
Master Thesis

Automatic grades of computer
programming assignments

Willmar Rengifo Rengifo

Relatore

Valentina Gatteschi

Thesis

Master’s Degree in Computer Engineerig

INFORMATION AND COMMUNICATION

TECHNOLOGIES

POLITECNICO DI TORINO

PIEMONTE, TORINO

DECEMBER 2022

Automatic grades of computer programming

assignments

Willmar Rengifo Rengifo

Relatore:

Valentina Gatteschi
Department of Control and Computer Engineering

Abstract
The evaluation method made by professors takes time to evaluate every single

student. This thesis is a friendly framework for professors that helps to evaluate
a massive student’s code using theoretical knowledge of programming languages,
best-practices and an approximate way of giving a final score according to the de-
velopment made by the students. Our goal was to give feedback to the student in a
way that they can know where they made the mistakes and for the professor’s side,
the process can be automated by giving some initial parameters like name of im-
portant methods to be evaluated and its own weight. This framework was tested in
comparison with real scores from previous exams and the results are similar giving
a correct weight on each method and finally but not least, saving time for teachers
was the key part of this thesis.

3

Dedication

Dedicated to my parents, brother and friends.

4

Acknowledgement

My family are the first people that help me, always were encouraged for reach to
my academic goals, without their this doesn’t possible.

I would like to thank the closest friends who were for help me with the way was
difficult and believe in myself.

Thanks to the professor Valentina Gatteschi that with his patience and guide this
thesis is done.

5

Indice

1 Introduction 12

2 State of art 15
2.1 OOPGrading . 15
2.2 CLDIFF . 16
2.3 GumTree . 16

3 Methodology 18
3.1 The parser tree . 18
3.2 Java model . 18
3.3 Node AST . 19
3.4 Visit the parser . 20

3.4.1 CompilationNode . 20
3.4.2 Method declaration node . 20
3.4.3 BodyStatement node . 21
3.4.4 TryStatement node . 22
3.4.5 ThrowStatement node . 22
3.4.6 IfStatement node . 22
3.4.7 ForEnhanced node . 23
3.4.8 ForStatement node . 23
3.4.9 DoStatement node . 23
3.4.10 WhileStatement node . 23
3.4.11 SwitchStatement node . 24

4 Development 25
4.1 The framework used ASTExtractor: Abstract syntaxTree 26
4.2 Input Arguments . 26

4.2.1 Folders of the projects . 26
4.2.2 The weight properties . 28

4.3 Path the FolderFirstDelivered and FolderSecondDelivered 30
4.4 The student class . 30
4.5 Matches of files . 30
4.6 Parsing of source code. 31
4.7 Visit the parserA . 33

4.7.1 VisitCompilationNode.java . 33
4.7.2 VisitMethodDeclarationNode.java 33
4.7.3 VisitIFNode.java . 35
4.7.4 VisitForEnhanced.java . 36
4.7.5 VisitForNode.java . 36

6

4.7.6 VisitDoNode.java . 36
4.7.7 VisitWhileNode.java . 37
4.7.8 VisitSwitchNode.java . 37
4.7.9 VisitTryStatement.java . 38
4.7.10 VisitThrowStatement.java . 38
4.7.11 VisitBodyNode.java . 38

4.8 Compare of statements . 38
4.9 Store differences by file . 40
4.10 Calculation of the grade . 41
4.11 Differences founds . 42
4.12 Update counters . 43
4.13 The outputs . 44

4.13.1 The structure result final excel 44

5 Evaluation 46
5.1 test ChangesBodyDeclaration . 46
5.2 test ChangesNotBodyDeclaration . 46
5.3 test ChangesMethodDeclaration . 49
5.4 test Overall . 49

6 Conclusion 66
6.1 Future works . 66

Elenco delle figure

2.1 Diagram of flow exam. 15
2.2 An overview of ClDiff [5] . 16
2.3 View of the framework . 16
2.4 Approaches of GumTree framework 17

3.1 Model overview of the project [10]. 18
3.2 Read and write in AST. 19
3.3 Types of children and his properties [2]. 20
3.4 Example of grammar in the AST. 21
3.5 Structure of node CompilationUnit and TypeDeclaration [6]. 21
3.6 Structure of node MethodDeclaration [6]. 21
3.7 Structure of type node Block [6]. 22
3.8 Structure of type node Try [6]. 22
3.9 Structure of type node Throw [6]. 22
3.10 Structure type of node If [6]. 22
3.11 Structure of type node ForEnhanced. 23
3.12 Structure of type node For [6]. 23
3.13 Structure of type node Do [6]. 23
3.14 Structure of type node While [6]. 24
3.15 Structure of type node Swithc [6]. 24

4.1 General high model overview of the project 25
4.2 Diagram of class of ASTEXTRACTOR. 27
4.3 Structure of students projects folder. 27
4.4 The properties file. 28
4.5 Weight by method name. The setup of weight values for the methods

to evaluate. 29
4.6 Weight by type of node. 29
4.7 The object student. 30
4.8 Set up handles of parser. 31
4.9 Function for navigating the AST through his nodes. 32
4.10 Process of recognition. 32
4.11 Structure of node CompilationUnit and TypeDeclaration [6]. 33
4.12 Visit compilation node diff. 33
4.13 Visit compilation node framework overview. 34
4.14 Structure of node MethodDeclaration [6]. 34
4.15 MethodDeclaration Diff. 34
4.16 MethodDeclaration framework overview. 34
4.17 The weights values for the node MethodDeclaration. 35

9

4.18 Structure type of node If [6]. 35
4.19 If declaration. 35
4.20 If declaration framework overview. 36
4.21 Structure of type node Forenhanced [6]. 36
4.22 Structure of type node For [6]. 36
4.23 Structure of type node Do [6]. 37
4.24 Structure of type node While [6]. 37
4.25 While and Try statement. 37
4.26 While and Try statement framework Overview [6]. 37
4.27 Structure of type node Switch [6]. 37
4.28 Structure of type node Try [6]. 38
4.29 Structure of type node Throw [6]. 38
4.30 Structure of type node Block [6]. 38
4.31 Call to compare method. 38
4.32 The method compares:two nodes . 39
4.33 The visit to the parserB . 40
4.34 The nodes are equals? . 40
4.35 Store nodes differences found . 41
4.36 The java collection that store the differences nodes. 41
4.37 The calculation process. 42
4.38 The formula. 42
4.39 Differences found txt file. 43
4.40 Operation for update counters. 43
4.41 call to the method that created and write Excel file. 44
4.42 The collection stored the updates. 44
4.43 The method create and write Excel file. 44
4.44 The java collection that store the differences nodes. 45
4.45 Final excel data for exam 2018 - 2019 45

5.1 File Properties Case 1 . 47
5.2 Changes body declaration, case 1 . 47
5.3 File Properties Case 2 . 48
5.4 Changes not body declaration, case 2 48
5.5 File Properties Case 3 . 49
5.6 Changes method declaration, case 3 50
5.7 All cases . 50
5.8 All cases without INS . 51
5.9 Short all cases . 51
5.10 All differences between 3 cases . 52
5.11 All differences without INS between 3 cases 52
5.12 Overall grades comparison . 52
5.13 Data grades table . 55
5.14 Teacher grades . 65
5.15 Framework grades . 65
5.16 Passed Exam . 65

Capitolo 1

Introduction

Analyzing differences from source code is an important topic that contributes to
quality and maintenance, in the course of java programming language is possible
implements a procedure of learning based on the differences in the code for assigned
a grade, but for the teachers of java programming language spend huge of time
checking all java projects of each student that’s why the need arose to find useful
framework to agile this work.

This thesis was focused on the development of a friendly framework that helps
to the evaluation of programming exams and contributes to the feedback for stu-
dents showing where the differences are, according to the structure given with the
instruction by the professor.

Initially, the professor gives the names of the methods that are going to be eva-
luated and the structure of how the exam will be developed. The second step will
be when the student writes the project solution in exam time and the correction of
the project is delivered on a second date given by the professor.

The third step is when the professor configure the properties file with the important
methods and and their respective weights, to later use the framework to identify the
differences between the 2 delivered versions, after that the framework generates a
final grades file for each student and generates a file with the counters of the diffe-
rences found by each method. In this way, students are allowed to see the differences
found and this is a way to give some feedback for learning from mistakes. The last
step is that the professor can used this evaluation result (grade) generated by the
framework to be considered as part of the final grade of each student.

In the first section shows the introduction of the thesis that explain the origin
necessity for which this thesis arose. In the second section contains the state of art
in which gives an overview of the existing frameworks nowadays for code analysis of
Java programming languages.

In the section of Methodology explains the theory of parsing java code in an abstract
syntax tree and node management. The Development section talks about the phases
of evaluation which are:

12

1. Navigate parser B which is the parser generated by the correction version delive-
red.

2. Comparison with parser A which is the parser generated by the exam time
version delivered.

3. Upgrade the counters of the differences found between the two projects deli-
vered (exam time and correction time).

4. Evaluation of the grades according to the differences found and the weight given
by professor of each method.

5. Stored the counters by method and final grades.

The section results shows the comparison between the grades given by the pro-
fessor and the grades generated by the framework, the application was proved with
several test and his respective properties values and was analyzed which was the
best combination of property values that generates grades closest to the grades as-
signed by the teacher. This thesis was focused on three particular cases, the case
one was focused on the type node bodyDeclaration, the second case was based on
the type that is not bodyDeclaration and the last one was based on the type node
methodDeclaration.

Finally the section conclusion talks about the future works that can be done with this
developed framework and highlights the efficient in terms of timing at the evaluation
time done by the professors.

Capitolo 2

State of art

This thesis works with different runtime libraries able to take a java source code [7]
and create its abstract syntax tree with all information about this source code in
the nodes of the tree.

2.1 OOPGrading

• This is a program designed to improve the practices in the course of object
oriented program [12] and in the assignment of grades. this tool allows to the
professor manager the two versions delivered by the the students of the same
project, check the differences between versions and generate a grade as show
in the image 3.1.

These tools implement functionalities of automating testing with JUnit [8]
configuration.

• The other important feature that this program is concerned to terms of au-
thentication in the exam thanks to the used Subversion-IDE as eclipse [1], it
allows giving a location where the students put their projects. Other features
get to thanks to SVN [11] is the support of concurrent development with a
Copy-Modify-Merge approach [9].

Figura 2.1: Diagram of flow exam.

15

2.2 CLDIFF

This is a framework proposed by students of the University Fudan in china, the
application compare two files, the application is a code differencing between two
java file and linked the code differences founds in a efficient summarization util for
the recognition of type nodes and assignment of the weigth values.
Initially, the framework has two input arguments for the java files that is request

Figura 2.2: An overview of ClDiff [5]

a comparison, the two java files (f a, f b) are representation of a same file but in
different times,”file b” is before of changes and “file a” is the same file but after of
the changes. The framework cliffdif parsed to an AST’s from the source code file
java and labeled specified types of node [5].

The framework is able to realize a Hierarchy order in the AST’s created. the
Hierarchy can be in the subtypes of node as BodyDeclaration, typeDeclaraton, Me-
thodDeclaration, Initializer, FieldDeclaration and EnumDeclaration.
After of the characterization of a nodes of a AST, an edit script is generated and
with the framework GumTree [3] the script is used for will be generated fine-grained
code differences [5].

Figura 2.3: View of the framework

2.3 GumTree

GumTree [3] is a framework that use as a based the gumTree Algorithm. This Algo-
rith is in charge of establishing mappings of src and dst and then deducing an edit
script.

Exist 3 types of mapping used on GumTree Algorithm such as a greedy top-down
algorithm, a bottom-up algorithm or recovery mappings, see figure 2.4

A greedy top-down algorithm is recognized for anchors mappings which means that

first they search for the biggest unmodified pieces of code.

A bottom-up algorithm is called a container mapping which means that they deduce
which container of code can be mapped together. A recovery mappings is charac-
terized by searching for additional mappings among their descendants, this means
that they look at precise differences in what is leftover in each container [4].

Figura 2.4: Approaches of GumTree framework

This algorithm has 2 main problems, the distance between ordered labeled trees
and distance minimum-cost sequence of node edit operations that transform one tree
into another. those problems are not efficiency enough for our goal in this thesis.

Capitolo 3

Methodology

3.1 The parser tree

The beginning in the process of understand the differences is in the abstract syntax
tree, the convertion from java file to AST [10] is the first step, the AST is the
representation used by eclipse for the java source code, each file is represented as
a tree of AST nodes, and the nodes are subclasses specialized in a type of java
programming language, recognize all nodes and his type is a important task in the
process of differentiation in this thesis.

3.2 Java model

A java project is a tree structure thanks to the parser and is similar to a package
explorer view, the image show a example of java model 3.1. In this project, the
java model is out of scope but is important for future works because it costs less to
rebuild a Java model than to rebuild an AST and its nodes are easy handles.

Figura 3.1: Model overview of the project [10].

18

3.3 Node AST

The following image 3.2 shows two trees created by the framework that are going
to be compared between each other in the following step.

Figura 3.2: Read and write in AST.

The abstract class defines the methods for access to the important features of
this type of node, other advantages are that the AST nodes are thread-safe for
readers, this is convenient in our application because is not necessary writers, the
application does not modify the java source code, only check the type of the node
and make to comparison.
There are two ways to reach the values of structural node properties:
Static methods(e.g getName()) or generic, using
getStructuralPropertyDesscriptor(StructuralPropertyDescriptor property).

Each node can represent the following characteristics:

• Types.

• Names.

• Statement- statements.

• Expression - Expresssion

• BodyDeclaration - BodyDeclarations

Exist three kinds of aggrupation for these structural properties as shown in the
image3.3, understand this agrupation between children is important in the process
of navigate the AST that is done through of recursive calls into the children.:

Figura 3.3: Types of children and his properties [2].

The SimplePropertyDescriptor(E.g String, Integer or Boolean), the childProperty-
Descriptor is a node that belonging to a subclass of ASTNode and the last one is
ChildListPropertyDescriptor which is an array of AST node children of this node.
A node AST is the representation of a java code and belongs to a unique AST
instance. An AST node has a unique parent node and can have zero or a lot of
children, in this way is possible to navigate down from parent to child or upwards
from child to parent, In this thesis the navigation through to the abstract syntax
tree is realized by means of recursive calls, in the image 3.4 can see a example of
AST with differents types of node.

3.4 Visit the parser

3.4.1 CompilationNode

The compilationUnit is the first node, itis the head in the AST and in this thesis is
the first node that is sended to the process of comparison. The methods for access
the important characteristic into this node, the packageDeclaration through getPac-
kage(), the method imports() return a list of nodes,import declarations, and types()
with the list of nodes types declarations. A type declaration node is formed by a
class declaration and an interface declaration. The application used the getFields()
to return the list declaration or in our java code the global variables and finally,
getMethods() returns a list of methods declaration in this file. In the image 3.5, the
important children nodes that component the node compilationUnit.

3.4.2 Method declaration node

The documentation of IBM declare that the functions for access to information
feature information of a node A of type methodDeclaration are isContructor(), get-
Name()(name of method), parameters() (the list of arguments that must receiver
this method), getReturnType2()(return the return type for this method), getBo-
dy()(return the body code that belongs to this method). As an example of this we
can see the figure 3.6.

Figura 3.4: Example of grammar in the AST.

Figura 3.5: Structure of node CompilationUnit and TypeDeclaration [6].

Figura 3.6: Structure of node MethodDeclaration [6].

3.4.3 BodyStatement node

The documentation of IBM advises to use for unparented block node owned by
this AST and get the relevant information of the node. All nodes only must be

statements, statements() in which allows to get a list of statements.

The block type AST node is important for be common between others nodes,
for example, almost every the nodes that the application evaluate have a part body
or the statements. In the image 3.7, the important children nodes that component
the node blockStatement.

Figura 3.7: Structure of type node Block [6].

3.4.4 TryStatement node

The documentation of IBM advises to use for find the method resources() that return
a list of resources of this node try, getBody(), getFinally() and catchClauses are the
methods specialized for get the information of this type of node AST. In the image
3.8, the important children nodes that component the node tryStatement.

Figura 3.8: Structure of type node Try [6].

3.4.5 ThrowStatement node

The documentation of IBM describes the important children nodes that composes
the node throwStatement as it is shown in the image 3.9,

Figura 3.9: Structure of type node Throw [6].

3.4.6 IfStatement node

The documentation of IBM advises to use the method of this library getExpression(),
in order to return the expression to check in the ifStatement, which can be a list
of expressions. In addition, getThenStatement() return the body of the“then” part
and getElseStatement() returns the body of the else part or null if statement ”if” has
not. The following image 3.10 shows the important children nodes that component
the node IFNode.

Figura 3.10: Structure type of node If [6].

3.4.7 ForEnhanced node

The documentation of IBM describes the parameters controls are FormalParame-
ter(getBody()), Expression(getExpression()) and SingleVariableDeclaration(getParameter()).
The following image 3.11, represent the important children nodes that component
the node ForEnhanced.

Figura 3.11: Structure of type node ForEnhanced.

3.4.8 ForStatement node

The documentation of IBM describes the class that contains the methods for acces-
sing 4 values of for Node, the getBody() that returns the body of this for statement,
getExpression() returns the condition expression or null if there is none, inititia-
lizers() returns a list of initializer expressions, updaters() returns a list of update
expressions. The following image 3.12 shows the important children nodes that
component the node forStatement.

Figura 3.12: Structure of type node For [6].

3.4.9 DoStatement node

The documentation of IBM describes the application of using getBody() for get the
Body Statement of this node and the expression in the final while is returned with
getExpression(). In the image 3.13, evidence the important children nodes that
component the node doStatement.

Figura 3.13: Structure of type node Do [6].

3.4.10 WhileStatement node

Similar to DoStatement, the documentation of IBM describes the application use
getBody() for get the Body Statement of this node and the expression is returned
with getExpression(). In the image 3.14, evidence the important children nodes that
component the node whileStatement.

Figura 3.14: Structure of type node While [6].

3.4.11 SwitchStatement node

The documentation of IBM describes the method getExpression() which is in charge
of return the expression to evaluate in the switch node and the list of statements()
or switch case.In the image 3.15, the important children nodes that component the
node switchStatement.

Figura 3.15: Structure of type node Swithc [6].

Capitolo 4

Development

The best way to have an high overview of this thesis is looking at it as simple as
possible, throw this whole section will be describe with details each simple step
mentioned on this figure 4.1.

Figura 4.1: General high model overview of the project

This image shows in the left side the java files belonging to the same project but
with different versions, version exam or first delivered and version correction, this
projects are inputs for the system and this phase is called the input of students.
In the other hand is the process of setup the weight values, this process is realized
by the professor, the weight values are assigned by types of node and the names
of important methods, second criteria of professor, the setup values are load in the
ASTExtractorCalifica.Properties file. The next phase is the execution of framework
process, in this phase are the subsections of parser of two AST, identification of
nodes AST, Comparison between nodes in differents AST and finally calculation of
grades. In the final process, the values generated are stored in convenient TXT and
excel files, this phase is called the output of framework.

25

4.1 The framework used ASTExtractor: Abstract

syntaxTree

I have started my work with the library abstract syntax tree, widely used in ac-
tivities such as refactoring, quick fixes, and quick assist. It is an extractor that
transforms the java source into a tree form then the tree is more convenient and re-
liable to analyze and modify programmatically than the text-based source. Firstly,
it is necessary that the user provides some code to parser, there are two options, the
absolute address filename or the address of the directory which is the project that
the user wants to parser. After one or more syntax trees will be created syntax tree
for one file found in the project.

The commands for executing the library, only one option is possible

As project:
java -jar ASTExtractor.jar -project=”path/to/project”
-properties=”path/to/propertiesfile” -repr=XML—JSON
As file:
java -jar ASTExtractor.jar -file=”path/to/file”
-properties=”path/to/propertiesfile” -repr=XML—JSON

The link where is available: https://github.com/thdiaman/ASTExtractor The
goal of the first part of the project is to compare the same java code but in two
different phases of development to understand all changes make for the student in
the second version with respectively the first version. The second goal is assigned
to a grade from the node type that belongs to the change.

4.2 Input Arguments

The first change made to the library ASTExtractor was to add an extra parameter to
the arguments so there are two new arguments with respect to the original library,
the first new argument is argument is the path name where is located the folder
that contains all projects that students delivered and the second argument is the
path address to the folder that contains all projects of the students delivered in the
first deadline or “made in the time of the exam”, in other words, the first argument
content is the same project with the corrections made after of the exam then this
first argument content should not have many changes. The following image 4.2
shows the diagram of classes of ASTEXTRACTOR.

4.2.1 Folders of the projects

As its shown on 4.3, FolderFirstDelivered=”adressLocationOfFolderFirstDelivered”
is the address of the folders where the projects students in the second instance of
delivery are put. These projects contain changes or corrections made to the fir-
st delivery. FolderSecondDelivered=”adressLocationOfFolderSecondDelivered” the
addresses of the folder where the student’s projects are put. All student’s projects
are in the initial version or the first delivered. The version of the project done in

Figura 4.2: Diagram of class of ASTEXTRACTOR.

Figura 4.3: Structure of students projects folder.

exam time.

The students are not constrained to deliver the correction of the exam so in this case,
the program doesn’t assign scores to this student. It is mandatory that the student
keep the same structure and the same names for both the first delivered project (the
correction) and the second delivered project, on the contrary, the comparison is not
possible and the probability of finding differences between the two versions is high
and so the final result is considerably affected.

The other new input argument is the evaluation=ASTExtractorCalifica.properties.

This file is for assigning the weight-values that will be stored in the system and
used to get the grades for each student and depending on his change type. In the
structure of this file, there are separated by the character(%%%%%%%%), and the
first part is used to specify the names of the classes.

The other part is used to specify the important structures of the nodes. Obviously,
all part that is set up in this file takes a special value that affects the final grade of
the specified student, as its shown on figure 4.4.

Figura 4.4: The properties file.

4.2.2 The weight properties

The properties file ASTExtractorCalifica.properties contains the values of weight
that influence directly in the calculation of the final grade. Those Values are available
to be change by the professor criteria, see figure 4.5.

Each section of the properties file is separated by The first section of the file is the
name of methods that are considered more important for influence in the evaluation.

From the second section to the final section are the weight that are divided by
type of node, in this part are assigned a weight to specific feature for determinate
node. 4.6.

This is orden that followed the sections:

Figura 4.5: Weight by method name. The setup of weight values for the methods
to evaluate.

Figura 4.6: Weight by type of node.

1)Name of methods 2)Method Declaration 3)ifStatement 4)Forstatement 5)En-
hancedForStatement 6)DoStatement 7)WhileStatement 9)CompilationUnit 10)Ty-
peDeclaration 11)TryStatement

The methods in the list properties are used for the writing of the excel file, which
shows the final grades of the students and the counters by methods of the number
of differences, one example is the figure 4.5.

The execution -firstVersion=exam//2018-2019//correzione -secondVersion=exam//2018-
2019//lab -properties=ASTExtractor.properties -repr=XML
-Evaluation=ASTExtractorCalifica.properties.

4.3 Path the FolderFirstDelivered and FolderSe-

condDelivered

The parserFolder function is the class in charge of listing all java projects in the
folderFirstDelivered, one folder for each student, at this point the object student
is created, and the system checks if exist the second project version for the same
student into the FolderSecondDelivered folder after the projectFirstVersion and pro-
jectSecondVersion values are set up in the object student.

projectFirstVersion = Second version or correction version of the same student
project(located in FolderSecondDelivered).

projectSecondVersion = The project delivered by the student in exam time(located
in FolderFirstDelivered).

4.4 The student class

This class is called only if two similar projects (first version and correct version) are
found belonging to the same student. The object student is created before analyzing
the files of the java project. This object stored important values about the student,
the differences found in the process of comparison of the two versions, the current
and final grades, and counters by methods with the number of differences found by
methods for this student. The image shows the object student 4.7.

Figura 4.7: The object student.

4.5 Matches of files

With the object student set up, the next step is a new iteration, one for each file
found in the projectFirstVersion, in this iteration the operation of matches with the

file that should exist in the project version correction. Only if exist matches between
the first and second versions of filenames, the parser of the files and comparison will
be done else this eventuality will be written in a txt file and signal as a file not found
with the filename that generates this fail.

4.6 Parsing of source code.

For each iteration by file found in the java project student, two abstract syntax
tree will be created, the parserA and the parserB, belonging respectively to the files
matches, one file in the project delivered in exam time(versionB) and the file in the
project delivered in correction time(versionA).

The setup of the handles parsing of java and the extraction of their abstract syntax
tree is done in this part, the first node is the belonging to subclass compilationUnit,
The following image 4.8 shows the parameters that must be configured before the
conversion of source code to AST.

Figura 4.8: Set up handles of parser.

ASTParser.newParser(AST.JLS3); ASTParser.newParser(AST.JLS3); speci-
fied the java language specification, in this example JLS3, with the new syntax,
differentiation between JLS2 and JLS3 is necessary for terms of compatibility.

parser.setKind(ASTParser.K COMPILATION UNIT); Determinates the
type of input, there are five kinds of inputs, the ICompilationUnit is one of the
inputs, it is the pointer to the java file source.
Entire source file = K COMPILATION UNIT
The portion of java code: K EXPRESSION, K STATEMENTS,
K CLASS BODY DECLARATION
In this application always is used the option of the entire source file.

The initially navigate into an AST is done in the parserA thanks to the function
visit node shown in the image 4.9 in which implements recursive calls for naviga-
te bottom down (the first project version delivered at correction time), all nodes
will be asked about their type of node, in this process, the search consists in found
specific types of nodes in the AST parserA that are important for the criteria of
evaluation, these important nodes are defined by the user in the file ASTExtractor-
Califica.properties first of execution.

In the visit to the parserA, each node asks for the instance subclass that belongs,
this is the process of recognition, the function that does the recognition of type node
is shown in figure 4.10 , which is important because determines the visit abstract
subclass that will be called. As say first the abstract subclass has all access methods
for this specific type of node and then access to the values of this node.

Figura 4.9: Function for navigating the AST through his nodes.

Figura 4.10: Process of recognition.

4.7 Visit the parserA

In the next step, all classes that manage the visit to each type of node, add a label
that signals the type of node and if the process of comparison with the parserB is
false, the label will be used for matches with the value of weight setup in the file
ASTExtractorCalifica.properties for this specific type of node.

After the process of identification of a node in the parserA, the process of com-
parison is called, as is shown on figure 4.31 and the comparison process return to
boolean value which means if exists a change in this node but in the versionB.

4.7.1 VisitCompilationNode.java

This class manages the access to the packageDeclaration through getPackage(), the
method imports() return a list of nodes import declarations and types() with the
list of nodes types declarations.

A type declaration node is formed by a class declaration and an interface decla-
ration. the application used the getFields() to return the list declaration or in our
java code the global variables and finally, getMethods() returns a list of methods de-
claration in this file. In the image 4.11, the important children nodes that component
the node compilationUnit.

Figura 4.11: Structure of node CompilationUnit and TypeDeclaration [6].

Figura 4.12: Visit compilation node diff.

4.7.2 VisitMethodDeclarationNode.java

In this class are the functions specialized in the access the nodes recognize as a
method declaration type, too access the constructor declaration. In the image 4.14,
the important children nodes that component the node methodDeclaration.

Figura 4.13: Visit compilation node framework overview.

Figura 4.14: Structure of node MethodDeclaration [6].

Figura 4.15: MethodDeclaration Diff.

Figura 4.16: MethodDeclaration framework overview.

This is an example of setup in the properties file ASTExtractorCalifica.properties
of how the values of weight are set up, the values of weight are applied in depen-
dencies of the site where the change between the two versions is detected. In the
image 4.17, a example as how set up the values of weight in dependence of part of
code that the professor wish evaluate.

Figura 4.17: The weights values for the node MethodDeclaration.

The methods used for access to information of a node A of type methodDecla-
ration are isContructor(), getName()(name of method), parameters() (the list of
arguments that must receiver this method), getReturnType2() (return the return
type for this method), getBody()(return the body code that belongs to this method).

4.7.3 VisitIFNode.java

In this class is possible to find the three more used functions for access to the infor-
mation that is more relevant for the criteria of evaluation, getExpression(), returns
the expression to check in the ifStatement, which can be a list of expressions. get-
ThenStatement() return the body of the“then” part and getElseStatement() returns
the body of the else part or null if statement ”if” has not. In the image 4.18, the
important children nodes that component the node IFNode.

Figura 4.18: Structure type of node If [6].

Figura 4.19: If declaration.

Figura 4.20: If declaration framework overview.

4.7.4 VisitForEnhanced.java

The parameters controls are FormalParameter(getBody()), Expression(getExpression())
and SingleVariableDeclaration(getParameter()). In the image 4.21, the important
children nodes that component the node ForEnhanced.

Figura 4.21: Structure of type node Forenhanced [6].

4.7.5 VisitForNode.java

This class contains the methods for accessing 4 values of for Node, the getBody()
that returns the body of this for statement, getExpression() returns the condition ex-
pression or null if there is none, inititializers() returns a list of initializer expressions,
updaters() returns a list of update expressions. In the image 4.22, the important
children nodes that component the node forStatement.

Figura 4.22: Structure of type node For [6].

4.7.6 VisitDoNode.java

In this class, the application use getBody() for get the Body Statement of this node
and the expression in the final while is returned with getExpression(). In the image
4.23, the important children nodes that component the node doStatement.

Figura 4.23: Structure of type node Do [6].

4.7.7 VisitWhileNode.java

Similar to visitDoNode.java,the application use getBody() for get the Body State-
ment of this node and the expression is returned with getExpression(). In the image
4.24, the important children nodes that component the node whileStatement.

Figura 4.24: Structure of type node While [6].

Figura 4.25: While and Try statement.

Figura 4.26: While and Try statement framework Overview [6].

4.7.8 VisitSwitchNode.java

getExpression() return the expression to evaluate in the switch node and the list of
statements() or switch case. In the image 4.27, the important children nodes that
component the node switchStatement.

Figura 4.27: Structure of type node Switch [6].

4.7.9 VisitTryStatement.java

In this class can find to the method resources() that return a list of resources of
this node try, getBody(), getFinally() and catchClauses are the methods specialized
for get the information of this type of node AST. In the image 4.28, the important
children nodes that component the node tryStatement.

Figura 4.28: Structure of type node Try [6].

4.7.10 VisitThrowStatement.java

In the image 4.29, the important children nodes that component the node throw-
Statement.

Figura 4.29: Structure of type node Throw [6].

4.7.11 VisitBodyNode.java

This class has only one method for get the relevant information of the node, all
nodes only must be statements, statements() allows to get a list of statements,
the block type ast node is important for be common between others nodes, for
example, almost every the nodes that the application evaluate have a part body or
the statements. In the image 4.30, the important children nodes that component
the node blockStatement.

Figura 4.30: Structure of type node Block [6].

Figura 4.31: Call to compare method.

4.8 Compare of statements

The method compareVisitNode is called for each node in the parserA and his duty
is to see if exist the same node in parserB.

Figura 4.32: The method compares:two nodes

The parameter for sending is the same node that is currently checked, and the value
for return is a value boolean that specified if found a similar node in the parserB

VisitNodeParserB The process of comparison is realized into the tree created
by the parserB of the project correction, at this point, the application has a node
reference in the parserA and starts the navigate into the AST parserB.

The navigation through the AST created for the parserB will check only the no-
des that have the same subclass in the type of nodes following the same root in
terms of the parents, so only take a root that matches between parents in the AST
parserB and the parents of the node in the AST parserA, in this way the navigate
through the AST parserB is done more efficiently than in the AST parserA. Started
from the initial parent, compilationUnit to the last parent of the node reference in
the parserB. The nodes that satisfied this rule are passed to the process of identifi-
cation, the same process made with the nodeA in parserA explained in the chapter
4.7 is made with these nodes found in the visit to parserB and the nodes identified
with the instances that the node reference will be check.

Finally the nodes that passed the last two controls, they will be subject to a fi-
nal check: With these two final controls, the process of comparison is ended, and
the global variable “nodeFound” is set up to false in the init of process comparison
of each node in the tree of parseA after starting the process of visit and recognizing

Figura 4.33: The visit to the parserB

Figura 4.34: The nodes are equals?

the node in the parserB that will make the global variable true only if the belonging
node to parserB has the following requirements:

• The chain formed by the type of node of his parent is the same in the node
references in parserA and the node Found in the process of comparison.

• The nodes parserA and parserB have the same type of nodes.

• The string values that are represented in the code these nodes are the same.

4.9 Store differences by file

For each node in the Ast parserA that active the process of comparison, one of the
first steps is setup nodeFound to false, and in the final of comparison this variable
global is setup to true if the node has the three rules described in the previous char-
ter otherwise the node of the AST created by parserA is different or not exist the
node in the AST created by parserB and therefore will be managed as node different
and store into a collection java.

Figura 4.35: Store nodes differences found

Finally exist a collection java where is stored all nodes with differences found, this
structure is clear always in the init of processing each file, the colecction is to type
map collection with a String as a key and a AST node as a value, the Identifica-
tionDiff and the different node AST are the key and the value, respectively. The
IdentificationDiff is a key formed by the name method that belong or has the first
parent in his familiar’chain and additionally a counter by method stored.

Figura 4.36: The java collection that store the differences nodes.

4.10 Calculation of the grade

When processing of identification of all nodes in parserA created by a file into the
first project delivered and the comparison with parserB created by a homologous file
in the version correction are finished, the collection java that stores the differences
nodes found can be null or has a one or more nodes AST.

At this point is done the check to all differences generated by the file so the process
of calculation of the grade of a student is done in this step for each file. For each
file processing the collection that store the node’s differences are navigated and each
difference activate a process of calculation, the variables String weightMethod and
weightType are reached by means of getWeightMethod() and getReference().

The method getWeightMethod() receives the label that indicates the name method
that this node is part and returns the value of weight set up in the ASTExtractor-
Califica.properties to this method name. the method getWeightReference(), receives

Figura 4.37: The calculation process.

the label that indicates the type of node of the current node different and the me-
thod returns a value of weight that indicates the weight assigned to this type of
node.
In each iteration of the control of a project, in the init part the student begins with
a grade of 30, the most high grade but while the program checks all files into the
project for each different node, the values weightMethod and weightReferences ge-
nerate a new value that will be used in the calculate of the new grade of the student.
in the practices, the student has an initial grade in the most high-grade but with
each difference found, the subtract operation is applied over this grade minus the
value generate for the values of the weight of the specific node that found different.
When the analysis of all files in the project of a student has been finished, the
current grade of the student is taken as the final grade by the student.

Figura 4.38: The formula.

MinusGradeTotal is the method that realizes a new calculation for each different
node so each difference found in the file, decreases the grade of a student, in a per-
centage defined by the weight values.

The values of weightMethod and referencesWeight are multiplied and the result
is divided by 100. Finally, the number result of the last operation is subtracted
from the current grade to generate the new grade of the student, which is stored in
the variables of the object student.

4.11 Differences founds

The framework generates inside of each student folder the final result txt, which
contains the information about the nodes belonging to the file, if the node is found,
a print message will be printed ”line found”, othewise the label will be a ”warning”
message.

The differences found will be shown at the final check of the file. Each difference
found has information about localization inside the code, type of node and weight
assigned in the properties file.

Figura 4.39: Differences found txt file.

4.12 Update counters

Figura 4.40: Operation for update counters.

When the analysis of the java project of each student is started, the student ob-
ject loads the methods set up in the file properties ASTExtractorCalifica.properties
and set up these counters with 0 after the process of analyzing each file is initiated.
As said before, every time that in each file finished the process of identifying the
nodes in parseA and comparison with the nodes in parserB, the next step is to pro-
cess the collection of nodes differences, that for each node difference the operation
calculation of the grade is call, subtracting a percentage of the current grade.

The next step is to update the counters by methods that have the object student,
and update the current counter in plus one. the methods set up for each student
in the analysis of the project are taken for the properties file ASTExtractorCalifi-
ca.properties.

4.13 The outputs

The files generated by the execution of the program are basically a txt in each
folder of the student, this is specially practiced for check the differences that caused
a discount to the final grade by individual student, the other important file is the
excel, this excel file containt the final grade of all student and counters with the
differences founds by methods.

4.13.1 The structure result final excel

The final results are written in an excel file but first, the dates are stored in a global
structure, which is called “resultGrades” and is a treeMap collection that stores the
final result of each student.

Figura 4.41: call to the method that created and write Excel file.

for each project student processed, the final result grade must store in resultGra-
des, other important information stored is the personal information of the student
and all methods specified in the file ASTExtractorCalifica.properties with his re-
spective counters that indicate the number of changes or different founds divided by
methods.

Figura 4.42: The collection stored the updates.

Finally, when all projects java are checked, the data in the structure resultGrades
are sent to the method CreateExcelNew(). This method receives the structure collec-

Figura 4.43: The method create and write Excel file.

tion and thanks to importing the library org.apache.poi.hssf.usermodel.HSSFWorkbook

is possible to store information about the final result grades for every student.
The final excel that is generated by the framework contains the id of the student,
name, surname, the final score generated by the framework, the counter of differen-
ces found by the method. the following image shows an example of the final excel
that we are describing in this section. 4.45

Figura 4.44: The java collection that store the differences nodes.

Figura 4.45: Final excel data for exam 2018 - 2019

Capitolo 5

Evaluation

In this section shows the results obtained by the framework applied a real case test
from exam of 2018 - 2019, this section was evaluated with the project called ”Poli-
chef”.

For this section, 125 students has been delivered his projects for evaluation, each
student has the first version project and the correction project.The final grades of
each student generate by the framework was compared by the grade assigned by the
teacher. For the test was prepared three differents ASTExtractorCalifica.properties
with different parameters, the test are called: test ChangesBodyDeclaration, te-
st ChangesNotBodyDeclaration, test ChangesMethods;

To all test was calculated a media of the grades assigned by the framework, the
best configuration found so far was the second test ChangesNotBodyDeclaration
with 0.70,in others test, the results were 1.30 for the first and 0.90 for the third.

5.1 test ChangesBodyDeclaration

In this section the image 5.1 represents the weight values that were assigned in the
ASTExtractorCalifica.Properties for the first test and the figure 5.2 expose the re-
sults applied in the test case one with the properties mentioned before, in this test
the classification was made with all values that belong to type node bodyDeclara-
tion with values of 20 and the others types of nodes with values of 50(for example,
expressions, return exam, receiverParameters, returnParameter/void etc).

In the tables belonging to this test 5.1 5.2 5.3 the second column is the grades
assigned by the framework, the third column is the grade assigned by the teacher,
and in the final column is possible to see the difference between the two grades for
each student, for this test the media is 1.30, this is the least efficient result test
according to the teacher’s grade.

5.2 test ChangesNotBodyDeclaration

The image 5.3 shows the weight values that were assigned for the second test and
the figure 5.4 shows the results applied in the test case two with the properties

46

Figura 5.1: File Properties Case 1

Figura 5.2: Changes body declaration, case 1

previous mentioned, in this test the classification was made with all values that
belong to type node bodyDeclaration with values of 20 and the others types of
nodes with values of 40(for example, expressions, return exam, receiverParameters,
returnParameter/void etc). In the tables belonging to this test 5.4 5.6 5.5 the second
column is the grades assigned by the framework, the third column is the grade
assigned by the teacher, and in the final column is possible to see the difference
between the two grades for each student, for this test the media is 0.70, this is the

best media that represent the most accurate test.

Figura 5.3: File Properties Case 2

Figura 5.4: Changes not body declaration, case 2

5.3 test ChangesMethodDeclaration

This image 5.5 expose the weight values that were assigned for the first test and
the figure 5.6 expose the results applied in the test case three with the properties
mentioned before, in this test the classification was made with all values that belong
to type node bodyDeclaration with values of 40 and the others types of nodes with
values of 40(for example, expressions, return exam, receiverParameters, returnPara-
meter/void etc). In the tables belonging to this test teacher 5.7 5.8 5.9 the second
column is the grades assigned by the framework, the third column is the grade assi-
gned by the teacher, and in the final column is possible to see the difference between
the two grades for each student, for this test the media produce by the results is
0.90, this is the second best properties values.

Figura 5.5: File Properties Case 3

5.4 test Overall

The images show the line graph between the grades generated by the framework in
each case and the teacher’s grades figure 5.7. Notice that those students that have
INS grades cause wired cases.

The images show the line graph between the grades generated by the framework
in each case and the teacher’s grades figure 5.8. In this representation was not
include the student with INS grades, and doing in this way we appreciated accurate
results, almost the same as teacher’ grade.

Figura 5.6: Changes method declaration, case 3

Figura 5.7: All cases

The figure 5.9 show the line graph between the grades generated by the framework
in each case and the grades assigned by the teacher. Notice that the students
with grade INS was included. The graphic contains only ten students for a best
visualization.
The image 5.10 shows the line graph with all medias produced in the cases, with

INS and without INS grades.

The image 5.11 shows the graphic with all medias generated by all grades
excluded the INS grades.

5.10 5.11 5.12

For a better visualization of the results the following image 5.12 shows the com-
parison of the grades between teacher’s grades and the grades of the framework.
Also we can see that the results are close enough between them.

In the next table 5.13 shows the resume of the number of students that have
pass and lost the exam according to the teacher’s grade and framework’s grade

Figura 5.8: All cases without INS

Figura 5.9: Short all cases

The successive image 5.14 shows a pie diagram of teacher’s grade and the next
one 5.15 shows a pie diagram of framework’s grades.

the ensuring image 5.16 exhibit all the student that have passed the exam, ta-
king on count that are kicked out the students that are not participating with the
correction and all the students that are failed the exam. One more time, makes it
clear that are closely to each other between teacher’s grade and framework’s grade.

Figura 5.10: All differences between 3 cases

Figura 5.11: All differences without INS between 3 cases

Figura 5.12: Overall grades comparison

ID STUDENT GRADE TEACHER’S GRADE DIFFERENCE
175536 24,36 25,4 1,04
191231 29,23 29,5 0,27
203560 26,93 23,9 -3,02999999999999
204508 INS 8,22000000000001 0
206263 INS 19,8 0
216642 21,43 20,78 -0,649999999999988
222738 23,81 25,3 1,49
224278 30 30 0
224387 INS 17,1 0
224775 27,42 29,1 1,68
224872 27,3 28,4 1,1
226199 26,67 27,8 1,12999999999999
226203 20,47 21,4 0,930000000000014
226500 18,27 19,7 1,43000000000001
226878 28,59 28,6 0,0100000000000051
227038 28,2 28,3 0,100000000000005
227469 INS 18 0
227538 30 30 0
227583 28,09 29,2 1,11
227645 20,53 22 1,47
227649 20,02 22,9 2,88000000000001
228012 INS 17,5 0
228481 19,44 17 -2,43999999999999
228586 22,95 27,34 4,39
228672 INS 15 0
228972 27,19 28,7 1,51
229029 17,59 22,74 5,15000000000001
229159 INS 12,44 0
229485 20,33 25,82 5,49
229755 19,23 22,24 3,01000000000001
230008 26,4 28,5 2,1
230894 19,23 27,4 8,17000000000001
233789 28 28,6 0,600000000000005
233799 25,23 28,2 2,97
234154 24,66 27,1 2,44
234164 25,1 27,08 1,98
234201 26,93 29,6 2,67
234317 29 29,4 0,399999999999999
234406 22,58 25,42 2,84
234541 26,4 29,2 2,8
234580 INS 0,600000000000014 0
234587 26,83 28,2 1,37
234600 INS 11,3 0
234699 23,56 23,8 0,240000000000013
234708 29,23 29,7 0,469999999999999

Tabella 5.1: Grades professor vs grades framework case 1

ID STUDENT GRADE TEACHER’S GRADE DIFFERENCE
234834 26,97 29,02 2,05
234865 INS 7,10000000000001 0
235059 25,62 29,1 3,48
235085 28,71 28,38 -0,329999999999998
235110 INS 20,2 0
235136 29,23 29,7 0,469999999999999
235163 27,19 28,2 1,01
235249 25,83 28,4 2,57
235375 25,19 27,1 1,91
235444 INS 16,6 0
235478 26,17 28,32 2,15
235494 26,4 28,3 1,9
235673 26,7 28,86 2,16
235718 INS 12 0
235726 INS 16 0
235768 21,36 26,22 4,86
235823 27,3 28,5 1,2
235869 23,62 22,7 -0,920000000000002
235887 24,36 25,4 1,04000000000001
235941 30 30 0
236027 23,8 24,88 1,08000000000001
236076 30 30 0
236447 27,42 28,9 1,48
236482 24,21 25,6 1,39
236651 29,23 29,88 0,649999999999999
236656 30 30 0
236671 29 28,2 -0,799999999999994
236676 30 30 0
236685 28 29 1
236706 25,77 28,06 2,29
236766 29,23 30 0,77
236787 28,84 29,2 0,360000000000003
236788 30 30 0
236819 28,84 28,4 -0,439999999999994
236843 26,26 27,4 1,14
236901 28,2 28,9 0,699999999999999
236987 29,23 29,7 0,469999999999999
237068 27,69 28,8 1,11
237087 27,83 28,3 0,470000000000006
237250 30 30 0
237263 INS 16,1 0
237436 23,56 25,16 1,60000000000001

Tabella 5.2: Grades professor vs grades framework case 1

ID STUDENT GRADE TEACHER’S GRADE DIFFERENCE
237460 20,2 23,58 3,38000000000002
237547 29,23 29,8 0,57
237619 27,69 28,76 1,07
237732 24,97 25,74 0,77
237812 19,77 21,16 1,39
237924 28,47 28,6 0,130000000000006
237952 INS 25 0
238009 24,36 26,7 2,34000000000001
238072 23,2 26,06 2,86
238093 26 26,9 0,900000000000009
238101 INS 1,60000000000001 0
238155 30 30 0
238336 27,3 28,9 1,6
238772 23,81 26,1 2,29000000000001
239921 22,61 25,12 2,51000000000001
240471 27,8 29,4 1,6
242340 28 28,2 0,200000000000006
244781 30 30 0
246255 29 29,8 0,800000000000001
246458 29,23 29,4 0,169999999999998
246489 30 30 0
250766 22,95 28,2 5,25
251154 30 30 0
251202 30 30 0
251221 28,47 29,3 0,830000000000002
251367 28,47 29,1 0,630000000000003
253522 22,14 24,56 2,42000000000001
255426 25,37 26,5 1,13
258118 29 29,2 0,200000000000003
258120 27,3 28,2 0,900000000000006
258985 27,8 29,6 1,8
260320 28,84 29,1 0,260000000000002
265011 30 30 0
265024 19 22,7 3,70000000000001
265077 25,4 27,4 2,00000000000001
265127 25,38 28,5 3,12
266052 25,19 27,8 2,61

Tabella 5.3: Grades professor vs grades framework case 1

Figura 5.13: Data grades table

ID STUDENT GRADE TEACHER’S GRADE DIFFERENCE
216642 21,43 19,6799999999999 -1,7500000000001
222738 23,81 22,7999999999999 -1,0100000000001
224278 30 30 0
224387 INS 15,7999999999999 0
224775 27,42 28,4 0,979999999999997
224872 27,3 27,0999999999999 -0,200000000000102
226199 26,67 27,6399999999999 0,969999999999899
226203 20,47 21,2999999999999 0,829999999999902
226500 18,27 19,7399999999999 1,4699999999999
226878 28,59 28,2 -0,390000000000001
227038 28,2 27,9 -0,300000000000001
227469 INS 16,7399999999999 0
227538 30 30 0
227583 28,09 28,4 0,309999999999999
227645 20,53 21,5999999999999 1,0699999999999
227649 20,02 18,9999999999999 -1,0200000000001
228012 INS 15,6999999999999 0
228481 19,44 14,2999999999999 -5,1400000000001
228586 22,95 26,6399999999999 3,6899999999999
228672 INS 15,2999999999999 0
228972 27,19 27,8199999999999 0,6299999999999
229029 17,59 22,4399999999999 4,8499999999999
229159 INS 11,8599999999999 0
229485 20,33 26,0999999999999 5,7699999999999
229755 19,23 20,4799999999999 1,2499999999999
230008 26,4 28,0999999999999 1,6999999999999
230894 19,23 25,4 6,17
233789 28 27,8 -0,199999999999999
233799 25,23 28,1 2,87
234154 24,66 25,7999999999999 1,1399999999999
234164 25,1 25,8999999999999 0,799999999999898
234201 26,93 29,6 2,67
234317 29 28,2 -0,800000000000001
234406 22,58 24,6399999999999 2,0599999999999
234541 26,4 29,2 2,8
234580 INS 0,859999999999979 0
234587 26,83 27,5999999999999 0,7699999999999
234600 INS 8,39999999999998 0
234699 23,56 22,1999999999999 -1,3600000000001
234708 29,23 29,7 0,469999999999999

Tabella 5.4: Grades professor vs grades framework case 2

ID STUDENT GRADE TEACHER’S GRADE DIFFERENCE
234834 26,97 28,24 1,27
234865 INS 5,89999999999998 0
235059 25,62 28,7 3,08
235085 28,71 28,3199999999999 0
235110 INS 17,4999999999999 0
235136 29,23 29,7 0,469999999999999
235163 27,19 27,8 0,609999999999999
235249 25,83 27,2999999999999 1,4699999999999
235375 25,19 26,6999999999999 1,5099999999999
235444 INS 16,6999999999999 0
235478 26,17 26,8799999999999 0,709999999999898
235494 26,4 27,9 1,5
235673 26,7 27,9199999999999 1,2199999999999
235718 INS 9,09999999999998 0
235726 INS 14,3999999999999 0
235768 21,36 25,2399999999999 3,8799999999999
235823 27,3 28 0,699999999999999
235869 23,62 23,6999999999999 0,0799999999998988
235887 24,36 23,5 -0,859999999999999
235941 30 30 0
236027 23,8 25,7799999999999 1,9799999999999
236076 30 30 0
236447 27,42 28,5 1,08
236482 24,21 24,9 0,689999999999998
236651 29,23 29,88 0,649999999999999
236656 30 30 0
236671 29 28,2 -0,800000000000001
236676 30 30 0
236685 28 28,1199999999999 0,119999999999902
236706 25,77 27,9599999999999 2,1899999999999
236766 29,23 30 0,77
236787 28,84 28,8 -0,0399999999999991
236788 30 30 0
236819 28,84 28,4 -0,440000000000001
236843 26,26 26,5999999999999 0,339999999999897
236901 28,2 28,0999999999999 -0,100000000000101
236987 29,23 29,7 0,469999999999999
237068 27,69 27,2 -0,490000000000002
237087 27,83 27,2999999999999 -0,530000000000097
237250 30 30 0
237263 INS 13,3599999999999 0
237436 23,56 24,4599999999999 0,899999999999903

Tabella 5.5: Grades professor vs grades framework case 2

ID STUDENT GRADE TEACHER’S GRADE DIFFERENCE
237460 20,2 21,2199999999999 1,0199999999999
237547 29,23 29,2 -0,0300000000000011
237619 27,69 28,12 0,43
237732 24,97 25,5999999999999 0,6299999999999
237812 19,77 21,3399999999999 1,5699999999999
237924 28,47 27,5999999999999 -0,8700000000001
237952 INS 23,3999999999999 0
238009 24,36 26,4 2,04
238072 23,2 23,9599999999999 0,759999999999902
238093 26 26,6 0,600000000000001
238101 INS 0,639999999999979 0
238155 30 30 0
238336 27,3 28,0999999999999 0,799999999999898
238772 23,81 23,5999999999999 -0,2100000000001
239921 22,61 23,6399999999999 1,0299999999999
240471 27,8 29 1,2
242340 28 27 -1
244781 30 30 0
246255 29 29,8 0,800000000000001
246458 29,23 29 -0,23
246489 30 30 0
250766 22,95 27,5999999999999 4,6499999999999
251154 30 30 0
251202 30 30 0
251221 28,47 28,9 0,43
251367 28,47 28,4 -0,0700000000000003
253522 22,14 24,72 2,58
255426 25,37 25,2999999999999 -0,0700000000000998
258118 29 28,4 -0,600000000000001
258120 27,3 28,6 1,3
258985 27,8 29,6 1,8
260320 28,84 28,2 -0,640000000000001
265011 30 30 0
265024 19 20,8999999999999 1,8999999999999
265077 25,4 27,2999999999999 1,8999999999999
265127 25,38 28,0999999999999 2,7199999999999
266052 25,19 27,6 2,41

Tabella 5.6: Grades professor vs grades framework case 2

ID STUDENT GRADE TEACHER’S GRADE DIFFERENCE
175536 24,36 25,36 1,00000000000002
191231 29,23 29,6 0,370000000000001
203560 26,93 22,24 -4,68999999999997
204508 INS 5,52000000000004 0
206263 INS 17,92 0
216642 21,43 19,36 -2,06999999999996
222738 23,81 24 0,190000000000023
224278 30 30 0
224387 INS 15,28 0
224775 27,42 29,2 1,78
224872 27,3 28 0,700000000000006
226199 26,67 27,92 1,25000000000001
226203 20,47 21,2 0,730000000000032
226500 18,27 17,52 -0,74999999999995
226878 28,59 28,4 -0,189999999999994
227038 28,2 28 -0,199999999999992
227469 INS 17,1200000000001 0
227538 30 30 0
227583 28,09 29,2 1,11
227645 20,53 21,6 1,07000000000003
227649 20,02 21,52 1,50000000000004
228012 INS 15,2 0
228481 19,44 15,2 -4,23999999999995
228586 22,95 27,12 4,17000000000002
228672 INS 14,4 0
228972 27,19 28,48 1,29000000000001
229029 17,59 21,12 3,53000000000004
229159 INS 12,32 0
229485 20,33 25,52 5,19000000000002
229755 19,23 20,72 1,49000000000004
230008 26,4 28 1,60000000000001
230894 19,23 26,8 7,57000000000001
233789 28 28 0
233799 25,23 28 2,77000000000001
234154 24,66 26,16 1,50000000000001
234164 25,1 26,32 1,22000000000002
234201 26,93 29,2 2,27
234317 29 28,8 -0,199999999999996
234406 22,58 25,52 2,94000000000002
234541 26,4 28,4 2,00000000000001
234580 INS 0 0
234587 26,83 27,6 0,77000000000001
234600 INS 10,32 0
234699 23,56 22,8 -0,759999999999973
234708 29,23 29,6 0,370000000000001

Tabella 5.7: Grades professor vs Grades Framework case 3

ID STUDENT GRADE TEACHER’S GRADE DIFFERENCE
234834 26,97 29,12 2,15000000000001
234865 INS 6,00000000000004 0
235059 25,62 28,8 3,18
235085 28,71 28,32 -0,38999999999999
235110 INS 19,12 0
235136 29,23 29,6 0,370000000000001
235163 27,19 27,6 0,410000000000007
235249 25,83 28,4 2,57000000000001
235375 25,19 26,72 1,53000000000002
235444 INS 16,4 0
235478 26,17 28,08 1,91000000000001
235494 26,4 27,6 1,20000000000001
235673 26,7 28,96 2,26000000000001
235718 INS 9,92000000000004 0
235726 INS 15,2 0
235768 21,36 25,92 4,56000000000002
235823 27,3 28 0,700000000000006
235869 23,62 22,8 -0,819999999999975
235887 24,36 24 -0,359999999999978
235941 30 30 0
236027 23,8 24,56 0,760000000000019
236076 30 30 0
236447 27,42 28,4 0,980000000000004
236482 24,21 24 -0,20999999999998
236651 29,23 29,76 0,530000000000001
236656 30 30 0
236671 29 28,4 -0,599999999999994
236676 30 30 0
236685 28 28,88 0,880000000000006
236706 25,77 27,92 2,15000000000001
236766 29,23 30 0,77
236787 28,84 28,8 -0,0399999999999956
236788 30 30 0
236819 28,84 28,4 -0,439999999999994
236843 26,26 27,2 0,940000000000008
236901 28,2 28,8 0,600000000000005
236987 29,23 29,6 0,370000000000001
237068 27,69 28 0,310000000000006
237087 27,83 27,76 -0,0699999999999896
237250 30 30 0
237263 INS 13,92 0
237436 23,56 23,92 0,360000000000028

Tabella 5.8: Grades professor vs Grades Framework case 3

ID STUDENT GRADE TEACHER’S GRADE DIFFERENCE
237460 20,2 22,32 2,12000000000003
237547 29,23 29,6 0,370000000000001
237619 27,69 28,16 0,470000000000006
237732 24,97 25,92 0,950000000000021
237812 19,77 21,12 1,35000000000004
237924 28,47 28 -0,469999999999992
237952 INS 24 0
238009 24,36 26,16 1,80000000000001
238072 23,2 24,72 1,52000000000002
238093 26 26,4 0,400000000000013
238101 INS 0 0
238155 30 30 0
238336 27,3 28,8 1,5
238772 23,81 25,2 1,39000000000002
239921 22,61 24,32 1,71000000000002
240471 27,8 29,2 1,4
242340 28 27,6 -0,399999999999991
244781 30 30 0
246255 29 29,6 0,600000000000001
246458 29,23 29,2 -0,0299999999999976
246489 30 30 0
250766 22,95 28 5,05000000000001
251154 30 30 0
251202 30 30 0
251221 28,47 29,2 0,730000000000004
251367 28,47 29,2 0,730000000000004
253522 22,14 24,56 2,42000000000002
255426 25,37 25,92 0,550000000000018
258118 29 29,2 0,200000000000003
258120 27,3 28,4 1,1
258985 27,8 29,2 1,4
260320 28,84 28,8 -0,0399999999999956
265011 30 30 0
265024 19 21,12 2,12000000000004
265077 25,4 27,76 2,36000000000001
265127 25,38 28 2,62000000000001
266052 25,19 26,4 1,21000000000001

Tabella 5.9: Grades professor vs Grades Framework case 3

ID STUDENT GRADE TEACHER’S GRADE
191231 22,2975 24,36
203560 29,1675 29,23
204508 27,085 26,93
206263 15,8375 0
216642 15,84 0
222738 23,9625 21,43
224278 24,5875 23,81
224387 30 30
224775 21,88 0
224872 29,1675 27,42
226199 24,3775 27,3
226203 28,335 26,67
226500 16,885 20,47
226878 30 18,27
227038 29,1675 28,59
227469 26,8775 28,2
227538 13,345 0
227583 30 30
227645 29,1675 28,09
227649 18,965 20,53
228012 21,4625 20,02
228481 23,755 0
228586 19,5875 19,44
228672 24,3775 22,95
228972 17,3 0
229029 28,5425 27,19
229159 22,085 17,59
229485 20,42 0
229755 25,42 20,33
230008 19,175 19,23
230894 25,835 26,4
233799 27,5025 28
234154 30 25,23
234164 24,38 24,66
234201 27,085 25,1
234317 28,335 26,93
234406 25,2125 29
234541 25,21 22,58
234580 27,5025 26,4
234587 30 0
234600 23,335 26,83
234699 22,92 0
234708 18,3425 23,56
234834 25,625 29,23
234865 29,1675 26,97

Tabella 5.10: Grades professor vs Grades Framework

ID STUDENT GRADE TEACHER’S GRADE
235059 12,2975 0
235085 27,71 25,62
235110 30 28,71
235136 23,335 0
235163 28,5425 29,23
235249 27,71 27,19
235375 27,71 25,83
235444 26,2525 25,19
235478 20,8375 0
235494 29,1675 26,17
235673 25,6275 26,4
235718 28,335 26,7
235726 14,7975 0
235768 17,09 0
235823 25,42 21,36
235869 27,5 27,3
235887 24,585 23,62
235941 26,46 24,36
236027 29,1675 30
236076 22,9225 23,8
236447 29,1675 30
236482 26,8775 27,42
236651 20,0075 24,21
236656 29,1675 29,23
236671 28,335 30
236676 28,335 29
236685 30 30
236706 26,46 28
236766 26,045 25,77
236787 30 29,23
236788 27,5025 28,84
236819 30 30
236843 27,9175 28,84
236901 25,835 26,26
236987 29,375 28,2
237068 27,71 29,23
237087 29,1675 27,69
237250 26,67 27,83
237263 30 30
237436 15,425 0
237460 24,795 23,56

Tabella 5.11: Grades professor vs Grades Framework

ID STUDENT GRADE TEACHER’S GRADE
237547 24,5875 20,2
237619 28,5425 29,23
237732 28,335 27,69
237812 25,8375 24,97
237924 23,9625 19,77
237952 26,67 28,47
238009 23,335 0
238072 26,8775 24,36
238093 24,585 23,2
238101 26,67 26
238155 8,45000000000006 0
238336 30 30
238772 27,71 27,3
239921 25,42 23,81
240471 26,6675 22,61
242340 25,8375 27,8
244781 27,5025 28
246255 28,335 30
246458 28,335 29
246489 28,335 29,23
250766 29,1675 30
251154 27,2925 22,95
251202 29,1675 30
251221 28,335 30
251367 27,71 28,47
253522 29,1675 28,47
255426 25,2125 22,14
258118 27,085 25,37
258120 28,335 29
258985 28,335 27,3
260320 28,75 27,8
265011 26,2525 28,84
265024 30 30
265077 25,835 19
265127 29,1675 25,4
266052 27,085 25,38

25,0025 25,19

Tabella 5.12: Grades professor vs Grades Framework

Figura 5.14: Teacher grades

Figura 5.15: Framework grades

Figura 5.16: Passed Exam

Capitolo 6

Conclusion

The main goal of this thesis is the development of a framework that helps the teacher
with the revision process of two javas projects. The assignment of the grades to the
student is based on the difference presented between the projects, this objective is
reached, presented to the good accuracy in comparison by the grades assignment by
the teachers and in comparison with other framework that are used in the course
for the activity of evaluation.

The procedure of the system , the students delivered the first project and a
second version that is an incentive for correct to error in the first delivery, so with
this technique the student improves the solution and learns about his error.

For the professor is a tool that automates the evaluation process and saves time,
because in the course of java object-oriented programming, the number of students
that take this course in the bachelor degree is considerably high so the time for
checking the work in the projects of all students is very tricky. Another important
feature that this framework gets to the teachers, is the possibility of discrimination
by specific parts of the code or specific nodes and assignment to this node a grade
major.

Other people that get a profit from the implementation of this framework are
the students, after that, they deliver the two versions of the project. The students
can get feedback about the mistakes found and how the grade was assigned so that
students can learn about the mistakes and how they influence the final grade.

6.1 Future works

In future works, the mechanism for navigating the abstract syntax trees as much
in one treeA as the other tree must be improved, because the navigate in the AST
take a little amount of time to be done all comparisons but maybe if the number
students is increasing, it is possible that the time too increasing.

Nowadays a important task in the area of software is the work in a team, and the
update of the source code is a crucial step where the programmers have many hea-
daches.This framework give the opportunity to reuse the code in order to manages
the differences in a correct way in merging time.

66

Bibliografia

[1] Eclipse official website. url: http://eclipse.org/.

[2] Eclipse official website. url: https://www.eclipse.org/articles/article.
php?file=Article-JavaCodeManipulation_AST/index.html.

[3] GumTree. url: https://dl.acm.org/doi/10.1145/2642937.2642982.

[4] GumTreeAlgorithm. url: https://courses.cs.vt.edu/cs6704/spring17/
slides_by_students/CS6704_gumtree_Kijin_AN_Feb15.pdf.

[5] IEEE article ClDiff: Generating Concise Linked Code Differences. url: https:
//ieeexplore.ieee.org/abstract/document/9000085.

[6] Java AST IBM website. url: https://www.ibm.com/docs/en/rsar/9.5?
topic=SS5JSH_9.5.0/org.eclipse.jdt.doc.isv/reference/api/org/

eclipse/jdt/core/dom/AST.htm.

[7] Java official website. url: http://www.java.com/it/.

[8] JUnit official website. url: https://junit.org/junit5/.

[9] Giorgio Bruno Marco Torchiano. “Integrating Software Engineering Key Prac-
tices into an OOP Massive In-Classroom Course: an Experience Report”. In:
(2018), p. 9.

[10] IBMOttawa Lab Thomas Kuhn Eye Media GmbH Olivier Thomann. “JavaCodeManipulationAST”.
In: (2006).

[11] IBM Ottawa Lab Thomas Kuhn Eye Media GmbH Olivier Thomann. “Version
control with subversion”. In: O’Reilly Media, Inc. (2004).

[12] w3schools. url: https://www.w3schools.com/java/java_oop.asp.

67

