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Abstract 
 
Nowadays, mobile robots are frequently used in both indoor and outdoor situations, 

including agriculture, transportation in industries, surveillance, and cleaning buildings. 

These are being developed for several applications where long-term capabilities would 

be advantageous. The primary goal of mobile robotics is to build fully autonomous 

machines, meaning that they must be able to carry out their jobs without assistance from 

humans. Their industrial and technical use is continuously becoming more significant, 

especially when reliability (the uninterrupted and dependable completion of tasks like 

surveillance), accessibility (the inspection of locations that are inaccessible to humans, 

such as confined spaces, hazardous environments, or remote sites), or cost are considered.  

Computer vision is playing a vital part in making these projects more efficient due to the 

enormous strides that Machine Learning and Deep Learning have achieved in the sector. 

These innovations significantly altered how tracking and detecting issues are tackled, 

making real-world applications considerably more practical and successful. 

The goal of this thesis is to investigate a system that can segment floor plans into 

individual rooms. Several robotics activities depend on this, including topological 

mapping, semantic mapping, place categorization, human-robot interaction, and 

automated commercial cleaning. Different map partitioning strategies can be used to 

complete this task. The Mask R-CNN model has been used to fulfil this target 

successfully. This network, an extension of Faster R-CNN, enables the prediction of an 

object mask in conjunction with the branch already in place for bounding box recognition. 

Since there is not a reasonably large, publicly accessible dataset of floor plans, this thesis's 

research involved creating one with the corresponding annotations. 

The entire dataset containing 4224 images is then used to train the Mask R-CNN model, 

allowing us to obtain a neural network capable of performing an instance segmentation 

task on them. Once the model has been trained and validated, a new floor plan map is 

produced using measurements from a LIDAR sensor.  

Then, the map is processed using computer vision software to create a crisper and cleaner 

map of the surrounding area and to prepare it for the segmentation method. 
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This work can be used as a foundation for creating more sophisticated systems capable 

of automatically classifying rooms (for instance, by including various room typologies in 

the dataset), or by integrating the algorithm onto a mobile robot to perform segmentation 

after mapping an entire area. 
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Chapter 1 
 

Introduction 
 
1.1 Motivation 
 

Technology advancements in recent years have increased the number of environment-

mapping algorithms that are available, producing ever-improving accuracy results. 

Modern methods based on neural networks have enabled the resolution of issues that were 

intractable in the past. This is achievable as a result of the expansion of publicly accessible 

data in recent years, which has made it possible to produce a lot more material for 

analysis. The economist wrote an article titled “The world’s most valuable resource is no 

longer oil, but data” and published it on May 6, 2017 [1]. Humanity has entered a data 

generation and collection bonanza as a consequence of an increase in internet users and 

the realization of the importance of data. Every day more than 2.5 quintillion bytes of 

data are generated, and as IoT (Internet of Things) becomes more and more popular, that 

number is likely to rise even further [2]. 

Due to the huge advancements that Machine Learning and Deep Learning have made in 

the field, computer vision is playing a crucial role in improving the efficiency of these 

projects that space from health care to space research. Real-world applications have 

become significantly more useful and effective on account of these breakthroughs. 

There has been a rapid advancement in computer vision. Fundamentally, it is a technology 

that enables machines to process their environment similarly to humans. It has taken 

decades of research and experimentation to replicate the multitasking and fast decision-

making abilities of the human brain in machines. Today, we are able to create computer 

vision models that can identify things, determine their shapes, forecast object motions, 

and perform essential actions depending on the information. The development of 

computer vision models has led to the development of self-driving automobiles, aerial 
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mapping, surveillance applications, and numerous other extended reality technologies 

like AR and VR. 

This thesis investigates a method for separating floor plans into their individual rooms. 

This is essential for many robotics tasks, such as automated commercial cleaning and 

topological and semantic mapping, as well as place categorization, and human-robot 

interaction. For this job, many map-splitting techniques can be applied. Different works 

analyse the literature on room segmentation, in particular [3] offers four publicly 

accessible implementations of well-known techniques that are adjusted to provide 

segmentations into whole rooms and target the semantic mapping domain. The chapters 

that follow the most popular Machine Learning classification methods are briefly 

discussed, with a deeper focus on Deep Learning techniques and an explanation of what 

a Neural Network is, how it functions, and how it is used for image classification and 

segmentation. Ultimately, the principal strategy employed to accomplish the project’s 

aim is highlighted, together with any challenges encountered and the remedies chosen. A 

brief report on upcoming updates and integrations follows, outlining how this project 

might be applied to more implementations. 

 

1.2 Thesis structure and purpose 
 
In recent years, various research and algorithms designed to divide up entire 

environments into rooms have been proposed. As shown in [3], various ways have been 

investigated. The major goal of this thesis project is to separate floor maps into several 

rooms using a deep learning approach. This has been accomplished by using a large 

collection of 2D floor plan maps without furniture. This is done to make it easier to scan 

an environment using a 360-degree Lidar sensor, as it might be challenging to get a clear 

view of the surroundings using only this kind of sensor. A few techniques can be used to 

clean up images and create a high-quality floor map image (using OpenCV). To perform 

the task of this project a Mask R-CNN is employed. This deep network is mainly used 

for image processing, in particular for object detection and instance segmentation. An 

instance segmentation problem for an image consists in differentiating every single 



 
 
 

3 
 

object, appropriately identified (object detection) and classified, to determine its exact 

position and differentiate it from any other instance (also belonging to the same class).  

This thesis project consists of six chapters, the first chapter serves as an introduction to 

the project, outlining its main motivations and objectives as well as briefly describing the 

subjects covered in the following sections. The second chapter provides a theoretical 

overview of Machine Learning, Deep Learning neural networks, how they operate, and 

why they are crucial for image classification and object detection. The third chapter is an 

insight into the deep neural network used for our task (Mask R-CNN), in particular how 

it has been developed starting from the Region-Based neural networks. Furthermore, the 

evaluation metrics for instance segmentation problems have been explained. The fourth 

chapter presents the dataset used for the model’s training, and how it has been built and 

split. The training process and the parameter tuning procedure are highlighted. The fifth 

chapter shows the results obtained by the trained model and how it performs on new data 

obtained from gazebo simulation and floor plan maps used in other works [3]. The final 

chapter wraps up the paper by demonstrating how the results of this project might be 

improved, and how the main work can be extended to more difficult cases. It is also shown 

several real-world uses for which, this research can be helpful.   
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Chapter 2 
 

Background 
 
Modern approaches based on neural networks have allowed the creation of new models 

able to solve classification and regression problems. The fundamental ideas of Machine 

Learning as well as the most current advancements in Deep Learning will be covered in 

this chapter. Convolutional neural networks and their use in computer vision applications 

will be described. Additionally, a further theoretical explanation is provided for object 

detection, semantic segmentation, and instance segmentation. The last paragraph is 

devoted to providing a quick overview of the software infrastructure utilized in the 

project’s development. 

 

2.1 Machine Learning 
 
The history of Machine Learning resides over 60 years ago when Arthur Lee Samuel 

coined for the first time this term. Considering his groundbreaking machine learning 

research, which he started in 1949, he is regarded as the father of Artificial Intelligence 

[4]. According to Arthur Samuel, Machine Learning is a “Field of study that gives 

computers the ability to learn without being explicitly programmed” however a more 

accurate definition is provided by Tom Mitchell “A computer program is said to learn 

from experience E with respect to some class of tasks T and performance measure P, if 

its performance at tasks in T, as measured by P, improves with experience E.”[5]. 

Arthur Samuel startled the entire world in 1962. He created a computer that was capable 

of competing against Robert Nealy, the current checkers' champion. The machine 

triumphed, but the news wasn’t just about the victory. The victory’s supporting software 

was what would alter the course of history. Instead of entering all the possible outcomes 

from a checkerboard into his computer, he told it to respond based on previous games. 

The computer “learned” to master the board after playing game after game while 
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analysing dozens of variables, estimating risk, and formulating the following, most 

effective moves. The same “machine learning” techniques that Samuel utilized in his 

early experiments are used now in practically every area. 

Machine Learning allows us to learn from experience. It is mastering something when 

the performance of the program gets better after conducting a task or completing an 

action. The strength of an ML approach is the ability to produce results without writing 

rules but enable the machine to derive the rules from data; for this reason, it is an essential 

technology in fields where creating rules is very challenging, such as speech recognition, 

image segmentation, and object classification. 

These algorithms can be used in a variety of fields, including medicine, speech 

recognition, computer vision, and generally whenever a direct approach cannot complete 

the task to a sufficient level of performance. Classification, regression, grouping, anomaly 

detection, dimensional reduction, or predictive analysis are the performed tasks. 

The spam filter is one of the early uses of machine learning, which is currently very 

widespread. This is a program that has developed the ability to distinguish between 

legitimate and spam emails based on messages that users have received and flagged.  

By identifying unusually frequent patterns of words in the spam samples compared to the 

conventional examples, the spam filter can learn which words and phrases are effective 

predictors of spam. The subsequent figure illustrates how machine learning’s strategy 

works.  

 
 

Figure 2.1: Machine Learning strategy [6]. 
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There is a great amount of machine learning systems, and they can be split into different 

categories:  

 

• Supervised learning is made up of a training dataset that also contains the expected 

outcomes, and these are the “labels.” The classification of spam emails can provide 

a nice explanatory example. These algorithms are the most popular ones: Linear 

Regression, Logistic Regression, k-Nearest Neighbors, Support Vector Machines 

(SVMs), Decision Trees and Neural Networks. 

 

• Unsupervised Learning approach uses an opposite attitude to the problem with 

respect to the first one, in fact, the machine is more independent since it must learn 

and identify complex schemes on its own. The output is not specified and so there 

are no labels. The algorithm has to recognize some data’s properties and classify these 

data (clustering), detect some anomalies and so on. The most significant unsupervised 

learning techniques are Clustering, Anomaly detection and novelty detection, 

Association rule learning, visualization, and dimensionality reduction. 

 

• Semi-supervised learning algorithm deals with data that are partially labelled. This 

is a combination of supervised and unsupervised algorithms and allows a great 

improvement in accuracy. A common application is the text document classifier. An 

illustrative example could be photo-service systems that cluster a certain number of 

people in the images submitted by the user. The model can identify the people in 

every other picture once the names of the persons are inserted into one.  

 

• Reinforcement learning, this approach exploits a completely different method. The 

learning system “agent” take some action and register a score that could be a “reward” 

or a “penalty”. It learns by itself what is the best procedure to follow, and this is called 

“policy”. Fields including game theory, control theory, operation research, and 

information theory use these kinds of models. For instance, some applications include 
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autonomous driving tasks like trajectory optimization, motion planning or 

autonomous parking. 

 
2.1.1 Machine Learning features  
 
Particular attention must be paid to the training of our Machine Learning model. When 

some data are submitted to train the models, different difficulties could arise. For instance, 

the quantity of training data must be adequate to produce the best results. This occurs for 

extremely difficult problems like speech or image recognition since it takes a lot of data 

to get high accuracy. Microsoft researchers Michele Banko and Eric Brill demonstrated 

in a well-known study written in 2001 that various diverse ML algorithms, including 

simple ones, performed nearly identically well on a challenging natural language task [6]. 

Another important aspect to consider is the quality of the data. It is essential that your 

training data be reflective of the new cases you want to generalize. Naturally, it will be 

more difficult for the system to recognize the underlying patterns if your training data is 

full of mistakes, anomalies, and noise (for example, as a result of poor-quality 

measurements), thus your system is less likely to work successfully. Some operations 

could be done to make your data ready for the training, including the extraction and 

exclusion of some features. 

 
2.1.2 Underfitting and Overfitting 
 

There is a fundamental aspect of supervised machine learning to be considered and it is 

the concept of overfitting and underfitting the training data. Generally, the model training 

is evaluated through the computation of errors. These are extremely important to discover 

if the training is going smoothly. The concept of overfitting and underfitting are connected 

with a model’s capacity to successfully generalize or precisely map inputs to outputs, and 

they are all strongly tied to the bias-variance trade-off. The algorithm gains the ability to 

generalize broad ideas or underlying trends from particular data points during the learning 

process. When exposed to real data with many of the same qualities, the algorithm ought 

to be able to translate inputs into outputs. Without bias or excessive variation, underfitting 
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or overfitting, the ideal model would generalize effectively. But in practice, this is a 

challenging process.  

 

Overfitting is a phenomenon that is highly likely to occur when a model’s capacity to 

apprehend from the training dataset is extremely high. In fact, it will also learn subtle 

patterns of the training set that also comprehend the noise. As a result, is unable to 

generalize to other instances, i.e., it is inefficient in estimating any other instance that 

does not belong to the training set. When the training error is relatively small and the 

error on the test set is significantly bigger, this event is practically recognizable. 

 

Underfitting, as one might expect, is the antithesis of overfitting: the model is too simple, 

it is not able to fit the data and fails to generalize. The error on the training set and test 

set is incredibly high. In this case, the model can adopt some solutions to prevent 

underfitting. One approach is the augmentation of the training duration.  

 

 
Figure 2.2: Overfitting and Underfitting representation. 

 
Hyperparameters can be used to influence the model’s behaviour. These values are 

initially standard, and they are defined by users rather than the algorithm. There are third-

party algorithms that can determine which hyperparameters are best for the main model. 

Figure 2.2 depicts a polynomial regression example with a single hyperparameter: the 

function degree. The polynomial function has a high degree on the right, in fact, it overfits 
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the data. On the other hand, when the model is trained for a small number of epochs, it 

underfits the data and so it does not represent accurately the trend. By choosing accurately 

the parameters of the training, the model learns how to fit the data properly.  

 
2.1.3 Validation and Test set 
 
As seen before, the model must generalize properly on the new data. The best solution to 

achieve the generalization is to divide the entire dataset into two parts: the training set 

and the test set. After the learning process has been finished, the test set made of instances 

from the same distribution as the training set can be used to estimate a learner’s 

generalization error. It is fundamental that the test cases are not utilized to make decisions 

regarding the model, particularly its hyperparameters. 

Therefore, we build a validation set from the training data. The training data are divided 

into two distinct subsets. The parameters are learned using one of these selections. The 

other subset is our validation set, which is used to assess the generalization error during 

or after training and allows the hyperparameters to be adjusted as needed. Even though 

this may be misinterpreted with the larger pool of data used for the entire training process, 

the subset of data used to learn the parameters is still commonly referred to as the training 

set. The validation set is the subset of data used to inform the selection of 

hyperparameters. Generally, around 80% is used for the training data while the other 20% 

is used for validation.   

 

2.2 Deep Learning 
 
2.2.1 Evolution of Deep Learning 
 
Deep Learning has progressed over time, generating tremendous upheaval in sectors and 

business domains. It is a subset of Machine Learning that uses algorithms to process data, 

simulate the thinking process, and even create abstractions. Deep Learning processes data 

using layers of algorithms, interpret human speech and recognizes items visually.  



 
 
 

10 
 

In the literature, it is classified as part of the Artificial Neural Network (ANN) family, 

however, the two terms are sometimes used interchangeably. ANNs are inspired by 

biological human brain architecture and how neurons interact with one another, although 

they are not intended to be realistic brain models. The first neural network was introduced 

in 1943 by Warren McCulloch and Walter Pitts, who created a computer model based on 

human brain neural networks. To simulate the mental process, Warren McCulloch and 

Walter Pitts employed a combination of mathematics and algorithms known as threshold 

logic. A McCulloch-Pitts neuron receives inputs, computes a weighted sum, and returns 

‘0’ if the result is less than a certain threshold and ‘1’ otherwise. Frank Rosenblatt 

developed the perceptron in 1957 by combining Donald Hebb’s idea of brain cell 

interaction with Arthur Samuel’s Machine Learning work. The perceptron was originally 

intended to be a machine rather than a program. The software, which was initially 

intended for the IBM 704, was put in a custom-built image recognition machine named 

the Mark 1 perceptron.  

 

 
 

Figure 2.3: Mark I Perceptron machine [7]. 



 
 
 

11 
 

The discovery and application of multilayers in neural network research paved the way 

in the 1960s. It was observed that giving and employing two or more layers in the 

perceptron provided much more processing power than a single layer perceptron. In 1960, 

Henry J. Kelley is credited with establishing the fundamentals of a continuous Back 

Propagation Model. Stuart Dreyfus produced a simpler version based solely on the chain 

rule in 1962. While the concept of backpropagation (the backward transmission of errors 

for training purposes) existed in the early 1960s, it was cumbersome and inefficient, and 

would not be practical until 1985. The first AI winter resulted from several factors coming 

together.  

The main obstacle to AI and neural networks in that era was the computational 

requirements, which made any structure with more than two layers too complex to be 

computed with the technologies of that time. Moreover, other ML algorithms were 

discovered and as a result, neural networks were abandoned again for a period. Now there 

is currently a new surge in interest in ANN. This is achievable for numerous reasons, 

including the amount of data available to train the neural network, the development in 

computing power that allows for the training of huge neural networks efficiently, the 

advancement of algorithms, and so on. 

 
2.2.2 Artificial Neuron 
 
The artificial neuron, the fundamental element of Deep Learning, takes its name from the 

biological one because of their resemblance. As anticipated before, McCulloch and Pitts 

are the pioneers of a simple model similar to the biological neuron. Frank Rosenblatt in 

1960 created the perceptron, based on the study of the other two scientists. The perceptron 

or also called threshold logic unit (TLU), is the simplest ANN. It takes different inputs 

and after computing a weighted sum of them, it produces a single output according to an 

activation function. 
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Figure 2.4: Biological neuron representation [8]. 
 
 

                                𝑦 = {

0, 𝑖𝑓  ∑ 𝑤𝑘𝑥𝑘  ≤  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑘

1, 𝑖𝑓  ∑ 𝑤𝑘𝑥𝑘  >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑘

                       (2.1) 

 
 
The perceptron typically consists of two layers: the input layer, which contains the various 

elements provided to the network, and the output layer, which contains the element that 

the network calculates. 

 
 

 
 

Figure 2.5: Threshold Logic Unit representation. 
 
The model has some limitations, small changes in the input, weights or threshold can 

change in drastic way the output since it can assume only values 0 and 1. This problem 
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can be solved by modifying the activation function, in particular when the step function 

is substituted by the sigmoid function. In the following pages, there will be described the 

most common activation functions. Another limitation pointed out by Marvin Minsky and 

Seymour Papert in 1969 is the incapacity to solve futile problems as the Exclusive OR 

(XOR) classification problem. This barrier can be removed by combining various 

perceptrons, giving birth to Multi Layer Perceptron (MLP). It consists of three or more 

fully connected layers, meaning that each node in one layer connects with a certain weight 

𝑤𝑖𝑘 to every node in the following layer. 

 

2.2.3 Neural Networks architecture 
 

The Multi Layer Perceptron gives an idea of the general architecture of Artificial Neural 

Network (ANN). Three different types of layers make up this system: the Input layer, 

which receives data and transfers it to the other levels; the Hidden layer, which contains 

one or more layers; and finally, the Output layer, which presents the results. Hidden 

layers are what give neural networks their exceptional performance and intricacy. 

Decision-making is typically more complex and produces better results when there are 

more hidden levels. Typically, a deep neural network (DNN) is referred to as an ANN 

that has a deep stack of hidden layers. 

 

 
 

Figure 2.6: Artificial Neural Network Architecture [8]. 
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Systems that have the ability to learn are extremely adaptive. These adjust information 

they have previously gathered, change their internal organization, and employ input from 

the outside world in their attempt to learn. That’s how ANN acts, they adjust and adapt 

their architecture to learn. More specifically, the ANNs modify the weights of 

connections in accordance with input and targeted output. 

In supervised learning, we essentially get a training set that includes a vector of desired 

output values and a vector of input values. The cost function computes the error vector 

once the network determines the output for one of the inputs. This error shows how 

closely our approximation matches the ground truth value. The mean squared error 

function is one of the most used cost functions: 

 

                                                𝐽(𝑤, 𝑏) =
1

2𝑛
∑‖𝑦(𝑥) − �̂�‖                                   (2.2) 

𝑥

 

 
The output generated by the neural network is represented by 𝑦(𝑥), 𝑥 is the training input 

vector and �̂� is the desired output. The elements w and b represent respectively the 

weights and biases. The process used to learn and modify accordingly the weights is 

called backpropagation. It is an advanced and complex algorithm that allows ANNs to 

modify the weights quickly. 

The backpropagation algorithm follows this procedure: 

 

• Firstly, it makes a prediction (forward pass) and computes the error.  

• It performs a reverse run over each layer to calculate the contribution of each 

connection’s error (reverse pass). 

• Lastly, it adjusts the connection weights to minimize the error (Gradient Descent 

step). 

 

The connection weights of all the hidden layers must be initialized randomly for training 

to succeed. For instance, if all weights and biases are initialized to zero, every neuron in 

a particular layer will be completely identical and will continue to be equal as long as 
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backpropagation continues to affect them in the same manner. In other words, even 

though your model has hundreds of neurons per layer, it will behave as if it has just one 

neuron [6]. 

 

An important role in neural networks is played by activation functions. It determines if 

a neuron should be activated or not, and so it evaluates whether or not the neuron’s input 

to the network is significant throughout the prediction process. The output computed by 

a neural network is strongly conditioned by the activation function used, which has a 

fundamental role in the speed of convergence and accuracy of the ANN. Moreover, in 

modern deep neural networks, the choice of the activation function to be used depends 

on the type of layer it is associated with. The main purpose of activation functions is to 

add non-linearity to neural networks [11]. The most important ones are described in the 

following paragraph. 

 
Binary Step function 
 
The first function is the binary step function. A defined threshold determines whether or 

not a neuron should be triggered. The function is represented as follows. 

 

 
 

Figure 2.7: Binary Step function representation [11]. 
 
The mathematical representation is the following: 

 

                                                  𝑓(𝑥) =  {
0, 𝑓𝑜𝑟 𝑥 < 0
1, 𝑓𝑜𝑟 𝑥 ≥ 0

                                    (2.3) 
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The output can assume only the values 0 and 1, so it cannot be used for multi-class 

classification problems. Furthermore, the gradient is zero and can cause problems in the 

backpropagation process. For these reasons, it is rarely employed. 

 
Sigmoid function 
 
The sigmoid function is one of the most known activation functions, it takes as input any 

real value and displays as output a value between 0 and 1.  

 

 
 

Figure 2.8: Sigmoid function representation [11]. 
 
The mathematical formulation is: 

 

                                                            𝑓(𝑥) =  
1

1 + 𝑒−𝑥
                                               (2.4) 

 
It is frequently employed when the output has to be a probability prediction. It also 

provides a smooth gradient even if the values are significant between -3 and 3. 

 
Hyperbolic tangent function 
 
It has the S-shape as the sigmoid function, but the output range goes from -1 to 1. 

It is represented by the following function: 

 

                                 𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =  
𝑠𝑖𝑛ℎ (𝑥)

𝑐𝑜𝑠ℎ (𝑥)
=  

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                          (2.5) 
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Figure 2.9: Hyperbolic tangent function representation [11]. 
 
The main characteristic is that it can produce a negative output. By getting the mean near 

0, it helps in centring the data. This greatly simplifies learning for the subsequent layer. 

 
ReLU function 
 
It is the most used function in a neural network’s hidden layers. ReLU stands for Rectified 

linear unit.  

 

 
 

Figure 2.10: ReLU function representation [11]. 
 
The function has the following form: 

 

                                                       𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                                (2.6) 
 

Compared to tanh and sigmoid, it requires fewer computations since its mathematical 

operations are simpler. It speeds up the convergence towards the global minimum. The 

ReLU function has a drawback: the gradient is zero when computed on the negative side 

and so during backpropagation, weights and biases of some neurons are not updated.  
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The Leaky ReLU is employed to solve the latter problem. It presents a small positive 

slope on the negative side, and it is mathematically represented by: 

 

                                                      𝑓(𝑥) = 𝑚𝑎𝑥(0.1𝑥, 𝑥)                                           (2.7) 
 

It takes longer to learn the model parameters because the gradient for negative 

values is small [11]. 

 
Softmax function 
 
For classification problems, the sigmoid activation function is well suited in case you 

have only two classes. If the number of classes is higher, the softmax activation function 

shall be used, and it is defined as: 

 

                                                     𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑗) =  
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘
𝑘

                                        (2.8) 

 

The Softmax function is described as a combination of multiple sigmoids.  

 
2.2.4 Gradient Descent  
 
Gradient Descent is an optimization technique that can locate the best solution to a variety 

of problems. It is a method for minimizing a given function to its local minimum by 

iteratively adjusting the parameters of a function that generally, for regression problems, 

is the MSE.  

But how it calculates the minimum of this function? Starting from a random point on the 

cost function, it computes the local gradient of the error function with respect to n-

dimensional vector v and it goes in the direction of descending gradient. Let us consider 

a variation of the vector v. This modification will imply a change of the cost function J 

that can be expressed as follows: 
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             ∆𝐽 ≈  
𝜕𝐽

𝜕𝑣1

 ∆𝑣1 +  
𝜕𝐽

𝜕𝑣2

 ∆𝑣2 + ⋯ +
𝜕𝐽

𝜕𝑣𝑖

 ∆𝑣𝑖 + ⋯ +
𝜕𝐽

𝜕𝑣𝑛

 ∆𝑣𝑛          (2.9) 

 

The objective is to find a combination of 𝑣𝑖 that make ∆𝐽 negative and so to determine 

the global minimum of the cost function 𝐽(𝑤, 𝑏). We can also exploit the gradient 

definition and write J as the vector of the partial derivatives. 

 

                                                    𝛻𝐽 =  (
𝜕𝐽

𝜕𝑣1

, … ,
𝜕𝐽

𝜕𝑣𝑛

)
𝑇

                                          (2.10) 

 

The expression (2.9) can be rewritten as: 

 

                                                             ∆𝐽 ≈  𝛻𝐽 ∙ ∆𝑣                                                  (2.11) 
 

As stated before, it is necessary to determine ∆𝑣 that minimises the cost function (making 

∆𝐽 negative). In particular, we select: 

 

                                                             ∆𝑣 =  −𝜂 ∙ 𝛻𝐽                                                 (2.12) 
 

The parameter 𝜂 represents the learning rate. It assumes always a small and positive 

value. Substituting the expression 2.12 into 2.11 we obtain: 

 

                                                 ∆𝐽 ≈ −𝜂𝛻𝐽 ∙  𝛻𝐽 = −𝜂‖∇𝐽‖2                                  (2.13) 
 

The second term ‖∇𝐽‖2 ≥ 0, implying that ∆𝐽 ≤ 0. The new vector of input is: 

  

                                                           𝑣′ =  𝑣 − 𝜂 ∙ 𝛻𝐽                                              (2.14) 
 

In conclusion, the gradient descent algorithm computes iteratively the gradient 𝛻𝐽 before 

moving in the opposite direction and “dropping down” the valley’s slope. Finding the 
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global minimum is not always possible, different factors can lead to a local minimum, but 

the algorithm is very efficient and most of the time allows the ANN to learn [8].  

 

 
 

Figure 2.11: Convergence to the global minima with different learning rates [9]. 
 
The learning rate has a big role in the determination of the minimum of the cost function. 

The bigger the learning rate the faster the convergence to the minimum. However, this 

can cause divergent behaviour since there are ‘jumps’ caused by drastic updates. 

 

 
 

Figure 2.12: Gradient Descent 3D visualization. 
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On the other hand, a relatively small learning rate can slow down the convergence and so 

more epochs are needed to obtain good results.  

It is possible to apply the gradient descent technique computing the gradient on the entire 

dataset or on a group of elements. This is called batch and corresponds to the number of 

elements used to compute the gradient at every iteration. This can influence the choice 

about the weights and biases and so the convergence of the loss function. There are 

different variants of Gradient Descent: 

 

• Full Batch Gradient Descent computes the loss function considering all the 

elements in the dataset at each step. There are some disadvantages: the operation 

is quite long when it is present a large dataset. Another problem is its lack of 

dynamics: to improve the model with new data it is necessary to repeat the 

training process on the entire dataset.  

 

• Stochastic Gradient Descent addresses the major issue of the full batch gradient 

descent. It uses a different approach, which selects a “random” instance of 

training data at each step before computing the gradient, making it significantly 

faster than Batch GD because there are fewer data to handle at once. It can be 

used for large datasets and reaches convergence much faster. On the other hand, 

when it gets close to the minimum point, it doesn’t settle down but instead 

bounces around. This allows us to obtain a good result but not an optimal one. 

 

• Mini Batch Gradient Descent is a compromise between the two techniques seen 

before. At each epoch, a subset of the dataset is selected, and then the loss 

function is calculated as the average of the loss function computed within the 

subset. There is no certainty that an error will converge more effectively but 

compared to SGD, the batching updates offer a method that is more 

computationally efficient. 
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Summing up, using the mini batch gradient descent and the stochastic gradient descent 

we obtain trajectories that do not go directly to the minimum of the function. This happens 

because in the first case we compute the gradient by taking a subset of the entire dataset, 

while in the second case the gradient is calculated by picking a single instance of the 

dataset. On the other hand, the full batch gradient descent measures the gradient over the 

complete dataset. 

 

 
 

Figure 2.13: Full Batch, Mini Batch and Stochastic gradient descent trajectories [10]. 
 
 

2.3 Convolutional Neural Networks 
 
In the previous chapter, we have seen how Artificial Neural Networks are built, in 

particular how a fully connected neural network is constructed. Every neuron of each 

layer is connected to all the neurons of the adjacent one. However, this configuration does 

not perform well on classification problems with images. 

Let us look at an explicative example. One of the most famous is about handwritten digit 

classification. The dataset MNIST contains 70.000 images that are split as follows: 

60.000 for training and 10.000 for testing. The images are 28 by 28 pixels, greyscale and 

represent digits that go from 0 to 9. When a particular image is fed as input to the neural 

network, it is interpreted as an array of pixels. Based on the intensity of the colour of a 

pixel, it is associated with a value belonging to the interval [0,255]. Therefore, a single 



 
 
 

23 
 

image of the MNIST dataset is seen from the ANN as an array of 28×28 = 784 elements. 

These elements are the so-called features of the image.  

  

  
 

Figure 2.14: Digit present on MNIST dataset (on the left), possible features 
representation (on the right) [8]. 

 
The fully connected network encounters a problem when dealing with the images since 

the computational effort is very high. The extraction of features of an image is difficult, 

in fact, to represent an image in RGB format (3 channels) of 10×10 pixels size it is 

necessary to employ 3 matrices 10×10. This can be represented as a single matrix with a 

size of 10×10×3, also known as a tensor, with 300 nodes in the first layer. Generally, the 

dimension of pictures is larger than the one defined. Let us take a picture in RGB format 

with 256×256 dimension. It will have the first layer of 256×256×3 = 196.608 features. 

These neurons have to be connected to the ones of the first hidden layer and so there will 

be needed 196.608·x weights, where x stands for the nodes present in that layer. As can 

be observed, the use of such a neural network leads to having a node for each pixel of the 

image. Most of the time, pixels near one another are correlated and this spatial 

relationship is not maintained, as for the entire structure of the image. Pixels that are close 

to each other, are treated as the ones that are far away. 

 
Since the 1980s, Convolutional Neural Networks (CNNs) have been utilised in image 

identification. CNNs were developed through research on the visual cortex of the brain. 

They have recently been able to perform unnaturally well on several challenging visual 

tasks as a result of the rise in computer power and the quantity of training data. They 

work in a good way also for tasks such as voice recognition, natural language processing 

and so on [6]. CNNs have been developed inspired by a peculiarity of the neurons of the 

visual cortex: the local receptive field.  Neurons respond only to visual stimuli present in 
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a certain area of the visual field. Receptive fields may overlap, and when combined, they 

tile the entire visual field. CNNs are based on a new extraction method of the features. 

Each image is divided into different regions and the characteristic of that particular region 

is taken using filters. The presence of the term convolutional is because the network uses 

a mathematical operation called convolution.  

 

 
 

Figure 2.15: Convolutional Neural Network architecture [12]. 
 

To ensure invariance concerning translation and distortions, CNNs are based on three 

important aspects: local receptive fields, shared weights, and pooling. Before introducing 

the convolutional layer let us define what is a local receptive field. 

 

In fully connected neural networks, presented in the previous paragraph, the inputs are 

seen as an array of values, where each value corresponds to the pixel colour intensity. In 

CNNs, the image can be seen as a matrix of dimension 𝑚 × 𝑛 that corresponds to the size 

of the image itself. In this case, the single entry of the matrix represents the intensity of 

the pixel at (i,j). This configuration can be clearer by looking at figure 2.16. Differently 

from fully connected networks, each node of the input layer is not connected to all the 

nodes of the following layer. Each neuron of the hidden layer will be linked to a small 

region of the input. The region of the input layer associated with the neuron of the hidden 

one is called local receptive field. 
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Figure 2.16: Local receptive field representation [8]. 
 

To determine the receptive field associated with the next neuron of the hidden layer, we 

need to let the window slide by a certain quantity k. This shift is called stride. In figure 

2.16, it is possible to notice that the local receptive field of dimension 5×5 is shifted by 

1 pixel with respect to the first region. 

 

Other fundamental concepts of Convolutional Neural Networks are the shared weight 

and biases. In the example seen above, an input image of dimension 28×28 is fed to the 

CNN. Then, connecting the nodes of the first hidden layer to the local receptive field, a 

layer of dimension 24×24 is obtained. Since all these neurons in the first hidden layer 

will have identical weights and biases, they will all detect the same feature in the input 
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image at various locations. The feature is the kind of pattern that triggers a neuron i.e., an 

edge of the image or some form. The output computed by the node at position (j,k) of the 

hidden layer is: 

 

                                      𝑂𝑢𝑡𝑝𝑢𝑡𝑗,𝑘 =  𝜎 (𝑏 +  ∑ ∑ 𝑤𝑙,𝑚𝑎𝑙+𝑗,𝑚+𝑘

𝑚𝑙

)                            (2.15) 

 

Where 𝑎𝑗,𝑘 represents the input activation at position (j,k), 𝑤𝑙,𝑚 and b are respectively the 

shared weights and bias and 𝜎 is the activation function. This put in evidence a 

fundamental characteristic of the convolutional neural networks; in fact, if a pattern is 

localized at a particular position of the image, it will be revealed also in another position 

of that picture. This property is called translation invariance. The map generated starting 

from the input layer to the hidden layer is said feature map. The shared weights and bias 

determine the kernel or also called filter. In our case, the kernel is the 5×5 region defined 

above. Typically, multiple feature maps make up a convolutional layer, hence different 

kernels are used. Each one of these will learn a particular characteristic of the image [8]. 

Moreover, the feature map dimension is decided considering three parameters: filters, 

stride and zero padding.  

 

 
 

Figure 2.17: Zero padding representation [13]. 
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The zero padding technique consists in adding zeros around the input layers. This allows 

us to obtain a layer with the same height and width as the previous one. It is a crucial 

strategy employed to control the output size of the layer and to preserve certain aspects 

of the image that should not be lost. 

 

The last aspect that needs to be pointed out is the pooling layer. This is usually inserted 

after a convolutional layer, and it has the objective of decreasing the image dimension. 

The matrix of pixels is divided into different subgroups and each of them is substituted 

with a value determined by a statistical function. For instance, a common procedure is 

max pooling. However, it must be taken into account that even if the pooling operation 

leads to a reduction in the length and width of the matrix, the depth will remain unaltered. 

Two different pooling techniques are commonly used: max pooling and average pooling. 

Let’s see how each operates: 

 
Max pooling 
 
This is the most common pooling technique used. The max pooling operates using a filter 

of size 2×2 and a stride of 2×2, for each subset of pixels, will be extracted only the pixel 

having the maximum value. Looking at the first block, composed of the following 

elements [29,15,0,100], the max value extracted is 100. 

 
Average pooling 
 
In this case, the reduction of the image’s dimension is obtained by performing the mean 

value of the elements present in one block. Considering the first block in the picture, the 

average pooling will return 36. 
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Figure 2.18: Max and Average Pooling application [14]. 
 

At the end of convolutional layers, there are fully connected layers. This is possible due 

to the flattening operation; in fact, a matrix of dimension W×H×D is converted into a 

vector W·H·D. The structure of the fully connected layers is the same described in 

paragraph ‘2.2.3’. The output layer of the CNN will have neurons equal to the total 

number of classes defined for the classification problem. The output vector corresponds 

to the probability that a specific object belongs to a certain class.   

 

Different variants of CNN architecture have been created over time, resulting in 

incredible advancements in the industry. In 1998, Yann LeCun developed the most 

famous one, the LeNet-5 architecture. Generally, this was frequently employed for 

handwritten digit recognition. In 2012, the AlexNet CNN won ImageNet ILSVRC 

challenge. It is much deeper and larger with respect to LeNet-5, and it is made by stacking 

together convolutional layers instead of putting pooling layers in between.  

In 2014, Christian Szegedy et al. developed GoogLeNet architecture and won the 

ILSVRC 2014 challenge. The main innovation is the inception module. Compared to 

AlexNet, GoogLeNet uses parameters significantly more effectively, in fact, it has ten 

times fewer parameters than the previous network. Other CNNs designed in the next years 
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are VGGNet, ResNet, Xception and SENet [6]. In the next section, there will be carried 

out an in-depth analysis of ResNet architecture. 

 
2.3.1 ResNet Architecture 
 
In 2015, Kaiming He, Shaoqing Ren, Jian Sun and Xiangyu Zhang won the ILSVRC 

challenge with Residual Network (ResNet). It is an extension of CNNs, made by 152 

layers, 8 times deeper than VGG and with lower computational complexity. The process 

of training these large neural networks takes a lot of time and is very difficult. One of the 

problems with deep neural networks is that as the depth of the network increases, the 

accuracy of the model decreases. This problem is caused by the increment training error. 

This issue is solved by adding skip connections to the neural network. How does it work? 

The input signal entering a certain layer is also submitted to a higher layer of the stack, 

so it is a direct connection that jumps some layers in between. 

Given an input x, the network maps x to output y employing the target function h(x). If a 

skip connection is used, and the input is inserted at the output of the network, then, the 

target function will be f(x)=h(x)-x. This procedure is residual learning. Typically, the 

learning is significantly faster when skip connections are added and they also allow to 

prevent a bottleneck. Even if certain layers have not yet begun to learn, the network can 

nevertheless advance. The signal can easily travel the entire network because of skip 

connections [6]. The performance of neural networks with more layers has substantially 

improved because of the use of ResNet. ResNet structures provide a much lower error 

percentage compared to the model with the same layers. Some common ResNet 

architecture are: ResNet34, ResNet50, ResNet101, ResNet152, ResNet101 V2, 

ResNet152 V2. The number corresponds to the layers present in the model. 
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Figure 2.19: Residual learning [6]. 
 
The ResNet architecture is made by a stack of residual units. Each unit is composed as 

follows: 

• 2 convolutional layers (without pooling layer). 

• Batch Normalization and ReLU activation function. 

• Kernel of dimension 3×3, preservation of spatial dimension that consists of stride 

1 and ‘same’ padding. 

 

 
 

Figure 2.20: ResNet structure [6]. 
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The risk of vanishing and exploding gradients issues during training is considerably 

reduced by the Batch Normalization technique. The method entails inserting an operation 

into the model just before or after each hidden layer's activation function. Using two new 

parameter vectors per layer—one for scaling and the other for shifting—this operation 

simply zero-centres, normalizes, then scales and shifts each input with the two parameter 

vectors. In other words, the operation enables the model to discover the ideal scale and 

mean for each input of the layer. In many circumstances, standardizing your training set 

is unnecessary if you include a BN layer as the initial layer of your neural network. The 

method must determine the mean and standard deviation of each input before zero-

centring and normalizing them. It accomplishes this by calculating the input's mean and 

standard deviation for the most recent mini-batch. During deep neural network training, 

batch normalization can have a negative effect on training if batches are small, so this 

layer is often frozen and functions as a linear layer. 
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Chapter 3 
 

Mask R-CNN 
 

Convolutional neural networks are mostly utilised for image processing, and among the 

topics addressed by them, it is possible to mention object detection, semantic 

segmentation, and instance segmentation. The tasks introduced by classification: object 

detection, and semantic segmentation, are included in the definition of instance 

segmentation. 

An instance segmentation problem for an image is the process of separating each 

individual object from other instances in the picture after it has been correctly detected 

(object detection) and categorised (also for objects belonging to the same class). This 

final feature enables the distinction between a semantic segmentation problem and an 

instance segmentation problem. A semantic segmentation problem assigns the same value 

to all predetermined instances belonging to the same class. 

There are innumerable applications of instance segmentation that space from 

segmentation of objects to detection of medical diseases. 

 

 
 

Figure 3.1: Representation of image classification (top left), object detection (bottom 

left), semantic segmentation (top right), and instance segmentation (bottom right) [15]. 
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Segmentation is extremely crucial in various applications and during these years various 

algorithms have been developed. In 2014, Ross Girshick et al. developed a Region-Based 

Convolutional Neural Network (R-CNN) that set a real milestone in object detection 

problems. This approach improved the mean average precision score (mAP) by more than 

30% over the latest best result. Over the years, R-CNN was greatly improved by 

introducing Fast R-CNN and Faster R-CNN, which outperformed the previous neural 

network in terms of performance and accuracy. The Mask R-CNN model improves the 

Faster R-CNN by adding a feature that allows the neural network to segment single 

instances of the image. This network will be used to carry out the instance segmentation 

of floor plans. 

 
3.1 Region-based CNN 
 

Before explaining the architecture used for the project (Mask R-CNN), it is worth 

highlighting the major aspects of region-based networks. It has been developed for object 

detection problems. This is separated into two different tasks: localization and 

classification. The first gives information about the position and the second about the 

class. The process of object detection for R-CNN is divided into three parts: region 

proposal, feature extraction, and classification.  

 

• Region proposal algorithm (selective search) clusters regions depending on pixel 

intensity. Therefore, it organises pixels into groups based on the hierarchical 

grouping of related pixels. The authors extracted 2000 regions of interest (RoI) in 

the original paper. 

 

• Feature extraction is the process actuated by a large convolutional neural 

network. It takes out a feature vector of size 4096 from every single region 

proposal. In order to be compatible with the CNN architecture, the image data 

must be modified, in fact, it is necessary to have a 227×227 pixel dimension. 
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• Region/Object classifier needs to categorize positive and negative instances and 

introduce an IoU overlap threshold. The region that partially overlaps the object 

is classified as a negative example if the IoU is below the defined threshold. In 

the original architecture, it has been selected as 0.3 after a grid search over an 

interval on the validation set. Finally, an SVM is applied for classification and 

linear regression to shrink the bounding boxes of the object [16].  

 

The primary issue with R-CNN is the high cost of computation: each proposed region of 

an image must be classified by a convolutional network afterwards, which is a very 

expensive procedure because it must be repeated for each individual region extracted.  

 

 
 

Figure 3.2: R-CNN functionality [16]. 
 
Furthermore, no information will be shared during the individual training of each 

bounding box regressor. R-CNN employs several SVMs, each of which must be trained 

separately during the training phase because the number of SVMs used by R-CNN is 

equal to the number of classes. 

 
3.2 Fast R-CNN 
 
The main problem related to R-CNN is the amount of time consumed during training, the 

storage and computation power. Moreover, a complicated multi-stage training process is 

present. In R-CNN the selective search produces 2000 region proposals for every image 

and each region is submitted to the network. This implies that there are 2000 forward 
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passes for every single image. Taking into consideration a dataset with a great number of 

pictures there would be a huge number of forward passes. In 2015, Fast R-CNN was 

developed by Ross Girshick, and the neural network successfully resolved these problems 

being approximately 9 times quicker during training and 146 times faster during the 

testing with respect to R-CNN. We’ve seen in R-CNN that the potential regions of interest 

are initially outlined and then classified by a CNN. In Fast R-CNN, the two operations 

are “inverted”: establishing regions of interest is not the first action taken by the network, 

but rather follows the final feature map established by the network. Essentially, in Fast 

R-CNN, the initial convolutional layers help to draw attention to the image’s significant 

details and facilitate the succeeding feature selection step, which improves the 

identification of the regions of interest. Additionally, classification is now carried out by 

a single softmax classifier rather than an SVM for each class. The performances obtained 

by Fast R-CNN are significantly improved with respect to R-CNN, in fact, accuracy and 

training time are superior. 

On the other hand, the issue of selecting relevant regions of interest has not yet been fully 

resolved because the Selective Search algorithm is still slow and continues to display an 

excessive number of inappropriate RoI. 

 

 
 

Figure 3.3: Fast R-CNN architecture [17]. 
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Fast R-CNN has two distinct output layers: the first returns a discrete probability 

distribution p = (p0,…, pk) on K + 1 categories, where p is calculated using a softmax 

function on the K + 1 outputs of the fully-connected layer, and the second returns the 

bounding box coordinates  𝑡𝑘 = (𝑡𝑥
𝑘, 𝑡𝑦

𝑘, 𝑡𝑤
𝑘 , 𝑡ℎ

𝑘) determined by the regressor. The loss 

function associated to each RoI is: 

 

                            𝐿(𝑝, 𝑢, 𝑡𝑢, 𝑣) = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑏𝑏𝑜𝑥(𝑡𝑢, 𝑣)                  (3.1) 
 

The loss function related to the classifier is: 

 

                                                        𝐿𝑐𝑙𝑠(𝑝, 𝑢) =  −𝑙𝑜𝑔𝑝𝑢                                            (3.2) 
 

where the probability that an object belongs to class u is defined by 𝑝𝑢. The second term 

of equation 3.1 represents the loss function calculated over the predicted bounding box 

(𝑡𝑘 = (𝑡𝑥
𝑘, 𝑡𝑦

𝑘, 𝑡𝑤
𝑘 , 𝑡ℎ

𝑘)) with respect to the target one of the class u. The term 𝜆[𝑢 ≥ 1] is 

1 when 𝑢 ≥ 1 and 0 on the contrary. The background class is targeted with 𝑢 = 0. The 

regressor loss function is: 

 

                                    𝐿𝑏𝑏𝑜𝑥(𝑡𝑢, 𝑣) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖
𝑢 − 𝑣𝑖) 

𝑖 ∈{𝑥,𝑦,𝑤,ℎ}

                  (3.3) 

 

where the 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 function is: 

 

                                𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) =  {
0.5𝑥2,               𝑖𝑓 |𝑥| < 1
|𝑥| − 0.5, 𝑖𝑓 |𝑥| ≥ 1

                          (3.4) 

 

The hyper-parameter 𝜆 in Eq. 3.1 regulates how the two task losses are balanced [18]. 
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3.3 Faster R-CNN 
 

The fundamental concept of Faster R-CNN is to improve Fast R-CNN performance by 

modifying the region-selection procedure. Since earlier versions used an external 

selective search algorithm, which is not a true component of the neural network, this 

method could not be trained. Fast R-CNN initial convolutional layers were created to 

highlight the map’s properties and enable the development of regions of interest: Faster 

R-CNN replaces the Selective Search method entirely by adding extra layers that allow 

the division of RoI using the actual and legitimate convolutional network known as 

Region Proposal Network (RPN). To create a unified network that can be trained end-to-

end, Faster R-CNN introduces Region Proposal Network, a deep learning technique that 

generates object proposals while also sharing the convolutional layers of the Fast R-CNN 

detector [19]. 
 

 
 

Figure 3.4: Region Proposal Network module [19]. 
 



 
 
 

38 
 

Region Proposal Network. As it is explained in the original paper [19], the Region 

Proposal Network (RPN) network takes an image as input and produces a list of suggested 

regions, each with a probability of actually finding the object there. The term region refers 

to a rectangular-shaped area where an object can be located in the network. This network 

must determine for every point of the output feature map if an object is present in the 

input picture at its corresponding location and estimate its size. Once arrived at the last 

layer of the first CNN within Faster R-CNN, a sliding window of dimension 3×3 is 

employed to scan the feature map and so to determine the boundaries of the region 

proposal, also known as anchors. When the sliding window is moved along the feature 

map, more than k anchors are identified by varying the scale and aspect ratio. By default, 

there are three distinct scale values (128, 256, 512) and three different aspect ratios (1:1, 

1:2, 2:1), adding up to a total of 9 anchors for each sliding window. Each of these regions 

will have a probability associated with it (a score and the specific anchor box 

coordinates). Therefore, there will be W·H·k anchor boxes for a feature map of dimension 

W×H.  

 

 
 

Figure 3.5: Sliding window and anchors in Region Proposal Network [19]. 
 

W and H can also be determined by using the formulas 𝑊 =  𝑤
𝑟⁄  and 𝐻 =  ℎ

𝑟⁄ , where 

w and h are the width and height of the original input image, while r is the subsampling 

ratio used in the backbone. Once the region proposals have been created, the network will 

elaborate them, in fact, the next layers are identical to the ones present in Fast R-CNN: 
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Pooling layer, Softmax classifier, and bounding box regressor. During the training of 

RPNs, each anchor is assigned a binary class label to identify if there is an object or not. 

One of the two following conditions must be satisfied to classify an anchor as a “positive” 

sample: 

 

I. The anchor has the highest Intersection over Union with a ground-truth box. 

 

II. The anchor has an IoU value bigger than 0.7 with any ground-truth box. It happens 

that the same ground-truth box can cause multiple anchors to be assigned with 

positive labels. 

 

The anchors that obtain an IoU with all the ground-truth boxes below the threshold of 0.3 

are labelled as “negative”. The remaining anchors (IoU belonging to interval [0.3, 0.7]) 

are not used for RPN training. 

 
 

Figure 3.6: Example of anchors selection process: positive (left), negative (middle), and 

neutral (right). 
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The loss function related to each region of interest is:  

 

                                                          𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑏𝑜𝑥                                                 (3.5) 
 

This differs from the loss function used in Fast R-CNN due to the addition of 

normalization terms. This can be rewritten as: 

 

     𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠

∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗)

𝑖

+
𝜆

𝑁𝑏𝑏𝑜𝑥

∑ 𝑝𝑖
∗

𝑖

∙ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖 − 𝑡𝑖
∗)    (3.6) 

 

where 𝐿𝑐𝑙𝑠 is the log-loss calculated over two classes (object and not object), while the 

𝐿𝑏𝑏𝑜𝑥 is the same used in Fast R-CNN. The parameters of equation 3.6 are: 

 

•  𝒊, index of an anchor in the mini batch. 

• 𝒑𝒊, predicted probability that the anchor I is an object. 

• 𝒑𝒊
∗, ground-truth label (1 for positive anchor, 0 for negative one). 

• 𝒕𝒊, predicted bounding box vector of coordinates. 

• 𝒕𝒊
∗, ground-truth box coordinates of a positive anchor. 

 

The terms 𝑁𝑐𝑙𝑠, 𝑁𝑏𝑏𝑜𝑥 , and 𝜆 are respectively the normalization parameters of 𝐿𝑐𝑙𝑠 and 

𝐿𝑏𝑏𝑜𝑥. The last is a weight that acts as a balancing parameter of the two losses. The 

regression loss 𝐿𝑏𝑏𝑜𝑥 is activated only if an object is contained in the anchor [19]. 

 

3.4 Mask R-CNN 
 
In 2017, Mask R-CNN, an extension of Faster R-CNN has been developed by Kaiming 

He et al. for instance segmentation problems. It adds a third branch that makes it possible 

to predict an instance’s mask. This operation runs concurrently with the two branches that 

are already present within Faster R-CNN (classifier and bounding boxes regressor). To 

be more specific, Mask R-CNN will produce a 28 by 28 pixel matrix for each Region of 
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Interest (RoI), which will then be expanded to meet the bounding box’s dimensions. For 

each obtained instance, Mask R-CNN will return the class of the object, bounding box, 

and a binary mask overlapped on the object. Today, Mask R-CNN continues to be one of 

the best architectures for instance segmentation.  

 

 
 

Figure 3.7: Mask R-CNN framework for instance segmentation [21]. 
 

The difficulty of instance segmentation comes from the need to accurately recognize all 

objects in an image while also correctly segmenting each instance. The newly added 

branch is a Fully Connected Network (FCN) applied to each region of interest to forecast 

a segmentation mask pixel-by-pixel [20]. In the original paper, different backbone 

architectures for feature extraction have been evaluated. These include ResNet and 

ResNeXt, both of which have 50 or 101 layers and whose features are extracted from the 

last convolutional layer belonging to the fourth or fifth block. For instance, a backbone 

ResNet-101-C4 indicates a ResNet with a depth of 101 layers and feature extraction 

starting from the last convolutional layer belonging to the fourth block. The ResNet 

architecture has been explained more deeply in chapter 2.3.1. A more effective backbone 

designed by Tsung-Yi Lin et al. [22] is added after the first backbone to obtain more 

accurate features. This network is called Feature Pyramid Network (FPN). It has been 

demonstrated that the ResNet-FPN approach has allowed an excellent gain in terms of 

accuracy and speed of feature extraction. 
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3.4.1    Feature Pyramid Network 
 

In object detection tasks, finding objects at different scales can be difficult especially 

when small items are involved. In CNN deep layers we have low spatial resolution despite 

having semantically strong information. The spatial resolution is present in the first layers 

that contain local information but with semantically low features.  We can use the same 

image with downscaled size to recognize objects but processing this pyramid of images 

is time consuming and requires large memory. As an alternative, it can be built a pyramid 

of feature maps. On the other hand, feature maps that are near the image layer are made 

up of low-level structures that are ineffective for precise object detection. Feature 

Pyramid Network (FPN) addresses this feature extraction issue allowing us to generate 

feature map layers with improved quality information. The FPN proposed is a network 

which combines layers in a bottom-up and top-down pathway. The bottom-up path is 

basically the same as a normal CNN’s feed forward computation. Going up in the pyramid 

the spatial resolution decreases by ½ and the semantic value for each layer augments. 

FPN offers a top-down path for building higher resolution layers out of a semantically 

rich layer. Following the top-down path, the layers are upsampled by 2 using a Nearest 

Neighbors upsampling. Even though the reconstructed layers have strong semantic 

properties, all the upsampling and downsampling have left the object placements 

imprecise. To improve the detector’s ability to predict objects' position, we add lateral 

links between the reconstructed layers and the corresponding feature maps. Moreover, it 

serves as a skip connection to simplify training (similar to what ResNet does). In the end, 

a 3×3 convolution is applied to the merged layers so that it reduces the anti-aliasing effect 

given by upsampling [22].  
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Figure 3.8: Feature Pyramid Network pathways [22]. 
 

3.4.2     RoI Align  
 

A significant innovation introduced by Mask R-CNN is the use of RoI Align in place of 

RoI Pooling for determining the RoI of a feature map. RoI pooling uses regression to 

determine the position of the candidate boxes, and it often yields floating-point integers. 

The RoI pooling operation then has two quantization steps since the size of the feature 

map needs to be adjusted. This causes a misalignment between the original picture pixels 

and the feature map. Suppose we have an image of dimension 512×512 and an associated 

feature map of size 100×100. We want to extract a RoI of 40×40 size of the original 

image. Consequently, a region of pixels must be extracted from the feature map having 

dimension 𝑛 × 𝑛. The parameter 𝑛 is computed in the following way: 

 

𝑛 =  
ℎ𝑓𝑚 ∙ ℎ𝑅𝑜𝐼

ℎ𝑜𝑖

=  
100 ∙ 40

512
 ≈ 7.81 

 

where ℎ𝑓𝑚, ℎ𝑅𝑜𝐼, and ℎ𝑜𝑖 represent respectively the size of the feature map, region of 

interest, and original image. Let’s suppose to use RoI Pooling, extracting a region 

7.81×7.81 in size will not be achievable, and an approximation region of 7×7 will be 

taken into consideration (the integer part of 𝑛). This approximation results in a loss of 

0.81 pixels, and so there will be a loss of information since the pooling techniques will 

not take into consideration the lost pixels. This pixel misalignment problem has been 

solved with the introduction of the RoI Align layer, which does not approximate anymore 

the dimension of the extracted regions. It is used bilinear interpolation to compute the 
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exact values of the input features. Returning to the previous example, the region extracted 

has a dimension of 7.81×7.81 using the RoI Align technique. 

 
3.4.3     Loss function  
 

The three components that make up the total loss function in Mask R-CNN are the 

classification loss of candidate boxes, the bounding box regression loss, and the mask 

loss. The loss function related to each RoI extracted is: 

 

                                                   𝐿 =  𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘                                       (3.7) 
 

The first two elements on the right side of equation 3.7 are the loss functions related to 

the classifier and regressor of the bounding boxes that we have already seen in Faster R-

CNN. Regarding 𝐿𝑚𝑎𝑠𝑘 computation, each RoI is associated with a single ground-truth 

mask and a sigmoid activation function is applied to each pixel of the mask. For each of 

the potential K classes, the branch related to mask prediction will produce binary masks 

with dimensions 𝑛 × 𝑛. Consequently, will provide 𝐾 ∙ 𝑛2 total possible masks, each 

linked to a separate class. We only apply a per-pixel sigmoid on the kth mask if the ground 

truth class is k. This allows us to define 𝐿𝑚𝑎𝑠𝑘 as the average binary cross-entropy loss. 

 

                     𝐿𝑚𝑎𝑠𝑘 = −
1

𝑚2
∑ [𝑦𝑖𝑗𝑙𝑜𝑔�̂�𝑖𝑗

𝑘 + (1 − 𝑦𝑖𝑗)log (1 − �̂�𝑖𝑗
𝑘 )]

1≤𝑖,𝑗≤𝑚

          (3.8) 

 
 
3.5 Evaluation Metrics 
 

As an extension of object detection, instance segmentation creates a binary mask for each 

identified object in addition to localizing it. Instance segmentation algorithms can be 

divided into two major categories: single-shot instance segmentation techniques and 

detection base instance segmentation algorithms. The second method produces masks of 

greater quality, but the first method is faster. In the next chapter, there will be presented 
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different instance segmentation algorithms. In this paragraph, we will focus on the metrics 

used to evaluate the instance segmentation task. Firstly, it will be explained the IoU 

concept, then it will be exploited the notion of True Positive, True Negative, False 

Positive, and False Negative for determining Precision and Recall. Finally, it will be 

presented the COCO evaluation metrics.  

 

3.5.1     Intersection over Union  
 

This metric (IoU) is the primary evaluation criterion for measuring the quality of the 

mask. It is also referred to as the Jaccard index, and it is used to quantify the overlap 

percentage between the real mask (target) and the predicted mask. It is computed as the 

division between the intersection area and the union area of two bounding boxes (real 

and predicted), in the case of instance segmentation, it computes the intersection and 

union area between two masks.  

 

                                                            𝐼𝑜𝑈 =  
𝑀𝑡 ∩ 𝑀𝑝

𝑀𝑡 ∪ 𝑀𝑝

                                               (3.9) 

 

Where 𝑀𝑡 and 𝑀𝑝 are respectively the target and predicted mask. The calculation of the 

IoU of two masks measures the number of pixels shared between the two masks divided 

by the total number of pixels present in both masks. 

 

 
 

Figure 3.9: Graphical representation of Intersection over Union [23]. 



 
 
 

46 
 

 

The IoU can assume values that are between 0 and 1 (the highest attainable value). It is 1 

when the ground truth and predicted mask overlap each other entirely. In contrast, it 

assumes a 0 value in the opposite scenario. It is important to note that the IoU is always 

equal to 0 when the expected mask and the ground truth do not overlap. Therefore, if 

there is no overlap, regardless of how near or how far apart two masks are from one 

another, the IoU is 0. 

 

3.5.2     Precision and Recall  
 

Mask R-CNN must have the ability to accurately categorize the identified instance in 

addition to determining the bounding box and mask of each object. More generally, in a 

classification problem, it is necessary to determine whether an input x with an output y, 

is correctly classified by the model. In our case, it will be evaluated if the predicted mask 

matches the available target mask, given a particular input. It is possible to distinguish 

the following cases: 

 

• True Positive: the object is classified correctly by the model as belonging to a 

class c. 

• True Negative: the object is classified correctly by the model as not belonging to 

a class c. 

• False Positive: is an instance that is incorrectly classified by the model as 

belonging to a class c.  

• False Negative: is an instance that is incorrectly classified by the model as not 

belonging to a class c.  

 

It is possible to define Precision as: 

 

                                                     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                       (3.10) 
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The precision metric determines the accuracy of the model predictions. It represents the 

percentage of positives correctly classified by the model. For instance, of all objects 

detected in a picture, how many of these correspond to the ground truth annotation? 

Analogously, Recall is defined as: 

 

                                                          𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                        (3.11) 

 

It represents, among all the elements belonging to a certain class, the percentage of 

positives classified correctly relative to the ground truth. Furthermore, to determine 

precision and recall we need to compute the IoU score over every prediction-target mask 

pair and define which of these pairs has an IoU bigger than a certain threshold. 

Nevertheless, the behaviour of our model’s precision-recall curve is not well captured by 

calculating a single precision and recall score at the designated IoU threshold. Instead, 

we can successfully integrate the region under a precision-recall curve using average 

precision. 

 
3.5.3     Average Precision   
 

Precision and recall alone are not enough to determine a classifier’s reliability. This is 

because the increase of one of the two metrics corresponds to the decrease of the other, 

and vice versa. The two metrics are therefore evaluated in a precision-recall curve that 

has values for recall on the horizontal axis and values for precision on the vertical axis to 

appropriately depict the model’s classification capability. The area subtended by the 

precision-recall curve is called average precision (AP) and will assume a value between 

0 and 1. Let us define p as a function that calculates the precision at a certain recall value, 

the average precision is: 

 

                                                           𝐴𝑃 =  ∫ 𝑝(𝑟)𝑑𝑟                                             (3.12)
1

0
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The AP is calculated using an approximation through interpolation to simplify the integral 

calculation. In 2008, the Pascal VOC2008 Challenge offered to calculate it as the average 

of the maximum precision values calculated for 11 standard recall levels (0, 0.1, 0.2, …, 

1.0) [24], specifically: 

 

                                 𝐴𝑃 =
1

11
(𝐴𝑃𝑟(0) + 𝐴𝑃𝑟(0.1) + ⋯ + 𝐴𝑃𝑟(1.0))               (3.13) 

 

It can be reformulated in the following way: 

 

                                          𝐴𝑃 =
1

11
∑ 𝐴𝑃𝑟 = 

11

𝑟=0

1

11
∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

11

𝑟=0

                        (3.14) 

 

Where: 

 

                                                        𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) =  max
�̃�≥𝑟

𝑝(�̃�)                                    (3.15) 
 

However, this way of calculating the AP has two problems. It is not precise, and it is not 

able to evaluate models with low AP. In later Pascal VOC Challenges (2010-2012), it has 

been modified the method for AP computation [24]. In fact, it is not computed as in the 

3.14 equation, but the graph is sampled at different recall values when the maximum 

precision decreases. The mathematical formulation of AP changes as follows: 

 

                                             𝐴𝑃 = ∑(𝑟𝑛+1 − 𝑟𝑛) 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1)                           (3.16) 
 

Where: 

 

                                                    𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1) =  max
�̃�≥𝑟𝑛+1

𝑝(�̃�)                                (3.17) 
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The AP computation is performed only when there is only a class involved. However, in 

object detection problems are present more classes K>1. In this case, is computed the 

mean average precision as the mean value of AP among all classes: 

 

                                                              𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖

𝐾
𝑖=1

𝐾
                                          (3.18) 

 
3.5.4     COCO Metrics 
 

The mAP metric used in the Pascal VOC challenge can be used as a reference to assess 

how well object detectors perform. Over the years, other metrics have been introduced in 

order to test a model. In particular, during the COCO challenge, is computed the mAP 

using different IoU thresholds and different object sizes. 

 

 
 

Figure 3.10: COCO metrics used for evaluation [25].  
 

As we can see from figure 3.10, the acronyms AP and AR correspond to the mean average 

precision and mean average recall obtained on all the classes. APIoU=.50 and APIoU=.75 stand 

for the mAP computed considering only the instances that have IoU greater than 0.50 and 

0.75. A new metric has been introduced to evaluate the model performance. It is the AP 

calculated at various IoU thresholds belonging to this interval [0.50: 0.05: 0.95]. The AP 
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is evaluated over the entire dataset test with IoU = 0.50, then with IoU = 0.55 till IoU = 

0.95. In the end, it is performed the mean between all AP values, and it represents the 

Average Precision over 10 IoU thresholds. The AP Across Scales is computed taking into 

consideration the dimension of the object detected. In particular, APsmall is computed 

considering only the instances that have an area smaller than 322, APmedium is obtained for 

objects that have an area belonging to the interval [322, 962], and APlarge is calculated for 

objects that have an area bigger than 962. The area corresponds to the pixels present in 

segmentation masks. The Average Recall (AR) is computed considering a fixed number 

of detections for a single image. For instance, ARmax=1 is the average recall calculated 

over all the categories considering a single detection per image. The detections are 10 and 

100 for ARmax=10 and ARmax=100. Finally, AR Across Scales is the same as AP Across Scales 

but with different sizes for the instances detected. 
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Chapter 4 
 

Implementation 
 

This part of the thesis project presents the software implementation used for 

accomplishing the objective of segmenting rooms in floor plan images. Before diving into 

the implementation of this network, the first part of the work has been spent learning 

information and concepts about Machine Learning, Deep Learning, and instance 

segmentation task. This has been done to have a strong background for handling the actual 

problem. All these notions are partially reported in the first part of this work. In this 

second part, there will be explained the tools employed for implementing the neural 

network. The segmentation task is performed using a suitable deep learning model, in 

particular, a Mask R-CNN model is employed. The implementation is based on the 

Matterport repository [26], it is written in Python, and it is adapted to our instance 

segmentation problem. The TensorFlow framework is used, and to practice with this tool 

simple models have been implemented to understand the functionality, data preparation 

and splitting, training, and testing. This chapter is divided into three parts, where the first 

is an in-depth analysis of the segmentation task, the second explains how the dataset has 

been constructed and the third is about the training process of the model. 

 

4.1 Instance Segmentation 
 
As stated in the previous chapter, instance segmentation is an extension of object 

detection where a binary mask is created for each individual instance in addition to object 

localization and classification. In the following part are presented the three main 

segmentation techniques: 

 

• Semantic segmentation aims to categorize picture pixels into a collection of 

groups without distinguishing between distinct object instances. It divides up 
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every object in the image that belongs to the same class but does not distinguish 

between various examples of the same class. For instance, in medical scans, we 

can identify every cancer cell, but we cannot differentiate one cancer cell from 

another. 

 

• Instance segmentation distinguishes every instance in the visual input that is a 

component of the same class. It combines two tasks: accurately segmenting each 

instance while also properly detecting each object in the scene. It can be 

interpreted as semantic segmentation and object detection together. In medical 

scans, compared to semantic segmentation, we can precisely predict each cell’s 

shape and discern one cell from another. 

 

•  Panoptic segmentation connects the two previous approaches: instance and 

semantic segmentation. On a given image, it does semantic and instance 

segmentation, connecting the results of the two to create a single image. Intelligent 

systems should be able to comprehend the visual scene at both class instance level 

and at the pixel level. Scenes are categorized into stuff and things using panoptic 

segmentation. Things are specific examples of the foreground classes, such as 

pedestrians, automobiles, cancer cells, etc. Stuff is, for instance, a sky or a 

sidewalk – generally speaking, some background class. Panoptic FPN and 

EfficentPS are two examples of network designs. 

 

Instance segmentation is the technique that is used for achieving our thesis objective. The 

handling of occluded objects of the same class presents the main obstacle in the instance 

segmentation problem. To put it another way, instance segmentation must correctly 

assign pixels to the same class, and distinguish between distinct instances and separate 

instances that overlap. The key is to perform segmentation on bounding boxes rather than 

processing the entire image is the main concept to assist the neural network in completing 

that operation. These solutions are referred to as two-stage instance segmentation 



 
 
 

53 
 

algorithms. Mask-RCNN is one example of a two-stage instance segmentation technique 

(or detection base segmentation algorithm). There are neural networks, such as 

PolarMask++ or YOLACT, that can do one-shot instance segmentation tasks.  

 

 
 

Figure 4.1: Instance segmentation methods: two-stage and one-shot approaches (the red 

sign represents the YOLACT technique) [27]. 

 

One-shot refers to the network’s simultaneous processing of object classification and 

object segmentation. On the other hand, two-stage instance segmentation algorithms 

perform segmentation head-on object proposals having initially detected objects with 

bounding boxes. Methods based on one-shot segmentation are faster than two-stage 

techniques, but their results are worse in terms of Average Precision.  

 

4.2 Dataset description 
 

In this paragraph, it will be presented the dataset used for instance segmentation of floor 

plans, but before getting started the main datasets for image segmentation are presented. 

Although instance segmentation is the focus of the thesis, other datasets primarily 

employed in image classification are also examined. This is crucial since several model 

modules utilized in the work are trained or pretrained using datasets unrelated to the main 

task. 
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4.2.1 Datasets overview  
 

In paragraph 2.3, a little overview of the MNIST dataset has been made. It is made of 

handwritten digits that go from 0 to 9 and it contains 70.000 images which are divided 

into 60.000 for training and 10.000 for validation. The acronym MNIST stands for 

Modified National Institute of Standards and Technology database and each image 

present in this set is a greyscale picture of 28×28 pixels in size. MNIST is an extremely 

popular dataset that is suitable for classification issues with 10 classes. The primary use 

of this dataset is as a first test to determine whether a model performs properly. A model 

must perform well on the MNIST, but this is not enough to ensure excellent network 

behaviour in more complex contexts. The fashion MNIST dataset contains 10 different 

kinds of wearing clothes. It was necessary to introduce the FMNIST because models 

began to perform too well for the MNIST, consistently obtaining accuracy levels higher 

than 99%.  

 

Another well-known dataset for computer vision tasks is the VOC, which has images for 

classification, segmentation, recognition, and detection. Essentially, most of the models 

are tested on this dataset. In terms of segmentation, there are 21 classes total, plus a 

background class. There are 1464 photos for training and 1449 for validation. It is present 

an extension of this dataset (PASCAL Context) which contains 400 classes and compared 

to VOC, it is more oriented on segmentation problems.  

 

The biggest dataset in terms of images is represented by ImageNet, it is made up of more 

than 14 million photos that are split into more than 20.000 categories with the aim of 

recognizing objects. This database serves as a crucial building block for CNN and 

computer vision training. There is an annual competition called the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) whose goal is to determine which model 

performs the best. This dataset was essential for training CNNs on GPUs as well; the first 

model to be trained on this hardware took place in 2012 at the annual ILVRSC 

conference. Even though ImageNet is a dataset for object recognition, many segmentation 
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models use a CNN backbone trained on ImageNet, which speeds up convergence for the 

segmentation model’s training. 

 

Finally, a further large dataset utilized for object detection and segmentation tasks is MS 

COCO (meaning Microsoft Common Objects in Context). There are 328.000 photos with 

almost 1.5 million (labelled) instances. More than 200 000 photos have been separated 

into the training, validation, and test sets for the MS COCO detection challenge, totaling 

80 classes.  

 
4.2.2 Floor plan dataset 
 
Regarding the publicly available datasets of floor plans, here are listed some of them. The 

first dataset is CVC-FP, which includes 122 pictures of floor plans that represent four 

different floor plan types. The actual information consists of structural symbols like 

rooms, walls, doors, and windows at the instance segmentation level [28]. Another dataset 

is Rent3D, which includes 215 floor plan images. Though instance segmentation can be 

simplified by the ground truth, some pre-processing is necessary because some object 

masks are not defined there [29]. Finally, the largest dataset (CubiCasa5k) contains 5000 

photos with a ground truth for instance segmentation of more than 80 symbols. In April 

2019, the dataset was made available. The above-mentioned datasets are out of our scope 

because the goal of this thesis is to parse floor plan images obtained from a lidar sensor 

placed on mobile robots. The key objective was finding a suitable dataset to use as 

training data for Mask R-CNN. This network needs to be able to generalize and segment 

an indoor environment into various rooms. The first approach was to find a dataset made 

of grid maps of indoor structures, but since there were not available this method has been 

discarded.  

 

HouseExpo 
After long research, a large-scale dataset has been found: HouseExpo [30]. While Deep 

Learning algorithms have recently advanced, some researchers are attempting to adapt 
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learning-based approaches to the activities performed by mobile robots, which demand a 

significant amount of data. This dataset has been developed with the intent of 

accommodating this demand. It is made by a large-scale indoor layout dataset with 35.357 

2D floor plans and 252.550 rooms without furniture.  
  

 
 

Figure 4.2: HouseExpo dataset samples. White pixels represent free space while black 

ones represent obstacles (Walls) [30]. 

 
Numerous researchers have tried to use deep learning methods on mobile robots in recent 

years. The absence of substantial datasets with a variety of samples, however, is one of 

the fundamental challenges in training deep neural networks. On the one hand, the 2D 

floor plan dataset sizes that are currently available are constrained. The MIT campus 

dataset and KTH campus dataset have the largest 2D floor plan collections that we are 

aware of, with 775 and 165 floor layouts, respectively. In addition to their small sample 

sizes, another issue is the lack of diversity in their samples. Because the MIT and KTH 

datasets were gathered from campus buildings, the location of rooms follows a specific 

distribution that might not be present in other, more commonly used environments, such 

as homes and offices. As a result, the variety of samples and the range of possible 

application scenarios are constrained. Furthermore, neither of these two datasets takes 

into account how important room connectivity is. Robots are usually initialized at a 
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random place at the start of each episode when they are in the training stage. They are 

likely to be unable to learn if the dataset has a poor connectivity level, meaning it contains 

numerous isolated rooms that cannot be reached from any other neighbouring rooms. 

Therefore, these works are assessed either in simple simulated environments that lack 

realism in terms of spatial organization or in a small number of related scenarios that are 

weak in the capability of generalization because there is a lack of a large-scale 2D floor 

plan dataset. The HouseExpo dataset has been built on the SUNCG dataset one of the 

most frequently used 3D environment datasets in the computer vision community. It is 

made up of 45.622 manually created 3D house models, and was initially developed to aid 

in semantic scene completion, a task for concurrently producing a 3D voxel 

representation and semantic labels using a single-view observation [31]. The process for 

building the HouseExpo dataset is the following: from the SUNCG dataset, we first 

extract a 3D structure model called si. It should be noted that the required interior map 

cannot be considered the projection of the top view of si into a 2D plane because the lintel 

prevents it from accurately depicting the connectivity between rooms. Then, at heights hg 

and hd, respectively, we get the ground cross-section plane Pg and the door cross-section 

plane Pd. As a result, by subtracting Pd from Pg, it is simple to establish the doors’ location 

set L. Additionally, since the rooms in Pg are closed, we can easily determine the contour 

of the home and obtain the interior layout Pg by adding obstacles to the outside of the 

perimeter. Furthermore, given knowledge of door location set L, the doors are eliminated 

from Pg.  
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Figure 4.3: Generation process of HouseExpo dataset [30].  
 

Once defined how the dataset is built, we can observe how it is used in our task. In the 

repository available online, each image is associated with an id name for identification 

and a corresponding JSON file containing annotations about images.  

The format of the data is the following:  

 

• id, which corresponds to a unique house ID. 

• room_num corresponds to the number of rooms in the house. 

• bbox, containing the bounding box of the entire house (min: (x1, y1), max: (x2, 

y2)). 

• verts, each couple (x, y) corresponds to a vertex location (in meters). 

• room_category represents the category of the room and the corresponding 

bounding box.  
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This annotation is not appropriate for our instance segmentation task. Moreover, the 

dimension of the images is variable, and it could be a problem for the Mask R-CNN 

training. Some pre-processing operations have been done, for instance, each image has 

been resized to 1024×1024 pixels size maintaining the aspect ratio and adding zero 

padding as the contour of the image if necessary. This operation was necessary to perform 

the network training. As stated before, the annotations are not adequate for the 

segmentation task since JSON files contain only the bounding box of the rooms. Some 

pre-processing operations were tried (modifying meters in pixels, shrinking the list of 

room categories etc.) but none of them led to good results. From the HouseExpo dataset 

is randomly extracted a subset of images (4224 to be precise) and it has been created a 

unique JSON file containing the instance segmentation ground truth for each image. The 

ground truth contains only one class: Room. This decision is made because, after the 

modifications to the images, it is not possible to distinguish the room categories and also 

because our scope is to parse the floor plans into different rooms. The process for creating 

the JSON file containing the annotations for every single image is made on 

https://www.makesense.ai/ and it took more or less 2 months of work. Make Sense is a 

software that allows us to upload a set of images and perform segmentation tasks by 

drawing polygons on particular instances. Once all the masks have been drawn, it is 

possible to export the annotation file in the format that you prefer, for example, YOLO, 

VOC XML, VGG, JSON, and CSV. In our case, the annotation file is exported as a JSON 

file in COCO format. For segmentation purposes, the annotations are: 

 
• segmentation, a list of points (x, y coordinates) that define the object shape. 

• area, which is the area of the mask measured in pixels. 

• iscrowd, it defines whether the segmentation is for a single object (iscrowd=0) or 

a group of objects (iscrowd=1). 

• image_id, it defines a particular image in the dataset. 

• bbox, it represents the bounding box of an instance, and it has the following format 

(x position top left corner, y position top left corner, width, height). 

• category_id, it is a single category that is included in the categories section. 

https://www.makesense.ai/
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• id, it corresponds to the id number of each annotation (unique with respect to the 

other annotations in the dataset). 

 
In the following figure are reported some samples of segmentation performed. 

 

 
 

Figure 4.4: Graphical representation of floor plans (left) and corresponding ground truth 

(segmentation of the rooms). 

 

The final dataset contains 4224 images, and it is split according to the following 

percentage: 80% (3380 images) is allocated for training the Mask R-CNN, 10% (422 

images) is used for validation, and the remaining 10% (422 images) is used for testing. 

The Pareto principle served as some inspiration for the following 80%-20% split of the 

training data, which is also frequently observed in the literature.  
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4.3 Model Training 
 

The training phase of the model is without a doubt the most time-consuming and 

important part of the process. Mask R-CNN has several parameters whose variation 

affects the outcome more or less significantly. A model is deemed successful if it can 

accurately learn the instances contained in the training set while preserving a strong 

generalization of the information acquired. Naturally, it is expected that loss functions 

associated with the training set will tend to decrease as the number of epochs rises. When 

there is a considerable increase in the validation loss, it indicates that the model is 

overfitting, which occurs when it learns the examples from the training set so well that it 

is unable to operate effectively in a more generic environment. To produce a suitable 

model, it is important that the loss function relative to the validation set (validation loss) 

does not expand with the increase of the epochs. When these issues arise, it is necessary 

to identify their causes, which may be numerous: Too high/low Learning rate, backbone 

of the model too complex or simple for our problem, weight decay high or low, the 

learning rate decay policy has little impact on learning. It could be necessary to change 

the image shape's dimensions, which reflect the size of the image that Mask R-CNN 

scaled. Moreover, the possibility of modifying only some weights can occur (head, 4+ 

layers, all and so on). The standard configuration was initially used. The most significant 

parameters are shown below:  

 
Hyperparameter Value 
Backbone Resnet101 
Image shape [1024 1024 3] 
Batch size  1 
Learning rate  0.001 
Steps per epoch  500 
Validation steps 50 
Weight decay 0.0001 
Network trained Head 

Table 4.1: Hyperparameters for the first training. 
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The primary goal of the initial training session was to examine how the Mask R-CNN 

hyperparameters affected the final model. Each model created during this phase took 50 

training epochs with 500 steps each to complete. The training process is made on Google 

Colab, it is a free tool in the Google suite that allows you to write python code directly 

from your browser. An online platform that offers a cloud hosting service for Jupyter 

notebooks where you can create rich documents that contain lines of code. The GPU used 

is a Tesla T4 with 16 GB of RAM. The pre-trained COCO weights have been utilized to 

initialize the network before performing the Mask R-CNN training. Initially, the process 

of training was very slow, and to speed up the process the image shape parameter has 

been modified to [512, 512, 3]. This change has allowed halving the time necessary for 

the training of the model, but the loss function and the validation loss function have a 

worse descending curve. It has been assessed how well the network performed after the 

backbone was changed. The validation loss tended to grow with a higher slope, therefore 

even though the training speed was increased by using resnet50 instead of resnet101, the 

learning was not improved. Due to the use of previously trained weights, it was required 

to consider numerous times whether or not to train the model by updating only the weights 

associated with the final levels of the network, or better fully connected layers, and 

"freezing" the weights associated with the previous layers. To highlight which layers will 

be involved in the training process, it will be used head to update only the weights related 

to fully connected layers, while all to update the weights related to the whole network. 

Hybrid configurations have often been tested: one approach is the modification of the 

learning rate at different epochs, another one is the variation of the layers involved in the 

weight updating process (for example, on k periods of training, in the first k/3 epochs will 

be updated only the weights of the head, then in the following k/3 epochs the 4+ layers 

will be trained, finally for the remaining epochs all the weights of the network will be 

updated). This type of training led to different results in terms of loss function and 

validation loss. After identifying the hyperparameter settings that reduced the loss 

function and the validation loss function, the work has proceeded to analyse the trainings 

obtained on a higher number of epochs, to check its long-term performance. In the 

following section will be shown the configurations and the value of the losses for the last 
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trainings. These are the models that optimally perform the segmentation task. The 

configurations used for the first trainings are not reported since did not lead to good 

results and were mainly done to tune the hyperparameters. 

All the models use the ResNet101 backbone since it performs better than the ResNet50. 

They are all trained for 500 steps per epoch and use 50 validation steps. They are 

initialized with coco weights, and the whole network is trained except for model 1. It is 

trained the head for the first 50 epochs, 4+ layers for the next 30 and lastly all the layers 

for the final 30 epochs. Generally, the learning rate is initiated at 0.001 and then divided 

by 10 after a certain number of steps. All these variations are better explained in the 

following table.  

 
 Model 1 Model 2 Model 3  Model 4 Model 5 

Hyperparameter Value Value Value  Value Value 

Backbone Resnet101 Resnet101 Resnet101 Resnet101 Resnet101 

Image shape [512 512 3] [512 512 
3] 

[256 256 
3] 

[1024 1024 3] [1024 1024 3] 

Batch size  6 6 10 2 2 

Learning rate  0.002 (1-50) 
0.0002 (51-80) 

0.00001 (81-110) 

0.001  0.001  0.001 (1-30) 
0.0001(31- 50) 

0.001 (1-30) 
0.0001(31- 50) 
0.00001(51-70) 

Steps per epoch  500 500 500 500 500 

Validation steps 50 50 50 50 50 

Weight decay 0.0001 0.0001 0.0001 0.0001 0.0001 

Epochs 110 50 50 50 70 

Network trained Head (1-50) 
4+ Layers (50-80) 

All (80-110) 

All All All All 

Max GT instances 100 100 100 60 60 

Best Loss  0.1752 0.2504 0.3171 0.1497 0.1501 

Best Val. Loss 0.3126 0.2519 0.3590 0.1834 0.1914 

Training Time 1d 10h 52m 6h 42m 8h 10m  1d 6h 34m 2d 2h 16m 

 

Table 4.2: Hyperparameters configuration of Mask R-CNN models. 
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TensorBoard made it possible to track the development of the training procedure by 

looking at how the loss functions associated with the training set and the validation set 

change as the number of epochs rises. Since the training process is made at different steps 

(the time available to perform the training on Google Colab is limited), the model is 

initiated with the best weights of the previous training of the same model.  

 

 

 
 

Figure 4.5: Visualization of the comparison between two configuration models, in 

particular Model 4 (blue) and Model 5 (magenta). 

 

As can be seen from figure 4.5, the loss functions related to the training set and validation 

set are going down with the increase of the epochs. Model 4 has the same descending 

path on the training set but a better validation loss. Moreover, the number of epochs 
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necessary to obtain the best results in terms of validation loss is 44 in the Model 4 case, 

and 49 in the Model 5 case. These results are obtained considering a decreasing learning 

rate: it is set initially as 10-3 till arriving at 10-4 for model 4 and 10-5 for model 5. In this 

way, the learning task is improved since maintaining the learning rate fixed at one value, 

leads to overfitting problems. This adaptive learning rate allows us to obtain a good 

capacity of generalization.  It is possible to observe that training directly all the layers of 

the Mask R-CNN performs better than training firstly the head and then the remaining 

layers. Furthermore, if the images are given as input to the network with 1024×1024 

pixels size, the performances are better than the configurations that have a smaller image 

shape. 

  



 
 
 

66 
 

Chapter 5 
 

Results and Analysis 
 
It is not enough to just compare the two loss function graphs to come to the conclusion 

that model A is preferable to model B. Therefore, it was important to determine the 

metrics associated with the best models, which had been selected based on the 

performance of the two loss functions. The metrics that are used to evaluate the model’s 

performances are the same mentioned in paragraph 3.5. In particular, Intersection over 

Union, Precision and Recall. These are utilized to compute Average Precision and 

Average Recall. The validation set and test set datasets are used to assess each model's 

performance, thus it will be important to compare the segmentation masks and bounding 

boxes that were generated for each instance with the corresponding ground truth values. 

In the computation of the Average Precision, it has been varied the Intersection over 

Union threshold.  

 

5.1 Average Precision 
Before computing the Average Precision on the whole test set, a custom callback has been 

developed to calculate the Average precision on a certain period of time during the 

training phase, this has allowed us to detect some problems related to parameter tuning. 

Hereafter is shown the code of the callback.    

 
Figure 5.1: Custom callback of mean Average Precision computation. 
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The results of training each network with different parameters and image shapes 

on the validation and test datasets are shown in the following table. The average 

precision on the test set and the validation dataset is relatively balanced, indicating 

that the model has learned to perform the segmentation task.  

 
 Average Precision  

 Validation set Test set 

Models  AP50 AP75 AP[0.50:0.95]  AP50 AP75 AP[0.50:0.95] 

Model 1 0.911 0.865 0.824 0.909 0.862 0.815 

Model 2 0.966 0.923 0.820 0.965 0.931 0.820 

Model 3  0.933 0.831 0.676 0.941 0.820 0.677 

Model 4 0.973 0.946 0.857 0.977 0.952 0.861 

Model 5 0.969 0.939 0.853 0.979 0.958 0.861 

Table 5.1: Average precision results obtained on validation and test set. 

 

It is possible to conclude that the optimal models are 4 and 5 which obtain the best 

performances on both datasets. Further analysis shows how model 5 has slightly better 

performance in terms of AP but the training process is more or less 2 times bigger than 

the training of model 4. It is therefore reasonable to draw the conclusion that, in terms of 

overall performance, the configuration of the fourth model is the best for the problem 

under consideration but also the fifth configuration gives optimal results. On the 

following page, there will be compared some figure about the floor plans' original images, 

the ground truth with the segmentation masks and finally the masks predicted by Mask 

R-CNN. Furthermore, it will be depicted the differences between the mask computed by 

models 4 and 5 on some images that are chosen randomly from the test set. As can be 

seen from this qualitative evaluation, the networks can segment some images perfectly, 

in particular floor plans that contain rooms that have rectangular and square shapes. 
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Structures that present rooms with a more complex shape or that show particular 

connectivity are more difficult to segment. 

 
Figure 5.2: Representation of floor plan images belonging to the test dataset. Original 

image, ground truth, and predicted masks.  
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Figure 5.3: Representation of floor plan images belonging to the test dataset. Original 

image, ground truth, and predicted masks. In the 3rd and 5th images, some instances are 

not detected. 
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5.2 Qualitative test  
In the previous paragraph, we have seen the performance of models 4 and 5 on the test 

dataset obtained by splitting the entire dataset. The models perform quite well on that 

type of structure. To evaluate the performance on new images that do not belong to the 

initial dataset, some new floor plan maps have been tested. In particular, it had been taken 

into consideration the work “Room Segmentation: Survey, Implementation, and 

Analysis” [3]. This evaluation uses different maps taken from their GitHub repository. 

The floor plan images are obtained from a gazebo simulation of several kinds of office 

environments. All of the floor designs were created both with and without furniture to 

evaluate the impact of modifications to the original architecture. In this test will be 

considered only structures that present maps without furniture. Before predicting the 

masks of these indoor environments, the images have been pre-processed to be compliant 

with pictures of the dataset.  

 

 
Figure 5.4: Representation of room segmentation of models 4 and 5 on the new set of 

structures. 
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Figure 5.5: Representation of room segmentation of models 4 and 5 on the new 

complex layout.  

 
It is possible to notice that the models correctly predict most of the instances present in 

the figures. The simpler structures depicted in figure 5.4 are properly segmented into the 

various rooms. Some spaces are not correctly divided, this is because these rooms have a 

particular shape, for instance, the pentagonal corridor present in figure 5.5. Analyzing the 

results obtained, the quality of room segmentation is reasonably good, even though the 

mask shape can be improved by applying some post-processing refinement algorithm. 

For example, can be employed GrabCut and Watershed algorithms from the OpenCV 

library. 
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5.3 Map acquisition and test 
In robotics, simultaneous localization and mapping (SLAM) is the computational problem 

of building or updating a map of an unknown environment, while simultaneously keeping 

track of the location of an agent within it. A further test has been carried out to determine 

if the segmentation performed by the neural network is also effective on a processed 

occupancy grid map.  First of all, thanks to the use of the robotics simulator Gazebo, a 

structure consisting of 9 rooms is built. This space is constructed using gazebo_ros_pkgs, 

a collection of ROS packages that give the appropriate interface to simulate a robot in the 

created 3D world. The following packages are included in the ROS 2 gazebo_ros_pkgs: 

 

• gazebo_dev: Offers a Cmake configuration for the ROS distribution's default 

Gazebo version.  

• gazebo_msgs: Data structures for messages and services used by ROS2's Gazebo. 

• gazebo_ros: Offers practical C++ classes and functions that other plugins, such 

gazebo_ros::Node, conversion tools, and testing utilities, can utilise. It also offers 

a few plugins that are generally helpful. 

• gazebo_plugins: A group of Gazebo plugins that let ROS2 access sensors and 

other functionalities. For instance, the gazebo_ros_camera publishes ROS2 

photos, while the gazebo_ros_diff_drive interface enables ROS2 users to control 

and observe differential drive robots. 

 

 
Figure 5.6: Simulated building on Gazebo. 
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Once the indoor structure is built, a file world that serves our needs is generated. Then, 

the robot interface and state publisher are launched. Nav2 is utilized for robot navigation 

in the environment created. After launching the SLAM (SLAM toolbox), it is possible to 

move the robot by setting a goal through RViz. Furthermore, it can be launched the 

teleop_twist_keyboard node which takes the commands from the keyboard and publishes 

them as twist messages to move the robot. A mobile differential robot is employed during 

the mapping and the laser scan is displayed. Since the range of the laser scan is 3.5 meters, 

some spaces in the bigger rooms are not mapped. This problem can be solved by 

employing a more powerful lidar sensor that has a bigger laser range. This allows us to 

achieve a better map scan. After the entire mapping of the building is performed, the 

updated grid map is saved. The following figure represents the map obtained.  

 
 

 
Figure 5.7: Map generated by the robot in simulation. 

 
 
The map generated is processed to obtain a floor map similar to the images belonging to 

the dataset. The part of the map that is not detected in the rooms is set to white, while the 

exterior part is set to black (representing obstacles). The final map to be segmented is 

represented in the following image. The processed map is utilized to test the trained 

models. As can be seen from the results, the masks predicted by the models are very 

accurate. The building structure is segmented almost perfectly, and all the instances are 

detected. Model 5 can also recognize the corners of the T-shaped room, while the model 

4 is not detecting it perfectly.  
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Figure 5.8: Representation of predicted masks on the map generated in simulation. 

Processed images (top left), ground truth (top right), model 4 prediction (bottom left), 
model 5 prediction (bottom right). 
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Chapter 6 
 

Conclusions 
The primary objective of the thesis is to investigate a deep learning approach capable of 

carrying out a segmentation task of floor plan images. In this project, a Mask R-CNN is 

evaluated on a dataset obtained from a large set of floor plan maps. The network is then 

trained on a portion (80%) of the entire dataset (4224 images) and evaluated on the test 

set obtained partitioning the remaining part of the dataset. Generally, it is noted that the 

models produced have excellent classification and segmentation capabilities for images 

with a low/medium number of instances. On the other hand, some rooms are not 

segmented perfectly when the instances present in an image are numerous. The models 

are tested also on new floor plan images that do not belong to the dataset. These are firstly 

pre-processed and then used to perform the segmentation task. The results are good but 

can be improved by incrementing the dataset with different types of structures. Models 4 

and 5 obtain respectively an Average Precision of 0.977 and 0.979 on the test set (with 

IoU = 0.5).  Finally, the 2 configurations are tested on a map generated by a mobile robot 

in the Gazebo simulation environment. Some problems still affect the task, in fact, the 

segmentation algorithm is influenced by the dataset used for the training process. Firstly, 

the floor plan images are taken without furniture, and this could be a negative aspect since 

this work is thought to segment images obtained from Lidar data acquisition. Generally, 

there are obstacles in an indoor environment that do not allow the mobile robot to perform 

a perfect mapping operation. Moreover, glazed walls do not help to take good 

measurements when only a lidar sensor is utilized. The generalization to these cases can 

be considered by adding new images to the training dataset.  

This project sets the stage for several potential follow-up projects: 

 
• The previous approach can be improved by using a dataset containing structures 

with furniture and obstacles. This would allow us to have a better generalization 



 
 
 

76 
 

and will improve the results when a noisy occupancy grid map is obtained by data 

acquisition. 

• It is possible to perform a post-processing operation on the masks. For instance, 

masks can be adjusted to fill out spaces that are near the walls. Another example 

could be the application of an edge detection algorithm and then combining the 

results obtained from 2 networks. 

• It can be integrated with other sensors (i.e. camera) to perform object detection 

and so the classification of the rooms.  

• The navigation component of a mobile robot can be developed, enabling it to 

navigate autonomously in SLAM and perform the segmentation once the mapping 

is finished.  

 
Given that the state of the art is continually being updated, carrying out the same task 

using a neural network with a more recent implementation could result in an even greater 

improvement in the performance of the produced models. 
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