
POLITECNICO DI TORINO

Master’s Degree in Mechatronics Engineering

Master’s Degree Thesis

Kubernetes Cluster On-premises
Infrastructure for Stateful Applications

Supervisors

Prof. Guido MARCHETTO

Prof. Jaloliddin YUSUPOV

Candidate

Bulat DAVLYATSHIN

December 2022

Summary

Two events from our past has driven first the technology towards the future, then
the world towards the technology. These are the invention of Cloud and the
Covid-19 respectively. Nothing made us live in a remote reality as the latter one.
Today quite a few of our daily experiences can be handled remote and online. From
banking services to education and telemedicine - life will never be the same.

To this prospect, we are facing a high load on our servers, which is increasing
sometimes in an exponential manner. Yes, we have nice applications that make
our daily routine better, but to keep them working stable we have to ensure that
they can always handle the traffic they’re enforced to.

Do we have a solution for that? - Yes, we have cloud, we have containerization
for application high mobility, we have orchestrating tools like Kubernetes, and all
of them do a great job, but as we know, there is no silver bullet. We cannot expand
one solution to all of the cases, and one of the cases is studied in this work.

ii

Table of Contents

List of Figures v

1 Introduction 1
1.1 Thesis Objective . 1
1.2 Thesis Description . 2

2 Background 4
2.1 Kubernetes . 4
2.2 Cloud vs. On-Premise . 7
2.3 Stateful vs. Stateless . 8
2.4 Publish-Subscriber pattern . 15

3 Infrastructure Setup 19
3.1 Requirements . 19
3.2 Kubernetes installation . 19

4 Stateful Application on Kubernetes 40
4.1 StatefulSet . 40
4.2 Sample application using StatefulSet 41
4.3 BigBlueButton . 42
4.4 BigBlueButton on Kubernetes . 43
4.5 Cluster topology for stateful components 50

5 Conclusions and Future Work 52

Bibliography 53

iv

List of Figures

2.1 Master Plane . 6
2.2 Cloud vs. On-Premise . 7
2.3 Publish-Subscriber architecture . 16

3.1 Custom Infrastructure . 20

4.1 BigBlueButton architecture . 42
4.2 BigBlueButton service connections 43
4.3 BigBlueButton Kubernetes Architecture 44
4.4 Redis Cluster vs. Master-Slave Topology 51

v

Chapter 1

Introduction

1.1 Thesis Objective
Having a legacy infrastructure with legacy source code, that actually perform well,
but requiring vertical scaling on high loads, taking into account that load behaves
non-uniformly, we took a challenge to shift the paradigm towards horizontal scaling.
Also we decided to somehow automate application management (orchestrating)
process and faced two different, and in some sense opposite approaches: Cloud vs.
On-Premise

As long as the University has its own servers, but not a cloud data center yet,
we are left with the On-Premise approach.

1

Introduction

The next issue we deal with is that we work on an application that is stateful.
That makes a bit difficult to not loosing the state of the request, otherwise the
user experience would be ruined. We have to be coutious in assinging volumes,
as StatefulSets specifications suggest to use PersistentVolume for saving the
state even if the pod will go down, after the restart it will catch up where it left off.

We dig deeper, and we see that if we have 2 replicas of the pods that manages
its own PersistentVolume then we do not have the right user experience, because
the same user’s requests comes to these two pods interchangably, but one pods info
do not intersects with the other’s. So, data synchronization comes to a place and
different topologies like Master-Slave and Cluster Topologies.

Taking this analysis into account we set the following goals:

1. Install Kubernetes Cluster as a sandbox

2. Study the BigBlueButton application in its legacy architecture and gain some
insights for the further conclusions

3. Design a brand new Kubernetes-friendly architecture for BigBlueButton

4. Refactoring the application

5. Adding monitoring tools

6. Design different scenarios for testing and debug

7. Prepare for production

1.2 Thesis Description
This thesis work is structured as follows:

• Chapter 1 - Introduction: This chapter, as the name suggests, is an
introduction which reveals the objective of the actual work, what ideas led to
start this work and how they transform along the way.

• Chapter 2 - Background: This chapter makes us familiar with the technol-
ogy used in this work. Of course in a quite brief manner. We will cover what
is Cloud and how it differs from On-Premises solutions, what is a state in an
application, and what is Kubernetes.

• Chapter 3 - Infrastructure Setup: In this chapter we will be defining
the requrements for our future application infrastructure and installing a
Kubernetes Cluster on our Virtual Machines.

2

Introduction

• Chapter 4 - Stateful Application on Kubernetes Given that we success-
fully installed the Kubernetes Cluster in the previuos chapter, we will try to
deploy a stateful application on it. We will see in practice how differently wee
deal with Deployments and StatefulSets.

• Chapter 5 - Conclusions and Future Work Here we discuss the results
we achieved and what has left for the future.

3

Chapter 2

Background

2.1 Kubernetes
Kubernetes is an open source tool to manage and orchestrate containerized appli-
cations. It provides such a powerful set of features as zero downtime deployment,
health check mechanism, pod liveness handling, graceful shutdown and many others.

"Kubernetes, or k8s, is an open source platform that automates Linux container
operations. It eliminates many of the manual processes involved in deploying and
scaling containerized applications,” and continues “In other words, you can cluster
together groups of hosts running Linux containers, and Kubernetes helps you easily
and efficiently manage those clusters.” - well known definition by Gordon Haff, Red
Hat technology evangelist, in his book, “From Pots and Vats to Programs and
Apps” [1]

Kubernetes was originally developed and designed by engineers at Google.
Google was one of the early contributors to Linux container technology and has
talked publicly about how everything at Google runs in containers. (This is the
technology behind Google’s cloud services.)

Google generates more than 2 billion container deployments a week, all powered
by its internal platform, Borg. Borg was the predecessor to Kubernetes, and the
lessons learned from developing Borg over the years became the primary influence
behind much of Kubernetes technology.

By deploying Kubernetes on a machine, a cluster will initially be created: it will
be the case that wrap the overall infrastructure and components. The Kubernetes
cluster is composed by two main kind of entities: Master and Nodes. The Master
represents the control plane. It will be composed by some components that will be
used, from the outside (the user), to interact with the cluster. These components

4

Background

represent the main contact point between the user and the cluster itself. On the
other side, Nodes are the place where the business logic will run (the containerized
user’s apps). To summarize, the containerized applications will run inside each
node and will be controlled through the master-node.

Both master and nodes are composed by many different components that need
a little overview to understand as best as possible their role and functionalities.

Master Node is composed of elements which operate as the main management
contact point for users, and, as shown in the Figure 2.1, it consists of the following
components:

• Etcd: is a consistent and highly-available key-value map store used as K8S
backing store for all the data used by the cluster. In other terms, it is
a database that will be inside the cluster, used to reflect the state of the
kubernetes cluster itself.

• API Server: is what exposes all the APIs developed by the Kubernetes
comunity. These APIs represent the methods offered to the user to interact
with the cluster itself. In simple terms, it is the management core of the entire
cluster. It is a sort of bridge between the input commands and the various
components that compose the cluster. It is the facade of the Kubernetes
control plane.

• Controller Manager: it will manage the state of the cluster and regulate
its life cycle. It is also responsible of performing routine tasks. For example,
if we have defined a service with a certain number of replicas, the replication
controller will try to understand if the replicas matches the number currently
deployed on the cluster.

• Scheduler Service: is what manage the nodes workloads. To summarize, it
is responsible of placing the workload on an acceptable node(s): it will try to
determine which pods have to be placed inside each node, according to the
scheduling queue.

5

Background

Figure 2.1: Master Plane

Node is the place in which the containerized applications will run. It is composed
by the following elements[2]:

• Docker[3]: is the virtualization engine used to run all the applications.

• Kubelet: is the main contact point between the node and the control plane

6

Background

services (the ones managed by the master-node).

• Proxy: it is used for reflecting the networking rules defined in the cluster and
performing connection forwarding.

2.2 Cloud vs. On-Premise
There is a huge difference between cloud solutions and the on-premise ones. First
we have to understand what cloud actually is and what benefits we obtain from
this approach.

So, cloud is a big data center with lots of servers hosted in one place and
interconnected with each other and managed by a cloud provider company. A
software developer company can rent a portion of these resources, like CPU power,
RAM, SSD, etc. for instance, in a form of VDS. Similarly, one can rent a Kubernetes
Cluster, which has an autoscaling feature that is really crucial for applications with
high load.

On the other hand, one can deploy one’s application on-premises, handling
the infrastructure issues on one’s own, including the administrating, monitoring,
updating the software, replacing the outdated components, and etc.

Both approaches have their own pro’s and con’s depending on concrete require-
ments for the application and infrastructure.

Figure 2.2: Cloud vs. On-Premise

7

Background

Cloud advantages:

• no need to buy a bare metal.

• administrating is delegated to a cloud provider

• most of required solutions come out-of-the-box

• high availability

• easy scalability

Cloud drawbacks:

• tight up to a 3rd party solution

• harder to customize

• data storage security issues due to some regulators requirements

On-Premise advantages:

• complete control over the whole infrastructure

• long-term cost efficiency

• in-house data storage

On-Premise drawbacks:

• maintenance cost

• implementation speed

• deployment process is handled in-house

2.3 Stateful vs. Stateless
Most of today’s applications are stateless, because this architecture is easier to
implement and maintain. You do not need to keep track of a state of each request,
you just implement idempotent API methods and go to production without caring
about sessions. Let us see what are the main differences between these two
architectures.

8

Background

Stateful Architecture

A stateful architecture or application is a framework that enables online users
to store, record, and access previously completed tasks and information. It involves
doing transactions while using earlier transactions as a guide. The previous
transaction may have an impact on the present transaction in stateful applications.

Because of this, a stateful application processes its requests on the same server.
Stateful transactions can be compared to a conversation where comments are made
based on known facts. In circumstances where there is an incomplete transaction,
you can pick up where you left off with stateful transactions.

A stateful application preserves the state of every session, regardless of its
significance. Several current technologies today are built on stateful architecture.
Both Telnet and the File Transfer Protocol (FTP) are excellent instances of stateful
design. Email and online banking are two extremely important apps that leverage
stateful design. It has some key advantages:

• stateful design is simple to understrand due to memory binding

• Because the stateful protocol saves data that aids subsequent transactions, it
can give greater speed.

• Due to its great additional security layer, stateful architecture is highly well-
liked in the banking and financial industry for use in online transactions.

There are a few drawbacks one should be aware of as well:

• The server design must incorporate memory for data storage. Stateful applica-
tions need a complex server since it exerts a heavy strain on the functionality
of the entire program.

• Efficiency of the network memory has an impact on performance.

• This refers to ongoing management while the service is being provided.

Stateless Architecture

When using an Internet protocol, a stateless architecture or application does
not keep or use the state of earlier transactions as a reference point. Each request
that is communicated back and forth between parties may be understood and
carried out without the requirement for prior requests. A client and server request
and response are made using this protocol in the present state. Additionally, the

9

Background

current session’s state is neither kept or carried over to the subsequent transaction.
Stateless apps use print servers and a Content Delivery Network to handle urgent

demands (CDN). Sending an SMS is an example of stateless protocol in action.
The Hypertext Transfer Protocol (HTTP), the Domain Name System (DNS), and
other protocols are examples of stateless protocols. This architecture has some key
advantages:

• It reduces the amount of resources, like as storage, that would otherwise be
required to keep transactions active.

• Since no state is kept or required to be retained, stateless protocols can quickly
recover from system failure.

• Stateless architecture is readily scaleable up or down, depending on the
situation, without losing functionality.

There are a few drawbacks one should be aware of as well:

• Due to the volume of data sent out repeatedly, network performance may
suffer.

• Since there is no information storage, stateless architecture is less competent
to do specific tasks.

Important Comparisons Between Stateful and Stateless Architectures
We use both stateful and stateless designs on the internet every day. However,

they exist in many architectures and are utilized in various applications. This is as
a result of the two protocols’ differences:

1 Preserving data on servers
The most obvious distinction between stateless and stateful protocols, as well
as the architecture on which they are based, is how both protocols manage
data. Data storage is not a top priority for the stateless protocol. As a result,
the servers that make up the network’s architecture do not need to be designed
to store a lot of data.
Data is not transitory and does not need to be kept indefinitely on the servers
when using stateless protocols. The client, which stores data as a cache, is
primarily responsible for preserving information. Restarting the server also
entails merely beginning a fresh process with no substantial data loss.
Stateful applications, on the other hand, require a server with a lot of data
storage space. Managing an application’s whole life cycle that makes use of

10

Background

the stateful protocol may be somewhat difficult. The usage of the appropriate
backing storage must also be ensured by the administrators. The stateful
protocol mandates that servers preserve data from active transactions so that
it may be referred to in subsequent transactions.

2 Implementation simplicity

Some protocols are simpler to implement than others when it comes to the
internet and the realm of data transmission. The general classifications of
stateful and stateless protocols fall under the same umbrella. To ascertain the
nature of the request, stateless protocols require less logical reasoning, storage,
and queries. Stateless applications are consequently simpler to design and
frequently demand less computer processing power.
Because stateful applications demand more computer processing power and
storage space than stateless ones, stateful protocols vary from stateless proto-
cols in this way. Stateful protocols are more conceptually complex and difficult
to implement than stateless ones.

3 Client-Server relationship

A two-way interface is often needed for computer programs to exchange data.
For instance, a phone cannot browse the internet on its own unless it is linked
to a server. The server then mediates this request after receiving requests
from the client. This theory is applicable to websites, programs, the cloud,
databases, etc.
The level of dependence between servers and client hardware, however, varies
from protocol to protocol. There is less dependence between servers and clients
in stateless protocols. Sending requests reduces the server’s workload because
they are self-contained.
Stateful protocols do, however, maintain a high degree of client-server interac-
tion. Before users may create a connection, the server must react to requests
issued by clients. Resubmitting the request is required if the client does not
get a response from the server. This demonstrates how dependent clients and
servers are on one another in stateful architecture.

4 Controlling system failures

The way the stateful and stateless protocols react to partial or total system
failures is another distinction between them. When not managed appropriately,
system failure caused by software or hardware components can have severe
effects. The application’s protocol still dictates how to respond to a system
failure even with correct handling.

11

Background

Stateless protocols don’t require servers to store session data, and data trans-
mitted in earlier transactions doesn’t have much of an impact on ongoing
sessions. As a result, a failed server may easily be restarted following a crash
with minimum data loss because the system is not required to maintain any
particular state.
This is in stark contrast to the stateful protocol, which keeps records of both
current and past sessions in a certain state. In a stateful architecture, the
server is required to keep track of all of its details and status information.
Data loss occurs as a result of a server crash because lost data cannot be
recovered even when the server is restarted.

5 Server complexity
In the past, servers were designed to handle the majority of processing needs
for linked devices. These devices had hardware and software limitations, which
allowed the extremely sophisticated servers to handle most of the processing
and storage. The ultra-fast, high-capacity devices in use today have favorably
contributed to making servers less sophisticated than they formerly were.
The same is true for stateless protocols, which rely less on their servers and,
thus, don’t need as sophisticated of servers to run. The server design is fairly
straightforward because to the architecture of stateless protocols.
On the other hand, stateful protocol design keeps the practice of releasing the
client device while transferring the majority of the burden to the server. As
a result, stateful protocol servers need to be built with a major emphasis on
complexity.

6 Scalability
When determining what kind of architecture to use for any purpose, scalability
is a factor of growth that must be taken into account. Increased metric traffic
may cause congestion and the need to increase the capacity of an application
or website. This often entails adding more services to container orchestration
for cloud-based servers or apps.
Scaling up or down is simple and may be carried out automatically for cloud-
based apps utilizing an auto-scaler tool under the stateless service architecture.
A front-end load balancer may be expanded to include back-end servers, and
every server is capable of handling requests.
When it comes to scalability, a stateful protocol takes a different approach.
In a stateful architecture, one must manually add more stateful servers and
services to the current services in order to scale up. The same holds true when
services are scaled back.

12

Background

7 Transaction latency
In the modern world, speed is still one of the most important factors taken
into account when considering any function or service. While this may be
due to a number of factors, the protocol connecting the program also affects
how quickly transactions happen. Some apps are just naturally quicker than
others.
In stateless apps, no session data is stored on the server. It can also execute
numerous sessions concurrently without requesting further information from
a storage platform. This makes it possible for a stateful protocol to process
incoming requests and transactions quickly.
However, stateful routing is configured to force the server to keep track of
transactions in sessions for the duration of the session. Higher control over the
information that is transferred across the network and being passed thanks to
this type of transaction processing. The server’s ability to process transactions
per second is nonetheless limited. By compromising the speed of routine
operations on the protocol, a higher level of control over transactions is
achieved.

8 Multitasking
In terms of computer technology, multitasking refers to a system’s capacity
to concurrently handle numerous data inputs and create information. As a
result of a server’s capacity to handle several requests, multitasking occurs. A
stateless protocol doesn’t rely on a server in any way. Each request stands
alone and is unrelated to previous transactions. Since there is no requirement
to retrieve stored data, any resource that is available can handle the request.
In contrast, stateful applications work the other way around. The same
stateful resource or server must be used for all transactions inside a session.
The information that will be utilized for subsequent transactions is already on
the server that was first used, therefore usage is limited to the duration of the
session.

9 Response design
Both stateless and stateful protocols have differences in the way devices
communicate and react to queries. For instance, in the stateless design, the
client contacts the server with a request. The client does not check to see
if the message has been received after it has been delivered. For instance,
sending an SMS from a mobile phone doesn’t need confirmation.
It does not anticipate a response once it has been sent. A stateful protocol,
on the other hand, needs a relationship between requests and answers in order

13

Background

for transactions to be successful. A request is sent back to the server if it goes
unanswered.

10 Similarities between use cases connected to firewalls
A firewall is a network security tool that controls and tracks traffic entering and
leaving a network in accordance with the security protocol already established
by the company. It serves as a partition between a company’s private network
and the wider public internet network.
Stateless protocols were first used to establish firewalls. They act to filter
packets moving across stateless networks together with a typical access control
list on layer 3 switches and routers. This was accomplished by looking at
every packet to determine the source and destination IP addresses that were
contained in the header. The firewall will let the packet through if it comes
from the correct source.
This is carried out for each incoming packet in the stateless protocol. These
days, stateful protocols are often used to build firewalls. They use an active
connection table to keep track of the port information in addition to the source
and destination IP addresses.
Stateful firewall services examine a packet’s contents to make sure the right
information is being transmitted. Stateful connections can identify data in
a packet as coming from a source that has already been given permission
to pass through the firewall because they retain data that is needed in later
transactions.
A stateful firewall may filter data packets from unauthorized networks in
addition to doing this. Stateful and stateless architecture both work in a
similar manner to prevent malicious or unverified data packets from entering
the network.

11 Similarities between use cases connected to databases
Many organizations and businesses of all sorts utilize database systems to store
lengthy information on their clients, activities, etc. In a stateless application,
no data or client-specific information is kept on the server, freeing it up for
other tasks. They do, however, have a method of archiving data, which is
accomplished with the use of database management systems.
A load balancer on a network directs traffic to a server as it enters the network.
The user then contacts that server with his request. The stateless protocol
creates an authentication token and keeps it in the database system together
with the client’s data. The token is returned to the front end so that the
server may compare it to the data in the database during subsequent queries.

14

Background

As the server does not keep information, this preserves the independent state
of each request.
The stateful protocol also uses database management systems. Despite the
server’s capacity for data storage, the database continues to function as the
principal repository for data. While the server retains the data transmitted
over a session of numerous transactions, the database serves as the back end
for stateful architecture.

2.4 Publish-Subscriber pattern
If referring to most cited definitions by Matthew O’Riordan in his article titled
"Everything You Need To Know About Publish/Subscribe" [4] we can understand
that:

"The Publish/Subscribe pattern, also known as pub/sub, is an architectural design
pattern that provides a framework for exchanging messages between publishers and
subscribers. This pattern involves the publisher and the subscriber relying on a
message broker that relays messages from the publisher to the subscribers. The host
publishes messages to a channel that subscribers can then sign up to."

In other words, this design approach allows an application to asynchronously
broadcast events to many interested subscribers when senders and receivers are
decoupled by a message broker.

The broker is the server-side engine that controls topics and resource availability;
it is typically backed by a zookeeper service that works to keep resources operational.
The subject is a simple tool for distributing messages and event alerts throughout
the system. As we shall see later, there are several alternative policies that can
be used to determine how the subscribers will consume from the topic, making it
slightly different from a traditional message queue in that there may be numerous
subscribers interested in the same message on the same topic.

The publisher is the element that creates messages on a certain subject, and the
subscriber is the component that listens to a given subject to read messages from
it.

The strongest and most important feature of this pattern is that Publisher and
Subscriber (we could have many different publishers and subscribers) are completely
unaware of one another’s identities. This feature enables asynchronous broadcast
of a collection of messages to various system components. The publisher and the
customer will be completely independent of one another, as is clear to grasp.

There is a bunch of implementations of publish-subscriber architecture and in
this particular work we will study one of the most popular framework called Redis.

15

Background

Figure 2.3: Publish-Subscriber architecture

Redis is the "Swiss Army knife" of in-memory databases, supporting a wide
range of data types. It’s frequently used for caching, but it may also be used for
other purposes. It may also serve as a loosely linked distributed message broker.

Redis utilizes a data type called a "channel" that allows common pub/sub
operations like publish and subscribe. Redis Pub/Sub is the oldest messaging
pattern supported by Redis. Because publishers and subscribers are unaware of
one another, it is regarded as being loosely connected. Subscribers can access one
or more channels that have been subscribed to by publishers, who post messages
to one or more channels.

The messages are sent to all currently connected subscribers on a channel, which
may have zero or more subscribers. As a result, Redis Pub/Sub is adaptable and
supports a variety of topologies, such as fan-in (many producers, single subscriber),
fan-out (single producer, multiple subscribers), and 1-1. (one producer, one
consumer).

This looks like a very standard pub/sub system so far, but it’s critical to em-
phasize one feature: "connected" delivery semantics.

Connected Delivery Semantics
Connected delivery works similarly to radio. Radio stations transmit continu-

ously on several frequencies (channels), but listeners can only pick up the broadcast

16

Background

when their receiver is plugged in, turned on, and tuned to a station.
Delivering in a connected way means:

1. Messages are only delivered to connected subscribers.

2. Each message is received by each subscriber that is connected.

3. There is no "memory" in the system once the message has been sent to all
existing subscribers; it is immediately destroyed.

It follows that:

1. A subscriber who unsubscribes (disconnects) from a channel and then resub-
scribes to it will not get any of the messages it missed while offline and won’t
know whether it missed any messages. The message will simply be deleted
and not sent to any subscribers if there are currently no subscribers to the
channel.

2. The semantics of delivery are thus "at-most-once" per subscriber.

3. Considering that the message must be sent to all current subscribers before
being deleted:

(a) With additional subscriptions, this will take longer.
(b) Contrary to radio broadcasts, which send information to every listener

within range at the speed of light, this one does not.

"Disconnection" is intended, but it can also be caused by client or network issues,
which could be unexpected and result in message loss.

According to the Redis Pub/Sub documentation and other sources, Redis em-
ploys push notifications to make sure messages are sent to all existing subscribers,
which might have a negative impact on performance for big subscriber numbers.

Application examples of Redis Pub/Sub

1. Real-time, low-latency, urgent messages: since messages age quickly and have
a limited shelf life, they are only relevant to subscribers temporarily.

2. Unreliable delivery/lossy messaging: If certain messages are simply ignored
as a result of unreliable delivery (redundant messages of low significance as
opposed to singularly vital "business" communications), it doesn’t matter.
Messages may be rejected as a result of network and subscriber failures, as
well as failover from master to replicas.

17

Background

3. A requirement on distribution that can only happen once per subscriber
(subscribers are not capable of detecting duplicate messages and target systems
are not idempotent.)

4. If subscribers only want to hear from a certain channel for a limited amount
of time and have a transient, changing, or dynamic interest in the channel.
For instance, mobile IoT devices could only be sporadically connected and
only be interested in and able to respond to messages that are now being sent
to them nearby.

18

Chapter 3

Infrastructure Setup

3.1 Requirements
The requirements for the infrastructure to be on-premises quite trickie. Let us
discuss the main criteria that impact on the decision we make. So, we have the
following impact domains[5]:

• Security: if we handle sensitive user data and there is a regulator mandate
to not pass it to third parties, we are oblijed to not use cloud.

• Economic: If the cost of cloud rate is not well-suited in a financial model of
the company, we are again looking towards the on-premises solutions

• Maintenance: If we do not have enough professionals like System Adminis-
trators and DevOps engineers, it is quite risky to launch this campaign and it
is better leaning towards Cloud solutions.

• Control: If your application does not require sophisticated infrastructure
solutions and standard, out-of-the-box cloud producrs are more than enough,
you better stick with it.

From this perspective, we can assume that there is a bunch of variations when
we have to get our on-premises infrastructure up and running, or at least to make
a hybrid setup.

3.2 Kubernetes installation
This experiment was held on Google Cloud Platform, but without renting the
kubernetes out-of-the-box. Instead, 6 virtual machines were dedicated for rolling
out a Kubernetes Cluster on them. 3 VMs were for Control Plane, 3 replicas

19

Infrastructure Setup

for redundancy, and similarly, 3 VMs for worker nodes with the same replication
strategy. The overall construction suggested by Kelsey Hightower[6] looks like this:

Figure 3.1: Custom Infrastructure

For the Kubernetes control plane and the worker nodes, where containers are
finally operated, Kubernetes needs a group of virtual machines[7]. In this experi-
ment, we will set up the computing resources needed to run a Kubernetes cluster

20

Infrastructure Setup

securely and with high availability across a single compute zone.

Networking
The networking paradigm used by Kubernetes presupposes a flat network where

nodes and containers may talk to one another. Network policies can restrict how
groups of containers are permitted to communicate with one another and external
network endpoints in situations when this is not desirable.

We have to create a VPC network to host the Kubernetes Cluster

1 $ gcloud compute networks c r e a t e kubernetes−on−premise −−subnet−
mode custom

A subnet must be configured with an IP address range big enough to provide
each node in the Kubernetes cluster a private IP address.

We create the kubernetes subnet in the kubernetes-on-premise VPC network:

1 $ gcloud compute networks subnets c r e a t e kubernetes \
2 −−network kubernetes−on−premise \
3 −−range 1 0 . 24 0 . 0 . 0 / 24

Firewall
Make a firewall rule that permits all internal protocols of communication:

1 $ gcloud compute f i r e w a l l −r u l e s c r e a t e kubernetes−on−premise−allow−
i n t e r n a l \

2 −−al low tcp , udp , icmp \
3 −−network kubernetes−on−premise \
4 −−source−ranges 1 0 . 2 4 0 . 0 . 0 / 2 4 , 1 0 . 2 0 0 . 0 . 0 / 1 6

Make a firewall rule that permits HTTPS, ICMP, and SSH from outside sources:

1 $ gcloud compute f i r e w a l l −r u l e s c r e a t e kubernetes−on−premise−allow−
e x t e r n a l \

2 −−al low tcp : 22 , tcp :6443 , icmp \
3 −−network kubernetes−on−premise \
4 −−source−ranges 0 . 0 . 0 . 0 / 0

21

Infrastructure Setup

Public IP Address
Create and bind a static IP address to the external load balancer fronting the

Kubernetes API Servers so that it may be connected to it:

1 $ gcloud compute addre s s e s c r e a t e kubernetes−on−premise \
2 −−reg ion $ (gcloud c o n f i g get−value compute/ r eg i on)

Create Instances
With its strong support for the containerd container runtime, Ubuntu Server

20.04 will be used to supply the compute instances in this experiment. To make
the Kubernetes bootstrapping process simpler, a fixed private IP address will be
assigned to each compute instance.

Now we create three compute instances for control plane:

1 $ f o r i in 0 1 2 ; do
2 gcloud compute i n s t a n c e s c r e a t e c o n t r o l l e r −${ i } \
3 −−async \
4 −−boot−disk−s i z e 200GB \
5 −−can−ip−forward \
6 −−image−fami ly ubuntu−2004− l t s \
7 −−image−p r o j e c t ubuntu−os−cloud \
8 −−machine−type e2−standard −2 \
9 −−pr ivate −network−ip 1 0 . 2 4 0 . 0 . 1 ${ i } \

10 −−scopes compute−rw , storage −ro , s e r v i c e −management , s e r v i c e −contro l
, l ogg ing −write , monitor ing \

11 −−subnet kubernetes \
12 −−tags kubernetes−on−premise , c o n t r o l l e r
13 done

And three compute instances for the worker nodes:

1 $ f o r i in 0 1 2 ; do
2 gcloud compute i n s t a n c e s c r e a t e worker−${ i } \
3 −−async \
4 −−boot−disk−s i z e 200GB \
5 −−can−ip−forward \
6 −−image−fami ly ubuntu−2004− l t s \

22

Infrastructure Setup

7 −−image−p r o j e c t ubuntu−os−cloud \
8 −−machine−type e2−standard −2 \
9 −−metadata pod−c i d r =10.200. ${ i } .0/24 \

10 −−pr ivate −network−ip 1 0 . 2 4 0 . 0 . 2 ${ i } \
11 −−scopes compute−rw , storage −ro , s e r v i c e −management , s e r v i c e −contro l

, l ogg ing −write , monitor ing \
12 −−subnet kubernetes \
13 −−tags kubernetes−on−premise , worker
14 done

Next, we will generate TLS certificates for kubernetes components like kube-
proxy, kube-controller-manager, kube-scheduler, and others. After that configura-
tion files for authentication are generated. And right before installing etcd cluster,
we generate the Data Encryption Config and Key.

etcd Cluster
The commands are executed from inside of the controller instances so:

1 $ gcloud compute ssh c o n t r o l l e r −0
2 $ wget −q −−show−prog r e s s −−https−only −−timestamping \
3 " https : // github . com/ etcd−i o / etcd / r e l e a s e s /download/v3 . 4 . 1 5 / etcd−v3

.4.15 − l inux −amd64 . ta r . gz "
4 $ ta r −xvf etcd−v3 .4.15 − l inux −amd64 . ta r . gz
5 $ sudo mv etcd−v3 .4.15 − l inux −amd64/ etcd ∗ / usr / l o c a l / bin /

Now we configure the etcd Server:

1 $ sudo mkdir −p / etc / etcd / var / l i b / etcd
2 $ sudo chmod 700 / var / l i b / etcd
3 $ sudo cp ca . pem kubernetes−key . pem kubernetes . pem / etc / etcd /

Serving client requests and interacting with etcd cluster peers will both be done
using the instance’s internal IP address. WE have to get the current compute
instance’s internal IP address:

1 $ INTERNAL_IP=$ (c u r l −s −H " Metadata−Flavor : Google " \

23

Infrastructure Setup

2 http :// metadata . goog l e . i n t e r n a l /computeMetadata/v1/ in s t anc e /network
−i n t e r f a c e s /0/ ip)

Within an etcd cluster, each etcd member has to have a distinctive name. Set
the hostname of the current compute instance as the etcd name:

1 $ ETCD_NAME=$ (hostname −s)

Now we create the etcd.service systemd unit file:

1 $ cat <<EOF | sudo tee / e t c / systemd/system/ etcd . s e r v i c e
2 [Unit]
3 Desc r ip t i on=etcd
4 Documentation=https : // github . com/ coreo s
5

6 [S e rv i c e]
7 Type=n o t i f y
8 ExecStart=/usr / l o c a l / bin / etcd \\
9 −−name ${ETCD_NAME} \\

10 −−cert −f i l e =/etc / etcd / kubernetes . pem \\
11 −−key−f i l e =/etc / etcd / kubernetes−key . pem \\
12 −−peer−cert −f i l e =/etc / etcd / kubernetes . pem \\
13 −−peer−key−f i l e =/etc / etcd / kubernetes−key . pem \\
14 −−trusted −ca−f i l e =/etc / etcd /ca . pem \\
15 −−peer−trusted −ca−f i l e =/etc / etcd /ca . pem \\
16 −−peer−c l i e n t −cert −auth \\
17 −−c l i e n t −cert −auth \\
18 −−i n i t i a l −adve r t i s e −peer−u r l s https : // ${INTERNAL_IP}:2380 \\
19 −−l i s t e n −peer−u r l s https : // ${INTERNAL_IP}:2380 \\
20 −−l i s t e n −c l i e n t −u r l s https : // ${INTERNAL_IP} :2379 , https

: / / 1 2 7 . 0 . 0 . 1 : 2 3 7 9 \\
21 −−adver t i s e −c l i e n t −u r l s https : // ${INTERNAL_IP}:2379 \\
22 −−i n i t i a l −c l u s t e r −token etcd−c l u s t e r −0 \\
23 −−i n i t i a l −c l u s t e r c o n t r o l l e r −0=https : / / 1 0 . 2 4 0 . 0 . 1 0 : 2 3 8 0 , c o n t r o l l e r

−1=https : / / 1 0 . 2 4 0 . 0 . 1 1 : 2 3 8 0 , c o n t r o l l e r −2=https : / / 1 0 . 2 4 0 . 0 . 1 2 : 2 3 8 0
\\

24 −−i n i t i a l −c l u s t e r −s t a t e new \\
25 −−data−d i r=/var / l i b / etcd
26 Restart=on−f a i l u r e
27 RestartSec=5
28

29 [I n s t a l l]

24

Infrastructure Setup

30 WantedBy=multi−user . t a r g e t
31 EOF

And finally start the etcd Server:

1 $ sudo sys t emct l daemon−re l oad
2 $ sudo sys t emct l enable etcd
3 $ sudo sys t emct l s t a r t etcd

Kubernetes Control Plane
The Kubernetes control plane will be set up for high availability and bootstrapped

across three compute instances. Additionally, a third-party load balancer that
makes the Kubernetes API Servers accessible to outside clients will be built. Each
node will have the Kubernetes API Server, Scheduler, and Controller Manager
installed on it.

As in the previous part, all commands are executed from the inside of the
controller instances:

1 $ gcloud compute ssh c o n t r o l l e r −0
2 $ sudo mkdir −p / etc / kubernetes / c o n f i g

Install the Kubernetes Controller Binaries

1 $ wget −q −−show−prog r e s s −−https−only −−timestamping \
2 " https : // s to rage . g o o g l e a p i s . com/ kubernetes−r e l e a s e / r e l e a s e /v1 . 2 1 . 0 /

bin / l i nux /amd64/kube−a p i s e r v e r " \
3 " https : // s to rage . g o o g l e a p i s . com/ kubernetes−r e l e a s e / r e l e a s e /v1 . 2 1 . 0 /

bin / l i nux /amd64/kube−c o n t r o l l e r −manager " \
4 " https : // s to rage . g o o g l e a p i s . com/ kubernetes−r e l e a s e / r e l e a s e /v1 . 2 1 . 0 /

bin / l i nux /amd64/kube−schedu l e r " \
5 " https : // s to rage . g o o g l e a p i s . com/ kubernetes−r e l e a s e / r e l e a s e /v1 . 2 1 . 0 /

bin / l i nux /amd64/ kubect l "

Followed by:

25

Infrastructure Setup

1 $ chmod +x kube−a p i s e r v e r kube−c o n t r o l l e r −manager kube−schedu l e r
kubect l

2 $ sudo mv kube−a p i s e r v e r kube−c o n t r o l l e r −manager kube−schedu l e r
kubect l / usr / l o c a l / bin /

Now we have configure the Kubernetes API Server:

1 $ sudo mkdir −p / var / l i b / kubernetes /
2 $ sudo mv ca . pem ca−key . pem kubernetes−key . pem kubernetes . pem \
3 s e r v i c e −account−key . pem s e r v i c e −account . pem \
4 encrypt ion−c o n f i g . yaml / var / l i b / kubernetes /

Create the kube-apiserver.service file:

1 $ INTERNAL_IP=$ (c u r l −s −H " Metadata−Flavor : Google " \
2 http :// metadata . goog l e . i n t e r n a l /computeMetadata/v1/ in s t anc e /network

−i n t e r f a c e s /0/ ip)
3 $ REGION=$ (c u r l −s −H " Metadata−Flavor : Google " \
4 http :// metadata . goog l e . i n t e r n a l /computeMetadata/v1/ p r o j e c t / a t t r i b u t e s

/ google−compute−de fau l t −reg i on)
5 $ KUBERNETES_PUBLIC_ADDRESS=$ (gcloud compute addre s s e s d e s c r i b e

kubernetes−on−premise \
6 −−reg ion $REGION \
7 −−format ’ va lue (address) ’)

Followed by:

1 $ cat <<EOF | sudo tee / e t c / systemd/system/kube−a p i s e r v e r . s e r v i c e
2 [Unit]
3 Desc r ip t i on=Kubernetes API Server
4 Documentation=https : // github . com/ kubernetes / kubernetes
5

6 [S e rv i c e]
7 ExecStart=/usr / l o c a l / bin /kube−a p i s e r v e r \\
8 −−adver t i s e −address=${INTERNAL_IP} \\
9 −−allow−p r i v i l e g e d=true \\

10 −−ap i s e rve r −count=3 \\

26

Infrastructure Setup

11 −−audit−log−maxage=30 \\
12 −−audit−log−maxbackup=3 \\
13 −−audit−log−maxsize=100 \\
14 −−audit−log−path=/var / log / audi t . l og \\
15 −−author i za t i on −mode=Node ,RBAC \\
16 −−bind−address =0 .0 . 0 . 0 \\
17 −−c l i e n t −ca−f i l e =/var / l i b / kubernetes /ca . pem \\
18 −−enable−admission−p lug in s=NamespaceLi fecycle , NodeRestr ict ion ,

LimitRanger , ServiceAccount , De fau l tStorageClas s , ResourceQuota \\
19 −−etcd−c a f i l e =/var / l i b / kubernetes / ca . pem \\
20 −−etcd−c e r t f i l e =/var / l i b / kubernetes / kubernetes . pem \\
21 −−etcd−k e y f i l e =/var / l i b / kubernetes / kubernetes−key . pem \\
22 −−etcd−s e r v e r s=https : / / 1 0 . 2 4 0 . 0 . 1 0 : 2 3 7 9 , https : / / 1 0 . 2 4 0 . 0 . 1 1 : 2 3 7 9 ,

https : / / 1 0 . 2 4 0 . 0 . 1 2 : 2 3 7 9 \\
23 −−event−t t l =1h \\
24 −−encrypt ion−provider −c o n f i g=/var / l i b / kubernetes / encrypt ion−c o n f i g .

yaml \\
25 −−kubelet−c e r t i f i c a t e −author i ty=/var / l i b / kubernetes /ca . pem \\
26 −−kubelet−c l i e n t −c e r t i f i c a t e =/var / l i b / kubernetes / kubernetes . pem \\
27 −−kubelet−c l i e n t −key=/var / l i b / kubernetes / kubernetes−key . pem \\
28 −−runtime−c o n f i g=’ api / a l l=true ’ \\
29 −−s e r v i c e −account−key−f i l e =/var / l i b / kubernetes / s e r v i c e −account . pem

\\
30 −−s e r v i c e −account−s ign ing −key−f i l e =/var / l i b / kubernetes / s e r v i c e −

account−key . pem \\
31 −−s e r v i c e −account−i s s u e r=https : // ${KUBERNETES_PUBLIC_ADDRESS}:6443

\\
32 −−s e r v i c e −c l u s t e r −ip−range =10.32 .0 .0/24 \\
33 −−s e r v i c e −node−port−range =30000−32767 \\
34 −−t l s −cert −f i l e =/var / l i b / kubernetes / kubernetes . pem \\
35 −−t l s −pr ivate −key−f i l e =/var / l i b / kubernetes / kubernetes−key . pem \\
36 −−v=2
37 Restart=on−f a i l u r e
38 RestartSec=5
39

40 [I n s t a l l]
41 WantedBy=multi−user . t a r g e t
42 EOF

Configuring the API Server

1 $ sudo mkdir −p / var / l i b / kubernetes /
2 $ sudo mv ca . pem ca−key . pem kubernetes−key . pem kubernetes . pem \
3 s e r v i c e −account−key . pem s e r v i c e −account . pem \
4 encrypt ion−c o n f i g . yaml / var / l i b / kubernetes /

27

Infrastructure Setup

Creating the kube-apiserver.service file:

1 $ cat <<EOF | sudo tee / e t c / systemd/system/kube−a p i s e r v e r . s e r v i c e
2 [Unit]
3 Desc r ip t i on=Kubernetes API Server
4 Documentation=https : // github . com/ kubernetes / kubernetes
5

6 [S e rv i c e]
7 ExecStart=/usr / l o c a l / bin /kube−a p i s e r v e r \\
8 −−adver t i s e −address=${INTERNAL_IP} \\
9 −−allow−p r i v i l e g e d=true \\

10 −−ap i s e rve r −count=3 \\
11 −−audit−log−maxage=30 \\
12 −−audit−log−maxbackup=3 \\
13 −−audit−log−maxsize=100 \\
14 −−audit−log−path=/var / log / audi t . l og \\
15 −−author i za t i on −mode=Node ,RBAC \\
16 −−bind−address =0 .0 . 0 . 0 \\
17 −−c l i e n t −ca−f i l e =/var / l i b / kubernetes /ca . pem \\
18 −−enable−admission−p lug in s=NamespaceLi fecycle , NodeRestr ict ion ,

LimitRanger , ServiceAccount , De fau l tStorageClas s , ResourceQuota \\
19 −−etcd−c a f i l e =/var / l i b / kubernetes / ca . pem \\
20 −−etcd−c e r t f i l e =/var / l i b / kubernetes / kubernetes . pem \\
21 −−etcd−k e y f i l e =/var / l i b / kubernetes / kubernetes−key . pem \\
22 −−etcd−s e r v e r s=https : / / 1 0 . 2 4 0 . 0 . 1 0 : 2 3 7 9 , https : / / 1 0 . 2 4 0 . 0 . 1 1 : 2 3 7 9 ,

https : / / 1 0 . 2 4 0 . 0 . 1 2 : 2 3 7 9 \\
23 −−event−t t l =1h \\
24 −−encrypt ion−provider −c o n f i g=/var / l i b / kubernetes / encrypt ion−c o n f i g .

yaml \\
25 −−kubelet−c e r t i f i c a t e −author i ty=/var / l i b / kubernetes /ca . pem \\
26 −−kubelet−c l i e n t −c e r t i f i c a t e =/var / l i b / kubernetes / kubernetes . pem \\
27 −−kubelet−c l i e n t −key=/var / l i b / kubernetes / kubernetes−key . pem \\
28 −−runtime−c o n f i g=’ api / a l l=true ’ \\
29 −−s e r v i c e −account−key−f i l e =/var / l i b / kubernetes / s e r v i c e −account . pem

\\
30 −−s e r v i c e −account−s ign ing −key−f i l e =/var / l i b / kubernetes / s e r v i c e −

account−key . pem \\
31 −−s e r v i c e −account−i s s u e r=https : // ${KUBERNETES_PUBLIC_ADDRESS}:6443

\\
32 −−s e r v i c e −c l u s t e r −ip−range =10.32 .0 .0/24 \\
33 −−s e r v i c e −node−port−range =30000−32767 \\
34 −−t l s −cert −f i l e =/var / l i b / kubernetes / kubernetes . pem \\
35 −−t l s −pr ivate −key−f i l e =/var / l i b / kubernetes / kubernetes−key . pem \\
36 −−v=2
37 Restart=on−f a i l u r e
38 RestartSec=5

28

Infrastructure Setup

39

40 [I n s t a l l]
41 WantedBy=multi−user . t a r g e t
42 EOF

Configuring the Controller Manager

1 $ sudo mv kube−c o n t r o l l e r −manager . kubeconf ig / var / l i b / kubernetes /

Creating the kube-controller-manager.service file:

1 $ cat <<EOF | sudo tee / e t c / systemd/system/kube−c o n t r o l l e r −manager .
s e r v i c e

2 [Unit]
3 Desc r ip t i on=Kubernetes Co n t r o l l e r Manager
4 Documentation=https : // github . com/ kubernetes / kubernetes
5

6 [S e rv i c e]
7 ExecStart=/usr / l o c a l / bin /kube−c o n t r o l l e r −manager \\
8 −−bind−address =0 .0 . 0 . 0 \\
9 −−c l u s t e r −c i d r =10.200 .0 .0/16 \\

10 −−c l u s t e r −name=kubernetes \\
11 −−c l u s t e r −s ign ing −cert −f i l e =/var / l i b / kubernetes /ca . pem \\
12 −−c l u s t e r −s ign ing −key−f i l e =/var / l i b / kubernetes /ca−key . pem \\
13 −−kubeconf ig=/var / l i b / kubernetes /kube−c o n t r o l l e r −manager . kubeconf ig

\\
14 −−leader −e l e c t=true \\
15 −−root−ca−f i l e =/var / l i b / kubernetes /ca . pem \\
16 −−s e r v i c e −account−pr ivate −key−f i l e =/var / l i b / kubernetes / s e r v i c e −

account−key . pem \\
17 −−s e r v i c e −c l u s t e r −ip−range =10.32 .0 .0/24 \\
18 −−use−s e r v i c e −account−c r e d e n t i a l s=true \\
19 −−v=2
20 Restart=on−f a i l u r e
21 RestartSec=5
22

23 [I n s t a l l]
24 WantedBy=multi−user . t a r g e t
25 EOF

29

Infrastructure Setup

Configuring the Scheduler

1 $ sudo mv kube−schedu l e r . kubeconf ig / var / l i b / kubernetes /

Creating the kube-scheduler.yaml file:

1 $ cat <<EOF | sudo tee / e t c / kubernetes / c o n f i g /kube−schedu l e r . yaml
2 ap iVers ion : kubescheduler . c o n f i g . k8s . i o / v1beta1
3 kind : KubeSchedulerConf igurat ion
4 c l i en tConnec t i on :
5 kubeconf ig : " / var / l i b / kubernetes /kube−schedu l e r . kubeconf ig "
6 l e a d e r E l e c t i o n :
7 l e a d e r E l e c t : t rue
8 EOF

Creating the kube-scheduler.service file:

1 $ cat <<EOF | sudo tee / e t c / systemd/system/kube−schedu l e r . s e r v i c e
2 [Unit]
3 Desc r ip t i on=Kubernetes Scheduler
4 Documentation=https : // github . com/ kubernetes / kubernetes
5

6 [S e rv i c e]
7 ExecStart=/usr / l o c a l / bin /kube−schedu l e r \\
8 −−c o n f i g=/etc / kubernetes / c o n f i g /kube−schedu l e r . yaml \\
9 −−v=2

10 Restart=on−f a i l u r e
11 RestartSec=5
12

13 [I n s t a l l]
14 WantedBy=multi−user . t a r g e t
15 EOF

And finally we can start the Controller Services:

1 $ sudo sys t emct l daemon−re l oad
2 $ sudo sys t emct l enable kube−a p i s e r v e r kube−c o n t r o l l e r −

manager kube−schedu l e r

30

Infrastructure Setup

3 $ sudo sys t emct l s t a r t kube−a p i s e r v e r kube−c o n t r o l l e r −manager
kube−schedu l e r

Health Check Setup
Each of the three API servers will be able to terminate TLS connections and

verify client certificates thanks to the usage of a Google Network Load Balancer,
which will also distribute traffic across the servers. Because the network load
balancer only supports HTTP health checks, the API server’s HTTPS endpoint
cannot be used. The nginx webserver can be used as a workaround to proxy
HTTP health checks. Installed and set up in this part, nginx will receive HTTP
health checks on port 80 and act as a proxy for connections to the API server at
https://127.0.0.1:6443/healthz.

1 $ sudo apt−get update
2 $ sudo apt−get i n s t a l l −y nginx

1 $ cat > kubernetes . d e f a u l t . svc . c l u s t e r . l o c a l <<EOF
2 s e r v e r {
3 l i s t e n 80 ;
4 server_name kubernetes . d e f a u l t . svc . c l u s t e r . l o c a l ;
5

6 l o c a t i o n / hea l thz {
7 proxy_pass https : / / 1 2 7 . 0 . 0 . 1 : 6 4 4 3 / hea l thz ;
8 proxy_s s l_t ru s t ed_ce r t i f i c a t e / var / l i b / kubernetes /ca . pem ;
9 }

10 }
11 EOF

1 $ sudo mv kubernetes . d e f a u l t . svc . c l u s t e r . l o c a l \
2 / e tc / nginx / s i t e s −a v a i l a b l e / kubernetes . d e f a u l t . svc . c l u s t e r . l o c a l
3 $ sudo ln −s / e tc / nginx / s i t e s −a v a i l a b l e / kubernetes . d e f a u l t . svc .

c l u s t e r . l o c a l / e t c / nginx / s i t e s −enabled /

1 $ sudo sys t emct l r e s t a r t nginx
2 $ sudo sys t emct l enable nginx

External Load Balancer

31

Infrastructure Setup

1 $ KUBERNETES_PUBLIC_ADDRESS=$ (gcloud compute addre s s e s d e s c r i b e
kubernetes−on−premise \

2 −−reg ion $ (gcloud c o n f i g get−value compute/ r eg i on) \
3 −−format ’ va lue (address) ’)
4

5 $ gcloud compute http−health−checks c r e a t e kubernetes \
6 −−d e s c r i p t i o n " Kubernetes Health Check " \
7 −−host " kubernetes . d e f a u l t . svc . c l u s t e r . l o c a l " \
8 −−request −path " / hea l thz "
9

10 $ gcloud compute f i r e w a l l −r u l e s c r e a t e kubernetes−on−premise−allow−
health−check \

11 −−network kubernetes−the−hard−way \
12 −−source−ranges 2 0 9 . 8 5 . 1 5 2 . 0 / 2 2 , 2 0 9 . 8 5 . 2 0 4 . 0 / 2 2 , 3 5 . 1 9 1 . 0 . 0 / 1 6 \
13 −−al low tcp
14

15 $ gcloud compute target −poo l s c r e a t e kubernetes−target −pool \
16 −−http−health−check kubernetes
17

18 $ gcloud compute target −poo l s add−i n s t a n c e s kubernetes−target −pool
\

19 −−i n s t a n c e s c o n t r o l l e r −0, c o n t r o l l e r −1, c o n t r o l l e r −2
20

21 $ gcloud compute forwarding−r u l e s c r e a t e kubernetes−forwarding−r u l e
\

22 −−address ${KUBERNETES_PUBLIC_ADDRESS} \
23 −−port s 6443 \
24 −−reg ion $ (gcloud c o n f i g get−value compute/ r eg i on) \
25 −−target −pool kubernetes−target −pool
26 }

Worker Nodes
Each node will have runc, container networking plugins, containerd, kubelet,

and kube-proxy installed on it.
First, we install Operating System dependencies:

1 $ gcloud compute ssh worker−0
2 $ sudo apt−get update
3 $ sudo apt−get −y i n s t a l l soca t conntrack i p s e t

If swap is enabled, the kubelet will by default fail to start. Swap should be

32

Infrastructure Setup

turned off to make sure Kubernetes can deliver adequate resource allocation and
service quality.

1 $ sudo swapof f −a

Install the Woker Binaries

1 $ wget −q −−show−prog r e s s −−https−only −−timestamping \
2 https : // github . com/ kubernetes−s i g s / c r i −t o o l s / r e l e a s e s /download/v1

. 2 1 . 0 / c r i c t l −v1 .21.0 − l inux −amd64 . ta r . gz \
3 https : // github . com/ openconta iner s / runc / r e l e a s e s /download/v1 .0.0 −

rc93 / runc . amd64 \
4 https : // github . com/ conta inernetwork ing / p lug in s / r e l e a s e s /download/v0

. 9 . 1 / cni−plug ins −l inux −amd64−v0 . 9 . 1 . tgz \
5 https : // github . com/ conta inerd / conta inerd / r e l e a s e s /download/v1 . 4 . 4 /

conta inerd −1.4.4− l inux −amd64 . ta r . gz \
6 https : // s to rage . g o o g l e a p i s . com/ kubernetes−r e l e a s e / r e l e a s e /v1 . 2 1 . 0 /

bin / l i nux /amd64/ kubect l \
7 https : // s to rage . g o o g l e a p i s . com/ kubernetes−r e l e a s e / r e l e a s e /v1 . 2 1 . 0 /

bin / l i nux /amd64/kube−proxy \
8 https : // s to rage . g o o g l e a p i s . com/ kubernetes−r e l e a s e / r e l e a s e /v1 . 2 1 . 0 /

bin / l i nux /amd64/ kube l e t

1 $ sudo mkdir −p \
2 / e tc / cn i / net . d \
3 /opt/ cn i / bin \
4 / var / l i b / kube l e t \
5 / var / l i b /kube−proxy \
6 / var / l i b / kubernetes \
7 / var /run/ kubernetes

1 $ mkdir conta inerd
2 $ ta r −xvf c r i c t l −v1 .21.0 − l inux −amd64 . ta r . gz
3 $ ta r −xvf conta inerd −1.4.4− l inux −amd64 . ta r . gz −C conta inerd
4 $ sudo tar −xvf cni−plug ins −l inux −amd64−v0 . 9 . 1 . tgz −C /opt/ cn i / bin /

33

Infrastructure Setup

5 $ sudo mv runc . amd64 runc
6 $ chmod +x c r i c t l kubect l kube−proxy kube l e t runc
7 $ sudo mv c r i c t l kubect l kube−proxy kube l e t runc / usr / l o c a l / bin /
8 $ sudo mv conta inerd / bin /∗ / bin /

CNI Networking[8]

1 $ POD_CIDR=$ (c u r l −s −H " Metadata−Flavor : Google " \ http ://
metadata . goog l e . i n t e r n a l /computeMetadata/v1/ in s t ance / a t t r i b u t e s /
pod−c i d r)

Creating the bridge file:

1 $ cat <<EOF | sudo tee / e t c / cn i / net . d/10− br idge . conf
2 {
3 " cn iVer s i on " : " 0 . 4 . 0 " ,
4 "name" : " br idge " ,
5 " type " : " br idge " ,
6 " br idge " : " cn io0 " ,
7 " isGateway " : true ,
8 " ipMasq " : true ,
9 " ipam " : {

10 " type " : " host−l o c a l " ,
11 " ranges " : [
12 [{ " subnet " : " ${POD_CIDR} " }]
13] ,
14 " route s " : [{ " dst " : " 0 . 0 . 0 . 0 / 0 " }]
15 }
16 }
17 EOF

Creating the loopback file:

1 $ cat <<EOF | sudo tee / e t c / cn i / net . d/99−loopback . conf
2 {
3 " cn iVer s i on " : " 0 . 4 . 0 " ,
4 "name" : " l o " ,
5 " type " : " loopback "

34

Infrastructure Setup

6 }
7 EOF

Creating the containerd file:

1 $ sudo mkdir −p / etc / conta inerd /
2 $ cat << EOF | sudo tee / e t c / conta inerd / c o n f i g . toml
3 [p lug in s]
4 [p lug in s . c r i . conta inerd]
5 snapshot te r = " o v e r l a y f s "
6 [p lug in s . c r i . conta inerd . default_runtime]
7 runtime_type = " i o . conta inerd . runtime . v1 . l i nux "
8 runtime_engine = " / usr / l o c a l / bin / runc "
9 runtime_root = " "

10 EOF

Creating the containerd.service file:

1 $ cat <<EOF | sudo tee / e t c / systemd/system/ conta inerd . s e r v i c e
2 [Unit]
3 Desc r ip t i on=conta inerd conta ine r runtime
4 Documentation=https : // conta inerd . i o
5 After=network . t a r g e t
6

7 [S e rv i c e]
8 ExecStartPre=/sb in /modprobe over l ay
9 ExecStart=/bin / conta inerd

10 Restart=always
11 RestartSec=5
12 Delegate=yes
13 KillMode=proce s s
14 OOMScoreAdjust=−999
15 LimitNOFILE=1048576
16 LimitNPROC=i n f i n i t y
17 LimitCORE=i n f i n i t y
18

19 [I n s t a l l]
20 WantedBy=multi−user . t a r g e t
21 EOF

35

Infrastructure Setup

Kubelet Configuration:

1 $ sudo mv ${HOSTNAME}−key . pem ${HOSTNAME} .pem / var / l i b / kube l e t /
2 $ sudo mv ${HOSTNAME} . kubeconf ig / var / l i b / kube l e t / kubeconf ig
3 $ sudo mv ca . pem / var / l i b / kubernetes /

1 $ cat <<EOF | sudo tee / var / l i b / kube l e t / kubelet−c o n f i g . yaml
2 kind : Kube letConf igurat ion
3 ap iVers ion : kube l e t . c o n f i g . k8s . i o / v1beta1
4 au then t i c a t i on :
5 anonymous :
6 enabled : f a l s e
7 webhook :
8 enabled : t rue
9 x509 :

10 c l i en tCAFi l e : " / var / l i b / kubernetes /ca . pem"
11 au tho r i z a t i on :
12 mode : Webhook
13 clusterDomain : " c l u s t e r . l o c a l "
14 clusterDNS :
15 − " 1 0 . 3 2 . 0 . 1 0 "
16 podCIDR : " ${POD_CIDR} "
17 re so lvConf : " / run/systemd/ r e s o l v e / r e s o l v . conf "
18 runtimeRequestTimeout : " 15m"
19 t l s C e r t F i l e : " / var / l i b / kube l e t /${HOSTNAME} .pem"
20 t l sP r i va t eKey F i l e : " / var / l i b / kube l e t /${HOSTNAME}−key . pem"
21 EOF

Creating the kubelet.service file:

1 $ cat <<EOF | sudo tee / e t c / systemd/system/ kube l e t . s e r v i c e
2 [Unit]
3 Desc r ip t i on=Kubernetes Kubelet
4 Documentation=https : // github . com/ kubernetes / kubernetes
5 After=conta inerd . s e r v i c e
6 Requires=conta inerd . s e r v i c e
7

8 [S e rv i c e]
9 ExecStart=/usr / l o c a l / bin / kube l e t \\

10 −−c o n f i g=/var / l i b / kube l e t / kubelet−c o n f i g . yaml \\

36

Infrastructure Setup

11 −−conta iner −runtime=remote \\
12 −−conta iner −runtime−endpoint=unix :/// var /run/ conta inerd / conta inerd .

sock \\
13 −−image−pul l −progress −dead l ine=2m \\
14 −−kubeconf ig=/var / l i b / kube l e t / kubeconf ig \\
15 −−network−plug in=cn i \\
16 −−r e g i s t e r −node=true \\
17 −−v=2
18 Restart=on−f a i l u r e
19 RestartSec=5
20

21 [I n s t a l l]
22 WantedBy=multi−user . t a r g e t
23 EOF

Kubernetes Proxy Configuration:
Creating the kube-proxy-config.yaml file:

1 $ sudo mv kube−proxy . kubeconf ig / var / l i b /kube−proxy/ kubeconf ig
2 $ cat <<EOF | sudo tee / var / l i b /kube−proxy/kube−proxy−c o n f i g . yaml
3 kind : KubeProxyConfiguration
4 ap iVers ion : kubeproxy . c o n f i g . k8s . i o / v1alpha1
5 c l i en tConnec t i on :
6 kubeconf ig : " / var / l i b /kube−proxy/ kubeconf ig "
7 mode : " i p t a b l e s "
8 clusterCIDR : " 1 0 . 20 0 . 0 . 0 /1 6 "
9 EOF

Creating the kube-proxy.service file:

1 $ cat <<EOF | sudo tee / e t c / systemd/system/kube−proxy . s e r v i c e
2 [Unit]
3 Desc r ip t i on=Kubernetes Kube Proxy
4 Documentation=https : // github . com/ kubernetes / kubernetes
5

6 [S e rv i c e]
7 ExecStart=/usr / l o c a l / bin /kube−proxy \\
8 −−c o n f i g=/var / l i b /kube−proxy/kube−proxy−c o n f i g . yaml
9 Restart=on−f a i l u r e

10 RestartSec=5
11

12 [I n s t a l l]

37

Infrastructure Setup

13 WantedBy=multi−user . t a r g e t
14 EOF

Start the Workers!

1 $ sudo sys t emct l daemon−re l oad
2 $ sudo sys t emct l enable conta inerd kube l e t kube−proxy
3 $ sudo sys t emct l s t a r t conta inerd kube l e t kube−proxy

And the Last configuration, but not the least: The Admin Kubernetes
Configuration

A Kubernetes API Server is needed to connect to each kubeconfig. The IP
address assigned to the external load balancer fronting the Kubernetes API Servers
will be utilized to enable high availability.

1 $ KUBERNETES_PUBLIC_ADDRESS=$ (gcloud compute addre s s e s d e s c r i b e
kubernetes−on−premise \

2 −−reg ion $ (gcloud c o n f i g get−value compute/ r eg i on) \
3 −−format ’ va lue (address) ’)
4

5 $ kubect l c o n f i g set −c l u s t e r kubernetes−on−premise \
6 −−c e r t i f i c a t e −author i ty=ca . pem \
7 −−embed−c e r t s=true \
8 −−s e r v e r=https : // ${KUBERNETES_PUBLIC_ADDRESS}:6443
9

10 $ kubect l c o n f i g set −c r e d e n t i a l s admin \
11 −−c l i e n t −c e r t i f i c a t e=admin . pem \
12 −−c l i e n t −key=admin−key . pem
13

14 $ kubect l c o n f i g set −context kubernetes−on−premise \
15 −−c l u s t e r=kubernetes−the−hard−way \
16 −−user=admin
17

18 kubect l c o n f i g use−context kubernetes−on−premise

Now, if we run

1 $ kubect l get nodes

38

Infrastructure Setup

we should be seeing

1 NAME STATUS ROLES AGE VERSION
2 worker−0 Ready <none> 2m35s v1 . 2 1 . 0
3 worker−1 Ready <none> 2m35s v1 . 2 1 . 0
4 worker−2 Ready <none> 2m35s v1 . 2 1 . 0

39

Chapter 4

Stateful Application on
Kubernetes

4.1 StatefulSet
"StatefulSet is the workload API object used to manage stateful applications." is
said in Kubernetes manuals[9].

StatefulSet is a twin brother of a Deployment but with its own uniqueness - it’s
created for deploying and handling stateful services and applications. It assigns a
fixed unique identifier to a pod and manages pods in a strict ordered manner, i.e.
it starts n-th pod assigning id: (n-1) and not the other one. Also when deleting it
deletes only the pod with has the highest identifier value.

StatefulSet also has some limitations on usaage:

• Storage for a specific Pod must either be pre-provided by an administrator
or provisioned by a persistent volume provisioner depending on the required
storage type.

• The volumes linked to a StatefulSet won’t be deleted if it is deleted or scaled
down. Data security is ensured in this way, which is typically more beneficial
than automatically deleting all associated StatefulSet resources.

• The network identification of the Pods must currently be managed by a
Headless Service for StatefulSets. We are in charge of developing this Service.

• When a StatefulSet is removed, there are no promises made regarding the
termination of any pods. It is possible to scale the StatefulSet down to 0
before deletion in order to provide an orderly and elegant end of the pods in
the StatefulSet.

40

Stateful Application on Kubernetes

4.2 Sample application using StatefulSet
As it was declared about the limitations of StatefulSets, to create a working and
responding component we have to create a headless Service component and devote
10 Gb of persistant memory to the StatefulSet[10]:

1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : mongo
5 l a b e l s :
6 app : mongo
7 spec :
8 por t s :
9 − port : 27017

10 ta rge tPor t : 27017
11 name : db
12 c l u s t e r I P : None
13 s e l e c t o r :
14 app : mongo
15 −−−
16 ap iVers ion : apps/v1
17 kind : S t a t e f u l S e t
18 metadata :
19 name : db
20 spec :
21 serviceName : "mongo"
22 r e p l i c a s : 2
23 s e l e c t o r :
24 matchLabels :
25 app : mongo
26 template :
27 metadata :
28 l a b e l s :
29 app : mongo
30 spec :
31 c on t a i n e r s :
32 − name : mongo
33 image : c v a l l a n c e /mongo−k8s−s i d e c a r
34 por t s :
35 − conta ine rPort : 27017
36 name : db
37 volumeMounts :
38 − name : mongo−p e r s i s t e n t −s to rage
39 mountPath : / data /db
40 volumeClaimTemplates :
41 − metadata :

41

Stateful Application on Kubernetes

42 name : mongo−p e r s i s t e n t −s to rage
43 spec :
44 storageClassName : " f a s t "
45 accessModes : [" ReadWriteOnce "]
46 r e s o u r c e s :
47 r eque s t s :
48 s t o rage : 10Gi

4.3 BigBlueButton

BigBlueButton is an open source conferencing and learning platform which is
has a software oriented architecture[11] and it needs refactoring to make it fit to
Kubernetes orchestrating.

Figure 4.1: BigBlueButton architecture

The problem is that it is mostly stateful. For instance every time a request
comes from the client, the state of that request is stored in MongoDB. There is
also another stateful component which is already familiar to us - Redis is used as a
Pub/Sub broker. And it fits here just fine with its "Connected Delivery Semantics".

Another issue is that html5 service is a monolithic client-server component
which leads to a hard to maintain problem, and normally should be decoupled to
two separate front-end and back-end services.

From the network perspective, more detailed information is given in a figure
below.

42

Stateful Application on Kubernetes

Figure 4.2: BigBlueButton service connections

4.4 BigBlueButton on Kubernetes
From the obtained information we have factor out the stateful components of the
application and build a new Kubernetes based architecture:

• Redis is deployed as a StatefulSets

• MongoDB is deployed as a StatefulSets

• Html5 component should be rewritten

• Other components are deployed as Stateless Deployments

• Resource management should be organized

• Sensitive data like passwords should be securely handled via Secrets

Overall, schematically network communications look like in the Figure 4.3. Con-
figMaps and Secrets are skipped intentionally.

Going down to implementation, there is a quite notable moment regarding the
deployment of Redis and MongoDB - there is no need to deploy it manually and
we can use out-of-the-box packaging solution by Helm packaging tool. We will
come back to this later. Now we start deploying stateless components.

43

Stateful Application on Kubernetes

Figure 4.3: BigBlueButton Kubernetes Architecture

• FreeSWITCH
freeswitch-deployment.yaml

1 ap iVers ion : apps/v1
2 kind : Deployment # Kubernetes r e s ou r c e kind we are c r e a t i n g
3 metadata :
4 name : f r e e sw i t ch −app
5 spec :
6 s e l e c t o r :
7 matchLabels :
8 app : f r e e sw i t ch −app
9 r e p l i c a s : 1 # Number o f r e p l i c a s that w i l l be c rea ted f o r t h i s

deployment
10 template :
11 metadata :
12 l a b e l s :
13 app : f r e e sw i t ch −app
14 environment : development
15 t i e r : backend

44

Stateful Application on Kubernetes

16 r e l e a s e : canary
17 owner : bu la tdav lya t sh in
18 spec :
19 c on t a i n e r s :
20 − name : f r e e s w i t c h
21 image : bu la tdav lya t sh in /bbb−docker_freeswi tch : 2 . 4
22 imagePul lPo l i cy : I fNotPresent
23 env :
24 − name : DOMAIN
25 valueFrom :
26 configMapKeyRef :
27 name : bbb−c o n f i g
28 key : DOMAIN
29 − name : EXTERNAL_IPv6
30 valueFrom :
31 configMapKeyRef :
32 name : bbb−c o n f i g
33 key : EXTERNAL_IPv6
34 − name : EXTERNAL_IPv4
35 valueFrom :
36 configMapKeyRef :
37 name : bbb−c o n f i g
38 key : EXTERNAL_IPv4
39 − name : ESL_PASSWORD
40 valueFrom :
41 configMapKeyRef :
42 name : bbb−c o n f i g
43 key : FSESL_PASSWORD
44 # − name : SIP_IP_ALLOWLIST
45 # value : "−"
46 − name : DISABLE_SOUND_MUTED
47 value : " t rue "
48 − name : DISABLE_SOUND_ALONE
49 value : " t rue "
50 − name : SOUNDS_LANGUAGE
51 value : en−us−c a l l i e
52 r e s o u r c e s : {}
53 s ecur i tyContext :
54 c a p a b i l i t i e s :
55 add :
56 − IPC_LOCK
57 − NET_ADMIN
58 − NET_RAW
59 − NET_BROADCAST
60 − SYS_NICE
61 − SYS_RESOURCE
62 volumeMounts :
63 − mountPath : / Users / bu la tdav lya t sh in / e tc / f r e e s w i t c h /

s i p _ p r o f i l e s / e x t e r n a l

45

Stateful Application on Kubernetes

64 name : bbb−volume
65 − mountPath : / Users / bu la tdav lya t sh in / e tc / f r e e s w i t c h /

d i a l p l a n / publ ic_docker
66 name : bbb−volume
67 − mountPath : / Users / bu la tdav lya t sh in / var / f r e e s w i t c h /

meetings
68 name : bbb−volume
69 volumes :
70 − name : bbb−volume
71 hostPath :
72 path : / Users / bu la tdav lya t sh in / var /bbb−volume
73 type : DirectoryOrCreate
74

freeswitch-service.yaml

1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : f r e e sw i t ch −s e r v i c e
5 spec :
6 s e l e c t o r :
7 app : f r e e sw i t ch −app
8 por t s :
9 − name : f i r s t

10 pro to co l : "TCP"
11 port : 8021
12 ta rge tPor t : 8021
13 − name : second
14 pro to co l : TCP
15 port : 5066
16 ta rge tPor t : 5066
17 − name : nginx
18 pro to co l : TCP
19 port : 7443
20 ta rge tPor t : 7443
21 type : NodePort
22

• Kurento
kurento-deployment.yaml

46

Stateful Application on Kubernetes

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : kurento−app
5 spec :
6 s e l e c t o r :
7 matchLabels :
8 app : kurento−app
9 r e p l i c a s : 1

10 template :
11 metadata :
12 l a b e l s :
13 app : kurento−app
14 environment : development
15 t i e r : backend
16 r e l e a s e : canary
17 owner : bu la tdav lya t sh in
18 spec :
19 c on t a i n e r s :
20 − name : kurento
21 image : kurento / kurento−media−s e r v e r : 6 . 1 6
22 imagePul lPo l i cy : I fNotPresent
23 env :
24 − name : KMS_STUN_IP
25 valueFrom :
26 configMapKeyRef :
27 name : bbb−c o n f i g
28 key : STUN_IP
29 − name : KMS_STUN_PORT
30 valueFrom :
31 configMapKeyRef :
32 name : bbb−c o n f i g
33 key : STUN_PORT
34 − name : KMS_MIN_PORT
35 value : "31000"
36 − name : KMS_MAX_PORT
37 value : "32768"
38 − name : KMS_TURN_URL
39 value :
40 # − name : KMS_NETWORK_INTERFACES
41 # value : "−"
42 − name : GST_DEBUG
43 value : 3 , Kurento ∗ : 4 , kms ∗ : 4 ,

KurentoWebSocketTransport : 5
44 volumeMounts :
45 − mountPath : / Users / bu la tdav lya t sh in / var / kurento
46 name : bbb−volume
47 por t s :
48 − conta ine rPort : 8888

47

Stateful Application on Kubernetes

49 volumes :
50 − name : bbb−volume
51 hostPath :
52 path : / Users / bu la tdav lya t sh in / var /bbb−volume
53 type : DirectoryOrCreate
54

kurento-service.yaml

1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : kurento−s e r v i c e
5 spec :
6 s e l e c t o r :
7 app : kurento−app
8 por t s :
9 − pro toco l : "TCP"

10 port : 8888
11 ta rge tPor t : 8888
12 type : NodePort
13

• FSESL
fsesl-deployment.yaml

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : f s e s l −akka−app
5 spec :
6 s e l e c t o r :
7 matchLabels :
8 app : f s e s l −akka−app
9 r e p l i c a s : 1

10 template :
11 metadata :
12 l a b e l s :
13 app : f s e s l −akka−app
14 environment : development
15 t i e r : backend
16 r e l e a s e : canary
17 owner : bu la tdav lya t sh in
18 spec :
19 c on t a i n e r s :

48

Stateful Application on Kubernetes

20 − name : f s e s l −akka
21 image : bu la tdav lya t sh in /bbb−docker_fse s l −akka : 2 . 3
22 imagePul lPo l i cy : I fNotPresent
23 env :
24 − name : FSESL_PASSWORD
25 valueFrom :
26 configMapKeyRef :
27 name : bbb−c o n f i g
28 key : FSESL_PASSWORD
29 − name : REDIS_HOST
30 value : bbb−red i s −head l e s s
31 por t s :
32 − conta ine rPort : 8021
33

• WebRTC-sfu
webrtc-deployment.yaml

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : bbb−webrtc−sfu−app
5 spec :
6 s e l e c t o r :
7 matchLabels :
8 app : bbb−webrtc−sfu−app
9 r e p l i c a s : 1

10 template :
11 metadata :
12 l a b e l s :
13 app : bbb−webrtc−sfu−app
14 environment : development
15 t i e r : backend
16 r e l e a s e : canary
17 owner : bu la tdav lya t sh in
18 spec :
19 c on t a i n e r s :
20 − name : bbb−webrtc−s fu
21 env :
22 − name : CLIENT_HOST
23 value : " 0 . 0 . 0 . 0 "
24 − name : KURENTO_NAME
25 value : kurento
26 − name : REDIS_HOST
27 value : bbb−red i s −head l e s s
28 − name : FREESWITCH_IP
29 value : f r e e sw i t ch −s e r v i c e

49

Stateful Application on Kubernetes

30 − name : FREESWITCH_SIP_IP
31 valueFrom :
32 configMapKeyRef :
33 name : bbb−c o n f i g
34 key : EXTERNAL_IPv4
35 − name : EXTERNAL_IPv4
36 valueFrom :
37 configMapKeyRef :
38 name : bbb−c o n f i g
39 key : EXTERNAL_IPv4
40 − name : ESL_IP
41 value : host . docker . i n t e r n a l
42 − name : ESL_PASSWORD
43 valueFrom :
44 configMapKeyRef :
45 name : bbb−c o n f i g
46 key : FSESL_PASSWORD
47 − name : LOG_LEVEL
48 value : i n f o
49 − name : NODE_CONFIG
50 value : ’ { " kurento " : [{ " ip " : " 1 5 9 . 6 5 . 1 3 8 . 2 5 3 " , " u r l " : "

ws : // kurento−s e r v i c e :8888/ kurento " }] } ’
51 image : bu la tdav lya t sh in /bbb−docker_webrtc−s fu : 2 . 4
52 imagePul lPo l i cy : I fNotPresent
53 por t s :
54 − conta ine rPort : 3008
55

4.5 Cluster topology for stateful components
Well-known and popular applications that exist in helm repository are easy to
deploy with a Cluster or Master-Slave topology.

The Redis Helm chart or the Redis Cluster Helm chart are the two methods avail-
able for deploying a Redis Cluster[12]. Both options offer a quick and dependable
way to operate Redis in a real-world setting.

• When using the Redis Cluster Helm chart, a cluster of six nodes with several
writing points (three masters) and three slave nodes is configured by default.
By default, the Redis Helm chart deploys three nodes: one writing point (one
master), two replica nodes, and (slaves).

• While the Redis Cluster will create a master-slave cluster using Redis Sentinel,
the Redis Cluster Helm chart will deploy a Redis Cluster topology with
sharding. Redis allows many databases, unlike the Redis Cluster, which only
supports one database and is advised if you have a large dataset. Redirection

50

Stateful Application on Kubernetes

must be supported by the Redis Cluster client, but not by the Redis client
itself.

• The Redis Cluster Helm chart’s architecture enables users to access the cluster
both internally and externally, and you may scale the cluster up or down in
either access.

• Disaster recovery and failover are an extra functionality of the Redis Cluster
Helm chart. In the event that the master node or even all the nodes go down,
the cluster will automatically recover and new master nodes will be promoted
in order to keep the cluster balanced and guarantee uninterrupted read/write
operations.

Figure 4.4: Redis Cluster vs. Master-Slave Topology

So the most reliable and stable, yet the most expensive way is choosing a Cluster
topology in such scenarios.

51

Chapter 5

Conclusions and Future
Work

The main objective for this thesis work was to understand how we can refactor
legacy stateful applications to fit on-premises Kubernetes for orchestrating and
better scaling.

To achieve this goal we first installed Kubernetes on our so-called "bare metals".
The Kubernetes itself by the way, was installed in a Cluster Topology, i.e. 3 master
nodes by 3 worker nodes for high reliability and stability.

After that we analyzed the BigBlueButton architecture and pointed out several
important moments such as:

• separating stateless and stateful components

• discovering a service that needs loosening

• sensitive data is not secured

• great demand in resource management

The next challenges we face to make the application Kubernetes-friendly are:

• factor out the front-end part from html5 service

• secure sensitive data with secrets and Vault

• configure resource management, particularly the automatic scaling

• add monitoring tools with turned on notifications

52

Bibliography

[1] Kevin Casey. «How to explain Kubernetes in plain English». In: 20 (Sept.
2020). url: https://enterprisersproject.com/article/2017/10/how-
%20explain-kubernetes-plain-english (cit. on p. 4).

[2] Gaetano BUSCEMA. «Security orchestration in Kubernetes with Verefoo».
MA thesis. Torino: Politecnico di Torino, 2021 (cit. on p. 6).

[3] Docker Containers Changed How We Deploy Software. 2019. url: https:
//www.magalix.com/blog/kubernetes-101-%20concepts-and-why-it-
matters (cit. on p. 6).

[4] Matthew O’Riordan. Everything You Need To Know About Publish/Sub-
scribe. url: https://ably.com/topic/pub-sub (cit. on p. 15).

[5] CloudVSPrem. url: https://www.cleo.com/blog/knowledge-base-on-
premise-vs-cloud (cit. on p. 19).

[6] Kelsey Hightower. Kubernetes the hard way. url: https://github.com/
kelseyhightower/kubernetes-the-hard-way (cit. on p. 20).

[7] K8s Core Concepts. url: https://www.linkedin.com/learning/advanced-
kubernetes-1-core-concepts (cit. on p. 20).

[8] What is CNI? url: https://rancher.com/docs/rancher/v2.x/%20en/
faq/networking/cni-providers/ (cit. on p. 34).

[9] Kubernetes Specifications: StatefulSet. url: https://kubernetes.io/docs/
concepts/workloads/controllers/statefulset/ (cit. on p. 40).

[10] Mongo Standalone. url: https://kubernetes.io/blog/2017/01/running-
mongodb-on-kubernetes-with-statefulsets/ (cit. on p. 41).

[11] BigBlueButton doc. url: https://docs.bigbluebutton.org/2.4/archite
cture.html (cit. on p. 42).

[12] Bitnami topologies. url: https://docs.bitnami.com/kubernetes/infras
tructure/redis/get-started/compare-solutions/ (cit. on p. 50).

53

https://enterprisersproject.com/article/2017/10/how-%20explain-kubernetes-plain-english
https://enterprisersproject.com/article/2017/10/how-%20explain-kubernetes-plain-english
https://www.magalix.com/blog/kubernetes-101-%20concepts-and-why-it-matters
https://www.magalix.com/blog/kubernetes-101-%20concepts-and-why-it-matters
https://www.magalix.com/blog/kubernetes-101-%20concepts-and-why-it-matters
https://ably.com/topic/pub-sub
https://www.cleo.com/blog/knowledge-base-on-premise-vs-cloud
https://www.cleo.com/blog/knowledge-base-on-premise-vs-cloud
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://www.linkedin.com/learning/advanced-kubernetes-1-core-concepts
https://www.linkedin.com/learning/advanced-kubernetes-1-core-concepts
https://rancher.com/docs/rancher/v2.x/%20en/faq/networking/cni-providers/
https://rancher.com/docs/rancher/v2.x/%20en/faq/networking/cni-providers/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/blog/2017/01/running-mongodb-on-kubernetes-with-statefulsets/
https://kubernetes.io/blog/2017/01/running-mongodb-on-kubernetes-with-statefulsets/
https://docs.bigbluebutton.org/2.4/architecture.html
https://docs.bigbluebutton.org/2.4/architecture.html
https://docs.bitnami.com/kubernetes/infrastructure/redis/get-started/compare-solutions/
https://docs.bitnami.com/kubernetes/infrastructure/redis/get-started/compare-solutions/

	List of Figures
	Introduction
	Thesis Objective
	Thesis Description

	Background
	Kubernetes
	Cloud vs. On-Premise
	Stateful vs. Stateless
	Publish-Subscriber pattern

	Infrastructure Setup
	Requirements
	Kubernetes installation

	Stateful Application on Kubernetes
	StatefulSet
	Sample application using StatefulSet
	BigBlueButton
	BigBlueButton on Kubernetes
	Cluster topology for stateful components

	Conclusions and Future Work
	Bibliography

