combination as the
throttle varies. For a scientific or hobbyist application, you can use the graph in
the figure (2.13) to estimate the correct MOT_THST_EXPO value for our aircraft
configuration (a value of 0.63 was chosen for our propeller size).

Figure 2.13: Approximate relationship between MOT_THST_EXPO value and
props size in inches

32

CHAPTER 2. BUILDING THE NEW DRONE

2.6.2 Motors setup

The motor parameters define the PWM output range sent to the ESCs. This is
critical to ensure that the entire range of throttle values used in flight is within the
linear range of the propulsion system.

• MOT_PWM_MAX: Check ESC manual for fixed range or 2000µs;

• MOT_PWM_MIN: Check ESC manual for fixed range or 1000µs;

• MOT_SPIN_ARM: Use the motor test feature in Mission Planner to deter-
mine a value which will reliably start the motors spinning at a low rpm as an
indication of the armed state (0.08 in our application);

• MOT_SPIN_MAX: 0.95;

• MOT_SPIN_MIN: Use the motor test feature in Mission Planner to set the
lower range of linear thrust; the default value is usually adequate for hobby
uses (0.17 in our application);

• MOT_THST_HOVER: 0.25 or below the expected actual hover thrust per-
centage (0.1902064 in our application);

• ATC_THR_MIX_MAN: 0.1.

2.6.3 PID Controller Initial Setup

The settings below are meant to get the PID controller acceleration and filter settings
into the right approximate range for the vehicle; these parameters are critical to the
tuning process. The PID controller default values for axis P/D/I values are usually
safe for first test hovers of most vehicles.

• INS_ACCEL_FILTER: 20Hz;

• INS_GYRO_FILTER: 46Hz following the figure (2.14a);

• ATC_ACCEL_P_MAX: 125900 following the figure (2.14b);

• ATC_ACCEL_R_MAX: 125900 following the figure (2.14b);

• ATC_ACCEL_Y_MAX: 27900 following the figure (2.14c);

• ATC_ANG_YAW_P (For Copter-4.2): 0.5×ATC_ACCEL_Y_MAX÷4500.

After that setup, it is possible to check the above parameters in the SETUP/Mandatory
Hardware/Initial Parameter Setup tab in Mission Planner, by putting the airscrew
size in inch, the battery cellcount, the battery cell fully charged voltage and the
battery cell discharged voltage, and by clicking on Calculate Initial Parameters.

33

CHAPTER 2. BUILDING THE NEW DRONE

(a) Approximate relationship between
INS_GYRO_FILTER value and props
size in inches

(b) Approximate relationship be-
tween ATC_ACCEL_P_MAX or
ATC_ACCEL_R_MAX value and props
size in inches

(c) Approximate relationship between
ATC_ACCEL_Y_MAX value and props
size in inches

Figure 2.14: Approximate relationship for tuning phase

34

CHAPTER 2. BUILDING THE NEW DRONE

2.6.4 First Flight and Initial Tune

1. Ensure that the aircraft is in STABILIZE mode;

2. Arm the aircraft;

3. Increase the throttle slowly until the aircraft leaves the ground;

4. If the aircraft starts to oscillate, immediately abort the takeoff and/or land;

5. Reduce all the following parameters by 50%;

• ATC_RAT_PIT_P;

• ATC_RAT_PIT_I;

• ATC_RAT_PIT_D;

• ATC_RAT_RLL_P;

• ATC_RAT_RLL_I;

• ATC_RAT_RLL_D;

This process is repeated until the aircraft can hover without oscillations being de-
tectable visually or audibly.

2.6.5 Test AltHold

This test will allow to test the altitude controller and ensure the stability of the
aircraft.

1. Check MOT_HOVER_LEARN is set to 2. This will allow the controller to
learn by itself the correct hover value when flying;

2. Take off in STABILIZE and increase altitude to 5m, then switch to AltHold.
Ensure that the aircraft has spent at least 30 seconds in hover to let the hover
throttle parameter converge to the correct value;

3. Land and disarm the aircraft;

4. Set these parameters on ground and preferably disarmed:

• PSC_ACCZ_I equal to 2×MOT_THST_HOVER;

• PSC_ACCZ_P equal to MOT_THST_HOVER.

If AltHold starts to oscillate up and down, the position and velocity controllers may
need to be reduced by 50%. These values are: PSC_POSZ_P and PSC_VELZ_P.
After there is an hover without oscillations, the next step is to get a good notch
filter setup to reduce noise to the PID controllers.

35

CHAPTER 2. BUILDING THE NEW DRONE

2.6.6 Measuring Vibration with IMU Batch Sampler

The IMU BatchSampler can be used to record high-frequency data from the IMU
sensors to the dataflash log on the autopilot. This data can be analysed post-
flight to diagnose vibration issues using graphs created from Fast Fourier Transforms
(FFT) of the data. FFT transforms data from the time domain into the frequency
domain. Put another way, accelerometer data recorded over time (i.e. a flight)
can be converted into a graph showing the frequencies of the vibration. A frequent
feature of these graphs is a spike at the propeller’s “blade passage frequency” (the
frequency at which the blade crosses over the arms) which causes an acceleration in
the aircraft body.

Pre-Flight Setup

• Set INS_LOG_BAT_OPT=0 to do pre-filter 1kHz sampling;

• Set INS_LOG_BAT_MASK=1 to collect data from the first IMU.

Flight and Post-Flight Analysis

• Perform a regular flight (not just a gentle hover) of at least 30s and download
the dataflash logs;

• Open Mission Planner, press Ctrl-F, press the FFT button, press "IMU Batch
Sample" and select the .bin log file downloaded above.

On the graph it should be possible to identify a significant peak in noise that cor-
responds to the motor rotational frequency. On a larger Copter this is likely to be
around 100Hz. There will usually be harmonics of the motor rotational frequency
(2×, 3× that frequency) also. In our application, we obtain the following graph
(2.15):

Figure 2.15: IMU Batch Sampler Before Filtering

With the same log, open it in the regular way in mission planner and graph the
throttle value (CTUN/ThH). From this identify an average hover throttle value and
compare it with the MOT_THST_HOVER (it should be the same).

36

CHAPTER 2. BUILDING THE NEW DRONE

Throttle Based Dynamic Notch Filter Setup

In order to configure the throttle-based dynamic harmonic notch filter it is important
to identify the motor noise at the hover throttle level. To do this, we need to use
the batch sampler to obtain logs for analysis (previous step). Once this is done, the
center frequency of the notch(s) can be set and other parameters configured:

• Set INS_HNTCH_MODE and INS_HNTC2_MODE=1;

• Set INS_HNTCH_ENABLE and INS_HNTC2_ENABLE=1 to enable the
harmonic notch;

• Set INS_HNTCH_REF and INS_HNTC2_REF=hover_thrust to set the
harmonic notch reference value;

• Set INS_HNTCH_FREQ and INS_HNTC2_FREQ=hover_freq to set the
harmonic notch reference frequency;

• Set INS_HNTCH_BW and INS_HNTC2_BW=hover_freq÷2 to set the har-
monic notch bandwidth.

Check the performance of the filter(s) after setup by doing another post filter con-
figuration test flight and analyzing the logs.

Post Configuration Confirmation Flight and Post-Flight Analysis

• With INS_LOG_BAT_MASK still set to =1 to collect data from the first
IMU;

• Set INS_LOG_BAT_OPT=2 to capture post-filter gyro data.

Perform a similar 30s flight (not only hover), plus at least 10s hover with no pilot
stick input. Then analyze the dataflash logs in the same way. This time, there should
be a significant less noise and, more significantly, attenuation of the motor noise
peak. If the peak does not seem well attenuated, then it is possible to experiment
by increasing the bandwidth and attenuation of the notch.

37

CHAPTER 2. BUILDING THE NEW DRONE

After the filter tuning, we obtain the following graph (2.16):

Figure 2.16: IMU Batch Sampler After Filtering

Be sure to reset the INS_LOG_BAT_MASK and INS_LOG_BAT_OPT to "0"
when finished with analysis flight to free uo the RAM consumed by this feature.

2.7 Advanced Compass Setup
Accurately setting up the compass is critical because it is the primary source of
heading information. Without an accurate heading the vehicle will not move in the
correct direction in autopilot modes (i.e. AUTO, LOITER, PosHold, RTL, etc).
This can lead to circling (aka “toiletbowling”) or fly-aways.

CompassMot - Compensation for interference from the power wires, ESCs
and motors

This is recommended for vehicles that have only an internal compass and on vehicles
where there is significant interference on the compass from the motors, power wires,
etc. CompassMot only works well if you have a battery current monitor because
the magnetic interference is linear with current drawn. It is technically possible to
set-up CompassMot using throttle but this is not recommended. To make a correct
CompassMot calibration, the steps are:

• Enable the current monitor (in Initial Setup tab/Optional Hardware/Battery
Monitory or by modifying the parameter BATT_MONITOR in the full pa-
rameter list);

• Disconnect propellers, flip them over and rotate them one position around the
frame. In this configuration, they should push the copter down into the ground
when the throttle is raised;

• Secure the copter (perhaps with tape) so that it does not move;

• Turn on the transmitter and keep throttle at zero;

• Connect the vehicle’s LiPo battery;

38

CHAPTER 2. BUILDING THE NEW DRONE

• Connect the autopilot to the computer with usb cable;

• Open the Initial Setup | Optional Hardware | Compass/Motor Calib
screen;

• Press the Start button;

• It should be heard the ESCs arming beep;

• Raise the throttle slowly to between 50%∼75% for 5∼10s;

• Quickly bring the throttle back down to zero;

• Press the Finish button to complete the calibration.

Check the % of interference displayed. If it is less than 30% then the compass inter-
ference is acceptable and it should have good Loiter, RTL and AUTO performance.
If it is 31%∼60% then the interference is in the “grey zone” where it may be ok
(some users are fine, some are not). If it is higher than 60%, should be tried to
move the autopilot further up and away from the sources of interference or consider
purchasing an external compass (or GPS+compass module).

In the figure (2.17) below, a compass motor calibration performed on the current
configuration can be observed, and from the graphical results, it can be seen that the
% of interference (red line) is in the optimal value range for clean and disturbance-
free flight at the heading.

Figure 2.17: Compass Motor Calibration

39

CHAPTER 2. BUILDING THE NEW DRONE

2.8 RTK GPS Correction
It is possible to increase the normal position reporting accuracy of the GPS using
RTK (Real Time Kinematics). Normal GPS accuracy is 3-5 meters using the Ublox
M8N generation of GPS. If the region in which our application works, has SBAS
(Satelite Based Augmentation Service) with geo-synchronous satellites reporting the
general propagation conditions and corrections to the GPS, then accuracy can im-
prove to the 1 meter range. But centimeter accuracy ranges can be obtained by using
Real Time Kinematics correctional data with the newer F9P generation of GPSes.
Since our application has two GPS modules compatible with RTK correction, this
method was applied so as to increase location accuracy and help the precision land-
ing phase. Propagation and timing corrections (RTCM data) for each satellite can
be fed to the vehicle’s RTK GPS in several ways:

• From a local RTK base station (fixed or moving base) connected to the GCS,
which is also connected to the vehicle (via MAVLink);

• By forwarding RTCM correction data from an NTRIP server via the internet
connected GCS, which is also connected to the vehicle (via MAVLink);

• Wirelessly from a local RTK base station directly to the vehicle GPS’s sec-
ondary UART port.

The solution chosen is the first in the list: Mission Planner allows the connection of
an external RTK Base GPS via USB. The correction data is passed from the Base
unit through the Mission Planner to the vehicle’s MAVLink connection, providing
the vehicle’s RTK GPS with correction data to enable its position reporting to
become more accurate. Key to the success of this method requires that the RTK
Base station’s position be precisely known or determined. Usually, this requires
that the GCS command the RTK Base GPS to “survey-in” itself. The GPS takes
many measurements determining its mean location, applying interim corrections,
and continues to refine its location deviations until the measurements are within a set
threshold of error (usually a few meters) for a given time period (usually 60 seconds).
The GPS then uses that as its location and start outputting the correction data to
the GCS for forwarding to the vehicle’s GPS. It is possible to program the RTK
Base’s exact location directly into it if its is known using the UBlox programming
tool or Mission Planner if that location has been previously “surveyed-in”. In order
to set up this RTK correction, we need to perform the following steps:

1. Set GPS_TYPE=1 in the parameter list;

2. Connect the GPS RTK that will act as a fixed base via USB to the pc and
start Mission Planner (be careful to place the module in a location that will
remain unchanged for all future missions);

3. Go to the Setup window, then Optional Hardware | RTK/GPS Inject section;

4. At the top left, it will be necessary to select the COM port to which the
module is connected via USB (leaving 460800 bandwidth) and click Connect.

40

CHAPTER 2. BUILDING THE NEW DRONE

The "Link Status" should start showing data being input and the satellite
constellations locked will be shown with green indicators;

5. Do the "survey-in" of the GPS module, in mission planner, choosing the
"Survey-in Accuracy" in meters and pressing the "Restart" button (Ublox
recommends a SurveyIn ACC of 5m or less, 2m is commonly used). Now the
GPS will download the almanac and query all the satellites at its disposal to
receive its position by correcting it thanks to the many queries; in the "Survey-
in" window on the right, it is possible to monitor the status progress of the
survey until getting "Position is Valid" with a green indicator;

6. Once the position is obtained, it is possible to save it in a list for future use, if
the Base is placed at that exact location in the future, to avoid another survey
procedure. To use an existing position, first assure that the GPS attached to
the Mission Planner PC is indeed in that exact location, then press the “USE”
button for that location in the list. RTK updates to the vehicle will begin
immediately.

Once RTK data is being processed by the vehicle’s GPS, its status will change to
“RTK float” and then to “RTK fixed” in the GCS HUD indicating that its ready
for use. “RTK float” means that it is using correction data, but has not moved
to the highest precision mode yet. Thanks to this localization mode, a very high
accuracy (about 10 cm) and consequent high performance during flight missions can
be maintained; it can be seen in the figure (2.18) how, during a PosHold, there is a
deviation of a few centimeters on the map instead of a few meters.

Figure 2.18: Accurate Localization on Mission Planner

41

CHAPTER 2. BUILDING THE NEW DRONE

2.9 Quadcopter Drone Setup
After finishing the hardware configuration and calibration of the octocopter, it was
decided to fix the quadcopter drone from the previous work; this was because, in
the preliminary testing stages, a high probability of failure and crashing of the craft
was anticipated, and using this "battle drone" avoids damage to the octocopter
drone that mounts expensive hardware on board. Therefore, the previous drone was
completely deassembled and started from the bare chassis again.
The first reconstruction step is to redo all the soldering on the distribution board,
removing the previous ones, cleaning out the excess tin, and making new soldering
of the ESCs and Power Module with the PDB. Then proceeded with the assembly
of:

• The same ESCs as the previous configuration (ReadyToSky 40A);

• Motors (ReadyToSky 2212 920KV) that are sufficient for a low weight drone;

• 9×5 carbon fiber Multistar propellers (pay attention to the fact that the shaft
of the engine where to attach the propellers has a larger diameter than the
hole of the propellers themselves and, therefore, the hole was enlarged with
the use of a drill);

• 4S 5000mAh battery pack;

• Pixhawk 2.4.8 autopilot;

• Lidar TFmini (since this autopilot, has a less performing barometer than that
of the CubePilot, so it is preferable to support it with a ToF to ground for
correct height measurement);

• All the peripheral hardware like safety switch, buzzer, telemetry module, rc
receiver.

In this configuration, a high-performance M8N GPS module from Holybro, shown
in figure (2.19), was chosen because the TAOGLAS module was mounted on the
octocopter drone.

Figure 2.19: GPS M8N Holybro

42

CHAPTER 2. BUILDING THE NEW DRONE

With this set of elements, the drone is ready for manual flight; to work in au-
tonomous mode, it will need an on-board computer, and a Raspberry Pi 4 Model
B was chosen, in figure (2.20). This companion computer has less computational
capabilities than the Jetson Nano but is sufficient for this configuration because it
will only have to process the terrain images that it will use to recognize the landing
site (in the final configuration, a more computationally intensive computer is needed
because, in this one, there is also an Intel Realsense Depth Camera used for obstacle
avoidance).

Figure 2.20: Raspberry Pi 4 Model B

For marker recognition at the landing point, a Raspberry Pi Camera NoIR V2 was
chosen, shown in figure (2.21), positioned at a point further forward than the base
of the chassis so as to have a wide field of view of the terrain.

Figure 2.21: Raspberry Pi NoIR Camera V2

After the assembly was completed, an initial configuration phase (firmware, gyro,
compass, motor test, etc.) was carried out. This was followed by battery monitor
calibration, compass motor calibration, and finished with the advanced tuning phase
to calibrate the PID controllers, hovering parameters, and configuration of a notch
filter.
After tuning, however, a bouncing landing phenomenon was observed; the barometer
failed to realize that it was on the ground in the automatic landing phase and, after
touching the floor, would rise a few centimeters and then re-land. In fact, by analyz-
ing the logs, it was noticed that there were several "LAND_COMPLETE_MAYBE"
messages at the end of the landing phase, but in the absence of error, there should

43

CHAPTER 2. BUILDING THE NEW DRONE

be only one of them. This problem is caused by the presence of the raspberry and its
protective case on the top of the autopilot which, in the vicinity of the floor, caused a
buildup of air reflections (generated by the spinning propellers close to the floor) for
the barometer reading, sending it into confusion; to solve this phenomenon, a ToF
toward the ground was added and the vertical descent velocity (LAND_SPEED pa-
rameter), in the autonomous landing phase, was increased to 60cm/s so as to reduce
the transient that could generate errors during landing.
The complete configuration of the quadcopter to be used for preliminary testing is
as follows in the figure (2.22):

Figure 2.22: Final Configuration of the testing Quadcopter Drone

44

Chapter 3

On-Board Companion Computer

3.1 Companion Computer First Configuration
After completing the hardware configuration of the craft, the next step was to choose
the on-board computer having the task of managing the autopilot as a high-level
controller. Specifically, this computer will be in charge of receiving the camera im-
ages, processing them, and exploiting the results in conjunction with the information
received from the autopilot (GPS positions, drone attitude, drone height, etc.). For
the application to be developed, either the Raspberry Pi 4 Model B or the NVIDIA
Jetson Nano can be used, and in our case, it was chosen to use the former on the
quadcopter and the latter on the octacopter and then compare their computational
performance and efficiency in terms of accurate and repeated results over time. The
first step that needs to be taken in order to use these two computers as on-board
computers is to do their initial configuration correctly. We then proceeded in in-
stalling the operating system, specifically Raspberry Pi OS (from the link [36]) and
Jetson Nano Developer Kit SD (from the link [37]), both Linux-based operating
systems. In addition, Secure SHell (SSH) has been enabled so that work can be
continued remotely without needing a monitor, keyboard and mouse connected to
the computer to be configured; to do this, it is recommended that a static IP address
be assigned to the device so that it can always be reached through it. Then, the
packet nano is needed to manage and modify files into the pc; it is possible to install
it with the command:

$ sudo apt-get install nano

Only on the Raspberry, it is also necessary to enable the port where to connect the
camera and the serial port that will be used for communication with the autopilot.
Once connected to the above via SSH, the command:

$ sudo raspi-config

will be entered, and item number 5 "Interfacing Options" will be selected. Here the
port 1 Camera will need to be enabled, while at port 6 it is necessary to disable
the Serial Login Shell and enable the Serial Port Hardware. In addition, it will be
necessary to increase the swap memory with the command:

$ sudo nano /etc/dphys-swapfile

45

CHAPTER 3. ON-BOARD COMPANION COMPUTER

and setting CONF_SWAPSIZE=1024. Then, the service will then be stopped
and reinitiated through the commands:

$ sudo /etc/init.d/dphys-swapfile stop
$ sudo /etc/init.d/dphys-swapfile start

At this point, for both Raspberry and Jetson, it will upgrade the newly installed
system with "sudo apt-get update" and "sudo apt-get upgrade" (the first time will
take a while). After that X11 tunneling will need to be enabled via the command:

$ sudo /etc/ssh/sshd_config

and set up X11Forwarding yes, X11DisplayOffset 10 and X11UseLocalhost
yes. This will help to take advantage of the companion computer’s graphics ap-
plications that are based on X11 graphics server, and display them on a separate
machine via SSH using the two tools PuTTY and Xming (i.e. Marker Recognition).
To use the Python libraries, it will use pip, which will need to be installed with the
command:

$ sudo apt-get install python-pip python3-pip

In this way, it will be possible to install all the Python libraries, necessary for
communication between the computer and autopilot, through the following:

$ sudo apt-get install python-dev python3-dev
$ sudo pip install future
$ sudo pip3 install future

For the compilation and execution of the Dronekit package, used for serial commu-
nication, the following will also need to be installed:

$ sudo apt-get install screen python-wxgtk3.0
$ sudo apt-get install python-matplotlib python3-matplotlib
$ sudo apt-get install python-opencv python3-opencv
$ sudo apt-get install python-numpy python3-numpy
$ sudo apt-get install libxml2-dev
$ sudo apt-get install libxslt1-dev
$ sudo pip install pyserial
$ sudo pip3 install pyserial
$ sudo apt-get install git
$ mkdir git
$ cd git
$ git clone https://github.com/dronekit/dronekit-python.git
$ cd dronekit-python
$ sudo python setup.py build
$ sudo python setup.py install
$ sudo python3 setup.py build
$ sudo python3 setup.py install

46

CHAPTER 3. ON-BOARD COMPANION COMPUTER

3.2 Autopilot and Computer Communication
The following step is critical to change the read and write permissions of the se-
rial/USB ports (otherwise, it is not possible to request or set settings on the autopi-
lot via the companion computer):

$ sudo adduser $USER $(stat --format="%G" /dev/ttyACM0)
$ sudo adduser $USER $(stat --format="%G" /dev/ttyAMA0)

At this time, all the packages and libraries needed for the communication between
our high-level and low-level controllers are installed and we can proceed with the
hardware connection. Specifically, for the quadcopter, a telemetry port was chosen
to allow the serial communication between Pixhawk 2.4.8 and Raspberry Pi 4, by
following the pinouts depicted in the figure (3.1):

Figure 3.1: Connection Pinout between Pixhawk 2.4.8 and Raspberry Pi 4

Instead, for the connection between Cubepilot Orange and Jetson Nano onto the
Octacopter, the USB-MicroUSB connection was chosen since, the autopilot itself,
has an extra usb port unlike Pixhawk which has only one (to be kept free for commu-
nication with the ground station in case telemetry is not available at the moment).
Once the hardware connection is also finished, it is possible to make the compan-
ion computer talk to the autopilot, through the use of Python and the Dronekit
developer tool. The script "01_connection_parameters_reading.py" then allows a
connection to be made with the autopilot and ask it for some information such as the
type of firmware installed, the position at that instant, the ground speed, whether
it can be armed, etc.
With the following, it is possible to enable the connection and start the communi-
cation:

#here is set the used port for serial communication
#(ttyACM0 for USB connection, ttyAMA0 for serial/telemetry port)
connection_string = "/dev/ttyACM0"
baud_rate = 921600

47

CHAPTER 3. ON-BOARD COMPANION COMPUTER

print(">>>> Connecting with the UAV <<<")
vehicle = connect(connection_string, baud=baud_rate, wait_ready=True)
#wait_ready flag hold the program until all the parameters are been read

Now that the two devices are talking to each other, different information can be
extracted:

#-- Read Information from the Autopilot:
#- Version and Attributes
vehicle.wait_ready(’autopilot_version’)
print(’Autopilot version: %s’%vehicle.version)
#- Read the Actual Position
print(’Position: %s’% vehicle.location.global_relative_frame)
#- Read the Actual Attitude Roll, Pitch, Yaw
print(’Attitude: %s’% vehicle.attitude)
#- Read the Actual Velocity (m\s)
print(’Velocity: %s’%vehicle.velocity) #- North, East, Down
#- When the Last Heartbeat is received
print(’Last Heartbeat: %s’%vehicle.last_heartbeat)
#- Is the Vehicle good to Arm?
print(’Is the vehicle armable: %s’%vehicle.is_armable)
#- Which is the Total Ground Speed?
print(’Groundspeed: %s’% vehicle.groundspeed) #(%)
#- What is the Actual Flight Mode?
print(’Mode: %s’% vehicle.mode.name)
#- Is the Vehicle Armed?
print(’Armed: %s’%vehicle.armed)
#- Is the state estimation filter ok?
print(’EKF Ok: %s’%vehicle.ekf_ok)

In addition, a callback listener function can be added to be able to read certain
information for a specific instant of time, such as additude information for 5s, as
follows:

#--- Adding a Listener
def attitude_callback(self, attr_name, value):
print(vehicle.attitude)
print("")
print("Adding an attitude listener")
#--- Now the attitude is printed from the callback for 5 seconds
vehicle.add_attribute_listener(’attitude’, attitude_callback)
time.sleep(5)
#--- Then the Callback is removed
vehicle.remove_attribute_listener(’attitude’, attitude_callback)
#--- At the end, the communication is closed
vehicle.close()
print("done")

48

CHAPTER 3. ON-BOARD COMPANION COMPUTER

The output generated by the previous script is as follows in the figure (3.2),
(moving the drone manually to see its attitude during the listener function):

Figure 3.2: Output from 01_connection_parameters_reading.py

49

Chapter 4

Marker Recognition

4.1 Aruco Original Marker
Continuing the development of the project, two very powerful tools in the field of
computer vision were made use of.
The first is called OpenCV (OPEN source Computer Vision library) and is an open
source, cross-platform software library developed for real-time computer vision; it
contains multiple functions that support the acquisition, analysis, and manipulation
of visual information sent to a computer from a camera, video file, or other device.
It is possible to use simple functions to draw a line or shape, but the most interesting
and advanced parts of the library contain algorithms for detecting faces, tracking
motion, and analyzing shapes as shown in figure (4.1):

Figure 4.1: Object Detection by using OpenCV

The second tool is the fiducial marker: there are different types of them (ArUco,
AprilTags, etc.) and they are fundamental in the world of computer vision. One of
the most important functions, which we are going to use, is Pose Estimation: this
process is based on finding correspondences between points in the real environment
and their 2d image projection. One of the most popular approaches is the use of
binary square fiducial markers. The main benefit of these markers is that a single
marker provides enough correspondences (its four corners) to obtain the camera
pose. Also, the inner binary codification makes them specially robust, allowing the
possibility of applying error detection and correction techniques. In the application

50

CHAPTER 4. MARKER RECOGNITION

under analysis, ArUco Markers were chosen to be used (examples in figure (4.2))
based on the ArUco library, a popular library for detection of square fiducial markers
developed by [38].

Figure 4.2: Example of Markers Images

4.2 OpenCV Configuration
In order to enable proper marker recognition, therefore, the on-board computer
will need to be configured by entering OpenCV libraries and packages. Then, the
installation of the previous is proceeded by the following commands:

$ sudo apt-get install build-essential cmake pkg-config
$ sudo add-apt-repository ’deb http://ports.ubuntu.com/ubuntu-ports
xenial-security main’
$ sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng-dev
$ sudo apt-get install libavcodec-dev libavformat-dev
$ sudo apt-get install libswscale-dev libv4l-dev
$ sudo apt-get install libxvidcore-dev libx264-dev
$ sudo apt-get install libgtk2.0-dev
$ sudo apt-get install libatlas-base-dev gfortran
$ sudo pip install numpy
$ sudo pip3 install numpy

After installing all the libraries needed for marker recognition, it is needed to down-
load and build the latest version of OpenCV and OpenCV-Contrib (the last version
at the moment is used), through the following steps:

$ wget -O opencv.zip https://github.com/Itseez/opencv/archive/4.6.0.zip
$ unzip opencv.zip
$ wget -O opencv_contrib.zip https://github.com/Itseez/opencv_contrib/
archive/4.6.0.zip
$ unzip opencv_contrib.zip

51

CHAPTER 4. MARKER RECOGNITION

After downloading both packages, the next step is to create the build folder,
prepare the make file and complete the installation (the operation can take more
than two hours):

$ cd opencv-4.6.0/
$ mkdir build
$ cd build/
$ cmake -D CMAKE_BUILD_TYPE=RELEASE \
> -D CMAKE_INSTALL_PREFIX=/usr/local \
> -D INSTALL_PYTHON_EXAMPLES=ON \
> -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-4.6.0/modules/ \
> -D BUILD_EXAMPLES=ON ..
$ make -j4
$ sudo make install
$ cd
$ sudo ldconfig

After these steps, the installation can be verified as successful by opening python
from the command line and importing the cv2 module; if there is no error message
then everything was configured correctly.

$ python
>>> import cv2

4.3 Camera Calibration
Now that everything is ready to take advantage of OpenCV functions in the com-
puter vision application, the next step is to calibrate the camera. Calibration is
critical because all cameras are different from each other, even cameras of the same
brand or model differ slightly in focus and lens alignment. Specifically, OpenCV
treats cameras as a pinhole model that consists of a mathematical representation
of a 3D object projected into a 2D one. By projecting something that is in three
dimensions into a 2D plane, depth perception is lost. The pinhole model is described
by an intrinsic camera parameter called the Camera Matrix 3×3 (shown below) con-
taining fx and fy being the focal lengths and cx and cy indicating the optical centers
(all these dimensions are in pixels).

CameraMatrix =

fx 0 cx
0 fy cy
0 0 1

In addition to this, one must also consider the lens distortion that each lens has (as
in the following figure (4.3)), and then rectify the image in order to make sense of
what is seen in the mathematical model obtained: this distortion is modeled by five
parameters contained in the Distortion Matrix:

DistortionMatrix =
[
k1 k2 p1 p2 k3

]
52

CHAPTER 4. MARKER RECOGNITION

Figure 4.3: Example of Lens Distortion

Together with the previous four parameters, there is a need to estimate nine total
parameters. The process of estimating these parameters is called calibration [39].
To perform proper calibration, a script in Python will be used to take snapshots at
a particular chessboard 9×6 in figure (4.4) in different distances, orientations and
inclinations (as depicted in the following figures: (4.5))

Figure 4.4: Original ChessBoard

Figure 4.5: Snapshot Examples for Calibration

53

CHAPTER 4. MARKER RECOGNITION

In order to display the camera graphics window, on a Windows machine, it will
be necessary to use Xming and PuTTY and execute, on the latter, the scripts
that need to display the graphical part of the on-board computer. The script
"02_save_snapshots.py" used for saving snapshots is as follows:

import cv2
import time
import sys
import argparse
import os

def save_snaps(width=640, height=480, name="snapshot",
folder="./camera_01"):

cap = cv2.VideoCapture(2)
if width > 0 and height > 0:
print("Setting the custom Width and Height")
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
try:
if not os.path.exists(folder):
os.makedirs(folder)

----------- CREATE THE FOLDER -----------------
folder = os.path.dirname(folder)
try:
os.stat(folder)
except:
os.mkdir(folder)
except:
pass

nSnap = 0
w = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)

fileName = "./%s/%s_%d_%d_" %(folder, name, w, h)
while True:
ret, frame = cap.read()

cv2.imshow(’camera’, frame)

key = cv2.waitKey(1) & 0xFF
if key == ord(’q’):
break
if key == ord(’ ’):
print("Saving image ", nSnap)

54

CHAPTER 4. MARKER RECOGNITION

cv2.imwrite("%s%d.jpg"%(fileName, nSnap), frame)
nSnap += 1

cap.release()
cv2.destroyAllWindows()

def main():
---- DEFAULT VALUES ---
SAVE_FOLDER = "./camera_01/"
FILE_NAME = "snapshot"
FRAME_WIDTH = 640
FRAME_HEIGHT = 480

----------- PARSE THE INPUTS -----------------
parser = argparse.ArgumentParser(
description="Saves snapshot from the camera"
\n q to quit \n spacebar to save the snapshot")
parser.add_argument("--folder", default=SAVE_FOLDER)
parser.add_argument("--name", default=FILE_NAME)
parser.add_argument("--dwidth", default=FRAME_WIDTH, type=int)
parser.add_argument("--dheight", default=FRAME_HEIGHT, type=int)
args = parser.parse_args()

SAVE_FOLDER = args.folder
FILE_NAME = args.name
FRAME_WIDTH = args.dwidth
FRAME_HEIGHT = args.dheight

save_snaps(width=args.dwidth, height=args.dheight,
name=args.name, folder=args.folder)
print("Files saved")

if __name__ == "__main__":
main()

In order to save the photo, it will be necessary to press the space bar while, to
stop the execution of the script, it will be necessary to press the q button on the
keyboard.

55

CHAPTER 4. MARKER RECOGNITION

After taking a considerable number (at least forty) of photos of the chessboard,
an additional calibration script will be used that will recognize a certain path in each
photo as shown in the following figures (4.6); photos with the correct path will be
accepted (on left image below) while those with an incorrect path will be discarded
(on right image below).

Figure 4.6: Correct/Wrong Calibration Path

The script "03_camera_calibration.py" used for calibrating the camera and ex-
trapolating its intrinsic parameters is as follows:

import numpy as np
import cv2
import glob
import sys
import argparse

#----SET THE PARAMETERS
nRows = 9
nCols = 6
dimension = 25 #- mm side lenght of a single square
workingFolder = "./camera_01"
imageType = ’jpg’
#----
termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
dimension, 0.001)

objp = np.zeros((nRows*nCols,3), np.float32)
objp[:,:2] = np.mgrid[0:nCols,0:nRows].T.reshape(-1,2)

Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.

56

CHAPTER 4. MARKER RECOGNITION

Find the images files
filename = workingFolder + "/*." + imageType
images = glob.glob(filename)

print(len(images))
if len(images) < 9:
print("Not enough images were found: at least 9 shall be provided!")
sys.exit()

else:
nPatternFound = 0
imgNotGood = images[1]

for fname in images:
if ’calibresult’ in fname: continue
#-- Read the file and convert in greyscale
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

print("Reading image ", fname)

Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (nCols,nRows),None)

If found, add object points, image points (after refining them)
if ret == True:
print("Pattern found! Press ESC to skip or ENTER to accept")
#--- Sometimes, Harris cornes fails with crappy pictures, so
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)

Draw and display the corners
cv2.drawChessboardCorners(img, (nCols,nRows), corners2,ret)
cv2.imshow(’img’,img)
k = cv2.waitKey(0) & 0xFF
if k == 27: #-- ESC Button
print("Image Skipped")
imgNotGood = fname
continue

print("Image accepted")
nPatternFound += 1
objpoints.append(objp)
imgpoints.append(corners2)

else:
imgNotGood = fname

57

CHAPTER 4. MARKER RECOGNITION

cv2.destroyAllWindows()

if (nPatternFound > 1):
print("Found %d good images" % (nPatternFound))
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints,
imgpoints, gray.shape[::-1],None,None)

Undistort an image
img = cv2.imread(imgNotGood)
h, w = img.shape[:2]
print("Image to undistort: ", imgNotGood)
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))
undistort
mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,

newcameramtx,(w,h),5)
dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)

crop the image
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
print("ROI: ", x, y, w, h)

cv2.imwrite(workingFolder + "/calibresult.png",dst)
print("Calibrated picture saved as calibresult.png")
print("Calibration Matrix: ")
print(mtx)
print("Disortion: ", dist)

#--------- Save result
filename = workingFolder + "/cameraMatrix.txt"
np.savetxt(filename, mtx, delimiter=’,’)
filename = workingFolder + "/cameraDistortion.txt"
np.savetxt(filename, dist, delimiter=’,’)

mean_error = 0
for i in range(len(objpoints)):
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i],

tvecs[i], mtx, dist)
error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
mean_error += error
print "total error: ", mean_error/len(objpoints)

else:
print("In order to calibrate you need at least 9 good pictures,

try again!")

58

CHAPTER 4. MARKER RECOGNITION

At the end of the script, the Camera Matrix and Distortion Matrix will be
obtained, which will be used in the future for estimating the marker pose during
precision landing. In particular, the following relate to the Intel Depth camera D435i
present on the quadcopter:

CameraMatrixQuad =

302.54676 0.0000000 210.93231
0.0000000 301.49758 120.30433
0.0000000 0.0000000 1.0000000

DistortionMatrixQuad =

[
−0.01975 1.26843 −0.00236 0.00024 −4.56254

]
While the following relate to the same camera model present on the octocopter:

CameraMatrixOcta =

606.10796 0.0000000 325.58227
0.0000000 604.47564 238.56731
0.0000000 0.0000000 1.0000000

DistortionMatrixOcta =

[
0.01821 0.96342 0.00056 0.00629 −3.32459

]
As can be seen, although they are cameras from the same manufacturer and identical
in model, they differ in the intrinsic parameters that influence image perception for
visual recognition.

4.4 Aruco Pose Estimation
Now that the camera’s intrinsic parameters have been extracted, the recognition of
the chosen unique marker can proceed. Before developing the script for marker recog-
nition and pose estimation, it is important to note that, as stated in the OpenCV
documentation:

• One marker is sufficient to estimate the pose and rotation of the camera;

• A marker is identified by the dictionary to which it belongs;

• There are multiple Aruco dictionaries (in this case, it will be used the Original
one);

• The marker will be created by the University of Maryland’s online generator
[40].

59

CHAPTER 4. MARKER RECOGNITION

For this type of recognition, some reference should also be made to reference
frames represented in figure (4.7):

1. The camera reference frame is centered in the camera optical center with the
Z axis is sticking out, the X axis going right and the Y axis going down;

2. The marker reference frame has the Z axis going toward the observer, the X
axis going right and the Y axis going up.

Figure 4.7: Camera and Marker Reference Frames

Thus, when the camera and the marker are directly observed, the two reference
frames are the opposite of each other; this is obviously complex to handle, when the
rotation of one frame with respect to the other needs to be analyzed. To simplify
this issue, a flipped reference frame, in figure (4.8), will be created around which
the rotations will be defined.

Figure 4.8: Camera and Marker Flipped Reference Frames

60

CHAPTER 4. MARKER RECOGNITION

Once this detail of the reference frames has been analyzed, marker recognition
can proceed (in this application, the original marker number 72 was randomly cho-
sen) in the following script "04_aruco_pose_estimation"; the first step is to import
all the necessary libraries and define the marker ID chosen and its size in cm:

import numpy as np
import cv2
import cv2.aruco as aruco
import sys, time, math

id_to_find = 72
marker_size = 9.6

Then, the results of camera calibration is loaded, such as camera matrix and camera
distortion:

calib_path = ""
camera_matrix = np.loadtxt(calib_path+’cameraMatrix.txt’, delimiter=’,’)
camera_distortion = np.loadtxt(calib_path+’cameraDistortion.txt’,

delimiter=’,’)

Then, it is necessary to define the 3×3 rotation matrix around the X axis and the
Aruco Original Dictionary:

#--- 180 deg rotation matrix around the x axis
R_flip = np.zeros((3,3), dtype=np.float32)
R_flip[0,0] = 1.0 #X Axis
R_flip[1,1] =-1.0 #Y Axis
R_flip[2,2] =-1.0 #Z Axis

#--- Define the aruco dictionary
aruco_dict = aruco.getPredefinedDictionary(aruco.DICT_ARUCO_ORIGINAL)
parameters = aruco.DetectorParameters_create()

After that, it is possible to capture the camera (this may also be a video or picture),
making sure to use the same width and height used during the calibration procedure
and the correct index referred to the actually camera:

cap = cv2.VideoCapture(2)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
#-- Font for the text in the video
font = cv2.FONT_HERSHEY_PLAIN

In the main loop, the camera frame is read first, after which, the image will be
converted to gray-scale to compare with the dictionary through the cvtColor com-
mand and the BGR2GRAY option (this is because, in OpenCV, images are stored in
blue, green, and red). Then, the function detectMarkers from the Aruco library can
be used to which the dictionary, gray-scale image, parameters, camera matrix, and

61

CHAPTER 4. MARKER RECOGNITION

distortion matrix will be passed. As a result, the marker corners, IDs and rejected
will be obtained. If the tag is found in the vector IDs, then the estimatePoseSin-
gleMarker function can be used, passing it the corners, the size of the marker, and
the two matrices obtained from the calibration. The output of variable ret, will
be a vector of vectors (tvec and rvec) containing the rotation and position of each
marker within the camera frame: specifically, the rvec vector represents the attitude
of the marker with respect to the camera frame while the tvec vector represents
the position of the marker in the camera frame. Since in the application, only one
marker will be had, just the first entry of these vectors will be checked (it is possible
to modify this recognition script, adding more markers and reading more elements
of the above cited vectors). After this, borders will be drawn to the detected marker
and its reference frame, in the showed camera frame.

while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#-- Find all the aruco markers in the image
corners, ids, rejected = aruco.detectMarkers(image=gray,

dictionary=aruco_dict, parameters=parameters,
cameraMatrix=camera_matrix, distCoeff=camera_distortion)

if ids is not None and ids[0] == id_to_find:
ret = aruco.estimatePoseSingleMarkers(corners, marker_size,

camera_matrix, camera_distortion)
rvec, tvec = ret[0][0,0,:], ret[1][0,0,:]

aruco.drawDetectedMarkers(frame, corners)
aruco.drawAxis(frame, camera_matrix, camera_distortion, rvec, tvec, 10)

cv2.imshow(’CameraFrame’, frame)

If it is desired to estimate Euler angles, it is possible to use a function already into
opencv libraries [41], as follows:

Checks if a matrix is a valid rotation matrix.
def isRotationMatrix(R):
Rt = np.transpose(R)
shouldBeIdentity = np.dot(Rt, R)
I = np.identity(3, dtype=R.dtype)
n = np.linalg.norm(I - shouldBeIdentity)
return n < 1e-6

Calculates rotation matrix to euler angles
The result is the same as MATLAB except the order
of the euler angles (x and z are swapped).
def rotationMatrixToEulerAngles(R):
assert (isRotationMatrix(R))

62

CHAPTER 4. MARKER RECOGNITION

sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0])

singular = sy < 1e-6

if not singular:
x = math.atan2(R[2, 1], R[2, 2])
y = math.atan2(-R[2, 0], sy)
z = math.atan2(R[1, 0], R[0, 0])
else:
x = math.atan2(-R[1, 2], R[1, 1])
y = math.atan2(-R[2, 0], sy)
z = 0

return np.array([x, y, z])

The previous one, must be put before main loop; then, in the main again, it is
possible to add informative text on the on-screen view, such as the position of
marker relative to the camera frame, the marker’s attitude with respect to flipped
camera reference frame or, instead, the camera position and attitude with respect
to the marker reference frame (thanks to the last two, it is possible to estimate
the drone pose with respect from the marker) as if the marker is steady and the
camera is moving (actual case of camera on board the drone and landing base with
marker). Moreover, to calculate the rotation matrix, it will be used the Rodrigues
method given in cv2 (this method is an efficient algorithm to transform all three
basis vectors to compute a rotation matrix [42]): R_ct indicates the rotation of the
tag with respect to the camera.

str_position = "MARKER Position x=%4.0f y=%4.0f z=%4.0f"%(tvec[0],
tvec[1], tvec[2])

cv2.putText(frame, str_position, (0, 100), font, 1, (0, 255, 0), 2,
cv2.LINE_AA)

#-- Obtain the rotation matrix tag->camera
R_ct = np.matrix(cv2.Rodrigues(rvec)[0])
R_tc = R_ct.T

#-- Get the attitude in terms of euler 321 (Needs to be flipped first)
roll_marker, pitch_marker, yaw_marker =

rotationMatrixToEulerAngles(R_flip*R_tc)

#-- Print the marker’s attitude respect to camera frame
str_attitude = "MARKER Attitude r=%4.0f p=%4.0f y=%4.0f"%(math.degrees

(roll_marker),math.degrees(pitch_marker), math.degrees(yaw_marker))
cv2.putText(frame, str_attitude, (0, 150), font, 1, (0, 255, 0), 2,

cv2.LINE_AA)

#-- Get Position and attitude of the camera respect to the marker

63

CHAPTER 4. MARKER RECOGNITION

pos_camera = -R_tc*np.matrix(tvec).T
str_position = "CAMERA Position x=%4.0f y=%4.0f z=%4.0f"%(

pos_camera[0], pos_camera[1], pos_camera[2])
cv2.putText(frame, str_position, (0, 200), font, 1, (0, 255, 0),

2, cv2.LINE_AA)

#-- Get the attitude of the camera respect to the frame
roll_camera, pitch_camera, yaw_camera =

rotationMatrixToEulerAngles(R_flip*R_tc)
str_attitude = "CAMERA Attitude r=%4.0f p=%4.0f y=%4.0f"%(math.degrees

(roll_camera),math.degrees(pitch_camera),math.degrees(yaw_camera))
cv2.putText(frame, str_attitude, (0, 250), font, 1, (0, 255, 0), 2,

cv2.LINE_AA)

To terminate the recognition script, a keyboard button (in this case q for quit) is
set that will interrupt the main loop.

key = cv2.waitKey(1) & 0xFF
if key == ord(’q’):
cap.release()
cv2.destroyAllWindows()
break

With the previous script, it is therefore possible to perform recognition of the chosen
marker, estimate its position and attitude relative to that of the camera and vice
versa. An example of the result is as follows in the figure (4.9).

Figure 4.9: Aruco Marker Recognition, Attitude and Position Estimation

64

Chapter 5

Precision Landing Algorithm

After recognizing the marker correctly in the previous script, it will be converted to
a python library that will then be called by the precision landing script. This script
will connect to the vehicle, call the marker recognition library, fly the craft over the
marker and land on it.

5.1 Precision Landing Logic
The algorithm designed follows seven simple steps to perform the precision landing:

• The marker is recognized and its location in the camera frame is obtained;

• This location will be converted from camera frame to body frame;

• The body frame location will be converted into North-East frame centered on
the UAV center of gravity;

• The marker location latitude and longitude will be obtained by adding the
north-east to the current vehicle’s location;

• The vehicle is commanded to go to the marker location;

• The vehicle is commanded to fly over the marker and, if the error is low enough,
it is commanded to descend;

• When the altitude is low enough, the vehicle is commanded to go to Land.

In the block diagram in the figure (5.1) below, the logic that the algorithm will
follow during the precision landing phase is depicted.

65

CHAPTER 5. PRECISION LANDING ALGORITHM

Figure 5.1: Precision Landing Algorithm
66

CHAPTER 5. PRECISION LANDING ALGORITHM

5.2 Precision Landing Script

5.2.1 Aruco Recognition into Library

As mentioned above, the first step is to convert the script presented in the previous
chapter, to library so that it can be called in the precision landing script. Then, a
class called ArucoSingleTracker will be created to which the id of the marker to be
recognized, its size in centimeters, the camera and distortion matrix, the resolution
of the camera, and the choice to show on screen the view of the camera on board
the drone (this class is saved into lib_aruco_recognition.py file). With this library
is possible to accomplish the first step so the marker is recognized and its location
in the camera frame is obtained.

5.2.2 Camera frame to UAV frame Conversion

The second step is to convert the reference frame from camera to UAV. The camera
has the X axis point right and the Y axis point down so, by assuming that the
camera is down looking, the conversion will be:

def camera_to_uav(x_cam, y_cam):
x_uav =-y_cam
y_uav = x_cam
return(x_uav, y_uav)

The previous conversion can be easily understood by looking at the following two
pictures: in the first one in figure (5.2), there is the upper view of drone and camera
both facing up while, in the second one in figure (5.3) there is the rear view of
the drone facing up and the rear view of camera facing down (as supposed when
mounted on board).

Figure 5.2: Upper View of Reference Frames

67

CHAPTER 5. PRECISION LANDING ALGORITHM

Figure 5.3: Rear View of Reference Frames

5.2.3 UAV frame to North-East frame conversion

The subsequent third step is to convert from the UAV body frame to north-east
reference frame, rotating by the Yaw in radians:

def uav_to_ne(x_uav, y_uav, yaw_rad):
c = math.cos(yaw_rad)
s = math.sin(yaw_rad)

north = x_uav*c - y_uav*s
east = x_uav*s + y_uav*c
return(north, east)

5.2.4 Obtaining marker location Latitude and Longitude

In the following function, the actual location of the vehicle is increased by a deltaNorth
and deltaEast in meters: in that way, it is possible to compute the latitude and lon-
gitude location of the marker, by starting from the actual location of the drone and
by adding the converted distance from the center of the camera and the center of
the marker. So, in the defined function below, it is possible to compute a Delta
Latitude and Delta Longitude respect to the current position by assuming the el-
lipsoid model of the Earth; then, these delta quantities will be added to the current
location obtained from the GPS and the location of the marker is the final result in
terms of latitude and longitude as explained in the fourth step:

def get_location_metres(original_location, dNorth, dEast):

earth_radius=6378137.0 #Radius of "spherical" earth
dLat = dNorth/earth_radius
dLon = dEast/(earth_radius*math.cos(math.pi*original_location.lat/180))

print (’dlat, dlon’, dLat, dLon)

#New position in decimal degrees

68

CHAPTER 5. PRECISION LANDING ALGORITHM

newlat = original_location.lat + (dLat * 180/math.pi)
newlon = original_location.lon + (dLon * 180/math.pi)
return(newlat, newlon)

5.2.5 Marker Position to Angle

The following function is really useful to estimate the line of sight angles of the
current marker with respect to the center of the drone; this will be used to check
whether the error is within a certain value and the descend is allowed or not:

def marker_position_to_angle(x, y, z):

angle_x = math.atan2(x,z)
angle_y = math.atan2(y,z)

return (angle_x, angle_y)

5.2.6 Main Script

After creating all the necessary functions to be used in the landing phase, the main
script and loop can be created: First a connection to our autopilot will be made,
then the marker that we want to recognize, its size and the update frequency to
send commands to the autopilot will be indicated. In addition, it is necessary to
specify the altitude under which the vehicle will be set in landing mode, the angle
of descent (when the angle between the marker and the vehicle is within this value,
the vehicle can descend) and the descending speed (in cm/s).

from os import sys, path
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))

import time
import math
import argparse
import socket

from dronekit import *
from pymavlink import mavutil

#--- Import our Aurco Library
from lib_aruco_recognition import *

PARAMETERS FOR CONNECTION TO THE VEHICLE
connection_string = "/dev/ttyAMA0" #or ttyACM0 if connected with USB
baud_rate = 921600

print(">>>> Connecting with the UAV <<<")
vehicle = connect(connection_string, baud=baud_rate, wait_ready=True)

69

CHAPTER 5. PRECISION LANDING ALGORITHM

vehicle.wait_ready(’autopilot_version’)
print(’Autopilot version: %s’%vehicle.version)

print("Landing Start.")
vehicle.mode = VehicleMode("GUIDED")

print ("Starting Landing Marker Recognition.")
vehicle.airspeed = 0.20 #-- set the default speed
vehicle.groundspeed = 0.20 #-- set ground speed

#---
#-------------- FUNCTIONS
Here there will be the functions presented previously
#---

rad_2_deg = 180.0/math.pi
deg_2_rad = 1.0/rad_2_deg

#--
#-------------- LANDING MARKER
#--
#--- Define Tag
id_to_find = 72
marker_size = 9.6 #[cm] - marker 100mm
freq_send = 1 #- Hz

land_alt_cm = 25.0 #for a safety land without damages
angle_descend = 20*deg_2_rad
land_speed_cms = 5.0 #[cm/s]

After the initial parameters, the distortion and camera matrix will be loaded into
the script by getting the full path of current directory (it is mandatory to have
the two file inside the same folder of the script or it is necessary to change the
calibration path). Then, the aruco_tracker object will be defined by calling the
class ArucoSingleTracker with the corresponding parameters:

calib_path = path.dirname(path.abspath(__file__))
camera_matrix = np.loadtxt(calib_path+’cameraMatrix.txt’,

delimiter=’,’)
camera_distortion = np.loadtxt(calib_path+’cameraDistortion.txt’,

delimiter=’,’)
aruco_tracker = ArucoSingleTracker(id_to_find=id_to_find,

marker_size=marker_size, show_video=False,
camera_matrix=camera_matrix, camera_distortion=camera_distortion)

70

CHAPTER 5. PRECISION LANDING ALGORITHM

Now, the main loop can start: here the track parameter is extracted as output
from the aruco_tracker object; it will return whether the Aruco has been found
or not and its position. And, then, if the marker is found, its coordinates will be
converted into UAV reference frame; if the altitude of the drone relative to the
marker is lower than 5m, the measurement of the Z-axis is taken from the lidar
measurement, which is the most accurate height sensor (the barometer does not
have very accurate measurements when the vehicle is close to the ground while the
information taken from the camera is estimated and therefore not as accurate as that
of the lidar). Moreover, the UAV location will be saved into a temporary object, the
marker location will be converted into angles and, if the marker is found, there will
be a message printed every time instant (with the frequency set at the beginning).
After that, the function to convert the coordinates into north-east frame will be
used and, so, it is possible to estimate the marker latitude and longitude (these two
come from the UAV location plus the deltaNorth and deltaEast):

time_0 = time.time()

while True:

marker_found, x_cm, y_cm, z_cm = aruco_tracker.track(loop=False)

if marker_found:
x_cm, y_cm = camera_to_uav(x_cm, y_cm)
z_cm = vehicle.rangefinder.distance*100.0
uav_location = vehicle.location.global_relative_frame

#-- If high altitude, use baro rather than lidar
if vehicle.rangefinder.distance >= 5.0:
print
z_cm = uav_location.alt*100.0

angle_x, angle_y = marker_position_to_angle(x_cm, y_cm, z_cm)

if time.time() >= time_0 + 1.0/freq_send:
time_0 = time.time()

print (" ")
print ("Altitude = %.0fcm"%z_cm)
print ("Marker found x = %5.0f cm y = %5.0f cm -> angle_x = %5f

angle_y = %5f"%(x_cm, y_cm, angle_x*rad_2_deg, angle_y*rad_2_deg))

north, east = uav_to_ne(x_cm, y_cm, vehicle.attitude.yaw)
print ("Marker N = %5.0f cm E = %5.0f cm Yaw = %.0f deg"%(north,

east, vehicle.attitude.yaw*rad_2_deg))

marker_lat, marker_lon = get_location_metres(uav_location, north*0.01,
east*0.01)

71

CHAPTER 5. PRECISION LANDING ALGORITHM

The main loop is completed with the addition of two controls: the first (made with
the set frequency as above) in which the descent angle is checked and, if less than
the set value, commands the UAV to descend of 5cm in 1s as the set frequency (as
long as the error on the angle does not exceed the threshold value or the marker is
no longer seen and, in this case, the command is to reach the last marker position);
the second control, is to check whether the altitude is below a set safety value and,
when it is, the command to land the drone is given and the main loop is exited;
then, it is possible to disarm the vehicle, close the connection with the autopilot and
the mission is completed:

#-- If angle is good, descend
if check_angle_descend(angle_x, angle_y, angle_descend):
print ("Low error: descending")
location_marker = LocationGlobalRelative(marker_lat, marker_lon,

uav_location.alt-(land_speed_cms*0.01/freq_send))
else:
#-- Mantain the same altitude and save the marker location
location_marker = LocationGlobalRelative(marker_lat, marker_lon,

uav_location.alt)

vehicle.simple_goto(location_marker)
print ("UAV Location Lat = %.7f Lon = %.7f"%(uav_location.lat,

uav_location.lon))
print ("Commanding to Lat = %.7f Lon = %.7f"%(location_marker.lat,

location_marker.lon))

#--- Command to land
if z_cm <= land_alt_cm:
print (" -->>COMMANDING TO LAND<<")
vehicle.mode = "LAND"
break

vehicle.armed = False #-- disarming the motors
CLOSING CONNECTION WITH THE VEHICLE
vehicle.close()
print("Mission Complete.")

72

CHAPTER 5. PRECISION LANDING ALGORITHM

5.2.7 Adding Details

Through this just-concluded script, it is also possible to perform an autonomous
mission by simply creating an arm_and_takeoff function and setting GPS waypoints
to be reached within it or, alternatively, set the AUTO flight mode after takeoff,
and have the autopilot follow the waypoints saved in its memory by setting them
via Mission Planner, before switching to GUIDED mode and performing the final
landing phase. Arm and Takeoff Function:

def arm_and_takeoff(tgt_altitude):
print("Arming motors")

vehicle.mode = VehicleMode("GUIDED")
vehicle.armed = True

while not vehicle.armed:
time.sleep(1)

print("Takeoff")
vehicle.simple_takeoff(tgt_altitude)

while True:
altitude = vehicle.rangefinder.distance

if altitude >= tgt_altitude - 0.1:
print("Altitude Reached!")
break
time.sleep(1)

Then, to create an autonomous mission through Python, after the connection with
the autopilot, will be inserted:

print("Mission Start.")
arm_and_takeoff(2) #2 is the altitude in meters
time.sleep(1) #-- relax for a moment
vehicle.mode = VehicleMode("GUIDED")
vehicle.airspeed = 2 #-- set the default speed
vehicle.groundspeed = 2 #-- set ground speed

print ("Going to waypoint 1")
wp1 = LocationGlobalRelative(45.0314728, 7.6191611, 2)
vehicle.simple_goto(wp1)
time.sleep(1)

print ("Going to waypoint 2")
wp2 = LocationGlobalRelative(45.0314540, 7.6191780, 2)
vehicle.simple_goto(wp2)
time.sleep(1)

73

CHAPTER 5. PRECISION LANDING ALGORITHM

#print ("Going to waypoint 3")
wp3 = LocationGlobalRelative(45.0314713, 7.6191869, 2)
vehicle.simple_goto(wp3)
time.sleep(1)

#-- go to landing point
print ("Going to landing point")
lnd_wp = LocationGlobalRelative(45.0314470, 7.6191202, 1.5)
vehicle.simple_goto(lnd_wp)
time.sleep(1)

print ("Starting Landing Marker Recognition.")
vehicle.airspeed = 0.15 #-- set the default speed
vehicle.groundspeed = 0.15 #-- set ground speed

#-- starting landing marker recognition
#-- continue as above

Or, to create autonomous mission through Mission Planner, it is possible to set
takeoff and different waypoints (or just waypoints) and save them into the memory
of the autopilot while, into the script:

print("Mission Start.")
#arm_and_takeoff(2)
vehicle.mode = VehicleMode("AUTO")
#-- Here the saved mission in Mission Planner will be done
time.sleep(1)

#-- go to landing point
print ("Going to landing point")
lnd_wp = LocationGlobalRelative(45.0314470, 7.6191202, 1.5)
vehicle.simple_goto(lnd_wp)
time.sleep(1)

print ("Starting Landing Marker Recognition.")
vehicle.airspeed = 0.15 #-- set the default speed
vehicle.groundspeed = 0.15 #-- set ground speed

#-- starting landing marker recognition
#-- continue as above

74

Chapter 6

Experimental Results

Upon completion of the implementation of the precision landing algorithm presented
in the previous chapter, the experimental testing phase was carried out in an out-
door environment and with a static landing point on the ground. The phase of
testing consists of manually or automatically bringing the drone to the hypothetical
landing point and waiting for the on-board computer and autopilot to communicate
with each other: as soon as this happens, the drone’s flight mode will change from
STABILIZE to GUIDED and the algorithm will continue as in the scheme shown
in the figure (5.1). Numerous tests were carried out with this configuration, which
presented several problems as below:

1. Descending speed;

2. Air/ground speed;

3. GPS tracking error;

4. Incorrect altitude measurement;

5. Light conditions;

6. Marker size;

7. Type of camera.

75

CHAPTER 6. EXPERIMENTAL RESULTS

6.1 Descending Speed
A first issue is related to the descent speed, when the algorithm detects an error
below the indicated threshold and tells the autopilot to descend: in fact, as explained
in the 5.2.6 section, if the descent angle is below a certain value, the UAV height is
reduced by the value (land_speed_cms×0.01)÷freq_send which returns a quantity
in meters.

altitude_reduction = uav_location.alt− (land_speed_cms·0.01
freq_send

)

altitude_reduction = m− (cm/s·0.01
Hz

) = m− (m/s · 1
Hz
) = m− (m/s · s) = m−m = m

Thus, following the previous logic, working with too high a descent speed was ob-
served to result in greater loss of vision of the marker due to the companion com-
puter’s lack of proper timing of image processing. In addition, too high a descent
speed can lead to displacement of the drone from the marker as a result of external
disturbances. At the end of the various tests, the optimal solution that did not have
the above was to set the descent speed to 5cm per second, and thus, each analyzed
frame that meets the imposed characteristics leads to a descent of 0.05m per time.

6.2 Air/Ground Speed
An additional issue that has led to drift and loss of marker vision is caused by the
drone’s navigation speed. In particular, it was observed that when the drone had
to reach the landing spot, if its movement speed was too high, it would overshoot
the marker and fail to find it again. Or if the speed was too high during the
positioning corrections in the landing phase, the drone would overshoot the spot
where the marker was located as a result of the too-fast correction. The previous
case histories ended in numerous time losses in the landing phase lengthening the
time considerably and in temporary or permanent loss (also due to the 1-3m error
of the normal GPS) of the maker and a subsequent failure of the mission. Hence,
for the solution of the exposed problem, a reduction of in-flight speeds was chosen
as follows, which ensured an almost complete zeroing of the above.

vehicle.airspeed = 0.15m/s — vehicle.groundspeed = 0.15m/s

6.3 GPS tracking Error
A very influential experimental issue is related to the GPS error; in fact, in a prelimi-
nary stage, tests were carried out with a simple GPS without the RTK configuration
thus maintaining the localization error of 1-3m. This greatly affected the tests since,
when the marker went out of the field of view and the algorithm had to bring the
craft to the last recorded position, it was affected by a considerable error and thus
made it impossible to find the marker. This was also the case when during the
flight, the number of connected satellites was reduced (e.g. due to cloudy weather)
below ten increasing the localization error. Opting for an RTK configuration and

76

CHAPTER 6. EXPERIMENTAL RESULTS

reducing the localization error to the order of tens of centimeters was essential to
achieve optimal and repeated results over time (in the case of classical GPS-only,
the landing phase was rarely successful and often the marker was lost because the
drone was sent to a location affected by a large error).

6.4 Incorrect Altitude Measurement
Another observation derived from the practical tests is related to the reference sen-
sors for the drone’s altitude relative to the ground. Specifically, it is possible to
obtain this information from the barometric reading or the estimate obtained by
computer vision on the marker (the size in pixels of the marker in the camera frame
is converted to meters and from this measurement it is possible to estimate how far
the camera, and therefore the drone, is from the marker seen. Both readings are
not effective, however: the barometric reading is greatly affected by the air currents
that the drone generates to create lift and which are reflected, in large quantities,
from the ground when the drone is at a height below about 3 meters; the height
estimate obtained by video camera, on the other hand, is more accurate below 2
meters in height because the marker is clearly recognizable within the camera frame
but, above the mentioned height, it is not clearly visible given its small size (10cm
per side). In addition, the same estimation by video camera loses its effectiveness
at low heights where the marker goes out of the field of view and, therefore, it is
not possible to estimate the distance with an object that cannot be seen. To solve
these height measurement issues, a lidar pointing downward was chosen to support
the architecture used: for heights above 5m the barometer measurement was used
which was very effective while, for heights below 5m the measurement given by the
lidar was used which is accurate to the order of centimeters, thus usable even in
close proximity with the terrain/marker.

6.5 Light Conditions
One issue due to the chosen solution is related to lighting conditions. In fact, the use
of visual systems such as the simple camera is heavily characterized by the absence
of light; moreover, during testing, a problem with excessive light also arose: using
a rigid landing base with the marker fixed on it, it was noticed that during the
hours when the sun directly hit the base, it reflected the sunlight. The presence of
shiny tape also led to reflections. These light reflections proved problematic during
recognition as they interfered with the clean visibility of the camera. To overcome
this problem, an opaque landing base and tape was chosen so as to reduce light
reflections altogether.

77

CHAPTER 6. EXPERIMENTAL RESULTS

6.6 Marker Size
One of the most important observations to be made concerns the choice of marker
size. The latter directly influences the height at which the marker is detected and
recognized correctly. In fact, a marker of small size is not detected from high dis-
tances (more than 1.5m from the marker) but can be followed up to very small
distances (about 20cm from the marker). On the other hand, however, an oversized
marker, is detected from greater distances (up to 3.5m from the marker) but cannot
be tracked when the vehicle will be in the vicinity of the marker (below 50cm from
the marker). According to the algorithm, in fact, when the drone is below a set
height (considered safe to land very close to the target), it is commanded to land
and then switch to LAND mode; however, this results in the interruption of the
tracking phase carried out by the script and the start of the final landing phase
managed by the autopilot and, at this stage, there may be drift phenomena due to
wind disturbances or GPS tracking errors. For an optimal solution, which agrees
with the application, it must be imagined that the drone will also fly in indoor envi-
ronments and will have to land aboard a rover about 90cm high: therefore, a marker
size tradeoff was chosen, that would allow its recognition at heights indicative for
indoor environments and that would be trackable as much as possible when drone
and landing spot are close, so as to delay the landing command as much as possible
and greatly reduce errors caused by possible drift. Therefore, the parameters chosen
for a solution closer to the needs are as follows and ensured the completed landing
always within a 10cm around the marker:

marker_size = 9.6cm — land_alt_cm = 25.0cm

6.7 Type of Camera
The first tests were performed using the Raspberry Pi Camera Noir: this choice
was dictated by the already present Intel Realsense Depth camera used for obstacle
avoidance. Therefore, to avoid overloading the on-board computer with a perfor-
mant camera, a more basic camera was chosen. During testing, however, this choice
proved to be ineffective since the said camera has low resolution and performance
characteristics necessary for proper marker recognition while providing clean images
for computer processing. Therefore, it was returned to using an Intel Realsense
Depth camera that has much better hardware characteristics to support the appli-
cation in progress. Thus, if in the future it is desired to use a vehicle that takes
advantage of two Realsense cameras for obstacle avoidance and precision landing, a
second on-board computer (each computer will receive and process images received
from one camera) will have to be included.

78

Chapter 7

Conclusions and Future
Implementations

7.1 Conclusion
At the end of the experimental tests, it was observed that after the modifications
and improvements set in the previous chapter, the algorithm can correctly reach
and detect the marker, keep within its range throughout the landing phase and land
on it with a margin of error of about 10cm. Drift issues were reset almost to zero
by reducing the airspeeds (of descent and lateral movement to correct the position
of the UAV) and the altitude from which the land command was sent while those
related to the error of positioning and finding the marker were reset to zero by using
a gps with RTK system. The system was found to be robust and reliable during all
tests, and no unexpected issues arose.

7.2 Future Implementations
The next steps for optimizing the algorithm involve adding safety systems for any
unexpected situations, perceptual enhancement of the camera to increase the drone’s
field of view and removal of issues caused by unfavorable lighting conditions, and
performance enhancement regarding marker tracking. With the aforementioned, the
system will be more robust and perform better and can be used in the future as a
base for landing on a mobile platform.

7.2.1 Robustness

To improve the system in terms of robustness, safety checks can be inserted for
unexpected situations. For example, thinking about the situation where the marker
is not seen, the drone is theoretically on its position, and is not at the altitude for
landing, the algortim provides for increasing the altitude until the marker is found
again; this could evolve into critical situations leading the drone to climb up to hit
a ceiling when the mission is carried out in an indoor environment. An additional
safety protocol would be to include virtual geographic fences that the drone would
never have to leave, such as the industrial area in which it is used (the drone should

79

CHAPTER 7. CONCLUSIONS AND FUTURE IMPLEMENTATIONS

not fly in areas where flight is not allowed or expected due to the presence of people
or other causes).

7.2.2 Computer Vision

In this application, two cameras were used, one of which, the Intel Realsense, is
very high-performance. This, however, is a depth camera that sees its best use for
obstacle avoidance algorithms; for precision landing, on the other hand, the most
efficient cameras are stereo cameras assigned to tracking applications, such as Intel
Realsense Tracking camera T265 or even cameras with fish-eye systems. Both of the
above are excellent in extended field-of-view optics and useful, therefore, both in
the preliminary phase of landing when looking for the marker at the GPS position
reached, and in the final phase of landing when the drone is very close to the marker
and misses it with ease: these systems would ensure the faster detection of the
marker at the beginning of the landing phase and the achievement of even shorter
distances, in the final phase, so as to lower the margin of error.
An additional improvement that can be made to the visual system concerns increased
visual perception in low-light conditions. For this situation, it is possible to think
of an infrared camera with night vision that, therefore, aids in the detection and
tracking of the marker in low light situations or, alternatively, the camera can be
supported with an IR-lock sensor positioned on the drone pointing toward the ground
and an infrared beacon positioned at the landing site; combining the latter system
with the algorithm presented in this thesis, adapting them to work symbiotically,
can cover those situations in which the landing is carried out in unfavorable light
conditions.

7.2.3 Tracking Performance

In the algorithm presented in this thesis work, the control system is carried out
to keep the marker in the camera’s field of view at all times: thus, the control
loop, makes sure that if the marker partially leaves the field of view, its last stored
GPS position is reached. It is possible to augment the control system by going to
implement a PID that works on the distance between the center of the marker and
the focal center of the camera: thus, the error to be set to zero, as an input to
the control system, is exactly the distance between the two centers. By trying to
keep this distance as small as possible, throughout the landing phase, the system
will be significantly more accurate since it will no longer happen that the marker is
lost during the descent by being at the limit of the field of view. Also, in the final
landing phase, the marker will be able to be tracked more when the drone is at a
reduced distance from it.

80

Bibliography

[1] Yang Gui, Pengyu Guo, Hongliang Zhang, Zhihui Lei, Xiang Zhou, Jing Du, and
Qifeng Yu. Airborne vision-based navigation method for uav accuracy landing
using infrared lamps. Journal of Intelligent & Robotic Systems, 72(2):197–218,
Nov 2013.

[2] Zhanpeng Gan, Huarong Xu, Yuanrong He, Wei Cao, and Guanhua Chen.
Autonomous landing point retrieval algorithm for uavs based on 3d environment
perception. In 2021 IEEE 7th International Conference on Virtual Reality
(ICVR), pages 104–108, 2021.

[3] Juhi Ajmera, Siddharthan PR, Ramaravind K.M., Gautham Vasan, Naresh
Balaji, and V. Sankaranarayanan. Autonomous visual tracking and landing of
a quadrotor on a moving platform. In 2015 Third International Conference on
Image Information Processing (ICIIP), pages 342–347, 2015.

[4] Davide Falanga, Alessio Zanchettin, Alessandro Simovic, Jeffrey Delmerico,
and Davide Scaramuzza. Vision-based autonomous quadrotor landing on a
moving platform. In 2017 IEEE International Symposium on Safety, Security
and Rescue Robotics (SSRR), pages 200–207, 2017.

[5] Rong Liu, Jianjun Yi, Yajun Zhang, Bo Zhou, Wenlong Zheng, Hailei Wu,
Shuqing Cao, and Jinzhen Mu. Vision-guided autonomous landing of multiro-
tor uav on fixed landing marker. In 2020 IEEE International Conference on
Artificial Intelligence and Computer Applications (ICAICA), pages 455–458,
2020.

[6] Bo-Yang Xing, Feng Pan, Xiao-Xue Feng, Wei-Xing Li, and Qi Gao. Au-
tonomous landing of a micro aerial vehicle on a moving platform using a compos-
ite landmark. International Journal of Aerospace Engineering, 2019:4723869,
May 2019.

[7] JeongWoon Kim, Yeondeuk Jung, Dasol Lee, and David Hyunchul Shim. Out-
door autonomous landing on a moving platform for quadrotors using an om-
nidirectional camera. In 2014 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 1243–1252, 2014.

[8] Zhanglong Wang, Haoping She, and Weiyong Si. Autonomous landing of multi-
rotors uav with monocular gimbaled camera on moving vehicle. In 2017 13th
IEEE International Conference on Control Automation (ICCA), pages 408–412,
2017.

82

BIBLIOGRAPHY

[9] Jiaqi Jiang, Yuhua Qi, Muhammad Ibrahim, Jianan Wang, Chunyan Wang,
and Jiayuan Shan. Quadrotors’ low-cost vision-based autonomous landing ar-
chitecture on a moving platform. In 2018 15th International Conference on
Control, Automation, Robotics and Vision (ICARCV), pages 448–453, 2018.

[10] Le Qi, Baoxi Yuan, Peng Ma, Yingxia Guo, Feng Wang, and Chen Mi. Scene
simulation and cooperative target detection during uav autonomous landing.
In 2020 International Conference on Robots Intelligent System (ICRIS), pages
40–43, 2020.

[11] Riccardo Polvara, Sanjay Sharma, Jian Wan, Andrew Manning, and Robert
Sutton. Towards autonomous landing on a moving vessel through fiducial mark-
ers. In 2017 European Conference on Mobile Robots (ECMR), pages 1–6, 2017.

[12] Aleix Paris, Brett T. Lopez, and Jonathan P. How. Dynamic landing of an
autonomous quadrotor on a moving platform in turbulent wind conditions.
In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 9577–9583, 2020.

[13] Artur Khazetdinov, Aufar Zakiev, Tatyana Tsoy, Mikhail Svinin, and Evgeni
Magid. Embedded aruco: a novel approach for high precision uav landing.
In 2021 International Siberian Conference on Control and Communications
(SIBCON), pages 1–6, 2021.

[14] Zhou Jian, Wang Xin-Min, and Wang Xiao-Yan. Automatic landing control of
uav based on optical guidance. In 2012 International Conference on Industrial
Control and Electronics Engineering, pages 152–155, 2012.

[15] Nguyen Xuan Mung, Jun Yong Lee, Seok Tae Lee, and Sung Kyung Hong.
Target state estimation for uav, target tracking and precision landing control:
Algorithm and verification system. In 2021 21st International Conference on
Control, Automation and Systems (ICCAS), pages 173–177, 2021.

[16] Morteza Alijani and Anas Osman. Autonomous landing of uav on moving
platform: A mathematical approach. In 2020 International Conference on
Control, Automation and Diagnosis (ICCAD), pages 1–6, 2020.

[17] Yi Feng, Cong Zhang, Stanley Baek, Samir Rawashdeh, and Alireza Moham-
madi. Autonomous landing of a uav on a moving platform using model predic-
tive control. Drones, 2(4), 2018.

[18] Miguel A. Olivares-Mendez, Iván F. Mondragón, and Pascual Campoy. Au-
tonomous landing of an unmanned aerial vehicle using image-based fuzzy con-
trol. IFAC Proceedings Volumes, 46(30):79–86, 2013. 2nd IFAC Workshop on
Research, Education and Development of Unmanned Aerial Systems.

[19] Shadi Abujoub, Johanna McPhee, Cassidy Westin, and Rishad A. Irani. Un-
manned aerial vehicle landing on maritime vessels using signal prediction of the
ship motion. In OCEANS 2018 MTS/IEEE Charleston, pages 1–9, 2018.

83

BIBLIOGRAPHY

[20] Andrea Nisticò, Marco Baglietto, Enrico Simetti, Giuseppe Casalino, and
Alessandro Sperindè. Marea project: Uav landing procedure on a moving and
floating platform. In OCEANS 2017 - Anchorage, pages 1–10, 2017.

[21] Alexandre Borowczyk, Duc-Tien Nguyen, André Phu-Van Nguyen, Dang Quang
Nguyen, David Saussié, and Jerome Le Ny. Autonomous landing of a multirotor
micro air vehicle on a high velocity ground vehicle**this work was partially
supported by cfi jelf award 32848 and a hardware donation from dji. IFAC-
PapersOnLine, 50(1):10488–10494, 2017. 20th IFAC World Congress.

[22] Patrick Henkel, Andreas Sperl, Ulrich Mittmann, Torsten Fritzel, Rüdiger
Strauss, and Hans Steiner. Precise 6d rtk positioning system for uav-based
near-field antenna measurements. In 2020 14th European Conference on An-
tennas and Propagation (EuCAP), pages 1–5, 2020.

[23] Thien Hoang Nguyen, Muqing Cao, Thien-Minh Nguyen, and Lihua Xie. Post-
mission autonomous return and precision landing of uav. In 2018 15th Inter-
national Conference on Control, Automation, Robotics and Vision (ICARCV),
pages 1747–1752, 2018.

[24] P. Marcon, J. Janousek, and R. Kadlec. Vision-based and differential global po-
sitioning system to ensure precise autonomous landing of uavs. In 2018 Progress
in Electromagnetics Research Symposium (PIERS-Toyama), pages 542–546,
2018.

[25] Ju Wang, Devon McKiver, Sagar Pandit, Ahmed F. Abdelzaher, Joel Washing-
ton, and Weibang Chen. Precision uav landing control based on visual detection.
In 2020 IEEE Conference on Multimedia Information Processing and Retrieval
(MIPR), pages 205–208, 2020.

[26] Claudio Roberto de Ceglia. Fixit assemblaggio telaio readytosky zd550
quadcopter frame. https://www.youtube.com/watch?v=BsV0u_TfFQk,
https://cim40.sharepoint.com/:v:/r/sites/repository/Documenti%
20condivisi/PROGETTI/INTERNI/FLAGSHIP%20PROJECT/Documenti/
Documenti%20tecnici/Lavoro%20di%20Tesi/Drone%20Navigation/
Claudio%20Roberto%20De%20Ceglia/Video%20Documentazione/0.
AssemblaggioTelaio.mp4?csf=1&web=1&e=zHpLAe, 2022.

[27] Claudio Roberto de Ceglia. Fixit assemblaggio elettronica. https://www.
youtube.com/watch?v=MAHVaalIfJc, https://cim40.sharepoint.com/:
v:/r/sites/repository/Documenti%20condivisi/PROGETTI/INTERNI/
FLAGSHIP%20PROJECT/Documenti/Documenti%20tecnici/Lavoro%20di%
20Tesi/Drone%20Navigation/Claudio%20Roberto%20De%20Ceglia/Video%
20Documentazione/1.AssemblaggioComponentiDrone.mp4?csf=1&web=1&e=
8y8aNx, 2022.

[28] Randy Mackay, Henry Wurzburg, Hamish Willee, Graham James Addis. Con-
necting common power module to the autopilot. https://ardupilot.org/
copter/docs/common-3dr-power-module.html, 2020.

84

BIBLIOGRAPHY

[29] Randy Mackay, Henry Wurzburg, Tatsuya Yamaguchi, Geofrancis,
Nicholas Kruzan, Norimboo. Connecting benewake tfmini/tfmini
plus lidar to the autopilot. https://ardupilot.org/copter/docs/
common-benewake-tfmini-lidar.html, 2022.

[30] Henry Wurzburg, Peter Barker, Hamish Willee, Randy Mackay, Stephen
Dade, Lars Kellogg-Stedman, Graham James Addis, Charlie John-
son. Pixhawk overview. https://ardupilot.org/copter/docs/
common-pixhawk-overview.html, 2022.

[31] Claudio Roberto de Ceglia. Fixit prima configurazione e calibrazione
di un drone. https://www.youtube.com/watch?v=CzjUlMCvzWs,
https://cim40.sharepoint.com/:v:/r/sites/repository/Documenti%
20condivisi/PROGETTI/INTERNI/FLAGSHIP%20PROJECT/Documenti/
Documenti%20tecnici/Lavoro%20di%20Tesi/Drone%20Navigation/
Claudio%20Roberto%20De%20Ceglia/Video%20Documentazione/2.
ConfigurazioneCalibrazioneIniziale.mp4?csf=1&web=1&e=AehlSh, 2022.

[32] Claudio Roberto de Ceglia. Fixit configurazione aggiuntiva di un
drone. https://www.youtube.com/watch?v=DAov4YbCKzA, https:
//cim40.sharepoint.com/:v:/r/sites/repository/Documenti%
20condivisi/PROGETTI/INTERNI/FLAGSHIP%20PROJECT/Documenti/
Documenti%20tecnici/Lavoro%20di%20Tesi/Drone%20Navigation/
Claudio%20Roberto%20De%20Ceglia/Video%20Documentazione/3.
ConfigurazioneAggiuntiva.mp4?csf=1&web=1&e=XOmr8j, 2022.

[33] Randy Mackay, Henry Wurzburg, Hamish Willee, Peter Hall, Graham James
Addis, Craig Elder, Andrew Tridgell. Connect escs and motors. https://
ardupilot.org/copter/docs/connect-escs-and-motors.html, 2022.

[34] Claudio Roberto de Ceglia. Fixit pianificazione missioni di volo con
mission planner. https://www.youtube.com/watch?v=S6om1NJ6QdE,
https://cim40.sharepoint.com/:v:/r/sites/repository/Documenti%
20condivisi/PROGETTI/INTERNI/FLAGSHIP%20PROJECT/Documenti/
Documenti%20tecnici/Lavoro%20di%20Tesi/Drone%20Navigation/
Claudio%20Roberto%20De%20Ceglia/Video%20Documentazione/4.
PianificazioneMissioniDiVolo.mp4?csf=1&web=1&e=Or0Zrd, 2022.

[35] Henry Wurzburg, Matt, Pierre Kancir, Mirko Denecke, Ian, Madangler1,
Hamish Willee. The cube overview. https://ardupilot.org/copter/docs/
common-thecube-overview.html, 2022.

[36] Raspberry Pi Foundation. Raspberry pi operating system images. https:
//www.raspberrypi.com/software/operating-systems/.

[37] NVIDIA Developer. Jetson nano developer kit sd card image.
https://developer.nvidia.com/embedded/l4t/r32_release_v7.1/jp_4.
6.1_b110_sd_card/jeston_nano/jetson-nano-jp461-sd-card-image.zip.

85

BIBLIOGRAPHY

[38] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-
Jiménez. Automatic generation and detection of highly reliable fiducial markers
under occlusion. Pattern Recognition, 47(6):2280–2292, 2014.

[39] OpenCV-dev Documentation. Opencv camera calibration. https:
//docs.opencv.org/3.0-beta/doc/py_tutorials/py_calib3d/py_
calibration/py_calibration.html#calibration.

[40] Aruco markers generator. https://chev.me/arucogen/.

[41] Satya Mallick. Rotation matrix to euler angles. https://learnopencv.com/
rotation-matrix-to-euler-angles/, 2016.

[42] Wikipedia contributors. Rodrigues’ rotation formula — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Rodrigues%
27_rotation_formula&oldid=1122338410, 2022. [Online; accessed 21-
November-2022].

86

