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Abstract

The problem of abstaining from making uncertain predictions has received rising
interest in the last few years. However, even if introducing a reject option for a
machine learning model in a supervised scenario has already been addressed in
many works in literature, it seems to be a completely unexplored field for anomaly
detection, where few or no labels are available and making a misclassification can
be very expensive for a company. In this work, we introduced a novel technique
for anomaly detectors to abstain from making uncertain predictions, introducing
a reject option for both unsupervised and semi-supervised scenarios. The novel
framework, being based on a dependent rejector making use of the model confidence,
is exploitable without regard to the anomaly detector chosen. In unsupervised
setting a natural threshold is used to reject samples. On the other hand, in semi-
supervised scenario the threshold is tuned using labels, minimizing the overall
cost. The cosine distance is used to measure the model reward in using labels for
Active Learning or Learning to Reject. Then, a trade-off is found in the usage of
labels for one or the other strategy. We evaluated our approach on a benchmark
of 9 datasets for anomaly detection. The results show significant performance in
rejecting samples for which the misclassification cost could be high. The framework
comprised of rejection outperforms the simple Active Learning without rejection
both in unsupervised and semi-supervised setting.
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Chapter 1

Introduction

The field of interest of this work is anomaly detection [1, 2, 3, 4, 5, 6]. In anomaly
detection, the aim is to distinguish the anomalies, sometimes named outliers, from
the normal data [1]. In a two-dimensional dataset as the one in Figure 1.1 anomalies
can be observed as those points far enough from the dense central cluster. We
remember that several types of anomalies exist: local having information similar
to the normal data; global sharing little or no information with normal data [7];
anomalies which form a group.
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Figure 1.1: An example of anomalies and normal data in two-dimensional dataset

Detecting anomalies is crucial in many scenarios since anomalies are generally
related to critical situations for people or machines. We can just think about:

• Intrusion detection: it is about malign actions in computer systems [8]. The
aim of an intrusion made by a hacker could be to gain access to a network to
steal information or to generate problems for the network.
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Introduction

• Fraud detection: it usually happens when users which are customers of a
company use the resources provided by the company in a suspicious way. It
regards credit cards [9], mobile phones, insurance claim [10, 11].

• Medical detection: it is generally about patient records. An anomaly in
this field could be generated by errors in the machines used or by abnormal
conditions of the patient [12].

• Industrial damage detection: it is about damages to industrial machines, which
can be subject to breakages due to continuous use that must be detected
before they can lead to the damage of other components [13, 14].

Since anomalies are rare events [15], in case one could label all the instances,
he would probably end up collecting almost always normal labels. In contrast,
anomaly labels are the ones that allow the model to learn the most. For this reason,
collecting informative labels in anomaly detection is quite expensive and this is why
anomaly detection techniques work generally in unsupervised or semi-supervised
manner.

Once labels are collected, one can use those to better train an anomaly detector
or introduce a reject option so as to abstain from making predictions for those
samples which can be easily misclassified. In this way, we can reduce the costs,
losses, and damages deriving from making a misprediction. Learning to Reject
and Active Learning both focus on the most uncertain regions of the sample space.
However, while with Active Learning we focus on uncertain samples at training
time [16, 17], the objective of Learning to Reject is to capture the samples for which
the predictor is more uncertain at test time [18]. Even if a combination of these
two strategies could be beneficial for the final model [19], both these strategies
make use of labels.

Therefore, in this work we try to evaluate and optimize the tradeoff in using
labels to feed one or the other strategy. First of all, since with rejection a third
label is comprised, we defined a new metric to evaluate the performance of the
models with rejection, making use of costs for false positives, negatives, and
rejected samples. Then we tried to focus on both unsupervised and semi-supervised
scenarios, making use of a dependent rejector. In unsupervised scenario we make
use of model confidence, rejecting all the samples for which the anomaly detector
shows a confidence that is less than the natural threshold. In semi-supervised
scenario, we focused on finding a way to tune the threshold, based on minimizing
the cost on the validation set. We tried to improve the naive strategies based on
using the labels only for the predictor or the rejector, using a model reward metric
based on cosine distance to evaluate each time which part of the architecture can
produce a greater overall benefit using other labeled samples.

To summarize this work makes the following contributions:
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• A novel approach for rejection for anomaly detection in unsupervised scenario

• A novel framework for rejection for anomaly detection in semi-supervised
scenario
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Chapter 2

Related work

Many works in literature treat ambiguity and novelty rejection in typical machine
learning tasks. To the best of our knowledge, there is no literature about ambiguity
rejection in anomaly detection, being anomaly detection already a special case of
novelty detection.

However, in literature many types of rejection architecture exist for supervised
setting: separated, dependent or integrated. Since we used the dependent archi-
tecture, we analyze now the main related works, but in a supervised setting. A
dependent rejector needs a metric of confidence. This can be based on hard or soft
predictions. Works using a metric of confidence on hard predictions are usually
founded on ensemble methods. If there is a great disagreement about a prediction,
it is supposed that the sample is located into an ambiguous region of the space
and for this reason the related confidence will be low so as that sample is rejected
[20, 21, 22]. That confidence can be measured for instance using the entropy of the
predictions. Another way of measuring the confidence on hard predictions using a
single predictor is based on softly perturbing the test sample: in this way if the
sample stays in an ambiguous region of the space the associated predictions will
differ many times. An example of a perturbation in the field of computer vision
can be the rotation or mirroring of an image [23, 24]. However, also methods with
confidence score based on soft predictions exist and are widely used in this type of
rejection architecture. They are generally based on using the posterior probability
in order to estimate the confidence about a prediction. While some models such
as the Logistic Regression [25, 26, 27, 28, 29] or Gaussian Mixture Models [30]
or Neural Networks with a softmax layer [31] naturally produce a probability
as output , some other models need some additional technique to produce the
posterior. For some other model one can use ad hoc techniques. For example, in
case of a tree-based model, one can estimate the posterior using the entropy or gini,
measuring the impurity of each leaf [32, 33]. Another trivial strategy for a model
that produces scores as output can be normalizing them in order to estimate the
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posterior [34]. After the confidence metric is defined one wants to set a threshold in
order to reject or accept the predictions. In literature two main types of thresholds
exist: global and local. The underlying assumption to use the global threshold
is that the measure of confidence is equally calibrated and accurate over all the
sample space. While using the global threshold is simpler since we just need to set
a single value, exploiting the local thresholds is surely more difficult as we should
set many values. However, the benefit of having more thresholds [35] is that for
some region of the space or for some classes the predictor can be more inaccurate,
or it can also happen that the misclassification of one class can be more costly than
the others [36]. The drawback of this approach is that in order to tune this variety
of thresholds one needs many labeled data [37], that is not a trivial requirement
for anomaly detection tasks.

Given the possibilities one has to build a dependent rejector architecture, we
now describe the use-case-specific works for this type of rejection. In [34] the
authors focused the analysis on the medical field concerning the detection of vocal
fold paralysis and edema. They use different costs for misclassification in training
the linear classifier. However, they use two different rejection costs for one or the
other class. Moreover, the thresholds for rejection are asymmetric with respect
to the decision threshold learned for the scores. To assess the performance of the
model, they use the ROC curve. In [38] again different costs for the rejection
and misclassification of false positives and negatives are used. In this case the
A-R curve (Accuracy - Rejection Rate) is used to measure the performance of
the SVM and Neural Networks comprised of an integrated rejector. Indeed, the
predictor and rejector are trained jointly, with a loss function that considers
the costs of misclassification and rejection. In [39] they treat the breast cancer
diagnosis by means of SVM and KNN and a dependent confidence-based rejector.
They try to minimize the average cost due to rejection and misclassification by
maximizing the AUC score subject to constraints on the quantity of rejected
samples. Then, they evaluate the performance using the Accuracy and AUC
with an increasing Rejection Rate. In [33] Random Forest with a dependent
rejector working with confidence based on posterior probabilities is used to deal
with handwritten character recognition for those applications where the cost of
misclassification is high. However, the results show that if Random Forest is used
as a classifier producing only one output, abstaining from making predictions is
beneficial only for a high rejection percentage. In all the previous works ambiguity
rejection is treated.

While in [40] the classification and rejection quality are separately evaluated,
that is also an option as described in [41], in many works such as [42] the focus is
only on the accuracy in classification, evaluated for different rejection percentages
allowed. In this work, the focus is on the classification of the state of wake or
sleep based on scores deriving from electrocardiogram (ECG) or polysomnogram
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(PSG). In this case, the reliability of classification is based on the distance of the
sample from the decision boundaries, as developed in the reliability toolbox for
neural networks by [43]. Also in [44] the rejection is based on the distance from
the decision boundaries even if in this case SVM is used. In these cases, due to the
architecture, both ambiguity and novelty rejection can be performed. In [45] the
task is multi-class: handwritten character recognition. The rejector architecture is
dependent, then a posterior probability estimation based on the distance of the
sample from the prototypes of each class is calculated to produce two metrics of
confidence both for ambiguity and novelty rejection. The authors here used Error
Rate as a metric of performance, with respect to the Rejection Rate. Another
possibility one has to reject is to use an ensemble of classifiers, as it happens in [22]
where the authors focus on time-series classification. In particular two classifiers are
exploited for the prediction: if they agree the sample output is predicted, otherwise
the prediction is rejected. In this case, there is no need for a threshold to be tuned
and the architecture is very simple. The authors to evaluate the performance of
the model only consider the quality of classification, hence evaluating the accuracy
of the model on the accepted samples, disregarding the quality and quantity of
rejection.
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Chapter 3

Background

In this chapter, we describe the background useful to understand all the techniques
used in the next chapter about methodology. We first introduce anomaly detection
in unsupervised and semi-supervised setting, with used techniques. Then, a
description of rejection follows, with its types and architectures.

3.1 Anomaly detection

3.1.1 Unsupervised anomaly detection
Unsupervised anomaly techniques do not need labels to recognize anomalies, there-
fore they can be applied to a large number of anomaly detection tasks. They are
based on the assumption that anomalies are far rarer than normal data. Every
anomaly detection technique uses some underlying heuristic intuition to assign
the anomaly scores to the data, where the higher the more anomalous. Here we
describe the algorithms used in this work.

IForest: IForest [46] is a tree-based approach based on the assumption that
anomalies are easier to isolate than normals taking random splits on the features.
IForest generates an ensemble of iTrees. Each iTree randomly selects an attribute
and then a split value between the maximum and minimum values of the selected
attribute. In a tree the splitting is recursively, therefore the number of splittings
necessary to isolate a sample is equal to the path length from the root node to the
terminating node. Then, anomalies are those samples that have short average path
lengths on the ensemble of iTrees.

KNN: K-Nearest Neighbor [47, 48] is based on the assumption that anomalies
stay in non-dense regions. They are those samples that are the furthest away from
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their K nearest neighbors. Given a distance metric, the basic algorithm measures
the distance of each sample to its kth nearest neighbor in a given dataset and
determines a threshold for the anomaly score measured by means of this distance.
Other versions use the average distance to the k-nearest neighbors.

LOF: Local Outlier Factor [49, 50] is based on the assumption that normal
data stay in dense region, similarly to the KNN. It is based on the definition of
K-distance that is the distance between a sample and its kth nearest neighbor and
the reachability distance that is the maximum between the K-distance and the
distance to the sample of interest, that is used to estimate its density. Than, it
compares the density of the sample of interest with the average density of the
samples in its neighborhood. If the ratio that is the anomaly score named as Local
Outlier Factor is greater than a threshold, the sample is considered an outlier.

OCSVM: One-Class Support Vector Machine [51] is a variation of the SVM used
in unsupervised setting. It learns complex regions in the space trying to describe
the probability of a sample to belong to each class. To do this, it maps the data
into a feature space making use of a kernel function, separating data from the
origin maximizing the margin. In practice SVM based techniques profile the normal
data into a region of the space and all the data outside this region are considered
anomalies.

3.1.2 Semi-supervised anomaly detection
Semisupervised anomaly techniques make use of labels to improve the classification
performance. In this work the semisupervised technique named SSDO (Semi-
Supervised Detection of Outliers) [3] is used.

SSDO: it is a semi-supervised anomaly detector that makes use of labels. SSDO
starts from an unsupervised model to have prior knowledge. Then it takes the
labels and propagates them to improve the unsupervised score. The closer a sample
is to the labeled samples, the greater the influence of label propagation. SSDO can
also produce anomaly scores in unsupervised setting using them as prior knowledge.
Nevertheless, it was noted that using IForest anomaly scores as a prior, as well as
those generated by the best performing unsupervised anomaly detectors, improves
the performance.

3.1.3 Uncertainty in anomaly detection
In this work, we deal with rejection, hence also with confidence about predictions.
As confidence is based on the probability of a sample being labeled as normal or
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anomaly, we are interested in the probabilities produced by an anomaly detector.

Probabilities : Generally, three approaches calculating posterior probabilities
from anomaly scores are possible:

• The first one is the linear one. It is based on using a simple Min-Max conversion
in a way that the anomaly scores are transformed linearly into the range of
[0,1]. This transformation is ranking-stable, this means the probabilities rank
reflects the ranking of the anomaly scores.

• The second approach is named unify [52]. It is based on the concept of unifying
outlier scores, performed in two steps. Firstly, regularization is applied. It is
based on transforming the scores into the interval [0, ∞] in such a way that
inliers have a score close to 0 and outliers’ scores are much larger than 0.
The main reason for re-scaling the anomaly scores is to have enough contrast
between outlier and inlier scores since often there is no clear distinction between
these two. Secondly, normalization is performed to transform the regularized
scores into the range [0,1]. In Equation 3.1 gaussian scaling is described, where
µS and σS are the mean and standard deviation of the anomaly scores S, x the
sample of interest, while erf is the gaussian error function useful to transform
the scores into probabilities.

Normgauss
S (x) := max

I
0, erf

A
S(x) − µS

σS ·
√

2

BJ
(3.1)

• A third approach named squashing is possible [3]. It is based on a squashing
function from the exponential group. It squashes the anomaly scores in the
range of probabilities [0,1]. The formula is reported in Equation 3.2. S(x)
refers to the anomaly score of the sample x, Γ to the scores threshold to
distinguish between anomaly and normal samples. Γ is set in a manner
so that the percentage of samples with a score greater than 0.5 after the
squashing function is equal to the contamination factor. For its nature, also
this transformation is ranking-stable.

NormGamma
S (x; Γ) := 2− S(x)2

Γ2 (3.2)

3.2 Active Learning
In anomaly detection, there is abundance of unlabeled data and manual labeling
is expensive. In such scenario, it could be beneficial having an Active Learning
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strategy. Using this strategy, the anomaly detector can interactively query an
expert to label random samples to improve its performance. A clever strategy
to query the most informative samples is named Uncertainty Sampling [17]. It
means the algorithm query to the expert to label those samples on which it is
more unconfident. The most popular strategy for Uncertainty Sampling is based
on entropy used as uncertainty measure as in Equation 3.3, where x is the sample
of interest, y the relative output, p refers to the posterior probability of having that
output. For binary classification, as it can happen for anomaly detection, using
the entropy-based approach for uncertainty sampling is equivalent to query the
samples for which the absolute difference in posterior probabilities between normal
and anomaly class is closest to 0.

x∗
H = arg max

x
−
Ø

i

pθ (yi | x) log pθ (yi | x) (3.3)

Another potential approach is the query-by-committee [16]. Using this strategy,
there is a committee of models trained on the same labeled data. Then, each model
votes a label for each sample. The samples with the most disagrees are considered
the most informative queries.

3.3 Rejection

3.3.1 Types of rejection
Two main types of rejection exist. Here we briefly describe them with an illustration
of the concepts addressed.

1. Ambiguity rejection: it is performed in two main cases. The first one is
when the model can not distinguish one class from the others due to the way
they are distributed in the feature space. Indeed, they can overlap having a
non-deterministic relation leading to high probable misclassification at test
time. An example of this is shown in Figure 3.1 image a). The second case for
which ambiguity rejection is useful is when the classes have a deterministic
feature relation but the prediction model can make mispredictions due to its
biased nature. In Figure 3.1 image b) we can observe a simple example: in
this case the predictor is linear while the classes are non-linear separated.

2. Novelty rejection: it is also named outlier rejection. It is exploited to reject
those samples which are very different from the ones the machine learning
model is trained on. It is well known that machine learning models have
trouble in predicting samples that are not in the training data space. We can
observe in Figure 3.1 image c) an illustration of novelty rejection.
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a) b) c)

Positive (+) Negative (-) Ambiguity Reject (+) Ambiguity Reject (-) Novelty Reject

Figure 3.1: Example of binary classification scenario as illustrated in [18]. The
dashed black lines represent the rejector, the red solid line the fitted predictor, the
orange/green solid line the ground truth function. a) illustrates ambiguity rejection
with a non-deterministic relation between the two classes; b) shows the ambiguity
rejection performed by a biased model c) is an example of novelty rejection

In this work, ambiguity rejection is performed: normal samples and anomalies
are considered the two classes of interest for which the prediction can be ambiguous.
In fact, anomaly detection is already a special case of novelty rejection, hence if
this type of rejection is performed, one would end up rejecting all the anomalies,
while the goal is to detect them.

3.3.2 Types of rejector architectures
In literature, several types of rejector architectures exist.

• Separated: the rejector is separated from the predictor. They operate indepen-
dently. The main benefits are: any predictor can be chosen without changing
the rejection part; having a dedicated rejector; the decision about rejecting a
sample or not is transparent for the user.

• Dependent: the rejector is dependent on the outputs of the predictor, which
are used to get confidence values in the predictions made. All the samples
below a set global confidence threshold are rejected. In Equation 3.4 it is
formally reported a dependent rejector using a threshold. τ refers to the global
threshold that needs to be tuned, c(x, f) is the confidence score about the
prediction of the sample x made by the predictor f . If r(x, f) = 1 the sample
x is rejected, otherwise it is accepted.

r(x, f) = −sign[c(x, f) − τ ] (3.4)

Therefore, a confidence metric is needed for this architecture. The crucial part
is that this architecture is highly dependent in performance on this metric. The
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main benefits of a dependent architecture are: it allows ambiguity rejection; it
is an extension of the predictor, hence adaptation to different predictors can
be easily done.

• Integrated: rejector and predictor are fused in a single model. The benefits
are: both rejection and prediction tasks are optimized when training; there is
less bias introduced by rejection.

In this work we focused on the dependent architecture. The separated architec-
ture is based on a dedicated rejector, then it is not suited for the anomaly detection
field where few or no labels are available for the training of a separated model.
Moreover, it can not take benefit from the misclassification information of the
predictor, being only suited for novelty rejection. The dependent architecture is
instead well suited for ambiguity rejection. Moreover, it allows us to use existing
prediction models for anomaly detection. The integrated architecture is usually
the best performing because it optimizes both prediction and rejection at training
time. However, it needs a redesign of the predictor, making its use not trivial.

Therefore, formally, the basic objective of this work is to build an anomaly
detector with reject option as in Figure 3.2, such that:

1. it does ambiguity rejection using a confidence metric

2. it learns a threshold on the top of the model confidence dependent rejector

3. it learns detector and threshold sequentially

4. it is a discriminative model

Data

Predictor Rejector Prediction

Figure 3.2: Architecture of a dependent rejector as in [18]

14



Background

3.3.3 Need for a confidence metric
As in this work we want to build a dependent rejector based on a confidence
threshold, we need a confidence metric. Two main types of confidence are explored
in this work: aleatoric and model-based.

• Aleatoric: we simply need to convert the output scores of the model into
probabilities with some of the techniques explained in Section 3.1.3, using
the entropy, as for Active Learning in Section 3.2, to retrieve a metric of
confidence.

• Model-based: it is based on slightly perturbing the training data, firstly
converting the anomaly scores into probabilities with the Bayesian approach,
then deriving the confidence values by observing that the perturbed datasets
lead to find different anomaly score thresholds to find hard predictions [2].
In practice, the method is based on Bernoulli trials. One sample is picked each
time. Its anomaly probability is computed as in Equation 3.5, where x is the
sample of interest, ls is the number of samples in the training data with an
anomaly score lower than x and n is the number of training samples. A prior
uniform beta distribution is considered in this computation. Then, Bernoulli
trials to get the final example-wise confidence of the model are computed as
described in Equation 3.6, where γ parameter is the contamination factor of
the dataset.

p̂x := 1 + ls

2 + n
(3.5)

c(x) =
nØ

i=n(1−γ)+1

A
n
i

B
p̂i

x (1 − p̂x)n−i (3.6)
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Chapter 4

Methodology

As described in Section 3.1.1 and 3.1.2, anomaly detection contemplates two main
scenarios: unsupervised and semi-supervised. In this work, we introduce a method
to implement a reject option for an anomaly detector in both cases. Therefore, the
tasks addressed in this work can be formally described as follows.

Task 1:

Given: a dataset X, an anomaly detector, misclassification and rejection costs

Do: introduce a reject option to an unsupervised anomaly detector

Task 2:

Given: a dataset X, an anomaly detector, K labels, misclassification and rejection
costs

Do: decide whether to use the labels to learn the model or set rejection threshold

Although achieving these goals is interesting, several problems arise when one
would like to accomplish these tasks. First of all, basically a rejector requires labels
to tune its parameters, such as the confidence threshold for a dependent rejector.
Therefore, in unsupervised scenario where you can not use labels introducing a
reject option is not trivial. Moreover, one should be careful at having a method
that does not reject too many samples if not necessary, since rejecting a sample is
costly due to the fact that an expert has to label it. Secondly, if we consider a semi-
supervised scenario, we should find a method to improve the performance of the
rejector using labels. The problem is that while in machine learning tasks generally
one has at disposal all the samples and can decide how to use them, in anomaly
detection we have a small number of labels available. Thirdly, in semi-supervised
scenario one generally uses labels to improve the predictor performance. In this
case, the problem is that we have also a rejector to train with labels, therefore we
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should find a method to reach a trade-off in assigning the few labels we have to
train one or the other part of the model. Generally, one would like to assign labels
to the strategy that increments the overall performance on the test set more. In
order to decide which one between predictor and rejector is the most suitable to do
this, one should have a metric so as to evaluate each time how much the model
rewards using more labels for the predictor or the rejector.

We found the dependent rejector as the preferable choice for these tasks as
described in Section 3.3.2. It generally performs better than the separated one and
it easily implementable than the integrated one, for which you need to redesign
the model. The unsupervised challenge is addressed by using the model confidence
with a natural confidence threshold which approximates the performance of a tuned
threshold. For the semi-supervised scenario, a method for tuning the confidence
threshold is proposed based on using the labels of the validation set and evaluating
with a cost metric the saving of rejecting those samples one by one, choosing the
threshold that produces the highest saving. Moreover, to address the problem
of having a trade-off between Active Learning and Learning to Reject in using
labels, a cosine similarity adapted to the case of 3 output labels (normal, anomaly,
rejected) is chosen as a metric of reward. It is needed to select which strategy
to use if we have a new budget of labels to spend on improving the performance
of our model. In the next sections, all these problems are addressed and a novel
framework for anomaly detection with a reject option both in unsupervised and
semi-supervised settings is described.

In Section 4.1 given a dependent rejector architecture, we consider the most
relevant confidence metrics, evaluating the best one for the unsupervised setting
and proposing a method for this scenario, based on a natural confidence threshold.
In Section 4.2 we describe an approach for semi-supervised rejection, in particular
how to tune a confidence threshold by having a small number of labels making
use of a cost metric. The last one is useful also to evaluate the performance of
the model comprised of rejection. In Section 4.3 we explore the difficulties behind
a trade-off between Active Learning and Learning to Reject in semi-supervised
setting, proposing a method to evaluate the reward of assigning labels to the
predictor or rejector, based on the cosine similarity, so as to optimize both the
prediction and rejection parts of the model.

4.1 Unsupervised Learning to Reject
In unsupervised scenario, we can use labels neither for learning the predictor nor for
training the rejector. Even if strategies for learning the predictor already exist as
mentioned in Section 3.1.1, learning the rejector is a completely new task. Since we
want to learn a rejector that is dependent on the anomaly detector, we should use
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the anomaly scores or hard predictions generated by the anomaly detector as input
to generate a confidence value for each sample prediction. This confidence value is
useful for the rejector both at training and test time. At training time one should
use the predictions of the anomaly detector and the associated confidences to set a
confidence threshold. At test time one can use the chosen threshold to reject all
the samples with confidence below that value. The main problem here is that in
unsupervised setting we should set a rejection threshold a priori, without having
labels to tune it. Next, the main confidence metrics are discussed, highlighting the
most suited for the unsupervised rejection.

4.1.1 Confidence metric
To build a dependent rejector, we must first have a confidence measure of the
predictions. Two main methods to estimate confidence in predictions are analyzed
in this work.

Posterior confidence

One option we have is using the posterior probabilities. Generally, two approaches
to calculate posterior probabilities from outlier scores are possible. These are
named linear and unify and are properly described in Section 3.1.3. Given the
posterior probabilities, we need to generate the confidence values. To do that, we
can use the same strategy used for Uncertainty Sampling for Active Learning, as
described in Section 3.2. Since this strategy is widely used in literature, we chose to
adopt it to measure the aleatoric confidence of the instances. In Figure 4.1 one can
observe how using the linear method, the distribution of confidence value is spread
over the entire range of values: [0,1]; while in Figure 4.2 using unify approach the
values are more skewed to the 1 values.

As we can observe in Figure 4.3 if we use the posterior confidence with ’unify’
method, many values have confidence lower than 0.99, while the amount of confi-
dence values between 0.99 and 1 is ignorable. This means that if we set a natural
threshold to 0.99 we tend to reject a high percentage of samples.

We do not consider the confidence metric based on linear posterior, as well as
the one based on squashing function to set a natural threshold because we have
values of confidence spread between 0 and 1, with a distribution variable from
dataset to dataset. Therefore there is no clear strategy for these approaches to find
a natural confidence threshold.

Model confidence

The model confidence [2] focuses on the decision boundaries of the predictor. As
further explained in Section 3.3.3, for each sample the model confidence indicates
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Figure 4.1: Anomaly detector: SSDO with 20% dataset labels and IForest as prior.
Posterior probabilities computed with ’linear’ method. Dataset: Cardiotocography
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Figure 4.2: Anomaly detector: SSDO with 20% dataset labels and IForest as prior.
Posterior probabilities computed with ’unify’ method. Dataset: Cardiotocography

the consistency with which the model would make the same prediction in case of
perturbation of the training set. It returns a value ranging in [0,1]. In Figure 4.4
one can observe the typical distribution of model confidence values between 0 and 1.
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Figure 4.3: Count of model confidence values for intervals: [0,0.99); [0.99, 1); {1}.
Anomaly detector: SSDO with 20% dataset labels and IForest as prior. Posterior
probabilities computed with ’unify’ method. Dataset: Cardiotocography

Using this confidence evaluation method, it is evident that the majority of samples
have values equal or very close to 1. This means that it is actually discriminative
for a few amount of samples. This translates into the possibility of using a natural
threshold (e.g. 0.99) to capture uncertain predictions and reject samples when we
are in unsupervised setting.

In Figure 4.5 we show an example reporting how many values of model confidence
are in the intervals: [0,0.99); [0.99, 1) and how many values are equal to 1. As we
can observe, the majority of values are equal to 1, while the number of values in
[0,0.99); [0.99, 1) intervals is similar and very small.

Since the values in the interval [0.99, 1) are not very discriminative as they
are mainly due to machine errors and we need an unsupervised strategy that is
solid, trying to not reject samples on which the model is confident, we can opt
to reject all the samples for which the model confidence is really discriminative.
From this analysis, we concluded that in unsupervised setting having a natural
confidence threshold of 0.99, being conservative with the amount of rejected samples
as rejecting a sample is costly, can be only possible using the model confidence.
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Figure 4.4: Anomaly detector: SSDO with 20% dataset labels and IForest as prior.
Model confidences computed with ExCeeD method. Dataset: Cardiotocography
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Figure 4.5: Count of model confidence values for intervals: [0,0.99); [0.99, 1); {1}.
Anomaly detector: SSDO with 20% dataset labels and IForest as prior. Dataset:
Cardiotocography
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4.1.2 Introducing the reject option into an unsupervised
model

Since the model confidence by nature tends to capture the uncertainty of the model,
focusing on the decision boundaries of the learned predictor and since using this
confidence metric the majority of confidence values for an unsupervised predictor
are equal or very close to 1, we can set a natural threshold to 0.99 a priori.

In Equation 4.1 it is formally reported a dependent rejector using this natural
threshold. c(x, f) refers to the confidence score about the prediction of the sample
x made by the predictor f . If r(x, f) = 1 the sample x is rejected, otherwise it is
accepted.

r(x, f) = −sign[c(x, f) − 0.99] (4.1)

4.2 Semi-supervised Learning to Reject
In semi-supervised setting we can use labels to tune the confidence threshold of
the rejector. In this section, we describe the method used to set the threshold as
well as the performance metric exploited to do this, useful also to evaluate the
performance of the model on the test set.

4.2.1 Cost metric
Having a model made both of a predictor and a rejector, one should evaluate the
prediction quality and the rejection quality. The prediction quality is evaluated
using the standard metrics: accuracy or F1-score on the non-rejected samples. The
rejecting quality is evaluated by the percentage of misclassified samples among the
rejected samples. However, finding a metric that combines both these qualities is
not trivial [41]. Two main points make this task very tricky:

1. Since we have 3 classes: normal (0), anomaly (1), and rejected (2) we can not
use the usual performance metrics such as F1-score, ROC, Precision-Recall.
Using these curves we should disregard all the rejected samples, but they still
affect the costs. For this reason, we need to consider also rejected samples in
our evaluation metric.

2. In anomaly detection misclassifying a sample can be very expensive. Therefore
one should evaluate the trade-off between rejection and misclassification costs.
Based on the scenario, one can prefer to reject more samples even if there is
high probability they are correctly classified, in order to avoid even just one
costly misclassification.
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Therefore, in our metric we should consider the misclassification cost as well
as the rejection cost. The misclassification cost, as in Equation 4.2, is the sum of
the product of the number of false positives or false negatives multiplied by their
cost of misclassification. The rejection cost, as reported in Equation 4.3, is just
the number of rejected samples multiplied by the cost of rejecting a single sample.
Hence the total cost used as a metric in this work is just the sum of these costs, as
written in Equation 4.4.

Misclassification cost = (cF P · FP ) + (cF N · FN) (4.2)

Rejection cost = cREJ · REJ (4.3)

Cost = Misclassification cost + Rejection cost (4.4)
If we want to evaluate the performance of the model on the test set as the cost

per sample, as in Equation 4.5, we can just normalize the computed Cost by the
number of samples |Dtest| present in the test set.

Cost per sample = Cost

|Dtest|
(4.5)

It derives that: Cost per sample ∈ [0, max(cF P , cF N , cREJ)].

4.2.2 Tuning threshold
In semi-supervised setting, we can use labels to find the rejection threshold. However,
we first need to define what is the rejector training set made of. In practice, since
the training set is generally populated by samples with which the predictor is
fitted, using the same labels to set the rejection threshold could introduce a bias.
Therefore, we use the validation set as the rejector training set. As for Active
Learning, samples from the validation set are queried to an expert to get the relative
labels. Then, the best threshold is found to minimize the cost on the validation set.

Rejected percentage upper bound. Generally, one wants to avoid rejecting
huge percentages of samples. To do that, we set the maximum percentage we
allow our system to reject. Then, we take the training set of the rejector (i.e. the
validation set), we generate the confidence values for those samples, sorting them
and taking the percentile we are interested in. In this way, we have the upper
bound for the confidence threshold. It is important to notice that we use both
labeled and unlabeled samples from the validation set to exploit more data. It is
also beneficial if one uses a sampling strategy to get labels that is different from
random sampling, so as to have a distribution that is not biased.
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4.2.3 Observations on the cost constraints in threshold
tuning

Since we prefer to reject a sample rather than misclassify it, the cost of rejection
cREJ should be smaller than both false positive and false negative costs cF P and
cF N , as in Equation 4.6. At the same time it can not be too small, otherwise
training the rejector in finding the optimal rejection threshold could lead it to set
the threshold too high in a way that it tends to reject all the samples.

cREJ < cF P , cF N (4.6)

Moreover, given the nature of the cost metric, it is possible that one could
have more than one local minimum. To solve this problem we take the threshold
associated with the lowest percentage of rejected samples. In this way, we tend
to reject the least we can. We tend to prefer to have a model that generates the
greatest possible income rejecting as least as possible. What one would like to
avoid is to reject all the samples only because only some of them are misclassified.

4.3 Trade-off AL and LR

A semi-supervised anomaly detector benefits from labels in two ways: when using
labels to learn its parameters and when using the labels to tune the reject option.
In the first case, we are trying to improve the classification performance while in
the second the rejection one. Because one can allocate the label budget either ways,
our task is to develop a strategy that maximizes the model performance by finding
a trade-off in assigning labels to one or the other strategy.

In this case, we need a method that is capable of understanding how much the
model is changing with each strategy so as to assign the labels to the one that
favors the overall greatest performances, hence the one that minimizes the cost at
test time. When we query an expert to label a certain amount of samples we should
already know if these labels will be used to further train the predictor (AL) or the
rejector (LR), since these labels should be picked from the training or validation
set with ad hoc strategies such as Uncertainty Sampling or Random Sampling.

The Table 4.1 shows the three possibilities we have in using labels: we can use
them to only train the rejector, using an unsupervised anomaly detector; we can
choose to train only the anomaly detector using the natural threshold on the model
confidence so as to not use labels for the rejector, or we can find a trade-off in
allocating labels to one or the other.
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Predictor Rejector
U L
L U
L L

Table 4.1: Three possibilities of using labels (L) or not, being in unlabeled setting
(U), for predictor and rejector in semi-supervised setting

4.3.1 Metric to measure model reward
In order to choose which strategy to use between AL and LR for the next labeling
step, we should evaluate how the model reward after training with the new labels.
With the term reward, we mean how much the model is improving its performance
if new labels are given for training. It is important to measure how much is the
reward given by each strategy because if we keep adding labels for just one strategy,
for instance AL, the reward of the model can decrease. For example, having 99
or 100 percent of labels may not make any difference. So it may be meaningful
to combine AL with LR as the model can gain from it as soon as it does not gain
from AL. Strategies to measure the reward are heuristic since we can not measure
how much the performance is improving at test time. We can not evaluate the
model reward using the cost metric on training or validation set because we can
have problems with overfitting. Therefore, a novel metric to measure model reward
is needed. We have a few metrics to measure how much a predictor is changing
with respect to the past. The problem with these metrics is they are suited for
the predictor, but they should be adapted in the case of a model consisting also
of a rejector. Indeed, with a reject option we can have a third prediction label
that corresponds to the rejection choice and makes this metrics not usable except
with an adaptation. In our work two reward metrics are considered, with their
adaptation to the 3 classes problem:

• Cosine distance of the predictions: measures the distance between two
vectors [53] of hard predictions ŷ, as in Equation 4.7. It measures how
many predictions changed after model retraining. If the distance of the hard
predictions before and after retraining is large, we can conclude that the
model changed a lot. This results in a probable improvement of the model.
We assume this is an improvement because we imagine that the predictions
changed so as to have fewer misclassifications.

model reward = 1 − ŷnext · ŷprev

∥ŷnext∥2∥ŷprev∥2
(4.7)

To adapt the cosine distance to a third label, when a new sample is rejected,
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we simply reverse the prediction that the anomaly detector made in the more
recent past when the sample was not rejected. For instance, if a sample is
predicted as normal (0) and then it is rejected (2), then a 1 is assigned to
consider the decision change for that sample. We use this modified metric
both for the AL and LR strategies.

• Entropy of the predictions: measures the decreasing uncertainty in predic-
tions. It is formalized in Equation 4.8, where x refers to a sample in Df

train

which is the training set of the predictor. Hnext and Hprev refer to the Shannon
entropy of the predicted label probability for the retrained and old predictor
respectively. This metric is considerable a reward since high values mean that
the model changed a lot the probabilities assigned to each class and so also
the assigned scores, which we assume is done to improve the predictions at
test time.

model reward =
Ø

x∈Df
train

[Hnext(x) − Hprev(x)] (4.8)

For the AL reward, we use probabilities of a sample to be classified as a normal
or anomaly. To adapt the entropy distance to measure how much is the reward
using LR, we need to consider rejector probabilities, so the probability that a
sample from the validation set is likely to be rejected or not. From confidence
measures, we can retrieve the probability of a sample being rejected using the
same squashing function as described in Equation 3.2 but using the tuned
threshold as Γ parameter.

In this work, we prefer to use the strategy based on cosine distance, as the
framework proposed is based on the model confidence, hence not suitable for using
the reward based on entropy. Indeed, for the model confidence, the confidence
values do not change as much as the labels are given for the rejector training. In
this way, the probability of a sample being rejected does not change either. This
happens because the majority of confidences using model confidence are close or
equal to 1. This results in a model reward for LR strategy that is often too low to
be compared to reward resulting from using AL for the predictor.

4.3.2 General framework
Given the strategies to measure AL and LR reward we now explain how to choose
the strategy to use when iteratively labeling the samples. When training the first
time a model with labels, one should prefer the AL strategy. In fact, as it happens
for SSDO, having labels can greatly change the distribution of the confidence
values. Then, one should use the next budget of labels to train the rejector, so as to
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tune the threshold, trying to improve the performance given by using the natural
threshold. Once the AL and LR have both labels, one should use the reward metric
to choose the next strategy. We can simply measure the reward of AL considering
the outputs on the training set, and the LR reward considering the outputs on the
validation set. We can compare the reward of using the first time AL and LR by
comparing the new outputs to the ones had in unsupervised setting before having
labels to assign. The strategy that produces the greater reward is chosen as the
strategy to pursue for the next samples labeling. If the reward is null for both the
strategies, it means that the last labeling for each strategy did not produce changes
in model outputs. Therefore, when there is a new budget for labeling, the strategy
adopted less recently is chosen.

28





Chapter 5

Experiments

We report the results of the evaluation of our unsupervised and semi-supervised
rejection-based algorithm, answering several questions.

Unsupervised setting

Q1) Is adding unsupervised rejection useful to improve the performance of an
unsupervised model?

Q2) Is the model confidence natural threshold a good approximation of the thresh-
old set with a fully labeled validation?

Semi-supervised setting

Q3) How does our trade-off strategy perform when compared to using labels only
either for active learning or for learning to reject?

Q4) How does the model confidence compare to the posterior confidence as a
confidence metric?

Q5) Is the cosine distance-based reward metric balanced in choosing AL and LR
strategies?

Q6) Is the framework effective also for other costs schemes?

5.1 Data and experimental setup
Data: We perform our evaluations on a benchmark consisting of 9 anomaly
detection datasets. The datasets as reported in Table 5.1 vary in size, number of
features, and proportion of anomalies γ.
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Dataset # Examples # Vars γ
Cardiotocography 1734 21 0.049
PageBlocks 5393 10 0.094
Arrhythmia 305 259 0.200
Waveform 3443 21 0.029
Shuttle 1013 9 0.013
Wilt 4819 5 0.053
KDDCup99 2500 40 0.080
PenDigits 540 16 0.037
WBC 223 9 0.044

Table 5.1: The 9 benchmark anomaly detection datasets

Experimental setup in unsupervised scenario: We split each dataset into:
Dtrain, Dval, Dtest, using a stratified 60-20-20 split. We use 5-Fold validation to
split the complete dataset into train and test sets, then we further split the train
in Dtrain, Dval.

Experimental setup in semi-supervised scenario: We split each dataset
into: Dtrain, Dval, Dtest, using a stratified 40-40-20 split. We use a split that is
different than the unsupervised case because having the training and validation set
of the same size we can give the same possibilities to AL and LR to use labels and
to have a reward metric that is comparable. We start in the unsupervised scenario.
We incrementally collect 2% of labels, starting from an unlabeled scenario and up
to 40% of the dataset size. This results in 20 steps. For each step, we allocate such
a 2% budget either to collect labels for the training set (AL) or for the validation
set (LR). We use 5-Fold validation to split the complete dataset in train and test
sets, then we further split the train in Dtrain, Dval in a stratified way. We repeat
each experiment 5 times with different random seeds, for a total of 5 × 5 = 25 runs.
The results are evaluated on the test set Dtest, as the average of the 25 runs.

Evaluation metric: As evaluation metric we use the cost per sample as explained
in the Section 4.2.1. Following the principle of lower is better, it focuses on the
costs that misclassification and rejection produce on average on each test sample.
The formula used has been described in Equations 4.2, 4.3, 4.4, 4.5. The default
cost values used are: cfp = 10, cfn = 1, crej = 0.5.
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Hyperparameters: Regarding unsupervised anomaly detectors, the hyperpa-
rameters are set by default [4] as in PyOD1 for the 4 classifiers (IForest [46], KNN
[47, 48], LOF [49, 50], OCSVM [51] ). For the semi-supervised scenario, as IForest
is used as a prior, SSDO predictor has only 2 hyperparameters to be set. Taken by
default they are: k = 30, α = 2.3.

5.2 Results
Q1) Rejection in unsupervised scenario. In this experiment, we investigate
whether an anomaly detector would benefit from the reject option based on the
natural threshold on the confidence metric. For this task, we exploit 4 widely
used unsupervised anomaly detectors and measure their performance with and
without the reject option. The boxplots in Figure 5.1 shows the results. As clearly
illustrated, for all of the 9 datasets and all of the 4 detectors adding a reject option
results in lower costs. Moreover, most of the times it results in a lower variance as
well. This means that rejecting samples based on the natural threshold leads to a
more accurate and robust anomaly detector. Note that for the dataset Pendigits
(center, bottom), OCSVM gets the costs that are 8 times as large as the other
models. Thus, we report the value divided by 8.

Q2) Natural threshold compared to the tuned threshold. If we tuned the
threshold using a labeled validation set, the model would likely be more accurate and
achieve a lower cost. However, if the natural threshold was a good approximation
of the tuned threshold, we could allocate the budget on a different task or save it
up. Thus, we compare the threshold of a rejector that has labels to tune it with the
natural threshold. We increase the cost of the false positive incrementally from 0.5
to 100 and measure the difference between setting the natural threshold and tuning
it using a fully labeled validation set. Figure 5.2 shows the results in a logarithmic
scale. While we have an increasing cost of false positives on the x-axis, fixed the
cost of false negatives and rejection to: cfn = 1, crej = 0.5; on the y-axis there is
the difference in absolute value between the tuned and natural threshold. As we
can observe, the natural threshold approximates in a good way the tuned threshold,
as the cost increases. However, we can observe exceptions for Shuttle and WBC
datasets. The reason is that both these datasets contain too few misclassifications
of false positives (the ones with the greatest cost in this experiment). This is due to:
the low number of samples in the dataset, the low contamination factor, and the
good performance of the anomaly detector on the dataset. With few false positives,
the rejector does not have enough information to tune properly the threshold.

1https://pyod.readthedocs.io/en/latest/index.html
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Figure 5.1: Evaluating the performance of several anomaly detectors: IForest,
KNN, LOF, OCSVM with and without reject option. Cost setting: cfp = 10,
cfn = 1, crej = 0.5.

In Figure 5.3 the difference of the cost on the test set had using the natural
and tuned threshold is reported on the y-axis. We measure the cost on the test set
because we want to investigate whether using the approximated threshold results
in similar costs. When the cost of false positives is very low, the natural threshold
tends to reject a bit more than the tuned one. However, the performance of the
cost on the test set is still comparable. This is due to the cost of rejection crej:
if it increases, the performances are no more comparable for a low cost of false
positives. Moreover, the more the cost of false positives increases, the more the
difference in cost between the two strategies. The reason is that the higher the
false positives cost, the higher the probability of tuning a threshold that leads to
reject more than the natural one. As we discussed before, we can also observe the
results of a threshold tuned without having enough information available on the
decreasing trend for Shuttle and WBC dataset, showing that the natural threshold
works better than the tuned one.

We can conclude that the natural threshold is a good approximation of the one
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Figure 5.2: Difference in absolute value between tuned and natural threshold
with increasing cfp on logarithmic scale. Anomaly detector: IForest. Cost setting:
cfn = 1, crej = 0.5.

found making use of labels in the majority of cases. However, when the cost of
false positives or rejected samples is high, the unlabeled strategy could suffer the
approximation.

Q3) Semi-supervised rejection framework. Figure 5.4 shows the performance
of Our Framework based on SSDO anomaly detector and reject option with labeled
model confidence, compared to:

• All-in AL: it uses SSDO as anomaly detector, it exploits the whole budget
only for AL; it exploits the natural threshold on the model confidence as reject
option.

• All-in LR: it uses IForest as anomaly detector; it exploits the whole budget
only for tuning the threshold on the model confidence.

• AL without reject option: it uses SSDO as anomaly detector; no reject option.

34



Experiments

100 101 102

Cost of FP

1

0

1

2

3

Co
st

 p
er

 sa
m

pl
e 

di
ffe

re
nc

e
Cardio
Page

Arrythmia
Wave

Shuttle
Wilt

KDD
Pen

WBC

Figure 5.3: Difference between cost on test obtained with natural and tuned
threshold, with increasing cfp on logarithmic scale. Anomaly detector: IForest.
Cost setting: cfn = 1, crej = 0.5.

We need it as a baseline to beat when reject option is included in semi-
supervised setting.

As we can observe, models including reject option perform better than the ones
without it for 8 datasets out of 9. Solely for the Pendigits dataset, the model
without reject option performs better than IForest with reject option from 14%
of dataset labels. This happens because the model based on IForest saturates
after 8% of labels since the discriminative model confidence values as observed
in Figure 4.3 are few. Our framework outperforms the others in 4 datasets out
of 9 (Cardiotocography, PageBlocks, Waveform, Wilt). The All-in LR model
outperforms the others only on 1 dataset (KDD). The reason behind this is that
SSDO on this dataset shows performance that is poorer as more labels are given.
Even if Our framework and All-in LR thanks to the reject option can limit this
drawback, it seems to not be enough to perform better than IForest with LR. As
we can notice, rejection is evidently useful in those cases when the model makes a
lot of misclassifications. The All-in AL model outperforms the others on 3 datasets
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(Shuttle, PenDigits, WBC).
We can conclude that our framework seems to perform better than the others

when we have a high contamination factor or a high number of samples in the
dataset or generally when the anomaly detector makes many misclassifications.
Indeed, the more misclassifications are made, the more the rejector can learn from
them to better set the threshold. It is clear that if the number of misclassifications
on the validation set is small, the framework using the natural threshold (All-in
AL) can perform better, as happens for Shuttle, PenDigits and WBC datasets.
In these cases, the rejection threshold is not tuned properly by Our Framework
and it results to be always much lower than the natural one set to 0.99. This
leads accepting prediction of samples with a low confidence value, for which the
probability of making a misclassification is high.
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Figure 5.4: Evaluating the performance of several strategies of using labels for
AL or LR or both, compared to the baseline of using only AL without reject option.
Cost setting: cfp = 10, cfn = 1, crej = 0.5.

Q4) Model confidence compared to posterior confidence. In this section,
we compare Our Framework making use of model confidence with its variant using
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confidence based on posterior probability. As shown in Figure 5.5, the model
confidence outperforms the posterior-based one for 8 datasets out of 9. Only
for PageBlock dataset when the percentage of labels goes from 4% to 10% the
posterior works dramatically better than the model confidence. With the posterior
in that interval, we are rejecting an average of 4.06% samples, while with the model
confidence 5.46%. This means that its better performance is not due to a greater
percentage of rejected samples. It is simply due to better behavior of the posterior
confidence in assigning the confidence values and setting the threshold, given that
specific fitting of the anomaly detector. The same happens for KDD dataset from
10% to 18% of labels. In that case, the posterior rejects a mean of 3.45% samples
while the model confidence rejects 6.09%. After 20% of labels, the posterior rejects
a mean of 10.47% samples while the model confidence rejects 4.82%. Here the
anomaly detector worsens its performance a lot due to AL (as observable in Figure
5.4), but while the model confidence is still able to mitigate its worsening, the
posterior is not.

We can conclude that the model confidence is the metric of confidence to prefer.
In general, it tends to reject less, while the performance is still better than the
posterior one, being also able to alleviate the misclassification costs that can rise
with AL.

Q5) Distribution in choosing AL and LR strategies. In this experiment,
we want to evaluate if the reward metric based on cosine distance is balanced in
choosing AL and LR. To do this, we perform a simulation, using labels from 0% to
20% with steps of 2%, considering every possible strategy for each step. Since the
first two steps are forced to be respectively AL and LR, we have 28 = 256 possible
strategy permutations for each dataset. The cosine distance for AL and LR strategy
is evaluated between each step and the corresponding previous one. We briefly
explain the method. For 2% labels AL is performed: then the reward of AL with
respect to the 0% labels situation is considered; for 4% labels LR is perfomed: then
the reward of LR with respect to the 0% labels situation is considered. Then, for
6% labels and so on, if AL strategy is considered, then the reward with respect to
the last time AL was performed is considered, while the reward of LR for this step
remains the same as before. For every step from 6% to 20% of labels, the difference
between AL reward and LR reward is considered. We observe that the difference
can only stay in the interval [−1, 1] since the cosine distance varies in [0, 1] interval.
The distribution of this difference is shown in Figure 5.6. As we can notice, the
distribution is for each dataset skewed to the right with respect to the value 0.
This means that AL strategy is preferred most of the times. This behavior was
expected since with LR, once a good threshold value is found, small refinements
keep most of the predictions unchanged. However, what we are interested in is
that one strategy does not dominate the other, so as to exploit all the advantages
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Figure 5.5: Evaluating the performance of Our Framework using model confidence
or confidence based on posterior probability. Cost setting: cfp = 10, cfn = 1,
crej = 0.5.

of AL and LR. From the graph, we can derive that this happens given the fact that
the distributions are almost centered in 0, with the exception of Waveform and
Arrythmia datasets, for which AL is preferred by far.

Q6) Framework performance on other cost schemes. We have seen that
Our Framework as well as All-in AL and All-in LR strategies outperforms the
simple AL without reject option when the cost of false positives is higher than
the others. Here we want to evaluate the opposite case: when the cost of false
negative is the main problem of misclassification. In Figure 5.7 we can observe the
performance of the 4 models as in Section 5.2.

In this case, our framework outperforms the others in 3 datasets (Cardiotocogra-
phy, Waveform, Wilt). In Pageblock it reaches performance better than the others
from 14% of labels, when it has enough labels from the validation set to find a good
confidence threshold. This happens also for Shuttle dataset from 20% of labels.

The All-in LR model outperforms the others on Arrythmia dataset from 16%
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of labels, since having more labels for the rejector translates into finding a better
confidence threshold, while SSDO based on AL without a reject option seems
to worsen its performance as more labels are provided, thus resulting in low
performances for the rejection strategies based on this anomaly detector. All-in LR
model outperforms the other strategies also for WBC dataset until 20% of labels.
This is because the performance is already great for IForest. Indeed, for the All-in
LR model the rejection threshold is set to 0 from 6% of labels. The other strategies
on WBC dataset suffer from the poor performance of SSDO, until their rejector
has enough labels to properly tune the threshold. Indeed, from (20%) of labels Our
Framework becomes the one preferable.

The All-in AL model outperforms the others only on PenDigits dataset, for which
the natural confidence threshold seems to improve just a bit the performance of
SSDO with AL without reject option. Evidently, for this dataset the false negatives
are not captured by low model confidence values, while only false positives are.
For this dataset, Our Framework rejects more than what is really helpful. For this
reason, its performance is also worse than the model without rejection.

We can conclude that the lower the contamination factor, the most probable
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is that the number of false negatives is lower. For this reason in those datasets
such as Shuttle, PenDigits, and WBC for which we also have a small number of
samples and a well-performing anomaly detector, having enough false negatives in
the validation set to properly set the confidence threshold is even more difficult
compared to what was happening with false positive in Section 5.2. Being the false
negatives rarer than false positives, it is clear that more labels are needed for the
dependent rejector to find a proper confidence threshold.

We must highlight that for the Arrythmia dataset the cost per sample is never
lower than the cost of rejection crej = 0.5. This is due to the contamination factor
γ = 0.20 which is much larger than the ones of the other datasets. This clearly
influences the number of anomalies that the anomaly detector can misclassify as
false negatives. In this case, given crej = 0.5, rejecting all the samples would be
the best option, a possibility that is not covered by Our Framework that has a
rejection percentage upper bound of 40%.
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Figure 5.7: Evaluating the performance of several strategies of using labels for
AL or LR or both, compared to the baseline of using only AL without reject option.
Cost setting: cfp = 1, cfn = 10, crej = 0.5.

In Figure 5.8 we analyze the situation with equal costs for false positives and
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negatives, setting: cfp = 5, cfn = 5, crej = 0.5. The same considerations made for
Figure 5.7 apply also here with the exception of KDD and WBC datasets. In KDD
we have again that SSDO after 10% of labels starts to worsen its performance,
predicting many false positives, so as to make the model based on unsupervised
anomaly detector (All-in LR) the one that performs better. For WBC, we have
that Our Framework performs worse than the other two strategies with the reject
option because it sets a threshold that is too low. For example, for 6% of labels,
the tuned threshold is 0.43, which leads to reject fewer samples than the other two
rejection strategies: for this reason, the curve tends to be closer to the one without
rejection. For the All-in LR model, the same considerations made for Figure 5.4
apply to this dataset.
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Figure 5.8: Evaluating the performance of several strategies of using labels for
AL or LR or both, compared to the baseline of using only AL without reject option.
Cost setting: cfp = 5, cfn = 5, crej = 0.5.
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Chapter 6

Conclusion

This work introduced a novel rejection-based framework for anomaly detection.
When the scenario is unsupervised and we have no labels to tune the threshold for
the dependent rejector, the model confidence with a natural threshold statically set
to 0.99 showed good performance in lowering the costs due to the misclassification
of an unsupervised predictor, showing in the majority of cases to be a good
approximation of the threshold tuned using all the labels of the rejector training
set. When we are in a semi-supervised scenario, having labels is useful to better
train the predictor or the rejector. A model reward metric based on the cosine
distance is used to give labels to Active Learning or Learning to Reject. In case
the LR strategy is chosen, samples from the validation set are queried to an expert
to be labeled, then the threshold is tuned minimizing the cost on the validation
set so as to avoid problems of overfitting. Future works can focus on finding a
way to unbalance the rejection in favor of the more costly misclassification since
rejection as applied in our framework is symmetric for its nature around the decision
boundary. Moreover, one should find a performance metric that is less dependent
on hyperparameters so as to be generalizable for many scenarios. Furthermore, as
a model reward metric, would be optimal to find a way to give for each of the 3
output classes a probability, such that those sum to 1, then using the entropy to
measure how much the model changed after re-training.
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