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Summary

Nowadays, many devices use automatic speech recognition systems,
which are based on machine learning models. But it is good to know
that machine learning is not completely secure from attacks because
there are Adversarial Machine Learning attacks which aim to deceive
machine learning models by providing adversarial inputs.

So, it is very important to understand what types of attacks are
possible on these models and which defences should be applied. For
this, it is necessary to analyze the various types of attacks, such as
FGSM and PGD which are evasion attacks, which allow to create
adversarial examples that in models without any type of defence
cause a considerable decline in the performance of the model.

In the audio field, a defence considered effective by many is MP3
compression, which should be able to remove the previous adversary
noise applied by creating the adversarial example. But in the model
analyzed, capable of classifying numbers from 0 to 9, this defence
is very ineffective. Therefore, a new defence method was created,
implementing a combined model of neural networks, in which given
an initial audio input, a binary classifier recognizes whether the audio
is original or adversarial.

The original data is forwarded to the neural network trained to
classify on original audio, while the adversarial data is passed to a
neural network trained with the adversarial training, which is trained
not only on original data but even on adversarial data, and for this
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reason the model offers greater robustness for these types of attacks.
In addition, the topic of voice authentication is also dealt with, ana-
lyzing its advantages, disadvantages and risks.

Among the risks, we find the problem of voice cloning, capable of
artificially producing a voice so similar to that of a particular person
as to be almost indistinguishable, increasingly widespread to create
even deep fake videos.

At the end, some solutions to voice cloning are presented such as
liveness detection, capable of distinguishing a real voice from an
artificial one.
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Chapter 1

Introduction

Machine learning is used in a growing range of settings to make
potentially safety-critical decisions: self-driving cars, drones, robots,
anomaly detection, malware classification, speech authentication and
recognition of voice commands and many more.

As a result, understanding the security properties of machine learning
has become a crucial issue in this area. The extent to which we can
build adversarial examples affects the settings of the machine learning
system that we want to use, in this case, we focus on neural networks.

In the field of speech recognition, recent work has shown that it
is possible to generate audio that sounds like speech for machine
learning algorithms but not for humans, using deep fake techniques
for voice cloning.

This can be used to control the user’s devices without their knowl-
edge. For example, by playing a video with a hidden voice command,
a smartphone can visit a malicious web page to cause a drive-by
download. This can also be used for bank fraud if the authentica-
tion system is not very reliable. Or simply adversarial examples are
created that can deceive the machine learning model, even causing
serious damage if the systems that use them are of vital importance.
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Introduction

1.1 Thesis objectives

The goal of my thesis is to study Adversarial Machine learning attack
techniques and defensive strategies to be applied to automatic speech
recognition systems, such as audio classifiers. In addition, the risks
of speech recognition systems are taken into account and it analyzes
how it is possible to apply the process of voice cloning and a possible
defence that allows to detect cloned voices that should be considered
fake.

For this reason among the various attack strategies of adversarial
machine learning I have analyzed the effectiveness of evasion-type
attacks, going to present the various methods used to create examples
of adversarial audios and the varieties of these attacks.

Subsequently I examined the possible defences and mitigations that
can be applied to make machine learning models more robust for
these types of attacks, from the simple use of the Mp3 compression
technique to the complete modification of the neural network with
the use of adversarial training.

It also compares which model is best at resisting these types of
attacks, one based on audio files and one on audio spectrograms (so
it becomes an image-based classification)

It also includes the description of the process of voice authentication
and recognition to present a real case of a threat, such as voice cloning,
which is considered a category of the famous deep fake, increasingly
widespread nowadays.

In conclusion, some solutions are presented to detect if certain audio
is original or created using Artificial Intelligence.
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Introduction

1.2 Organization

The thesis is organized as follows:
• In the second chapter the topic of machine learning is presented,

thus seeing the most common and widespread approaches and
algorithms. Subsequently, its limits are also analyzed and in
particular the Adversarial Machine Learning, going to deepen the
strategies and types of possible attacks.

• Chapter 3 presents the evasion attack in a theoretical way and
how to practically create an adversarial example through a PGD
attack via a notebook written in python language that uses
functions offered by the Adversarial Robustness Toolbox library
[1]. Afterwards, to explain how to defend ourselves against this
type of attack, MP3 compression defence is applied and it is
analyzed how effective this defence is, and if this defence can be
bypassed.

• Chapter 4 presents a combined model of neural networks capable
of distinguishing an adversary example from a real one. This is
achieved through a binary classifier that works as an initial filter,
a neural network capable of classifying correctly on real data and
a neural network trained with Adversarial Training capable of
adequately classifying even the adversarial examples.

• The last chapter deals with the topic of Voice Recognition and is
mainly composed of three sections.
The first deals with voice authentication, explaining what are
the advantages, disadvantages and risks of this type of authenti-
cation and also an example of a real application of this type of
authentication is presented through a python notebook made by
me.
In the second section we can see how to apply voice cloning, and
study the components of a system capable of applying it.
In the last section we see if and how it is possible to distinguish
a real voice from a fake artificial one.
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Chapter 2

(Adversarial) Machine
Learning

Before introducing adversarial machine learning and its applications, it is necessary
to make a brief parenthesis on Machine Learning.

2.1 Machine Learning
Machine Learning (ML) is a subset of Artificial Intelligence (AI) that is concerned
with building systems that learn or improve performance based on the data they
use, known as training data.

The term Artificial Intelligence refers to systems that mimic human intelligence.
The terms ML and AI are often misused together and interchangeably [2]. An
important distinction is that while everything about ML falls under Artificial
Intelligence, AI doesn’t just include machine learning.
Nowadays Machine learning has many applications, among the most famous we
have:

• Computer vision: this artificial intelligence technology allows computers to
derive meaningful information from digital images, video and other visual
inputs and then take appropriate action [3]. It uses CNN (Convolutional Neural
Networks), and it is applied for radiological imaging in the healthcare industry
(e.g. to detect tumours...), social media photo tagging, and autonomous
vehicles in the automotive industry.

4



(Adversarial) Machine Learning

• Fraud detection: banks and other financial institutions can use ML to detect
suspicious transactions. Supervised learning can train a model using known
information about fraudulent transactions. Anomaly detection can identify
transactions that appear atypical and need further investigation [4].

• Recommendation system: it provides suggestions for items most relevant to a
specific user[5]. Recommendation systems provide suggestions for the elements
most relevant to a specific user. For example, what product to buy, what
music to listen to, or what online news to read.

• Customer service: Online chat-bots on many websites are now replacing tradi-
tional customer service, automatically answering frequently asked questions
(FAQs) but always referring to the customer’s personal information [6].

• Speech Recognition: It is also known as automatic speech recognition (ASR),
and is a feature that uses natural language processing (NLP) to translate
human speech into a written format. Many mobile devices include speech
recognition functionalities in their systems to perform voice search, eg. Google
Assistant, Siri or improve accessibility for writing text [7]. Furthermore, voice
recognition can also be used as a means of biometric authentication.

5



(Adversarial) Machine Learning

2.1.1 Approaches
Machine learning approaches are generally divided into these categories:

• Supervised learning: it is defined by the use of labelled datasets to train
algorithms to classify data or predict results accurately. As input data is
entered into the model, the model adjusts its weights until it is configured
appropriately [8]. This occurs as part of the cross-validation process to avoid
overfitting or underfitting.
Some methods used in supervised learning include neural networks, linear
regression, logistic regression, random forest, and support vector machine
(SVM).

• Unsupervised learning: uses machine learning algorithms to analyze and
group datasets, that have not been labelled. These algorithms discover hidden
patterns or clusters of data without the need for human intervention. One of
the most common methods used in unsupervised learning is cluster analysis
[9].

• Semi-supervised learning: it is considered a mix between supervised and
unsupervised learning. It combines a small amount of tagged data with a
large amount of unlabeled data during training[10].

• Reinforcement learning: is a machine learning approach similar to super-
vised learning, but the algorithm is not trained using sample data. This model
learns as it goes using trial and error [11]. A sequence of positive results will
be strengthened to develop the best recommendation for a given problem.
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(Adversarial) Machine Learning

2.1.2 Models
• Artificial Neural Networks: ANN is a model based on interconnected

nodes, it is inspired by the biological network of neurons in the brain. Each
connection transmits information from one neuron to another (as it does with
signals from brain synapses).

Figure 2.1: Artificial Neural Network

This network has three or more levels interconnected with each other. The first
is used for input, which will send data to successive levels, called hidden levels,
which adaptively modify the information received through transformations
based on a weight that adapts in the learning process, the inputs get multiplied
by the weight and then passed to the next layer. This weight simulates the
electrical stimulation of a nerve cell, therefore the transfer of information to
the nervous system [12]. This allows the units to generate a result, which is
then sent as an output through the output layer.

The backpropagation process is also often used, which can modify the output
results by taking into account errors. Whenever the output is tagged as an
error during the supervised training phase, the information is sent backwards.
Each weight is updated in proportion to how much they were responsible for
the error [13].

7



(Adversarial) Machine Learning

• Clustering: Clustering refers to the grouping of unlabeled examples, so it is
based on unsupervised learning.

One of the most famous clustering algorithms is k-means, which determines the
best k centroids and assigns each data to the nearest centroid, thus dividing a
dataset into groups.

Figure 2.2: Example of clustering with k-means algorithm (k=3)

There are different types of clustering:

– Centroid-based: as seen with the k-means algorithm, it divides into
groups based on proximity to centroids.

– Density-based: it forms clusters based on the density of an area.
– Distribution-based: it groups the data into a distribution (e.g. Gaus-

sian). As the distance from the center of the distribution increases, the
probability that a point belongs to the distribution decreases.

– Hierarchical: it is used for hierarchical data, which allows you to create
a tree of clusters.
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(Adversarial) Machine Learning

• Decision Tree: it can be considered a predictive model to go from observa-
tions on an element (represented in branches) to conclusions about the target
value of the element (represented in leaves) [14].

It is one of the predictive modeling approaches used in statistics, data mining,
and machine learning. Tree models in which the target variable can take on a
discrete set of values are called classification trees; in these tree structures,
the leaves represent class labels and the branches represent conditions that
lead to those class labels.

Figure 2.3: Decision Tree structure
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(Adversarial) Machine Learning

• Random forests: it is a classifier that contains many decision trees on various
subsets of the given dataset and takes the average to improve the predictive
accuracy of that dataset [15]. Instead of relying on a single decision tree, it
takes the forecast from each tree based on the majority of the forecast votes
and predicts the final output.

It can be considered an example of ensemble learning, which is the pro-
cess of combining multiple classifiers to solve a problem and improve the
performance of the model.

Figure 2.4: Random forests

10



(Adversarial) Machine Learning

• Regression analysis: it is a statistical method that is part of supervised
learning techniques, to express the dependence between a dependent variable
(target) and an independent one (predictor), in which there are more than one
or more variables. In a nutshell, it helps us to understand how the dependent
variable changes in correspondence with the independent one and the other
variables are held fixed [16].
By performing regression, you can determine the most influencing factor, the
least influencing factor, and how each factor affects the other factors.

There are several types of regression, each adapted for different scenarios.

– Linear Regression: it is often used for predictive analysis. It sim-
ply shows the dependency between the independent variable x and the
dependent variable y.

– Logistic Regression: It is a predictive algorithm which works on the
concept of probability. It uses the sigmoid function

sig(x) = 1
1 + e−x

(2.1)

and thresholds levels. Values above the threshold will be assigned to 1,
and values below to 0.

– Polynomial Regression: it allows to represent a non-linear model using
a linear model. The original features are transformed in polynomial values
of given degree and at the end used in the linear model.

11



(Adversarial) Machine Learning

Figure 2.5: Linear regression

• Support-vector machines: it is one of the most common supervised al-
gorithms used for classification and regression purposes. Its goal is to find
the line separating the classes that maximize the margin between the classes
themselves, identifying the margin as the minimum distance between the
line and the points of the two classes. This model allows us to obtain a
non-probabilistic binary classifier[17].

The line is calculated using only a portion of the data set, ie the values
of a class that are closest to the separation line called "support vectors". The
support vectors represent the data of the training set which can be classified
with greater difficulty.

12



(Adversarial) Machine Learning

The line separating the two classes is called "Hyperplane" and based on the
number of features it can be a straight line (if there are two features, Linear
SVM) or a two-dimensional plane (if there are three features, Non-linear SVM),
while the "margin" represents the distance between the Hyperplane and the
support vectors. If in logistic regression the threshold values are represented
by the interval [0,1], in the SVM it is the values [1, -1] that represent the
margin.

Figure 2.6: Support Vector Machine

13



(Adversarial) Machine Learning

2.1.3 Limits
Despite there are continuous updates of Machine Learning models and algorithms,
it may happen that machine learning programs do not give the expected results.
This can be due to several factors, often linked together:

• Lack of (good) data: Most ML algorithms need a huge amount of data to
train the model, otherwise, with little training data, the model will not be
able to provide useful results [18]. But not only is the number of training data
important but also its quality. If the training data does not meet a certain
standard, the performance of the algorithm will be very bad.

For example, in the number classifier presented in the next chapter, if in
the dataset we use poor quality audio (with a lot of noise), in which the
number is not said correctly, the model could fail to give a correct result when
we use a given of excellent audio quality, as the model is trained on data that
does not conform to the quality of the test dataset.

• Overfitting: As defined in the Oxford Dictionary[19], Overfitting is

"the production of an analysis which corresponds too closely or exactly
to a particular set of data, and may therefore fail to fit additional data or
predict future observations reliably"

So in this case the model loses the ability to generalize, as trained on too
specific data, despite having excellent performance in the training phase, it
will not be able to predict correctly on new data, never met during its training,
that is slightly different from that of the training dataset. There are some
ways to resolve this overfitting problem [20]:

– Training with more data: By putting more training data into the model,
he will not be able to learn in detail about all test samples and will be
forced to generalize to get results.

– Data augmentation: it is a less invasive strategy than the previous one,
it consists in creating slightly different examples starting from a start-
ing example (in the case of audio files a slight noise is added to the
input data). This allows us to have unique (but similar) data for the
model and to prevent the model from learning the specific training dataset.

However, it is important not to overdo the changes during this phase, as
it should not affect the quality of the training data, or the model will
have poor performance.

14



(Adversarial) Machine Learning

– Model simplification: You can solve by decreasing overfitting by simplify-
ing the configuration of the ML model, to reduce its complexity. One of
the techniques is the use of dropout functions in neural networks, which
allows us to temporarily ignore some nodes in the training phase. [21]

– Ensembling: as seen previously it is an ML technique that combines
several separate models to have a reliable result. An example is random
forests.

• Data Bias: Generally ML bias is a phenomenon that occurs when a certain
algorithm produces results that are conditioned by prejudice due to incorrect
assumptions in the learning process.

In the case of data bias, there is a problem with the training dataset, which is
not large enough or in any case not very representative to allow the system to
learn correctly. For example, if the training dataset contains only photos of
male programmers the algorithm will learn that all programmers are male.

This problem leads us to consider the ethical problem related to Machine
Learning. There have been quite a few problems in the past due to prejudice.
As can be seen in a 2017 The New York Times article [22], in 2013 in the
US due to a risk assessment algorithm used by the Wisconsin police called
COMPAS a black person ended up in jail because COMPAS defined this
person as at high risk of recidivism. Probably a lot of data about black people
had been used in the training data to influence the algorithm.

Another serious case was those of Google Photos which tagged black people
as gorillas [23][24]. This problem lasted a good three years, from 2015 to 2018,
when they decided to delete gorilla images from the training dataset, but in
doing so they were no longer able to recognize them. Google preferred to limit
the service rather than be accused of racism.

• Underfitting: it is the opposite problem of overfitting. In this case, the ML
model is too generalizing and simplistic to offer decent performance. But this
model has bad results not only in the test phase but also in the training one,
in fact, it is characterized by a high bias and low variance.

A possible solution is to increase the model parameters or add a lot of training
data, or even increase the training time (without exaggerating or you will
have the problem of overfitting).

Another limitation may be due to not being able to protect against adversarial
machine learning attacks.
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(Adversarial) Machine Learning

2.2 Adversarial Machine Learning
Adversarial Machine Learning is a subfield of machine learning that aims to study
attacks on its algorithms and also find defences to these attacks. AML attacks can
be divided into two main categories:

• Black Box: the attacker is completely unaware of what the model he wants
to attack looks like, and has no access to its architecture or its parameters.

• White Box: the attacker has complete knowledge of the target model, its
parameters, its architecture, and data used in the training phase.

There are several different adversarial attack strategies that can be performed
against machine learning models, the most common are:

• Poisoning attacks: the main goal of the attacker is the contamination of the
training data by injecting malicious samples, in such a way that the model
will not learn correctly and the final classifier would misclassify the test data
during the testing phase or there could be a reduction of the performance of
the target model or it can lead to a backdoor attack [25].

• Evasion attacks: With this attack, the attacker aims to create an adversarial
example using knowledge of the target model, which leads the target model to
falsely predict with high confidence [26]. If an adversarial example made on one
model is likely to be effective for other models, this is known as transferability.
With this attack, the attacker aims to create an adversarial example using
knowledge of the target model, which leads the target model to falsely predict
with high confidence. If an adversarial example made on one model is likely
to be effective for other models, this is known as transferability.

• Model extraction: the main purpose of the attack is to steal the parameters
of the target ML model using a black box approach, which will compromise
the secrecy of this data and can lead to model stealing [27], which allows the
model to be reconstructed based on the stolen data.

• Model inversion: it is another attack that affects the privacy of the model,
the attacker simply tries to recover the private training dataset of a supervised
neural network [28]. A model inversion attack could be considered successful
only if it generates realistic and different data that accurately describe each of
the classes in the training dataset.
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(Adversarial) Machine Learning

Figure 2.7: Overview AML attacks and defenses

Nowadays, many defenses against adversarial attacks are used, both for the
attack in the training phase and for the test phase.

• Homomorphic Encryption: it is a special encryption technique that allows
us to perform complex operations on encrypted data as if they are still in
their original form. Its main disadvantage is the reduction of the efficiency of
the model, the high computational cost of performing the encryption and the
execution of the algorithm’s operations [29].

• Trusted Execution Environment: it is a secure and independent operating
environment of the CPU that provides protection to code, data and execution
operations stored inside it respecting the confidentiality and integrity principles
through Data and Code Integrity. One example of TTE application on ML
model can be considered the privacy-preserving multi-party ML system on
untrusted platform proposed by Ohrimenko [30], that based on Intel SGX
[31], provides an additional level of security, preventing exploitation of side
channels made through memory and network access.
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(Adversarial) Machine Learning

• Adversarial training: it is a mechanism that aims to improve the robustness
of a neural network by training it also with adversarial examples, to allow the
model to classify correctly even in the case of evasive attacks. At the moment
it is considered one of the most effective methods to defend against adversarial
examples, but it has the big disadvantage of its large computational expense
and that it is effective to specific adversarial attacks (FGSM, PGD).

• Input preprocessing: this defence mechanism has the purpose of reducing
the impact of the perturbation added by the attacker by performing some
operations such as randomization, denoising, and reconstruction, and this
happens directly on the input data in the first level of the model, therefore it
has the advantage of not modifying successive levels of the ML model[32].

• Malware Detection: it is deployed between the input and the first layer
of the model to detect the input and determine if the input is an adversarial
sample and take corresponding measures accordingly.
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Chapter 3

Evasion attack on audio
classifier

3.1 Introduction
For my experiments I have used IBM Adversarial Robustness Toolbox (IBM
ART)[1], a Python library for Machine Learning security. ART provides tools that
enable developers and researchers to defend and evaluate Machine Learning models
and applications against adversarial Machine Learning attacks such as evasion,
poisoning, mining and inference.

ART supports all popular machine learning frameworks (TensorFlow, Keras, Py-
Torch, etc.), all types of data (images, tables, audio, video, etc.) and machine
learning tasks (classification, object detection, speech recognition, generation, certi-
fication, etc.).

The experiment consists of these steps:

• The configuration of the classification model able to classify correctly digits
0-9,

• The creation of adversarial examples using the PGD attack.

• The application of an Mp3 compression defence mechanism.

• The application of an adaptive whitebox attack to defeat Mp3 compression
defence

In the notebook, created for this experiment, it has been used the AudioMNIST
dataset, which consists of 30000 audio recordings (about 9.5 hours) of spoken
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digits (from 0 to 9) in English with 50 repetitions per digit for each of the 60
different speakers. Recordings were collected in quiet offices with a RØDE NT-USB
microphone as a mono channel signal at a sampling rate of 48 kHz and saved in
full 16-bit format. In addition to the audio recordings, meta-information was also
collected including age (from 22 to 61 years), gender (48 males and 12 females),
accent and origin of all speakers[33].

3.2 Classification based on raw waveforms
First of all, I have imported all the libraries needed in this notebook and set the
parameters (output size, original sampling rate, downsampled sampling rate, audio
data path and the audio model path that contains the pre-trained model file). After
that, I have defined the classes useful for configuring the dataset and preprocessing
the audio file, which are used subsequently in the CNN.

3.2.1 Convolution Neural Networks
CNN (Convolutional Neural Networks) are a class of Deep Neural Network models
(with the term "deep" we refer to the high number of levels present in the network),
often used for image classification.

A CNN is made up of three main parts: input layers, hidden layers and output layer.

We can call hidden layers also feature extraction layers because is here that there
is the local processing tries to extract the information taken from the input layer.
Usually these layers consist of three kinds of layers repeated: convolutional layers,
pooling layers and ReLu layers; and at the end, there is the fully-connected layer.

• Convolutional layer: it is the main component of the CNN.
Here a filter also called Kernel is applied. It multiplies (scalar product) the
portion of the image by the kernel and consequently, we have a reduction of
the input image. An important parameter for this layer is the stride, which
defines the amount of motion of the kernel overlay.
Furthermore we can also set the padding parameter, which allows us to control
the size of the output by adding zeros along the edges to the tensor given as
input.

• ReLu layer: here it is applied the activation function f(x) = max(0, x), called
Rectified Linear Unit function. It removes all the negative values and set them
to zero.
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• Pooling layer: it is often between two convolutional layers and its purpose
is to reduce the size of the images while keeping the important information
extracted during the convolutional process. It combines the outputs of the
previous layer to send it as input to the next layer. In this case, I have used
the Max variant of the pooling, which considers the maximum value of the
feature map.

• Fully connected layer: it is the last step that performs the final classification.
But before this step, it has been executed the flattening process that moves
the value of the feature map in a vector.

• The application of an adaptive whitebox attack to defeat Mp3 compression
defence.

The neural network architecture used is configured as follows:

1 # RawAudioCNN model c l a s s
2 c l a s s RawAudioCNN(nn . Module ) :
3 de f __init__( s e l f ) :
4 super ( ) . __init__ ( )
5 # 1 x 8000
6 s e l f . conv1 = nn . Sequent i a l (
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7 nn . Conv1d (1 , 100 , k e rne l_s i z e =3, s t r i d e =1, padding=2) ,
8 nn . BatchNorm1d (100) ,
9 nn .ReLU( ) ,

10 nn . MaxPool1d (3 , s t r i d e =2) )
11 # 32 x 4000
12 s e l f . conv2 = nn . Sequent i a l (
13 nn . Conv1d (100 , 64 , k e rne l_s i z e =3, s t r i d e =1, padding=1) ,
14 nn . BatchNorm1d (64) ,
15 nn .ReLU( ) ,
16 nn . MaxPool1d (2 , s t r i d e =2) )
17 # 64 x 2000
18 s e l f . conv3 = nn . Sequent i a l (
19 nn . Conv1d (64 , 128 , k e rne l_s i z e =3, s t r i d e =1, padding=1) ,
20 nn . BatchNorm1d (128) ,
21 nn .ReLU( ) ,
22 nn . MaxPool1d (2 , s t r i d e =2) )
23 # 128 x 1000
24 s e l f . conv4 = nn . Sequent i a l (
25 nn . Conv1d (128 , 128 , k e rne l_s i z e =3, s t r i d e =1, padding=1) ,
26 nn . BatchNorm1d (128) ,
27 nn .ReLU( ) ,
28 nn . MaxPool1d (2 , s t r i d e =2) )
29 # 128 x 500
30 s e l f . conv5 = nn . Sequent i a l (
31 nn . Conv1d (128 , 128 , k e rne l_s i z e =3, s t r i d e =1, padding=1) ,
32 nn . BatchNorm1d (128) ,
33 nn .ReLU( ) ,
34 nn . MaxPool1d (2 , s t r i d e =2) )
35 # 128 x 250
36 s e l f . conv6 = nn . Sequent i a l (
37 nn . Conv1d (128 , 128 , k e rne l_s i z e =3, s t r i d e =1, padding=1) ,
38 nn . BatchNorm1d (128) ,
39 nn .ReLU( ) ,
40 nn . MaxPool1d (2 , s t r i d e =2) )
41 # 128 x 125
42 s e l f . conv7 = nn . Sequent i a l (
43 nn . Conv1d (128 , 64 , k e rne l_s i z e =3, s t r i d e =1, padding=1) ,
44 nn . BatchNorm1d (64) ,
45 nn .ReLU( ) ,
46 nn . MaxPool1d (2 , s t r i d e =2) )
47 # 64 x 62
48 s e l f . conv8 = nn . Sequent i a l (
49 nn . Conv1d (64 , 32 , k e rne l_s i z e =3, s t r i d e =1, padding=0) ,
50 nn . BatchNorm1d (32) ,
51 nn .ReLU( ) ,
52 nn . MaxPool1d (2 , s t r i d e =2) )
53

54 # 32 x 30
55 s e l f . f c = nn . Linear (32 ∗ 30 , 10)
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56

57 de f forward ( s e l f , x ) :
58 x = s e l f . conv1 ( x )
59 x = s e l f . conv2 ( x )
60 x = s e l f . conv3 ( x )
61 x = s e l f . conv4 ( x )
62 x = s e l f . conv5 ( x )
63 x = s e l f . conv6 ( x )
64 x = s e l f . conv7 ( x )
65 x = s e l f . conv8 ( x )
66 x = x . view ( x . shape [ 0 ] , 32 ∗ 30)
67 x = s e l f . f c ( x )
68 re turn x

For clarity, this model will be referred to as AudioNet, even if it is an adaptation
of the original Audionet model [33]. The network was trained with stochastic
gradient descent (SGD) with a batch size of 100 and a constant momentum of 0.9
for 50,000 epochs and an initial learning rate of 0.0001 which was reduced every
10,000 steps by a factor of 0.5.

After that I have retrained the model for other 10 epochs starting from the
previous pre-trained model checkpoint, to improve the performance of the model,
also because the dataset of the digits has probably changed in the last few years
and I had to adapt the model to the new audio files.

At the end to see the performance of this model I have created the table 3.1
using the function classification_report of the sklearn.metrics library, considering
1000 testing data.
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Original prediction:
class precision recall f1-score support

0 0.92 0.99 0.95 100
1 1.00 0.91 0.95 100
2 0.82 1.00 0.90 100
3 1.00 0.47 0.64 100
4 0.92 1.00 0.96 100
5 1.00 0.97 0.98 100
6 0.75 0.88 0.81 100
7 0.83 1.00 0.91 100
8 0.98 0.98 0.98 100
9 1.00 0.88 0.94 100

accuracy 0.91 1000
macro avg 0.92 0.91 0.90 1000

weighted avg 0.92 0.91 0.90 1000

Table 3.1: Original prediction

3.3 Adversarial Audio Examples
Adversarial attacks in the audio domain can be classified into two main categories:
non-targeted and targeted attacks.

In targeted attacks, the attacker’s goal is to add a small perturbation δ to an audio
signal that causes the victim’s ASR to transcribe the audio into a certain target
phrase yadv.

y(x + δ) = yadv (3.1)

In non-targeted attacks, the goal is simply to cause a significant error in the
transcription of the audio signal so that the original transcript cannot be correctly
predicted.

y(x + δ)! = y(x) (3.2)

An example of a targeted attack on automatic speech recognition was made by
Carlini and Wagner[34].
Given any audio waveform, they can produce another that is over 99.9% similar,
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Figure 3.1: Targeted and non-targeted attacks

but he transcribes it as any sentence we choose. They summarily do this, they take
an audio waveform x, and target transcription y, the task is to construct another
audio waveform x’= x + δ so that x and x’ sound similar, but so that C(x’)=y. The
attack is considered successful only if the output of the network matches exactly
the target phrase.
They apply their white-box iterative optimization-based attack to Mozilla’s imple-
mentation DeepSpeech end-to-end, and show it has a 100% success rate.
In this experiment I performed a non-targeted attack.

3.3.1 Adversarial audio generation
After loading the model and the dataset, we are ready to use the features offered
by the ART library. Now we see an Adversarial audio example. We will first load
a sample, which here has label 1. The classification model correctly classifies it.
Then, we will use the ART library and perform a Projected Gradient Descent
attack. The attack will modify the spoken audio and will be incorrectly classified
as 9. However, there is almost no hearable difference between the original audio
file and the adversarial audio file, there is only a slight background noise.

1 # wrap model in a ART c l a s s i f i e r
2 c l a s s i f i e r _ a r t = PyTorchCla s s i f i e r (
3 model=model ,
4 l o s s=torch . nn . CrossEntropyLoss ( ) ,
5 opt imize r=None ,
6 input_shape =[1 , DOWNSAMPLED_SAMPLING_RATE] ,
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7 nb_classes =10,
8 c l i p_va lue s =(−2∗∗15, 2∗∗15 − 1)
9 )

1 # load a t e s t sample
2 sample = audiomnist_test [ 3 5 5 9 ]
3

4 waveform = sample [ ’ input ’ ]
5 l a b e l = sample [ ’ d i g i t ’ ]
6

7 # c r a f t a d v e r s a r i a l example with PGD
8 e p s i l o n = .005
9 pgd = ProjectedGradientDescent ( c l a s s i f i e r _ a r t , eps=e p s i l o n )

10 adv_waveform = pgd . generate (
11 x=torch . unsqueeze ( waveform , 0) . numpy( )
12 )
13

14 # eva luate the c l a s s i f i e r on the a d v e r s a r i a l example
15 with torch . no_grad ( ) :
16 _, pred = torch . max( model ( torch . unsqueeze ( waveform , 0) ) , 1)
17 _, pred_adv = torch . max( model ( torch . from_numpy( adv_waveform ) ) , 1)
18

19 # pr in t r e s u l t s
20 pr in t ( f " Or i g i na l p r e d i c t i o n ( ground truth ) : \ t { pred . t o l i s t ( ) [ 0 ] } ({

l a b e l }) " )
21 pr in t ( f " Adver sa r i a l p r e d i c t i o n : \ t \ t \ t {pred_adv . t o l i s t ( ) [ 0 ] } " )

To perform an adversarial attack, the model parameters θ are considered as fixed
and optimized over the input space.
In this experiment, an adversarial example is a perturbed version of the input
waveform x.

x′ = x + δ (3.3)
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where δ is small enough such that the reconstructed speech signal of the perturbed
version x’ is indiscernible from the original signal x by humans, but causes the
network to make an inaccurate prediction. Searching for an appropriate δ can be
formulated as solving the following optimization problem:

max
δ∈∆

Loss(θ, x + δ, yx) (3.4)

where Loss(·) is the Loss function, yx is the label of x and ∆ is a set of allowed
perturbations that formalizes the manipulative power of the attacker.[35]

3.3.2 Fast Gradient Sign Method
Basically, this attack, shorted as FGSM method, calculates the gradients of a loss
function (e.g. mean square error or categorical cross-entropy) concerning the input
audio and then uses the sign of the gradients to create a new audio (e.g. the
adversarial audio) which maximizes the loss.

It consists of taking a single step along the direction of the gradients:

δ = e · sign(∇xLoss(θ, x, yx)) (3.5)

where the sign(·) function simply takes the sign of the gradient and e is a small
value we multiply the signed gradients by to guarantee the perturbations are small
enough that the human ear cannot notice them but large enough that they fool the
neural network. Therefore, given an utterance x, the adversarial spectral feature
can be simply computed as

x′ = x + e · sign(∇xLoss(θ, x, yx)). (3.6)

Although FGSM benefits from being the simplest adversarial attack method, it is
often relatively inefficient in solving the maximization problem (3.4).

3.3.3 Projected Gradient Descent Method
Unlike FGSM, which is a single-pass method, the PGD method is iterative. Starting
with the original input x0 = x, the input is updated iteratively as follows:

xk+1 = clip(xk + α · sign(∇xk
Loss(θ, xk, yxk

))) (3.7)

for k=0,...,K-1.
where α is the step size, K the number of iterations and the clip(·) function applies
element-wise clipping such that:

||xk − x||∞ ≤ e, e ≥ 0 ∈ R (3.8)
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xk represents the final perturbed value. Intuitively, the PGD method can be
thought of as iteratively applying small-step FGSM, but pushing the perturbed
input to stay within the permitted set ∆ at every step.
The PGD method allows for more effective attacks but is naturally more computa-
tionally expensive than FGSM.

PGD performance is still limited by the ability to stick to the local optimum
of the loss function. To mitigate this problem, random restarts are incorporated
into the PGD method [36]. The PGD method with random restarts will be executed
multiple times. The starting position of the adversarial example is randomly chosen
within the collection of permissible perturbations ∆ and the PGD method will be
performed a particular number of times in one run. The last adversarial example
is the one that conducts to the maximum loss.

As I did previously with the original inputs, I created a table to look at the
metrics of the model used on adversarial inputs. As we can see in the table 3.2 the
performance of the model has dropped considerably. For many classes, it has not
been able to classify correctly even once. So the PGD attack on this model can be
considered a success.

Adversarial prediction:
class precision recall f1-score support

0 0.00 0.00 0.00 100
1 0.00 0.00 0.00 100
2 0.00 0.00 0.00 100
3 0.00 0.00 0.00 100
4 0.62 0.40 0.48 100
5 0.21 0.95 0.35 100
6 0.06 0.27 0.10 100
7 0.27 0.17 0.21 100
8 0.00 0.00 0.00 100
9 1.00 0.01 0.02 100

accuracy 0.18 1000
macro avg 0.22 0.18 0.12 1000

weighted avg 0.22 0.18 0.12 1000

Table 3.2: Adversarial prediction
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3.4 MP3 compression defense

Afterwards, we’ll apply Mp3 compression, which is a simple input preprocessing
defence, namely Mp3 compression. Ideally, we want this defence to result in correct
predictions when applied both to the original and the adversarial audio waveforms.

MP3 is an audio compression algorithm that uses a lossy perceptual audio coding
scheme based on a psychoacoustic model to discard audio information below the
hearing threshold and thereby reduce the file size.
Schönherr[37] recently hypothesized that MP3 could be a solid countermeasure to
Audio Adversarial Examples attacks, as it could remove exactly those inaudible
ranges in the audio where adversarial noise lies.

1 # i n i t i a l i z e Mp3Compression de f ense
2 mp3_compression = Mp3CompressionPyTorch ( sample_rate=

DOWNSAMPLED_SAMPLING_RATE, c h a n n e l s _ f i r s t=True )
3

4 # apply de f ense to o r i g i n a l input
5 waveform_mp3 = mp3_compression ( torch . unsqueeze ( waveform , 0) . numpy( ) )

[ 0 ]
6

7

8 # apply de f ense to a d v e r s a r i a l sample
9 adv_waveform_mp3 = mp3_compression ( pgd . generate (

10 x=torch . unsqueeze ( waveform , 0) . numpy( ) ) ) [ 0 ]
11

12 # eva luate the c l a s s i f i e r
13 with torch . no_grad ( ) :
14 _, pred_mp3 = torch . max( model ( torch . Tensor (waveform_mp3) ) , 1)
15 _, pred_adv_mp3 = torch . max( model ( torch . Tensor (adv_waveform_mp3) )

, 1)

In my experiment this defence as you can see from the tables 3.3 and 3.4, even if it
has still good performance on original input, it was not so effective on adversarial
examples, as the accuracy of the model that used mp3 compression on adversarial
examples only went from 18% to 26%.
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Original prediction with MP3 compression:
class precision recall f1-score support

0 0.85 1.00 0.92 100
1 1.00 0.85 0.92 100
2 0.96 0.97 0.97 100
3 1.00 0.44 0.61 100
4 0.83 1.00 0.91 100
5 0.92 1.00 0.96 100
6 0.68 1.00 0.81 100
7 0.77 1.00 0.87 100
8 0.97 0.71 0.82 100
9 1.00 0.75 0.86 100

accuracy 0.87 1000
macro avg 0.90 0.87 0.86 1000

weighted avg 0.90 0.87 0.86 1000

Table 3.3: Original prediction with MP3 compression

Adversarial prediction with MP3 compression:
class precision recall f1-score support

0 1.00 0.05 0.10 100
1 0.00 0.00 0.00 100
2 0.00 0.00 0.00 100
3 0.00 0.00 0.00 100
4 0.58 0.80 0.67 100
5 0.14 1.00 0.25 100
6 0.25 0.24 0.24 100
7 0.73 0.73 0.56 100
8 0.00 0.00 0.00 100
9 0.00 0.00 0.00 100

accuracy 0.26 1000
macro avg 0.27 0.26 0.18 1000

weighted avg 0.27 0.26 0.18 1000

Table 3.4: Adversarial prediction with MP3 compression
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3.5 Adaptive whitebox attack to defeat MP3 com-
pression defense

The last step of this experiment is applying the adaptive whitebox attack that is
able to bypass in some cases the Mp3 compression defense.

I set up a new Pytorch classifier by setting MP3 compression as preprocessing
defense. Subsequently to create the new adversarial audio example I used the
previous PGD algorithm with a number of iterations equal to 40 and a step size
attack at each iteration of 0.0000125.

Adversarial prediction with adaptive classifier:
class precision recall f1-score support

0 0.11 0.10 0.11 100
1 1.00 0.15 0.26 100
2 0.00 0.00 0.00 100
3 1.00 0.01 0.02 100
4 0.19 0.91 0.32 100
5 0.25 0.39 0.31 100
6 0.01 0.01 0.01 100
7 0.23 0.19 0.21 100
8 1.00 0.09 0.17 100
9 0.95 0.18 0.30 100

accuracy 0.20 1000
macro avg 0.47 0.20 0.17 1000

weighted avg 0.47 0.20 0.17 1000

Table 3.5: Adversarial prediction with adaptive classifier:
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3.6 Conclusion
So far I have described how we can apply the ART library to audio data. By
providing a pretrained PyTorch model and loading it via ART’s PyTorchClassifier
we can easily plug in several off-the-shelf attacks like Projected Gradient Descent.

Furthermore, I have demonstrated how to apply the Mp3 compression defence
and demonstrated how to circumvent it with an adaptive whitebox attack.

In the following, we investigate the performance of the model in the various
prediction phases both on clean inputs and on adversaries to analyze how effective
these attacks are and whether the Mp3 compression defence was useful or not.

3.6.1 Statistics
One of the key concepts in classification performance is the confusion matrix, which
is a tabular view of model predictions against ground truth labels.

Figure 3.2: Confusion Matrix

• TP: it means True Positive and it represents the number of predictions for a
target class where the actual class and the class predicted are the same and
refer to the target class.

• TN: it means True Negative and it represents the number of predictions for a
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target class where the actual class is not the class considered as well as the
predicted class.

• FP: it means False Positive and it represents the number of predictions for a
target class where the actual class is not the target class but it is predicted as
the target class.

• FN: it means False Negative and it represents the number of predictions for a
target class where the actual class is the target class but it is predicted as a
different class.

To better understand the graph it is useful to know the various definitions of the
metrics.

• Accuracy: it is the most intuitive performance metric and it is the proportion
of correct predictions (both true positives and true negatives) among the total
number of predictions.

Accuracy = TP + TN

TP + FP + FN + TN
(3.9)

• Precision: it is the fraction of relevant instances among the retrieved instances

Precision = TP

TP + FP
(3.10)

• Recall: it is also called sensitivity or true positive rate, it indicates the ratio
of positive instances correctly identified by the machine learning system.

Recall = TP

TP + FN
(3.11)

• F1-Score: it is for definition the harmonic mean of precision and recall.
Compared to a conventional average, the harmonic one gives greater weight to
the values. This causes a classifier to get a high F1 score only when accuracy
and recovery are both high.

F1 − Score = 2 · Recall · Precision

Recall + Precision
(3.12)
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Figure 3.3: Statistics

As we can see in the graph 3.3, both the original model and the one with MP3
compression are very accurate on the original data with an accuracy of around 90%.
The most striking thing is the great effectiveness of the PGD attack, which causes a
considerable decrease in the accuracy of the model, in fact, it goes from 91% to 18%.

Another important aspect to consider is that Mp3 compression, although it has
always been considered an effective form of defence in many studies, in this model
it is not able to significantly improve the accuracy of the model on adversarial
examples, in fact, the accuracy only increases from 18% to 26%.

not only the mp3 defence is not effective, but it can also be circumvented with the
adaptive white box attack, which allows obtaining a very low accuracy, passing
from 26% of the adversarial data preprocessed with mp3 compression to 20%, a
value very close to 18% accuracy obtained on the opponent’s data without any
kind of defence.
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Chapter 4

Neural network model
robust against audio evasion
attacks

4.1 Introduction
As we saw in the previous chapter, mp3 compression is not a very effective defence
against evasion attacks. For this reason, I have studied a new type of defence,
designing a neural network of neural networks, capable of distinguishing if audio is
an adversarial example, and behaving accordingly, giving this audio input to the
network trained with the adversarial training if classified as an adversarial, or to
the original network if classified as clean.

Furthermore, in this chapter two models trained to classify numbers from 0 to 9 are
compared, the first model (called Audionet) is based on the audio waveforms while
the second model (called Spectrum for convenience) first converts the audio into
an image by processing its spectrogram and only subsequently is being trained.
I used the new Spectrum model to also have a comparison between the two types
of classification, one based directly on audio, and the other on images, and see
which of the models performs better.
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4.2 Training

I retrained the "Audionet" model, previously mentioned in chapter 2, used to present
attacks with the ART library and trained a new "Spectrum" model, based on the
classification of spectrograms generated from audio files.

• Audionet : this model uses exactly the same old neural network but retrained
with a smaller dataset.

• Spectrum. Compared to "Audionet" this model does not work as a classifier of
audio but of images, since from the audio dataset it generates the respective
spectrograms that are saved as images and on which the model is trained.

The "Spectrum" model uses a different neural network that consists of 6 weight
layers that are organized in series as follows:
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Figure 4.1: Audio spectrogram

As you can see, the architectures of the two models are very different.

CNNet has only 3 convolutional levels, one of which performs the Dropout
function (a regularization technique to reduce overfitting and consists in ignor-
ing some nodes during training),and at the end there are two fully connected
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layers (the first with 50s output and the last with 10)

1 c l a s s CNNet(nn . Module ) :
2 de f __init__( s e l f ) :
3 super ( ) . __init__ ( )
4 s e l f . conv1 = nn . Conv2d (3 , 32 , k e rne l_s i z e =5)
5 s e l f . conv2 = nn . Conv2d (32 , 64 , k e rne l_s i z e =5)
6 s e l f . conv2_drop = nn . Dropout2d ( )
7 s e l f . f l a t t e n = nn . F lat ten ( )
8 s e l f . f c 1 = nn . Linear (51136 , 50)
9 s e l f . f c 2 = nn . Linear (50 , 10)

10

11

12 de f forward ( s e l f , x ) :
13 x = F. r e l u (F . max_pool2d ( s e l f . conv1 ( x ) , 2) )
14 x = F. r e l u (F . max_pool2d ( s e l f . conv2_drop ( s e l f . conv2 ( x ) ) ,

2) )
15 x = s e l f . f l a t t e n ( x )
16 x = F. r e l u ( s e l f . f c 1 ( x ) )
17 x = F. dropout (x , t r a i n i n g=s e l f . t r a i n i n g )
18 x = F. r e l u ( s e l f . f c 2 ( x ) )
19 re turn F . log_softmax (x , dim=1)

The CCNet was trained with the Adam optimizer with a batch size of 15 for
20 epochs with a learning rate of 0.0001. The learning rate is a very important
hyperparameter that allows us to define how much to update the parameters
of the model at each batch.

After various attempts I chose this learning rate which is so low, of only
0.0001, because although it requires more epochs and causes a slowdown in
the learning process, it allowed me to accurately train my model and find the
optimal solution, unlike high learning rate values that although they would
have speeded up the learning process and decreased the number of epochs,
they would not have led to an optimal balancing of the model weights, but
would have found a solution that can be considered sub-optimal.
I have used 4000 audio files in the training phase and 1000 in the testing
phase.
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4.3 Adversarial training
Adversarial training, that consists of training the model on adversarial examples,
is one of the few defenses against adversarial attack.

Unfortunately, the high cost of generating strong adversarial examples makes
standard adversarial training on large-scale problems impractical.
Adversarial training can be traced back to [38], where models were strengthened
by producing adversarial examples and injecting them into the training data. The
robustness achieved by the adversarial training depends on the strength of the
adversarial examples used [39], in fact this defense has the disadvantage of being
effective only against specific adversarial attack.

Figure 4.2: Traditional training
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Figure 4.3: Adversarial training

Training on fast non-iterative attacks such as FGSM only results in robustness
against non-iterative attacks and not against PGD attacks [40]. In this case, I have
created adversarial examples with the PGD attack using the ART library.

• Audionet

Also for the Adversarial Training I have used the previous "Audionet" model
but trained with the dataset containing also adversarial examples (20% of
total examples), so 4000 original inputs and 1000 adversarial inputs. The
network was trained with stochastic gradient descent with a batch size of 64
and constant momentum of 0.9 for 60 epochs with a learning rate of 0.0001.

• Spectrum

I have used the previous "CNNet" model but trained with the dataset contain-
ing also adversarial examples (20% of total examples), so 4000 original inputs
and 1000 adversarial inputs. The network was trained with Adam optimizer
with a batch size of 15 for 30 epochs with a learning rate of 0.0001
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4.4 Binary classifier
Afterwards, I trained a binary classifier to predict whether a particular audio file is
considered an adversarial example or original.

• Audionet

Also for the binary classifier, I have used the previous "Audionet" model
but with a single difference in the last layer, only two output channels instead
of ten.
The network was trained with stochastic gradient descent with a batch size
of 64 and constant momentum of 0.9 for 10 epochs with a learning rate of
0.0001. I have used 4000 original audio and 1000 adversarial audio in the
training phase. For the testing phase I have used 200 adversarial audio and
300 original audio and the performance are excellent, reaching the 100% of
accuracy.

Figure 4.4: Audionet Binary Classifier
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1 c l a s s RawAudioCNN(nn . Module ) :
2 " " " Adaption o f AudioNet ( arXiv : 1807 . 03418 ) . " " "
3 de f __init__( s e l f ) :
4 super ( ) . __init__ ( )
5 # 1 x 8000
6 s e l f . conv1 = nn . Sequent i a l (
7 nn . Conv1d (1 , 100 , k e rne l_s i z e =3, s t r i d e =1, padding=2)

,
8 nn . BatchNorm1d (100) ,
9 nn .ReLU( ) ,

10 nn . MaxPool1d (3 , s t r i d e =2) )
11 # 32 x 4000
12 s e l f . conv2 = nn . Sequent i a l (
13 nn . Conv1d (100 , 64 , k e rne l_s i z e =3, s t r i d e =1, padding

=1) ,
14 nn . BatchNorm1d (64) ,
15 nn .ReLU( ) ,
16 nn . MaxPool1d (2 , s t r i d e =2) )
17 # 64 x 2000
18 s e l f . conv3 = nn . Sequent i a l (
19 nn . Conv1d (64 , 128 , k e rne l_s i z e =3, s t r i d e =1, padding

=1) ,
20 nn . BatchNorm1d (128) ,
21 nn .ReLU( ) ,
22 nn . MaxPool1d (2 , s t r i d e =2) )
23 # 128 x 1000
24 s e l f . conv4 = nn . Sequent i a l (
25 nn . Conv1d (128 , 128 , k e rne l_s i z e =3, s t r i d e =1, padding

=1) ,
26 nn . BatchNorm1d (128) ,
27 nn .ReLU( ) ,
28 nn . MaxPool1d (2 , s t r i d e =2) )
29 # 128 x 500
30 s e l f . conv5 = nn . Sequent i a l (
31 nn . Conv1d (128 , 128 , k e rne l_s i z e =3, s t r i d e =1, padding

=1) ,
32 nn . BatchNorm1d (128) ,
33 nn .ReLU( ) ,
34 nn . MaxPool1d (2 , s t r i d e =2) )
35 # 128 x 250
36 s e l f . conv6 = nn . Sequent i a l (
37 nn . Conv1d (128 , 128 , k e rne l_s i z e =3, s t r i d e =1, padding

=1) ,
38 nn . BatchNorm1d (128) ,
39 nn .ReLU( ) ,
40 nn . MaxPool1d (2 , s t r i d e =2) )
41 # 128 x 125
42 s e l f . conv7 = nn . Sequent i a l (
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43 nn . Conv1d (128 , 64 , k e rne l_s i z e =3, s t r i d e =1, padding
=1) ,

44 nn . BatchNorm1d (64) ,
45 nn .ReLU( ) ,
46 nn . MaxPool1d (2 , s t r i d e =2) )
47 # 64 x 62
48 s e l f . conv8 = nn . Sequent i a l (
49 nn . Conv1d (64 , 32 , k e rne l_s i z e =3, s t r i d e =1, padding=0)

,
50 nn . BatchNorm1d (32) ,
51 nn .ReLU( ) ,
52 # maybe r e p l a c e pool with dropout here
53 nn . MaxPool1d (2 , s t r i d e =2) )
54

55 # 32 x 30
56 s e l f . f c = nn . Linear (32 ∗ 30 ,2)
57

58 de f forward ( s e l f , x ) :
59 x = s e l f . conv1 ( x )
60 x = s e l f . conv2 ( x )
61 x = s e l f . conv3 ( x )
62 x = s e l f . conv4 ( x )
63 x = s e l f . conv5 ( x )
64 x = s e l f . conv6 ( x )
65 x = s e l f . conv7 ( x )
66 x = s e l f . conv8 ( x )
67 x = x . view ( x . shape [ 0 ] , 32 ∗ 30)
68 x = s e l f . f c ( x )
69 re turn x

• Spectrum

I have used the same "CNNet" neural network with only 2 output chan-
nels.
The network was trained with Adam optimizer with a batch size of 15 for 20
epochs with a learning rate of 0.0001.

I have used 4000 original audio and 2500 adversarial examples for this classifier,
5200 of them used in the training phase and 1300 in the testing phase. The
performance of this binary classifier are excellent, it is able to classify correctly
with 100% accuracy.
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Figure 4.5: Spectrum Binary Classifier

1 c l a s s CNNet(nn . Module ) :
2 de f __init__( s e l f ) :
3 super ( ) . __init__ ( )
4 s e l f . conv1 = nn . Conv2d (3 , 32 , k e rne l_s i z e =5)
5 s e l f . conv2 = nn . Conv2d (32 , 64 , k e rne l_s i z e =5)
6 s e l f . conv2_drop = nn . Dropout2d ( )
7 s e l f . f l a t t e n = nn . F lat ten ( )
8 s e l f . f c 1 = nn . Linear (51136 , 50)
9 s e l f . f c 2 = nn . Linear (50 , 2)

10

11

12 de f forward ( s e l f , x ) :
13 x = F. r e l u (F . max_pool2d ( s e l f . conv1 ( x ) , 2) )
14 x = F. r e l u (F . max_pool2d ( s e l f . conv2_drop ( s e l f . conv2 ( x ) ) ,

2) )
15 #x = x . view ( x . s i z e (0 ) , −1)
16 x = s e l f . f l a t t e n ( x )
17 x = F. r e l u ( s e l f . f c 1 ( x ) )
18 x = F. dropout (x , t r a i n i n g=s e l f . t r a i n i n g )
19 x = F. r e l u ( s e l f . f c 2 ( x ) )
20 re turn F . log_softmax (x , dim=1)
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4.5 Combined model
Now, these models are used together, the binary classifier works as a filter for the
inputs. If the inputs are classified as original will be sent to the original neural
network that has high performance with both Spectrum and Audionet.

Instead, if it is classified as adversarial will be sent to the neural network with
adversarial training that has worse performance than the original model but it is
more robust to adversarial examples.

Figure 4.6: Network of neural network
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4.5.1 Audionet
On average, considering the whole Audionet combined model and 2000 test data
(1000 adversarial and 1000 original), the model has an accuracy of 0.82, a precision
of 0.83, recall of 0.82 and f1-score 0.82

Audionet original prediction:
class precision recall f1-score support

0 0.91 1.00 1.00 100
1 0.92 0.99 0.95 100
2 0.89 1.00 0.94 100
3 1.00 0.87 0.93 100
4 0.96 1.00 0.98 100
5 0.98 1.00 0.99 100
6 0.99 1.00 1.00 100
7 0.93 1.00 0.97 100
8 1.00 0.93 0.96 100
9 1.00 0.76 0.86 100

accuracy 0.95 1000
macro avg 0.96 0.96 0.95 1000

Table 4.1: Audionet original prediction
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Audionet Adversarial prediction:
class precision recall f1-score support

0 0.50 0.86 0.63 100
1 0.57 0.46 0.51 100
2 0.55 0.62 0.58 100
3 0.46 0.41 0.43 100
4 0.62 0.91 0.74 100
5 0.86 0.88 0.87 100
6 0.92 0.88 0.90 100
7 0.73 0.37 0.49 100
8 0.89 0.64 0.74 100
9 0.94 0.74 0.83 100

accuracy 0.68 1000
macro avg 0.70 0.68 0.67 1000

Table 4.2: Audionet adversarial prediction

4.5.2 Spectrum
On average, considering the whole Spectrum combined model and 2000 test data
(1000 adversarial and 1000 original), the model has an accuracy of 0.84, a precision
of 0.85, recall of 0.84 and f1-score 0.84

Spectrum original prediction:
class precision recall f1-score support

0 0.85 0.99 0.91 100
1 0.80 0.98 0.88 100
2 0.97 0.92 0.94 100
3 0.99 0.96 0.97 100
4 0.99 1.00 1.00 100
5 0.97 1.00 0.99 99
6 1.00 1.00 1.00 100
7 0.97 0.89 0.93 100
8 1.00 1.00 1.00 100
9 0.99 0.72 0.83 103

accuracy 0.95 1002
macro avg 0.95 0.95 0.94 1002

Table 4.3: Spectrum original prediction
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It can be seen that in total 1002 test samples were classified as original and 998
as adversarial. This is due to the binary classifier which did not correctly predict
all the data.

Spectrum Adversarial prediction:
class precision recall f1-score support

0 0.81 0.51 0.63 100
1 0.68 0.68 0.68 100
2 0.73 0.60 0.66 100
3 0.65 0.53 0.58 100
4 0.64 0.80 0.71 100
5 0.69 0.82 0.75 101
6 0.94 0.84 0.89 100
7 0.95 0.87 0.91 100
8 0.65 0.97 0.78 100
9 0.76 0.74 0.75 97

accuracy 0.74 998
macro avg 0.75 0.74 0.73 998

Table 4.4: Spectrum Adversarial prediction
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4.6 Conclusion
In this chapter we have demonstrated how we can build a more robust model and
what kind of architecture is better at predicting correctly even when there are
adversarial examples.

Figure 4.7: Audionet original predictions

As we can see in figure 4.7 and in figure 4.8 both models are very efficient and
uniform on original audio examples, having very similar metric values across classes.
Audionet model is slightly more efficient on the original inputs than on Spectrum
model, considering the F1-score, there is an almost insignificant difference, of only
1%, due to worse performances on classes 0 and 9.

Figure 4.8: Spectrum original predictions

As we can see in the figures 4.9 and 4.10 that represent the models trained with
the adversarial training, we immediately notice in both cases that the values of the
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Figure 4.9: Audionet adversarial predictions

various metrics (precision, recall and F1-score) are much lower than the models
working on original inputs.

In particular, we can see how the Spectrum model performs better than Au-
dionet, in fact it has an accuracy of 74% compared to Audionet’s 68%.

On the Audionet model it can be seen how the PGD attack is very effective
especially on classes 1,2,3 and 7, causing a considerable decay in performance.
about 30-40%, considering the F1-score metric.

Figure 4.10: Spectrum adversarial predictions

Instead, the Spectrum model can be considered much more robust. Although
the attack had a big impact on the 0,1,2 and 3 classes, it only caused a loss of
20-30% considering the F1-score.
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Chapter 5

Voice Authentication and
Voice Cloning

Voice authentication is a form of biometric authentication. The term Biometrics
defines the use of unique physical characteristics such as facial features or finger-
prints[41]. Speech recognition is a type of biometrics, and speech authentication is
the use of a user’s speech to perform the authentication process.

5.1 Voice Authentication
Like fingerprints, the user’s voice can act as a unique indicator of a user’s identity.
This means that voice authentication brings many of the same benefits as other
biometrics, including:

1. More difficult to falsify than other forms of authentication.
It is possible to steal a password and copy or fake a token if security is not
guaranteed. Biometric data is much more difficult to falsify, all things being
equal, and much more difficult to steal through practices such as wide-ranging
phishing attacks.

2. Affordable and accessible on a variety of devices.
Biometrics is becoming incredibly common on devices such as laptops, tablets
or smartphones. This greatly simplifies integrating next-level security into a
productive device ecosystem for distributed teams.

3. Contactless access.
Nowadays, this is an important property, almost unique to voice recognition
(among a few other biometric data such as face scanning). Using speech
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recognition, you don’t have to touch anything, which, during the pandemic
period, greatly helps to reduce the risks and be more protected from the virus.

4. It supports a simplified user experience.
Getting into a system shouldn’t be difficult, regardless of whether or not it is
one of your employees or one of your customers or clients. With biometrics,
secure authentication methods can rely only on the person’s presence, rather
than remembering a strong password.

Speech recognition works by dividing recordings into frequency segments and using
them to create a single "fingerprint" to identify different inflexions and tones in a
user’s voice, which can then act as an artefact for identity verification.

5.1.1 Experiment
I created a notebook to do an example of voice authentication, reflecting a real
case. Authentication systems often ask the user to say certain words to allow access
to various services. For example, they can ask to say a list of numbers, for this, I
have trained a model capable of distinguishing the numbers from 0 to 9 said by a
particular speaker and the speaker himself.

In this notebook, I extracted features from the voice input using MFCC (Mel-
frequency cepstral coefficients) followed by training and evaluation of the developed
GMM (Gaussian mixture model).

For the feature extraction I have used the mfcc function of python_speech_features
[42] library, with this configuration: rate=8000, length of the analysis window= 25
ms, the step between successive windows = 10 ms, number of cepstrum to return
= 20 and a default value (26) Filterbanks.

1 mfcc_feat = mfcc . mfcc ( audio , rate , 0 . 025 , 0 . 01 , 20 , appendEnergy = True )

For the training i have used the Gaussian Mixture function of sklearn.mixture
library[43].

1 gmm = mixture . GaussianMixture ( n_components = 16 , max_iter = 200 ,
covar iance_type=’ diag ’ , n_init = 3)

2 gmm. f i t ( f e a t u r e s )

For the testing phase i have used the log-likelihood score to decide the winner
model.
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1 # Read the t e s t d i r e c t o r y and get the l i s t o f t e s t audio f i l e s
2 path_predicted_dict = d i c t ( )
3

4 f o r path in t e s t _ f i l e :
5

6

7 sr , audio = read ( path )
8 vec to r = ex t ra c t_ f ea tu r e s ( audio , 8000 )
9

10 l o g _ l i k e l i h o o d = np . z e ro s ( l en ( models ) )
11

12 f o r i in range ( l en ( models ) ) :
13 gmm = models [ i ] #checking with each model one by one
14 s c o r e s = np . array (gmm. s co r e ( vec to r ) )
15 l o g _ l i k e l i h o o d [ i ] = s c o r e s . sum ( )
16

17 winner = np . argmax ( l o g _ l i k e l i h o o d )
18 pr in t ( " \ t D i g i t & Speaker detec ted as − " , speake r s_d ig i t [ winner ] )
19 path_predicted_dict [ path ] = speake r s_d ig i t [ winner ]

I have used 3600 audio for the training phase and 1400 for testing phase. The
results were really good as the model was able to predict with 99.85% accuracy.

MFCC Features Extraction

The first and most relevant step in any ASR system is feature extraction, which
allows us to consider only the components of the audio signal that are useful to
identify the linguistic content and discard all the other things such as background
noise.
It’s important to understand that the sounds generated by a human being are
filtered by the anatomy of the vocal tract, determining which sound comes out. If
we can accurately determine the shape of the vocal tract, this should give us an
accurate representation of the phoneme produced. The shape of the vocal tract
shows itself in the envelope of the short-term power spectrum and the task of the
MFCCs is to accurately represent this envelope.
The explanation on how to create MFCCs is based on the written tutorial by James
Lyons, the creator of the library python_speech_features used in the experiment
[44]. The various steps are as follows:

1. Frame the signal into short frames.
An audio signal is constantly evolving, so for simplicity, it’s assumed that on
short time scales the audio signal does not change much. This is why the
signal it’s usually divided into frames of 20-40 ms ( in my experiment I have
used 25 ms). If the frame is much shorter we do not have enough samples to
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Figure 5.1: MFCC steps

obtain a reliable spectral estimate, if it is longer the signal changes too much
in the whole frame. On each frame, a window is applied to thin the signal
towards the frame boundaries.

2. For each windowed frame calculate the periodogram estimate of the power
spectrum applying Discreet Fourier Transformation (DFT).
This is motivated by the human cochlea (an organ in the ear) which vibrates at
different points depending on the frequency of the incoming sounds. Depending
on the position in the vibrating cochlea, different nerves are activated informing
the brain that certain frequencies are present[45]. The periodogram estimate
does a similar job of identifying which frequencies are present in the frame.

3. Apply the Mel filterbank to the power spectrum, and sum the energy in each
filter.
The spectral estimate of the periodogram still contains a lot of information
that is not necessary for ASR. In detail, the cochlea can not distinguish the
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difference between two closely spaced frequencies. This effect becomes stronger
as the frequencies increase. For this reason, we take some groups of containers
from the periodogram and summarize them to get an idea of how much energy
exists in the various frequency regions. This is done by the Mel filter bank.
We need to know approximately how much energy occurs at each point. The
Mel scale shows exactly how to space filter banks and how wide to make them.
To calculate filterbank energies, each filterbank is multiplied by the power
spectrum, then add up the coefficients. After that, 26 numbers give us an
indication of how much energy was present in each filterbank.

4. Logarithm of all the energies of the filter bank.
After creating the energies of the filter bank, we take their logarithm. This is
also motivated by human hearing because we don’t hear volume on a linear
scale. Typically, to double the perceived volume of a sound, we need to put
in 8 times more energy. Logarithm allows using cepstral mean subtraction,
which is a channel normalization technique [46].

5. The last step is computing the DCT (Discrete Cosine Transform) of the log
filterbank energies to calculate the 26 cepstral coefficients, but for ASR are
used only the lower 12.

The Mel scale relates the perceived frequency of a pure tone to its measured
actual frequency. The following formula is used to convert the frequency to Mel
scale :

M(f) = 1125 ln (1 + f/700) (5.1)

To go from Mel scale to frequency:

M−1(m) = 700 (exp (m/1125) − 1) (5.2)
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Training with Gaussian Mixture Model

After extracting features, we need to create a speaker model using some statistical
model like GMM statistical model. To explain this procedure I have taken as
reference the article "Gaussian Mixture Models Explained"[47] written by Oscar
Contreras Carrasco and published on towardsdatascience.com. A Gaussian Mixture
is a function that is comprised of several Gaussians, each identified by m ∈ 1,. . . ,
M, where M is the number of clusters of our dataset. Each Gaussian m in the
mixture is comprised of the following parameters:

• A mean µ that defines its centre.

• A covariance q that defines its width.

• A mixing probability π that defines how big the Gaussian function will be.

We can see these parameters graphically: Here we can see that there are three

Figure 5.2: GMM parameters

Gaussian functions, therefore K = 3. Each Gaussian explains the data contained
in each of the three available clusters. The mixing coefficients are themselves
probabilities and must satisfy this condition:

MØ
i=1

πi = 1 (5.3)

Now, to determine the optimal values for these parameters, we need to make sure
that each Gaussian fits the data points belonging to each cluster, this is exactly
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what maximum likelihood does.
In general, the Gaussian density function is given by:

bi(x⃗) = N(x⃗|µ,
Ø

) = 1
(2π)D/2| q |1/2 exp

3
−1

2(x⃗ − µ⃗)T
Ø−1(x⃗ − µ⃗)

4
(5.4)

Where our data points are represented by x, D is the number of dimensions of
each data point. µ and q are the mean and the covariance respectively. If we have
a data set consisting of N = 1000 three-dimensional points (D = 3), then x will be
a 1000 × 3 matrix. µ will be a 1 × 3 vector and q will be a matrix 3 × 3. It may
be useful to take the log of this equation, which is given by:

lnN(x⃗|µ,
Ø

) = −D

2 ln 2π − 1
2 ln

Ø
−1

2(x⃗ − µ⃗)T
Ø−1(x⃗ − µ⃗) (5.5)

A Gaussian mixture density[48] is a weighted sum of M component densities given
by:

p(x⃗|λ) =
MØ

i=1
πibi(x⃗) (5.6)

The complete density of the Gaussian mixture is parameterized by the covariance
matrices, the mean vectors, and the weights of the mixtures of all the component
densities. These parameters are collectively represented by the notation:

λ = {πi, µi,
Ø

i} = 1, ..., M (5.7)

For speaker identification, each speaker is represented by a GMM and is referred
to by his model λ.

Given training speech data from a speaker’s voice, the goal of speaker model
training is to estimate the parameters of the GMM λ, which in some sense best
matches the distribution of the training feature vectors. The most popular method
for training GMM is maximum likelihood estimation.

Maximum likelihood estimation aims to find the model parameters, which maximize
the likelihood of the GMM given the training data. For a sequence of T training
vectors X = (x1.., xT ) the GMM likelihood can be written as:

P (x|λ) =
TÙ

t=1
P (x⃗t|λ) (5.8)

Maximization of the quantity in 5.8 is accomplished by running the expectation-
maximization algorithm. The idea is beginning with an initial model λ0, to estimate
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a new model λ1 satisfying p(X|λ1) ≥ p(X|λ0).
The new model then becomes the initial model for the next iteration and the
process is repeated until a certain convergence threshold is reached. The following
formulas are used on each estimation iteration.

Mixture weights:

π⃗i = 1
T

TØ
t=1

P i(i|x⃗t, λ) (5.9)

Means:

µ⃗i =
qT

t=1 P i(i|x⃗t, λ)x⃗tqT
t=1 P i(i|x⃗t, λ)

(5.10)

Variances:

σ⃗2
i =

qT
t=1 P i(i|x⃗t, λ)x⃗2

tqT
t=1 P i(i|x⃗t, λ)

− µ⃗i
2 (5.11)

The posterior probability for an acoustic class is given by:

P (i|x⃗t) = Pibi(x⃗t)qM
k=1 Pkbk(x⃗)

(5.12)

For speaker identification, a group of S speakers S=(1,2,...,S) is represented by
GMM’s λ1,λ2...λs. The objective is to find the speaker model, which has the
maximum posterior probability for a given observation sequence.

Ŝ = arg max P (λk|X) = arg max P (X|λk)P (λk)
p(X) (5.13)

Where the second equation is due to Bayes’s rule.
Assuming equally likely speakers (P(λk)= 1/S) and noting that p(X) is the same
for all speaker models, the classification becomes:

Ŝ = arg max P (X|λk) (5.14)

Finally, with logarithms the speaker identification system gives:

Ŝ = arg max
TØ

t=1
logP (xt|λk) (5.15)

In which P (xt|λk) is given in equation 5.6 .
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5.1.2 Disadvantages and risks
While AI and biometrics have evolved over time, that doesn’t mean voices don’t
have weaknesses. There are several disadvantages, some unique to voice technology
and others shared by other biometric data.
Voice authentication is:

1. Hackable.
As with other types of data, the system stores voice data on a server or
database. If that point isn’t protected, malicious people can steal the data
and use it to create matching fake records.

2. Non-replaceable.
If the biometrics is compromised, it cannot be replaced as a password because
you cannot just change your voice.

3. Not always applicable
Speech recognition needs a quiet area. The noises and voices of the surrounding
environment outside of the user’s voice can interfere with authentication.

4. Not infallible.
This also applies to speech recognition. However, industry innovation in
artificial intelligence has made biometrics authentication methods practicable
even for secure applications such as payment processing. In any case, it is
important not to rely on a single form of identification but to always use at
least 2FA (2-Factor Authentication).

Some of these limitations can lead to real security problems or limit the use of this
technology.:

1. Changes to the voice can affect access.
Users who relied on facial recognition to unlock their phones quickly learned
during the pandemic (and required the use of face masks) how relying on a
single method can restrict access. A noisy environment can affect authenti-
cation, but even normal incidents can include a cold, sore throat, or small
changes in voice, accent, or speech.

2. Fake voice
New technologies can manipulate voices to sound like other voices and, in
some cases, can fool biometrics authentication systems. These voice cloning
techniques go hand in hand with the improvement of voice authentication
technologies and are becoming more and more common.
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5.2 Deep Fake Voice Cloning
Voice cloning is the creation of an artificially produced voice that is capable of
simulating a natural human voice. In some cases, the difference between the real
and the fake voice is unnoticeable to the average person.
It takes snippets of a text recorded by a person and applies artificial intelligence
(AI) to dissect speech patterns from speech samples. This gives the user the ability
to create audio recordings or streams that were not spoken by the owner of the
voice[49].

To produce fake voices I have used a repository on GitHub [50] that contains
a neural network-based system for text-to-speech (TTS) synthesis that can be
considered an implementation of Transfer Learning from Speaker Verification to
Multispeaker Text-To-Speech Synthesis (SV2TTS) [51] that is able to generate
speech audio in the voice of different speakers, including those unseen during
training.

This system consists of three independently trained components:

• Encoder, that is able to generate a fixed-dimensional embedding vector from
only seconds of reference speech from a target speaker;

• Synthesizer based on Tacotron 2 that generates a mel spectrogram from text,
conditioned on the speaker embedding;

• Vocoder that converts the mel spectrogram generated by the synthesizer into
time domain waveform samples.

Figure 5.3: Voice cloning model architecture

Now we see each of these components in detail.

60



Voice Authentication and Voice Cloning

5.2.1 Encoder
The speaker encoder is used to condition the synthesis network on a reference
voice signal from the desired target speaker. For a good generalization, the use
of a representation that captures the characteristics of the different speakers and
identifies them using only a short adaptation signal, regardless of the background
noise and its phonetic content, is fundamental. These requirements are met using
a discriminatory speaker model trained on a text-independent speaker verification
task.

This model refers to Generalized End-to-End Loss for Speaker Verification [52],
which proposed an extremely accurate and scalable neural network framework for
speaker verification. A sequence of log-mel spectrogram frames computed from a
speech expression of arbitrary length is mapped from this network to a d-vector, a
fixed-size embedding vector.

The network is trained to optimize generalized end-to-end (GE2E) speaker verifi-
cation loss, so that the embodiment of the expressions of the same speaker has a
high cosine similarity, while those of the expressions of different speakers are very
distant from each other in the embedding space.

Figure 5.4: GE2E loss pushes the embedding towards the centroid of the true
speaker, and away from the centroid of the most similar different speaker.
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In the training phase, the model computes the embeddings eij (1 ≤ i ≤ N,1 ≤
j ≤ M) of M utterances of fixed duration from N speaker and for each speaker is
derived a speaker embedding:

ci = 1
M

MØ
j=1

eij (5.16)

The similarity matrix S in this application is defined as the scaled cosine similarities
between each embedding vector eij to all centroids ck (1 ≤ k ≤ N)

Sij,k = w · cos(eij, ck) + b = w · eij · ||ck||2 + b (5.17)

w and b are learnable parameters.

Figure 5.5: GE2E system overview[52]

A good model is expected to output high similarity values when an expression
matches the speaker and lower otherwise. For this the loss is the sum of row-wise
softmax losses.
The training dataset consists of speech audio examples segmented into 1.6 seconds
and associated speaker identity labels and no transcripts are used.

Although the model’s architecture is capable of handling variable-length inputs, it
is reasonable to expect it to work better with sentences of the same duration as
those seen in training. Therefore, at the time of inference, an expression is split into
overlapping 1.6-second segments of 50% and the encoder forwards each segment
individually. The network is run independently on each window, and the outputs
are averaged and normalized to create the final embedding of the utterance.
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5.2.2 Synthesizer
The synthesizer used in this repository is Tacotron 2 [53] without Wavenet using
an open-source Tensorflow implementation of Tacotron 2 modified implementing
the modifications added by SV2TTS.

The Tacotron model that predicts mel spectrograms from text is a recurrent
sequence-to-sequence model with attention. The encoder (blue blocks in the 5.6
figure) transforms the input text into a hidden feature representation of fixed size.
The autoregressive decoder (orange blocks) uses this characteristic representation
to produce one spectrogram frame at a time.

Figure 5.6: Tacotron model [53]

The individual characters of the text sequence are first embedded as vectors.
Convolutional levels follow, in order to increase the width of a single frame of the
encoder. These frames passed through a bidirectional LSTM (Long short-term
memory) are used to produce the encoder output frames. This is where SV2TTS
makes an architectural change: a speaker embedding is chained to each frame
emitted by the Tacotron encoder.

The attention mechanism takes care of the encoder output frames for generating the
decoder input frames. Each decoder input frame is concatenated with the previous
decoder frame’s output passed through a pre-net containing 2 fully connected layers,
making the model autoregressive.
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The pre-net output and attention context vector are concatenated and passed
through a stack of two uni-directional LSTM layers before being projected onto a
single frame of the mel spectrogram. Another projection of the same vector onto a
scalar allows the network to predict for itself that it should stop generating frames
by emitting a value above a certain threshold. The concatenation of the LSTM
output and the attention context vector is projected through a linear transformation
to predict the target spectrogram frame.

Finally, the predicted mel spectrogram is passed through a 5-layer convolutional
post-net which predicts a residual to add to the prediction to improve the overall
reconstruction.

There are also a few cleaning procedures: forcing all characters to ASCII, normal-
izing white spaces, replacing abbreviations and numbers by their complete textual
form and making all characters lowercase.

Figure 5.7: Synthesis of a sentence in different voices

On the left, we can see the reference expressions used to generate the speaker
embedding of three different speakers (I have taken random sentences from the
Librispeech dataset), and on the right the corresponding outputs of the synthesizer.
As we can see, the generated spectrograms are similar to each other but differ from
each other due to the phonetic characteristics of the speaker.
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5.2.3 Vocoder

The vocoder model that was used is an open-source PyTorch implementation
based on WaveRNN [54] but has some different design choices made by the user
GitHub fatchord (https://github.com/fatchord/WaveRNN). The author of this
repository used to create fake cloned voice affirms that according to the source
code and the diagram of "fatchord" the architecture is as follows.

Figure 5.8: Alternative WaveRNN architecture. Image taken from https://
github.com/fatchord/WaveRNN
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The model uses the spectrogram as an input to generate characteristics that
will affect the layers when transforming the spectrogram mel into a waveform.

The conditioning vector after is divided equally in four directions along the channel
size, the first portion is concatenated with the upsampled spectrogram and wave-
form segment of the previous step.
The final vector undergoes several jump link transformations: the first two GRU
(Gated Recurrent Unit) layers at the end a dense layer. In each step, the vector is
chained with the intermediate waveforms.

Finally, after the last two dense layers, the cloned voice has been created and
it is potentially indistinguishable from the real person.
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5.3 Fake voice detection
“It’s like Photoshop for voice“ said Zohaib Ahmed, CEO of Resemble AI, about his
company’s voice cloning technology.

As for the photos bad Photoshop jobs are easily detected. But if deepfake audio
is good quality, many times it can seem real, and voice clones are getting better
every day as well as deep-learning systems are getting smarter and making more
authentic voices.

The longer an audio clip is, the more likely you are to notice that something
is wrong. For the shorter clips, however, you may not notice that it’s synthetic,
especially if you have no reason to doubt its legitimacy.

Sound quality is also a very important component, the clearer it is, the eas-
ier it is to notice the signs of an audio deepfake. If someone is speaking directly
into a studio-quality microphone, you will be able to hear closely. But a poor
quality phone call recording or conversation captured on a portable device in a
noisy parking lot will be much more difficult to evaluate[55].

Even though humans have trouble separating the real from the fake, comput-
ers don’t have the same limitations. Fortunately, there are already voice verification
tools. Pindrop has one that pits deep learning systems against each other. Use
both to find out if an audio sample belongs to the person it should be.
However, it also examines whether a human can also make all the sounds in the
sample (for example, two vocal sounds have a minimum possible distance from each
other. This is because it is not physically possible to tell them faster due to the
speed with which the muscles of the mouth and vocal cords can reconfigure).Thanks
to its anti-fraud solution, Pindrop claims to have reduced fraudulent calls to its
customers by 80% and avoided $1.2 billion in losses since 2012.

Another tool is Resemble AI which is also directly dealing with the detection
problem with Resemblyzer, an open-source deep learning tool available on GitHub
[56]. It can detect fake voices and perform speaker verification.
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I have also created a simple notebook, that works as a binary classifier that can
detect if a voice is fake or real by analyzing the mfcc spectrogram of the audio
using the CNNnet model trained for 10 epochs with 4000 real audio and 1250 fake
audio (created with the previous voice cloning system).

This experiment consists of two main phases: the creation of the fake voice and
the detection. To create the fake (cloned) voice I have used the previous system.
The most relevant parts of the code of this notebook are the following:

1 #EXAMPLE: CREATE 5 CLONED VOICE AUDIO
2 # Fir s t , we load the wav us ing the func t i on that the speaker encoder

prov ide s . This i s
3 # important : the re i s p r ep ro c e s s i ng that must be app l i ed .
4

5 # The f o l l o w i n g two methods are equ iva l en t :
6 # − D i r e c t l y load from the f i l e p a t h :
7 f o r j in range (5 ) :
8 f=a u d i o _ f i l e s [ random . rand int (1 , l en ( a u d i o _ f i l e s ) ) ]
9 pr in t ( f )

10 pr in t ( f " j : { j } " )
11 preprocessed_wav = encoder . preprocess_wav ( f )
12 # − I f the wav i s a l r eady loaded :
13 original_wav , sampling_rate = l i b r o s a . load ( s t r ( f ) )
14 preprocessed_wav = encoder . preprocess_wav ( original_wav ,

sampling_rate )
15 pr in t ( " Loaded f i l e s u c c e s f u l l y " )
16

17 # Then we de r i v e the embedding . There are many f u n c t i o n s and
parameters that the

18 # speaker encoder i n t e r f a c e s . These are mostly f o r in−depth r e s ea r ch .
You w i l l t y p i c a l l y

19 # only use t h i s func t i on ( with i t s d e f a u l t parameters ) :
20 embed = encoder . embed_utterance ( preprocessed_wav )
21 pr in t ( " Created the embedding " )
22 ## Generating the spectrogram
23 #text = input ( " Write a sentence (+−20 words ) to be synthe s i z ed : \ n " )
24 f o r n in range (1 ) :
25 gen = DocumentGenerator ( )
26 t ex t=gen . sentence ( ) ##USING RANDOM GENERATOR WE CAN OBTAIN

RANDOM SENTENCES (TAKEN FROM BOOKS) AN
27 pr in t ( t ex t ) ## AND USE THIS TEXT AS INPUT FOR THE

SYNTESIZER
28 t e x t _ f i l e . append ( text )
29

30

31 # The s y n t h e s i z e r works in batch , so you need to put your
data in a l i s t or numpy array
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32 t e x t s = [ t ext ]
33 embeds = [ embed ]
34 spec s = s y n t h e s i z e r . synthes ize_spectrograms ( texts , embeds )
35 spec = specs [ 0 ]
36 pr in t ( " Created the mel spectrogram " )
37

38

39 ## Generating the waveform
40 pr in t ( " Synthe s i z ing the waveform : " )
41

42

43

44 # Synthe s i z ing the waveform i s f a i r l y s t r a i gh t f o rwa rd .
Remember that the l onge r the

45 # spectrogram , the more time−e f f i c i e n t the vocoder .
46 generated_wav = vocoder . infer_waveform ( spec )
47

48

49 ## Post−gene ra t i on
50 # There ’ s a bug with sounddevice that makes the audio cut one

second e a r l i e r , so we
51 # pad i t .
52 generated_wav = np . pad ( generated_wav , (0 , s y n t h e s i z e r .

sample_rate ) , mode=" constant " )
53

54 # Trim exce s s s i l e n c e s to compensate f o r gaps in spectrograms
( i s s u e #53)

55 generated_wav = encoder . preprocess_wav ( generated_wav )
56

57 # Play the audio ( non−b lock ing )
58

59

60 # Save i t on the d i sk
61 speaker_audio=f . s p l i t ( " \\ " ) [ 1 ] . s p l i t ( " . " ) [ 0 ] . s p l i t ( "−" ) [ 0 ]
62 f i l ename = f " vo ice_cloned_test / voice_cloned_%02d_{

speaker_audio } . wav" % num_generated
63 pr in t ( generated_wav . dtype )
64 s f . wr i t e ( f i l ename , generated_wav . astype (np . f l o a t 3 2 ) ,

s y n t h e s i z e r . sample_rate )
65 num_generated += 1
66 pr in t ( " \nSaved output as %s \n\n" % f i l ename )
67

68

69 with open ( " vo ice_cloned_test /Output . txt " , "w" ) as output_f i l e
: ##WRITE TEXT TO A FILE TO COMPARE WITH THE CREATED AUDIO

70 i=0
71 f o r t in t e x t _ f i l e :
72 pr in t ( f " { i } : { t } " , f i l e=output_f i l e )
73 i=i+1
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Regarding the detection phase, I have created a Binary Classifier that uses the
Spectrum model (CNNet) of chapter 4, with the only difference being that it uses
mfcc spectrogram instead of the ones used previously. This choice is due to the
fact that the model performs better with this type of spectrogram.

I have trained the model for 10 epochs using 1200 cloned voices and 4000 original
voices I have used 500 audio files for the test phase, 100 created artificially (labelled
fake) and 400 originals. The results, as we can see in the table 5.1, are quite good
having achieved an accuracy of 93%.

Fake voice detection results
class precision recall f1-score support
Fake 0.77 0.94 0.85 100

Original 0.98 0.93 0.96 400
accuracy 0.93 500

macro avg 0.88 0.94 0.90 500
weighted avg 0.94 0.93 0.93 500

Table 5.1: Fake voice detection
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Chapter 6

Conclusion

In this work, we have seen the possible types of attacks such as FGSM and PGD
that can be applied to speech recognition systems, significantly decreasing system
performance.

Furthermore, we have noticed that MP3 Compression is not the best defence
and does not guarantee complete protection from these evasion attacks.
For this problem, a combined model was subsequently presented that was capable
of detecting the attack and reacting correctly to it, through Adversarial Training,
causing only a small loss in terms of performance accuracy.

In the end, the topic of voice recognition was addressed, its application as an
authentication method, and above all the great problem of voice cloning. Finally,
some tools for detecting an artificially constructed voice are also presented.
Automatic speech recognition technologies are being improved day by day and
thanks to advances in this field, intelligent voice control devices are becoming more
and more popular.

Today, smart speakers like Google Home or Amazon Echo are already part of
our daily life.

Recent studies show that adversarial examples (AE) can pose a serious threat to an
automatic speech recognition system (ASR) "white box" when his machine learning
model with all its parameters is exposed to the adversary.
Less clear is how realistic such a threat would be to commercial devices, such as
Google Home, Cortana, Echo, etc., whose models are not publicly available.

Leveraging the learning model behind the black-box ASR system is arduous and
gruelling, due to the presence of complicated preprocessing and feature extraction
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processes even before AEs can affect the model.

However, the extensive use of voice for critical system auditing also leads to
security issues, the implications of which are not yet fully understood.
Specifically, the voice is an open channel and therefore the commands received by
the ASR devices could come from any source. In recent years, researchers have
shown that unauthorized voice commands can be injected into wireless signals [57],
in the form of noise [58] or even inaudible ultrasound [59], to stealthily gain control
of voice controllable systems (VCS) devices.

Recently, adversarial examples (AEs) have been used to exploit ASR systems.
For example, Carlini has successfully attacked DeepSpeech (the open source model
of Mozilla) using AEs, Yuan with his CommanderSong [60] that automatically
generates adversarial examples embedded into songs to attack Kaldi Aspire Chain
Model over-the-air.
This demonstrates that real-world ASR systems are vulnerable in a white box
model, that is their internal parameters are exposed to the outside.

And even if efficient black box attacks are not officially known, it does not mean
that black box models are safe as the world of adversarial attacks is constantly
evolving and as the Devil’s Whisper[61] attack demonstrates, even commercial
black box ASR systems are vulnerable.
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