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Abstract

In recent years, the production and usage of vast graphs from different disciplines—
social networks, geographical navigation, and internet routing to name a few—has
required fast and scalable algorithms. Reachability, single source shortest path,
partitioning, and coloring are some of the problems that are commonly applied to
graphs. In this thesis, we focus on the problem of graph coloring. To color a graph,
we assign a label, called color, to each of its nodes. Colors must be assigned so that
no two nodes connected by an edge share the same color. Many scalable algorithms
have been proposed; we select, discuss and implement a suite of algorithms for both
multi-core CPU and many-core GPU architectures. In particular, we implement
the Greedy, Gebremedhin-Manne, and Jones-Plassmann algorithms for multi-core
CPU architectures, and the Jones-Plassmann-Luby algorithm for many-core GPU
architectures with the help of the CUDA framework. For the latter, we propose a
cost-free technique, called index shifting, to lower computation time and reduce the
number of colors produced for the solution. We compare the results of our software
with cuSPARSE’s csrcolor and Gunrock’s state-of-the-art implementations, both
in terms of computation time and quality of the solution, i.e., the number of colors.
We show how our fastest implementation on the GPU produces on average 10%
fewer colors than Gunrock’s implementation, while also being 2.5 times faster.





Summary

In the last couple of years, governments all around the world have taken action
against the COVID-19 pandemic, assisted by mathematical models that produced
daily reports to simulate the spread of the virus. To serve a useful purpose, these re-
ports were—and most definitely still are—generated by employing algorithms that,
given the input data, can estimate the trend of contagion promptly; moreover, the
estimate needed to approximate the real trend, at least for the near future. Modern
computer applications often execute complex parallel algorithms on huge amounts
of data. It is imperative that such applications can produce an output within a
reasonable time frame, which can vary from a few milliseconds to multiple weeks de-
pending on the scale and complexity of the calculation. It is also important that the
solution computed by the software is correct, at least to a certain degree, so it can
be used to support real-life decisions. When simple parallelization on multi-core
architectures is deemed not fast enough, one can resort to many-core Graphical
Processing Unit (GPU) programming with the CUDA or OpenCL frameworks.
GPUs are massively parallelized processors that can be programmed to exploit the
inherent parallelism of a task to massively enhance time performances.

In this thesis, we study the problem of graph coloring, the application of which
is central in programs that schedule timetables, allocate registers to variables dur-
ing compilation, compute derivatives, and many others. Coloring a graph means
assigning an integer label, also called a color, to each vertex so that no adjacent
pair of vertices is assigned the same color. A visual example that simply shows
a graph coloring solution is the way geopolitical maps are colored; by intending
regions as vertices so that two confining regions are connected by an edge, the re-
sulting graph can be colored. By then mapping each label to a color, we fill the
regions of the original geopolitical map based on how the algorithm assigned the
labels. We obtain a geopolitical map with neighboring regions colored differently,
as shown in Figure 1. While this is a simple example of graph coloring on a small
graph, real applications need to perform colorings on a much larger scale.
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Figure 1. Graph coloring on Italian regions

Performing a perfect graph coloring, one where the solution presents the min-
imum number of colors, is a NP-hard problem and, as such, particularly time-
consuming to obtain. In practical applications, it is common to prefer an approxi-
mation of the perfect solution, computed by fast and scalable algorithms. We ana-
lyze some of the graph coloring algorithms that have been proposed over the years;
in particular, we focus on the Greedy, Gebremedhin-Manne, Jones-Plassmann,
Jones-Plassmann-Luby, and Cohen-Castonguay algorithms. The greedy algorithm
performs coloring with a sequential scan of the nodes; it usually approximates well
the perfect solution, but it is slow given its lack of parallelism. The Gebremedhin-
Manne approach divides nodes into partitions for parallel execution. The coloring
is performed in a greedy-like manner, so conflicts, i.e., adjacent nodes with the same
color, may arise; conflicts are corrected sequentially at the end of the execution.
As a parallel algorithm, it executes faster than the greedy approach, as long as
there are not too many conflicts. The Jones-Plassmann algorithm colors graphs in
parallel with a network of processors that communicate via message passing. Each
processor generates a random value, and can color its vertex only if its value is the
largest among its non-colored neighboring processors. The Jones-Plassmann-Luby
and Cohen-Castonguay algorithms color graphs by dividing nodes into independent
sets, so that each set can be colored with a single color. For the first algorithm, sets
are generated by assigning a random value to each node and iteratively selecting
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those nodes whose random values are maximum among their non-colored neigh-
bors. The second algorithm is similar, but uses multiple hash functions to generate
multiple random numbers per node, thus finding and coloring more independent
sets per iteration.

The analysis is conducted by executing the algorithms, of which we implement
different versions and heuristics in the C++ language. In particular, we implement
the Jones-Plassmann-Luby algorithm using the CUDA framework, to be executed
on GPU devices; moreover, we implement it by applying a heuristic that, to our
knowledge, does not appear in literature, to lower computation time and the number
of colors generated. We take care, while creating the GPU implementation, to
take into consideration performance issues related to high memory throughput—a
common characteristic of graph problems on many-core architectures. As the issue
cannot be easily, if at all, avoided, we try to keep the memory access operations to
a minimum. From the executions, we gather data about execution time and colors
used in the solution by running the software on a set of benchmark graphs. Our
results confirm that the algorithm running on the GPU is faster than those running
on common CPUs. It is interesting, however, how some of the denser benchmark
graphs are colored faster by the algorithms implemented to run on the CPU. We
also find that the number of colors used to color a graph does not depend on
the architecture running the algorithm or its speed, but depends on the algorithm
itself. We compare the results achieved by our software with two state-of-the-art
implementations from NVIDIA’s cuSPARSE library and the Gunrock library, both
of which run on GPUs. Our own Jones-Plassmann-Luby implementation proves
better than the state-of-the-art implementations, both in terms of execution speed
and number of colors used, for the majority of our benchmark graphs.
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Chapter 1

Introduction

Modern-day computing requires the execution of algorithms on large amounts of
data to solve a specific task, such as environmental simulation or artificial intel-
ligence. Data can be organized in many different ways, depending on what it
represents; graphs are one such organization. Graphs are a mathematical construct
used to define the relations existing between many objects. In computing, we can
use graphs to represent topological information—the layout of roads and streets
for vehicular navigation, how atoms are distributed in a molecule, the shape of
a network—or more complex data, i.g. the states of a game theory problem, or
constraints to consider in parallel execution. As modern problems consider more
and more data, graphs grow in size, and faster algorithms are needed to maintain
the execution times low. Applying an algorithm to a graph is often a greatly par-
allelizable task: many algorithms, in fact, repeat the same set of operations on
every node. A sequential solution, while simple to code, is expected to be slow.
On modern multi-core CPUs, a sequential solution leaves many resources unused,
which could be spent to speed the process up. A common and practical solution
to implement parallel graph algorithms on a multi-core processor is to partition
the vertices in blocks, and assign each block to a child process or thread, that it-
erates and operates on every node. But as graph instances grow larger, multi-core
solutions do not scale well. A more scalable solution is to assign only one node to
a process or thread. This solution is still not applicable for very large graphs on
common general-purpose multi-core architectures, as the overhead of creating and
managing millions of processes or threads would still be too heavy. The solution
to this problem comes in the form of Graphical Processing Units (GPU). A GPU
is a special processor designed heavily towards concurrency, originally to perform
computer graphics operations. GPUs are designed to contain an absurdly large
number of cores, which perform the same operations in parallel on different data,
implementing the Single Instruction Multiple Data (SIMD) execution model. The
idea of offloading computational intensive functions was first explored in the early
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Introduction

2000s. Nowadays, two main frameworks allow GPGPU (General-Purpose comput-
ing on GPU): CUDA (Compute Unified Device Architecture) from NVIDIA and
OpenCL (Open Computing Language) from the Khronos Group. Details on GPU
architecture and GPU programming are reported in Chapter 2.

In conjunction with this thesis, we develop a software suite that implements
a number of algorithms to perform graph coloring. We implement the Greedy,
Gebremedhin-Manne, and Jones-Plassmann algorithms for multi-core CPU archi-
tectures, and the Jones-Plassmann-Luby algorithm for many-core GPU architec-
tures. The software also includes the state-of-the-art implementation of the Cohen-
Castonguay algorithm present in the cuSPARSE library. We also analyze the
state-of-the-art implementation of the Jones-Plassmann-Luby algorithm from the
Gunrock library. Each algorithm is described in Chapter 3, the implementation
details are reported in Chapter 4 and the results are discussed in Chapter 5. The
software is written in the C++ programming language. C++ is an extension of
the C programming language; it originally added support for object-oriented pro-
gramming, exception handling, generics, and a vast standard library, expanded
with further versions of the language. The standard library contains many collec-
tion templates for generic programming, as well as many standard algorithms that
can be executed on any collection type, regardless of the memory layout. Useful
collections classes used in the program are vectors (resizable arrays), maps (collec-
tions of key-value pairs), and sets (tree-like strictures that cannot contain duplicate
items). Furthermore, C++ provides a platform-independent solution for concurrent
programming. We use the thread class to define functions that need to execute
concurrently. Another alternative is to use the more recent async-future classes,
to define a set of promises that the program executes in background. We choose
to use the C++ language as it is a very powerful low-level language that compiles
in a fast executable, complete with a vast standard library. We also consider our
need of using the CUDA framework, which can be integrated with C++ code, and
the simplicity of setting up a working building environment on both Windows and
Linux systems with the CMake tool.
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Chapter 2

Graphical Processing Unit

Graphical Processing Units are processors heavily geared towards concurrency. The
problem a GPU solves lies in the realm of computer graphics, where pixels are
printed to a screen to show images. For the image to persist on the screen each
pixel, needs to be redrawn at regular intervals, dictated by the screen’s refresh rate,
which typically is 50 or 60Hz, but can reach 240Hz on high-end devices. At the
end of each interval, a new image must be ready for the screen to display, even if
the picture is still and has not changed. Modern architectures use a double buffer
approach, where one buffer is used as output to the screen, and the second buffer
to compute the next frame; when the next frame is ready, the content of the second
buffer is copied in bulk to the first. In applications where the image to display on
the screen is computed on the fly for every refresh such as rendering of 3D models,
the color of each pixel can be computed independently from the other pixels. As
they are independent, the computation can be performed in parallel. A normal
multi-core CPU is not able, however, to perform a computation for every pixel of a
screen in parallel in a single operation: its architecture simply doesn’t have enough
cores. CPUs, in fact, are optimized to run sequential programs, by allocating a
great portion of their chip to cache memories and control circuitry, and using what
remains as computing units [1]. On the other hand, GPUs have been designed as
chips with the vast majority of their surface dedicated to computing, organized in
many small cores. Since neither control logic nor large cache memories contribute
to high computational speeds, GPUs can reach GFLOPS (Giga Floating-point Op-
erations Per Second) up to and over three orders of magnitude superior compared
to CPUs. Figure 2.1 shows the design differences between CPU and GPU. An-
other matter taken into consideration by GPU designers is memory throughput.
As it happens with CPUs, working with data residing in main memory means first
reading the data, performing the computation, and then writing the result. When
operating on memory with a GPU, each core reads (or writes) different memory
positions simultaneously. GPUs operate on dedicated memory that can reach high
throughput speeds to handle a huge number of requests. In general, CPUs are
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Figure 2.1. CPU and GPU designs.

about 10 times slower than GPUs when considering memory throughput. GPGPU
takes advantage of the property of a program known as data parallelism. Data
parallelism occurs when many operations can be safely performed in parallel on the
data structures. Let’s take matrix multiplication as an example: given A×B = C,
assuming that A is n×m and B is m× n, C is a n× n matrix whose elements ci,j

are all independent between each other and can be computed concurrently, each by
a different core.

2.1 CUDA
CUDA (Compute Unified Device Architecture) is the framework for GPU program-
ming developed by NVIDIA. Before its release in 2007, developers who performed
GPGPU could access GPU computing power only through graphics library APIs,
which hindered and limited the work that could be achieved. With the release of
CUDA, NVIDIA added specific hardware to their chips to handle CUDA requests,
so CUDA programs can only run on CUDA-enabled NVIDIA devices.

A CUDA-enabled device contains a set of streaming multiprocessors (SM). In
turn, a SM contains streaming processors (SP). SPs are massively threaded and
can run thousands of threads in parallel. SPs inside a SM share the same control
logic and instruction cache. The dedicated memory is shared between all SMs.

2.1.1 CUDA programming
A CUDA program alternates sections that run either on the host (CPU) or the
device (GPU). Usually, sections that present little to no data parallelism are imple-
mented in code that runs on the host, while sections with high data parallelism are
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Algorithm 1 How to call a kernel function
1: cudaMalloc(. . . ) ▷ Allocate device memory
2: cudaMemcpyHostToDevice(. . . ) ▷ Transfer data from host to device
3: kernelFunction<<<nb, nt>>>(. . . ) ▷ Launch kernel function
4: cudaMemcpyDeviceToHost(. . . ) ▷ Transfer result from device to host
5: cudaFree(. . . ) ▷ Free device memory

implemented in code running on the device. The CUDA compiler nvcc accepts
source files of unified host and device code. Host code is common C/C++ code
that runs on the CPU. Device code is C/C++ code augmented with nvcc-specific
keywords to define and launch data parallel functions that run on the device, called
kernel functions, or simply kernels. When a kernel function is called, it spawns a
large number of threads to be run on the GPU. Threads are organized in blocks,
and threads within the same block can cooperate. Blocks organize threads as a
3-dimensional array, assigning a 3-dimensional index to each thread for recognition.
Blocks are further contained in a 3-dimensional grid. A kernel launch spawns a sin-
gle grid of blocks. The dimensions of the grid and blocks are passed during the ker-
nel launch with the special syntax <<< nb, nt >>> to be infixed between the kernel
name and the list of arguments, where nb is the number of blocks in a grid, and nt is
the number of threads in each block. nb and nt are of type dim3, which is a struct of
three unsigned integer values x, y, z. nb and nt can also be 1- or 2-dimensional, by
appropriately setting y and z to 1. A typical host code to launch a kernel is reported
in Algorithm 1. Because the GPU can only operate on its dedicated global memory,
data must be moved between host and device before launching a kernel function,
and from device to host after it has finished, to retrieve the result. Memory on the
device must be allocated before and freed after use, similarly to how it is done nor-
mally with heap memory, with cudaMalloc and cudaFree functions. Trans-
fer of data is achieved by calling the functions cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or the more general cudaMemcpy. The list of
parameters accepted by these functions can be checked in the CUDA user guide [2].

CUDA provides three qualifier keywords to mark functions. The __global__
qualifier marks a kernel function; a kernel function can only be called by the host
code, but runs on the CPU by spawning a grid of threads. The __device__ qual-
ifier marks a function that runs on the device and can only be called by a kernel
function of another device function. The __host__ qualifier marks a function that
runs on the host and can be called only by another host function; in other words,
a host function is a traditional C/C++ function. The __device__ and __host__
qualifiers can be combined on the same function declaration. The compiler gener-
ates two versions of said function: a host function and a device function.

A grid of blocks contains blocks of threads organized in a 3-dimensional ar-
ray. Also, blocks of threads contain threads organized in 3-dimensional arrays.
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Both blocks and threads are indexed as if they are placed in a 3-dimensional space
with 3-dimensional coordinates. CUDA pre-initializes the constants blockIdx and
threadIdx with the correct coordinates of a running GPU thread. The dimensions
of the grid and blocks specified at the launch of the kernel are also available via
the constants gridDim and blockDim respectively. These four constants are only
available inside a kernel function and contain the attributes x, y and z. Coordi-
nates start at (0,0,0) and cover the space up to (dim.x− 1, dim.y − 1, dim.z − 1)
for both threads and blocks. Thread coordinates are unique inside a block, but
each block contains threads with the same coordinates as the other blocks. It is
often useful to index a thread with a scalar index rather than vectorial coordi-
nates. To do so, we compute the cross product between the row vector threadIdx
and the column vector constructed as (1, blockDim.x, blockDim.x× blockDim.y)T:
the result is the scalar tIdxB, unique for each thread inside a block. The same
can be achieved for a scalar block index bIdx, by cross-multiplying the row vec-
tor blockIdx with the column vector (1, gridDim.x, gridDim.x× gridDim.y)T. It
is also possible to find a global index for a thread, unique in all the grid, with
the formula tIdx = tIdxB + bIdx (blockDim.x× blockDim.y × blockDim.z). Both
3-dimensional coordinates and scalar indexes can be used to divide the work each
thread is tasked to do, usually by accessing different portions of input and output
arrays.

2.1.2 Memories
CUDA programs rely on different types of memories with varying characteristics to
achieve speedup on a program. The types of memory are registers, shared, constant,
and global memory.

Registers are fast memory, automatically allocated to contain the scalar variables
declared in the kernel function. nvcc introduces qualifier keywords to denote
different types of memory. Register memory is private to the thread, and is allocated
for each thread in the grid.

Shared memory is fast and, as the name suggests, is shared among multiple
threads. Threads within the same block can access the same shared memory portion
with read and write operations. Shared memory is declared inside the device code
with the keyword __shared__. Register and shared memory are freed at the end
of the kernel execution.

Constant memory is a memory shared by all threads of all grids. It can reach
particularly high speeds when all threads access the same cell. Constant memory is
read-only from the device point of view, but can be written by the host code, which
is also tasked with the declaration with the keyword __constant__. Constant
memory is very limited in modern GPUs, all mounting 65536 bytes.

Global memory is the most common and most abundant type of memory in
a GPU, usually spanning between hundreds of Megabytes and tens of Gigabytes.
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It can be accessed by all threads of all grids, but is slower than the other types
of memories. It is also used to store the local array variables declared inside a
kernel function. Global memory is declared by the host code, Constant and global
memories are maintained between multiple kernel calls and are only de-allocated
either at the end of the program or when the host code frees them.

2.1.3 Kernel scheduling
As explained earlier in the chapter, launching a kernel spawns many threads to fill
the grid, given the dimensions nb and nt. The total number of threads is given by
the multiplication nb.x×nb.y×nb.z× bt.x×nt.y×nt.z. Generally, the number of
threads can get quite high, and GPUs do not have the resources to run all of them
at the same time, so a scheduling approach must be implemented. We have seen
how a GPU is comprised of Streaming Multiprocessors (SM), each of which contains
several Streaming Processors (SP). Each SP is tasked with the execution of a block
of threads; when a SP terminates the execution of a block, another one is scheduled
on that SP, as long as there are blocks that need to execute. Hardware limitations
put a maximum to the number of threads that can be scheduled in a single SM
at the same time. Let nSM

SP denote the number of SPs for every SM, and nSM
t

the number of threads per SM—both of which are fixed values decided by the
manufacturer of the GPU—the number of threads that should be contained in each
block to achieve maximum parallelization is nSM

t /nSM
SP . Other attributes determine

how many blocks can be scheduled concurrently, such as register occupation per
thread and shared memory occupation per block.

As it has been described so far, scheduling on the GPU has a major flaw: when
an instruction needing many clock cycles to complete—such as a floating point
division or a load from global memory—is issued, the computational resources of
the SPs are idle, waiting for the result. Instead, CUDA devices are designed to
divide each block in warps of 32 consecutive threads. Warps are scheduled and
run in the SPs, each thread of a warp executing the same instructions at the same
time, in a Single-Instruction Multiple-Thread (SIMT) execution style. When a
warp issues a long-running instruction, the idling warp is scheduled out of the SP,
and a ready warp takes its place. In this way, since swapping of warps is a low-cost
operation in a GPU, the execution hardware can be kept busy at all times while the
long-latency operations execute in background. The technique of swapping idling
warps with ready warps to keep the resources fully utilized is called latency hiding.
The ability to hide the effect of long-latency memory load instructions is the main
reason why GPUs do not need to dedicate as much chip area to cache memories
and branch prediction hardware as CPUs do.

When a warp executes a conditional branch instruction, three main outcomes
may occur: all threads take the branch and continue execution on a new instruction,
no thread takes the branch and the execution continues on the following instruction,
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or some threads take the branch and other threads don’t take the branch. In the
latter case, we say the threads diverge. War execution sequentially follows all
diverging paths, as long as at least one thread follows it. To avoid computational
errors due to executing instructions in the wrong branch, threads that do not follow
the branch currently being executed get deactivated. Divergence happens within
control flow instructions such as if-then-else constructs and loops, depending on
the state of the execution and the conditional being evaluated. For example, if we
consider a warp executing threads with indexes 0-31, executing the instruction

if (threadIdx.x < 16) . . . else . . .

divides the warp in half. The warp executes the then block and the else block
sequentially. While executing the then block, threads 16-31 are deactivated. Sim-
ilarly, threads 0-15 are deactivated while executing the else block. This is cause
for divergence, as only part of the computational resources is utilized, given that
some threads are not active. On the other hand, the same if conditional does
not cause divergence in the warp with threads 32-63, as all threads follow the else
block. Execution time suffers from divergence, as all diverging paths are executed
sequentially.

2.2 OpenCL
OpenCL (Open Computing Language) is a standardized set of cross-platform APIs
for parallel computing, first proposed by Apple and developed by the Khronos
Group. Many concepts of OpenCL programming are similar to CUDA, while
other more complex aspects are present to manage different devices due to the
cross-platform scope of the standard. OpenCL contains many optional features to
allow compatibility with a broader set of devices. Because of this, cross-platform
software usually contain many code paths that produce the same result employing
different means, so that a device can choose at runtime which one to run based on
its characteristics. The data parallelism model of OpenCL differs from the CUDA
one by the names of its components. OpenCL programs are characterized by a
mixture of device code and host code. The host code manages the execution of the
device code by launching kernel functions. The launch of a kernel function causes
the spawn of work items, the OpenCL correspondence of CUDA threads. Work
items are organized in work groups, the same as CUDA blocks, and are identified
by global dimension index ranges called NDRanges, which take the role of CUDA
grids. The way work items are indexed in OpenCL is slightly different from the
indexing of threads in CUDA. A work item running a kernel function can access its
global index by calling the function get_global_id(), and passing the values 0, 1,
or 2 to specify the dimension of the index returned. For example, get_global_id(0)
corresponds to the CUDA code blockIdx.x × blockDim.x + threadIdx.x. Passing
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1 or 2 as values returns the index from the y or z dimension instead. The local
index of a work item inside a work group can be accessed by calling get_local_id(),
again with parameters 0, 1 or 2 to specify the x, y or z dimension; this directly
corresponds to threadIdx in CUDA. To get the dimension in the x dimension of
the NDRange, we call get_global_size(0). This API returns the number of work
items, so the corresponding CUDA code is gridDim.x× blockDim.x. To know the
dimension of the work groups, we use get_local_size() with 0, 1, or 2 to specify the
dimension; it corresponds to blockDim.

OpenCL devices run the kernel functions of an OpenCL program. Each device
is comprised of Compute Units (CU), which correspond to CUDA streaming mul-
tiprocessors, but can also represent the cores of a CPU or other executions units
in FPGAs. Each CU is further comprised of Processing Elements (PE), which
correspond to CUDA streaming processors.

OpenCL exposes a hierarchy of memories similar to CUDA. OpenCL global mem-
ory corresponds to the CUDA global memory. It can be dynamically allocated by
the host program and allows read/write access by both host and device code. Con-
stant memory in OpenCL supports read/write operations from the host but is
read-only from the device. Unlike CUDA constant memory, the size is not fixed
to 65536 bytes, as many more devices are supported; the actual size of OpenCL
constant memory is available via an API call. OpenCL local memory corresponds
to CUDA shared memory. Local memory can be dynamically allocated by the host
and statically allocated by the device. Finally, OpenCL private memory corre-
sponds to CUDA local memory. The last two types of memory cannot be accessed
with read/write operations from the host code.

Kernel functions in OpenCL have the same structure as in CUDA, but use
different keywords. To indicate a kernel function, a function declaration is marked
with the __kernel qualifier, which serves the same purpose as __global__ does
in CUDA. Pointers to global device memory accepted by a kernel function must be
marked with the keyword __global in the function definition.

Device management is more complex in OpenCL than in CUDA, as the former
supports more devices in terms of architectures, vendors, and functionality than the
latter. A typical host code gets the ids of the devices present on the system with
the clGetDeviceIDs() API function, and uses the returned information to create
a context calling clCreateContext(). Contexts are used in OpenCL to manage a
device. The host will then create a command queue for a device with the function
clCreateCommandQueue(); command queues are used to instruct devices on the
computation to perform. The host can then submit work for a device through
its command queue, like allocating and initializing an array in global memory,
launching a kernel, and copying an array from device to host memory. The specific
API calls and the parameters accepted are outside the scope of this thesis and can
be referenced in the OpenCL programming guide [3].
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Chapter 3

Graphs: Notation and
Coloring

Graph theory is the branch of mathematics that studies pairwise relations between
objects. The relations are modeled as a graph G = (V, E), where V is the set
objects, also known as vertices or nodes, and E ⊆ {(v, w) | (v, w) ∈ V 2} is the set
of edges, modeled as ordered pairs of nodes. With this definition, the relation de-
scribed by the graph is valid from v to w, but not vice versa. A graph defined as
such is called a directed graph. If the relation described by the graph is intrin-
sically bidirectional, the definition of E can change to E ⊆ {{v, w} | v, w ∈ V },
where every item is an unordered pair of nodes; this type of graph is called an
undirected graph. An edge eL = {v, v} expresses a relation the node v has with
itself, and takes the name of loop or looping edge. For a directed graph, the
number of edges entering and exiting a node v is called in-degree and out-degree
respectively. For an undirected graph, in-degree and out-degree are equivalent, and
simply called degree.

(a) A directed graph (b) An undirected graph

Figure 3.1. An example of a directed (a) and an undirected (b) graph.
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A Directed Acyclic Graph (DAG) is a directed graph with no cycles. Because
it has no cycles, it is not possible to follow a path that visits the same node twice.
In a DAG, it is possible to follow the edges starting from one or more nodes with
in-degree equal to 0 called sources, arriving at one or more nodes with out-degree
equal to 0 called sinks.

Graphs carry an intrinsic property called density, defined as the number of edges
of the graph divided by the total number of possible edges. For directed graphs,
the density is D = |E|

|V |(|V |−1) , and for undirected graphs it is D = 2|E|
|V |(|V |−1) . We say

a graph is dense when its density is close to its maximum value Dmax = 1, and
sparse when its density is close to its minimum value Dmin = 0. The distinction
between sparse and dense graphs is not strictly defined and may change depending
on the context.

A set of nodes I ⊆ V is independent if the nodes in it do not share any edge.
A maximal independent set (MIS) is an independent set that is not a proper
subset of a larger independent set.

3.1 Notation
The following notation will be used in the next chapters. We will use n and m as
the cardinalities |V | and |E| respectively. The minimum, maximum, and average
degrees across a single graph are represented as δ, ∆, and δ. The degree of a
vertex v for an undirected graph is δ (v). The set of nodes that share an edge
with a node v—adjacent or neighbors to v—is denoted by N(v) and is defined
as N(v) = {w | (v, w) ∈ E} for a directed graph and as N(v) = {w | {v, w} ∈ E}
for an undirected graph.

3.2 Representation in computer memory
There are many ways to store a graph inside the main memory of a computer.

The coordinates (COO) format uses a list of pairs of integers to store every
element (v, w) ∈ E. The two integers represent v and w, and the list is m pairs in
length. The COO format occupies 2m memory cells and may be inconvenient with
certain operations, especially if the elements are not properly sorted. Assuming
no use of indexing data structures to support the navigation, iterating through the
adjacencies of a node requires a binary or linear search of the array, depending on
if the elements are sorted or not respectively.

The adjacency matrix format uses a n×n matrix—an array of arrays—to store
information about the edges of a graph. Each row and each column represent a
vertex of the graph, and each cell of the matrix represents whether an edge connects
the row vertex to the column vertex. Despite being easy to implement and manage,
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n2 cells are used to store m elements; therefore a matrix should only be used for
dense graphs, where m is not much less than n2.

Similar to the adjacency matrix, adjacency lists store information about the
graph’s edges. For every vertex, an array lists all its neighboring vertices, and all
the arrays are indexed in an encompassing array. This method is preferable for
sparse graphs—where m ≪ n2—as the encompassing array indexes n lists that,
added up, occupy m memory cells, for a total of n + m memory occupancy.

Adjacency lists are not necessarily stored sequentially in memory and may cause
the cache miss rate to increase when accessing the data structure. The compressed
sparse row (CSR) format reduces this problem by adopting storage with only two
arrays. The first, called column index, is the concatenation of all adjacency lists in
a single array. The second, called row pointers, stores for each vertex a pointer to
the column index array where its adjacency list begins. To iterate through N(v)
one first accesses the row pointers array at index v to load index pv, and index
v + 1 to load index pv+1. The sub-array of the column index array from index
pv to index pv+1 (with the end excluded) is the adjacency list corresponding to
vertex v. To implement this process without edge cases, it is common to add one
extra cell at the end of the row pointers array, with value m + 1 in 1-indexed
systems (or value m in 0-indexed systems). This extra cell contains a pointer that
points outside the bounds of the column index array; this is however not a threat,
since the iterating algorithm should never access that particular cell, even without
extra checks. Figure 3.2 shows the formats described above for a simple example
graph. In the example, colors represent the correspondence between memory cells
and edges.

When working with undirected graphs, it is convenient to convert each unordered
pair e = {v, w} ∈ E in two ordered pairs e′ = (v, w) and e′ = (w, v), and assume
the graph is directed. A looping edge eL = {v, v} ∈ E only produces one ordered
pair e′

L = (v, v) for the purpose of this transformation. In the next chapters,
all undirected graphs will be assumed to have already been transformed, and the
value of m will represent the cardinality of the set of edges for the resulting directed
graph.

3.3 Graph Coloring
Graph coloring is a problem applied to undirected graphs and consists in finding a
function C : V → N, while keeping the constraint C(v) /= C(w),∀(v, w) ∈ E true.
In other words, the solution requires mapping each vertex to an integer value—also
called a color—so that there is no edge between two vertices with the same color.
For the purpose of graph coloring, we do not consider looping edges, as they connect
a node with itself, and this would render the node impossible to color. Many prob-
lems can be solved using graph coloring, such as timetable scheduling [4], register
allocation in compiler optimization [5], Sudoku solving [6], and the approximation
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(a) An example graph
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1 3
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(b) Coordinates
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(c) Adjacency Matrix
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(d) Adjacency Lists

2 3 1 3

1 3 5 5

1 2 3
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4

Column Index

Row Pointers

4

(e) Compressed Sparse Row

Figure 3.2. Example of data structures to store graphs. Coordinates (b),
adjacency matrix (c), adjacency lists (d) and compressed sparse row (e)
representations for graph (a).

of Jacobians and Hessians during automatic differentiation [7, 8]. Graph coloring
can be also useful when assigning resources during parallel execution; considering
tasks as nodes, and constraints of execution as edges, tasks with the same color
can always be executed in parallel. To help solve these and other problems it
is important to develop an algorithm that can find the optimal solution CO (G),
which presents the minimum number of colors χ (G). χ (G) is known as the chro-
matic number and is the minimum number of colors needed to fully color graph G.
Unfortunately, finding the optimal solution to a graph coloring problem is known
to be of class NP-hard [9]. As such, an exact, optimal solution cannot be easily
found. Instead, research has been focusing on developing fast heuristics that closely
approximate CO (G), are fast to compute and, possibly, parallelizable.

3.4 Related work
The easy way to perform graph coloring is by using a greedy approach. One simply
selects a vertex and colors it with the best possible color available, repeating this
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process until all vertices are colored. In general, the best color for a node is the
lowest color not used by one of its neighbors. Choosing a color with this method
means that a node v will always be assigned a color lower or equal to δ(v) + 1,
because only its δ neighbors need to be considered. The order in which the nodes are
colored is key to the quality of this approach. While an ordering that produces χ (G)
colors exists, there is not a programmatically good way of finding such ordering.
An arbitrary ordering produces at most ∆+1 colors: this is the case where the node
with the maximum degree is colored after all its neighbors, all of which are colored
with ∆ different colors. Different heuristics have been proposed to iteratively choose
the next vertex to color so that the number of colors is kept low. The Largest
Degree First (LDF) [10] ordering colors the nodes based on their degree: the
vertices are ordered by descending degree and colored in sequence. This ordering
tries to reduce the possibility of using many colors, by first coloring the nodes
that have the possibility of being assigned high colors, that is nodes with a high
degree. The Incidence Degree (ID) [7] ordering colors the nodes by descending
incidence degree. The incidence degree of a vertex is defined as the number of its
colored neighbors. The Saturation Degree (SD) [11] ordering colors the nodes
by descending saturation degree. The saturation degree of a vertex is defined as the
number of different colors assigned to its neighbors. These three heuristics color
the “problematic” vertices first—to avoid possible high colors later on—but define
being “problematic” in different ways. In general, SD produces the best results,
followed by ID, and then by LDF. Given the sequentiality of the greedy approach,
it is difficult to parallelize it.

Gebremedhin and Manne [12] develop a parallel algorithm to perform graph col-
oring by partitioning V in blocks to be colored separately. Since V is partitioned
arbitrarily, there is no guarantee that the graph is colored correctly, as two neigh-
boring nodes v and w may be assigned to different blocks and given the same color.
The algorithm overcomes this problem by allocating some time at the end of the
execution to search for errors in the coloring, and re-coloring the offending nodes.
They also propose an improvement for this algorithm in the number of colors used,
at the cost of a second coloring step.

A different approach follows the observation that a set of independent nodes can
be colored in parallel. The observation stems from the research by Luby [13], in
which he proposes a parallel algorithm to find maximal independent sets of nodes.
The MIS is found by first selecting an independent set, and iteratively augmenting
it to become maximal. The initial independent set is created by randomly choos-
ing vertices with a probability proportional to the inverse of their degree. Jones
and Plassmann [14] use non-maximal independent sets to color nodes with the
lowest color not used by one of its neighbors. The independent sets are created
by choosing only nodes whose value is the local maxima between its neighbors;
the value of each node is randomly generated in advance. Combining these two
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different formulations, the Jones-Plassmann-Luby (JPL) algorithm finds an inde-
pendent set per iteration, coloring its nodes with the same color in parallel, until
all nodes are colored. An extension to this algorithm by Cohen [15] proves that
the best approach is to find two different independent sets—of local maxima and
local minima—per iteration, which are disjoint per definition and can be colored in
parallel. Jones and Plassmann [14] also propose two parallel algorithms to perform
graph coloring by message passing between multiple processors. Cohen and Cas-
tonguay [16] propose and implement the state-of-the-art routine csrcolor in-
cluded in the cuSPARSE library for CUDA-enabled devices; the algorithm follows
a modification of the JPL algorithm that uses multiple hash functions to generate
and color multiple independent sets per iteration. Naumov et al. [17] compare the
csrcolor implementation with a CUDA implementation of the JPL algorithm,
reporting that the former is roughly 3 to 4 time faster, but generates 2 to 3 times
more color than the latter. Osama et al. [18] implement the JPL algorithm in
the GraphBLAST and Gunrock frameworks for GPU programming and compare
the results. They find that the fastest version of the algorithm runs on Gunrock
without any form of load balancing, finding two independent sets per iteration.

In the following sections, we discuss the formulations of these few parallel algo-
rithms and provide some insights into the state-of-the-art implementations.

3.5 Gebremedhin-Manne algorithm
The Gebremedhin-Manne [12] algorithm is a block algorithm to perform graph col-
oring in parallel. The pseudo-code for the algorithm is reported in Algorithm 2,
and can be decomposed in three steps: pseudo-coloring (lines 1-4), conflict search
(lines 5-13), and conflict resolution (lines 14-16). In the pseudo-coloring step, each
vertex is assigned a color. First, V is partitioned in p blocks V1, V2, . . . Vp, each con-
taining n/p nodes, assuming n/p ∈ N for the sake of simplicity. Each block is then
assigned to a processor, which has the task of coloring it. The pseudo-coloring is
performed synchronously, meaning that, if processor Pi has already colored l nodes
from its assigned block Vi, it can start to color its l + 1th node only if all other
processors have also already colored l of their nodes. This synchronicity divides
the time for the pseudo-coloring step in n/p frames. At each frame, p nodes are
colored, one from each block. The coloring is performed as usual, by choosing the
smallest color not used by the neighbors of the node to color. The time frame di-
vision also helps in reducing the number of neighboring nodes in choosing a color,
as only the ones colored in previous frames are to be considered; all the others are
not yet colored, so they can be skipped without affecting the result. In the case
in which two adjacent nodes are colored during the same time frame, they may be
assigned the same color. However, it is not a problem because the next steps will
take care of any conflicting colors. It is also the reason why the first step is called
pseudo-coloring: the “pseudo” prefix signifies that the coloring is not perfect, and
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Algorithm 2 Standard Gebremedhin-Manne Algorithm
Gebremedhin-Manne-standard (G = (V, E), colors)
1: for v ∈ V in parallel do
2: colors (v)← min c ∈ N \ {colors (w) | w ∈ N (v)}
3: Barrier wait
4: end for
5: K ← ∅ ▷ Set of nodes that need to be recolored
6: for v ∈ V in parallel do
7: S ← nodes colored in the same step as v on line 2
8: for w ∈ (N (v) ∩ S) do
9: if colors (v) = colors (w) then

10: K ← K ∪min {v, w}
11: end if
12: end for
13: end for
14: for v ∈ K do
15: colors (v)← min c ∈ N \ {colors (w) | w ∈ N (v)}
16: end for

may contain errors.
After all the nodes are colored, it is the conflict search step. This step aims at
identifying all conflicts in the pseudo-coloring generated in the previous step. Con-
flict search is still performed in parallel, with the same p blocks as the first step.
Each processor will check all nodes in its block only against their neighboring nodes
which were colored during the same time frame in the previous step. If a conflict
is detected, the node with the lower index is uncolored and saved in a global array
for the next step.
The last step is the conflict resolution step. All conflicting nodes found and un-
colored during the second step are correctly assigned a new color. This step is
performed sequentially, to avoid causing further conflicts. Figure 3.3 shows an ex-
ample of a graph colored following the algorithm. The graph is initially partitioned
into two blocks, denoted by the different border colors (a). Each time frame, a
node per block is pseudo-colored (b), (c), (d), (e). During the conflict search, equal
adjacent colors are removed from the graph (f). Nodes that are now uncolored are
assigned a new, non-conflicting color sequentially (g).

The algorithm just described takes the name of standard Gebremedhin-Manne
algorithm. The original authors also propose an improved version, with the in-
tent of finding a solution with fewer—or at most the same—colors. The improved
Gebremedhin-Manne algorithm presents a second pseudo-coloring step, immedi-
ately before the conflict search step. Algorithm 3 shows the extra code to imple-
ment the second pseudo-coloring step for the improved algorithm, to be inserted
between lines 4 and 5 of Algorithm 2, assuming that the first step is performed on
the array colors′ instead of colors. The colors assigned in the first pseudo-coloring
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Figure 3.3. Gebremedhin-Manne algorithm applied to a simple graph.

Algorithm 3 Second step of improved Gebremedhin-Manne algorithm.
improved-pseudo-color (G = (V, E), colors, colors′)
1: for k varying from maxv∈V colors′ (v) down to 1 do
2: ColorClass← {v ∈ V | colors′ (v) = k}
3: for v ∈ ColorClass in parallel do
4: colors (v)← min c ∈ N \ {colors (w) | w ∈ N (v)}
5: end for
6: Barrier wait
7: end for

step are used to define color classes, on line 2. A color class is a set of vertices that
share the same color. Notice that at this point, a color class is not an independent
set, because conflicts are not yet corrected. The pseudo-coloring is then repeated
for each color class. By coloring the color class that corresponds to the highest
color first, and going down to the lowest color, Gebremedhin and Manne show that
the number of expected conflicts decreases. Moreover, the number of colors also
decreases—or remains the same—with respect to the first pseudo-coloring step.

The original paper also describes how to modify the algorithm to be asyn-
chronous. This is an important observation, as it is shown that the synchronous
algorithm is very slow due to the different loads of each processor during the first
pseudo-coloring step. To make the algorithm asynchronous, simply remove the
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barrier synchronization on line 3 of Algorithm 2. Without synchronization, how-
ever, the pseudo-coloring step does not present distinct time frames anymore. This
means that in the asynchronous algorithm it is not possible to reduce the number
of adjacent nodes checked during the pseudo-coloring and the conflict search steps.
In general, the asynchronous algorithm is faster than the synchronous algorithm,
but it produces slightly more colors.

3.6 Jones-Plassmann-Luby algorithm
An independent set is a set of items independent between each other. Nodes in a
graph are independent if are not connected by an edge. So, as noted by Luby [13], an
independent set of nodes can be colored in parallel using the same color. An outline
of the process is shown in Algorithm 4. Choosing an independent set can be done

Algorithm 4 Overview of coloring via independent sets
Independent-Set-Color (G = (V, E))
1: V ′ ← V
2: while V ′ /= ∅ do
3: Choose an independent set I from G′ = (V ′, E)
4: Color I in parallel
5: V ′ ← V ′ \ I
6: end while

in different ways. The sequential approach is at least O (m), so is not ideal on large
graphs. Examining Algorithm 4, it is evident that if it is possible to find the largest
independent set possible at every iteration, the number of iterations decreases, thus
speeding up the coloring. The largest independent set takes the name of Maximal
Independent Set (MIS), defined as an independent set that is not a proper subset
of a larger independent set. A simple greedy approach to choose a MIS is to scan
each v ∈ V and add it to I, only if I does not contain any adjacent nodes to v.
This approach produces a particular MIS known as Lexicographically First MIS;
unfortunately, the algorithm is inherently sequential, and cannot be parallelized.
Luby [13] presents an algorithm to solve the MIS problem. Luby’s algorithm works
by first choosing an independent set and augmenting it to a maximal independent
set, as shown in Algorithm 5. Choosing an independent set from the graph on
line 5 can be performed in different ways. Luby proposes both a non-deterministic
and a deterministic approach that can be executed in parallel, and are out of the
scope of this thesis. Jones and Plassmann use a Monte Carlo rule that produces
an independent set from a graph using an array of random values ρ of length n.
Vertex v can be added to the independent set I if the random value ρ (v) is the local
maxima between the random values {ρ (w) | w ∈ N (v)} assigned to the neighbors
of v; vertices already colored are ignored during this computation. Algorithm 6

19



Graphs: Notation and Coloring

Algorithm 5 Luby’s algorithm for Maximal Independent Set.
MIS-Luby (G = (V, E))
1: I ← ∅
2: V ′ ← V
3: G′ ← G
4: while G′ /= ∅ do
5: Choose an independent set I ′ ∈ G′

6: I ← I ∪ I ′

7: X ← I ′ ∪N (I ′)
8: V ′ ← V ′ \X
9: G′ ← G (V ′) ▷ subgraph of G induced by V ′.

10: end while
11: I is a maximal independent set

shows the pseudo-code for this rule. The color Jones and Plassmann assign to I is
chosen separately for each vertex as the smallest available color not already used by
one of its neighbors. By finding a middle ground between Luby’s algorithm and the

Algorithm 6 Rule to choose an independent set
Jones-Plassmann-Find-IS (G = (V, E), ρ)
1: I ← V
2: for v ∈ V in parallel do
3: X ← {w | ρ (w) > ρ (v) , w ∈ N (v)}
4: if X /= ∅ then
5: I ← I \ {v}
6: end if
7: end for
8: I is an independent set

one proposed by Jones and Plassmann, we define the Jones-Plassmann-Luby (JPL)
algorithm. Per each iteration, the JPL algorithm finds a non-maximal independent
set of nodes, like the Jones-Plassmann algorithm. All nodes of the independent set
are then colored with the same color, as per Luby’s algorithm. Figure 3.4 shows an
example of a graph colored following the JPL algorithm. The initialization phase
populates the array of random numbers ρ (a). Each node is shown containing its
corresponding random number. Nodes with the maximum random number in their
neighbors are selected at the start of every loop, shown with a red border (b),
(d), (f); only non-colored nodes are considered in these steps. After selecting the
independent set, each node is colored with the same color (c), (e), (g). A different
color is used in every iteration. A parallel algorithm that selects an independent set
based on ordered numbers, such as the Monte Carlo rule by Jones and Plassmann,
can be easily expanded to select two disjoint independent sets per iteration. While
selecting nodes to insert in I so that their random number from the array of random
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Figure 3.4. Jones-Plassmann-Luby algorithm applied to a simple graph.

values ρ is the maximum between their neighbors, it is also possible to find the
independent set Im where the random number is minimum. The two independent
sets are disjoint, as a maximum number cannot be a minimum number at the same
time (except for nodes with no edges, in which case the node is only inserted in
one set). Cohen [15] proves that it is not possible to find more than two disjoint
independent sets with this approach. The coloring is performed by assigning one
color to I and a different color to Im. By finding and coloring two independent sets
per iteration, the processing time to color the whole graph is theoretically halved.

3.7 Cohen-Castonguay algorithm
Cohen and Castonguay [16] describe a method to fundamentally improve the JPL
algorithm. Their idea is to replace the array of random values ρ with a hash func-
tion H : V → R. Using a function to generate random numbers instead of an array
is a tradeoff between computation and memory bandwidth, the latter being a very
limiting resource on modern GPU devices. Applying H to a vertex v ∈ V produces
a seemingly random number H (v), that can be used in the same fashion as ρ (v) to
find two independent sets of local maximums and local minimums. Cohen and Cas-
tonguay push the idea further by being able to generate more than two disjoint
independent sets in one iteration. As proven by Cohen [15], the method described
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so far only allows for a maximum of two disjoint independent sets. The solution
would be to employ more than one source of random numbers. By utilizing q hash
functions H1, H2, . . . Hq, the number of independent sets that can be generated is
2q. However, these independent sets are not disjoint; it is possible that for node
v, Hi (v) is a local maximum or minimum, while also Hj (v) is a local maximum
or minimum. Since a node cannot have more than one color, some action must be
taken before applying the coloring. Unfortunately, Cohen and Castonguay do not
state how they combine the independent sets to obtain a valid coloring. A possible
way would be to rank the hash functions, with H1 being the most important and
Hq the least important. With this method, a hash function Hi searches for two
independent sets between the vertices that are not in any independent set found by
higher ranking hash functions Hj, j < i. The practice of using more than one source
of random numbers is generally unfeasible with arrays because they would occupy
too much memory than the one available on a modern GPU. Figure 3.5 shows how
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Figure 3.5. Cohen-Castonguay algorithm applied to a simple graph.

a simple graph can be colored in a single iteration using three hash functions as
an example. In the example, the hashes produced by the functions are reported
in each node (a), (b), (c). For the sake of simplicity, we use hash functions that
output values in [1, n] The independent sets of local maximums are highlighted with
hot colors (red, orange, and yellow), while independent sets of local minimums are
highlighted with cold colors (blue and purple). The independent sets are combined
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3.8 – Jones-Plassmann algorithm

to obtain a valid coloring (d).
The Cohen-Castonguay algorithm is available on CUDA in the cuSPARSE li-

brary through the csrcolor routine. Some details of the implementation are
hidden, like the number of hash functions q, or what type of hash functions are
used. By running the algorithm and analyzing the coloring produced it is possible
to estimate the value of q. Figure 3.6 shows, for every color, the number of nodes
that have that color assigned after running the routine on a sample graph. From
the plot, it is evident that the number of nodes colored with a certain color drasti-
cally decreases every 16 colors; from this, we can expect that q = 8, as eight hash
functions generate sixteen independent sets and colors every iteration.
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Figure 3.6. Number of nodes of each color for a run of the csrcolor routine.

3.8 Jones-Plassmann algorithm
The Jones-Plassmann [14] algorithm is a parallel asynchronous algorithm to perform
graph coloring. The main peculiarity of this algorithm is that it uses message
passing as a means of communication and synchronization between the processors.
The algorithm is formulated to use n processors, each coloring one vertex. The
pseudo-code of the algorithm running on each processor is shown in Algorithm 7.

To perform the coloring, each processor needs to be aware of the colors of the
vertices neighboring its node. This is easily achievable with message passing; a
processor that has just colored its node will send a message to the processors of
the node’s neighbors, indicating the color used (line 19). The receiving processors
will simply receive the color and store it until it is their time to assign a color
(line 14). A receiving processor does not need to know which neighbor sent the
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Algorithm 7 Jones-Plassmann algorithm
Jones-Plassmann (v, N (v))
1: ρ (v)← random number
2: W ← ∅ ▷ Set of nodes ∈ N (v) to be colored before v
3: S ← ∅ ▷ Set of nodes ∈ N (v) to be colored after v
4: for w ∈ N (v) do
5: Send ρ (v) to processor responsible for w
6: Receive ρ (w)
7: if ρ (v) ≥ ρ (w) then
8: S ← S ∪ {w}
9: else

10: W ←W ∪ {w}
11: end if
12: end for
13: while W /= ∅ do
14: Receive color (w)
15: W ←W \ {w}
16: end while
17: color (v)← smallest color not received from a neighbor of v
18: for w ∈ S do
19: Send color (v) to processor responsible for w
20: end for

color, as the algorithm only needs the information that a neighbor is colored with
the color received. The algorithm also establishes a system to allow some proces-
sors to perform the coloring, while the other processors wait to be allowed. This
system is also achieved with message passing. At the start of the algorithm, each
processor associated with a node v ∈ V generates a random number ρ (v) (line 1).
It then sends ρ (v) to the processors tasked to color the neighbors of v, w ∈ N (v)
(line 5), and receives from them ρ (w) (line 6). Upon receiving ρ (w), the processor
immediately compares it with its random number. If ρ (v) ≥ ρ (w), vertex v will be
colored before vertex w. To ensure this, vertex w is stored in the set S of vertexes
to be colored after v (line 8). The processor will assign a color to v, then send the
color used to all processors responsible for the neighboring nodes whose ρ (w) was
lower than ρ (v), which shall wait for the message before starting its coloring. Oth-
erwise, if ρ (v) < ρ (w), the processor will increment a counter stating how many
colors from its neighbors need to be received before it can start to color its vertex
(line 10). The receive instructions on lines 6 and 14 are considered asynchronous,
but need to be executed before exiting the loop surrounding them.

The effect of using this algorithm is analogous to extrapolating a DAG from
the graph G. The DAG defines the order in which the nodes can be colored,
from sources to sinks. The sources are the nodes that generate a rho (v) greater
than their neighbors, while sinks have the lower rho (v) among their neighbors.
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3.8 – Jones-Plassmann algorithm

All nodes in the DAG have in-degree equal to the number of adjacent nodes w ∈
N (v) that generated a random number ρ (w) ≥ ρ (v), and out-degree equal to
the number of adjacent nodes that generated a random number ρ (w) < ρ (v).
Figure 3.7 shows how a small graph can be colored with the Jones-Plassmann
algorithm. Numbers within each node represent the random number generated by
that node. Edges are decorated with arrows pointing to the node with the lower
random number between the pair, emphasizing the equivalence of coloring following
a DAG. Random numbers are generated and exchanged between neighbors (a).
Nodes receive information about the color chosen by their neighbors with a greater
random number, before choosing a color of their own (b), (c), (d).
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Figure 3.7. Jones-Plassmann algorithm applied to a simple graph.

Jones and Plassmann also propose a second algorithm, for distributed mem-
ory computing. Vertices are divided partitioned across p processors in blocks
{Vi, . . . Vp}. Each processor first divides its block into a set of local nodes V L

i

and a set of global nodes V S
i . For block Vi, a global node shares at least one edge

with another node outside of Vi; local nodes only share edges with other nodes
inside Vi. V S

i is colored first using the asynchronous heuristic from Algorithm 7,
then V L

i is colored sequentially with the greedy IDO heuristic.
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Chapter 4

The Software

To study the multiple coloring algorithms presented in Chapter 3.3, we write a piece
of software, with the object of collecting data regarding runtime and the number of
colors used. The program produces a suite of executables, compiled from the same
source code. We take advantage of class inheritance of C++ and conditional compi-
lation via pre-compiler directives to produce many executables, each implementing
a different algorithm and heuristic. Despite each implementing a different algo-
rithm, all programs follow the same macro operations. First, the program parses
the command line arguments, and the graph is loaded from file to main memory.
Then the graph is colored with the coloring algorithm. After checking that the col-
oring produced is a valid solution, the program prints data about the elapsed time
for the computation and the number of colors used. In this chapter, we provide
details on the software and implementation of the algorithms. In Chapter 5.1 we
describe modifications we apply to the code based on experimental evidence.

Command line arguments contain information on how to customize the program
execution and the data printed after the computation. The path to the file con-
taining the graph to color always needs to be specified for the program to continue
execution. Four optional flags can also be provided as command arguments:

• -h: prints the user guide and terminates.

• -r: must be followed by a positive integer number, indicating how many times
the algorithm should be run. When specified, the coloring is performed on the
graph multiple times, with a reset of the starting conditions before each run,
The statistics about elapsed time and colors used are stored in appropriate
data structures, and printed at the end of the execution; the program also
computes and prints the average of the values. Using this flag, the graph is
loaded into main memory only once at the start of the execution.

• -c: prints the pairs vertex-color at the end of the output. If the flag is followed
by the path to a file, the pairs are written to that file instead. If used with -r,
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only the pairs of the last coloring are printed.

• -H: prints the histogram of colors at the end of the output. The histogram is
a list of pairs of color-number of vertices colored with that color. If the flag is
followed by the path to a file, the histogram is written to that file instead. If
used with -r, only the histogram of the last coloring is printed.

Any argument not recognized by the program is automatically skipped, printing a
warning message,

The program reads the graph to color from a file stored on disk. The path to the
file is passed as a command line argument. The graph is stored as adjacency lists in
textual form: the first line contains a single number n that indicates how many lines
follow. Each following line represents a single node, listing the edges connecting it
to the other nodes. Lines start with the index of the node in the range [0, n− 1]
followed by a : character, and end with the # character. In between, we expect a
space-separated list of the nodes that share an edge with the current node.

The representation of the graph in main memory determines which input algo-
rithms are available We implement multiple input algorithms to read and parse
the file. Selecting the graph representation as well as the input algorithm to use
is done at compile time by defining the correct constants to perform conditional
computation. The constants to select which data structure we use for graph repre-
sentation are GRAPH_REPRESENTATION_ADJ_LIST and GRAPH_REPRESENTATION_CSR,
which respectively activate the adjacency lists and compressed sparse row format.
The compressed sparse row format allows only for a sequential scan of the input;
no constants need to be defined, as this is the only supported algorithm. The ad-
jacency lists format defines three methods to read the input file. The methods are
activated by defining one of the following constants:

• SEQUENTIAL_INPUT_LOAD: one thread reads one line of the input file and pop-
ulates the adjacency list, looping until the end of the file.

• PARALLEL_INPUT_LOAD: multiple threads work concurrently towards parsing
the file. Each thread follows the same algorithm as the sequential input version.
The lines are provided to the threads by a queue-like object, protected from
concurrent access by a mutex.

• PARTITIONED_INPUT_LOAD: the file is completely loaded in main memory, and
divided into partitions of the same size. Each thread is assigned a partition.
Because partitions do not start or end at the end of a line, as each line has an
arbitrary length, threads will align their start and end positions to the next
newline character. The parsing then proceeds in the same way as the other
versions.

We tried to develop a fourth method to read the input file in parallel: similar to
partitioned load, we divide the input file into multiple blocks. The difference stands
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in the input file, which we preemptively modified with a Python script [19]. The
modified file encodes information in binary, and the adjacency lists of nodes are
padded so that all lists have the same length. In this way, we can make partitions
of precise dimensions, and we do not need to align the partitions to the next new-
line character. However, this method is not included in the software, because the
dimensions of a graph file in binary format are around 500 times larger than in
textual format. The massive increase in dimension is caused by the padding. In
fact, the graphs we use for testing, shown in Table 5.1, are sparse; adding padding
to make all adjacency lists equal in length causes the file to contain n adjacency
lists of ∆ elements. In cases where ∆ ≫ δ the file size increases a lot, as most of
the adjacency lists are filled with padding. Moreover, reading and parsing a binary
file this large takes around 1000 times more than using the standard partitioning
method. We deem this method of using partitioning on a binary version of the
graph unfeasible, and discard it from the implementation of the software. Via test-
ing, we find that the partitioned load is the best-performing input reading algorithm
for the adjacency lists format, reaching a loading speed around 3 times faster than
the sequential load method. Not surprisingly, the parallel load method is the worst
in terms of speed out of the three; this is likely due to thread synchronization, as
we use a mutex to protect concurrent reading from the input file. A likely solu-
tion to speed up the process would be to load the file completely beforehand like
we already do with the partition method. Despite the fast partitions-based input
method available with adjacency lists, we decide to mainly use the CSR format in
our tests that only provides sequential load. CSR is the superior format when it
comes to being transferred to GPU memory since it requires only two vectors to
be moved. Moreover, we notice an average of 20% speed increase on the CPU by
using CSR instead of adjacency lists, likely due to cache permanence. As we do not
want to poison our test results by changing the graph format between algorithms,
we decide to only use CSR.

Time benchmarks are operated by the Benchmark class. The class manages
several Benchmark objects, one per each run specified with the flag -r. Each run
of the algorithm is treated independently by interacting with a unique Benchmark
object. A benchmark object can be retrieved from every part of the program with
the static method getInstance(int); the integer parameter is used to determine
which instance to return. A single Benchmark object holds multiple time interval
durations in a map structure, indexed with an integer key. This allows a single
object to be used to benchmark many stages of the program execution by storing
multiple durations. The method sampleTime() is used at the start of a block of
code that we want to benchmark. At the end of the benchmark process, we call
the method sampleTimeToFlag(int): the integer parameter is used as a key to
the map of durations to select which time counter should be incremented. The
counter is incremented by the difference between the current time and the last time
sampleTime() has been called. The method sampleTimeToFlag(int) works by
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calling sampleTime(), so multiple calls of sampleTimeToFlag(int) can be chained
with no sampleTime() calls in between. In the software, we use flag 0 to hold the
time to load and read the file from disk, flag 1 to hold the time to perform the
preprocessing stage, where we allocate and initialize the objects related to the graph
coloring algorithm used. The time spent coloring the graph is stored under flag 2,
and flag 3 is used for the postprocessing step, where held resources are freed. The
Benchmark class exposes static methods to compute the average of the durations
of the same flag throughout all benchmark objects.

The program displays information to the user by printing lines in the termi-
nal. First, the information about the program is printed; these include the version
number, graph representation, and coloring algorithm chosen at compile time. The
file-loading phase starts with the output of a notification message. When the load-
ing has finished, a success message is printed, along with data about the graph.
The coloring phase is next. After each run of the algorithm, a line detailing the
computation is printed; the line reports the number of colors used and the coloring
time. Each line in this phase is separated by a separator line. After all the runs are
concluded, the program prints statistics about the computation. All time measures
are reported in seconds. The output of a sample run is presented as an example in
Figure 4.1.

4.1 Implementation details
The part of the software that deals with storing the graph in memory is modeled
as a class hierarchy. The AdjacencyLists and CompressedSparseRow classes define
the details of how data is stored. To hide the details we provide a common API
through the GraphRepresentation abstract class. The class hierarchy for graph
representation is shown in Figure 4.2 as a UML diagram. Child classes define their
way of storing and accessing graph data, and override the abstract definition of three
methods to allow the rest of the program to interact with the graph. The method
exists_edge(int,int) returns true if nodes v and w are connected by an edge.
The pair of methods begin_neighs(int) and end_neighs(int) provides a way of
exploring N (v) with the use of iterators. The last method, count_neighs(int),
returns the cardinality of the neighbors set N (v); the method is not abstract, as it
is implemented by calling begin_neighs(int) and end_neighs(int), exploiting
the concept of polymorphism provided by C++.

The software gives access to five algorithms that perform graph coloring. The
algorithm is chosen at compile time by defining a constant for the pre-processor.
Each algorithm can be further controlled with other constants, to enable different
behaviors of the algorithm. The constants are:

• COLORING_ALGORITHM_GREEDY: enables coloring with the sequential greedy al-
gorithm. The algorithm is implemented for CPU architectures. The algorithm
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1 $ ./ greedy_ldf ./ email_enron .gra -r 5
2 Graph Coloring - v2022 .9.26
3 Graph Representation : Compressed Sparse Row
4 Coloring Algorithm : Greedy Largest Degree First
5

6 Loading graph from ./ email_enron .gra
7 Graph successfully loaded from file.
8 n: 36692 , m: 367662 , maxD: 1383 , minD: 1, avgD: 10.0202
9 ========================================================

10 1 num -cols: 29 time: 0.011383
11 ========================================================
12 2 num -cols: 29 time: 0.010311
13 ========================================================
14 3 num -cols: 29 time: 0.011142
15 ========================================================
16 4 num -cols: 29 time: 0.009587
17 ========================================================
18 5 num -cols: 29 time: 0.011678
19 ========================================================
20 Load time: 0.124413
21 Avg pre - process time: 9.58e -05
22 Avg process time: 0.0108202
23 Avg post - process time: 0
24 Avg total time: 0.135329
25 Avg number colors : 29

Figure 4.1. Sample output

can be customized by changing the policy for choosing the next node to color
with the following constants:

– SORT_LARGEST_DEGREE_FIRST: Largest Degree First ordering. Nodes with
a higher degree are colored first.

– SORT_SMALLEST_DEGREE_FIRST: Smallest Degree First ordering. The re-
verse ordering of Largest degree First. Nodes with a higher degree are
colored last.

– SORT_VERTEX_ORDER: Lexicographical ordering, also called First Fit (FF).
Nodes are colored in order of ascending index.

– SORT_VERTEX_ORDER_REVERSED: Reversed Lexicographical ordering.
Nodes are colored in order of descending index.

• COLORING_ALGORITHM_GM: enables coloring with the Gebremedhin-Manne al-
gorithm. The algorithm is implemented for multi-core CPU architectures. The
policies of the algorithm can be controlled with the following constants:
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GraphRepresentation

- n: int
- m: int
- maxD: int
- minD: int
- avgD: float

+ get_n(): int
+ get_m(): int 
+ get_maxD(): int 
+ get_minD(): int 
+ get_avgD(): float 

+ exists_edge(v:int, w: int): bool
+ begin_neighs(v: int): vector<int>::iterator
+ end_neighs(v: int): vector<int>::iterator

+ count_neighs(v: int): int

AdjacencyLists

- lists: vector<vector<int>>

- read_input(file: istream): void
- read_input_parallel(file: istream): void 
- read_input_partitioned(file: istream): void 

+ AdjacencyLists(path: string)

+ exists_edge(v: int, w: int): bool
+ begin_neighs(v: int): vector<int>::iterator
+ end_neighs(v: int): vector<int>::iterator

CompressedSparceRow

- col_idx: vector<int>
- row_ptr: vector<int>

- read_input(file: istream): void

+ get_col_idx(): int*
+ get_row_ptr(): int*

+ CompressedSparseRow(path: string)

+ exists_edge(v:int, w: int): bool
+ begin_neighs(v: int): vector<int>::iterator
+ end_neighs(v: int): vector<int>::iterator

Extends Extends

Figure 4.2. Graph representation UML diagram

– COLORING_SYNCHRONOUS: enables synchronization between threads. Syn-
chronization is achieved with the use of barrier primitives.

– COLORING_ASYNCHRONOUS: disables synchronization between threads.
– USE_STANDARD_ALGORITHM: enables the use of the standard version of the

algorithm.
– USE_IMPROVED_ALGORITHM: enables the use of the improved version of the

algorithm.

• COLORING_ALGORITHM_JP: enables coloring with the Jones-Plassmann algo-
rithm. The implementation presents the following differences from the original
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formulation. We partition the vertex set V in blocks, one per each working
thread. We also simulate message passing by storing the message contents in
global memory. The algorithm is implemented for multi-core CPU architec-
tures. The policy for partitioning vertices can be specified with:

– PARTITION_VERTICES_EQUALLY: vertices are split into partitions so that
each partition contains a similar number of vertices.

– PARTITION_VERTICES_BY_EDGE_NUM: vertices are split into partitions so
that each partition contains a similar number of edges.

• COLORING_ALGORITHM_JPL: enables coloring with the Jones-Plassmann-Luby
algorithm. The algorithm is implemented for many-core GPU architectures
using the CUDA framework. The policy on the number of independent sets
per iteration can be set with:

– COLOR_MAX_INDEPENDENT_SET: finds and colors the independent set of
maximums every iteration.

– COLOR_MIN_MAX_INDEPENDENT_SET: finds and colors the independent sets
of maximums and minimums every iteration.

• COLORING_ALGORITHM_CUSPARSE: enables coloring with the csrcolor routine
from the cuSPARSE library. The program offers a wrapper around the routine,
but cannot modify its behavior.

Each algorithm is modeled as a class extending the ColoringAlgorithm abstract
class. The class structure of coloring algorithms is shown in Figure 4.3 as a UML di-
agram. The API provided by the ColoringAlgorithm abstract class consists of three
public methods available to the external program and one protected method that
should be used by the inheriting classes. Methods init() and reset() are called to
initialize the object at the start of the execution; reset() is also called in-between
multiple runs of the algorithm to restore the data structures to their original state.
The method start_coloring() instructs the program that everything is ready to
execute the coloring algorithm. After the execution, it returns the number of colors
used by the algorithm to color the graph. Method suggest_vertex_color(int)
receives the index of a vertex as input and returns a suitable color that could be as-
signed to that node as output. The color is chosen by iterating over all neighboring
nodes, marking off in a vector which colors are already used. The color returned is
the smallest non-marked color.

In the rest of this chapter, we present each algorithm in depth, analyzing the
UML diagram from Figure 4.3 and showing some snippets of the code. We start us-
ing the naming convention reported in Table 4.1 in preparation for Chapter 5, where
we compare the many variations of the algorithms that have been implemented in
the software.
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ColoringAlgorithm

# colors: vector<int>
# graph: GraphRepresentation

# suggest_vertex_color(int): int

+ init(): void 
+ reset(): void
+ start_coloring(): int

Greedy

- vert_copy: vector<int>

- sort_vertices(): void 

+ Greedy(path: string)

+ init(): void
+ reset(): void
+ start_coloring(): int

Extends

GebremedhinManne

- recolor: vector<int>
- color_classes: map<int, vector<int>>

- standard_coloring(start: int, skip: int): int 
- improved_coloring(start: int, skip: int): int
- recolor_step(): int

+ GebremedhinManne(path: string)

+ init(): void
+ reset(): void
+ start_coloring(): int

Extends

JonesPlassmann

- rand: vector<int>
- waits: vector<atomic_int>
- partitions: vector<pair<int, int>>

- partition_vertices_equally(): void
- partition_vertices_by_edges(): void
- coloring_heuristic(first: int, last: int): void

+ JonesPlassmann(path: string)

+ init(): void
+ reset(): void
+ start_coloring(): int

Extends

JonesPlassmannLuby

- rand: vector<int> 

- launch_kernel(): int
- __global__ color_kernel 
 (c: int, n: int, rowPtr: int*, colIdx: int*,
 rand: int*, colors: int*): void

+ JonesPlassmannLuby(path: string) 

+ init(): void
+ reset(): void
+ start_coloring(): int

Extends

CuSparse

+ CuSparse(path: string) 

+ init(): void
+ reset(): void
+ start_coloring(): int

Extends

Figure 4.3. Coloring algorithm UML diagram

4.2 Method A - Greedy

The Greedy class implements the greedy algorithm described in Chapter 3.4. Con-
trary to how the algorithm has been described, our implementation requires that the
order in which the nodes are colored is chosen before the first color is assigned. As
such, Incidence Degree and Saturation Degree orderings are not implementable with
this class, as both orderings change dynamically after a node is colored. Instead, we
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Method Algorithm Architecture
A Greedy

A1 Greedy First Fit Sequential CPU
A2 Greedy Reversed First Fit Sequential CPU
A3 Greedy Largest Degree First Sequential CPU
A4 Greedy Reversed Largest Degree First Sequential CPU

B Gebremedhin-Manne
B1 Gebremedhin-Manne Synchronous Standard Multi-core CPU
B2 Gebremedhin-Manne Synchronous Improved Multi-core CPU
B3 Gebremedhin-Manne Asynchronous Standard Multi-core CPU
B4 Gebremedhin-Manne Asynchronous Improved Multi-core CPU

C Jones-Plassmann
C1 Jones-Plassmann with Vertex Partition Multi-core CPU
C2 Jones-Plassmann with Edge Partition Multi-core CPU

D Jones-Plassmann-Luby
D1 Jones-Plassmann-Luby Max Independent Set Many-core GPU
D2 Jones-Plassmann-Luby Min Max Independent Set Many-core GPU

E Cohen-Castonguay (cuSPARSE implementation) Many-core GPU
F Jones-Plassmann-Luby (Gunrock implementation) Many-core GPU

Table 4.1. Naming convention for algorithms

provide First Fit and Largest Degree First orderings, and their reversed counter-
parts. As shown in the UML diagram of Figure 4.3, the class contains a private vec-
tor of integers vert_copy; this is the vector that contains the nodes in the order they
will be colored in. The vector is assigned numbers from 0 to n− 1 during reset(),
and its order is changed with the private method sort_vertices(), which is called
at the start of the overridden method start_coloring(). sort_vertices() calls
the sort function from the standard library to alter the order of vert_copy. The
ordering is achieved by using the pre-compiler to assign the correct compare lambda
function to a compare variable used on the sort function, depending on the selected
ordering. The execution of start_coloring() continues by iterating over the ver-
tex indexes in vert_copy, now properly ordered, assigning to each one the return
value of the method suggest_vertex_color(int) when the node is passed as a
parameter. Snippets of the code are shown in Figure 4.4.

4.3 Method B - Gebremedhin-Manne
The GebremedhinManne class implements four modes —listed in Table 4.1—of the
Gebremedhin-Manne algorithm described in Chapter 3.5. From the UML diagram
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1 void Greedy :: sort_vertices () {
2 // Define lambdas
3 auto sort_ff =
4 [&]( const int v, const int w) { return v < w; };
5 auto sort_rff =
6 [&]( const int v, const int w) { return v > w; };
7 auto sort_ldf = [&]( const int v, const int w) {
8 return this ->graph. count_neighs (v) >
9 this ->graph. count_neighs (w);

10 };
11 auto sort_rldf = [&]( const int v, const int w) {
12 return this ->graph. count_neighs (v) <
13 this ->graph. count_neighs (w);
14 };
15

16 // Assign correct lambda
17 auto sort_lambda =
18 #if defined ( SORT_VERTEX_ORDER )
19 sort_ff ;
20 #elif defined ( SORT_VERTEX_ORDER_REVERSED )
21 sort_rff ;
22 #elif defined ( SORT_LARGEST_DEGREE_FIRST )
23 sort_ldf ;
24 #elif defined ( SORT_SMALLEST_DEGREE_FIRST )
25 sort_rldf ;
26 #endif
27

28 // Perform sort
29 std :: sort(
30 this -> vert_copy .begin (),
31 this -> vert_copy .end (),
32 sort_lambda
33 );
34 }

Figure 4.4. Nodes get sorted in the Greedy class

in Figure 4.3, the class contains a private vector of integers recolor, populated
during the conflict search step with the indexes of nodes that cause a conflict
and need to be recolored. It also contains the private map color_classes; col-
ors are used as keys to access a vector containing all vertices with that color.
The map is only used in the improved versions of the algorithm to determine
the order of the coloring. As the algorithm is formulated as parallel, we use p
threads, where p is equal to the number of cores of the CPU running the pro-
gram, to lower the effect of the overhead caused by context switching. The init()
method is overridden to reserve memory space for the recolor vector; we use
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the formula n (p− 1) δ/2 (n− 1), proposed in the original paper [12], to estimate
the maximum possible number of conflicts, and avoid array reallocations during the
processing. The start_coloring() method starts the threads, waits for their com-
pletions, and executes the recolor_step() method. The threads execute either
the standard_coloring(int,int) or improved_coloring(int,int) method, de-
pending on the selected mode. Both methods accept two integers as input parame-
ters. The first parameter indicates the starting index for that thread’s computation
and can vary between 0 and p−1. The second parameter indicates how many nodes
to skip to find the next node to color, and it is set to p for all threads. As an ex-
ample, we analyze thread pi; the thread receives i, p as input parameters, and
analyzes all nodes in {v | v mod p = i, v ∈ V = {0,1, . . . , n− 1}} In this way, we
dynamically create blocks based on the node’s lexicographical position, without
needing additional memory or computation. For synchronous modes of the algo-
rithm, however, we add p− (n mod p) to be considered. We call these extra nodes
ghost nodes because they are needed to keep threads busy, but are not colored as
they do not exist. We need ghost nodes so that threads that are assigned blocks
with one less node than the others do not skip the last iteration of the for loop
during the pseudo-coloring step. At the end of the for loop we perform a barrier
synchronization instruction; this barrier is the reason the algorithm is synchronous.
The barrier is initialized to stop threads execution until p threads are waiting on
the barrier. If some threads exit the for loop before the last iteration, the other
threads remain stopped on the barrier, without any possibility of continuing execu-
tion. With ghost nodes, we keep threads that would terminate early on the for loop
for one more iteration, to meet the number of expected threads on the barrier. This
is necessary when n/p is not an integer, and nodes cannot be split evenly across all
blocks. The asynchronous modes of the algorithm do not require the use of ghost
nodes, as the barrier synchronization instruction is not present. A code snippet of
the iteration is reported in Figure 4.5.

After checking that the considered node is not a ghost node, threads perform
coloring in parallel. Coloring is done by selecting the smallest color not used by the
neighbors of the node. For synchronous modes, the original formulation explains
that, instead of considering all the neighbors N (v) to color node v, we can reduce
the number of checks by intersecting N (v) with the set of colored nodes up to that
point. Since the algorithm is synchronized with a barrier, there is no risk of race
conditions. We decide to not implement it this way, and prioritize code reuse by
calling the method suggest_vertex_color(int), provided by the ColoringAlgo-
rithm class. In the method improved_coloring(int,int) this color is also used
as an index to insert the vertex in the vector of the color_classes map. This
insertion is protected by a lock on a mutex shared by all threads.

The improved_coloring(int,int) method continues its execution by perform-
ing the second pseudo-coloring step, detailed in Algorithm 3. We do not use two
different arrays as detailed in the algorithm, so the first step is to reset the values
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1 void GebremedhinManne :: standard_coloring (int start , int skip) {
2 int n = this ->graph.get_n ();
3 // Step 1 - pseudo - coloring
4 #if defined ( COLORING_ASYNCHRONOUS )
5 for (int v = start; v < n; v += skip) {
6 this -> colors [v] = this -> suggest_vertex_color (v);
7 }
8 #elif defined ( COLORING_SYNCHRONOUS )
9 int nCeil = (n / skip + 1) * skip;

10 for (int v = start; v < nCeil; v += skip) {
11 if (v < n) {
12 this -> colors [v] = this -> suggest_vertex_color (v);
13 }
14 barrier ->wait ();
15 }
16 #endif
17 ...
18 }

Figure 4.5. Implementation of the pseudo-coloring step for Methods B1 and B3

contained in the colors vector to a value that indicates “no color”. Threads parti-
tion the work to reset the colors vector the same way as for the pseudo-coloring
step; ghost nodes are not needed because iterations are not synchronous during
this reset stage. We iterate in reverse order over the color classes, starting from
the largest color and ending at 0. Each color class is divided into blocks, in the
same way explained for the first pseudo-coloring step, so that each thread works
independently on its nodes with the method suggest_vertex_color(int). For
this process, Gebremedhin and Manne do not explain how synchronization should
be achieved. We decide to synchronize with a barrier after completely coloring each
color class, for the synchronous mode only. The ghost nodes technique is not used
in this case. Another possible solution would be to synchronize the coloring of each
node; ghost nodes would be needed in this case.

Both the standard_coloring(int) and improved_coloring(int) methods
perform the conflict search step after coloring. Each thread checks the nodes on its
assigned block; for each node, its color is compared against the color of its neigh-
bors. If they have the same color, the one with the lowest index is uncolored and
saved in the recolor vector. In this step, we skip all neighboring nodes that were
not colored during the same time frame as the node currently considered. This is
possible only in Method B1, as time frames have no meaning in the asynchronous
modes, and lose meaning during the second pseudo-coloring for the improved mode.

When all threads terminate, the main thread resumes the execution inside the
start_coloring() method. The recolor_step() method performs recoloring by
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iteratively calling suggest_vertex_color(int) on every node in the recolor ar-
ray. The coloring terminates by returning the number of colors used, obtained with
a linear scan of the colors vector searching for the maximum value, as colors are
assigned in order.

4.4 Method C - Jones-Plassmann
The JonesPlassmann class implements a variation of the algorithm by Jones and
Plassmann presented in Chapter 3.8. While the original formulation requires an
architecture that can allocate and execute a processor per node of the graph, us-
ing message passing to achieve inter-processor communication, we opt for a more
classical approach, with few threads that color each a partition of V , and global
memory as a mean to exchange information. Not following the original formula-
tion was a mistake committed at the start of development, caused by ingenuity
on our part. We extend the base class with three private vectors, as seen in the
UML diagram of Figure 4.3. Vector rand contains integers, vector waits contains
atomic integers, and vector partitions contains a pair of integers. We use atomics
because the vector waits is accessed by multiple threads in a pattern that makes
race conditions possible.

We override the init() method to populate the partitions vector by calling
either the partition_vertices_equally() or partition_vertices_by_edges()
private method, depending on the option selected at compile time. The partitions
vector contains pairs of first and last nodes so that all nodes in between the two
are part of the partition. The partition_vertices_equally() method creates
partitions of ⌊n/p⌋ sequential nodes, where p is the number of threads. The
partition_vertices_by_edges() method is a bit more convoluted. It first com-
putes the number of edges a partition should contain to have them divided equally
among partitions, as the threshold t = ⌊m/p⌋. Then it iteratively creates p parti-
tions by adding one node at a time, checking that the number of edges connected
to the nodes in the partition is lower than t. When the threshold is surpassed,
it repeats the process for the next partition. Partitions have a similar number of
nodes when partition_vertices_equally() is used, and have a similar number of
edges when partition_vertices_by_edges(). By computing them in the init()
method, partitions remain the same across multiple executions.

In the reset() function we initialize the waits vector and populate the rand
vector. We initialize waits with zeroes, and rand so that each cell contains its
index, from 0 to n− 1. Then we call the shuffle function from the C++ standard
library to get a random permutation of the rand array. We do the permutation in-
stead of a more canonical random number generation to avoid dealing with adjacent
nodes with the same random number.

The start_coloring() method is overridden to spawn p threads. We decide to
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use p threads, so that p is equal to the number of cores of the CPU running the pro-
gram, to lower the effect of the overhead caused by context switching. Threads ex-
ecute the coloring_heuristic(int,int) method. The parameters of the method
are the first included and last excluded vertices in the partition assigned to the
thread, retrieved from the partitions array. Parallel execution starts by populat-
ing the waits array. Each thread loops on the nodes in the partition, and saves
in waits how many adjacent nodes have a random number greater than the one
belonging to the current node. Values of the waits array are interpreted as timers
that need to reach 0 before the corresponding node can be colored. This prepa-
ration step is followed by a barrier synchronization, to make sure all threads are
finished counting. Threads then start looping on nodes of their partition to assign
colors; the code is shown in Figure 4.6. In the loop, we color nodes when their

1 void JonesPlassmann :: coloring_heuristic (int first , int last) {
2 ...
3 bool again = true;
4 int const n = this ->graph.get_n ();
5 do {
6 again = false;
7 for (int v = first; v < n && v < last; ++v) {
8 if (this ->waits[v] == 0) {
9 // Color current node v

10 this -> colors [v] = this -> suggest_vertex_color (v);
11 // Decrease v’s timer under 0 to
12 // avoid multiple recolors
13 --this -> waits[v];
14 // Decrease v’s neighbors timer
15 auto const end = this ->graph. end_neighs (v);
16 for (auto it = this ->graph. begin_neighs (v);
17 it != end; ++it)
18 {
19 --this ->waits [*it];
20 }
21 } else if (this ->waits[v] > 0) {
22 again = true;
23 }
24 }
25 } while (again );
26 }

Figure 4.6. Implementation of the coloring in the Jones-Plassmann algorithm

timer in the waits array reaches 0. The color assigned when the timer reaches
0 is equal to the return of the suggest_vertex_color(int). Right after coloring
node v, we subtract one from the timers of nodes neighbors to v. Threads terminate
when all nodes of their respective partition are colored. The coloring terminates
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by returning the number of colors used, obtained with a linear scan of the colors
vector searching for the maximum value, as colors are assigned in order.

4.5 Method D - Jones-Plassmann-Luby
The JonesPlassmannLuby class implements the Jones-Plassmann-Luby algorithm
explained in Chapter 3.6. We implement the algorithm for many-core GPU archi-
tectures in CUDA. We can select how many independent sets are searched every
iteration—one or two—at compile time via the correct pre-compiler definition. We
expect that finding and coloring two independent sets can be twice as fast as only
finding and coloring one, as the second set is found and colored in constant time
with respect to the first.

Analyzing the UML diagram in Figure 4.3, the class contains a vector of integers
called rand. Its purpose and initialization are the same as for the rand vector of
the JonesPlassmann class presented in Chapter 4.4. In the reset() method, the
vector gets filled with unique integer numbers from 0 to n−1 and gets immediately
shuffled with the shuffle function to produce a random permutation. Each number
is linked to a vertex through the index it is stored at, augmenting the vertex with a
random number used to create independent sets. The start_coloring() method
checks that the graph representation format chosen at runtime is CSR, otherwise
the program is terminated with an error. If no errors arise, the execution continues
by calling launch_kernel().

The private method launch_kernel() acts as an interface between the host
code and the device code by managing the device memory and launching the kernel
function with appropriate parameters. The algorithm requires global synchroniza-
tion after every iteration. We achieve it by designing the kernel code to execute a
single iteration of the algorithm, launching the kernel multiple times; terminating
the kernel execution, and continuing with the host code acts as an implicit global
synchronization of the CUDA threads.

The color_kernel(int,int,int*,int*,int*,int*) method is qualified with
the __global__ keyword, and contains the device code. The first parameter is
an integer that indicates the number of iterations completed so far; it is used to
determine which colors to use. The second parameter is the cardinality n of the
graph. The third and fourth parameters are integer pointers of the row pointers and
column index arrays of the CSR representation of the graph. The fifth parameter is
the integer pointer of the rand array, and the sixth parameter is the integer pointer
of the colors array. The pointers act as the entry point to the arrays in the device’s
global memory. The pointers are obtained from the cudaMalloc API call, and
the data is transferred with cudaMemcpy in the launch_kernel() method. The
colors array, however, is treated differently. We use a device_vector from the
Thrust library. Device vectors are objects similar to vectors from the C++ standard
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library, with the exception that reside in the device’s global memory. Thrust pro-
vides high-level APIs to manage device vectors in the GPU directly from the host
code. A total of 4 (3n + m + 1) bytes are needed in the device’s global memory
to house the data needed for coloring with methods D, assuming the use of 32 bit
integers.

The launch_kernel() method sets up the GPU execution layout by calculating
the dimension of the grid and its blocks. We define the block dimensions as a
1-dimensional array of 256 threads, and the grid dimensions as a 1-dimensional
array that contains ⌈n/256⌉ blocks. In this way, launching the kernel spawns at
least n threads, so that each one computes the color of one node. The extra
n mod 256 threads that do not have a node assigned for coloring do not perform
any computation. The kernel is launched inside a for loop. The loop helps us count
how many iterations we are performing, and continues until all nodes are colored.
After the kernel terminates, we check how many nodes are left to be colored. To
do so we call the count function from the Thrust library on the colors device
vector. The function counts how many elements between two iterator objects are
equal to a given value; in our case, we use −1 to indicate a non-colored node. The
counting is completely performed on the GPU, as we pass iterators obtained from
a device vector. The algorithm loops, performing the kernel launch and the count
operation, until all nodes are colored.

The color_kernel(int,int,int*,int*,int*,int*) method is the kernel con-
taining the code to be executed on the GPU device. Using the nomenclature intro-
duced in Table 4.1, the kernel definition for method D2 is reported in Figure 4.7.
The definition for method D1 can be simply obtained by removing lines 10, 30
and 35, and initializing color = c on line 9. Each device thread checks if its as-
signed node v ∈ V is already colored, in which case all the computation is skipped.
If it is not colored, we check each neighboring node w ∈ N (v) in a for loop. We
skip v if it is present in the list of neighboring nodes because of a looping edge, and
neighboring nodes that were colored in a previous iteration; however, we consider
nodes that were colored in the current iteration. For each neighboring node we
consider, we compare rand[w] with rand[v]. For method D1, we initially assume
that v is part of the independent set of maximums; for method D2, we assume that
v is part of both independent sets of maximums and minimums. Participation in
a set is represented as a local boolean variable. By comparing the two random
values, we decide if v remains in the sets or needs to be removed from one or both
of them. The choice of removing v from an independent set is done without if
statements, to avoid the creation of divergent branches. In case v is not part of
any set, we do not break out of the for loop, to reduce the effect of divergence.
After the iteration, we are ready to assign the colors. For method D1, we assign
one color, equal to the first input parameter of the kernel function c. For method
D2, we assign color 2c to the nodes in the set of maximums and color 2c + 1 to
the nodes in the set of minimums. In case a node is in both sets because it has
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no uncolored neighbors, we always assign color 2c. We tried to approach assigning
colors in a branchless manner, but the code lost in readability, and it did not reflect
a gain in performance.

1 __global__ void JonesPlassmannLuby :: color_kernel (
2 int c, int n, int* row_ptr ,
3 int* col_idx , int* rand , int* colors )
4 {
5 for (int v = threadIdx .x + blockIdx .x * blockDim .x;
6 i < n;
7 i += blockDim .x * gridDim .x
8 ) {
9 int color = 2 * c;

10 bool localmin = true;
11 bool localmax = true;
12

13 if ( colors [v] != -1) continue ; // Ignore colored nodes
14

15 // Loop on neighbors
16 for (int i = row_ptr [v]; i < row_ptr [v+1]; ++i) {
17 int w = col_idx [i];
18 int cw = colors [w];
19

20 int vr = rand[v];
21 int wr = rand[w];
22

23 if ((cw != -1 && // Ignore colored neighbors
24 // Consider neighbors colored this iteration
25 cw != color && cw != color +1) ||
26 v == w) // Ignore looping edges
27 continue ;
28

29 // Determine inclusion in independent sets
30 localmin &= vr < wr;
31 localmax &= vr > wr;
32 }
33

34 // Assign color
35 if ( localmin ) colors [v] = color + 1;
36 if ( localmax ) colors [v] = color;
37 }
38 }

Figure 4.7. Kernel function for method D2

Given the limited memory available on GPU devices, we extend the implemen-
tation presented above by allowing a coloring to be produced by coloring multiple
subgraphs. Our idea is to partition a graph that does not fit into the limited device
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memory into subgraphs that are small enough to fit, and independently color each
subgraph. Edges that lay between two subgraphs connect two nodes that can be
colored with the same color, thus generating a conflict. When all subgraphs are
colored we search for conflicting pairs of nodes and correct the conflict. Our first
approach is to employ a graph partitioning algorithm to divide a graph into sub-
graphs. We use the hMETIS [20] library to perform the partition. However, we find
that partitioning a small graph with 500 000 nodes and 17 500 000 edges, which nor-
mally occupies 4 (3n + m + 1) ≈ 76 MB and can fit perfectly fine in modern GPUs
memory, takes more than 1 minute with hMETIS, invalidating our fast coloring
implementation. Our second approach is to create pseudo-partitions by adding
nodes in lexicographical order in a subgraph. We call them “pseudo”-partitions
because, by adding nodes, we also add the edges they are connected to, without
checking that both ends of each edge are present in the pseudo-partition. The
pseudo-partition is defined by selecting a starting and an ending index in the row
pointer vector of the CSR graph representation format; the end index is consid-
ered excluded from the partition. Edges of the pseudo-partition are contained
in the slice of the column index vector between the pointers in the starting and
ending positions of the row pointer vector. Figure 4.8 shows an example of how
a pseudo-partition is extracted from a graph. We transfer both slices of nodes
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(a) Pseudo-partition graph
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(b) Pseudo-partition in CSR format

Figure 4.8. Pseudo-partition including nodes 2, 3 and 4.
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and edges vectors to device memory, as well as the slices of the colors and rand
vectors pertaining to the pseudo-partition. Because we can pseudo-partition the
graphs with a node granularity, the algorithm fails the coloring if the device mem-
ory cannot contain 4 (∆ + 4) bytes, as the partition with a single node with the
maximum degree cannot fit completely in memory.

Figure 4.9 reports the new definition of the kernel function for method D2,
highlighting the differences with the original code in Figure 4.7. We take partitions
into account by substituting the input parametern with the two integer values
first and last on line 2. The value of n is now the number of nodes in the
pseudo-partition last-first, as shown on line 6. On lines 12 and 19 we restore
pointers of the row pointer slice so that they correctly point to the column index
slice. The resulting neighbor index w on line 19 is in the range [0, last− first)
if it is inside the pseudo-partition. On line 26 we ignore neighboring nodes that
are outside of the pseudo-partition. Performances between kernels from Figures
4.7 and 4.9 are practically the same, as the only long operation we add is a single
memory load on line 12. After all the pseudo-partitions are colored independently,
we sequentially scan the colors vector in search of conflicting pairs of nodes. For
each conflicting pair, we save the node with the lower index and erase its color. We
then sequentially recolor the nodes that have been uncolored using the return value
of the suggest_vertex_color(int). This process of conflict search and resolution
is performed only in case the graph has been partitioned; if the graph is entirely
colored with no need for partitions, the conflict search is skipped. Since partitions
are created in lexicographical order of the nodes, we expect a high number of
conflicts. The overall time to perform coloring using this partitioning technique is
high, but with it, we are able to color larger graphs.

4.6 Method E - Cohen-Castonguay (cuSPARSE)
The CuSparse class acts as a wrapper to the csrcolor routine of the cuSPARSE
library. The routine accepts graphs in CSR format, so the execution halts if a dif-
ferent format was chosen at compile time. We only override the start_coloring()
method, to interface with the GPU, manage its memory, start the routine, and ex-
tract the result. We allocate and transfer to devise memory both the row pointers
and column index vectors with cudaMalloc and cudaMemcpy. We also allo-
cate memory for the colors vector to store the result, and for the vector of edge
weights weights, which the routine requires but does not access. The vector of
weights is of length m and contains a weight for each edge of the graph. Since it
is required but not accessed, we decide to allocate memory, but we leave it unini-
tialized. Weighted graphs are outside the scope of this thesis, as weights do not
influence the process of coloring. Other parameters to the routine include the per-
centage of nodes to color, which we set at 100%, and the output parameter ncolors
where the routine will store how many colors are used. Other cuSPARSE-specific
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1 __global__ void JonesPlassmannLuby :: color_kernel (
2 int c, int first, int last, int* row_ptr ,
3 int* col_idx , int* rand , int* colors )
4 {
5 for (int v = threadIdx .x + blockIdx .x * blockDim .x;
6 i < last - first ;
7 i += blockDim .x * gridDim .x
8 ) {
9 int color = 2 * c;

10 bool localmin = true;
11 bool localmax = true;
12 int idx_corrector = row_ptr[0];
13

14 if ( colors [v] != -1) continue ; // Ignore colored nodes
15

16 // Loop on neighbors
17 for (int i = row_ptr [v]; i < row_ptr [v+1]; ++i) {
18 // Valid neighbors are in range [0, last - first)
19 int w = col_idx[i - idx_corrector] - first ;
20 int cw = colors [w];
21

22 int vr = rand[v];
23 int wr = rand[w];
24

25 // Ignore neighbors out of partition
26 if ( w < 0 || w >= last - first ||
27 (cw != -1 && // Ignore colored neighbors
28 // Consider neighbors colored this iteration
29 cw != color && cw != color +1) ||
30 v == w) // Ignore looping edges
31 continue ;
32

33 // Determine inclusion in independent sets
34 localmin &= vr < wr;
35 localmax &= vr > wr;
36 }
37

38 // Assign color
39 if ( localmin ) colors [v] = color + 1;
40 if ( localmax ) colors [v] = color;
41 }
42 }

Figure 4.9. Kernel function for method D2 with pseudo-partitioning.

parameters are needed and can be checked in the cuSPARSE user guide [2].
Calling the csrcolor routine to color a graph requires 4 (2n + 2m + 1) bytes
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of memory, assuming the use of 32 bit integer and floating point numbers. On the
other hand, using methods D1 and D2, we need 4 (3n + m + 1) bytes in the device’s
global memory. By imposing the following inequality between the two

4 (2n + 2m + 1) ≥ 4 (3n + m + 1)

and isolating n from m
2n− 3n ≥ m− 2m

we conclude that method E requires more space in the device global memory that
methods D when

n ≤ m

; this is true for all graph we consider during the tests, listed in Table 5.1.
Analyzing the coloring produced by the routine, we notice that some colors

lower than ncolors are not assigned to any vertex. We ascertain that ncolors is the
maximum color and that the number of colors used is often smaller. We insert the
values of the colors vector, after it has been retrieved from the device memory,
into a set from the C++ standard library and take its size, which corresponds to the
effective number of colors used.

4.7 Method F - Jones-Plassmann-Luby (Gunrock)
In this section, we present the implementation of the Jones-Plassmann-Luby al-
gorithm present in the Gunrock library, despite it not being part of our software.
Gunrock [21] is an open-source framework to ease the development of programs that
perform complex computations on graphs over the GPU. The library is distributed
with several example programs, which include the graph coloring implementation
we consider. The implementation follows the best-performing algorithm from the
research paper by Osama et al. [18]. We obtain and compile the code directly from
the development branch of the Gunrock repository hosted on GitHub [22], whose
last commit was dated 15th November 2021. The structure of the code for method
F follows a design pattern imposed by the Gunrock framework, but the function
executing an iteration of the algorithm—declared as a C++ lambda function—is
very similar to the one presented in Figure 4.7 for method D2. The algorithm finds
the two independent sets of maximum and minimum random values and assigns a
color to each iteration. The sets are constructed by discarding nodes whose random
number is non-maximum or non-minimum. Random values are generated on the
GPU with the cuRAND library as uniformly distributed floating point numbers,
stored in the rand vector. The function implementing the algorithm is dispatched
with a parallel for—one of Gunrock’s high-level API—on every node that has not
been assigned a color. The parallel for issues a kernel launch on the GPU that
dispatches a thread for every non-colored node, and executes the function imple-
menting the JPL algorithm on every thread. A single thread performs work only
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on a single node. The output of the coloring is reported in a JSON file and con-
tains, among other data, the average number of colors and processing time between
multiple runs of the algorithm that can be performed on the same execution.

While experimenting with the Gunrock coloring implementation, some execu-
tions would not terminate. The bug is an infinite loop caused by the rand vector,
whose values are not unique. When two neighboring nodes are assigned an iden-
tical random value, both of them are discarded from both independent sets. This
happens because the evaluation of a node’s membership to a set is done by com-
paring two random values with strict < and > comparison operators. We then
search the commit where the bug was introduced, knowing that the program had
worked in the past, as it was the focus of the research paper by Osama et al. [18].
We find a commit dated 6th November 2019, where a lot of the code implementing
graph coloring was refactored. Among the deleted lines of code, we find a pecu-
liar instruction that enables a behavior not described in the research paper; the
line of code performed a regeneration of the rand vector every two iterations. This
would prevent two neighboring nodes with the same random value from never being
colored, as the random values would change constantly, ultimately fixing the bug.
We restore the lost behavior and submit a pull request to the repository that gets
accepted soon after.
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Chapter 5

Experimental Results

We run our experiments on a i9 10900KF CPU running at 3.7 GHz, with 10 cores
and 20 threads, 64 GB of RAM, coupled with an NVIDIA RTX 3070 GPU with 5888
CUDA cores, and 8 GB of dedicated memory for embedding computations. We use
Linux Ubuntu 20.04.3 LTS as the operating system. Experiments are performed
on the set of graphs reported in Table 5.1. We include graphs from both real
datasets (type r) and generated by an algorithm (type g). Some of the graphs are
undirected (type u), while others are directed (type d); however, we consider the
undirected counterpart of directed graphs, following the transformation described in
Chapter 3.2. In this chapter, we vastly make use of our nomenclature to distinguish
the many algorithms we consider, introduced in Table 4.1.

5.1 Experimental changes
In this section, we describe possible changes to be made in the implementations
presented in Chapter 4.1. We present considerations backed by data harvested
during the experimentation process.

5.1.1 Thread vs async
We experiment with method B3 from Table 4.1 by replacing threads with async ob-
jects. Async objects are similar to threads in the sense that allow parallel execution
of a function, but return a future object used to retrieve return values or exceptions
launched from the parallel function. Our experiment is carried out by launching
a different number of either thread or async objects and analyzing the difference
in runtime. We analyze 4 configurations using threads and 4 configurations using
asyncs; the configurations vary in the number of threads or asyncs we launch in
parallel. We use configurations threads or asyncs of 1, 2, 5 and 10 times the number
of physical threads i.e. in our testing environment with 20 physical threads, config-
uration thread5 launches 100 threads, and async2 launches 40 asyncs. To account
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Instance n m δ D Type
af_shell3 504 855 17 588 875 34.8 6.90× 10−5 ru
apache2 715 176 4 817 870 6.7 9.42× 10−6 ru
ecology2 999 999 4 995 991 5.0 5.00× 10−6 ru
G3_circuit 1 585 478 7 660 826 4.8 3.05× 10−6 ru
offshore 259 789 4 242 673 16.3 6.29× 10−5 ru
parabolic_fem 525 825 3 148 801 6.0 1.14× 10−5 ru
thermal2 1 228 045 8 580 313 7.0 5.69× 10−6 ru
twitch_gamers [23] 168 114 13 595 114 80.9 4.81× 10−4 ru
ASIC_320ks 321 671 1 827 807 5.7 1.77× 10−5 rd
atmosmodd 1 270 432 8 814 880 6.9 5.46× 10−6 rd
cage13 445 315 7 479 343 16.8 3.77× 10−5 rd
email_Enron 36 692 367 662 10.0 2.73× 10−4 rd
FEM_3D_thermal2 147 900 3 489 300 23.6 1.60× 10−4 rd
thermomech_dK 204 316 2 846 228 13.9 6.82× 10−5 rd
rgg_n_2_15_s0 32 768 320 480 9.8 2.98× 10−4 gu
rgg_n_2_16_s0 65 536 684 254 10.4 1.59× 10−4 gu
rgg_n_2_17_s0 131 072 1 457 506 11.1 8.48× 10−5 gu
rgg_n_2_18_s0 262 144 3 094 566 11.8 4.50× 10−5 gu
rgg_n_2_19_s0 524 288 6 539 532 12.5 2.38× 10−5 gu
rgg_n_2_20_s0 1 048 576 13 783 240 13.1 1.25× 10−6 gu
rgg_n_2_21_s0 2 097 152 28 975 990 13.8 6.59× 10−6 gu
rgg_n_2_22_s0 4 194 301 60 718 396 14.5 3.45× 10−6 gu
rgg_n_2_23_s0 8 388 608 127 002 786 15.1 1.80× 10−6 gu
rgg_n_2_24_s0 16 777 216 265 114 400 15.8 9.42× 10−7 gu
qg.order100 [24] 10 000 1 980 000 198.0 1.98× 10−2 gd

Table 5.1. List of graphs used in the experiments. Unless otherwise stated, all
graph instances are obtained through [25]

for fluctuations in runtime speeds, we run the algorithm with the same settings
10 times and present an average of the runtime results in Table 5.2 as the relative
difference from the base configuration of thread1. In the table, negative numbers
represent a slowdown and positive numbers represent a speedup with respect to the
base configuration thread1. We realize that all configurations, on average, perform
better than our baseline. The better configurations are the ones that use twice the
number of physical threads as their number of threads or asyncs; other configu-
rations oscillate with speedups and slowdowns across all instances of the graphs.
Despite a significant slowdown of 35.96% and 24.79% for thread2 and async2 re-
spectively on graph twitch_gamers, all other runs show positive speedups, with an
average speedup of over 10% for both configurations. Despite the positive gains in
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Experimental Results

speed shown by this experiment, we will continue to use the thread1 configuration
throughout this chapter, as the actual speedup in terms of absolute values is usually
negligible, amounting to a few hundred milliseconds only for the larger rgg graphs.

5.1.2 Regeneration of rand vector
Methods D2 and F are respectively our implementation and Osama et al. [18]’s
implementation with the Gunrock library of the Jones-Plassmann-Luby algorithm
with two independent sets coloring. Comparing the iteration section of both codes,
we notice that the Gunrock implementation adds an extra step at the beginning;
every two iterations, the values in the rand vector are regenerated with the cuRAND
library. We suspect this practice has the effect of creating larger independent sets,
which in turn lowers the number of colors, as method D2 generates around 20%
more colors than Method F. We want to experiment with this feature by adding
it to our software, but we find it impossible to use the cuRAND library as it is
done in method F. In fact, the rand vector of Gunrock/color contains random
floating point values, which can be generated with uniform distribution with the
cuRAND library; methods D1 and D2, instead, hold unique integers as a random
permutation of vertex indexes. This core difference leads us to a different way
of changing the contents of the rand vector. Our goal is to change the random
number of every vertex. Each vertex is identified by a unique index v, and its
random value is stored in the rand array at index v. By shifting the array by
one position to the left, wrapping the first element to the last position, we achieve
our goal of modifying all random numbers associated with the vertices. Let’s call
rand [v] the value stored in the vth position of the rand array, and randi the state
of the array after i shifts to the left. We see that the random values associated
with vertex v {randi [v] | i = 0 . . . n− 1} change with every shift, and repeat after
n shifts have been performed. Shifting the vector in memory is a much simpler
solution than completely regenerating it, but doing so in a GPU architecture, where
many threads cooperate to solve tasks in parallel, still proves to be a difficult task.
Instead of performing a shift, we notice that the same effect of shifting the array
can be achieved by modifying the index. In fact, accessing position v after k shifts
leads to the same value of accessing the kth index to the right of v, with proper
wrapping to the start of the array after the end is reached; we can write it as
randk [v] = rand0 [v + k mod n]. We call this technique index shifting, as opposed
to the memory shifting technique we discussed earlier. We can implement index
shifting by simply applying an additive constant when specifying which index to
access. The constant would depend on the current number of iterations, and on the
frequency of shifting. Following Gunrock/color’s footsteps, we start by advancing
the index by one position every two iterations. We also try other configurations, by
changing the frequency of index shifting; we identify each configuration with the
name of the method—either D1, D2, or F—with the subscript T indicating the
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number of iterations that pass between one index shift and the next. In particular,
T =∞ refers to the standard configuration described in Chapter 4.5, where index
shifting is not performed. Table 5.3 reports the number of colors we observe after
running each configuration 10 times on the graphs in Table 5.1. From the table, we

Instance D1∞ D11 D12 D2∞ D21 D22 F2
af_shell3 66 59 65 66 46 49 49
apache2 19 18 19 19 12 13 16
ecology2 15 15 16 15 10 11 12
G3_circuit 15 15 16 15 10 11 11
offshore 37 24 26 37 23 23 27
parabolic_fem 18 12 13 18 12 12 13
thermal2 18 13 14 19 13 12 15
twitch_gamers 769 468 502 776 470 473 509
ASIC_320ks 22 18 19 22 15 15 18
atmosmodd 20 19 19 20 13 14 14
cage13 66 38 42 65 37 38 41
email_Enron 164 118 124 159 118 117 127
FEM_3D_thermal2 50 46 46 51 37 39 38
thermomech_dK 30 21 23 30 20 20 21
rgg_n_2_15_s0 24 21 21 24 20 20 20
rgg_n_2_16_s0 27 22 24 27 23 23 23
rgg_n_2_17_s0 29 24 24 29 24 24 26
rgg_n_2_18_s0 31 27 26 31 25 25 27
rgg_n_2_19_s0 32 27 28 32 26 27 29
rgg_n_2_20_s0 34 29 30 34 30 29 33
rgg_n_2_21_s0 36 30 30 36 30 30 32
rgg_n_2_22_s0 39 31 32 38 31 31 33
rgg_n_2_23_s0 40 33 34 40 33 33 34
rgg_n_2_24_s0 43 35 35 42 35 35 37
qg.order100 357 299 310 356 239 261 221

Table 5.3. Colors produced by configurations of index shifting

see how both D1∞ and D2∞ have the highest usage of colors among the considered
configurations. We see that as we lower T , the number of colors gets smaller as
well, but we cannot explain why this happens. In particular, configurations with
T = 1 produce the least colors with both D1 and D2 methods for the majority
of the test graphs; in the rare cases where this does not happen, the result is still
plenty satisfying, as T = 1 uses only 1 more color than the corresponding T = 2
configuration. Overall, we find a reduction in the number of colors used of 19%
from configuration D1∞ to D11, and a reduction of 28% from D2∞ to D21. The
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reduction is more prominent with D2 rather than with D1 because, on average,
method D2 creates independent sets larger than method D1. To explain this, let’s
consider two successive iterations of method D1 and a single iteration of method
D2 that assign colors c and c + 1 to the independent sets they find. For method
D2, the two independent sets are disjoint, and created from the same subset of
V . For method D1, the first independent set is created from a larger subset of
V than the second independent set, which is bound to choose fewer nodes to add
to the set. When the independent sets are smaller, more iterations need to be
performed to color the whole graph, which increases the number of overall colors.
Method D21 outperforms method F2 by using 10% fewer colors on average. We
know that Gunrock/color performs a regeneration of the rand vector every two
iterations. Osama [26] explains that they see “minor performance improvement
(in terms of the number of colors generated and elapsed time)”, but do not share
if they tried other configurations. We assume that they stop at one regeneration
every two iterations to mitigate the effect of constantly writing data to global
memory between each iteration. A positive side effect of index shifting is that
no extra memory operations are needed, as we modify the index locally for every
thread. This makes index shifting a far more appealing choice than regenerating
the whole vector. We decide to keep using configurations D11 and D21 for methods
D1 and D2 respectively, as they improve the quality of the coloring, with little to
no repercussions in terms of runtime performance.

5.2 Results
In this section, we analyze the performance achieved by the methods listed in
Table 4.1 on the graphs from Table 5.1, in terms of coloring runtime and quality of
the solution, i.e. number of colors. The values we present are averaged across 10
runs of the method on the graph, to account for fluctuations in runtime speeds, as
well as provide a better estimate of the number of colors used by non-deterministic
algorithm implementations. In the following tables, we use τM and cM to indicate
the coloring time in ms and the number of colors respectively; M is the method
the data refers to.

5.2.1 Results for CPU algorithms
Table 5.4 reports the performance of methods A1, A2, A3, and A4, implementing
the sequential greedy algorithm on the CPU. We see that the times to color can be
divided into two distinct groups: methods A1 and A2 are around 3.1 times faster
than methods A3 and A4. The sort operation to generate the order in which nodes
are to be colored, shown in Figure 4.4 is the cause of this behavior. For method A1,
the call to the sort function could be avoided, as nodes are already in the desired
order. For method A2, the desired order is the reverse of the starting order; we
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Instance τA1 cA1 τA2 cA2 τA3 cA3 τA4 cA4
af_shell3 477.65 25 462.60 25 1068.5 29 1069.9 33
apache2 321.87 3 283.50 3 1184.7 7 1180.7 7
ecology2 422.48 2 382.43 2 1625.5 5 1589.5 5
G3_circuit 686.89 4 618.61 3 2659.1 5 2747.2 6
offshore 167.15 12 148.10 12 451.98 11 452.00 14
parabolic_fem 242.68 5 219.13 6 829.36 7 821.95 7
thermal2 602.86 7 539.39 7 2115.8 7 2102.7 7
twitch_gamers 293.07 117 292.02 124 515.59 116 504.71 135
ASIC_320ks 140.89 8 131.06 6 482.68 6 475.87 8
atmosmodd 588.65 2 533.93 2 2244.7 7 2251.7 7
cage13 275.61 16 251.96 16 823.70 15 783.78 18
email_Enron 17.466 35 16.324 54 50.293 29 51.176 54
FEM_3D_thermal2 104.45 8 101.70 8 259.61 18 257.79 18
thermomech_dK 122.21 14 115.59 14 331.54 14 331.49 14
rgg_n_2_15_s0 16.245 13 15.011 14 47.062 14 47.154 17
rgg_n_2_16_s0 33.679 15 30.974 16 99.915 14 100.75 18
rgg_n_2_17_s0 70.032 16 66.327 15 217.50 15 216.98 19
rgg_n_2_18_s0 144.91 17 136.77 17 447.25 16 444.64 21
rgg_n_2_19_s0 300.00 19 282.51 19 970.51 18 1000.4 22
rgg_n_2_20_s0 620.54 18 563.40 20 2110.3 18 2050.6 25
rgg_n_2_21_s0 1282.3 21 1204.7 19 4360.5 19 4381.9 23
rgg_n_2_22_s0 2557.0 21 2471.4 22 9081.5 20 9180.2 25
rgg_n_2_23_s0 5472.3 23 4931.1 22 19461 21 19767 27
rgg_n_2_24_s0 11331 23 10531 23 41605 22 41608 27
qg.order100 37.318 128 372.14 128 44.741 125 44.818 125

Table 5.4. Coloring times and number of colors for Greedy algorithm

could substitute the sort function with the faster reverse function from the C++

standard library. With both methods, we prefer to maintain the call to the sort
function, so that all four different methods share some part of the codebase for
higher readability. This also allows us to possibly change the way we initialize the
vert_copy vector, without affecting the correctness of the algorithm. On the other
hand, with methods A3 and A4, calling the sort function performs a non-trivial sort
operation, which increases the necessary time. Regarding the number of colors used,
method A1 produces the best solution among the most graph instances. Method
A1 is beaten by method A3 on graphs offshore, twitch_gamers, ASIC_320ks,
cage13, email_Enron, qg.order100 and all rgg graphs other than rgg_n_2_15_s0
and rgg_n_2_20_s0. The margin in colors, however, is not very large, reaching
a maximum of 6 fewer colors for graph email_Enron. We find mixed results for
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method A2, which colors some graphs as good as the best solutions from method
A1—or even better in the case of graph G3_circuit—and other graphs present
a number of colors comparable to or worse than a bad solution from method A3.
Method A4 presents terrible results in terms of the number of colors, producing the
worst solutions for all graphs other than qg.order100, where the solution produced
is tied for the best with method A3. Overall, our results do not completely match
previous research [12], stating that a First Fit rule (method A1) usually produces
worst results than a Largest Degree First ordering (method A3); this is possibly
caused by either our chosen set of test graphs or by a different policy in ordering
nodes with the same degree in method A3.

Instance τB1 cB1 τB2 cB2 τB3 cB3 τB4 cB4
af_shell3 1468.1 27 1387.7 26 63.393 27 237.91 24
apache2 1821.5 6 1888.6 5 30.104 4 284.93 5
ecology2 2567.9 5 2679.5 5 36.729 4 405.29 4
G3_circuit 4131.8 6 4267.0 5 58.879 5 628.34 5
offshore 669.43 12 695.62 11 18.695 13 114.75 11
parabolic_fem 1366.7 6 1371.0 6 22.761 6 214.22 6
thermal2 3197.6 8 3285.3 7 59.966 7 500.95 6
twitch_gamers 480.67 117 525.55 112 51.394 118 114.19 115
ASIC_320ks 836.06 9 833.46 6 13.288 8 134.06 6
atmosmodd 3295.9 6 3434.6 5 58.627 6 530.12 5
cage13 1133.5 15 1182.9 14 32.676 16 191.86 14
email_Enron 92.818 37 99.690 36 3.1574 42 16.970 44
FEM_3D_thermal2 382.86 16 396.37 15 13.583 18 67.361 15
thermomech_dK 523.97 14 540.76 12 13.359 13 88.951 12
rgg_n_2_15_s0 83.227 14 87.677 13 2.1415 14 13.946 13
rgg_n_2_16_s0 169.77 15 174.27 15 3.9013 17 28.448 15
rgg_n_2_17_s0 340.59 16 342.79 15 7.9251 16 54.945 15
rgg_n_2_18_s0 662.25 17 684.74 17 15.601 19 113.08 17
rgg_n_2_19_s0 1357.0 18 1397.5 18 31.939 19 221.82 18
rgg_n_2_20_s0 2713.2 19 2806.8 18 66.060 19 451.10 19
rgg_n_2_21_s0 5554.3 20 5814.4 19 139.64 20 955.57 19
rgg_n_2_22_s0 11352 21 11988 20 285.03 22 1851.8 20
rgg_n_2_23_s0 22991 23 24789 22 592.69 24 3807.4 22
rgg_n_2_24_s0 48026 23 52785 23 1221.1 23 7748.0 22
qg.order100 75.717 140 51.979 121 15.649 147 14.683 117

Table 5.5. Coloring times and number of colors for Gebremedhin-Manne algorithm

Table 5.5 reports the performance of methods B1, B2, B3, and B4, implement-
ing the parallel Gebremedhin-Manne algorithm on the CPU. We see that the two
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synchronous versions of the algorithm, methods B1 and B2, are largely slower than
the asynchronous versions of methods B3 and B4. The original paper [12] mentions
that “the asynchronous version runs faster by a factor of 3 to 5”; our results show
a speedup factor of 4 to 7 for the improved versions of the algorithm, methods B2
and B4. Instead, the standard version B3 presents a much higher speedup with
respect to the synchronous standard version of method B1, going from a minimum
of 4.8 times for graph qg.order100 to 70.1 times for graph G3_circuit, averaging
a speedup of 41.9 times faster. The original paper also mentions that the time
needed for synchronization with the barrier increases with the number of threads
performing the computation. In their experiments, Gebremedhin and Manne vary
the number of processors used to a maximum of 12, reporting a speedup the more
processors are used; instead, we use 20 threads, which may be too high of a num-
ber to benefit from the parallel execution, and possibly lose time due to the more
prominent barrier synchronization in the two synchronous methods B1 and B2.
Regarding the number of colors, we confirm the initial assumption that the im-
proved algorithm decreases or leaves unchanged the number of colors generated
by the first step of the algorithm. It must be noted, however, that this does not
fully translate to the improved algorithm generating fewer colors than the standard
algorithm. Method B4 colors graphs apache2 and email_Enron with respectively
1 and 2 more colors than B3, but this is an isolated case. For all other combina-
tions, the improved algorithm does produce a number of colors less or the same as
the standard algorithm. The cost of lowering the number of colors is to increase
the overall runtime. Comparing the best solution for methods A and B—A1 and
B3—we report that method B3 is around 8.8 times faster, probably because it uses
multiple threads, but produces 24% more colors on average.

Table 5.6 reports the performance of methods C1 and C2, implementing the
parallel Jones-Plassmann algorithm on the CPU. Data shows slight to no differ-
ence when comparing the runtime of the two methods for the majority of graph
instances. Method C2 gains a noticeable speedup on method C1 on those graphs
whose nodes present a wide range of degrees; namely, cage13 is colored 11.5%
faster, twitch_gamers is colored 32.3% faster, and email_Enron is colored 49.7%
faster. This is caused by the different ways we divide nodes into partitions. Method
C1 creates partitions with roughly the same number of nodes, while method C2
creates partitions containing roughly the same number of edges. For graphs where
edges are distributed more or less equally across nodes, the two methods create
similar partitions. On the other hand, graphs whose nodes present a wide range of
degrees, where edges are concentrated on the earlier nodes in lexicographical order,
are divided into highly unbalanced partitions by method C1. Given that the work
performed by each thread is linear in the number of edges of its partition, having
partitions with a similar number of edges helps in having all threads terminate in
a short window of time. If partitions have different amounts of edges, however,
threads working on partitions with fewer edges will terminate earlier than threads
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Instance τC1 cC1 τC2 cC2
af_shell3 93.692 28 94.373 27
apache2 41.902 7 41.881 7
ecology2 49.075 5 49.455 5
G3_circuit 78.084 6 83.631 6
offshore 27.805 13 27.846 13
parabolic_fem 31.667 7 31.616 7
thermal2 74.601 7 75.436 7
twitch_gamers 250.08 121 169.30 119
ASIC_320ks 17.548 8 17.498 8
atmosmodd 75.162 7 74.906 6
cage13 58.571 16 51.829 16
email_Enron 12.841 42 6.4488 40
FEM_3D_thermal2 20.287 17 20.119 18
thermomech_dK 19.763 13 19.726 12
rgg_n_2_15_s0 2.7021 15 2.6511 15
rgg_n_2_16_s0 5.5171 18 5.2675 18
rgg_n_2_17_s0 10.816 17 10.732 17
rgg_n_2_18_s0 22.123 19 22.099 19
rgg_n_2_19_s0 47.346 19 46.972 19
rgg_n_2_20_s0 97.171 20 97.523 21
rgg_n_2_21_s0 201.45 20 201.30 22
rgg_n_2_22_s0 425.44 22 427.41 22
rgg_n_2_23_s0 900.59 23 893.36 23
rgg_n_2_24_s0 1877.9 25 1878.8 24
qg.order100 12.447 109 12.424 107

Table 5.6. Coloring times and number of colors for Jones-Plassmann algorithm

working on partitions with more edges, thus wasting computational resources. As
an example to prove this conjecture, we provide that over 50% of nodes on the
twitch_gamers graph is contained in the first 25% of nodes, in lexicographical or-
der; this is why we notice a substantial speedup. The number of colors generated
by both methods on each graph is more or less the same. We consider method C2
to be the best implementation between the two, as it is better on a wider number of
graphs. Overall, method C2 is faster than the sequential implementation of method
A1 but slower than the parallel implementation of method B3. The number of col-
ors is always not better than methods A1 and B3, other than for the qg.order100
graph, colored by method C2 with 14% and 8% less colors than methods A1 and
B3 respectively.
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5.2.2 Results for GPU algorithms

Instance τD1 cD1 τD2 cD2 τE cE τF cF

af_shell3 12.576 60 5.8255 46 5.9724 80 28.085 49
apache2 2.0726 18 0.8742 12 3.8861 33 1.1866 16
ecology2 1.8826 15 0.7561 10 3.2178 32 0.8714 12
G3_circuit 2.2633 15 0.9606 10 4.1577 32 1.1841 11
offshore 1.9085 24 1.0259 24 3.4819 48 3.2902 27
parabolic_fem 1.5309 12 0.8694 12 2.7860 32 1.0553 13
thermal2 2.3871 12 1.3154 12 4.5195 33 2.0279 15
twitch_gamers 2588.6 476 1224.6 469 75.595 504 2774.6 509
ASIC_320ks 3.5919 17 1.7818 15 3.7506 48 3.4160 18
atmosmodd 2.6420 18 1.1800 13 4.5680 35 1.7150 14
cage13 3.1115 37 1.7160 37 4.7012 64 5.7199 41
email_Enron 26.931 119 13.284 117 9.5010 146 36.738 127
FEM_3D_thermal2 2.2242 44 1.1346 36 4.2934 64 3.4798 38
thermomech_dK 1.2694 21 0.7175 20 3.4366 48 2.0432 21
rgg_n_2_15_s0 0.4431 21 0.2523 21 3.1055 48 0.6031 20
rgg_n_2_16_s0 0.5602 23 0.3206 23 3.2023 48 0.7585 23
rgg_n_2_17_s0 0.8443 24 0.4841 24 3.2511 48 1.1635 26
rgg_n_2_18_s0 1.3747 25 0.7774 25 4.4512 50 2.1031 27
rgg_n_2_19_s0 3.6363 27 1.9406 27 3.9091 48 4.4323 29
rgg_n_2_20_s0 5.9281 29 3.1602 29 5.7149 57 8.3825 33
rgg_n_2_21_s0 11.079 30 5.7060 30 8.6801 59 16.899 32
rgg_n_2_22_s0 22.753 31 11.634 31 15.287 64 35.851 33
rgg_n_2_23_s0 50.776 33 25.713 33 38.113 64 77.216 34
rgg_n_2_24_s0 115.53 35 57.995 35 75.728 64 167.91 37
qg.order100 25.428 311 10.378 137 12.988 129 35.514 221

Table 5.7. Coloring times and number of colors for coloring algorithms
running on the GPU.

Table 5.7 reports the performance of methods D1, D2, and F, implementing the
parallel Jones-Plassmann-Luby algorithm, and method E, implementing the paral-
lel Cohen-Castonguay algorithm, on the GPU. We see that method D2 completes
the coloring between 1.7 and 2.4 times faster than method D1, for an average of
1.99 times faster. This aligns with our expectations presented earlier in Chapter 4.5
because method D2 selects and colors two independent sets at the same time with
a constant time difference from method D1, which only colors one. Method E is the
fastest GPU algorithm on twitch_gamers and email_Enron graphs, but method
D2 is on average 3.8 times faster than method E on the other graphs. As we use the
csrcolor routine from the cuSPARSE library as a black box for method E, we
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do not know what causes the speedup on the two mentioned graphs. Method F is
always slower than our implementation of the same algorithm in method D2, which
proves to be 2.5 times faster on average. Interestingly, method D1 is 1.5 times
faster than method F on all graphs other than apache2, ecology2, G3_circuit,
parabolic_fem, thermal2, ASCI_320ks and atmosmodd, despite performing col-
oring in a less efficient manner. We already discussed differences in colors pro-
duced by methods D1, D2, and F in Chapter 5.1.2. Method D2 uses on average
10% fewer colors than both D1 and F; on larger graphs such as twitch_gamers,
cage13, email_Enron and the rgg set, method D1 produces on average 7% fewer
colors than method F. Method E always produces solutions that contain 118%
more colors than method D2, except for graph qg.order100, where it uses 6%
fewer colors. Method E likely produces solutions with this many colors because the
Cohen-Castonguay algorithm implemented assigns 16 colors per iteration—as we
proved in Chapter 3.7—to reduce the number of iterations performed, consequently
reducing the coloring time. Comparing the CPU algorithms to method D2, we see
how it is on average over 200 times faster than method A1, around 22 times faster
than method B3, and 30 times faster than method C2. This result is to be expected,
as GPU architectures provide a larger grade of parallelism compared to multi-core
CPUs. What is not expected, however, is that CPU-based graph coloring is faster
than our method D2 in graphs twitch_gamers and email_Enron: method A1 is
4.2 times faster, method C2 is 7.2 times faster and method B3 is 24 times faster
than method D2 to color the first graph. The second graph is colored 4.2 times
faster by method B3 and 2 times faster by method C2, while method A1 is slower
than method D2. This surprising result is probably caused by the structure of the
graphs; both graphs present a wide excursion of degrees between their nodes. Graph
twitch_gamers has a maximum and minimum degree of ∆t = 35279, δt = 1, and
graph email_Enron has a maximum and minimum degree of ∆e = 1383, δe = 0.
This high discrepancy in the number of edges the GPU algorithm has to consider
increases the effect of divergence, as well as requires many load instructions from
the global memory, whose results cannot be cached in the limited cache memories
of GPUs. The number of colors produced by method D2 on the GPU is between
40% and 50% greater than methods A1, B3, and C2 over all the graphs. Method
B3, however, uses 7% more colors than method D2 on graph qg.order100, because
it implements the standard Gebremedhin-Manne algorithm, which does not refine
the coloring.

To investigate and motivate the speedup method D2 registers over method F, we
profile both executables with the Nsight Systems profiler distributed by NVIDIA.
We compare the coloring graph af_shell3, as it presents a prominent speedup, but
it is colored roughly with the same amount of colors, hence in the same number
of iterations. The profiler works by executing each kernel multiple times with the
same input data, to collect all information needed without interfering too much with
the timing of a single kernel call. We profile a single run of both algorithms; this
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profiled run is different from the executions reported in Table 5.7, so results do not
coincide perfectly. The profiler shows us that many kernels contribute to providing
a coloring solution, i.e. the count function from the Thrust library launches two
different kernels to return the number of non-colored nodes in method D2. On the
profile for method F, we recognize the main kernel that computes the iteration,
called Kernel, and another kernel called in between once every two Kernel calls,
called gen_sequenced; this is the kernel that performs the regeneration of the array
of random values. We also see other minor kernels, but we do not know what their
purpose is. We only consider kernels that actively perform coloring—color_kernel
for method D2 and Kernel for method F—as all other ones have a fast and fairly
constant execution time. In Figure 5.1 we plot the execution times of each coloring
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Figure 5.1. Execution times to complete each kernel

kernel in µs for both methods D2 and F. It is evident from the chart that method F’s
bottleneck is in the kernel function. Execution time for method D2’s color_kernel
is a slowly decreasing curve with respect to the iteration number, from 647 µs to
16 µs. On the other hand, the kernel function from method F executes roughly
in constant time for the first 14 calls, at around 1669 µs, then the execution time
quickly drops, stabilizing it the last 5 iterations around 75 µs. We find the cause
of this not-so-great performance in two characteristics of the code provided by
Gunrock. First, we notice from the profiler that, as the coloring progresses, the
kernel function spawns a grid with fewer and fewer threads. This causes fewer
warps to be ready to start executing when another warp is scheduled out of a SM
while waiting for a global memory load. Graph algorithms rely heavily on memory
operations, which can become a bottleneck if not properly balanced with computing

61



Experimental Results

operations on GPU hardware. The second cause is in the formulation of the kernel
function itself. In the code fragment that decides whether the current node is
part of either independent set, access to the rand vector is performed 4 times per
neighboring node, as no number is saved as a local variable in register memory. This
is a huge problem for memory access, especially not saving the random value of the
current node that is being colored, as it is constant between the whole execution of
the kernel and does not need to be reloaded. Better memory management allows to
access global memory once per neighbor, plus one time to load the current node v’s
random value, for a total of δ (v) + 1 global memory accesses, as long as the loaded
values are saved in register memory. The combination of these two behaviors leads
the kernel to run out of ready warps while loading the random values, thus stalling
the process. Between iterations 14 and 18, when the majority of nodes are colored,
the balance that keeps the kernel stalled is broken, and the kernel can operate at
a time comparable to the time of method D2. Regarding method D2, we designed
the kernel to be launched on same-sized grids. Our implementation requires 2δ (v)
global memory loads per iteration on lines 22 and 23 of Algorithm 4.9, which is not
optimal, but in our opinion improves code readability by having the two variables
defined near each other.
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Chapter 6

Conclusion

In this thesis, we analyze existing algorithms to solve the problem of graph coloring
and propose, for the Jones-Plassmann-Luby algorithm we implement in CUDA,
the technique of index shifting. By shifting the index by which threads access
random numbers, we are able to reduce the number of colors used by around
28%, with a consequent increase in execution speed. Our implementation of the
Jones-Plassmann-Luby algorithm with local minimum and local maximum indepen-
dent sets reaches execution speeds of 2.5 times faster than previous state-of-the-art
implementation based on the Gunrock framework; it also produces 10% fewer colors.
However, different algorithms, such as the Gebremedhin-Manne algorithm we im-
plemented for CPU architectures, produce solutions with 87% fewer colors, despite
needing more time to complete. Further studies could implement more algorithms
for GPU processors, allowing for a more fair comparison between the algorithms
than the one we present. We conclude that moving highly parallel portions of algo-
rithms to the GPU, a trend that is being explored in recent years, is a push in the
right direction, as the benefits of having a faster code are immediately noticeable;
on the other hand, however, GPU programming is a field that requires deep knowl-
edge from the developer’s part, and is in no way a simple feat to conquer. We hope
that further advancements in technology can improve results obtained with GPU
programming, while also decreasing the effort required from the developer.
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