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Abstract

In my thesis I selected and analyzed the virtualization technologies that
are most widely utilized and created a set of host hardening policies for a
Docker environment. The starting point was the research of the current
state of the art of virtualization technologies that can were divided in three
main categories, based on their implementation: type 1 hypervisors, type 2
hypervisors and OS virtualization. Based on the diffusion of the technologies
in the automotive development and testing world we decided to analyze
further two products, one classified as type 1 hypervisor since is the most
common technology found in automotive embedded systems and one OS
virtualization product that is very flexible and suitable for testing. This
analysis was performed by studying the software in its technical details
and core elements to obtain an accurate overview on how the virtualization
mechanism is implemented.The products that were chosen were Xen Project
Hypervisor and Docker representing type 1 hypervisors and OS virtualization
respectively. These two software were then analyzed from the security
point of view by performing a small scale risk assessment based on the
800-30 Nist document. Thanks to the assessment and publicly available
technical documents a set of possible vulnerabilities were highlighted in both
technologies, this led to the identification of some possible countermeasures
to said vulnerabilities as general host hardening policies.
Due to testing and hardware availability reasons Docker was the software
chosen for practical examination and based on the general host hardening
policies defined in the preceding step a set of specific host hardening rules
were defined to be enforced in order to increase the security of the host system.
The last step was the automatization of the verification process of said rules
by developing a tool. The tool was developed in the Python language and
its purpose is to create a readable report containing all the informations that
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can be collected from the system and present them to the user in order to
highlight any possible misconfiguration or selected configuration option that
could lead to security risks and at the same time to offer a possible solution
to the highlighted problems.
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Chapter 1

Introduction

Nowadays, virtualization is a key component in many IT fields, and its
utilization is essential to improve the performance and security of many
systems, this is achieved by isolating, managing access to system resources,
assigning privileges and performing access control to the created virtual
environments. Running virtualized environments can as said before, on one
hand, improve the security level of a system, but on the other hand, it adds
a new attack surface that a malicious user could exploit. This explains
why there is a need to improve the security of virtualization technologies by
identifying the right process to recognize and fix configuration vulnerabilities.

Virtualization products usually present a set of default configuration options
enabled to ensure the correct execution of the software. These configurations
are often focused more on guaranteeing general-purpose functionalities to the
system than devoted to implement a security-oriented solution, this means
that in most cases is up to the user to change the setting of the system
to enforce security. While sets of security rules are available online, their
availability is not expanded for every product. Therefore emerges the need
to identify the right process to detect vulnerabilities and select the related
security policies.

This thesis proposes a methodical solution for detecting configuration vulner-
abilities in virtualization products and the formulation of consequent host
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Introduction

hardening policies. The identified process starts by analyzing the most com-
mon virtualization paradigms to classify commercial virtualization products;
each product can then be studied in depth to understand its architecture,
workflow, and main strategies for implementing virtualization. Based on
the software structure of the product a series of assets can be selected as
possible sources of risks for the system, that can be targeted by threat
sources, causing a set of threat events that could affect the virtualization
environment. These threat events can be used to identify a series of possible
vulnerabilities present in the implementation of the virtualization software
solution due to architectural defects or not security-oriented configuration
options.
The subsequent step is the definition of host hardening policies to contrast
the detected vulnerabilities, where policies can be applied, in fact, in the
presence of structural vulnerabilities no solutions at the user level can be im-
plemented and the software needs to be patched and tested by its distributor.
Having selected Docker as a target product and following the defined general
hardening rules, it was possible to define a set of practical host hardening
rules together with the command line instructions required to configure them
and then verify the enforcement status on a running container. The testing
of the applicability of the rules was done at the host level on a clean Docker
installation on a Linux personal computer, by running a container based on
an Ubuntu image retrieved from the Docker standard registry. The rules were
then individually enforced on the container and the result of the enforcement
was verified by checking the output of status commands. Since the process
of enforcement and verification took several hours to complete the need to
automate the verification process where possible. To obtain the automation
of such a process a tool has been developed in the Python language that,
requiring minimal user input, executes the verification commands and based
on their output, reports on a text file if a host hardening rule has been
enforced. The development of the tool was done on a standard Kali Linux
OS.
Thanks to the collaboration with Drivesec the tool was then executed to test
a Docker container located in a Linux host used in the development stages
by the company, this is the reason why this container was purposefully made
less secure to test the tool’s accuracy in detecting enforced policies.

2



Chapter 2

Virtualization

Virtualization is a technology that uses software or hardware modules that
are capable of creating a platform to run multiple OSs in a single physical
machine. This functionality makes it possible for a system administrator to
create different virtual spaces to divide critical applications from non-critical
ones improving performances and security by separating the configurations
of these programs. Another benefit of virtualization is that it allows the
user a physical machine’s full capacity by distributing its hardware resources
among different user instances. The result of implementing virtualization
is the simplification of access and management of software and hardware
resources available to users or applications. This simplification makes the
underlying infrastructure transparent for the users of the system, so in case
it undergoes modifications it will not be able to detect the change and will
continue to operate without being affected by it.

2.1 Virtualization Technologies
Nowadays there is a large amount of COTS virtualization products avail-

able, but many of these products are based on the same virtualization
paradigm and consequently present similar characteristics. It is important
to understand the differences between these virtualization technologies in
order to be able to classify products in the right category.

3



Virtualization

2.1.1 Hypervisors

A hypervisor, depending on the specific case, can be classified as a software,
firmware, or hardware module that creates, runs, and manages virtual
machines. The hypervisor controls how the guest operating systems are
executed and provides them with a virtual operating environment. Based on
the layer to which the hypervisor is deployed there are two possible definitions
of hypervisors.

Type 1 Hypervisors

Type 1 hypervisors use hardware acceleration software to carry out com-
putationally expensive operations and are deployed directly on top of the
hardware of the system without the requirement for a native machine OS or
drivers. OSs and other services are executed inside the virtual environments
instantiated by the hypervisor, called guests, and the hypervisor mediates
their access to physical interfaces. The type 1 hypervisor is widely ac-
knowledged as the best-performing and most efficient of the two hypervisors.
These hypervisors are more scalable because their direct resource assignment
capability enables resource allocation and physical resource optimization.

Figure 2.1: Type 1 Hypervisor architecture, [16]
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Virtualization

Figure 2.2: Type 2 Hypervisor architecture, [16]

One downside of this type of virtualization is that the configuration of a
system executing a type 1 hypervisor needs advanced operating systems and
computer architecture knowledge, therefore their primary applications are in
professional areas.

Type 2 Hypervisors

Type 2 Hypervisors are built on top of the Operating System and run as
a normal application inside the OS. Type 2 hypervisors support multiple
virtual machines but are prohibited from having direct access to the host
hardware and its physical resources. The Operating System, already present
on the host machine, manages the system calls for memory, network resources,
and storage. Due to not having direct access to physical resources type 2
hypervisor VMs can suffer some latency issues. This kind of hypervisor is
simpler to set up than type 1 hypervisors and is compatible with almost any
hardware, which is usually why this type of virtualization is mostly utilized
by everyday users and for educational purposes.

2.1.2 OS Level Virtualization

OS-level virtualization is defined as an operating system capability in
which the kernel permits the co-existence of several isolated user-space
instances on the top of the operating system. The programs running inside
those instances are not expected to see the difference between a normal
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Virtualization

Figure 2.3: OS Level virtualization architecture, [19]

system and the virtualized one. Because OS virtualization renders access
to hardware, there may be instances where the virtual OS is incompatible
with the hardware. OS virtualization enables guests to execute different
programs in these isolated user-space instances, which are usually called
containers, each of which is assigned a specific amount of hardware resources
and permissions. The software that runs inside the container sees those
resources as the only ones accessible and considers itself to be running in a
complete system in its own right.

Following this distinction between virtualization solutions, research was
conducted to categorize virtualization products available to the public and
to select two of these products for extensive analysis. This selection was
based on features such as Open-Source software, an accessible and rich
documentation, software usage popularity, and configuration options.

2.2 Virtualization Products
Having analyzed how virtualization technologies function, it is possible to

categorize the most common products used for virtualization based on their
behavior.
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Virtualization

Xen Project Hypervisor
Xen Project Hypervisor is an open-source type 1 hypervisor developed by The
Linux Foundation. Xen transforms the hardware present on the machine into
a pool of computing resources that it can allocate to the guests it manages
by creating a virtualization layer directly on top of the hardware. This
hypervisor makes available to the user three types of virtualization: full vir-
tualization, paravirtualization and a hybrid of the previous two called PVH,
exclusive for Xen. The management of the system is done by controlling a
privileged guest generated at hypervisor loading time called dom0. Xen can
execute different OSs due to not being dependent on any operating system.

OKL4
OKL4 is a type 1 Hypervisor designed and distributed by General Dynamics
Mission Systems. The OKL4 Hypervisor enables the ability to produce
performance-optimized and secure environments because of its microkernel
base while guaranteeing the separation of VMs by hosting guests ranging
from complete OSs to device drivers in isolated unprivileged VMs. Being
microkernel-based it benefits from a low-performance overhead and a small
memory footprint to make it a viable solution also for resource-constrained
devices. The hardware resources assignation can be dynamically scaled by the
hypervisor itself by the OKL4 decision-making process so that applications
and processes that execute in a dedicated operating system can access the
resource they need without having to incur in lowered performances.

VMWare Workstation Player
VMware Workstation Player is an open-source type 2 hypervisor distributed
by the company VMWare but currently supported only by the community.
Being a type 2 hypervisor Player requires the presence of a base OS to run
its software and create virtual machines, Player is the community version of
software developed by VMWare called Workstation which requires a license.
Originating fundamentally from the same product Player offers a reduced
set of the features present in Workstation. Since Player VMs are stored on
disk and updated when modifications (i.e. addition of files or directories,
program installation) occur inside the virtual machine, this software offers
the feature of saving a certain snapshot of an entire VM by simply saving
the directory it is stored in.
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Virtualization

Oracle VirtualBox
VirtualBox is a type 2 hypervisor developed and distributed by Oracle free
of charge. One of the main positive points is the compatibility with a good
number of OSs both from the software installation compatibility and from the
ability of OS support for virtual machines. Oracle makes available packages
for certain operating systems, usually the heaviest in terms of hardware
resource consumption, devoted to improving performances. VirtualBox can
manage multiple virtual machines, and configure their resource consumption,
storage and emulation of their GUI. To communicate with the running VMs
the host can use a variety of methods, such as shared clipboards or virtual
networks, which can also be put in place for guest-to-guest communications.

Linux Containers
Linux containers or LXC is an OS virtualization tool integrated into the
Linux kernel capable of running multiple virtual units, being dependent
on the Linux kernel, LXC is only available for Linux OSs and capable of
managing only Linux guests. The objective of LXC is to give the user the
possibility of creating isolated environments, more specifically containers,
inside the same Linux machine but without the need for different kernels.
LXC bases its implementation on two Linux kernel modules called cgroups,
used for hardware resource management and limitation, and namespaces that
manage the accessibility to system resources for processes, this is used to
make applications inside the containers behave like they would in a complete
system. One of the advantages of this product is that a user classified as
root inside a container is not seen as such outside of it.

Docker
Docker is a software that implements OS virtualization and is distributed
and developed by Docker Inc. To implement virtualization Docker uses
containers that can be built based on static files, called images, to improve
its portability and distribution. Being based on container technology Docker
makes available the kernel of the underlying host OS to further reduce the
size of the container images. To turn a static image in a running container a
dockerfile is needed, which is a configuration file where the execution options
and configurations parameters can be stored, moreover, these parameters
can be passed directly as options when managing Docker from a terminal.
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Chapter 3

Virtualization Products
Analysis

After a careful evaluation of commercial products, Docker and Xen Project
Hypervisor were selected as the two virtualization products to be investigated
in depth. This choice was based on different factors, for starters, they repre-
sent two different types of virtualization paradigms that are very common in
industrial applications, Xen is classified as a Type-1 Hypervisor, which can
be deployed directly on the target products in different industrial fields while
Docker belongs to what is referred to as OS-Level virtualization, suitable
to be implemented in testing environments or servers. Moreover, Xen is
open-source software, developed by the Linux Foundation, Docker instead
is developed by a private company and is available for free for private use
but for enterprise use a paid license is required. For both software products,
extensive documentation and support are available, both via official and
community sources.
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3.1 Docker
Docker is a software product implementing an OS-level Virtualization

paradigm and its main purpose is to build, run and manage Linux-based con-
tainers. It allows for the packaging and running of applications in containers,
which are essentially loosely isolated environments based on Linux cgroups
and Namespaces, this isolation grants more security to the host and the
applications running on it while giving it the ability to run many containers
simultaneously, one independent from the other.
Containers include everything that is needed to run applications, exception
made for some kernel modules that are provided by the OS, not having to
virtualize a complete OS explains why containers are lightweight and have
a lower resource consumption in contrast to type 2 hypervisors. Docker
in contrast with other OS-Virtualization solutions shows higher portability
since its containers can be run without needing to modify settings in the host
operating system and their execution depends only on the installation of the
Docker platform. Projects are very portable because of Docker container-
based technology, which enables containers to execute on machines with
various capacities from a developer’s local laptop to cloud providers.
Because of its portability and lightweight, it is also simple to manage work-
loads dynamically, scaling up or down applications and services following the
changing requirements of applications.

3.1.1 Architecture

Docker bases its container implementation on a client-server architecture.
The Docker client communicates with the Docker daemon, which is in charge
of managing the creation, execution, and distribution of Docker containers.
Both the Docker client and daemon can be installed and executed on the
same machine, or a Docker client can be connected to a remote Docker
daemon, in this case, UNIX sockets, a network interface, or a REST API are
used by the Docker client and daemon for communication.

Docker daemon

The Docker daemon is a service process that runs on the host operating
system and is responsible for managing the Docker API calls, the objects to
be used for the creation and execution of containers(i.e., images, volumes),
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and the communication with other daemons to implement online availability
of the Docker environment.

Docker Client

The main tool for users to interact with the Docker environment and
the containers is the Docker client, the client can be accessed via command
line or with the use of a GUI called Docker Desktop. The user can send
management commands or monitor container status using the Docker API,
the client then sends these commands to the Docker daemon, which carries
them out and provides the output of the command back to the client.

Docker Registry

A Docker registry primary function is to store and provide Docker images
when requested. Anyone can utilize Docker Hub, a public registry, and by
default, Docker is set up to search it for images. There is also the possibility
to run a local privately owned registry, to create and store user created
images.

Docker Images

Images are files containing the data for creating Docker containers. An
image is frequently based on another image or created by a snapshot of

Figure 3.1: Docker architecture, [13]
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an operating system in a specific status, then it can be modified to use
it as a starting point. Building the image is not enough to be able to
run it as a container, it is also necessary to write a Dockerfile, a file with
a basic syntax, that defines the actions required to build and execute an
image. Each Dockerfile instruction produces a layer in the image, and in
case of modifications, only the layers that have changed are rebuilt when the
Dockerfile is altered. This is the reason why images are so lightweight, small,
and fast when compared to alternative virtualization technologies.

Docker Container

A container is defined as a running instance of an image. The management
(creation, execution, deletion, etc.) of the container is done by using the
Docker API. It is possible to attach storage units to a container, link it to
one or more networks, or even construct a new image based on the state
of an existing one. A container is defined by the contents of the image it
is generated from as well as any configuration options that are provided
to it when it is created or started, if options are not set the container is
assigned a default set of rules and configuration parameters by Docker to
enforce isolation from other containers and its host. The user can directly
control these options with a configuration file or runtime options to define
how isolated a container’s network, storage, or other subsystems are from
the surrounding environment. Docker offers the possibility to configure its
containers with a large set of options some critical from a security standpoint,
these options include but are not limited to:

PID Separation of processes on Linux hosts is provided via the PID names-
pace. The PID Namespace hides the system processes from visibility and
permits the reuse of process identifiers, this means that two processes
belonging to different PID Namespaces can have the same PID. The
host’s process namespace may occasionally need to be shared by the
container. This effectively gives the container the ability to see every
process running on the system, a possible use of this feature is the
implementation of a container with debugging capabilities.

IPC IPC namespace provides separation of the access to ADT used for
inter-process communication such as semaphores and message queues.

Network If not differently specified by the user or the image, containers have
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networking enabled and they can connect to the net or other containers.
Communication with other containers is achieved over the default bridge,
a network located inside the host machine and by default containers are
connected to it at startup. Containers will use the same DNS servers as
the host if not differently specified, in case this is not desired users can
set up their DNS configurations, as an option of the command to start
the container. By default, the MAC address is generated using the IP
address assigned to the container otherwise the container’s MAC address
can be set explicitly by providing it via the –mac-address parameter
option. This kind of configuration needs to be used carefully since it
could cause network issues since Docker does not check if manually
specified MAC addresses are unique.

User Memory User memory is the portion of main memory available to
the user. Main memory is the memory directly accessed by the processor
to read instructions and read or write data, one of the OS mechanisms
implemented by OSs for memory management is memory swapping.
Memory swapping enables a computer to store data in secondary storage
and recover it when it is needed for usage in main memory, allowing the
system to use a larger amount of memory than is physically available.
By default, there is no memory limit for the container and it can use as
much memory as it requires.

Kernel memory Kernel memory is different from user memory since as for
kernel memory, algorithms for memory swap can not be applied. Being
denied the possibility of swapping a container that gets stuck while in
possession of a portion of the kernel memory could lead to a possible
block of system services if the portion of reserved kernel memory is
too large. Considering that kernel memory is not independent of user
memory an issue in kernel memory consumption could result in issues
with the main memory as well. By default kernel memory usage is not
configured and a single container could claim it in its entirety.

CPU By default, all containers get the same priority when requesting
access to the CPU. This is not ideal in case some processes run critical
applications, this can be modified by changing the container’s CPU
share accessible by each container to create a priority system.

Storage The container can be given the possibility to write data on a
disk. If this option is configured the container could end up taking up
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too much space in storage leading to reduced system performance or
even denial of service. Docker has two possible options to provide disk
space to a container, volumes, and storage drivers. The main difference
between these options is that data in volumes is persistent while data
in storage drivers are not. Although using volumes is safer since Docker
assigns a 10GB default size limit if using storage drivers is necessary its
implementation requires a specific configuration.

Privileges By default, Docker containers are executed without root privi-
leges and are limited in what they can do, increasing the privilege level
of a container to the host level allows him to act as a host itself. In case
privileges are needed for a specific function (i.e. CAP_NET_ADMIN al-
lows control over network interfaces) it is possible to assign the container
privileges only related to that function’s capabilities. Capabilities are a
Linux feature that grants selected processes a set or single permission
that would be usually only available in privileged mode. Docker executes
the container with a certain set of capabilities enabled and the host is in
charge of adding or removing them to suit his necessities. Enabling the
wrong capabilities could lead to potential privilege escalation of mali-
cious software while dropping necessary ones could lead to an incorrect
execution.

3.2 Xen Project

3.2.1 Architecture

The Xen Project hypervisor is classified open-source type-1 or bare-metal
hypervisor and for this reason, does not require the support of a host
operating system. A type 1 hypervisor enables the simultaneous execution
of several operating systems on a single machine, the operating systems
executed do not require to be different instances of the same OS. Xen is
the foundation for many other commercial programs, ranging in a wide
array of uses including server and desktop virtualization, security software,
and embedded application. The Xen Project hypervisor, is executed on the
hardware immediately after the bootloader and it is in charge of managing
the CPU, memory, timers, and interrupts. Numerous virtual machines can
be run on top of the hypervisor, and a running instance of a virtual machine
is referred to as a domain or guest. The system’s drivers are all located in
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a special domain called domain 0, which also includes a control stack and
other system functions for managing the whole system. Its main features
are:

• Low memory impact: It is more reliable and secure than other hypervi-
sors because its design is based on the use of a microkernel, which has
a minimal memory footprint and interfaces to the guest. The majority
of deployments use Linux as the primary control stack (also known as
"domain 0"), however, some implementations with other control stacks
can be used (i.e. Solaris).

• Driver assignement: The Xen hypervisor gives the possibility to decide
which device drivers can be run in which VM. If a driver malfunctions
or stops responding, there is no need of restarting the whole system, but
it is sufficient to reset the VM in which the driver is contained.

• Paravirtualization: Paravirtualization is a virtualization method that
provides the virtual machine with a software interface that is comparable
to the actual hardware-software relationship, similar to what happens
in a normal system where the OS uses its system calls to communicate
with the HW. Guests that have been fully paravirtualized are optimized
to run as virtual machines and where applicable, this enables these

Figure 3.2: Xen Project Hypervisor architecture, [18]

15



Virtualization Products Analysis

guests to operate much faster. The hypervisors that can operate with
paravirtualization can also function on devices that do not support
virtualization extensions.

3.2.2 Guests

• Paravirtualized Guests or PV Guests:
Although paravirtualized guests need a PV-enabled kernel and PV
drivers to run effectively without emulation or virtual emulated hardware,
paravirtualization does not require virtualization extensions from the
host CPU, making it perfect for running on older hardware. A Linux
framework was used to allow PV in Linux kernels starting with version
2.6.24, so most Linux distributions can support PV (except for very old
versions). This is why PV guests are typically used for old hardware
and legacy images as well as in unique situations, such as running Xen
inside of another hypervisor without the need to use nested hardware
virtualization support or hosting containers.

• HVM Guests:
Full virtualization, also known as hardware-assisted virtualization, or
HVM, employs the host CPU’s virtualization extensions to virtualize
guests, but it also needs processor-specific hardware extensions, which
are used to increase the performance of the emulation. Guests that
are fully virtualized don’t need kernel support to run. Due to the
necessary emulation, fully virtualized guests typically operate more
slowly than paravirtualized guests, but they are compatible with old
operating systems that do not present PV kernel features. Xen Project
software uses QEMU, a generic and open-source machine emulator and
virtualizer, device models to emulate hardware, BIOS, and the necessary
drivers for the system to run. If the guest has PV features HVM Guests
use them to reduce latency and improve performance. Typically HVM
virtualization performs best for general-purpose OSs (i.e. Windows,
Linux).

• PVH Guests:
PVH guests are the most recently introduced type of guests for Xen,
they try to incorporate the best features of HVM and PV hosts by acting
as HVM guests that can exploit kernel virtualization extensions usually
reserved for PV guests. In contrast to HVM guests, PVH guests use
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Figure 3.3: Performance overview based on the type of guest, [18]

native operating system interfaces for virtualized timers, interrupts, and
boot instead of QEMU. This is a way of combining the advantages of
PV and HVM virtualization modes which was a major factor behind
the birth of PVH guests. To achieve this kind of collaboration, the
development process started with an HVM guest, gradually removing
functionalities that were not essential and then Hardware virtualization
support was implemented, a feature of PV, for memory and privileged
instructions. While QEMU is not required for PVH guests to execute
correctly a user-space backend can still use QEMU if it is needed for the
implementation of some of its functions.
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3.2.3 I/O Support

I/O is a fundamental part of any computer system and a possible per-
formance bottleneck for virtualized systems. Xen divides its virtualization
approaches for I/O devices based on the presence of PV drivers in the guest.
Paravirtualization I/O is the best performing of the two approaches and is
suggested for guests whose OS kernels include PV drivers, fully virtualized
I/O instead while offering lower performances has its benefits in compatibility
since it is the only option available when working with old operating systems.

Paravirtualization I/O

Xen Project Hypervisor provides two models for Paravirtualization I/O.
In the first model, two PV I/O drivers are installed in the dom0 kernel, one
for the front end and one for the back end, in a client-server schema. This
model is capable of managing networking and virtualized storage.
In the second model, a raw disk interface is presented by a QEMU user

space in the dom0 to its PV back end, which is then presented to the guest
front-end driver. There is no difference between a back-end driver running
in user or kernel space from the viewpoint of guests. Depending on the
configuration option selected, Xen will automatically select the ideal pairing
of front and back-end drivers.

Figure 3.4: PV I/O Model 1, [18]
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Figure 3.5: PV I/O Model 2, [18]

Fully virtualized I/O

To implement I/O for HVM guests which have no access to kernel PV
drivers is used together with PV I/O Support. This kind of solution is only
available to HVM guests since they can take advantage of this functionality,
which is mostly used to simulate legacy devices that are required for a guest’s
boot procedure. This implementation is based on the presence of an emulated

Figure 3.6: HVM I/O, [18]

19



Virtualization Products Analysis

device in the dom0 and then the guest has to be supplied with the related
device driver to access the I/O device.

3.2.4 Storage

Xen can implement two methods for the management of storage and disks.
The first possibility is to create separate partitions, using Linux Volume
Manager, on the disk while operating as the dom0 and to assign them to the
VM that requires it. The other possibility is the management of simulated
disks via files, it is in fact possible to store disk images on the local filesystem
and give permissions to VMs to access them. Another possibility for storage
configuration is remote storage but its implementation and configuration is
completely left to the user.

While using LVM has better performances due to driver availability using
disk storage offers more flexibility in memory management, Xen gives the
possibility of mixing the two approaches by creating a local volume with
large dimensions used to contain disk images. Generally speaking, the use of
LVM is more diffused in Xen implementations.

Logical Volume Manager

To be able to configure the usage of LVM as the policy for the implemen-
tation of guest storage there is the need to have a large space available on

Figure 3.7: Xen storage management, [18]
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the main disk before creating the partitions for the guests. For this reason,
the disk space dedicated to the use of LVM needs to be configured at the
time of installation of the hypervisor.
Based on the control stack employed by the dom0 guest it is possible to use
LVM to store its dedicated storage inside the LVM partition reserved for
guest disk utilization.

One of the suggested divisions of storage in a Xen host is the following:
up to 8GB for the dom0 guest and its memory swap requirements based on
its OS and the rest of the disk made available for guest storage.

3.2.5 Networking

When configuring guests, their network parameters will be defined based
on the control stack of the dom0 and the virtualization method of network
interface, differentiating between PV Network Devices and Emulated Network
Devices.

PV Network Devices

PV network devices despite using paravirtualization can be made available
also for HVM guests, by installing the OS-compatible PV driver in the guest
or in case its kernel is PV aware. The guest is then given access to single or
multiple network interfaces that do not suffer from the HVM overhead of
the complete emulation of the device and are capable of implementing fast
network communications.

To implement PV networks there is the need for a pair of network drivers
one front end and one back end. The first one will be located in the guest
VM and the second is usually stored in the dom0. To the guest, the front-end
device looks like a standard network interface while the back-end device
situated in the dom0 is configured to contain the references to the guest.
The two devices are then connected by a virtual communication channel, and
network traffic will be generated in the host, transmitted from the front-end
device to the back-end device, and then routed onto the wider network
usually by using Network Address Translation.
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Emulated Network Devices

The other possibility to implement network access is the use of emulated
network devices, which are necessary in case the host OS does not support
PV. This requires the emulation of a complete hardware element dedicated
to network functions, the emulated device will then run in the dom0 or in a
predisposed guest as a process. In case the device is managed directly by
the dom0 it is seen by it as back end device while in case it is run in another
guest the dom0 sees it as a PV device and the guest needs to manage the
forwarding between the HVM network device running as a program and the
PV device.

In case a guest can implement PV drivers but for any reason, they do not
result available the PV device can be paired with an emulated one to enable
the network functions with the possibility of transferring them to the PV
device if it becomes available.

22



Chapter 4

Vulnerabilities Discovery
Process

Identifying a process that is capable of finding new vulnerabilities in a system
is crucial to keep a system secure over time. To this purpose, following the
NIST-800-30 document, a 4-step process has been identified: Asset definition,
threat sources identification, threat event recognition, and vulnerabilities
acknowledgment.
Asset definition is the first step in the creation of a process to identify
new vulnerabilities. An asset can be defined as any data, device, or other
components of the environment that supports the virtualization system.
Assets:

• Images A1
• Registries A2
• Containers, Guests A3
• Hosts A4
• Users A5

The second step is to identify threat sources, threat sources are those elements
from which a new vulnerability that can compromise the correct functionality
or the safety of any of the assets can originate.
Threat Sources:

• System administrators S1
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A system administrator is a person which has full access to the adminis-
trative privileges inside a machine, capable of installing software and of
changing sensitive configuration parameters.

• Hackers, external or internal attackers S2
An attacker is an individual that has the objective of creating damage
to the assets by rendering the system unusable or by appropriating
confidential information.

• Software failure S3
A software failure is defined as the malfunctioning of a software appli-
cation that translates into unexpected behaviour, possibly capable of
ignoring the restrictions and boundaries of privileges defined for that
specific application.

• Software aging S4
Every piece of software has an expected end-of-life being because it is
superseded by products with more capabilities or better performances
or being from the discontinuation of its development. The more a
program stays not updated the higher the possibility of the discovery of
vulnerabilities.

• OS vendors S5
OS vendors are responsible for the distribution of OSs to the public and
it is their responsibility to make sure that these products do not present
faulty features that could be exploited by malicious users to implement
exploits.

• Image builders S6
When running virtualized environments the VMs or containers are
generated starting from static files, these files are usually retrieved from
online sources that could be trustworthy or not. The individual or the
organization that distributes images to the public should be aware of the
state of its components by monitoring it and deploying updates where
and when necessary.

• Registry management S7
Registry management is intended as every operation, strategy, and
personnel devoted to the usage of the registry. Registries while not being
a direct threat to systems can be exploited by attackers to deploy images
containing malware or to intercept confidential data if the connection
with the client is not secured.
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The third step is needed to recognize threat events, which can be defined as
events or situations that have the potential for causing undesirable conse-
quences or impact. Every aspect of the assets needs to be considered and
based on the threat sources we can define how that aspect can be compro-
mised.
Threat Events:

• E1 - A1, potentially dangerous software, S1, S4, S6
When building images there is the possibility that the individual man-
aging the packaging included knowingly or not software that suffers
from known vulnerabilities or in the worst cases software that contains
malware. Since images are static files anyone using that specific image
will be a possible target of attacks.

• E2 - A1, access control violation, S1, S6
Image files could have embedded some configuration options related to
permission and once the image is transformed in a running instance, this
could lead to running virtual spaces with higher privileges than desired.

• E3 - A1, secret disclosure, S6
When packaging images users should be careful not to include certificates,
keys, and other confidential data that should remain secret. In case
these sensitive files are placed inside the image anyone with permissions
to access them can read their contents.

• E4 - A1, untrusted files usage, S1, S2, S6
The origin of image files should be considered. When downloading
new images the users should verify the source from which they are
downloading the file and rely only on official sources. Downloading
images from nonofficial sources can expose the system to risks since it is
more probable that images contain defects or dangerous software.

• E5 - A2, file integrity, S1, S2, S7
Registries should keep track of the changes applied to the files archived
in their servers. This is useful in case unauthorised users modify images
to include vulnerabilities, in case an altered image is delivered, the user
will be exposed to risks.

• E6 - A2, out of date software distribution, S4, S7
Registries should monitor the images they make available for users to
download and remove the ones that are outdated until the patches
are applied. This is because old images have a higher probability of
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containing known vulnerabilities that can be exploited.

• E7 - A2, Intellectual property loss, S2, S7
In case proprietary images are included in registries, they should be
accessible only by the set of authorized users whose identity has been
verified. Letting unauthorized users access these kinds of images could
lead to the disclosure of company and personal secrets and the free
distribution of proprietary software.

• E8 - A3, privilege escalation, S1, S3, S5
If containers or guests do not have their permissions set correctly it is
possible to exploit these weak spots in configuration to increase their
privilege level to be able to access hardware or software resources that
they are restricted to control.

• E9 - A3, unrestricted access, S1, S3, S5
Users should be aware of the virtual elements in the system and should
configure accesses to devices and permissions considering the function-
alities that have to be implemented. Giving access to a resource or
granting a certain privilege level for an instance that does not need it
could expose the system to unnecessary risks.

• E10 - A3, host tampering, S1
Only a few selected virtual elements should be able to communicate
and interact with the host. A modification in the host can result in the
malfunctioning of the whole system.

• E11 - A3, denial of service, S1, S2, S5
A virtual instance that has unrestricted access to hardware resources
(i.e. CPU shares, primary memory) has the possibility of monopolizing
it rendering the other instances and the host unusable.

• E12 - A4, privilege escalation, S5
In the host are generally present different users for different purposes. It
is important that no user inside the host is able to increase its privilege
level and act like the host. Furthermore,The host credentials should
be accessible only to the few users that are in charge of managing the
system.

• E13 - A4, filesystem tampering, S1, S5
Host Filesystem integrity should be guaranteed at all times. Its filesystem
contains files and directories that should not be accessible to all users
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present on the machine, this is because a modification on those files
could condition the correct execution of the environment.

• E14 - A4, denial of service, S5
Both containers and VMs while being isolated spaces in many cases rely
on shared resources made available by the OS or the host itself. If in
any way one of these resources stops behaving correctly both the host
and the virtual instances will not be able to operate correctly.

4.1 Container Technology vulnerabilities
Having defined threat events it is now possible to characterize and classify

the possible vulnerabilities that could be present in Container virtualization
technologies. The vulnerabilities are divided based on the asset they involve
to be able to get an overview of how the asset functionalities can be affected.

4.1.1 Image Vulnerabilities

Since images are essentially archives that contain every component required
to operate programs, those components embedded within the image may be
out-of-date or lacking important security patches. An updated image can be
free of known vulnerabilities for days, weeks, or months after being built, but
if eventually weaknesses are found in one or even more image components, it
will render the image out-of-date (E6).
When patching or updating containers, their execution has to be stopped and
the updates have to be deployed in the image they are built on and then the
container has to be restarted, unlike traditional software which is updated
on the hosts it runs on. Consequently, a typical security risk in a container
environment is the deployment of containers that have vulnerabilities due to
the image version being not updated (E1).

Unknown origin images (E1, E4)

The utilization of untrusted software is one of the most frequent high-risk
situations in any environment. Developers may be tempted to obtain images
from unreliable or unofficial external sources because of the portability and
simplicity of the reuse of containers. The risks associated with using this
third-party images are similar to those associated with any unauthorized
software, such as the introduction of malware, data leakage, or the inclusion
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of vulnerable components.

Image packaging risks

Images may potentially be injected with configuration vulnerabilities.
Image configuration options are defined at image build time. If for instance,
a container is being run with administrator privileges or with a namespace
shared with the host and an image is generated based on the container
whoever will run the image will inherit such runtime options that could lead
to security issues (E2, E8, E9). Moreover, some applications use secrets
for asymmetric cryptography. These secrets can be included directly in
the image file system when an app is packaged as an image, but doing so
poses a security concern because anybody who has access to that image
can freely analyze it and acquire those secrets(E3). As said before Images
can be seen as collections of files, hence harmful files may be inserted into
them knowingly or unknowingly. These malware might go undetected to
a superficial analysis and once “unpacked” they can target other hosts or
containers in the environment because they would share the same permissions
as the container they belong to (E1, E4).

4.1.2 Registry Risks

Connection to registers over insecure channels (E3, E7)

Images frequently include information classified as private or as company
internal, such as personal data or proprietary software. If the image is
downloaded or uploaded without the use of a secure connection its content
could be vulnerable to cyber-attacks such as man-in-the-middle or spoofing.

Image archive management (E6)

Images are usually stored in registers for both users’ and companies’
utilization, if not properly managed this library of images may accumulate a
large number of outdated, therefore possibly insecure images over time. The
fact that these possibly vulnerable images are stored in the registry does not
directly affect the user in its activities, but, if for any reason, one of these
images is retrieved from the registry, it raises the possibility of compromising
the system where it is utilized.
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Insufficient authentication and authorization restrictions (E5, E7,
E2)

Inadequate authentication and authorization enforcement can result in the
loss of intellectual property and reveal important technical information about
an application to an attacker because registries may store images used to
execute proprietary apps, access confidential data, or run sensitive software.
Even more significantly, as registries are frequently relied upon as a source
of authentic, certified software, the breach of a registry raises the possibility
of compromise of hosts and containers further down the chain.

4.1.3 Container Risks

Vulnerabilities within the runtime software (E8, E12)

Although they are generally rare, container runtime software vulnerabilities
can be one of the most harmful vulnerabilities if they enable container escape.
The possibility of accessing physical resources or/and data belonging to other
containers and in worst cases the host, this kind of vulnerability is tightly
related to privilege escalation.

Unrestricted network access (E11)

By default in most container environments, individual containers can
contact each other and the host OS over a local network called the default
bridge. Accepting this network traffic could put other containers or even
the host at risk if a single container is compromised. For instance, an
malicious container could be used to scan the default bridge to which it
is connected for the discovery of other vulnerabilities in the configuration
that the attacker could exploit. Since a significant portion of the connection
between containers is virtualized, traffic on the network from one container
to another looks different from normal traffic since many packet fields like
source and destination addresses are not easily identifiable. This makes
managing egress network access more difficult in a containerized environment.
Security tools and IDS systems that are not aware of containers or are unable
to manage this kind of special traffic are unable to examine these packets or
detect their threat level.
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Insecure container runtime configurations (E9, E10, E11)

Administrators are often given a lot of configurable settings by containers,
and if these settings are configured incorrectly, the system’s security may
decrease. On Linux container hosts, for instance, the number of permitted
system calls is frequently restricted by default to only those needed for the safe
and correct functioning of containers, but if this number is increased, it may
subject containers and the host OS to an elevated risk from a compromised
container. Similarly to this, if a container is launched in privileged mode, it
has access to every component on the host, enabling it to effectively function
as the host OS and have control over every other container that is running
on it.

Packaged software vulnerabilities (E1, E3, E11)

Since containers appear as complete systems to applications that are
executed inside of them they are vulnerable to these software vulnerabilities
like every OS. This is simply the indication of common software faults in a
container environment, not an issue with containers per se.

Unregulated containers (E9, E11)

Rogue containers are unplanned or overlooked containers left in a running
state in a system. This can happen frequently, especially in contexts where
developers are testing their code by launching multiple containers. These
containers may be more vulnerable to attacks if they are not put through
rigorous testing or vulnerability scanning and correct configuration, which
they usually aren’t since this is usually the case in development scenarios.
Rogue containers hence present a further risk to the environment, partic-
ularly if they continue to operate without the knowledge of the security
administrators and development teams.

4.1.4 Host OS Risks

All host OSs have an attack surface, which is the set of points on the
boundary of a system, a system element, or an environment where an attacker
can try to enter, cause an effect on, or extract data from, that system, system
element, or environment. The attack surface can be expanded, for instance,
by the presence of any network-accessible service that offers a potential point
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of entry for attackers.

Shared kernel resources (E11, E13, E14)

Compared to general-purpose OSs, container-specific OSs have a substan-
tially reduced attack surface. For instance, they lack the libraries and package
managers necessary for a general-purpose OS to execute database and web
server applications directly. This forces the container to use the libraries
stored in the host creating a possible single point of failure. Despite the fact
that containers offer software-level resource separation, using a common ker-
nel always creates a wider attack surface than hypervisors, even among OSs
designed specifically for containers. In particular core system components,
like the cryptographic libraries needed by connections by remote connections
to be authenticated and the kernel functions fundamental for general process
initiation and management, are provided by host OSs, even container-specific
ones. These components are susceptible to vulnerabilities just like any other
software, and since they are located so low in the architecture of container
technology, they can heavily affect the whole system.

Improper user access authorization (E12)

Considering interactive user login in the system should be uncommon,
container-specific OSs are often not tailored to enable multiuser scenarios.
When users control containers by logging in directly to hosts rather than
through an orchestration layer, the system can be exposed to risks. for
example, a user that solely has to manage the container for one particular
app may be able to have a significant impact on many others because it may
be able to consume all the resources available or gain access to the entire
container.

Host filesystem manipulation (E13)

As stated before insecure container settings increase the threat of file
manipulation on host volumes. For instance, a container may be able to alter
files in sensitive host directories if it is permitted to mount them. Containers
shouldn’t typically modify the file system of the host OS and hardly ever
alter locations that regulate the host OS’s fundamental operations (e.g.,
/boot or /etc for Linux containers, C:\Windows for Windows containers).
If a compromised container is given access to modify these directories, it

31



Vulnerabilities Discovery Process

might be exploited to escalate privileges and attack both the host and other
containers that are being executed on the host.

4.2 Hypervisor Technology vulnerabilities
Hypervisor virtualization is a technology based more on the hardware,

more loosely or strictly based on the specific cases, than OS virtualization.
This introduces vulnerabilities in the modules in charge of managing those
hardware resources, which can be tested by analyzing the code of the hyper-
visor, but this is out of the scope of this thesis. Due to this architectural
characteristic, hypervisor vulnerabilities have been roughly divided into two
categories: structural vulnerabilities and deployment vulnerabilities. The
structural vulnerabilities are due to faulty implementations of the hypervisor
code and can be detected by appropriate testing of the software, but, no user
solutions can be implemented and a patch has to be deployed to solve the
issue. On the other hand, deployment vulnerabilities depend on the configu-
ration choices done by the system administrator and have to be monitored
and validated to avoid critical security faults.

4.2.1 Structural threats to VM process isolation

Virtual Machine data structures management (E9)

The register states have to be managed correctly to plan a particular VM’s
work, for example, vCPU tasks, as each guest VM is assigned several virtual
CPUs. A data structure is used by the hypervisor to allow the saving and
loading of each vCPU’s state if this data structure is implemented improperly
it could lead to hypervisor memory leaks.

Sensitive instruction handling(E12)

On hardware platforms that do not support virtualization, a software
procedure should be put in place to detect sensitive instructions, submit
them to the hypervisor, and before actually executing these instructions on
the hardware, substitute them with safer instructions. Any failure to catch
these sensitive instructions or an inaccurate translation could lead a guest
OS to execute privileged instructions.
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4.2.2 Deployment threats to VM process isolation

Memory management unit (E8, E12)

Since guest VMs cannot be given direct access to the hardware-based
Memory Management Unit (MMU) because it may potentially allow them
to access memory assigned to the hypervisor and other VMs, the hypervisor
employs a software-based MMU that generates a shadow page table for every
VM. However, a flawed software-based MMU implementation could result
in the leakage of data in unpredictable address spaces, including memory
sections assigned to the hypervisor and the VMs located on it, breaching
memory isolation.

DMA (E8, E9, E10)

To enforce memory isolation for device drivers and programs employing
direct memory access (DMA), the hypervisor makes use of the hardware I/O
Memory Management Unit. The enabling of this capability is managed by a
firmware switch integrated into the hypervisor. If left unused, this feature
might create a vulnerability where one VM could use the DMA as an attack
vector to replace the contents of physical RAM addresses used by the other
VMs that are being run in the hypervisor.

Resource allocation (E11)

Good isolation management necessitates that denial of service is avoided by
allocating to each VM the appropriate memory and CPU resources required
for its hosting applications. It’s crucial for system stability and, consequently,
security to provide sufficient memory through proper memory allocation
options configuration and proper virtual CPU allocation with suitable vCPU
assignment options setup.

4.2.3 Structural Device Emulation and Privilege Esca-
lation Threats

Emulation of storage and networking devices (E9, E10, E14)

The hypervisor is in charge of both the emulation of storage and network
devices and control of the accesses to them from the various VMs, which is
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handled by a kernel-based code. Since guest VMs normally cannot access
the physical devices directly until they are given access to it, the hypervisor
kernel intercepts any I/O call from a guest VM and forwards it to this code.
This code is responsible for the emulation of devices, the mediation of access
to them, and also multiplexes the actual device. In case this code is not
properly checked and its integrity and error absence verified it could lead to
severe security issues.

Execution of privileged operations (E12, E14)

By employing mechanisms like VM Exits, which perform actions specific to
processor architecture, or Hypercalls which are hypervisor-specific functions
similar to system calls, the hypervisor can perform some privileged actions,
like Memory Management. The entire virtualized host could crash if certain
activities weren’t properly validated, for example, if a VM’s Control Block
was allowed to be fully accessed or if input checking was not being performed.
This is a design flaw that can only be fixed by thoroughly testing the
hypervisor code.

4.2.4 VM Lifecycle Management Threats

VM images monitoring(E1, E4, E5, E6)

As already discussed for Docker when image repositories are not monitored
continuously old images can still be available for deployment, this can lead to
the usage of possibly vulnerable software or OS versions. Moreover, images
can be retrieved from non-standard sources and if these images are not
properly analyzed from a security point of view some malicious software can
be introduced into the system without the system administrator knowing.
Any image created as a snapshot of the system at a certain point in time
and then restored could diverge from the standard because of insufficient
monitoring, and missing updates that might lead to any of the platform-level
threats.

Management of the Hypervisor (E11)

The management of the hypervisor is intended as the general adminis-
tration of a hypervisor host and it is typically carried out through virtual
consoles. This kind of management is core to safeguarding the host hardware
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resources. One possibility for the implementation of this function is by
utilizing the dom0 as a monitor for the resource utilization of all the other
virtual machines. This kind of solution implies that the dom0 is analyzed for
vulnerabilities offline before the execution of the other VMs and maintained
secure throughout the hypervisor life cycle. When hosting a hypervisor,
several traditional security solutions might not be reasonable. For instance, if
a network attack occurs on a system that is not virtualized, the problem can
be fixed by simply turning off the port on which the attack is being directed
or the targeted network interface. However, a hypervisor host cannot deploy
this strategy since multiple operating VMs may share a single port on the
actual network interface card of the hypervisor host. Rather, a particular
security solution is required, such as turning off the virtual network interface
of VMs that utilize those ports.
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Chapter 5

Host Hardening Principles
and Policies

Once the risks that could affect a virtualization product have been identified
it is possible to define the host hardening practices to be applied to mitigate
their impact. This was done by identifying general host hardening practices
that could apply to the specific product and considering them as a starting
point to define the practical host hardening policies based on the practical
commands that can be used in the setup of the software.

5.1 General Xen Hypervisor host hardening
practices

The first step to the safe execution of a Xen hypervisor is the verification
that its components meet integrity requirements, this can be done via a
verification process based on the hardware of the host. This is required
since the hypervisor operates in direct contact with the low-level architecture
of the system and can be subject to rootkit attacks and the execution of
unauthorized code. To guarantee this component integrity the hypervisor
and the underlying hardware need to be able to support what is defined
as a measured launch environment (MLE). An MLE is a set of hardware,
firmware, or software resources that are integrity verified and have the capa-
bility of starting up a system. This can be obtained if the host processor
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supports a hardware module that is capable of guaranteeing its integrity and
therefore classify it as the starting element of the chain of trust that starts
from the hardware through the BIOS and then to the hypervisor components.
Moreover, a pre-kernel module is necessary for the hypervisor code since
the hypervisor executes as the first module and it is the one in charge of
launching the secure boot process. The purpose of this pre-kernel module
is to ensure that the appropriate component is selected between the hard-
ware to enable the systematic evaluation of the hypervisor modules or any
other software running on that hardware. The integrity of the launched
hypervisor components will be guaranteed by enforcing authentication em-
ploying cryptographic algorithms; this authentication also makes sure that
the system only executes authorized code. The integrity verification of the
hypervisor components is not sufficient for the safe execution of the hyper-
visor, functionalities such as process isolation, device emulation and access
control, and VM lifecycle management need to be guaranteed to increase the
system security level.

5.1.1 Process Isolation

Process isolation can be implemented in a hypervisor environment by
following a set of selected rules. Firstly, not all privileged instructions coming
from the guest VMs can be directly executed on the CPU but they need to be
managed by a privileged entity that can be trusted, it being the hypervisor
or a special guest that acts as a monitor. Memory management has to
be implemented and supported to reduce buffer overflows attacks and VM
escape attacks, this is when a VM accesses a memory location that belongs
to another VM, to the minimum. Algorithms have to be put in place to
ensure the correct assignment of system resources such as primary memory,
CPU shares, disk access, etc. this guarantees the correct execution of the
guests inside the machine addressing issues like denial of service and resource
starvation.

Hardware Assisted Virtualization

Hardware-assisted virtualization is a platform virtualization approach that
enables efficient virtualization using help from hardware capabilities. Full
virtualization is instead used to emulate a complete hardware environment,
or virtual machine executing in complete isolation.
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Instruction Set Virtualization Instruction Set Virtualization is available
only in specific processor architectures that have two possible operation
modes: root and non-root. Each of these modes has four privilege
levels going from Level 0, the highest, to Level 3, the lowest. The
hypervisor can be increase its protection level from instruction set-type
attacks by guests by executing in root mode and the guests operating
systems executing in non-root mode regardless of the privilege level
they are assigned. This solution addresses privilege escalation and VM
escape at the local level but is it possible that a virtual machine that
can be controlled via remote connection could perform such actions by
networking protocols.

Memory Virtualization Hardware-assisted memory virtualization is pro-
vided when the hardware enables the mapping of the Guest OS’s physical
addresses in their respective page tables to the host’s physical addresses
using hardware-based page tables instead of hypervisor-generated shadow
page tables. This brings a reduction in the size of privileged code exe-
cuted providing security advantages.

Hardware-assisted virtualization functionalities can also be provided by some
software solutions, which is the only possibility in case a system does not
support virtualization extensions. Being implemented at the software level
these products do not carry the same guarantees and performances as the
hardware-based ones. In particular, exclusively hardware-based solutions
have these characteristics:

• Better memory management controls

• Better isolation of I/O devices, if direct assignment of I/O devices is
supported it eliminates the need for providing emulated device driver,
reducing the size of untrusted code

• Guest OS code and hypervisor code execute at different permission levels

• Privilege-level isolation provides better protection

• If full virtualization is supported, COTS versions of OSs can allow for
easier patching and updating

• The hypervisor size will be reduced, enabling faster security testing
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Resource Management

VM primary memory allocation The hypervisor is in charge of man-
aging the primary memory assignment to VMs to satisfy the memory
requests for each of them during its lifetime. Generally speaking, a
VM does not need the entire amount of memory that it is assigned at
configuration time, this allows the hypervisor to assign to VMs a total
quantity of memory larger than the one physically available. This is
done to dynamically allow VMs to use the memory they require without
getting limited to a level that could hinder its performance, this principle,
called overcommitting, can improve the performance of a system and
avoid resource starvation and denial of service. On the downside, it may
negatively affect memory-sensitive processes and it is not the optimal
solution when a VM requires heavy memory utilization.
Another element to consider when configuring memory parameters for
VMs is the ratio of the physical RAM size to kernel swap size. Set-
ting this value to a low threshold could lead some applications to not
run properly, effectively blocking some programs. Setting minimum
guaranteed memory to each VM is helpful in case overcommitting is
utilized to avoid that memory being monopolized by a single guest and
guaranteeing the possibility of execution to all the other VMs running
in parallel. Configuring a priority system for memory assignment to
manage guests that are running applications that expect immediate
memory availability could allow these VMs to access the resource they
need if at that moment they are being utilized by a low-priority virtual
machine.

VM CPU allocation Similarly to memory allocation, CPU allocation
should have as objectives the definition of upper and lower bounds
of CPU computing power utilization. Failing to set up the correct
configuration of these thresholds could lead to resource starvation or
denial of service in case a VM starts behaving uncontrollably due to errors
in its current processes or in the worst case if it has been compromised.
Usually, the management of the division of clock cycles is done by
considering an average of the consumption of the VMs present on the
system (i.e. if a system has 4GHz available to be used by VMs and
the average is 800MHz the system could ideally run five VMs). The
possibility of using a priority scheme is applicable also for CPU resource
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allocation.

5.1.2 Devices Emulation and Access Control

In case an application performs an I/O call, the request is redirected to
the emulated device assigned to that specific virtual machine. The emulation
code is executed either in a special VM or in the hypervisor kernel as a kernel
module and the role of this code is to call the I/O device drivers present in
the hypervisor to access the actual physical device. Usually, these drivers
do not necessitate running in privileged mode and consequently, in case
malicious code is included in their implementation their ability to interfere
with the normal flow of execution of the system is reduced. In some particular
cases, there is the need of executing such drivers in privileged mode, that is
the same mode in which the hypervisor runs, and in these situations, those
special drivers should undergo a formal verification process to guarantee their
safe functioning. If device access is not properly configured some VMs that
should not normally be able to communicate with certain devices could gain
access to them. This can be avoided by configuring access control lists at
the device level in order to only allow selected VMs to interact with them or
by setting up a whitelist for accesses at the hypervisor level defining which
guest has access to which device. This solution is valid when talking about
fully virtualized guests, in case para-virtualization is used these VMs can
directly access the hardware devices without having to request it from the
hypervisor, for this kind of user is required a different approach. A possibility
to face this issue is the setting of a bandwidth limit for each authorized VM
to access the I/O and network virtual interfaces, to avoid DOS attacks.

5.1.3 VM Lifecycle Management

In a hypervisor environment, VMs are created starting from images which
are static files and can be considered templates to be customized based
on the user’s needs. To guarantee that images are trustworthy a series of
security rules should be applied to the libraries in which they are stored.
When a user needs to access a library, authentication should be requested to
guarantee that only authorized users can access and modify its contents. If
the library happens to be located on a remote server the connection needs
to happen over secure channels to avoid tampering and the possibility that
a malicious user could intercept the image if transmitted in clear. While it
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might not look like a critical issue, often images contain proprietary apps or
confidential information that should not be disclosed outside of a company
environment. As a consequence of this, integrity is one of the key security
properties that should be guaranteed to safeguard the security of systems.
Image integrity can be verified in case a digital signature is appended to the
image for validation purposes.

5.2 General Docker host hardening practices
In essence, containers are wrappers around Linux control groups (cgroups)

and namespaces. Cgroups are used in the Linux kernel for monitoring
and restricting resources among a group of processes (i.e. two processes
inserted into the same cgroup are applied the same limitations). Namespaces
determine which information about the system a process can access (i.e. the
PID namespace restricts which processes can be seen within a container).
Containers are isolated from one another by default configuration, but each
container shares with the host its kernel creating a possible single point of
failure, in fact, if a malicious container manages to compromise the host all
the containers being executed are at risk. Similarly, some shared libraries in
the host could be used by multiple containers, this could pose a risk since
theoretically there is a possibility that one container could gain access to the
other by exploiting weaknesses in the library.

5.2.1 Registries

Containers should only connect to registries over encrypted channels. The
key goal is to ensure that all data exchanges with a registry occur between
trusted endpoints and is encrypted in transit, this guarantees confidentiality
and integrity for the images. Registries should be monitored continuously
either from a trusted software or by a designated person and rules should be
put in place to manage the obsolescence of the images contained. Old OS
versions, outdated applications or libraries, should be detected by periodically
scanning for version numbers in the image registry, and in case an out-of-date
image is found set a flag to warn any possible user of its status.
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5.2.2 Images

Before building a container from any image, it is preferable to check and
validate image configuration settings, to avoid any intentional or unintentional
misconfiguration that could negatively impact container and system security.
Secrets such as private keys or proprietary software and data should be
stored outside of images and should be provided dynamically at runtime.
The distribution of this sensible material should be managed by access lists
configured by system administrators, this approach guarantees that only the
necessary information is provided to containers, and in case of an attack the
affected resources are easily identifiable and the proper remediation actions
can be enforced. In the development stages of the creation of a containerized
environment is not unusual to use different versions of the same image that
maybe are retrieved from different registries. This behavior could lead to
the acquisition of images from unreliable sources, this can be avoided by
creating a set of trusted registries and images to work with.

5.2.3 Host

Docker Engine and OS

Before operating any system is good practice to ensure that its operating
system is updated to the latest release and the same consideration can be
made for the any software that has to be executed. Not installing updates
could leave known security flaws open increasing the possibility of attacks.
Since the OS is the largest attack surface making sure the system is up to
date drastically reduces the probability of a successful exploit.

Docker Daemon Socket

The Docker daemon socket is a Unix network socket that facilitates
communication with the Docker API. By default, this socket is owned by the
root user, if any other user obtains access to the socket, they will be able
to operate at the same permission level as the root user, it is crucial to set
the correct Linux permissions to the socket directory and file. In case the
Docker container requires to be accessed by a remote controller it is possible
to associate the daemon socket with a network interface. Enabling this kind
of access needs to be implemented with the utmost care, generally if this is
not needed the feature should be disabled.
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Filesystem and permissions

A simple and effective security practice is to run containers with a read-
only filesystem. This can prevent malicious activities such as deploying
malware in the container.
Many files stored on the system generated by the installation and configura-
tion of the Docker environment contain sensitive information. It is imperative
to assign the correct permissions to those files to avoid unauthorized users
or attackers accessing or modifying their contents. In case the Docker Client
and the Docker daemon are located on different machines there is the need
of implementing a secure connection with the TLS protocol, the Docker host,
that is where the daemon is running, will have to act as a server and manage
certificate and keys. These new files and directories need to be protected
from tampering.

5.2.4 Containers

Privileged Containers

Docker provides a privileged mode for containers, which lets a container
execute with root privileges on the local machine. Running a container in
privileged mode provides the container with some capabilities that should
be assigned exclusively to that host, the most dangerous from a security
standpoint are:

• Privileged access to every system device (i.e. network interfaces, disks)
• Ability to interfere with Linux kernel security modules
• Ability to install a new instance of the Docker platform, using the host’s

kernel capabilities, and run Docker within Docker.
These features can lead to the tampering of system resources, other con-
tainers, and the OS itself. Therefore, the use of privileged containers is not
recommended, especially in the production phase of a product where the
possibility of an attacker gaining control over this kind of container would
generate the most damage.

Container Network configuration

Docker containers need to manage two types of network connections,
the first one is the one configured between containers to allow them to
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communicate with each other, and the second one is the connection to
the internet via IP address. By default Docker configures a newly created
container to connect to the “internal” network called the default bridge,
this behavior is not security compliant. Only the containers that should be
able to communicate have to be placed on the same network, but it is not
recommended to connect them all to the default bridge, instead, a custom
bridge can be created to better isolate the communication. If a Docker
environment contains many containers as many networks as needed can be
created to configure inter-container communication.

Container resource management

When a container is compromised or behaving uncontrollably, it may
consume a physical resource such as primary memory or network bandwidth
in its entirety, causing the other containers on the system to fail or not
work correctly. Setting up containers with usage limitations to the hardware
resources is one of the countermeasures to minimize the impact of resource
exhaustion.

Container isolation

Development teams should create an optimized environment when talking
about container isolation, to ensure that containers are not capable of
interfering with the other containers and the host. One of the functionalities
that a host operating system should provide is the assurance of protection of
its kernel from attacks coming from containers, this is one of the most critical
issues since the kernel is shared by all the elements on the host. Configuring
the following Linux security features can greatly increase container isolation
resulting in a more secure system:

Linux namespaces The Linux kernel from version 2.4.19 offers a feature
called namespaces that divides the OS environment in such a way that
processes assigned to a certain namespace can access only a defined set
of system resources. This is how applications running inside containers
do not detect differences from running in a complete system.

Capabilities When running processes, the root user typically receives priv-
ileged consideration. When this user ID is detected, the kernel and
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programs are typically configured to ignore the restriction of some ac-
tions. This user is therefore free to do almost everything. A process
can be set up to access a portion of the root privileges through Linux
capabilities. This feature successfully divides root privileges into discrete
entities more manageable and flexible. Then, independent access to each
of these entities can be given to processes. By doing this, the set of
privileges assigned to processes is narrowed, lowering the possibility of
exploitation.

Cgroups A Linux kernel feature known as control groups, or simply "cgroups,"
enables processes to be grouped into hierarchical units so that the uti-
lization of different types of resources may be restricted and evaluated.

SELinux The Linux kernel security module known as Security-Enhanced
Linux (SELinux) offers the means for providing access control security
policies. SELinux is essentially a collection of user-space utilities and
kernel modifications that have been included in multiple Linux distribu-
tions. Its architecture reduces the amount of external software required
for security policy enforcement. Its usage improves and expands the
namespaces restrictions.

AppArmor AppArmor is a Linux kernel security module that allows the
creation of application profiles by an administrator to limit certain
functionalities such as network access and disk permissions. These
profiles are loaded into the kernel at boot time and can be assigned two
modes of operation, enforcement and complain, while enforcement mode
will actively stop processes that try to violate the profile rules complain
mode will report the violation attempt.

Seccomp Seccomp is a Linux kernel security feature that, similarly to Ap-
pArmor, allows or denies applications to execute a certain set of system
calls based on a profile. For Docker, its default seccomp profile is enabled
for all new containers, which enforces basic security principles, if modifi-
cations are implemented to this profile it could lower its effectiveness or
indicate a possible security breach.
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5.3 Docker specific host hardening practices
Having pointed out the objectives and the available tools available for

the implementation of host hardening in a Docker environment it is now
possible to define the practical rules that enforce the general Docker host
hardening rules. These rules that are ordered based on the asset they affect
have almost a one-on-one correspondence with a command or an option to
be set when configuring the host and the container.

5.3.1 Host

/etc/default/docker file ownership is set to root:root
The /etc/default/docker configuration file should be owned by the root
account and group since it contains parameters that could change the way the
docker daemon behaves, imposing this restriction ensures that unprivileged
users cannot modify its contents.

/etc/default/docker file permissions are set to 644 or more
restrictively
The /etc/default/docker configuration file should have its permissions set to
rw-r–r– since it contains parameters that could change the way the docker
daemon behaves, imposing these permissions ensures that unprivileged users
cannot modify its contents.

/etc/sysconfig/docker file ownership is set to root:root
The /etc/sysconfig/docker configuration file should be owned by the root
account and group since it contains parameters that could change the way the
docker daemon behaves, imposing this restriction ensures that unprivileged
users cannot modify its contents.

/etc/sysconfig/docker file permissions are set to 644 or more
restrictively
The /etc/sysconfig/docker configuration file should have its permissions set
to rw-r–r– since it contains parameters that could change the way the docker
daemon behaves, imposing these permissions ensures that unprivileged users
cannot modify its contents.

daemon.json file ownership is set to root:root
The daemon.json configuration file should be owned by the root account and
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group since it contains parameters that could change the way the docker
daemon behaves, imposing this restriction ensures that unprivileged users
cannot modify its contents.

daemon.json file permissions are set to 644 or more restrictively
The daemon.json configuration file should have its permissions set to rw-r–r–
since it contains parameters that could change the way the docker daemon
behaves, imposing these permissions ensures that unprivileged users cannot
modify its contents.

docker.service file ownership is set to root:root
The docker.service configuration file should be owned by the root account
and group since it contains parameters that could change the way the docker
daemon behaves, imposing this restriction ensures that unprivileged users
cannot modify its contents.

docker.service file permissions are to 644 or more restrictively
The docker.service configuration file should have its permissions set to rw-r–r–
since it contains parameters that could change the way the docker daemon
behaves, imposing these permissions ensures that unprivileged users cannot
modify its contents.

docker.socket file ownership is set to root:root
The docker.socket file should be owned by the root account and group since it
contains parameters that could change the way Docker remote API behaves,
imposing this restriction ensures that unprivileged users cannot modify its
contents.

docker.socket file permissions are set to 644 or more restrictively
The docker.socket configuration file should have its permissions set to rw-r–r–
since it contains parameters that could change the way the Docker remote
API behaves, imposing these permissions ensures that unprivileged users
cannot modify its contents.

Docker socket file ownership is set to root:docker
Since the Docker daemon runs as root in case a unprivileged user is able to gain
ownership over this file it might enable him to have control over the docker
daemon therefore to interact with containers. Moreover when installing
Docker, the installer configures a docker group, the system administrators
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can add or remove users to it, being included in this group grants read and
write privileges to the Docker Unix socket. This privileges are given to any
group that share the ownership of the socket. For these reasons the Docker
socket file should be owned by the root account and group owned by the
docker group.

Docker socket file permissions are set to 660 or more restrictively
The Docker socket configuration file should have its permissions set to rw-
rw—- since only root and the users part of the docker group ought to be
permitted to read and write

/etc/docker directory ownership is set to root:root
The /etc/docker directory should be owned by the root account and group
since it contains certificates and keys, imposing this restriction ensures that
unprivileged users cannot modify its contents.

/etc/docker directory permissions are set to 755 or more restric-
tively
The /etc/docker directory should have its permissions set to rwxr-xr-x since
it contains certificates and keys, imposing these permissions ensures that
unprivileged users cannot modify its contents, but can still use them.

Docker server certificate file ownership is set to root:root
In case the Docker host is acting as server over a secure connection, there is
the need of securing the certificate it uses for authenticating to avoid any
unsanctioned modifications. The server certificate file should be owned by
the root account and group to ensure that unprivileged users cannot modify
its contents.

Docker server certificate file permissions are set to 444 or more
restrictively
In case the Docker host is acting as server over a secure connection, there
is the need of securing the certificate it uses for authenticating to avoid
any unsanctioned modifications. The server certificate file should have its
permissions set to r–r–r– since no user should be able to modify its contents
but it has to be readable for providing authentication.

Docker server certificate key file ownership is set to root:root
In case the Docker host is acting as server over a secure connection, there is
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the need of securing the certificate key it uses for its digital signature to avoid
any unsanctioned modifications or readings. The server certificate key file
should be owned by the root account and group to ensure that unprivileged
users cannot modify its contents.

Docker server certificate key file permissions are set to 400
In case the Docker host is acting as server over a secure connection, there is
the need of securing the certificate key it uses for authenticating to avoid any
unsanctioned modifications or readings. The server certificate key file should
have its permissions set to r——– since no user except the root should be
able to read its contents.

TLS CA certificate file ownership is set to root:root
In case the Docker host is acting as server over a secure connection and its
CA certificate has been issued by a certification authority, there is the need
of securing it because of its role in the authentication process to avoid any
unsanctioned modifications. The server CA certificate file should be owned
by the root account and group to ensure that unprivileged users cannot
modify its contents.

TLS CA certificate file permissions are set to 444 or more re-
strictively
In case the Docker host is acting as server over a secure connection and its
CA certificate has been issued by a certification authority, there is the need
of securing it because of its role in the authentication process to avoid any
unsanctioned modifications. The server CA certificate file should have its
permissions set to r–r–r– since no user should be able to modify its contents
but it has to be readable for providing authentication.

Docker is allowed to manage iptables
iptables is a firewall located in the Linux kernel that filters incoming IP
packets based on tables. Docker needs to have access to iptables in order
to configure egress and inter-container communication for containers, if the
option is enabled Docker configures iptables automatically after container
creation. This setting is useful to reduce the workload of the system admin-
istrator and to avoid configuration errors that could cause containers to not
be able to communicate. Potentially this option can be turned off but the
network configuration of containers for the host side must be done manually.
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Containers are restricted to connect to the default bridge
The default Docker configuration does not impose any restriction on network
traffic between containers. To improve the security of the system only those
containers that require to communicate with each other have to be connected
by the creation of a custom bridge tailored for them. Allowing all container
to be connected to the same network could lead to sensitive information
leaks or secret disclosure. Therefore there is the need to restrict containers
from connecting to the default bridge.

Docker daemon TLS authentication is setup
In case there is the necessity of controlling containers remotely Docker gives
the user the possibility of making the Docker daemon available over a TCP
port, but any user that has access to that port might obtain complete control
over the Docker daemon. In this cases it is good practice to configure TLS
authentication for the Docker daemon effectively reducing the number of
users capable of contacting the daemon to a closed set.

Logging level is set to ’info’
The Docker daemon has the capabilities of recording events related to con-
tainers. This logging can be set to acquire different sets of information based
on the option selected. Setting the log level to info guarantees that in case
of container crashes enough information can be recorded.

Monitoring of the docker group
Docker allows the user to mount host directories inside containers, this gives
the possibility to mount the ’/’ directory inside a container. In this case
the container would be able to modify the host file system as a privileged
user. So if an unprivileged user is part of the docker group it could act as a
privileged one by just being part of this group.

Monitoring of Docker disk usage
Docker uses a single directory in the host file system for storing all its files
including the images. In case this directory size is not checked regularly it
could grow its size at the point of rendering Docker and the host in a not
responsive state. To avoid this occurrence it is possible to configure Docker
to store these files in a different directory, but, if this is not possible, the
directory has to be monitored and emptied of unused files regularly.
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SELinux is enabled and profiles are configured
SELinux adds an extra layer to access control policies enforced by namespaces,
if a user or process requires access to a certain file SELinux will check their
security level and then decide to grant or not the access to the file. If
SELinux is active in the host, after having defined a security policy this can
be enforced on containers to further increase their isolation.

5.3.2 Container

Docker socket is not mounted inside containers
In case a container has the Docker socket mounted in its file system it would
allow it to run Docker commands and consequently to be able to control the
Docker daemon and all the containers running in the host.

Containers are restricted from acquiring additional privileges
Docker containers can be run with the option: –security-opt=no-new-privileges
that denies that process the ability of gaining new privileges. This sets a bit
in the kernel that ensures that any child process generated by the parent and
the parent itself is restricted of acquiring new privileges. Setting this option
makes sure that the processes created in the container stay unprivileged if
the container is.

Privileged containers are avoided
Docker provides the –privileged flag as option to assign to a specific container
all the Linux capabilities, overriding the ones belonging to the cgroup to
which it belongs, effectively allowing a container to run at the same privilege
level as the host. It is recommended that containers are assigned single
capabilities tailored to their functionalities instead of enabling them all and
creating security risks.

Container health check is enabled at runtime
Container health is a general indicator of the status of a container. Enabling
the option –health-cmd will make possible to check the container health
status at runtime. In case the check highlights problems further analysis has
to be done to restore the container in a healthy condition.

Restart policy is set as ’on-failure’ to a count between 3 and 10
In case a container terminates its execution it will check its restart policy
option to decide if restart or not. This option should be set as on-failure in
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order to restart the container in case the container crashes. It is necessary to
select a number of maximum restarts because if the container is being crashed
by an attacker it could try to restart an infinite amount of times possibly
leading to a denial of service. Moreover restarting a container indefinitely
without checking the exit status does not create the premises for fixing the
issue that is causing the restarts. It is suggested to limit the containers
restarts between the count of three and ten.

CPU shares are set on containers
By default, containers have the same priority to access hardware resources.
If some containers need to have the precedence of execution over others
Docker offers the possibility to assign a priority to containers by assigning
CPU shares. This blocks lower priority containers to utilize CPU computing
power that is needed by high priority containers, that are able to access the
CPU time they require, moreover it limits less secure containers in case they
are compromised and try to consume all the resources. This option needs to
be used cautiously since it could lead to resource starvation scenarios for low
priority containers.

PID limit is set
If a container is compromised or a bad piece of code is executed a fork bomb
could be launched. A fork bomb is a type of cyber attack in which a process
repeatedly duplicates itself to exhaust the system’s resources, causing the
system to crash or become unresponsive to the point of requiring a host
restart. By limiting the number of PIDs inside a container the execution of
fork bombs can be avoided.

Containers memory availability is limited
By default a container has access to the entire amount of primary memory
available in the host. Limiting the amount of memory accessible by each
container can avoid intentional or unintentional resource exhaustion events
on the host. On the other hand setting this value too low could lead to
containers to not execute properly.

Docker default seccomp profile is Enabled
By default Docker enables its default seccomp profile for all its containers.
Seccomp is a Linux kernel security feature that, in case of Docker, whitelists
a set of system calls for use. Most system calls are not used by users and
processes and from a security point of view is advantageous to reduce the
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set of accessible ones since it reduces the attack surface of the kernel that is
a possible single point of failure of the whole system if compromised.

Docker aufs storage driver is not used
The aufs storage driver is the oldest storage driver available on Linux systems.
The aufs driver is known to cause serious kernel crashes and it has only legacy
support within systems using Docker. Most notably, aufs is not a supported
driver in many Linux distributions using latest Linux kernels. This classifies
the aufs storage driver as a legacy module optimised neither for performance
nor security, therefore it should be avoided.

Container belongs to the Docker cgroup
System administrators have the ability of creating cgroups suited to their
necessities. By default containers are run in the Docker cgroup but at runtime
containers can be assigned any cgroup by the host thus granting or removing
additional privileges. Using a custom cgroup for containers can create a
security risk, if a container with elevated privileges obtained by a particular
cgroup membership is compromised it could prove much more dangerous
than the default option.

Container does not have access to the host IPC namespace
IPC namespace provides isolation of ADT structures such as semaphores
and message queues used for inter process communication. By not sharing
the host IPC process isolation is guaranteed between containers and the host.
The processes inside the container would be able to see all communications
on the host system in case the host’s IPC namespace was shared with the
container. Any attacker that could manage to control a container with a
shared IPC would be able to access any communication happening on the
host between processes. It is imperative that the namespace is not shared.

Container does not have access to the host network namespace
When a container shares the network namespace it fundamentally uses the
network stack of the host separating the container from its networking part.
A container that has enabled the option –net=host has full access to the
physical network interfaces having the ability to open reserved ports. Such
behaviour needs to be avoided since it could significantly lower the system
security level, in case it is compromised an attacker would have enough
permissions to shut down the host completely.
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Container does not have access to the host process namespace
The PID namespace is used for process isolation in Linux machines. Its
purpose is to create different process id spaces in order to allow the creation
of two separate processes with the same process identifier on the same host.
It is used to mask system processes from user processes by "hiding" them in
another PID space, if a container is given access to the host PID namespace
it would not only allow the container to see all this processes but could even
restart their execution indefinitely or kill them completely, just as the root
user. It is clear that a container with such privileges should be avoided if
not strictly necessary.

Container does not have access to the host user namespace
The user namespace is used to restrict root processes in the container. If the
user namespace is not shared a privileged process executed in the container
will correspond to a non privileged process in the host. Having access to the
host user namespace removes the separation between container user and host
user leading to possible privilege escalation exploits.

Container does not have access to the host UTS namespace
UTS namespace is used to mask the hostname seen by processes. A process
in a container does not require to be given the actual hostname, in case the
namespace is shared a process inside a container coul potentially change the
hostname of the Docker host.

AppArmor Docker default profile is enabled
AppArmor is a Linux kernel security module available by default in some
Linux distributions. AppArmor, similarly to seccomp, protects the OS and
applications by assigning profiles to processes that implement a set of security
rules and restrictions. Docker has its default AppArmor profile that should
be left enabled for its containers, but if a custom profile is required it should
be configured carefully to not be too restrictive or too permissive.

Container root file system can not be modified
The container should not be allowed to modify its own file system. Since
containers can be created from snapshot of the state of a previous container.
Giving the possibility to a container to modify its own file system could be
potentially dangerous in case the container is reused in the future but with
different security restrictions.
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Sensitive OS directories can not be modified by containers
Since as of the writing of this thesis there is not a Docker option to separate
the container from the host mount namespace one possible solution to avoid
containers to write in the host filesystem is to mount sensitive directories it
as read only. Some host OS directories contain sensitive information and files
that should not be available inside containers, in case one of these directories
has to be mounted it is imperative to avoid read-write mode. Generally these
directories include but are not limited to: ’/’, ’/boot’, ’/dev’, ’/etc’, ’/lib’,
’/proc’, ’/sys’, ’/usr’.

Linux capabilities are configured for the container
By default, Docker containers are assigned a limited set of Linux capabilities
at startup. Based on the function to be executed by the container this set
can be enlarged or reduced, with the objective of minimizing the number
of capabilities assigned to each container while still guaranteeing its correct
execution. Leaving containers a larger set of capabilities from what they
require could lead to potential security risks since capabilities are essentially
root permission split in smaller units to be assigned.

Containers are restricted to use privileged ports
Usually ports numbers below 1024 are labeled privileged ports. Docker by
default maps container ports automatically by assigning them to a free port
in the range 49153-65535 of the host well away from the privileged ports.
Generally unprivileged users are not allowed to use privileged ports, but
Docker does and if a user sets up manually the port mapping he has the
possibility to assign container ports to host privileged ports. This should be
avoided since security sensitive data are usually exchanged on them and the
host should manage this data and distribute it to the containers that need it.

5.3.3 Image

HEALTHCHECK monitoring setting is included in the image
The HEALTHCHECK instruction should be added to the docker images
before execution in order to ensure that health checks are executed while
containers are in running state. Adding this instruction to the container
image guarantees that Docker periodically checks the running containers to
make sure that containers are still operating correctly. If this is not the case,
the Docker engine could try to restart or even terminate the "unhealty" ones.
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Image has been tested for vulnerabilities
Docker has made available a tool for testing docker images for known vulner-
abilities. While the tool is not available for free use it is the most effective
way to analyze images before their execution.

A user for the container has been created
Many images once executed present only the root user in the container, it
is a good security practice to avoid this by defining a user in the Dockerfile
before building the image, in order to give access to the root user only to
authorised users. This is particularly useful when the container is used from
different people of which just a restricted set needs to operate with root
privileges.

5.3.4 Registries

Private insecure registries are not used
Docker classifies private registries based on the availability of TLS authen-
tication or in presence of a valid registry certificate, if any of these two
elements is present Docker will consider the private registry as secure. In
case Docker has classified the registry as secure it will store its certificate in
the host /etc/docker directory. Insecure registries could distribute tampered
images, leak some private data or be subject to man in the middle attacks,
due to these reason the use of these registers should be avoided.

Registry certificate file ownership is set to root:root
The /etc/docker/certs.d/<registry-name> file should be owned by the root
account and group since it contains the certificate of the registry that should
not be modified, imposing this restriction ensures that unprivileged users
cannot modify its contents.

Registry certificate file permissions are set to 444 or more re-
strictively
The /etc/docker/certs.d/<registry-name> file should have its permissions
set to r–r–r– since it contains the certificate of the registry that should not
be modified, imposing these permissions ensures that no users can modify
its contents.
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Chapter 6

Host Hardening Report
Generator Tool

Having defined the set of specific host hardening rules in the previous chapter,
a testing phase started. A Docker community edition environment was setup
on a personal computer running Kali Linux to test firstly the practical imple-
mentation of each specific rule and secondly to find the correct way to test its
enforcement. This was done by running a standard Ubuntu Bash container
obtained from the Docker Hub, and then the default status was checked for
each applicable rule before the implementation of each host hardening policy,
then if necessary the container was restarted by including the right option in
the docker run command to enforce the rule, and in the end the status of the
rule was checked again to compare the differences of the two outputs. After
having defined the options and commands necessary for the enforcement and
verification of rules the process of verification was repeated and took several
hours to complete. This result showed the necessity of automating such a
verification process for it to be applicable in a real development environment
of a company, intending to reduce time consumption and user errors.
The process automation was obtained by collecting all the verification com-
mands in a single Python script and executing them by making use of the
subprocess library that provides functions capable of running commands and
capturing their standard output and error contents in strings. Immediately
after the execution, the script requests the user to insert some information
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such as the location on the disk of the image from which the container was
created and the root password to be able to execute certain commands. The
script then starts to send one command at a time and waits for its output,
after having collected it the script evaluates the string and based on its
contents detects if a security rule has been enforced or not. Once the decision
process is terminated the script reports the result of the verification of each
rule on a text output file. The output file can be considered a report of the
security status of the assets defined in chapter 3, and it lists the security
properties based on the asset they affect. The script generates a new report
each time it is executed since it names the report file based on the date and
time of execution, this is done purposefully to keep track of the security
status of the Docker environment over time. The tool has some limitations
too, one of them is that it requires that only the container to be tested is
running in the system, which is not optimal for development environments
where multiple containers could be running. Furthermore, due to testing
limitations, not all the rules defined in section 5.3 were enforced.
After having produced the first stable version of the host hardening tool, I
was able to test it on a Linux machine configured by Drivesec. The com-
pany provided a Docker environment and a container that was stripped of
many security properties on purpose to test the accuracy of the script in
detecting the enforcement of the host hardening rules and the execution
time in presence of many missing policies. After several hours of testing and
implementing changes following the suggestions given by the company, an
improved second version of the tool was drafted.

Host hardening report
The latest version of the tool, produced the following report as a result of its
execution in the Docker environment provided by Drivesec.

DOCKER HOST HARDENING STATUS REPORT 11/11/2022 14:08:00

Docker Version is up to date....................................................WARNING!

The tool could not check for docker updates
--HOST--

/etc/default/docker file ownership is set to root:root..........................OK!
etc/default/docker file permissions are set to 644 or more restrictively........OK!
/etc/docker directory ownership is set to root:root.............................OK!
etc/docker directory permissions are set to 755 or more restrictively...........OK!
/etc/sysconfig/docker file ownership is set to root:root........................SKIPPED!

Could not locate the file on the system, the check will be skipped
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/etc/sysconfig/docker file permissions are set to 644 or more restrictively.....SKIPPED!

Could not locate the file on the system, the check will be skipped
daemon.json file ownership is set to root:root..................................OK!
daemon.json file permissions are set to 644 or more restrictively...............OK!
Docker socket file ownership is set to root:docker..............................OK!
Docker socket file permissions are set to 660 or more restrictively.............OK!
docker.socket file ownership is set to root:root................................OK!
docker.socket file permissions are set to 644 or more restrictive...............OK!
docker.service file ownership is set to root:root...............................OK!
docker.service file permissions are set to 644 or more restrictive..............OK!
Docker is allowed to manage iptables............................................OK!
Containers are restricted to connect to the default bridge......................WARNING!

Network traffic between containers is unrestricted, to avoid this restart
the docker daemon with the option --icc=false

Docker daemon TLS authentication is setup.......................................OK!
Logging level is set to info....................................................WARNING!

Restart the docker daemon with the option --log-level=info or edit the
daemon.json file to include the option "log-level" : "info"

Users allowed to control the Docker daemon:
user1,user2
In case one of the listed users is unrecognized use the command:
gpasswd -d <user> docker

--CONTAINER--

Container running..............................................................OK!
Docker socket is not mounted inside containers.................................OK!
Container is restricted from acquiring additional privileges...................WARNING!

Restart the container with the option: --security-opt=no-new-privileges

Privileged containers are avoided.............................................WARNING!

Restart the container without the option: --privileged

Container health check is enabled at runtime...................................OK!
Restart policy is set as ’on-failure’ to a count between 3 and 10..............OK!
CPU shares are set on containers...............................................WARNING!

The container has unlimited access to the cpu, to configure it restart the container
with the option (x=1024: max, x=1: min): -cpu-shares x

Containers memory availability is limited......................................WARNING!

The container has unlimited access to the ram, to configure it restart the container
with the option: --memory xGB

PID limit is set...............................................................WARNING!

The container can create an unlimited number of processes, to avoid this restart the
container with the option: --pids-limit x
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Docker default seccomp profile is enabled......................................OK!
Docker aufs storage driver is not used.........................................OK!
Container belongs to the Docker cgroup.........................................OK!
Container does not have access to the host IPC namespace.......................OK!
Container does not have access to the host network namespace...................WARNING!

Restart the container without the option: --net=host

Container does not have access to the host process namespace...................OK!
Container does not have access to the host user namespace......................OK!
Container does not have access to the host UTS namespace.......................OK!
AppArmor Docker default profile is enabled.....................................WARNING!

If a custom AppArmor profile has been configured you can ignore this message.
In case no configuration was setup and this warning is active please enforce the
default profile by using --security-opt="apparmor:docker-default"

Container’s root file system can not be modified...............................WARNING!

Restart the container with the option: --read-only

Sensitive OS directories are not mounted inside containers.....................WARNING!

The following directories were mounted on the container:

/lib
/
/dev
The following capabilities were added to the container:
[ALL]

The following capabilities were removed from the container:
[]

Containers are restricted to use privileged ports..............................OK!

--IMAGE--

No image path has been given, Image policies will be skipped

--REGISTRIES--

Insecure registries are not used...............................................OK!
Registry certificate file ownership is set to root:root........................SKIPPED!

Could not locate the file on the system, the check will be skipped
Registry certificate file permissions are set to 444 or more re-strictively....SKIPPED!

Could not locate the file on the system, the check will be skipped

Number of enforced policies regarding A3 (container):11/20
Number of enforced policies regarding A4 (host):14/16
Number of enforced policies regarding A2 (images):0/0
Number of enforced policies regarding A1 (registries):1/3
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END OF REPORT

Each security rule verification test has 3 possible outcomes: OK, WARNING,
and SKIPPED. If the rule verification test result is reported as OK it means
that the policy was correctly configured on its target and the tool was able to
verify its presence status. In case a rule verification test result is reported as
WARNING it means that the tool was able to execute the test and obtained
a status but it is different from what is expected. Usually, this signifies
that a rule is not enforced and a fix should be applied, but for specific
implementations, some security rules cannot be configured, for example, if a
container needs to communicate with another there is the need of enabling
inter container communication, and therefore the check of that specific rule
will never be marked as OK. The last possible output is SKIPPED, if this
result appears as the outcome it means that the tool was not able to check
the enforcement of the policy. The tool is based on a standard installation of
Docker and configuration files and directories have specific paths in the host
filesystem, if these files are moved and the tool is not able to find their new
location it will report it, by defining the test as skipped due to not being
able to find its target.
One of the report’s characteristics is that its contents do not list any private or
proprietary information that could be somehow linked to a specific container
or environment, because in case elements like the container’s IP address or
OS version were to get leaked this could lead to possible security breaches.
In case the report detects that a security recommendation has not been
enforced it also outlines basic suggestions on how to implement the security
option and increment the system’s security. Moreover, at the end of the file,
a brief recap of the number of rules enforced is reported to give the user a
general overview of the results.
Executing the script periodically during the development phase of a Docker
project can help monitor the security status of each container to deploy fixes
and patches during an early stage exposing the final product to a reduced
number of security risks. The script could also be useful at the deployment
stage since keeping track of these reports could help highlight unwanted
changes to the container configuration possibly identifying a compromised
container.

61



Chapter 7

Conclusions

The purpose of this thesis was the creation of a process that aims at creating
a set of rules to be applied at the host level to harden its security status
in a virtualized system. The study started with the analysis and definition
of the virtualization principles used nowadays, this was done to classify
virtualization software products commercially available. Consequently, a
choice had to be made by selecting two elements from this set of software
products to be thoroughly studied and their working mechanisms explained,
thanks to the help of Drivesec the set of software was reduced to two products
Xen Project Hypervisor and Docker.
Having selected the software, the following step was to understand their
workflow to identify the most critical assets used from a security standpoint,
recognize the threat sources associated with them and point out the possible
threat events that those threat sources could create to such assets. The pro-
cess of identification of assets, sources, and events, implemented by following
the NIST Guide for Conducting Risk Assessments document, led to the clas-
sification of vulnerabilities based on the asset involved and the threat event
caused. Having pointed out the vulnerabilities it was possible to conduct
a research to find possible countermeasures to said vulnerabilities for the
two products. Due to different reasons such as the testing environment, the
feasibility of testing, and Drivesec requirements the study of countermeasures
was conducted differently.
For both products were identified a series of general host hardening policies,
but for the reasons stated before the creation of specific host hardening rules
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and consequent tool implementation has been done exclusively for Docker.
These specific host hardening rules are based on the available commands
and options found in the Docker command line reference documentation
and follow the same structure as the general rules by being classified based
on the asset they affect. The set of specific rules is quite large thus the
necessity emerged of automating the enforcement of the verification pro-
cess to reduce errors and time consumption, this need was fulfilled by the
creation of a tool that produces a report text file containing the outcome
of the verification for each rule and to offer possible practical solutions to
enforce the missing rules. The tool was then tested in an ad hoc Docker en-
vironment provided by Drivesec, to test the accuracy and execution speed of
the tool to employ it in the development and support stages of future projects.

The host hardening report generator tool has been developed to work with
only one running container at a time, expanding the scope of the tool could
lead to further optimization. By requesting reports based on container id
there would not be the need of stopping the other running containers, even
further the tool could be modified to analyze every container running in the
host and produce a single report containing the gathered information.
The tool works by checking every rule every time it is run but for specific
situations, it could be of use excluding certain tests that are bound to fail
due to implementation requirements, which could show that the system is in
a vulnerable state. So making it possible for a user to exclude the testing of
some rules could increase usability and efficiency. Moreover, Docker’s new
versions and updates should be monitored in case a functional mechanism of
the software is changed or new security functionalities are implemented and
if they are in line with the general host hardening rules, including them in
the tool can help expand its security coverage.
The report generated by the tool is a simple text file and should be used for
informative purposes to support the development of a Docker environment.
Since anyone with access to the host can access the reports and modify their
contents, in case of an internal attack these files could be manipulated to show
that certain security properties were configured on a container at a certain
point in time when they were not. To improve the reliability of the reports a
mechanism for guaranteeing the integrity of these files should be put in place.
This could be implemented in several ways such as the generation of a message
digest to be stored offline or in secure storage to be retrievable when required.
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The practical part of the thesis is focused mostly on Docker. In the future,
it might be useful to define a set of specific host hardening rules for Xen
Project Hypervisor and develop the relative report tool to assess its status.
Moreover, since the process defined in this thesis for the definition of host
hardening rules is general, it could be applied to any virtualization paradigm
that could be developed in the future. This process could potentially help
secure any environment employing virtualization features from cloud services
to embedded systems.
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