Master Thesis

Automatic grades of computer
programming assignments

Willmar Rengifo Rengifo

Relatore

Valentina Gatteschi

Thesis
Master’s Degree in Computer Engineerig

INFORMATION AND COMMUNICATION
TECHNOLOGIES
POLITECNICO DI TORINO
PIEMONTE, TORINO
DECEMBER 2022

Automatic grades of computer programming
assignments

Willmar Rengifo Rengifo
Relatore:

Valentina Gatteschi
Department of Control and Computer Engineering

Abstract

The evaluation method made by professors takes time to evaluate every single
student. This thesis is a friendly framework for professors that helps to evaluate
a massive student’s code using theoretical knowledge of programming languages,
best-practices and an approximate way of giving a final score according to the de-
velopment made by the students. Our goal was to give feedback to the student in a
way that they can know where they made the mistakes and for the professor’s side,
the process can be automated by giving some initial parameters like name of im-
portant methods to be evaluated and its own weight. This framework was tested in
comparison with real scores from previous exams and the results are similar giving
a correct weight on each method and finally but not least, saving time for teachers
was the key part of this thesis.

Dedication

Dedicated to my parents, brother and friends.

Acknowledgement

My family are the first people that help me, always were encouraged for reach to
my academic goals, without their this doesn’t possible.

I would like to thank the closest friends who were for help me with the way was
difficult and believe in myself.

Thanks to the professor Valentina Gatteschi that with his patience and guide this
thesis is done.

Indice

1 Introduction

2 State of art

2.1 OOPGrading
2.2 CLDIFF
2.3 GumTree
Methodology
3.1 The parser tree
3.2 Javamodel
3.3 Node AST
3.4 Visit the parser
3.4.1 CompilationNode
3.4.2 Method declarationnode
3.4.3 BodyStatement node
3.4.4 TryStatement node L.
3.4.5 ThrowStatement node
3.4.6 IfStatement node
3.4.7 ForEnhanced node
3.4.8 ForStatement node
3.4.9 DoStatement node
3.4.10 WhileStatement node
3.4.11 SwitchStatement node
Development
4.1 The framework used ASTExtractor: Abstract syntaxTree
4.2 Input Arguments
4.2.1 Folders of the projects
4.2.2 The weight properties
4.3 Path the FolderFirstDelivered and FolderSecondDelivered
4.4 Thestudent classo
4.5 Matchesoffiles
4.6 Parsing of source code.
4.7 Visit the parserA
4.7.1 VisitCompilationNode.java
4.7.2 VisitMethodDeclarationNode.java
4.7.3 VisitlIFNode.java oo
4.7.4 VisitForEnhanced.java
4.7.5 VisitForNode.java oo

4.7.6 VisitDoNodejava 36

4.7.7 VisitWhileNode.java L. 37
4.7.8 VisitSwitchNode.java 37
4.7.9 VisitTryStatement.java L. 38
4.7.10 VisitThrowStatement.java 38
4.7.11 VisitBodyNode.java L. 38
4.8 Compare of statements L. 38
4.9 Store differences by fileo o000 40
4.10 Calculation of the grade 41
4.11 Differences foundso 42
4.12 Update counters 43
4.13 The outputs 44
4.13.1 The structure result final excel 44
Evaluation 46
5.1 test_ChangesBodyDeclaration 46
5.2 test_ChangesNotBodyDeclaration 46
5.3 test_ChangesMethodDeclaration 49
54 test_Overall 49
Conclusion 66
6.1 Future works 66

Elenco delle figure

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

Diagram of flow exam. oL 15
Anoverview of CIDHff [5]o 16
View of the framework 16
Approaches of GumTree framework 17
Model overview of the project [10]. 18
Read and write in AST. 19
Types of children and his properties [2].. 20
Example of grammar in the AST. 21
Structure of node CompilationUnit and TypeDeclaration [6]. 21
Structure of node MethodDeclaration [6]. 21
Structure of type node Block [6]. L. 22
Structure of type node Try [6]. 22
Structure of type node Throw [6]. 22
Structure type of node If [6]. oL 22
Structure of type node ForEnhanced. 23
Structure of type node For [6]. L. 23
Structure of type node Do [6]. L 23
Structure of type node While [6]. 24
Structure of type node Swithe [6]. 24
General high model overview of the project 25
Diagram of class of ASTEXTRACTOR. 27
Structure of students projects folder. 27
The properties file. 28
Weight by method name. The setup of weight values for the methods

toevaluate. 29
Weight by type of node.o 29
The object student. Lo 30
Set up handles of parser. 31
Function for navigating the AST through his nodes. 32
Process of recognition.o oL 32
Structure of node CompilationUnit and TypeDeclaration [6]. 33
Visit compilation node diff.o L 33
Visit compilation node framework overview. 34
Structure of node MethodDeclaration [6]. 34
MethodDeclaration Diff. 34
MethodDeclaration framework overview. 34
The weights values for the node MethodDeclaration. 35

9

4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45

5.1
5.2
2.3
5.4
2.5
2.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14
0.15
0.16

Structure type of node If [6]. 35

If declaration. 35
If declaration framework overview. 36
Structure of type node Forenhanced [6]. 36
Structure of type node For [6]. oL 36
Structure of type node Do [6].o 37
Structure of type node While [6]. 37
While and Try statement.o 37
While and Try statement framework Overview [6]. 37
Structure of type node Switch [6]. L. 37
Structure of type node Try [6]. 38
Structure of type node Throw [6]. 38
Structure of type node Block [6]. 38
Call to compare method. 38
The method compares:two nodes 39
The visit to the parserB 40
The nodes are equals? 40
Store nodes differences foundo 41
The java collection that store the differences nodes. 41
The calculation process. 42
The formula. 42
Differences found txt file. 43
Operation for update counters. 43
call to the method that created and write Excel file. 44
The collection stored the updates. 44
The method create and write Excel file. 44
The java collection that store the differences nodes. 45
Final excel data for exam 2018 - 2019 45
File Properties Case 1 47
Changes body declaration, case 1 47
File Properties Case 2 48
Changes not body declaration, case 2 48
File Properties Case 3 49
Changes method declaration, case 3 50
All cases e 50
All cases without INS 51
Short all cases 51
All differences between 3 cases 52
All differences without INS between 3 cases 52
Overall grades comparison 52
Data grades table L 55
Teacher grades Lo 65
Framework grades oo 65
Passed Exam 65

Capitolo 1

Introduction

Analyzing differences from source code is an important topic that contributes to
quality and maintenance, in the course of java programming language is possible
implements a procedure of learning based on the differences in the code for assigned
a grade, but for the teachers of java programming language spend huge of time
checking all java projects of each student that’s why the need arose to find useful
framework to agile this work.

This thesis was focused on the development of a friendly framework that helps
to the evaluation of programming exams and contributes to the feedback for stu-
dents showing where the differences are, according to the structure given with the
instruction by the professor.

Initially, the professor gives the names of the methods that are going to be eva-
luated and the structure of how the exam will be developed. The second step will
be when the student writes the project solution in exam time and the correction of
the project is delivered on a second date given by the professor.

The third step is when the professor configure the properties file with the important
methods and and their respective weights, to later use the framework to identify the
differences between the 2 delivered versions, after that the framework generates a
final grades file for each student and generates a file with the counters of the diffe-
rences found by each method. In this way, students are allowed to see the differences
found and this is a way to give some feedback for learning from mistakes. The last
step is that the professor can used this evaluation result (grade) generated by the
framework to be considered as part of the final grade of each student.

In the first section shows the introduction of the thesis that explain the origin
necessity for which this thesis arose. In the second section contains the state of art
in which gives an overview of the existing frameworks nowadays for code analysis of
Java programming languages.

In the section of Methodology explains the theory of parsing java code in an abstract

syntax tree and node management. The Development section talks about the phases
of evaluation which are:

12

1. Navigate parser B which is the parser generated by the correction version delive-
red.

2. Comparison with parser A which is the parser generated by the exam time
version delivered.

3. Upgrade the counters of the differences found between the two projects deli-
vered (exam time and correction time).

4. Evaluation of the grades according to the differences found and the weight given
by professor of each method.

5. Stored the counters by method and final grades.

The section results shows the comparison between the grades given by the pro-
fessor and the grades generated by the framework, the application was proved with
several test and his respective properties values and was analyzed which was the
best combination of property values that generates grades closest to the grades as-
signed by the teacher. This thesis was focused on three particular cases, the case
one was focused on the type node bodyDeclaration, the second case was based on
the type that is not bodyDeclaration and the last one was based on the type node
methodDeclaration.

Finally the section conclusion talks about the future works that can be done with this
developed framework and highlights the efficient in terms of timing at the evaluation
time done by the professors.

Capitolo 2

State of art

This thesis works with different runtime libraries able to take a java source code [7]
and create its abstract syntax tree with all information about this source code in

the nodes of the tree.

2.1 OOPGrading

e This is a program designed to improve the practices in the course of object
oriented program [12] and in the assignment of grades. this tool allows to the
professor manager the two versions delivered by the the students of the same
project, check the differences between versions and generate a grade as show

in the image 3.1.

These tools implement functionalities of automating testing with JUnit [§]

configuration.

e The other important feature that this program is concerned to terms of au-
thentication in the exam thanks to the used Subversion-IDE as eclipse [1], it
allows giving a location where the students put their projects. Other features
get to thanks to SVN [11] is the support of concurrent development with a

Copy-Modify-Merge approach [9].

Teacher

Upload Assess exam
Starting - E :LII:LI-\I.HI Lz and notify tests &
Project results

% > ﬁ:::la(lk.o“: { r“ [knu:
= end |||| wirsion

#xam start

Student

S

Commit
A home

wersion

Figura 2.1: Diagram of flow exam.

2.2 CLDIFF

This is a framework proposed by students of the University Fudan in china, the
application compare two files, the application is a code differencing between two
java file and linked the code differences founds in a efficient summarization util for
the recognition of type nodes and assignment of the weigth values.

Initially, the framework has two input arguments for the java files that is request

Generating Concise
Pre- Pmoessmg Cnde Differences

Su CdFIPlrs

add @ dsete @b mow

Linking
7 Code Differences

[, N
1 Visualizing
| —

Visualized Code Differences

Pruned AST Pairs

Linked Code Differences

Figura 2.2: An overview of CIDiff [5]

a comparison, the two java files (f a, f b) are representation of a same file but in
different times,”file b” is before of changes and “file a” is the same file but after of
the changes. The framework cliffdif parsed to an AST’s from the source code file
java and labeled specified types of node [5].

The framework is able to realize a Hierarchy order in the AST’s created. the
Hierarchy can be in the subtypes of node as BodyDeclaration, typeDeclaraton, Me-
thodDeclaration, Initializer, FieldDeclaration and EnumDeclaration.

After of the characterization of a nodes of a AST, an edit script is generated and
with the framework GumTree [3] the script is used for will be generated fine-grained
code differences [5].

Figura 2.3: View of the framework

2.3 GumTree

GumTree [3] is a framework that use as a based the gumTree Algorithm. This Algo-
rith is in charge of establishing mappings of src and dst and then deducing an edit
script.

Exist 3 types of mapping used on GumTree Algorithm such as a greedy top-down
algorithm, a bottom-up algorithm or recovery mappings, see figure 2.4

A greedy top-down algorithm is recognized for anchors mappings which means that

first they search for the biggest unmodified pieces of code.

A bottom-up algorithm is called a container mapping which means that they deduce
which container of code can be mapped together. A recovery mappings is charac-
terized by searching for additional mappings among their descendants, this means
that they look at precise differences in what is leftover in each container [4].

. omptationunt Test.java: destination
—————— 1) TOp-dOWI“I — l — public class Test {
_EV;M"T/ private String foo(imt i) {
P I ~— if (i == @) return "Bar";
1 2) Bottom-up R _ T else if (i == -1) return *Foo!";

- —_
Test) @MethodDeclaration) }

@_od,dl’e«
S T

= === 3)Recovery

C_—:E P
> e e
e - .(m

.
Modifier; public@)

~at
MethodDeclaratiord)

.

. -

U S . -
CPrimitiveType: int > (SimpleName: 1) (ifstatemghill g P
- - o ‘?_'K_ -
Test.java: source =9 (hew =3
— —i——
public class Test { 7___{/"/ . S ,__l__
public String foo(int i) { G,'T"'"'“‘f) Cﬁf‘ﬂ"“"""‘l’D @E’l"°““"‘”§f’5

if (1 == @) return “Foo!";
}
}

Figura 2.4: Approaches of GumTree framework

This algorithm has 2 main problems, the distance between ordered labeled trees
and distance minimum-cost sequence of node edit operations that transform one tree
into another. those problems are not efficiency enough for our goal in this thesis.

Capitolo 3

Methodology

3.1 The parser tree

The beginning in the process of understand the differences is in the abstract syntax
tree, the convertion from java file to AST [10] is the first step, the AST is the
representation used by eclipse for the java source code, each file is represented as
a tree of AST nodes, and the nodes are subclasses specialized in a type of java
programming language, recognize all nodes and his type is a important task in the
process of differentiation in this thesis.

3.2 Java model

A java project is a tree structure thanks to the parser and is similar to a package
explorer view, the image show a example of java model 3.1. In this project, the
java model is out of scope but is important for future works because it costs less to
rebuild a Java model than to rebuild an AST and its nodes are easy handles.

Figure 2. Java Model Overview

== net.sourceforge. earticleast, app «+——— IJavaProject
= src IPackageFragmentRoot
= £} net.sourceforge.earticleast, app =— IPackageFragment
= j Activator.java =——— TCompilationUnit

=@ Activator -+ TType
o plugin IField
¥ PLUGIN_ID -———TIField
o getDefault()
@ Activator() -«———TMethod
@ start{BundleContext) =—IMethod
@& stop(BundleContesxt)
[# | J] ASTaApp.java
(- H) JRE System Library [jdk1.5.0_02Z] -+—IPackageFragmentRoot

Figura 3.1: Model overview of the project [10].

18

3.3 Node AST

The following image 3.2 shows two trees created by the framework that are going
to be compared between each other in the following step.

Lab/IDSTUDENTE-NAME-
SURNAME/Project/Trasmis AST Original
sione.java
Source
Original
IDocument

Correzione/IDSTUDENTE-NAME-
SURNAME/Project/Trasmissione.
java

Java
Source

Correction Parse

IDocument

Figura 3.2: Read and write in AST.

The abstract class defines the methods for access to the important features of
this type of node, other advantages are that the AST nodes are thread-safe for
readers, this is convenient in our application because is not necessary writers, the
application does not modify the java source code, only check the type of the node
and make to comparison.

There are two ways to reach the values of structural node properties:
Static methods(e.g getName()) or generic, using
getStructuralPropertyDesscriptor(StructuralPropertyDescriptor property).

Each node can represent the following characteristics:
e Types.
e Names.
e Statement- statements.
e Expression - Expresssion

e BodyDeclaration - BodyDeclarations

Exist three kinds of aggrupation for these structural properties as shown in the
image3.3, understand this agrupation between children is important in the process
of navigate the AST that is done through of recursive calls into the children.:

‘ & StructuralPropertyDescriptor
Ny StructuralPropertyDescriptor()
o getid()
O getNodeClass()
& isChildListProperty()
& isChildProperty()
o isSimpleProperty()
@ toString()
I l I
[G ChildPropertyDescriptor K< ChildListPropertyDescriptor K< SimplePropertyDescriptor
& cycleRisk: boolean g cycleRisk: hoolean o valueType: Class <T=
e — - & elementType: Class <T= Mo - -
A~ ChildPropertyDescriptor() L A" SimplePropertyDescriptor()
o"I cycleRisk() ‘c ChildListPropertyDescriptor() @ ogetValueType()
& getChildType() & cycleRisk() @ isMandatory()
& isMandatory() & getElementType()

Figura 3.3: Types of children and his properties [2].

The SimplePropertyDescriptor(E.g String, Integer or Boolean), the childProperty-
Descriptor is a node that belonging to a subclass of ASTNode and the last one is
ChildListPropertyDescriptor which is an array of AST node children of this node.
A node AST is the representation of a java code and belongs to a unique AST
instance. An AST node has a unique parent node and can have zero or a lot of
children, in this way is possible to navigate down from parent to child or upwards
from child to parent, In this thesis the navigation through to the abstract syntax
tree is realized by means of recursive calls, in the image 3.4 can see a example of
AST with differents types of node.

3.4 Visit the parser

3.4.1 CompilationNode

The compilationUnit is the first node, itis the head in the AST and in this thesis is
the first node that is sended to the process of comparison. The methods for access
the important characteristic into this node, the packageDeclaration through getPac-
kage(), the method imports() return a list of nodes,import declarations, and types()
with the list of nodes types declarations. A type declaration node is formed by a
class declaration and an interface declaration. The application used the getFields()
to return the list declaration or in our java code the global variables and finally,
getMethods() returns a list of methods declaration in this file. In the image 3.5, the
important children nodes that component the node compilationUnit.

3.4.2 Method declaration node

The documentation of IBM declare that the functions for access to information
feature information of a node A of type methodDeclaration are isContructor(), get-
Name()(name of method), parameters() (the list of arguments that must receiver
this method), getReturnType2()(return the return type for this method), getBo-
dy()(return the body code that belongs to this method). As an example of this we
can see the figure 3.6.

root (CompilationUnit)

type (ClassOrInterfaceDeclaration)

name (SimpleName)

isInterface="false'

identifier="X'

member (FieldDeclaration)

variable (VariableDeclarator)
name (SimpleName) type (PrimitiveType)

Figura 3.4: Example of grammar in the AST.

TypeDeclaration:
Classbeclaration
InterfaceDeclaration
ClassDeclaration:
[Javadoc] { ExtendedModifier } class Identifier
[< TypeParameter { , TypeParameter } >]
[extends Type |
[implements Type { , Type } 1|
{ { ClassBodyDeclaration | ; } }

CompilationUnit:
| PackageDeclaration]
{ ImportDeclaration }
{ TypeDeclaration | EnumDeclaration | AnnotationTypeDeclaration | ; }

Figura 3.5: Structure of node CompilationUnit and TypeDeclaration [6].

MethodDeclaration:

[Javadoc] { ExtendedModifier } [< TypeParameter { , TypeParameter } >] (Type | void)
Identifier (
[ReceiverParameter ,] [FormalParameter { , FormalParameter }]
) { Dimension }
[throws Type { , Type }]
(Block | ;)
ConstructorDeclaration:
[Javadoc] { ExtendedModifier } [< TypeParameter { , TypeParameter } >]
Identifier (
[ReceiverParameter ,] [FormalParameter { , FormalParameter }]
) { Dimension }
[throws Type { , Type }]
(Block | ;)

Figura 3.6: Structure of node MethodDeclaration [6].

3.4.3 BodyStatement node

The documentation of IBM advises to use for unparented block node owned by
this AST and get the relevant information of the node. All nodes only must be

statements, statements() in which allows to get a list of statements.

The block type AST node is important for be common between others nodes,
for example, almost every the nodes that the application evaluate have a part body
or the statements. In the image 3.7, the important children nodes that component
the node blockStatement.

Block:
{ { Statement } }

Figura 3.7: Structure of type node Block [6].

3.4.4 'TryStatement node

The documentation of IBM advises to use for find the method resources() that return
a list of resources of this node try, getBody/(), getFinally() and catchClauses are the
methods specialized for get the information of this type of node AST. In the image
3.8, the important children nodes that component the node tryStatement.

TryStatement:
try [(Resources)]
Block

[{ catchClause }]
[finally Block]

Figura 3.8: Structure of type node Try [6].

3.4.5 ThrowStatement node

The documentation of IBM describes the important children nodes that composes
the node throwStatement as it is shown in the image 3.9,

ThrowStatement:
throw Expression ;

Figura 3.9: Structure of type node Throw [6].

3.4.6 IfStatement node

The documentation of IBM advises to use the method of this library getExpression(),
in order to return the expression to check in the ifStatement, which can be a list
of expressions. In addition, getThenStatement() return the body of the“then” part
and getElseStatement() returns the body of the else part or null if statement ”if” has
not. The following image 3.10 shows the important children nodes that component
the node IFNode.

IfStatement:
if (Expression) Statement [else Statement]

Figura 3.10: Structure type of node If [6].

3.4.7 ForEnhanced node

The documentation of IBM describes the parameters controls are FormalParame-
ter(getBody()), Expression(getExpression()) and SingleVariableDeclaration(getParameter()).
The following image 3.11, represent the important children nodes that component

the node ForEnhanced.

EnhancedForStatement:
for (FormalParameter : Expression)
Statement

Figura 3.11: Structure of type node ForEnhanced.

3.4.8 ForStatement node

The documentation of IBM describes the class that contains the methods for acces-
sing 4 values of for Node, the getBody() that returns the body of this for statement,
getExpression() returns the condition expression or null if there is none, inititia-
lizers() returns a list of initializer expressions, updaters() returns a list of update
expressions. The following image 3.12 shows the important children nodes that
component the node forStatement.
ForStatement:
for (
[ForInit];
[Expression | ;
[ForUpdate])
Statement
ForInit:
Expression { , Expression }

ForUpdate:
Expression { , Expression }

Figura 3.12: Structure of type node For [6].

3.4.9 DoStatement node

The documentation of IBM describes the application of using getBody() for get the
Body Statement of this node and the expression in the final while is returned with
getExpression(). In the image 3.13, evidence the important children nodes that
component the node doStatement.

DoStatement:
do Statement while (Expression) ;

Figura 3.13: Structure of type node Do [6].

3.4.10 WhileStatement node

Similar to DoStatement, the documentation of IBM describes the application use
getBody() for get the Body Statement of this node and the expression is returned
with getExpression(). In the image 3.14, evidence the important children nodes that
component the node whileStatement.

WhileStatement:
while (Expression) Statement

Figura 3.14: Structure of type node While [6].

3.4.11 SwitchStatement node

The documentation of IBM describes the method getExpression() which is in charge
of return the expression to evaluate in the switch node and the list of statements()
or switch case.In the image 3.15, the important children nodes that component the
node switchStatement.

SwitchStatement:
switch (Expression)
{ { switchCase | Statement } } }
SwitchCase:
case Expression :
default :

Figura 3.15: Structure of type node Swithc [6].

Capitolo 4

Development

The best way to have an high overview of this thesis is looking at it as simple as
possible, throw this whole section will be describe with details each simple step

mentioned on this figure 4.1.

INPUT BY STUDENTS SET UP BY PROFESSOR
Identify Give the
principal weight of
methods each method
Set up file of
properties

FRAMEWORK
PROCESS

Read input

sssssss

Produce Output
file with student
notes.

Figura 4.1: General high model overview of the project

OUTPUT BY
FRAMEWORK

Txt with
differences
found and
final grade
calculated

This image shows in the left side the java files belonging to the same project but
with different versions, version exam or first delivered and version correction, this
projects are inputs for the system and this phase is called the input of students.
In the other hand is the process of setup the weight values, this process is realized
by the professor, the weight values are assigned by types of node and the names
of important methods, second criteria of professor, the setup values are load in the
ASTExtractorCalifica.Properties file. The next phase is the execution of framework
process, in this phase are the subsections of parser of two AST, identification of
nodes AST, Comparison between nodes in differents AST and finally calculation of
grades. In the final process, the values generated are stored in convenient TXT and

excel files, this phase is called the output of framework.

25

4.1 The framework used ASTExtractor: Abstract
syntaxTree

I have started my work with the library abstract syntax tree, widely used in ac-
tivities such as refactoring, quick fixes, and quick assist. It is an extractor that
transforms the java source into a tree form then the tree is more convenient and re-
liable to analyze and modify programmatically than the text-based source. Firstly,
it is necessary that the user provides some code to parser, there are two options, the
absolute address filename or the address of the directory which is the project that
the user wants to parser. After one or more syntax trees will be created syntax tree
for one file found in the project.

The commands for executing the library, only one option is possible

As project:

java -jar ASTExtractor.jar -project="path/to/project”
-properties="path/to/propertiesfile” -repr=XML—JSON
As file:

java -jar ASTExtractor.jar -file="path/to/file”
-properties="path/to/propertiesfile” -repr=XML—JSON

The link where is available: https://github.com/thdiaman/ASTExtractor The
goal of the first part of the project is to compare the same java code but in two
different phases of development to understand all changes make for the student in
the second version with respectively the first version. The second goal is assigned
to a grade from the node type that belongs to the change.

4.2 Input Arguments

The first change made to the library ASTExtractor was to add an extra parameter to
the arguments so there are two new arguments with respect to the original library;,
the first new argument is argument is the path name where is located the folder
that contains all projects that students delivered and the second argument is the
path address to the folder that contains all projects of the students delivered in the
first deadline or “made in the time of the exam”, in other words, the first argument
content is the same project with the corrections made after of the exam then this
first argument content should not have many changes. The following image 4.2
shows the diagram of classes of ASTEXTRACTOR.

4.2.1 Folders of the projects

As its shown on 4.3, FolderFirstDelivered="adressLocationOfFolderFirstDelivered”
is the address of the folders where the projects students in the second instance of
delivery are put. These projects contain changes or corrections made to the fir-
st delivery. FolderSecondDelivered="adressLocationOfFolderSecondDelivered” the
addresses of the folder where the student’s projects are put. All student’s projects
are in the initial version or the first delivered. The version of the project done in

{ MainAPP J { {ASTExtractor } { ‘JavaAstParser]
: j j

parseFile i (Create ASTParser
> H of file.
parserFolder '
S
Parser
<=~ Return xmlfson ~T7777 Receive Compi- [N
D lationUnit of the
VisitTree [file.

Return xmlfjson '::

Return xmlijjson. - - - 3p— . (Construct Xml/Json
. 7) VisitNode \,yith the type and value

- .-__;{ of the node AST

Visithod |_ aetChi
| Returnxmlfson D

3

o \T: Arguments B

-]
H i T
' ; '
' i !

(ASTExtractorProperties = path of the file properties
that containt the list of

nodes for OMIT/LEAF
by type of the node.

Retumn type = XML or JSON.
Folder = Path where the java project is founded.

or
File = Path where the java file by parse is founded.

Figura 4.2: Diagram of class of ASTEXTRACTOR.

FolderFirstDelivered / FolderSecondDelivered

Studentl.zip ClassN.java
Student2.zip Classl.java || Class2.java ClassN.java

StudentN.zip Classl.java || Class2.java ClassN.java

Figura 4.3: Structure of students projects folder.

exam time.

The students are not constrained to deliver the correction of the exam so in this case,
the program doesn’t assign scores to this student. It is mandatory that the student
keep the same structure and the same names for both the first delivered project (the
correction) and the second delivered project, on the contrary, the comparison is not
possible and the probability of finding differences between the two versions is high
and so the final result is considerably affected.

The other new input argument is the evaluation=ASTExtractorCalifica.properties.

This file is for assigning the weight-values that will be stored in the system and
used to get the grades for each student and depending on his change type. In the
structure of this file, there are separated by the character(%%%% %% %%), and the
first part is used to specify the names of the classes.

The other part is used to specify the important structures of the nodes. Obviously,
all part that is set up in this file takes a special value that affects the final grade of
the specified student, as its shown on figure 4.4.

i liscriviConcorrente=6 3

2 cercaConcorrente=6 !
jelencoConcorrenti=6 i
4 registraPiattoConcorrente=6 !
5cercaPiatto=6 :
6 aggiungilngredientePiatto=6 |
' 7TelencoPiattiPerNome=6 !
gelencoPiattiPerNumeroIngredienti=6 1 i
9definisciFase=6 !

10 assegnaConcorrenteFase=6
lldefinisciSfidaFase=6
12descriviSfideFase=6

i13descriviSfide=6
il4determinaVincitoreSfida=6
1151leggiDaFile=6
“l6othersMethods=4
/ %%%%%%%%MethodDeclaration(Type|void)=2.50

18MethodDeclaration(ReceiverParameter)=2.50 ;Z
19MethodDeclaration(throws)=2.50

71 %%%%%%s%sLTotatement (Expression)=5
i;_’ IfStatement (ThenStatement)=5 3 !
23 IfStatement(ElseStatement)=> T
24 %%%%%%%%EnhancedForStatement (FormalParameter)=8.33 .
125 EnhancedForStatement (Expression)=8.33 £1

istEnhancedForStatement{Body)=8.33 |

77 %%%%%%%%ForStatement (ForInit)=6.25
28 ForStatement(Expression)=6.25 E;
29ForStatement(ForUpdate)=6.25
\J0ForStatement(Body)=6.25

¥
i
'
|
|
|
|

Figura 4.4: The properties file.

4.2.2 The weight properties

The properties file ASTExtractorCalifica.properties contains the values of weight
that influence directly in the calculation of the final grade. Those Values are available
to be change by the professor criteria, see figure 4.5.

Each section of the properties file is separated by The first section of the file is the
name of methods that are considered more important for influence in the evaluation.

From the second section to the final section are the weight that are divided by

type of node, in this part are assigned a weight to specific feature for determinate
node. 4.6.

This is orden that followed the sections:

to evaluate.

String Separator

Name Methods Weigth

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Figura 4.5: Weight by method name. The setup of weight values for the methods

iscriviConcorrente=1.00
cercaConcorrente=1.00
elencoConcorrenti=1.00
registraPiattoConcorrente=1.00
cercaPiatto=1.00
aggiungiIngredientePiatto=1.00
elencoPiattiPerNome=1.00
elencoPiattiPerNumeroIngredienti=1.00
definisciFase=1.00
assegnaConcorrenteFase=1.00
definisciSfidaFase=1.00
descrivisfideFase=1.00
descrivisfide=1.00
determinaVincitoreSfida=1.00
leggiDaFile=0.60
othersMethods=1.0
importsMethods=1.00

Node Type Feature of Node Type

T %%%%%%%%MethodDeclaration (Type|void)=50.00
19 MethodDeclaration|(ReceiverParameter)=50.00
20 MethodDeclaration|(throws)=50.00

21 MethodDeclaration =30.00

22 MethodDeclarationl(thrownException)=50.00
23 [%%%%%%%%IfStatement ([Expression))=40.00

24 |Ifstatement|(ThenStatement)=20.00
25 |IfStatement|(ElseStatement))=20.00

26 [$%%%%%%¥EnhancedForStatement (FormalParameter)=20.00

27 [EnhancedForStatement|(Expression)=20.00
28 EnhancedE‘orStatement (Body) =20.00
29 [%%%%%%%%Forstatement|(Forinit)=20.00
30 [Forstatement =20.00
31 |ForStatement =20.00
32 |ForStatement|(Body)=20.00
33 [%%%%%%%DoStatement (Expression)=50.00
34 [DoStatenent [Body) =20.00

sy epotas! srat Lok RaTSEToT) 3
TypeDeclarationl/(implements)=50.00
37 |TypeDeclaration kfleldDeclaratlog) =50.00
38 [%%%%%%%9WhileStatement|(Expression)=60.00
39 (Body) =20.00
40 [%%%%%%%%TryStatement] (Body)=20.00
41 [TryStatement (Cathe)=50.00
42

]

Figura 4.6: Weight by type of node.

Weight Value

1)Name of methods 2)Method Declaration 3)ifStatement 4)Forstatement 5)En-
hancedForStatement 6)DoStatement 7)WhileStatement 9)CompilationUnit 10)Ty-
peDeclaration 11)TryStatement

The methods in the list properties are used for the writing of the excel file, which
shows the final grades of the students and the counters by methods of the number
of differences, one example is the figure 4.5.

The execution -firstVersion=exam//2018-2019//correzione -second Version=exam,//2018-
2019/ /lab -properties=ASTExtractor.properties -repr=XML
-Evaluation=ASTExtractorCalifica.properties.

4.3 Path the FolderFirstDelivered and FolderSe-
condDelivered

The parserFolder function is the class in charge of listing all java projects in the
folderFirstDelivered, one folder for each student, at this point the object student
is created, and the system checks if exist the second project version for the same
student into the FolderSecondDelivered folder after the projectFirstVersion and pro-
jectSecondVersion values are set up in the object student.

projectFirstVersion = Second version or correction version of the same student
project(located in FolderSecondDelivered).
projectSecondVersion = The project delivered by the student in exam time(located
in FolderFirstDelivered).

4.4 The student class

This class is called only if two similar projects (first version and correct version) are
found belonging to the same student. The object student is created before analyzing
the files of the java project. This object stored important values about the student,
the differences found in the process of comparison of the two versions, the current
and final grades, and counters by methods with the number of differences found by
methods for this student. The image shows the object student 4.7.

public class StudentStatistics {
public String id;
public String name;
public String lastName;
public Stringl[] methodUsed;
public double gradeTotal;
public String folderNameA;
public String folderNameB;
public String fileResult;
FileWriter myWriter;
static HashSet<String=; methodsl = new HashSet<String=();
static HashMap<String, integer> coungterPerMethods;

Figura 4.7: The object student.

4.5 Matches of files

With the object student set up, the next step is a new iteration, one for each file
found in the projectFirstVersion, in this iteration the operation of matches with the

file that should exist in the project version correction. Only if exist matches between
the first and second versions of filenames, the parser of the files and comparison will
be done else this eventuality will be written in a txt file and signal as a file not found
with the filename that generates this fail.

4.6 Parsing of source code.

For each iteration by file found in the java project student, two abstract syntax
tree will be created, the parserA and the parserB, belonging respectively to the files
matches, one file in the project delivered in exam time(versionB) and the file in the
project delivered in correction time(versionA).

The setup of the handles parsing of java and the extraction of their abstract syntax
tree is done in this part, the first node is the belonging to subclass compilationUnit,
The following image 4.8 shows the parameters that must be configured before the
conversion of source code to AST.

121 © ublic static void parseMethod(StudentStatistics studentProject, String fileFirstDelivery,

122 String fileCorrectDelivery) {

123 ASTParser parserFirstDelivery = ASTParser.newParser (AST.JLS14);

124 ASTParser parserCorrectDelivery = ASTParser.newParser (AST.JLS14);

125 parserFirstDelivery.setSource (fileFirstDelivery.toCharArray())

126 parserCorrectDelivery.setSource (fileCorrectDelivery.toCharArray());

127 parserFirstDelivery.setKind (ASTParser.K COMPILATION UNIT) ;

128 parserCorrectDelivery.setKind (ASTParser.K COMPILATION UNIT) ;

129 final CompilationUnit cuFirstDelivery = (CompilationUnit) parserFirstDelivery.createAST (null) ;
130 final CompilationUnit cuCorrectDelivery = (CompilationUnit) parserCorrectDelivery.createAST (null);
131 nodeB. setNode (cuCorrectDelivery) ;

132 methods.clear() ;

133 methodsFile.clear();

134 visitFillMethod (cuFirstDelivery) ;

135 visitNode (cuFirstDelivery, studentProject) ;

136 }

Figura 4.8: Set up handles of parser.

ASTParser.newParser(AST.JLS3); ASTParser.newParser(AST.JLS3); speci-
fied the java language specification, in this example JLS3, with the new syntax,
differentiation between JLS2 and JLS3 is necessary for terms of compatibility.

parser.setKind (ASTParser. K_COMPILATION_UNIT); Determinates the
type of input, there are five kinds of inputs, the ICompilationUnit is one of the
inputs, it is the pointer to the java file source.

Entire source file = K_.COMPILATION_UNIT

The portion of java code: K. EXPRESSION, K STATEMENTS,
K_CLASS_.BODY_DECLARATION

In this application always is used the option of the entire source file.

The initially navigate into an AST is done in the parserA thanks to the function
visit node shown in the image 4.9 in which implements recursive calls for naviga-
te bottom down (the first project version delivered at correction time), all nodes
will be asked about their type of node, in this process, the search consists in found
specific types of nodes in the AST parserA that are important for the criteria of
evaluation, these important nodes are defined by the user in the file ASTExtractor-
Califica.properties first of execution.

In the visit to the parserA, each node asks for the instance subclass that belongs,
this is the process of recognition, the function that does the recognition of type node
is shown in figure 4.10 , which is important because determines the visit abstract
subclass that will be called. As say first the abstract subclass has all access methods
for this specific type of node and then access to the values of this node.

VisitNode(ASTNode node){

*

THE IDENTIFICATION PART OF THE CURRENT NODE
if (nodeB instanceof MethodDeclaration) {

Jelse

*

J/NAVIGATE PART THROUGH CHILDREN IN THE TREE
List<StructuralPropertyDescriptor> props = node.structuralPropertiesForType();
for (StructuralPropertyDescriptor property : props) {
Object child = nodeAnew.getStructuralProperty(property);
if (property.isChildProperty()) {
visitNode((ASTMode) child); //RECURSIVE CALL FOR NAVIGATE THE CHILDREN
} else if (property.isChildListProperty()) {
Iterator<ASTNode> childrenList = ((Iterable<ASTNode>) child).iterator();
while (childrenList.hasNext()) {
visitNode((ASTNode) childrenList.next()); //RECURSIVE CALL FOR NAVIGATE THE CHILDREN

}
Jelse if (property.isSimpleProperty()) {

}

Figura 4.9: Function for navigating the AST through his nodes.

//IDENTIFICATION OF THE TYPE OF NODE AST
//THE NODE IS REDIRECTION TO THE CLASS
//SPECIALIZED IN EXTRACT TO RELEVANT
//INFORMATION

if (nodeB instanceof MethodDeclaration) {
VisitNode.visit((IfStatement) node);

}else if (nodeB instanceof IfStatement) {
VisitIFNode.visit((IfStatement) node);

}else if (nodeB instanceof DoStatement) {
VisitDoNode.visit((DoStatement) node);

}else if (nodeB instanceof EnhancedForStatement) {
VisitForEnhanced.visit((EnhancedForStatement) node);

}else if (nodeB instanceof ForStatement) {
VisitForNode.visit((ForStatement) node);

}else if (nodeB instanceof WhileStatement) {
VisitWhileNode.visit((WhileStatement) node);

}else if (nodeB instanceof SwitchStatement) {
VisitSwitchStatement.visit((SwitchStatement) node);

}else if (nodeB instanceof TryStatement) {
VisitTryNode.visit((TryStatement) node);

}else if (nodeB instanceof ThrowStatement) {
VisitThrowNode.visit((ThrowStatement) node);

}

Figura 4.10: Process of recognition.

4.7 Visit the parserA

In the next step, all classes that manage the visit to each type of node, add a label
that signals the type of node and if the process of comparison with the parserB is
false, the label will be used for matches with the value of weight setup in the file
ASTExtractorCalifica.properties for this specific type of node.

After the process of identification of a node in the parserA, the process of com-
parison is called, as is shown on figure 4.31 and the comparison process return to
boolean value which means if exists a change in this node but in the versionB.

4.7.1 VisitCompilationNode.java

This class manages the access to the packageDeclaration through getPackage(), the
method imports() return a list of nodes import declarations and types() with the
list of nodes types declarations.

A type declaration node is formed by a class declaration and an interface decla-
ration. the application used the getFields() to return the list declaration or in our
java code the global variables and finally, getMethods() returns a list of methods de-
claration in this file. In the image 4.11, the important children nodes that component
the node compilationUnit.

TypeDeclaration:
ClassDeclaration
CompilationUnit: InterfaceDeclaration
| PackageDeclaration] ClassDeclaration:
{ ImportDeclaration } [Javadoc] { ExtendedModifier } class Identifier
{ TypeDeclaration | EnumDeclaration | AnnotationTypeDeclaration | ; } [< TypeParameter {, TypeParameter } s]
[extends Type |
[implements Type { , Type }]
{ { ClassBodyDeclaration HE

Figura 4.11: Structure of node CompilationUnit and TypeDeclaration [6].

Correction Code Original Code
CompilationUnit(Import) ‘ TypeDeclaration(Implements)

TypeDeclaration(FieldDeclaration)

Figura 4.12: Visit compilation node diff.

4.7.2 VisitMethodDeclarationNode.java

In this class are the functions specialized in the access the nodes recognize as a
method declaration type, too access the constructor declaration. In the image 4.14,
the important children nodes that component the node methodDeclaration.

Filename B:/home/willmar/eclipse-workspace/ASTExtractor-masterCopy/exam/2018-2019/1ab/203560-SCIVOLI-MATTEO/polichef/Trasmissione. java
Files are not equal.

import java.io.*; CompilationUnit(Import)
import java.io.*; ---> line found]
import java.io.IOException;
import java.io.IOException; ---> line found TypeDecIaration(Implements)
import java.util.*; //—‘
import java.util.*; --->CompilationUnit| WARNING line don't found - type of statement(ImportDeclaration) ,/ —
Piatto Piatto --->CompilationUnit|TypeDeclaration| WARNING line don't found - type of statement(SimpleType
Map<String,Concorrente> concorrenti=new LinkedHashMap<String,Concorrente>(); ---> line found
Map<Integer,Piatto> piatti=new LinkedHashMap<Integer,Piatto>(); ---> line found
Map<Integer,Fase> fasi=new LinkedHashMap<Integer,Fase>(); ---> line found
int numeroPiatto=100; ---> line found
boolean variable=false; --->CompilationUnit|TypeDeclaration| WARNING line don't found - type of statement(FieldDeclaration)

_—

TypeDeclaration(FieldDeclaration)

Figura 4.13: Visit compilation node framework overview.

MethodDeclaration:
[Javadoc] { ExtendedModifier } [< TypeParameter { , TypeParameter } >] (Type | void)
Identifier (
[ReceiverParameter ,] [FormalParameter { , FormalParameter }]
) { Dimension }
[throws Type { , Type }]
(Block | ;)
ConstructorDeclaration:
[Javadoc] { ExtendedModifier } [< TypeParameter { , TypeParameter } >]
Identifier (
[ReceiverParameter , | [FormalParameter { , FormalParameter }]
) { Dimension }
[throws Type { , Type }]
(Block | ;)

Figura 4.14: Structure of node MethodDeclaration [6].

Correction Code | MethodDeclaration(ReceiverParameter) | Original Code

odDeClmmu\/ MethodDeclaration(Throws)
— —

(str

Meth

1 public
ezionelngredienteDuplicato{

, String cognoms

String professione) throws Ecc 1 public

, cognome, BY identificativo);

MethodDeclaration(Body

Figura 4.15: MethodDeclaration Diff.

‘ MethodDeclaration(ReceiverParameter) ‘

[MethodDeclaration(Type | Void / MethodDeclaration(Throws)
/—U erhodrec
/ /

public Concorrente i i icato --->CompilationUnit| Tyb ion| WARNING line don’t found - type of statement(SimpleType)
iscrivi ite(String nome,String cognome,String professione,){

Concorrente --->ConpilationUnit|TypeDeclaration|MethodDeclaration| WARNING line Mon:t’ found - type of statement(SimpleType)

String nome ---> line found /

String cognome ---> line found

String professione --->Conpilati yp 1 1aration| WARNING line don't found - type of statement(SingleVariableDeclaration)

String identificati 5000 ing(,1)+ "."; ---> line found

)’
concorrenti..containsKey (identificativo) ---> line found

return null; ---> line found
}
Concorrente ctemp=new C ione, identificativo); --->ConpilationUnit|TypeDec laration| WARNING line don't found - type of statement(VariableDeclarationStatement)
concorrenti.put(identificativo,ctemp); ---> line found ~
return ctemp; --->CompilationUnit|Typ i Laration| WARNING Line don't found - type of statement(ReturnStatenent) —
) ——

_— MethodDeclaration(Body) |
MethodDeclaration(Body) h (Bod

Figura 4.16: MethodDeclaration framework overview.

This is an example of setup in the properties file ASTExtractorCalifica.properties
of how the values of weight are set up, the values of weight are applied in depen-
dencies of the site where the change between the two versions is detected. In the
image 4.17, a example as how set up the values of weight in dependence of part of
code that the professor wish evaluate.

package approvviglonamento_magazzine;

import java.util.s;

public class Magazzine { FieldDeckration
Rapeinteger Prodottosprodatti = new LinkediEshnapeinteger prodottos(): %%%%%sssMethodDeclaration(Type|void)=2.50
T il o s rnitere 03 MethodDeclaration(ReceiverParameter)=2.50
Tiz<zé§l\l:;2:g:‘tailol‘\ﬁﬁulﬂ‘/\ﬂllo/ﬂ = new LinkedHashMap<String,Ordinaziones(); Method Decl a rat ion (th rows)=2 X 50

public rrosoten regtstraProtottol int coficerradotta, string descrizions) { MEtThodDeclaration(Body)=2.50
prodotte p = new Prodotto(codiceprodotte,descrizione); _——— . = .
p.quantita=s; body,
prodotti.put(codiceProdotta, p);
return p;

)]

public int otrieniquantita(int codiceprodotto) {
int q = prodottl.get(codiceProdotta).quantita;
return q;

1

public CollectioneProdottos elencoProdottif{){
return prodotti.values();
)]

Figura 4.17: The weights values for the node MethodDeclaration.

The methods used for access to information of a node A of type methodDecla-
ration are isContructor(), getName()(name of method), parameters() (the list of
arguments that must receiver this method), getReturnType2() (return the return
type for this method), getBody()(return the body code that belongs to this method).

4.7.3 VisitIFNode.java

In this class is possible to find the three more used functions for access to the infor-
mation that is more relevant for the criteria of evaluation, getExpression(), returns
the expression to check in the ifStatement, which can be a list of expressions. get-
ThenStatement() return the body of the“then” part and getElseStatement() returns
the body of the else part or null if statement ”if” has not. In the image 4.18, the
important children nodes that component the node IFNode.

IfStatement:
if (Expression) Statement [else Statement]

Figura 4.18: Structure type of node If [6].

Correction Code IFStatement(Expression) Original Code

orrentel, int idpiattol, String idcon

if
1. containsKey(idPiatto2)){

emp2 1= null 8& ptempl 1= null 88 ptemp2 != null) mp2 1= null 88 ptempl != null §& ptemp2 != null)

correntel, idPiattol, idConcorrente, idPiatto2, idConcorrentel, idpiattol, idConcorrente2, idPiattod,

sfidaTemp. cVincente = ctemp2;
sfidaTenp. cPerdente = c(ewl;’
N

s ! I\ |

; . |
} ‘f \ IfStatement

|
i | \

IfStatement(ElseStatement)

(ThenStatement)

Figura 4.19: If declaration.

public void definisciSfidaFase(int nuneroFase,String idConcorrentel, int idPiattol,String idConcorrente,int idPiatto2,String esito,){
Vo ine f

IFStatement(Expression)

--> line found
1 88 piatti idPiattol) & piatti

idPiattol) a8 piatt
e found

1dPiatto2)){
idPiatto2) --->CompilationUnit|Typs IfStatement| WARNING line don’t found - type of stateme:

TF(Ftenp 1= nu

rentiFase. get(idConcorrentel); ---> line found
1dce i ---> line found

et IfStatement(ThenStatement)

c
TF(ctenpl 1= nuj

TF(Ftenp 1= nu 1= null 8 ptemp2 I= null){
null 8& ptempl != null 8& ptemp2 != null ---> line found
atto1, 1dConcorrente?, 1dPiatto2, esito); ---> line found

TF(esitiPrin

WARNING 1ine don't found

sFidaTenp. cVincente=ctenp?; -

sFidaTenp. } --->CompilationUnit|Typ:

| WARNING line don't found

IfStatement(ElseStateme
}

nt)

Figura 4.20: If declaration framework overview.

4.7.4 VisitForEnhanced.java

The parameters controls are FormalParameter(getBody()), Expression(getExpression())
and SingleVariableDeclaration(getParameter()). In the image 4.21, the important
children nodes that component the node ForEnhanced.

EnhancedForStatement:
for (FormalParameter : Expression)
Statement

Figura 4.21: Structure of type node Forenhanced [6].

4.7.5 VisitForNode.java

This class contains the methods for accessing 4 values of for Node, the getBody/()
that returns the body of this for statement, getExpression() returns the condition ex-
pression or null if there is none, inititializers() returns a list of initializer expressions,
updaters() returns a list of update expressions. In the image 4.22, the important
children nodes that component the node forStatement.

ForStatement:
for (
[ForInit];
[Expression]
[ForUpdate])
Statement
ForInit:

Expression { , Expression }
Forupdate:
Expression { , Expression }

Figura 4.22: Structure of type node For [6].

4.7.6 VisitDoNode.java

In this class, the application use getBody() for get the Body Statement of this node
and the expression in the final while is returned with getExpression(). In the image
4.23, the important children nodes that component the node doStatement.

DoStatement:
do Statement while (Expression) ;

Figura 4.23: Structure of type node Do [6].

4.7.7 VisitWhileNode.java

Similar to visitDoNode.java,the application use getBody() for get the Body State-
ment of this node and the expression is returned with getExpression(). In the image
4.24, the important children nodes that component the node whileStatement.

WhileStatement:
while (Expression) Statement

Figura 4.24: Structure of type node While [6].

Correction Code WhileStatement(Expression) Original Code
TryStatement(Body) e WhileStatement(Body)

TryStatement(Catch)

Figura 4.25: While and Try statement.

WhileStatement(Expression)

| / WhileStatement(Body)

TryStatement(Body)

TryStatenent| WARIING line don't found - type of statemerlf{VariableDec
Lestatenen

WARNING ne don"t found - type of statement(CatchClause)

.
TryStatement(Catch)

Figura 4.26: While and Try statement framework Overview [6].

4.7.8 VisitSwitchNode.java

getExpression() return the expression to evaluate in the switch node and the list of
statements() or switch case. In the image 4.27, the important children nodes that
component the node switchStatement.

SwitchStatement:
switch (Expression)
{ { SwitchCase | Statement } } }
SwitchCase:
case Expression :
default :

Figura 4.27: Structure of type node Switch [6].

4.7.9 VisitTryStatement.java

In this class can find to the method resources() that return a list of resources of
this node try, getBody/(), getFinally() and catchClauses are the methods specialized
for get the information of this type of node AST. In the image 4.28, the important
children nodes that component the node tryStatement.

Trystatement:
try [(Resources)]
Block
[{ CatchClause } |
[finally Block]

Figura 4.28: Structure of type node Try [6].

4.7.10 VisitThrowStatement.java

In the image 4.29, the important children nodes that component the node throw-
Statement.

ThrowStatement:
throw Expression ;

Figura 4.29: Structure of type node Throw [6].

4.7.11 VisitBodyNode.java

This class has only one method for get the relevant information of the node, all
nodes only must be statements, statements() allows to get a list of statements,
the block type ast node is important for be common between others nodes, for
example, almost every the nodes that the application evaluate have a part body or
the statements. In the image 4.30, the important children nodes that component
the node blockStatement.

Block:
{ { Statement } }

Figura 4.30: Structure of type node Block [6].

nodeB.compareVisitNode (nodeToCheck);

Figura 4.31: Call to compare method.

4.8 Compare of statements

The method compareVisitNode is called for each node in the parserA and his duty
is to see if exist the same node in parserB.

public class compareTypeNodes {
public static boolean nodeFound;

public static void setPropertiesFound(boolean value) {
nodeFound = value;

}

compareVisitNode (ASTNode nodeAForSearch, String typeParent) {
setPropertiesFound(boolean value);

visitNodeParserB(nodeBCompilationUnit, , nodeAForSearch , typeModelInstanceParent);
if(nodeFound == true) {

//the nodes of two versions(original and correction)are equals

1
else {

f//Exist to difference between the two versons, the node identified is store.
}
1

visitNodeParserB(ASTNode nodeB, String nodeTypeB, ASTNode nodeAForSearch
, String typeNodelInstanceParentA) {
//The visit to AST of the parserB
compareNodes (nodeAForSearch, typeParameterMethodB);

}

private static void compareNodes(ASTNode nodeAForSearch, ASTNode x) {
String nodeTypeA = ASTNode.nodeClassForType(nodeAForSearch.getNodeType()).getSimpleName();
String nodeTypeB = ASTNode.nodeClassForType(x.getNodeType()).getSimpleName();
if(nodeTypeA.contentEquals(nodeTypeB)) {
if(nodeAForsSearch. tostring().contentEquals(x.toString())) {
nodeFound = true;

}

Figura 4.32: The method compares:two nodes

The parameter for sending is the same node that is currently checked, and the value
for return is a value boolean that specified if found a similar node in the parserB

VisitNodeParserB The process of comparison is realized into the tree created
by the parserB of the project correction, at this point, the application has a node
reference in the parserA and starts the navigate into the AST parserB.

The navigation through the AST created for the parserB will check only the no-
des that have the same subclass in the type of nodes following the same root in
terms of the parents, so only take a root that matches between parents in the AST
parserB and the parents of the node in the AST parserA, in this way the navigate
through the AST parserB is done more efficiently than in the AST parserA. Started
from the initial parent, compilationUnit to the last parent of the node reference in
the parserB. The nodes that satisfied this rule are passed to the process of identifi-
cation, the same process made with the nodeA in parserA explained in the chapter
4.7 is made with these nodes found in the visit to parserB and the nodes identified
with the instances that the node reference will be check.

Finally the nodes that passed the last two controls, they will be subject to a fi-
nal check: With these two final controls, the process of comparison is ended, and
the global variable “nodeFound” is set up to false in the init of process comparison
of each node in the tree of parseA after starting the process of visit and recognizing

visitNodeParserB ASTNode node

//THE CURRENT MODE OMLY WILL BE PROCESS IF

//THE PARENTS OF MDDE IN PARSERE AND THE

J/PARENTS OF NODE IN PARSERA ARE EQUALS
if(typeNodeInstanceParenth.contentEquals{nodeTypeB)) {

J*THE PROCESSS IDENTIFICATION OF THE CURRENMT NODE
if (nodeB instanceof MethodDeclaration) {

lelse if {node instanceof Ifstatement) {
1-
* f

¥

J/NAVIGATE PART THROUGH CHILDREN IN THE TREE PARSERE
List<StructuralPropertyDescriptor> props = node.structuralPropertiesForTypel();
for {StructuralPropertyDescripter property : props) {
ohject child = nodeanew.getstructuralProperty{property);
if (property.isChildProperty()) {
visitNode{ (ASTNode) child); //RECURSIVE CALL FOR NAVICATE THE CHILDREMW
} else Lf (property.isChildListProperty()) {
Iterator=a5THode> childrenlist = ((Iterable=aSTNode=) child).iterator();
while [childrenList.hasNext()) [
visiltMode{ (A5TNode) childrenList.next()}); //RECURSIVE CALL FOR MAVICATE THE CHILDREM

1
lelse if (property.isSimpleProperty()) {

1

Figura 4.33: The visit to the parserB

if(nodeTypeA.contentEquals(nodeTypeB)) {
if(nodeAForsSearch.tostring().contentEquals(x.tostring())){
nodeFound = true;
1

Figura 4.34: The nodes are equals?

the node in the parserB that will make the global variable true only if the belonging
node to parserB has the following requirements:

e The chain formed by the type of node of his parent is the same in the node
references in parserA and the node Found in the process of comparison.

e The nodes parserA and parserB have the same type of nodes.

e The string values that are represented in the code these nodes are the same.

4.9 Store differences by file

For each node in the Ast parserA that active the process of comparison, one of the
first steps is setup nodeFound to false, and in the final of comparison this variable
global is setup to true if the node has the three rules described in the previous char-
ter otherwise the node of the AST created by parserA is different or not exist the
node in the AST created by parserB and therefore will be managed as node different
and store into a collection java.

public class compareTypeNodes {

HashMap<int, ASTNode> ChangesByFileMap =new HashMap<int, ASTNode>();
int counterDifference = 0;

public static void setlListNodesChangesByFile(ASTNode listMNodesForSave) {
counterDifference = counterDifference + 1;
ChangesByFileMap.put(counterDifference, listNodesForSave);

HashMap<String, ASTNode> getChangesByFileMap() {
return ChangesByFileMap;//The main class ask for this collection for each file in the
[/ project after that finish the process of
} // the comparison of all nodes in the file versionA

compareVisitNode (ASTNode nodeAForSearch, String typeParent) {
visitNodeParserB({nodeAForSearch);//call to visit the parserB,if nodeA is found
//in the parserB, the nodeFound will be "true"

if(nodeFound == true) {
//the nodes are equals, Not changes between the nodes in versionA and versionB.
}

else { //Exist to difference between the two wversons, the node identified is store.
setListNodesChangesByFile(nodeAForSearch);//Store de node only if
} //the process of comparison between
} //the node of versionA did not find
} //his match in versionB

Figura 4.35: Store nodes differences found

Finally exist a collection java where is stored all nodes with differences found, this
structure is clear always in the init of processing each file, the colecction is to type
map collection with a String as a key and a AST node as a value, the Identifica-
tionDiff and the different node AST are the key and the value, respectively. The
IdentificationDiff is a key formed by the name method that belong or has the first
parent in his familiar’chain and additionally a counter by method stored.

HashMap<int, ASTNode> ChangesByFileMap =new HashMap<int, ASTNode>();

Figura 4.36: The java collection that store the differences nodes.

4.10 Calculation of the grade

When processing of identification of all nodes in parserA created by a file into the
first project delivered and the comparison with parserB created by a homologous file
in the version correction are finished, the collection java that stores the differences
nodes found can be null or has a one or more nodes AST.

At this point is done the check to all differences generated by the file so the process
of calculation of the grade of a student is done in this step for each file. For each
file processing the collection that store the node’s differences are navigated and each
difference activate a process of calculation, the variables String weightMethod and
weightType are reached by means of getWeightMethod() and getReference().

The method getWeightMethod() receives the label that indicates the name method
that this node is part and returns the value of weight set up in the ASTExtractor-
Califica.properties to this method name. the method getWeightReference(), receives

J/5et up of the methods counters im 0 for each project student

studentProject.setCounterByMethods(methods);

for (File file : list) {//Identification and comparison process of
//all nodes that have each file.

J/final part of processing a file in the project java

changesMap = nodeB.getChangesByFileMap();

Iterator<Entry<int, ASTNode>> it = changesMap.entrySet().iterator();

J/bucle for process all nodes that generate

while (it.hasNext()) {//the difference 1in the current file.
String nameMethod = nodeB.nameMethodDifference(nodeChange);//get the method name of his parent
//get the value of weight related to the name of method.
double weightMethod = ASTExtractorCalifica.getWeightMethod(nameMethod);
//get the value of weight related with this type of node.
double welghtReferences = ASTExtractorCalifica.getReferencedeight(welghtTypeWithoutName);
//the process of substract is call with the two wvalues, for each difference that exist
// exist in the file, one call to this process of substract is done.
double weightSubstract = studentProject.minusGradeTotal(weightMethod, weightReferences);
studentProject.updateCounterByMethods{nameMethod, 1);

Figura 4.37: The calculation process.

the label that indicates the type of node of the current node different and the me-
thod returns a value of weight that indicates the weight assigned to this type of
node.

In each iteration of the control of a project, in the init part the student begins with
a grade of 30, the most high grade but while the program checks all files into the
project for each different node, the values weightMethod and weightReferences ge-
nerate a new value that will be used in the calculate of the new grade of the student.
in the practices, the student has an initial grade in the most high-grade but with
each difference found, the subtract operation is applied over this grade minus the
value generate for the values of the weight of the specific node that found different.
When the analysis of all files in the project of a student has been finished, the
current grade of the student is taken as the final grade by the student.

minusGradeTotal(double weightMethod, double referencesWeight) {
this.gradeTotal = this.gradeTotal - (weightMethod*referencesWeight)/100;
return (weightMethod*referencesWeight)/180;//return value that substract to the totalvValue(grade)

Figura 4.38: The formula.

MinusGradeTotal is the method that realizes a new calculation for each different
node so each difference found in the file, decreases the grade of a student, in a per-
centage defined by the weight values.

The values of weightMethod and referencesWeight are multiplied and the result
is divided by 100. Finally, the number result of the last operation is subtracted
from the current grade to generate the new grade of the student, which is stored in
the variables of the object student.

4.11 Differences founds

The framework generates inside of each student folder the final result txt, which
contains the information about the nodes belonging to the file, if the node is found,
a print message will be printed "line found”, othewise the label will be a ”warning”
message.

The differences found will be shown at the final check of the file. Each difference
found has information about localization inside the code, type of node and weight
assigned in the properties file.

public void definisciSfidaFase(int numeroFase,String idConcorrentel,int idPiattol,String idConcorrente2,int idPiatto2,String esito,){

woid ---> line found int numeroFase ---> line found String idConcorrentel ---> line found
int idPiattol ---> line found String idConcorrente2 ---> line found int idPiatto2 ---> line found
String esito ---> line found

String[] risultato=esito.split("-"); ---> line found
IF(risultato[@] != null & risultato[1] != null & piatti.containsKey(idPiattol) & piatti.containsKey(idPiatto2)){
risultato[@] !- null & risultato[1] !- null && piatti.containsKey(idPiattol) & piatti.containsKey(idPiatto2) --->CompilationUnit|TypeDeclaration|MethodDeclaration|Block|IfStatement|

WARNING line don’t found - type of statement(InfixExpression)

int esitiPrimoConcorrente=Integer.parselnt(risultato[0]); ---> line found
int esitiSecondoConcorrente=Integer.parselnt(risultato[1]); ---> line Found
IF(esitiPrimoConcorrente 1= esitiSecondoConcorrente){
esitiPrimoConcorrente != esitiSecondoConcorrente ---> line found
Fase ftemp=fasi.get(numeroFase); ---> line found

IF(ftemp 1= null){
Ftemp 1= Aull ---> line Found
Concorrente ctempl=ftemp.concorrentiFase.get(idConcorrentel); ---> line Found Concorrente ctemp2=ftemp.concorrentiFase.get(idConcorrente2); ---> line Found
IF(ctempl != null & ctemp2 != null){
ctempl != null && ctemp2 !=
Piatto ptempl=ctempl.piatto; ---> line found Piatto ptemp2=ctemp2.piatto; ---> line found
IF(ftemp 1= null & ctempl != null & ctemp2 != null & ptempl != null & ptemp2 1= null){
ftemp 1= null & ctempl = null & ctemp = null & ptempl != null & ptemp2 != null ---> line found

11 ---> line found

Sfida sfidaTemp-new Sfida(idConcorrentel,idPiattol,idConcorrente2,idPiatto2,esito); ---> line found
ftemp.sfide.add(sfidaTemp); ---> line found
IF(esitiPrimoConcorrente > esitiSecondoConcorrente){
esitiPrimoConcorrente > esitiSecondoConcorrente ---> line found

sfidaTemp.cVincente=ctempl; ---> line found
sfidaTemp. cPerdente-ctemp2; --->CompilationUnit|TypeDeclaration |MethodDeclaration |Block | IfStatement |Block |IfStatement |Block |IfStatement |Block | IfStatement |Block | IfStatement |Block | IfStatement |
WARNING line don’t found - type of statement(ExpressionStatement)
sfidaTemp.cVincente=ctemp2; ---> line found
sfidaTemp. cPerdente=ctempl; --->CompilationUnit|TypeDeclaration [MethodDeclaration |Block |IfStatement |Block |IfStatement |Block | IfStatement |Block | IfStatement |Block | IfStatement |Block | IfStatement |
WARNING 1line don't found - type of statement(ExpressionStatement)
r}rror o}

DIFFERENCES FOUNDS:
Weight for the typeNode IfStatement(ElseStatement)&definisciSfidaFase%l: 0.3 and the grade to this point: 29.7@
public definisciSfidaFase(int numeroFase, String idConcorrentel, int idPiattol, String idConcorrente2, int idPiatto2, String esito,) {
sfidaTemp. cPerdente=ctempl;
¥
Weight for the typeNode IfStatement(ThenStatement)&definisciSfidaFase%l: .3 and the grade to this point: 29.48
public definisciSfidaFase(int numeroFase, String idConcorrentel, int idPiattol, String idConcorrented, int idPiatto2, String esite,) {
sFidaTemp. cPerdentectemp2;

3
Weight for the typellode IfStatement(Expression)&definisciSfidaFaseX1: 0.6 and the grade to this point: 28.89

public definisciSfidaFase(int numeroFase, String idConcorrentel, int idPiattol, String idConcorrente2, int idPiatto2, String esito,) {
risultato[@] != null & risultato[1] != null & piatti.containsKey(idPiattol) & piatti.containsKey(idPiatto2)

Figura 4.39: Differences found txt file.

4.12 Update counters

//load the methods set up in the properties
//file ASTExtractorCalifica.properties
methods = parserStudentFileA.getMethods();
//set the counters by methods in ©
studentProject.setCounterByMethods(methods);
for (File file : list) {

//final part of processing a file in the project java

//loop of the differences nodes found 1in the current file.

while (it.hasMNext()) {
//get the method name of his parent
String nameMethod = nodeB.nameMethodDifference(nodeChange);
//call of method that get the counter value for this
//method name and update it with plus one to the current value
studentProject.updateCounterByMethods(nameMethod, 1);

Figura 4.40: Operation for update counters.

When the analysis of the java project of each student is started, the student ob-
ject loads the methods set up in the file properties ASTExtractorCalifica.properties
and set up these counters with 0 after the process of analyzing each file is initiated.
As said before, every time that in each file finished the process of identifying the
nodes in parseA and comparison with the nodes in parserB, the next step is to pro-
cess the collection of nodes differences, that for each node difference the operation
calculation of the grade is call, subtracting a percentage of the current grade.

The next step is to update the counters by methods that have the object student,
and update the current counter in plus one. the methods set up for each student
in the analysis of the project are taken for the properties file ASTExtractorCalifi-
ca.properties.

4.13 The outputs

The files generated by the execution of the program are basically a txt in each
folder of the student, this is specially practiced for check the differences that caused
a discount to the final grade by individual student, the other important file is the
excel, this excel file containt the final grade of all student and counters with the
differences founds by methods.

4.13.1 The structure result final excel

The final results are written in an excel file but first, the dates are stored in a global
structure, which is called “resultGrades” and is a treeMap collection that stores the
final result of each student.

Map<String, Object[]> resultGrades = new TreeMap<String, Object[]=();

Figura 4.41: call to the method that created and write Excel file.

for each project student processed, the final result grade must store in resultGra-
des, other important information stored is the personal information of the student
and all methods specified in the file ASTExtractorCalifica.properties with his re-
spective counters that indicate the number of changes or different founds divided by
methods.

resultGrades.put(numCadena, new Object[]{
studentProject.getId(),
studentProject.getlLastName(),
studentProject.getName(),
studentProject.getGradeTotalConvertString() ,
studentProject.getCounter(t 1),
studentProject.getCounter(t
studentProject.getCounter(t
.//all counters of methods set up in
.// ASTExtractorCalifica.properties

2"),
')J

studentProject.getCounter(t)1);

Figura 4.42: The collection stored the updates.

Finally, when all projects java are checked, the data in the structure resultGrades
are sent to the method CreateExcelNew(). This method receives the structure collec-

dataDocuments.CreateExcelNew resultGrades ;

Figura 4.43: The method create and write Excel file.

tion and thanks to importing the library org.apache.poi.hssf.usermodel. HSSFWorkbook

is possible to store information about the final result grades for every student.

The final excel that is generated by the framework contains the id of the student,
name, surname, the final score generated by the framework, the counter of differen-
ces found by the method. the following image shows an example of the final excel
that we are describing in this section. 4.45

public void CreateExcelNew(Map<String, Object[]= datos) {

Workbook workbook = new HSSFWorkbook();//Create the book of work
Sheet sheet = workbook.createSheet("Hoja de datos");//new sheet
//For each line is created a object array(Object[])

//iteration over data for write in the sheet
Set<String> keyset = datos.keySet();
int numeroRenglon = 0;
for (string key : keyset) {
Row row = sheet.createRow{numeroRenglon++);
Object[] arregloObjetos = datos.get(key);
int numeroCelda = 0;
for (Object obj : arregloObjetos) {
Cell cell = row.createCell(numeroCelda++);
if (obj instanceof String) {
cell.setCellvValue((String) obj);
} else if (obj instanceof Integer) {
cell.setCellValue((Integer) obj);
1

Figura 4.44: The java collection that store the differences nodes.

1D EEE_JR%%W?&%&Q%%E%arﬁww@w%&w&k%ﬁﬁﬁkﬁwwww lencoPiar elencoPiar definisciF? assegnaC definiscis deseriviSt deserivist d
175536 125.3600001 0

O OO0 OKrWo oMo
cooooo0ooooo0oooo
coorOMNMOMOO®OOO
Ccoo0oo0o0 o000 wWwNOON
coooooo0o0o0oso O

cooocoo0coroosNOO
cCooo0o0000Oorwo oo
cooo0o0oo0o0o0o0o0wo oo
coocoooMNMOOoOOowo oo
coo0oo0oOoMNOOOOoOwWwo oo
PO OO KR WOR AR ®WWO
oo o~NOoOo koo oo
Fnooovwo o uuNwo N

-

Figura 4.45: Final excel data for exam 2018 - 2019

Capitolo 5

Evaluation

In this section shows the results obtained by the framework applied a real case test
from exam of 2018 - 2019, this section was evaluated with the project called ”Poli-
chef”.

For this section, 125 students has been delivered his projects for evaluation, each
student has the first version project and the correction project.The final grades of
each student generate by the framework was compared by the grade assigned by the
teacher. For the test was prepared three differents ASTExtractorCalifica.properties
with different parameters, the test are called: test_ChangesBodyDeclaration, te-
st_ChangesNotBodyDeclaration, test_ChangesMethods;

To all test was calculated a media of the grades assigned by the framework, the
best configuration found so far was the second test_ChangesNotBodyDeclaration
with 0.70,in others test, the results were 1.30 for the first and 0.90 for the third.

5.1 test_ChangesBodyDeclaration

In this section the image 5.1 represents the weight values that were assigned in the
ASTExtractorCalifica.Properties for the first test and the figure 5.2 expose the re-
sults applied in the test case one with the properties mentioned before, in this test
the classification was made with all values that belong to type node bodyDeclara-
tion with values of 20 and the others types of nodes with values of 50(for example,
expressions, return exam, receiverParameters, returnParameter/void etc).

In the tables belonging to this test 5.1 5.2 5.3 the second column is the grades
assigned by the framework, the third column is the grade assigned by the teacher,
and in the final column is possible to see the difference between the two grades for
each student, for this test the media is 1.30, this is the least efficient result test
according to the teacher’s grade.

5.2 test_ChangesNotBodyDeclaration

The image 5.3 shows the weight values that were assigned for the second test and
the figure 5.4 shows the results applied in the test case two with the properties

46

18 %%%%%%%%MethodDeclaration (Type|void)=50.00
19 MethodDeclaration (ReceiverParameter)=50.00
20 MethodDeclaration (throws)

21 MethodDeclaration (Body)

22 MethodDeclaration (thrownException) =
23 %%%%%%%%IfStatement (Expression)=40.00

24 TIfStatement (ThenStatement)=20.00
25 IfStatement (ElseStatement)=20.00
26 %%%%%%%%EnhancedForStatement (FormalParameter) -
27 FEnhancedForStatement (Expression) =m

28 EnhancedForStatement (Body)=20.00

29 %%%%%%%%ForStatement (ForInit)=20.00

30 ForStatement(Expression)=@0.00
31 ForStatement (ForUpdate)=20.00
32 ForStatement(Body)%ZO 00
33 %%%%%%%%DoStatement (Expression)= -

34 DoStatement (Body)=20.00

35 %%%%%%%%CompilationUnit (Import)=2
36 %%%%%%%%TypeDeclaration (implements)
37 TypeDeclaration(fieldDeclaration)=
38 %$%%%%%%3%WhileStatement (Expression)
39 WhileStatement (Body)=

40 %%%%%%%%TryStatement (Body) =2

41 TryStatement (Cathc)=50.00

42 FE5%%%%%

43 MethodDeclaration|IfStatement|ForStatement=0.02

44 MethodDeclaration|IfStatement=0.03

45 CompilationUnit|TypeDeclaration|MethodDeclaration|Block|ReturnStatement=0.09
46 default=0.01

47 %%%%%%%%

Figura 5.1: File Properties Case 1

Teacher grades vs framework grades case 1
35

30
25
20
15

10

4154
4201
4406
4580 =
4600
4708
718
768
869

mmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

mGradeteacher W Grade txtVersionl

Figura 5.2: Changes body declaration, case 1

previous mentioned, in this test the classification was made with all values that
belong to type node bodyDeclaration with values of 20 and the others types of
nodes with values of 40(for example, expressions, return exam, receiverParameters,
returnParameter/void etc). In the tables belonging to this test 5.4 5.6 5.5 the second
column is the grades assigned by the framework, the third column is the grade
assigned by the teacher, and in the final column is possible to see the difference
between the two grades for each student, for this test the media is 0.70, this is the

best media that represent the most accurate test.

35

30

25

20

18
19
20
21
22
S
24
25
26
27
28
29
30
31
32
33
34
85
36
37
38
39
40
41
42
43
44
45
46
47

%33%%%33%MethodDeclaration (Type|void)=80.00
MethodDeclaration (ReceiverParameter)=80.00

MethodDeclaration (throws)=80.00 |

MethodDeclaration (Body) =-
MethodDeclaration (thrownException) TF
%%%%%%%%31fStatement (Expression)=80.00
IfStatement (ThenStatement)=20.00
IfStatement (ElseStatement)=20.00
%%%%%%%%EnhancedForStatement (FormalParameter)
EnhancedForStatement (Expression)=80.00
EnhancedForStatement (Body)

10.00

£%%%%%%%ForStatement (ForInit)=
ForStatement (Expression)=40.00 |
ForStatement (ForUpdate)=40.00
ForStatement (Body) =2
%$%%%%%%%DoStatement (Expression)=40.00
DoStatement (Body)=40.00
$%%%%%%CompilationUnit (Import)=80.00
%%%%%%%TypeDeclaration (implemen
TypeDeclaration(fieldDeclaration)
$%%%%%%%WhileStatement (Expression)
WhileStatement (Body)
$%%333%%TryStatement (Body)
TryStatement (Cathc)

200000200

TToTCT0o0o00

MethodDeclaration|IfStatement|ForsStatement=0.02 |
MethodDeclaration|IfStatement=0.03
CompilationUnit|TypeDeclaration|MethodDeclaration|Block|ReturnStatement=0.09

defau lt

8go000000

G660 0000

o\©

ol®

Figura 5.3: File Properties Case 2

Teacher grades vs framework grades case 2

M Grade teacher M Grade txtVersion2

Figura 5.4: Changes not body declaration, case 2

5.3 test_ChangesMethodDeclaration

This image 5.5 expose the weight values that were assigned for the first test and
the figure 5.6 expose the results applied in the test case three with the properties
mentioned before, in this test the classification was made with all values that belong
to type node bodyDeclaration with values of 40 and the others types of nodes with
values of 40(for example, expressions, return exam, receiverParameters, returnPara-
meter /void etc). In the tables belonging to this test teacher 5.7 5.8 5.9 the second
column is the grades assigned by the framework, the third column is the grade assi-
gned by the teacher, and in the final column is possible to see the difference between
the two grades for each student, for this test the media produce by the results is
0.90, this is the second best properties values.

%%%%%%%MethodDeclaration(Type|void)=40.00
MethodDeclaration (ReceiverParameter)=40.00

=
O @
ol®

(]

20 MethodDeclaration (throws)=40.00

21 MethodDeclaration (Body)=40.00

22 MethodDeclaration (thrownException)=40.00
23 %%%%%%%%IfStatement (Expression)=40.00

24 IfStatement (ThenStatement)=40.00

25 IfStatement (ElseStatement)=40.00

26 %%%%%%%%EnhancedForStatement (FormalParameter)=40.00
27 EnhancedForStatement (Expression)=40.00
253 EnhancedForStatement (Body)=40.00

29 %%%%%%%%ForStatement (ForInit)=40.00

30 ForStatement (Expression)=40.00

ForStatement (ForUpdate)=40.00
ForStatement (Body)=40.00
$%%%%%%%DoStatement (Expression)=40.00
DoStatement (Body)=40.00
$%%%%%%%CompilationUnit (Import)=40.00
%$%%%%%%%TypeDeclaration (implements)=40.00
TypeDeclaration (fieldDeclaration)=40.00
38 %%%%%%%%WhileStatement (Expression)=40.00
39 WhileStatement (Body)=40.00

40 %%%%%%%%TryStatement (Body)=40.00

41 TryStatement (Cathc)=40.00

DN O W @

> W W W WwwwWw
~ oy OB W

43 MethodDeclaration|IfStatement|ForStatement=0.02
44 MethodDeclaration|IfStatement=0.03

45 CompilationUnit|TypeDeclaration|MethodDeclaration|Block|ReturnStatement=0.09

16 default=0.01

47 20000000

ToTooBvoT0

Figura 5.5: File Properties Case 3

5.4 test_Overall

The images show the line graph between the grades generated by the framework in
each case and the teacher’s grades figure 5.7. Notice that those students that have
INS grades cause wired cases.

The images show the line graph between the grades generated by the framework
in each case and the teacher’s grades figure 5.8. In this representation was not
include the student with INS grades, and doing in this way we appreciated accurate
results, almost the same as teacher’ grade.

Teacher grades vs framework grades case 3

175536
203560
222738
224387
224872
226203
226878
227469
227583
227649
228481
228672
229029
229485
230008
233789
234154
234201
234406
234580
234600
234708
234865
235085
235136
235249

o
o
&

206263
235484
235718
235768
235869
235941
236076
236482
236656
236676
236706
236787
236819
236901
237068
237250
237436
237547
237732
237924
238009
238093
238155
238772
240471
244781
246458
250766
251202
251367
255426
258120
260320

M Grade teacher B Grade txtVersion3

Figura 5.6: Changes method declaration, case 3

Teacher grades vs 3 cases results by framework
35

30

A

20

15

10

@

2

N
i

M| omom
8888

% =
ES
g
i

175536
203560
206263
5
235768
235869
235941
236076
236482
236656
236676
236706
236787

3
P
I
=

236819
236901
237068
237250
237436
237732
23792,

23800

23809

23815

23877

246458
250766
251202
251367
255426
258120
260320

&

=== Grade teacher — s=le=Grade txtVersionl === Grade txtVersion2 Grade txtVersion3

Figura 5.7: All cases

The figure 5.9 show the line graph between the grades generated by the framework
in each case and the grades assigned by the teacher. Notice that the students
with grade INS was included. The graphic contains only ten students for a best
visualization.

The image 5.10 shows the line graph with all medias produced in the cases, with
INS and without INS grades.

The image 5.11 shows the graphic with all medias generated by all grades
excluded the INS grades.
5.10 5.11 5.12

For a better visualization of the results the following image 5.12 shows the com-
parison of the grades between teacher’s grades and the grades of the framework.
Also we can see that the results are close enough between them.

In the next table 5.13 shows the resume of the number of students that have
pass and lost the exam according to the teacher’s grade and framework’s grade

265024
265127

265024
265127

Teacher grades vs 3 cases results by framework

175536 191231 203560 216642 222738 224278 224775 224872 226199 226203 226500 226878 227038

=== (Grade teacher ~ ==#==Grade txtVersionl === Grade txtVersion2 Grade txtVersion3

Figura 5.8: All cases without INS

Teacher grades vs 3 cases results by framework

35
30
25

20

175536 191231 203560 204508 206263 216642 222738 224278 224387 224775

—#—Grade teacher ~ =#= Grade txtVersion1 —#— Grade txtVersion2 Grade txtVersion3

Figura 5.9: Short all cases

The successive image 5.14 shows a pie diagram of teacher’s grade and the next
one 5.15 shows a pie diagram of framework’s grades.

the ensuring image 5.16 exhibit all the student that have passed the exam, ta-
king on count that are kicked out the students that are not participating with the
correction and all the students that are failed the exam. One more time, makes it
clear that are closely to each other between teacher’s grade and framework’s grade.

10

175536

Differences

D
A
r
3
-
o
—

v, A \ &

'V / ’ 4 Y / N, A% V\‘
», B \‘l v ¥, >
Ly 4 Al t/
sof ~ £ o o by o o & < o B foo © o @ g © A flo ~ ¥ - ko © ~ ~ o & oo~ Ao & <
JEVERRECERR PR EREREELEE: SRR R R LR ER v R S E R R kR R K
RV R R B R R R R R R R R R R R R R R R R A R R R AR R R R R R R R
R RRA R RARRA EREE R EREEERE R R ARARANARA L EEERE R R R R R R R E

=@==Diff txtVersionl ==#==Diff Grade txtVersion2 === Diff Grade txtVersion3

Figura 5.10: All differences between 3 cases

Differences

226199 226203

175536 203560

—e—Diff txtVersion1 =—#=—Diff Grade txtVersion2 ~ —#=Diff Grade txtVersion3

Figura 5.11: All differences without INS between 3 cases

Teacher's grades vs Automatic grades

.
Rt e Ot e P e P S

mGrade mteachersgrade

Figura 5.12: Overall grades comparison

>

265127

ID STUDENT
175536
191231
203560
204508
206263
216642
222738
224278
224387
224775
224872
226199
226203
226500
226878
227038
227469
227538
227583
227645
227649
228012
228481
228586
228672
228972
229029
229159
229485
229755
230008
230894
233789
233799
234154
234164
234201
234317
234406
234541
234580
234587
234600
234699
234708

GRADE
24,36
29,23
26,93
INS
INS
21,43
23,81
30
INS
27,42
27,3
26,67
20,47
18,27
28,59
28,2
INS
30
28,09
20,53
20,02
INS
19,44
22,95
INS
27,19
17,59
INS
20,33
19,23
26,4
19,23
28
25,23
24,66
25,1
26,93
29
22,58
26,4
INS
26,83
INS
23,56
29,23

TEACHER’S GRADE
25,4
29,5
23,9

8,22000000000001
19,8
20,78
25,3
30
17,1
29,1
28,4
27,8
21 4
19,7
28,6
28,3
18
30
29,2
22
22,9
17,5
17
27,34
15
28,7
22,74
12,44
25,82
22,24
28,5
27 4
28,6
28,2
27,1
27,08
29,6
29,4
25,42
29,2
0,600000000000014
28,2
11,3
23,8
29,7

DIFFERENCE
1,04
0,27
-3,02999999999999
0
0
-0,649999999999988
1,49
0
0
1,68
1,1
1,12999999999999
0,930000000000014
1,43000000000001
0,0100000000000051
0,100000000000005
0
0
1,11
1,47
2,88000000000001
0
-2,43999999999999
4,39
0
1,51
5,15000000000001
0
5,49
3,01000000000001
2,1
8,17000000000001
0,600000000000005
2,97
2,44
1,98
2,67
0,399999999999999
2,84
2,8
0
1,37
0
0,240000000000013
0,469999999999999

Tabella 5.1: Grades professor vs grades framework case 1

ID STUDENT
234834
234865
235059
235085
235110
235136
235163
235249
235375
235444
235478
235494
235673
235718
235726
235768
235823
235869
235887
235941
236027
236076
236447
236482
236651
236656
236671
236676
236685
236706
236766
236787
236788
236819
236843
236901
236987
237068
237087
237250
237263
237436

CRADE
26,97
INS
25,62
28,71
INS
29,23
27,19
25,83
25,19
INS
26,17
26,4
26,7
INS
INS
21,36
27,3
23,62
24,36
30
23,8
30
27,42
24,21
29,23
30
29
30
28
25,77
29,23
28,84
30
28,84
26,26
28,2
29,23
27,69
27,83
30
INS
23,56

TEACHER’S GRADE
29,02
7,10000000000001
29,1
28,38
20,2
29,7
28,2
28,4
27,1
16,6
28,32
28,3
28,86
12
16
26,22
28,5
22,7
25,4
30
24,88
30
28,9
25,6
29,88
30
28,2
30
29
28,06
30
29,2
30
28,4
27 4
28,9
29,7
28,8
28,3
30
16,1
25,16

DIFFERENCE
2,05
0
3,48
-0,329999999999998
0
0,469999999999999
1,01
2,57
1,91
0
2,15
1,9
2,16
0
0
4,86
1,2
-0,920000000000002
1,04000000000001
0
1,08000000000001
0
1,48
1,39
0,649999999999999
0
-0,799999999999994
0
1
2,29
0,77
0,360000000000003
0
-0,439999999999994
1,14
0,699999999999999
0,469999999999999
1,11
0,470000000000006
0
0
1,60000000000001

Tabella 5.2: Grades professor vs grades framework case 1

ID STUDENT
237460
237547
237619
237732
237812
237924
237952
238009
238072
238093
238101
238155
238336
238772
239921
240471
242340
244781
246255
246458
246489
250766
251154
251202
251221
251367
253522
255426
258118
258120
258985
260320
265011
265024
265077
265127
266052

GRADE | TEACHER'S GRADE
20,2 23,58
29,23 29,8
27,69 28,76
24,97 25,74
19,77 21,16
28,47 28,6
INS 25
24,36 26,7
23,2 26,06

26 26,9
INS 1,60000000000001
30 30
27,3 28,9
23,81 26,1
22,61 25,12
27,8 29,4
28 28,2
30 30
29 29.8
29,23 29,4
30 30
22,95 28,2
30 30
30 30
28,47 29,3
28,47 29,1
22,14 24,56
25,37 26,5
29 29,2
27,3 28,2
27,8 29,6
28,84 29,1
30 30
19 22,7
25,4 27 4
25,38 28,5
25,19 27,8

DIFFERENCE
3,38000000000002
0,57
1,07
0,77
1,39
0,130000000000006
0
2,34000000000001
2,36
0,900000000000009
0
0
1,6
2,29000000000001
2,51000000000001
1,6
0,200000000000006
0
0,800000000000001
0,169999999999998
0
5,25
0
0
0,830000000000002
0,630000000000003
2,42000000000001
1,13
0,200000000000003
0,900000000000006
1.8
0,260000000000002
0
3,70000000000001
2,00000000000001
3,12
2,61

Tabella 5.3: Grades professor vs grades framework case 1

teacher's grades
not pass exam 18
pass exam 106

framework's grades
not pass exam 10
pass exam 111
not pressent correction exam 3

Figura 5.13: Data grades table

ID STUDENT
216642
222738
224278
224387
224775
224872
226199
226203
226500
226878
227038
227469
227538
227583
227645
227649
228012
228481
228586
228672
228972
229029
229159
229485
229755
230008
230894
233789
233799
234154
234164
234201
234317
234406
234541
234580
234587
234600
234699
234708

GRADE
21,43
23,81

30
INS
27,42
27,3
26,67
20,47
18,27
28,59
28,2
INS
30
28,09
20,53
20,02
INS
19,44
22,95
INS
27,19
17,59
INS
20,33
19,23
26,4
19,23
28
25,23
24,66
25,1
26,93
29
22,58
26,4
INS
26,83
INS
23,56
29,23

TEACHER’S GRADE
19,6799999999999
22,7999999999999

30
15,7999999999999
28,4
27,0999999999999
27,6399999999999
21,2999999999999
19,7399999999999
28,2
27,9
16,7399999999999
30
28,4
21,5999999999999
18,9999999999999
15,6999999999999
14,2999999999999
26,6399999999999
15,2999999999999
27,8199999999999
22,4399999999999
11,8599999999999
26,0999999999999
20,4799999999999
28,0999999999999
25,4
27,8
28,1
25,7999999999999
25,8999999999999
29.6
28,2
24,6399999999999
29,2
0,859999999999979
27,5999999999999
8,39999999999998
22,1999999999999
29,7

DIFFERENCE
~1,7500000000001
~1,0100000000001

0
0
0,979999999999997
-0,200000000000102
0,969999999999899
0,829999999999902
1,4699999999999
~0,390000000000001
~0,300000000000001
0
0
0,309999999999999
1,0699999999999
~1,0200000000001
0
-5,1400000000001
3,6899999999999
0
0,6299999999999
4,8499999999999
0
5,7699999999999
1,2499999999999
1,6999999999999
6,17
-0,199999999999999
2,87
1,1399999999999
0,799999999999898
2,67
-0,300000000000001
2,0599999999999
2.8
0
0,7699999999999
0
~1,3600000000001
0,469999999999999

Tabella 5.4: Grades professor vs grades framework case 2

ID STUDENT
234834
234865
235059
235085
235110
235136
235163
235249
235375
235444
235478
235494
235673
235718
235726
235768
235823
235869
235887
235941
236027
236076
236447
236482
236651
236656
236671
236676
236685
236706
236766
236787
236788
236819
236843
236901
236987
237068
237087
237250
237263
237436

GRADE
26,97
INS
25,62
28,71
INS
29,23
27,19
25,83
25,19
INS
26,17
26,4
26,7
INS
INS
21,36
27,3
23,62
24,36
30
23,8
30
27,42
24,21
29,23
30
29
30
28
25,77
29,23
28,84
30
28,84
26,26
28,2
29,23
27,69
27,83
30
INS
23,56

TEACHER’S GRADE
28,24
5,89999999999998
28,7
28,3199999999999
17,4999999999999
29,7
27,8
27,2999999999999
26,6999999999999
16,6099999999999
26,8799999999999
27,9
27,9199999999999
9,09999999999998
14,3999999999999
25,2399999999999
28
23,6999999999999
23,5
30
25,7799999999999
30
28,5
24,9
29,88
30
28,2
30
28,1199999999999
27,9599999999999
30
28,8
30
28,4
26,5999999999999
28,0999999999999
29,7
27,2
27,2999999999999
30
13,3599999999999
24,4599999999999

DIFFERENCE
1,27
0
3,08
0
0
0,469999999999999
0,609999999999999
1,4699999999999
1,5099999999999
0
0,709999999999898
1,5
1,2199999999999
0
0
3,8799999999999
0,699999999999999
0,0799999999998988
-0,859999999999999
0
1,9799999999999
0
1,08
0,689999999999998
0,649999999999999
0
-0,800000000000001
0
0,119999999999902
2,1899999999999
0,77
-0,0399999999999991
0
-0,440000000000001
0,339999999999897
-0,100000000000101
0,469999999999999
-0,490000000000002
-0,530000000000097
0
0
0,899999999999903

Tabella 5.5: Grades professor vs grades framework case 2

ID STUDENT
237460
237547
237619
237732
237812
237924
237952
238009
238072
238093
238101
238155
238336
238772
239921
240471
242340
244781
246255
246458
246489
250766
251154
251202
251221
251367
253522
255426
258118
258120
258985
260320
265011
265024
265077
265127
266052

GRADE
20,2
29,23
27,69
24,97
19,77
28,47
INS
24,36
23,2
26
INS
30
27,3
23,81
22,61
27,8
28
30
29
29,23
30
22,95
30
30
28,47
28,47
22,14
25,37
29
27,3
27,8
28,84
30
19
25,4
25,38
25,19

TEACHER’S GRADE
21,2199999999999
29,2
28,12
25,5999999999999
21,3399999999999
27,5999999999999
23,3999999999999
26,4
23,9599999999999
26,6
0,639999999999979
30
28,0999999999999
23,5999999999999
23,6399999999999
29
27
30
29,8
29
30
27,5999999999999
30
30
28,9
28,4
24,72
25,2999999999999
28,4
28,6
29,6
28,2
30
20,8999999999999
27,2999999999999
28,0999999999999
27,6

DIFFERENCE
1,0199999999999
-0,0300000000000011
0,43
0,6299999999999
1,5699999999999
-0,8700000000001
0
2,04
0,759999999999902
0,600000000000001
0
0
0,799999999999898
~0,2100000000001
1,0299999999999
1,2
1
0
0,800000000000001
0,23
0
4,6499999999999
0
0
0,43
-0,0700000000000003
2,58
~0,0700000000000998
~0,600000000000001
1,3
1,8
-0,640000000000001
0
1,8999999999999
1,8999999999999
2,7199999999999
2,41

Tabella 5.6: Grades professor vs grades framework case 2

ID STUDENT
175536
191231
203560
204508
206263
216642
222738
224278
224387
224775
224872
226199
226203
226500
226878
227038
227469
227538
227583
227645
227649
228012
228481
228586
228672
228972
229029
229159
229485
229755
230008
230894
233789
233799
234154
234164
234201
234317
234406
234541
234580
234587
234600
234699
234708

GRADE
24,36
29,23
26,93

INS
INS
21,43
23,81
30
INS
27,42
27,3
26,67
20,47
18,27
28,59
28,2
INS
30
28,09
20,53
20,02
INS
19,44
22,95
INS
27,19
17,59
INS
20,33
19,23
26,4
19,23
28
25,23
24,66
25,1
26,93
29
22,58
26,4
INS
26,83
INS
23,56
29,23

TEACHER’S GRADE
25,36
29,6
922,24
5,52000000000004
17,92
19,36
24
30
15,28
29,2
28
27,92
21,2
17,52
28,4
28
17,1200000000001
30
29,2
21,6
21,52
15,2
15,2
27,12
14,4
28,48
21,12
12,32
25,52
20,72
28
26,8
28
28
26,16
26,32
29,2
28,8
25,52
28,4
0
27,6
10,32
22,8
29.6

DIFFERENCE
1,00000000000002
0,370000000000001
-4,68999999999997
0
0
-2,06999999999996
0,190000000000023
0
0
1,78
0,700000000000006
1,25000000000001
0,730000000000032
-0,74999999999995
-0,189999999999994
-0,199999999999992
0
0
1,11
1,07000000000003
1,50000000000004
0
-4,23999999999995
4,17000000000002
0
1,29000000000001
3,53000000000004
0
5,19000000000002
1,49000000000004
1,60000000000001
7,57000000000001
0
2,77000000000001
1,50000000000001
1,22000000000002
2,27
-0,199999999999996
2,94000000000002
2,00000000000001
0
0,77000000000001
0
-0,759999999999973
0,370000000000001

Tabella 5.7: Grades professor vs Grades Framework case 3

ID STUDENT
234834
234865
235059
235085
235110
235136
235163
235249
235375
235444
235478
235494
235673
235718
235726
235768
235823
235869
235887
235941
236027
236076
236447
236482
236651
236656
236671
236676
236685
236706
236766
236787
236788
236819
236843
236901
236987
237068
237087
237250
237263
237436

GRADE
26,97
INS
25,62
28,71
INS
29,23
27,19
25,83
25,19
INS
26,17
26,4
26,7
INS
INS
21,36
27,3
23,62
24,36
30
23,8
30
27,42
24,21
29,23
30
29
30
28
25,77
29,23
28,84
30
28,84
26,26
28,2
29,23
27,69
27,83
30
INS
23,56

TEACHER'S GRADE
929,12
6,00000000000004
28,8
28,32
19,12
29,6
27,6
28,4
26,72
16,4
28,08
27,6
28,96
9,92000000000004
15,2
25,02
28
22,8
24
30
24,56
30
28,4
24
29,76
30
28,4
30
28,88
27,02
30
28,8
30
28,4
27,2
28,8
29,6
28
27,76
30
13,92
23,92

DIFFERENCE
2,15000000000001
0
3,18
-0,38999999999999
0
0,370000000000001
0,410000000000007
2,57000000000001
1,53000000000002
0
1,91000000000001
1,20000000000001
2,26000000000001
0
0
4,56000000000002
0,700000000000006
-0,819999999999975
-0,359999999999978
0
0,760000000000019
0
0,980000000000004
-0,20999999999998
0,530000000000001
0
-0,599999999999994
0
0,880000000000006
2,15000000000001
0,77
-0,0399999999999956
0
-0,439999999999994
0,940000000000008
0,600000000000005
0,370000000000001
0,310000000000006
-0,0699999999999896
0
0
0,360000000000028

Tabella 5.8: Grades professor vs Grades Framework case 3

ID STUDENT
237460
237547
237619
237732
237812
237924
237952
238009
238072
238093
238101
238155
238336
238772
239921
240471
242340
244781
246255
246458
246489
250766
251154
251202
251221
251367
253522
255426
258118
258120
258985
260320
265011
265024
265077
265127
266052

GRADE
20,2
29,23
27,69
24,97
19,77
28,47
INS
24,36
23,2
26
INS
30
27,3
23,81
22,61
27,8
28
30
29
29,23
30
22,95
30
30
28,47
28,47
22,14
25,37
29
27,3
27,8
28,84
30
19
25,4
25,38
25,19

TEACHER’S GRADE
22,32
29,6
28,16
25,92
21,12
28
24
26,16
24,72
26,4

0
30
28,8
25,2
24,32
29,2
27,6
30
29,6
29,2
30
28
30
30
29,2
29,2
24,56
25,02
29,2
28,4
29,2
28,8
30
21,12
27,76
28
26,4

DIFFERENCE
2,12000000000003
0,370000000000001
0,470000000000006
0,950000000000021
1,35000000000004
-0,469999999999992
0
1,80000000000001
1,52000000000002
0,400000000000013
0
0
1,5
1,39000000000002
1,71000000000002
1,4
-0,399999999999991
0
0,600000000000001
0,0299999999999976
0
5,05000000000001
0
0
0,730000000000004
0,730000000000004
2,42000000000002
0,550000000000018
0,200000000000003
1,1
1,4
-0,0399999999999956
0
2,12000000000004
2,36000000000001
2,62000000000001
1,21000000000001

Tabella 5.9: Grades professor vs Grades Framework case 3

ID STUDENT | GRADE | TEACHER'S GRADE
191231 22,2975 24,36
203560 29,1675 29,23
204508 27,085 26,93
206263 15,8375 0
216642 15,84 0
222738 23,9625 21,43
9224278 24,5875 23,81
224387 30 30
224775 21,38 0
224872 29,1675 27,42
226199 24,3775 27,3
226203 28,335 26,67
226500 16,885 20,47
226878 30 18,27
227038 29,1675 28,59
227469 26,8775 28,2
227538 13,345 0
227583 30 30
227645 29,1675 28,09
227649 18,965 20,53
228012 21,4625 20,02
228481 23,755 0
228586 19,5875 19,44
228672 24,3775 22,95
228972 17,3 0
229029 28,5425 27,19
229159 22,085 17,59
929485 20,42 0
229755 25,42 20,33
230008 19,175 19,23
230894 25,835 26,4
233799 27,5025 28
234154 30 25,23
234164 924,38 24,66
234201 27,085 25,1
234317 28,335 26,93
234406 25,2125 29
234541 95,21 922,58
234580 27,5025 26,4
234587 30 0
234600 23,335 26,83
234699 22,02 0
234708 18,3425 23,56
234834 25,625 29,23
234865 29,1675 26,97

Tabella 5.10: Grades professor vs Grades Framework

ID STUDENT | GRADE | TEACHER'S GRADE
235059 12,2975 0
235085 27,71 25,62
235110 30 28,71
235136 23,335 0
235163 28,5425 29,23
235249 27,71 27,19
235375 27,71 25,83
235444 26,2525 25,19
235478 20,8375 0
235494 29,1675 26,17
235673 25,6275 26,4
235718 28,335 26,7
235726 14,7975 0
235768 17,09 0
235823 25,42 21,36
235869 27,5 27,3
235887 24,585 23,62
235941 26,46 24,36
236027 29,1675 30
236076 22,0225 23,8
236447 29,1675 30
236482 26,8775 27,42
236651 20,0075 24,21
236656 29,1675 29,23
236671 28,335 30
236676 28,335 29
236685 30 30
236706 26,46 28
236766 26,045 25,77
236787 30 29,23
236788 27,5025 28,84
236819 30 30
236843 27,9175 28,84
236901 25,835 26,26
236987 29,375 28,2
237068 27,71 29,23
237087 29,1675 27,69
237250 26,67 27,83
237263 30 30
237436 15,425 0
237460 24,795 23,56

Tabella 5.11: Grades professor vs Grades Framework

ID STUDENT GRADE TEACHER’S GRADE
237547 24,5875 20,2
237619 28,5425 29,23
237732 28,335 27,69
237812 25,8375 24,97
237924 23,9625 19,77
237952 26,67 28,47
238009 23,335 0
238072 26,8775 24,36
238093 24,585 23,2
238101 26,67 26
238155 8,45000000000006 0
238336 30 30
238772 27,71 27.3
239921 25,42 23,81
240471 26,6675 22,61
242340 25,8375 27,8
244781 27,5025 28
246255 28,335 30
246458 28,335 29
246489 28,335 29,23
250766 29,1675 30
251154 27,2925 22,95
251202 29,1675 30
251221 28,335 30
251367 27,71 28,47
253522 29,1675 28,47
255426 25,2125 22,14
258118 27,085 25,37
258120 28,335 29
258085 28,335 27.3
260320 28,75 27,8
265011 26,2525 28,84
265024 30 30
265077 25,835 19
265127 29,1675 25,4
266052 27,085 25,38

25,0025 25,19

Tabella 5.12: Grades professor vs Grades Framework

teacher's grades

@notpass exam [pass exam

Figura 5.14: Teacher grades

framework's grades

Mnotpass exam Mpassexam = notpressentcorrection exam

Figura 5.15: Framework grades

Teacher's grades vs Automatic grades

Figura 5.16: Passed Exam

Capitolo 6

Conclusion

The main goal of this thesis is the development of a framework that helps the teacher
with the revision process of two javas projects. The assignment of the grades to the
student is based on the difference presented between the projects, this objective is
reached, presented to the good accuracy in comparison by the grades assignment by
the teachers and in comparison with other framework that are used in the course
for the activity of evaluation.

The procedure of the system , the students delivered the first project and a
second version that is an incentive for correct to error in the first delivery, so with
this technique the student improves the solution and learns about his error.

For the professor is a tool that automates the evaluation process and saves time,
because in the course of java object-oriented programming, the number of students
that take this course in the bachelor degree is considerably high so the time for
checking the work in the projects of all students is very tricky. Another important
feature that this framework gets to the teachers, is the possibility of discrimination
by specific parts of the code or specific nodes and assignment to this node a grade
major.

Other people that get a profit from the implementation of this framework are
the students, after that, they deliver the two versions of the project. The students
can get feedback about the mistakes found and how the grade was assigned so that
students can learn about the mistakes and how they influence the final grade.

6.1 Future works

In future works, the mechanism for navigating the abstract syntax trees as much
in one treeA as the other tree must be improved, because the navigate in the AST
take a little amount of time to be done all comparisons but maybe if the number
students is increasing, it is possible that the time too increasing.

Nowadays a important task in the area of software is the work in a team, and the
update of the source code is a crucial step where the programmers have many hea-
daches.This framework give the opportunity to reuse the code in order to manages
the differences in a correct way in merging time.

66

Bibliografia

[10]
[11]

[12]

Eclipse official website. URL: http://eclipse.org/.

Eclipse official website. URL: https://www.eclipse.org/articles/article.
php?file=Article-JavaCodeManipulation_AST/index.html.

GumTree. URL: https://dl.acm.org/doi/10.1145/2642937.2642982.

GumTreeAlgorithm. URL: https://courses.cs.vt.edu/cs6704/springl7/
slides_by_students/CS6704_gumtree_Kijin_AN_Febl5.pdf.

IEEFE article CIDiff: Generating Concise Linked Code Differences. URL: https:
//ieeexplore.ieee.org/abstract/document/9000085.

Java AST IBM website. URL: https://www.ibm.com/docs/en/rsar/9.57
topic=SS5JSH_9.5.0/0rg.eclipse. jdt.doc.isv/reference/api/org/
eclipse/jdt/core/dom/AST.htm.

Java official website. URL: http://www.java.com/it/.
JUnit official website. URL: https://junit.org/junit5/.

Giorgio Bruno Marco Torchiano. “Integrating Software Engineering Key Prac-

tices into an OOP Massive In-Classroom Course: an Experience Report”. In:
(2018), p. 9.

IBM Ottawa Lab Thomas Kuhn Eye Media GmbH Olivier Thomann. “JavaCodeManipulation 4,
In: (2006).

IBM Ottawa Lab Thomas Kuhn Eye Media GmbH Olivier Thomann. “Version
control with subversion”. In: O’Reilly Media, Inc. (2004).

w3schools. URL: https://www.w3schools.com/java/java_oop.asp.

67

