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1 Introduction
This internship addresses multiscale modelling of dispersed phase flows. In partic-
ular, knowledge of the stresses to which solid particles immersed in a liquid flow
are subjected is of paramount importance in order to better model the dynamics of
two-phase flows.

This dynamic system is found in nature and in various industrial domains. Start-
ing with water treatment, an increasingly topical issue related to safeguarding the
planet and recycling raw materials, it is of particular importance to understand
and manage polluting microplastic particles and fibers. Industrial processes such
as fluidizer beds, bubble columns, and flotation processes for treating air pollutants
require continuous scientific and engineering evolution.

Very often the continuous liquid phase and the dispersed solid phase are treated
together through an Eulerian formalism. It first requires the mediation of transport
equations and closure laws, including knowledge of the stresses on inclusions. The
latter are of main importance for the precise prediction of pressure drops within
certain industrial processes, as well as the prediction of their trajectories. Several
models exist in the literature that can predict average stresses on solid particles,
but very few models exist for local determination at the particle scale.

It is for the aforementioned purpose that we aim in this work to build an Ar-
tificial Neural Network model capable of giving us a prediction of the local efforts
exerted on each inclusion. We first start with a simple benchmark model, and we
then gradually improve upon this work using more DNS (Direct Numerical Simu-
lation) training data, optimizing the model hyperparameter and transforming raw
inputs into a symmetry preserving embedding.

This study is the first step towards a more in-depth analysis of the prediction
model carried out within the IFPEN research centre, the company at which this
internship was carried out. Additional information on it are included in Appendix A.

The programming language used is Python and the ML (Machine Learning)
study was carried out using the Keras library integrated in Tensorflow [4].

2 Necessity of an ANN model
PR-DNS (Particle Resolved Direct Numerical Simulation) could be used to best
model two-phase flows, but it has been found that the calculation time and com-
putational cost are too high. Therefore, large-scale physical models are used to
overcome this. They are composed of averaged formulations which, however, re-
quire closure laws. The empirical ones are very limited nowadays, because they
require knowledge of the local stresses exerted on each inclusion in the domain.

The creation of a well-trained and optimised ANN (Artificial Neural Network)
model could return us good predictions of these efforts, considerably shortening the
calculation time. We learn from the literature that the distribution of stresses on
the particles, in particular the resistance forces along the flow axis fx, can deviate
greatly from the average value.

Fig. 1a from the literature [1] shows us a colour-scale distribution of dimension-
less fx values on each particle resulting from PR-DNS. We note that dimensionless
values range from 2 to 6, and looking at Fig. 1b taken from one of the simulations
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Figure 1: (a) Calculated drag force by PRS on an assembly of spherical particles at Re=10
and φ=0.1 [1] . (b) Histogram of fx from a PRS at Reynolds number Re=10 and
solid fraction φ=0.314 .

Figure 2: Velocity fluctuation distribution on y-plane at z = 0 for Reynolds number Re=10
and solid fraction φ=0.16

performed in this internship, we see that the fx distribution follows a Gaussian law.
The cause of this considerable difference between the values assumed by the fx on
the particles can be seen in Fig. 2, taken from the post-processing of one of the
DNS simulations carried out in this work. The graph shows through the velocity
distribution that each particle experiences a different flow depending on its position
relative to neighboring particles, as it can be affected by wakes and flow pertur-
bations. We now validate the importance of knowing the stresses on the particles
instead of just the average stress.

We report in Fig. 3 the graphs of the dimensionless and averaged fx as a function
of the simulated Reynolds numbers for two solid fraction analyzed in the stage. The
details of the CFD simulations carried out during the internship will be discussed
in more detail later in the report; the information we retain from the above graphs
are the remarkable values of the mean square deviation already from low Reynolds
numbers, testifying to the wide range of stress values exerted on the particles.

Thus, all these analyses certify how important it is to go beyond the use of aver-
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Figure 3: Drag force fx averaged with mean square error bars for Reynolds number Re=10,
40, 70, 100 with solid fraction (a) φ=0.105 and (b) φ=0.314.

aged fx, as local values on inclusions would be overlooked. The ANN model would
therefore be a good tool to integrate the empirical closure laws using the predictions
of the stresses on each particle and be able to close the mediated formulations.

3 Starting parameters required for the model
For an effective prediction model, it is necessary to define which parameters of
the problem most influence the value to be predicted. As this is a preliminary
study, several simplifications were made with respect to the real multiphase flow
system. The particles are modelled as spherical and with immobile position within
an incompressible liquid in a stationary flow. In the model to be created, we only
use as output the resistance forces fx on the particles.

The physical parameters of the problem that are directly related to these pre-
dictions are: the flow velocity, taken into account through the Reynolds number
Re,

Re = ρU D

µ
, (1)

where ρ, U and µ indicate the density, fluid velocity and dynamic viscosity of
the fluid respectively, while D is the diameter of the spheres, taken as constant
throughout the stage, and the solid volume fraction of particles dispersed in the
flow φ,

φ = 4
3 N πR3, (2)

where N is the number of spheres in the liquid volume and R is their radius.
As seen in Fig. 3, the geometrical parameters of the particles closest to the

reference one also have their bearing on the prediction of the relative strength.
We will start with a model that takes as input only the two physical parameters
of the problem Re and φ, and then see how using information on the position of
neighboring particles improves the prediction of fx.
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Number of simulated particles
N Solid fraction φ Re=10 Re=40 Re=70 Re=100
100 0.052 1200 1200 1200 1200
200 0.105 2400 2400 2400 2400
300 0.157 3600 3600 3600 3600
400 0.209 4800 4800 4800 4800
500 0.262 6000 6000 6000 6000
600 0.314 7200 7200 7200 7200

Total database = 100800 particles
Table 1: Summary of the quantity of DNS simulations performed by Reynolds number and

solid fraction.

3.1 Configuration of DNS simulations

Before getting into machine learning models, it is a priority to have a good database
through which future models can be trained and tested. All physical and geometric
data and results are obtained from CFD simulations carried out in this first part
of the internship. The tool used to perform simulations of fixed spherical particles
dispersed in a liquid flow is PeliGRIFF, a parallel DEM-DLM/FD direct numerical
simulation tool for 3D particulate flows.

The dimensionless Navier-Stokes equations for an incompressible flow are solved.
Continuity:

∂ui

∂xi
= 0 (3)

Momentum:
∂ui

∂t
+ ∂(ujui)

∂xj
= − ∂p

∂xi
+ 1
Re

3
∂2ui

∂x2
j

4
(4)

The simulations are carried out using a constant particle diameter D of 0.1 mm
and a cubic form of the reference liquid volume of dimension 10D. The bound-
ary conditions are tri-periodic and with a mesh counting 24 cells per diameter
(240x240x240 computational background cells in the x, y and z directions, respec-
tively).

3.2 Creation of a training database

To effectively train an ANN prediction model, it is crucial to have a large database of
simulated particles at different velocities, solid fractions and geometric distributions.

For this reason, 12 particle distributions with random initial positions were
simulated for a volume containing 100 to 600 spheres (solid fraction φ between
approximately 0.05 and 0.32) and at Reynolds numbers Re between 10 and 100.
The Tab. 1 contains details of the simulations and the total stored particles.

As mentioned above, the only results we retain from the simulations are the
drag forces fx acting on the particles along the flow axis alone.
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They are first adimensioned using the Stokes-Einstein relation:

fxi = f̃xi

FxStokes drag

= f̃xi

3π µDU
. (5)

The average value for each solid fraction tested was calculated using the following
formula:

F̄x = 1
N

NØ
i=1

fxi . (6)

However, some of the simulations did not achieve constant convergence, but for
some particles the solution continued to undergo small periodic oscillations.

After verifying that the fluctuations were not due to a numerical problem, we
agreed that indeed being simulations with high Reynolds number or low solid frac-
tion, the problem was starting to become non-stationary. To avoid this, it is there-
fore decided to take the last simulation time steps (coinciding with the last oscilla-
tion periods) and to derive for each particle the average value of drag force exerted
on it. This allowed us to avoid taking untrue fx values and still use more data that
would have proved useful for the model.

4 Benchmark
We now come to the creation of the first simplified ANN models, which we use as
a starting point to build more advanced prediction models.

In this first modelling step, it is interesting to see the prediction efficiency of
two basic models:

• the first using a simple linear regression (taking as input: Re, φ and the
relative positions in cartesian coordinates of n neighboring particles);

• the second very similar to the model of Long He [1] in the hyperparameters
set, but using only Re and φ as input.

In these benchmark models as well as in all more advanced models to be created,
we use 60% of the accumulated data to train the model, and the remaining 40% is
divided equally for the validation and testing phase. To assess the effectiveness of
the models, we analyze the coefficient of determination R2 for each ML simulation

R2 =
qN

i=1(Ŷi − Ȳ )2qN
i=1(Yi − Ȳ )2

, (7)

where Ŷi are the predictions made by the ANN model, Yi are the exact results de-
rived from the DNS simulations and Ȳ is the averaged drag force F̄x.

To go into the post-treatment graphs in more detail, we see in Fig. 4a the parity
plot of the test phase inherent in the linear regression model. This specific scatter
plot is particularly explanatory when prediction and machine learning studies are
carried out, as it compares a set of results from a computational model (y-axis)
with reference data (x-axis).
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Figure 4: Parity plots of the test phase referring to (a) the linear regression model and (b)
the model using only Re and φ as input.

Principal model hyperparameters
#hidden layers #neurons activation func. loss func. optimizer dropout

1 25 tanh MSE Nadam 0%
Table 2: Principal hyper-parameters used in the ANN model.

The linear regression model, using no activation function, has no learning poten-
tial, and its low efficiency is evidenced by the low R2 value and the large difference
visible graphically between the exact and predicted values of the resistance force.

In Fig. 4b, on the other hand, we see the parity plot of the test phase of a
real ANN model (hyperparameters shown in the Tab. 2), but which does not take
neighboring particles into account among the input parameters.

We see that the model actually only succeeds in distinguishing the predictions
by (Re, φ) group, giving us only the average fx between the particles. We note,
therefore, that the model does not distinguish between fx within the same simula-
tion; this is a result we expected, as we did not give it as input any information at
the level of the particle to enable it to make a local prediction.

5 Literature-based modelling
Once we were familiar with the simpler models mentioned above, we created a
first optimal ANN model for predicting the fx exerted on each particle. We used
the previously defined hyperparameters and largely derived from the model in the
literature by Long He [1]. The only differences, apart from the database used, are:

• in the activation function, which remains very similar to the tangent sigmoid
used in literature [1];

• in the optimisation method used to minimize the training loss, which has a
negligible influence on the final prediction result, but rather plays a funda-
mental role on the learning rate of the ML simulation.

Let us now focus on defining the inputs that make the prediction different from
that presented by the second model in the 4.
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Figure 5: (a) History plot of the loss function for the training and validation phase. (b)
Parity plot of the test phase of the model based on literature [1].

Among the inputs along with Re and φ were added the relative positions in
Cartesian coordinates of the 15 particles placed closest to the particle relative to
the prediction; thus for this particular model we have a total of no less than 47
elements in the input vector. To follow the training of our model and thus its
optimisation, we visualise how the loss function varies as a function of the epochs,
i.e. the simulation steps. Throughout the work, we used the MSE (Mean Squared
Error)

MSE = (Ŷi − Yi)2 , (8)

where Ŷi are the predictions made by the ANN model, Yi are the exact results
derived from the DNS simulations. The graph in question can be seen in Fig. 5a,
where the two simulation phases, training and validation, are clearly distinguishable.

In the parity plot in Fig. 5b, on the other hand, we can already see a consider-
able evolution in the predictions of our model compared to those of the benchmark,
due to the neighbourhood taken into account in the inputs.

Since we use the same prediction model, the graph allowing us to compare our
results with those in the literature is the one in Fig. 6, i.e. the relative error of the
predictions as a function of the cumulative distribution. In other words, this graph
shows us the number of particles as a percentage whose fx prediction falls within a
given relative error of the exact results. The formulas used to calculate this error,
for predictions and mean values, are as follows:

errorANN = FANN
x (Re, φ, i) − FP RS

x (Re, φ, i)
FP RS−MEAN

x (Re, φ)
, (9)

errormean value = FP RS
x (Re, φ, i) − FP RS−MEAN

x (Re, φ, i)
FP RS−MEAN

x (Re, φ)
, (10)

where FANN
x are the ANN predictions, FP RS

x are the exact Fx and FP RS−MEAN
x

are the averaged F̄x.
In the graph, we see how our model and that of the literature are both more

effective than using only the mean value of fx for each particle, but we also see
how our model returns less accurate prediction results. In addition to the already
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Figure 6: Cumulative distribution function of relative error over all Reynolds numbers and
solid fractions among using the ANN predictions, the mean value of fx and the
literature results [1].

discussed negligible differences in the model settings, the real difference between our
results and those of the literature is the use of a completely different database, which
is specific to the DNS simulations performed. Conscious of this, we have steered the
work towards an optimisation of the model by making several modifications. First,
we see in the next chapter the standardisation of the inputs and the modification of
the data splits for the three simulation phases of the model. A more comprehensive
set of graphs inherent to the model just seen can be found in Appendix B.

6 Model optimisation

6.1 Standardisation of inputs and modification of splits

The first modification made to our basic model presented in the previous chapter was
the standardisation of the inputs. In more detail, when analysing the magnitudes of
the different inputs, we see a heterogeneity due to the different origin, be it physical
or geometric. In effect, the model finds itself having to evaluate in the same learning
step values from 10 to 100 for the Reynolds number, from 0.05 to 0.32 for the solid
fraction and all the different relative positions of neighboring particles.

To standardise these elements on the same scale, we used the Scikit− learn [2]
package on python, and standardised the variables by removing the mean and scal-
ing to unit variance. On the other hand, as far as the outputs are concerned, since
they are only the fx, we did not consider it necessary to make any changes, thus
leaving them simply scaled with Stokes Drag. What emerges is that the model is
slightly more effective simply with this standardisation of inputs; for this reason,
we will only use standardised inputs from now on.

We then performed a test to see how much the division of the data between the
training, validation and testing phases affected the accuracy of the predictions. In
particular, the split made so far involved an orderly division within each simulation
for each phase, i.e. the first 60% of particles went to the test phase, the next 20%

10



Range of tested hyperparameters
#hidden layers #neurons activation function optimizer dropout

[1, 50] [1, 50] tanh RMSprop [0, 50%]
sigmoid SGD
softma Adam
relu Nadam

Table 3: List of hyperparameters tested during the optimisation performed on Optuna.

to the validation phase and the remaining 20% to the test phase. Now we will
no longer divide the particles within the same simulation, but rather dedicate the
total particles of 60% of the simulations performed per pair of Re and φ to the
test phase and so on. This ensures that each phase will test particles from separate
simulations and not different particles from the same simulation. In addition, the
choice of simulations dedicated to each ML simulation phase is made randomly from
those performed per pair of Re and φ.

6.2 Optimisation of hyperparameters using Optuna

The actual optimisation of the ANN model was carried out through the automatic
hyperparameter optimisation software framework Optuna [3], an imperative define-
by-run style user API. It enjoys high modularity, and with that we can dynamically
construct the search spaces for the hyperparameters.

In addition, Optuna uses a Buleian method of optimisation research. Through
various simulations and hyperparameter values, it selects the most effective com-
binations of these to optimise the quantity taken as a reference. In our case, this
coincides with the already described coefficient of determination R2.

The hyperparameters that were tested with their respective ranges of values or
types are presented in the Tab. 3.

A very useful tool for post-processing visualisation of model results is the Ten-
sorBoard suite of web applications, a visualisation tool provided with TensorFlow.
After a brief analysis of the trade-off between model complexity and model efficiency,
we arrived at the definition of the new optimised Keras hyperparameters:

• 2 hidden layers;

• 40 neurons per layer;

• activation function: tanh;

• optimizer: Nadam;

• dropout: 4%.

6.3 Study of neighboring particles

After defining the main hyperparameters whose combination creates the most ef-
ficient model, we tested the latter by giving it a variable number of neighboring
particles as input data to see how the accuracy of the predictions varies. Therefore,
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Figure 7: Coefficient of determination of the ANN model as a function of the number of
neighboring particles taken as input.

for this purpose, we created the graph in Fig. 7, where we see as a function of the
neighboring particles taken into account the values of the coefficient of determina-
tion derived for each case tested.

We note that the optimal value of neighboring particles that optimise the pre-
dictions is about 6, a lower number than we expected when comparing with the
literature [1]. In fact, in the latter, the model’s predictions improve from 5 to 15
particles, whereas our model seems to be unable to optimally handle the high num-
ber of relative coordinates of the input particles. So we are in the condition where
our model is more efficient with a low number of neighbours, but not having enough
information it is less accurate in its predictions. When we increase the number of
neighbours, however, the model seems to overfit the training data set.

6.4 Prediction results

Using the optimised model with input: Re, φ and the relative cartesian coordinates
of the 6 nearest particles, we present in Fig. 8 the comparison with the other variants
of the model.

Comparing the relative error of the cumulative particle distribution of the basic
model and the optimised model (both with standardised inputs), we see that the
curves are practically all overlapping. This makes us realise that the model used
in the literature, although relatively simple in terms of hidden layers and neurons
used, is already optimised for our data and prediction system.

In addition, in this graph we present the error distributions resulting from the
two ANN models tested so far for both types of data splitting, the ordered intra-
simulation and the random one for different simulations on the three ML simulation
phases. For both models, we see that the type of split does not play a decisive role
on the efficiency of the model. Further graphics produced for the post-processing
of the model can be found in Appendix C.
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Figure 8: Cumulative distribution function of relative error over all Reynolds numbers and
solid fractions among using the original model, the one optimised and the mean
value of fx.

7 Switching to the polar coordinate system
Observing the last model and its difficulty in handling the numerous inputs related
to the neighborhood geometry of each particle, we carried out an input optimisation
study. More specifically, with reference to the diagram in Fig. 9, we have noticed

Figure 9: Representative diagram of two neighboring particles and polar geometric quanti-
ties.

that each spherical inclusion influences axisymmetrically the particles close to it
according to the direction of flow. Therefore, in addition to the Re and φ always
taken into account, any information other than the relative distance between the
two particles and the angle formed with respect to the direction of flow p is to be
considered superfluous.

The relative distance d takes into account the importance of affection between
the particles and the ψ angle the relative position per pair of inclusions. In this
way we have one less input per neighboring particle taken into account and one less
piece of information that is truly useful to the model.

Once we had resized our database with the new polar coordinates, we immedi-
ately tested it on the model we had optimised for cartesian coordinates. In doing so,
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Figure 10: Coefficient of determination of the ANN model with polar coordinates as a func-
tion of the number of neighboring particles taken as input.

we have a first prediction model that we go on to optimise for the new coordinates
again using Optuna. To analyse whether optimisation will play a decisive role on
predictions this time, we will plot the relative error curve for the two models.

The optimised Keras hyperparameters of the ANN model with these new inputs
are as follows:

• 6 hidden layers;

• 18 neurons per layer;

• activation function: relu;

• optimizer: RMSProp;

• dropout: 0%.

7.1 Study of neighboring particles

As done previously with cartesian coordinates, we test the new optimised model
with a variable number of neighboring particles taken into account in the inputs.

Through the graph in Fig. 10, we see how the accuracy of the predictions varies
by plotting the coefficient of determination R2 for each case tested. Indeed, by
using polar coordinates, the model seems to be able to handle a larger neighborhood
more robustly, and thus make efficient use of more information. From 14 particles
onwards, the prediction accuracy decreases very slightly, but even with 50 particles
the model still performs better than the highest R2 values achieved so far.

7.2 Prediction results

In Fig. 11 we see the parity plot of the test phase, which indeed shows us that
the predictions are far more accurate than those obtained so far with the previous
models, reaching a coefficient of determination R2 equal to 0.889.
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Figure 11: Parity plot of the simulation test phase of the optimised ANN model with polar
coordinates.

Let us now compare in the error graph in Fig. 12a the new model with the
previous one using cartesian or polar coordinates. We see that already the re-
sults obtained with the non-optimised model are better than all those tested with
cartesian coordinates, testifying to the real value added by changing the inputs.
Furthermore, in this case, the optimisation performed on Optuna give us a good fit
of hyperparameters that increase the accuracy of the predictions.

The significance of this improvement can be seen in the latest comparison with
the literature in Fig. 12b. Here we see that our model’s predictions are even more
accurate than those presented by Long He [1], especially for those particles subject
to drag forces more extreme of our domain.

In conclusion, we show in Fig. 13 the comparison for each simulation macro
group (Re, φ) for the 3 main models presented:

• the model based on the hyperparameters in the literature [1] (neighbourhood
in cartesian coordinates);

• the model with hyperparameters optimised with Optuna (neighbourhood in
cartesian coordinates);

• the final model optimised for inputs taken in polar coordinates.

These graphs show for each particle (indeed in ascending order with respect to
the exact fx exerted on it) the drag force calculated by means of the DNS-PRS
simulations, the prediction of the same force made by means of the reference ANN
model and the average prediction value calculated for each 20 particles. First of
all, we note how the fx derived from the simulations deviates considerably from the
average fx over all inclusions, graphed through the dashed horizontal line.
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Figure 12: Cumulative distribution function of the relative error over all Reynolds numbers
and solid fractions of the results of (a) the last three models described and (b)
our last model and that of the literature [1].
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Figure 13: ANN results compared to PRS data, mean value at corresponding Re and φ,
and averaged ANN value.
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Given this, our aim is to get the blue distribution of predictions as close as
possible to the red distribution of correct fx. We note that for the graphs referring
to low solid fractions, the number of particles tested is significantly lower. Logically,
this is due to the fact that, for the same number of simulations and the same fluid
volume, we have fewer inclusions and thus a lower solid fraction. As witnessed
also by the comparisons carried out previously, the latest ANN model (right side)
provides us with more accurate predictions than the other two models, which are
very similar in their results. In fact, the most significant improvement is seen for
the most extreme values of the fx, where the model manages to be more effective.

A complement of graphs is presented in Appendix D.

8 Conclusions and perspectives
The aim of this stage is to create an Artificial Neural Network model capable of
predicting as accurately as possible the stresses exerted on individual particles dis-
persed in a liquid flow. By limiting ourselves to the drag force along the flow
axis and simplifying the particles to the spherical shape, we first assembled a good
database through DNS simulations. After defining our inputs and an initial model
based on the literature, we obtained results that were less precise than those we
refer to. Thus, with the aim of improving the model, we made several changes,
both in the data used to train the model and by optimising its hyperparameters.

The role of data division, input standardisation and the number of inputs are
also studied. While the division of data plays a negligible role on the efficiency of the
model, the standardisation of inputs is a modification we have retained for further
development. Although we have tested numerous hyperparameters to improve the
predictions, the apparently optimised model still performs at the same level as the
base model. We assume that this difference in accuracy is mainly due to the data
used to train the model, among which a good portion of fxi was subjected to pre-
process of averaging, due to the instability of some simulations at low φ and high
Re.

By performing a relative coordinate analysis, we simplified the information to
be given to the model in the inputs, replacing coordinates in the cartesian system
with polar ones. Once the model has been re-optimised for this new input config-
uration, the improvements obtained are significant, achieving even slightly better
accuracy than that obtained in the literature. So on the basis of the data in our
possession and an initial development of a machine learning model, we arrive at an
acceptable optimisation of the predictions, arriving at the definition of additional
considerations compared to the studies presented in the current literature.

Possible further steps are firstly to use the created model to predict other efforts
currently already stored by the PR-DNS, such as resistance forces along the y and
z axes and torques to analyse the degree of accuracy.

An additional complexity is the change in the shape of the inclusions. In reality,
these can often be assimilated to a rather cylindrical shape, but this would entail
additional information to be taken into account in the model, i.e. the relative
orientation between the particles.
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A final interesting development that could be extremely useful is the definition
of an analytical formulation capable of returning the predicted values on individual
inclusions. To do this, the function should take as input a set of variables similar
to those used in our study, starting of course with the Reynolds number and the
solid fraction to obtain an initial value averaged over the set of particles. Instead,
the most precise calculation would come with the enrichment of the formulation
through terms based on the pairwise additivity hypothesis, which take into account
the relative distances and sizes of inclusions. In this case, the creation of an ANN
model would be necessary in defining the coefficients and constants to be included
in the formulation.
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A Appendix : IFPEN company description
IFP Energies Nouvelles, originally in the oil and gas industry, is a player actor in
different research domains like circular economy (Plastic recycling, Environmental
monitoring, CO2 capture, etc.), climate and environment, renewable energies (Bio-
fuels, Biogas, Biochemistry or Green chemistry, Hydrogen, etc.) and sustainable
mobility (Hybrid and electric powertrains, Connected vehicles, etc.).

The company has around 1600 employees, on two sites (Rueil Malmaxison near
Paris, and Solaize near Lyon). Among them, 70IFPEN contains 9 different research
and innovation divisions (Analysis, Catalysis biocatalysis and separation, Mobility
and systems, Numerical science, Process design and modelling, Physico-Chemistry
and Applied Mechanics, Process experimentation, Technology watch and economy,
Earth science and environment).

This internship takes place at the Physico-Chimie et Mécanique Direction / Dpt.
Mécanique des Fluides division (R174) and it is supervised by Thibault FANEY
(R115 department) and Jean-Lou PIERSON (R174 department), both research en-
gineers at IFPEN.
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B Appendix : First literature-based model

Figure 14: History plot of the Mean Square Error of the training and validation phase as a
function of epochs. Parity plots of the Training, Validation and Test phases.
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Figure 15: ANN results compared to PRS data, mean value at corresponding Re and φ,
and averaged ANN value.
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C Appendix : Optimised model

Figure 16: History plot of the Mean Square Error of the training and validation phase as a
function of epochs. Parity plots of the Training, Validation and Test phases.

23



Figure 17: ANN results compared to PRS data, mean value at corresponding Re and φ,
and averaged ANN value.
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D Appendix : Final model with polar coordinates

Figure 18: History plot of the Mean Square Error of the training and validation phase as a
function of epochs. Parity plots of the Training, Validation and Test phases.
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Figure 19: ANN results compared to PRS data, mean value at corresponding Re and φ,
and averaged ANN value.
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