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Summary

During the last decades some protocols to implement a secure communication between a client
and a server have been designed and standardized. The most used and known protocol to provide
security to a communication is Transport Layer Security (TLS). The most important competitor
of TLS turned out to be Quick UDP Internet Connection (QUIC), which in recent years has
gained significant diffusion and use. If we consider the IoT scenario, another standard very much
used is represented by Datagram Transport Layer Security (DTLS), a protocol very similar to
TLS, but that is built on top of UDP instead of TCP as a difference.

The main focus of this thesis is to analyse and compare TLS, DTLS and QUIC protocols from
the performance and the security points of view. After a brief introduction in which all these
protocols are described in detail, in particular keeping the attention on the implementation of
the security properties, such as authentication, confidentiality and integrity, different works of the
past regarding the analysis of TLS, DTLS and QUIC are presented. These works have analysed
the protocols using different metrics and tools, conducting experiments in different environment
and scenarios. This analysis is useful in particular to understand which are the metrics and
the methods used to compare security protocols’ performance. Subsequently all three protocols
are measured in terms of performance following some of the past approaches studied and also
executing some new experiments. The target is to understand in different situations which is the
best choice to adopt among all the protocols analysed. In particular the time is a recurrent metric
that is measured during the experiments: from the time needed to establish a secure connection,
passing through the time needed to download a page through the browser, till the time needed
to exchange different sized files between client and server in different network conditions, varying
bandwidth and delay values for the links connecting the two endpoints.

From the security point of view, first of all, for each protocol the evolution during years passing
through different versions is described. Then all the security properties that are implemented are
compared to understand which one between TLS, DTLS and QUIC offers greater data protection
and security. As last point, a description is made of a series of attacks that can be conducted
against the protocols analysed. For each of them, how the attack works is analysed, as well as
the resistance of the protocol and possible countermeasures to be taken.
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Chapter 1

Introduction

When browsing the Internet, users and web applications regularly encounter multiple possible
security problems, such as authenticating the identity of the other party, data tampering, and
third-party monitoring. In addition, a lot of different attacks against a communication are possible
in order to retrieve some private or secret data or to simply disrupt the communication channel
preventing one of the parties from using a service. For this reason it’s really important to use
a security protocol in order to protect the communication between the two parties. A security
protocol is in charge of ensuring some security features for the channel between two peers, such
as authentication of the parties, integrity and confidentiality of data in transit and authentication
of the messages sent during the communication. During the last decades different protocols to
protect a channel were designed and developed. They differ from each other for the security
guarantees they provide and for their position in the protocol stack, that defines also which part
of packet they protect. Transport Layer Security (TLS) is a common protocol used to establish a
secure session between two endpoints, preventing eavesdropping, tampering, and message forgery.
It’s a standard in the protection of the communication over Internet and it’s the most widely used
security protocol. Datagram Transport Layer Security (DTLS) is another solution to protect a
communication and is based on TLS, but it’s designed to run over unreliable datagram protocols
like UDP differently from TLS that runs over TCP. DTLS modifies the protocol to make sure it
can still provide equivalent security guarantees to TLS with the exception of order protection/non-
replayability. TLS and DTLS have become also a typical solution in securing the communication
to/from IoT devices, that represent a really important reality nowadays and have had a huge
spread in the last recent years. In 2012 Google proposed a new protocol named Quick UDP
Internet Connections (QUIC) with the purpose of reducing latency in the loading of a web page
and improving the performance. This protocol runs on top of UDP and implements its own
encryption system (QUIC Crypto), comparable to TLS, which combines connection establishment
and key agreement. In 2015 the IETF started the work to standardize the protocol, that is based
on the original version but with some differences. For example the IETF version of QUIC requires
the use of TLS 1.3 for key negotiation and message protection. In the following sections all the
protocols will be described in detail.

Subsequently all three protocols are measured in terms of performance following some of the
past approaches studied and also executing some new experiments. There are also different metrics
and parameters that can be measured to compare protocols’ performance and in the following
sections the choice for each selected parameter to measure is explained. The target is to understand
in different situations which is the best choice to adopt among all the protocols analysed. TLS
and QUIC performance are compared in terms of performance in a desktop scenario when they
are employed by the browser to download some known and popular webpages. Subsequently all
three protocols are tested from the performance point of you, measuring the time necessary to
establish a connection between client and server and the time needed to complete a file exchange
between the two endpoints.

The last part of the thesis contains an analysis of TLS, DTLS and QUIC protocols from the
security point of view. First of all the history and evolution of each of them is analysed, including
the enhancements and improvements introduced in the design during years to provide better and
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Introduction

stronger communication protection. Then for each one of the analysed protocols, a description
of possible and known attacks is made. Moreover, possible countermeasures for each one of the
introduced vulnerabilities are explained. This section is ended with some recommendations, that
include for each protocol the best version to use and some best practices to adopt in order to
avoid attacks.
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Chapter 2

Security Protocols

2.1 TLS 1.2

Transport Layer Security (TLS) was designed by Netscape in 1994 as the successor of Secure
Socket Layer (SSL) and it is currently the most widely adopted network security protocol. TLS
1.2 [1] was standardized in August 2008 with RFC 5246 in order to introduce improvements and
enhancements with respect to its predecessor (TLS 1.1 [2]), in particular from the security point
of view.

TLS creates a secure transport channel on top of the layer 4, providing some important security
features: peer authentication, message confidentiality, message authentication and integrity and
protection against replay and filtering attacks. On top of the reliable transport protocol, e.g.
TCP, there is the TLS record protocol, which is the protocol that encapsulates the data being
transmitted. The TLS record is used to transmit four different kind of protocols: application
protocols (like HTTP), TLS Handshake protocol, TLS Change Cipher Spec protocol and TLS
Alert protocol.

The TLS record contains a 5-byte record header with a field, named Content type, that indi-
cates which is the protocol carried by the TLS record protocol, as reported in the Fig. 2.1. The
other fields of the header are Version, that is the version of TLS used and Length, that indicates
the length of the data in the record excluding the header itself. Then in the TLS record there are
the payload, that contains encrypted data, the MAC computed over the data and the padding,
that is necessary only in case a block cipher is used to encrypt the application data.

A typical workflow for delivering application data is composed by the following steps:

❼ Record protocol receives application data;

Content type

Version Length

MAC

Padding (block ciphers only)

1 Byte

Payload

Figure 2.1. TLS 1.2 Packet
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❼ Received data is divided into blocks (maximum 16 KB per record);

❼ Message authentication code (MAC) or HMAC is computed and added to each record;

❼ Data within each record is encrypted using the negotiated cipher.

It’s a mechanism of authenticate-then-encrypt that is vulnerable to DoS attacks, especially in
presence of big records. Once these steps are complete, the encrypted data is passed down to the
TCP layer for transport. At the receiver these steps are followed in reverse order: decrypt record
using negotiated cipher, verify MAC, extract and deliver the data to the application above it.

2.1.1 Handshake

The most important part of the protocol from the security point of view is the handshake, which
is used to establish the secure TLS channel between the parties. During the handshake phase the
client and the server authenticate themselves, agree on which algorithms will be used to ensure
confidentiality and integrity and establish the key that will be used to protect the channel.

The first message of the handshake is called the ClientHello, as depicted in Fig. 2.2. This
message includes the version of the protocol preferred by the client, a session identifier (0 for a
new handshake, different from 0 to resume a previous session), 28 pseudo-random bytes called
client random and the list of ciphersuites, which is the set of algorithms that client is able to use
for encryption, key exchange and integrity. The server responds with a ServerHello message, that
contains the connection parameters it has selected from the provided list, the protocol version
preferred by the server (the one proposed by the client or a lower one), its own 28 pseudo-random
bytes, called server random, and a session id (a new one for a new connection or the one proposed
by the client if a session has been resumed). If the client and server do not share any capabilities,
the connection terminates unsuccessfully.

Once the initial parameters are established, since server authentication is compulsory, an
important message is the Certificate one sent by the server. In this message, the server sends its
certificate chain (which includes its leaf certificate and intermediate certificates) to the client. The
X.509 certificate must contain in the Subject field or in the SubjectAltName field the exact name
of the server. Upon receipt, the client performs several checks to authenticate the certificate, that
include checking the certificate’s digital signature, verifying the certificate chain, and checking for
any other potential problems with the certificate data (expired certificate, wrong domain name,
etc). The client will also make sure the server has possession of the certificate’s private key during
the key exchange process. If the server is requesting client authentication, then it will send an
explicit message to the client which is the CertificateRequest. In this message the server tells also
from which CA the certificate must be issued, because server trusts only some CAs.

The ServerKeyExchange is an optional message, only needed for certain key exchange methods
(Diffie-Hellman) that require the server provides additional data. In case mutual authentication
is requested, then the client sends the Certificate message which contains the certificate for client
authentication. With the ClientKeyExchange message the client then provides its contribution to
the session key. The specifics of this step depend on the key exchange method that was decided
in the initial phase of the handshake. After the reception of this message also the server can
generate the pre-master secret.

The ChangeCipherSpec message lets the other party know that it has generated the session key
and it triggers the change of the algorithms to be used for message protection, allowing to pass
from the previous unprotected channel to the protection of the next messages with algorithms and
keys just negotiated. The Finished message is then sent to indicate that the handshake is complete
on the client side and it’s the first data protected by the session key. The message contains a MAC
computed over all the previous handshake messages with the exclusion of ChangeCipherSpec (since
it has no information) that allows each party to make sure the handshake was not tampered with.
Then the server, in its turn, decrypts the pre-master secret and computes the session key. Then it
sends its ChangeCipherSpec message to indicate it is switching to encrypted communication. The
server sends its Finished message using the symmetric session key it just generated and verifies
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Client Server

ClientHello

Certificate
ClientKeyExchange
ChangeCipherSpec

Finished

ServerHello

ChangeCip
herSpec

Certificate

Finished

CertificateR
equest

ServerKeyE
xchange

Figure 2.2. TLS 1.2 Handshake

the integrity of the handshake thanks to the Finished message sent previously by the client. After
these steps the TLS handshake is complete. Both parties now have a session key and will begin
to communicate with an encrypted and authenticated connection.

A client can ask to a server to resume a previous session without having to create a new one.
In this case the handshake phase is shorter and includes the following messages: the client sends
a ClientHello using the Session ID of the session to be resumed. If the server succeeds in finding a
match of the Session ID sent by the client in its cache the session can successfully be resumed and
the server responds with a ServerHello message containing the same Session ID value. At this
point, both client and server can conclude the handshake with ChangeCipherSpec and Finished
messages and then start exchanging application layer data. If the Session ID sent by the server
doesn’t match, the server generates a new session ID and a full handshake must be performed.

2.1.2 Authentication

In TLS 1.2 we have two possibilities for the authentication that are related to the choice made
for the key exchange (Diffie-Hellman or RSA). In RSA the public/private key pair is used to
both authenticate the server, as well as exchange the symmetric session key. In fact, the server
is authenticated if it can successfully decrypt the pre-master secret using it’s private key. With
Diffie-Hellman, the public/private key pair is not used to exchange the symmetric session key.
When Diffie-Hellman is involved, the private key is actually associated with the accompanying
signature algorithm (ECDSA or RSA).

The RSA authentication process is related with its key exchange process. When the client is
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presented with a server’s TLS certificate, it performs a series of checks to verify that the certificate
is valid and trusted.

❼ It checks the digital signature using the public key;

❼ It checks the certificate chain, ensuring the certificate comes from one of the trusted root
certificates;

❼ It checks the validity period of the certificate to make sure it’s not expired;

❼ It checks the revocation status of the certificate.

Assuming all of this is satisfactory, the authentication process terminates when the client uses the
public key of the server to encrypt the pre-master secret and send it to the server. If the server
can decrypt the pre-master secret and use it to compute the master secret, it’s authenticated.
That verifies that the server is the owner of the public/private key pair being used.

When Diffie-Hellman and ECDSA/RSA are in use, the authentication and key exchange unfold
side-by-side. The asymmetric key pair is only used for the digital signature/authentication process.
When the client receives the certificate it, still runs through the standard checks:

❼ Checks the signature on the certificate;

❼ Checks the certificate chain;

❼ Checks validity status;

❼ Checks revocations status.

But the proof of possession check for the private key is different. The server uses its private key to
encrypt the client and server randoms, as well as its Diffie-Hellman parameter, and sends them in
the ServerKeyExchange message during the handshake. The client can use the associated public
key to verify that the server is the rightful owner of the key pair.

2.1.3 Key Exchange

The goal of the key-exchange phase is to make client and server agree on a master secret, that will
be used later as the basis to compute all the cryptographic material to protect the communication:
encryption keys, MAC keys per HMAC computation of TLS records and IVs (if the ciphersuite
chosen by the server to protect the communication requires them). There are two possible solution
for key-exchange in TLS 1.2. If the key exchange happens through RSA, it’s composed by the
following phases:

❼ The client and server exchange two prime numbers (x and y) called randoms;

❼ The client generates a pre-master secret (a), then uses the server’s public key to encrypt it
and send it to the server;

❼ The server decrypts the pre-master secret with the corresponding private key. Both parties
now have all three inputs (client random, server random and pre-master secret) and combine
them with some pseudo-random functions (PRFs) to produce a master secret;

❼ Both parties combine even more PRFs with the master secret and derive matching session
keys.

If Diffie-Helmann is used for key exchange instead, the phases are the following:

❼ The client and server exchange two prime numbers (x and y) called randoms;

❼ One party picks a secret number called a and computes: xa mod y. Then it sends the result
(A) to the other;

13
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❼ The other party does the same thing, picking a secret number b and computing xb mod y,
then sending its value (B) back;

❼ The two parties finish the key exchange phase by taking the given values and repeating the
operation. One computes Ba mod y, the other computes Ab mod y.

In this way both client and server are provided with the same pre-master secret. At this
point all that remains is to combine the pre-master secret with the client random and the
server random through the PRF to obtain the master secret.

2.2 TLS 1.3

2.2.1 Improvements with respect to TLS 1.2

TLS 1.3 [3] is the newest version of the protocol released in August 2018 and it has been designed
to introduce several improvements, such as reducing handshake latency, encrypting more of the
handshake in order to avoid some possible attacks and also for privacy reason (the client certificate
identifies a person using a browser), improving resiliency to cross-protocol attacks and removing
legacy features that are no longer needed.

TLS 1.3 avoids the use of CBC mode and authenticate-then-encrypt mechanism, that were
source of possible attacks (such as Lucky13, Lucky microseconds and POODLE) in the previous
version of the protocol, and it uses only AEAD (Authenticated Encryption with Associated Data)
algorithms. To this end the list of supported symmetric encryption algorithms has been pruned
and also ciphersuites that involve static RSA and/or Diffie-Hellman have been excluded. The
use of elliptic curve algorithms is encouraged and new signature algorithms are included, such
as EdDSA. Other important cryptographic improvements introduced are the redesign of the key
derivation functions and the removal of of compression, the Digital Signature Algorithm (DSA),
and custom Ephemeral Diffie-Hellman (DHE) groups.

With TLS 1.3 the handshake is reduced from 2-RTT to 1-RTT. Specifically, the ClientHello
message is combined with the list of ciphersuites and the client part of the key share and the same
happens for the server side, in which the ServerHello message is combined with the key exchange
part from the server and the selected ciphersuite, as can be noticed looking at Fig. 2.3. In addi-
tion all handshake messages after the ServerHello are encrypted. The new EncryptedExtensions
message provides confidentiality for various extensions sent in the ServerHello message. It’s also
possible to resume a previous session and further reduce the handshake time to 0-RTT using PSK
(Pre Shared Key), at the cost of certain security properties. The client in this case can send early
data along with the first handshake message, protected with a key derived from the PSK, without
having to wait for the completion of a new handshake.

2.2.2 Handshake

In TLS 1.3 the ServerHelloDone, ChangeCipherSpec, ServerKeyExchange and ClientKeyExchange
messages have been removed with respect to TLS 1.2 handshake. In particular the content
of the ServerKeyExchange and ClientKeyExchange messages has been moved to extensions in
the ClientHello and ServerHello messages for backward compatibility with TLS 1.2. For what
concerns the authentication mode the one based on public key is the most used and provides
always perfect forward secrecy, using an ephemeral Diffie-Hellman exchange.

The TLS 1.3 handshake starts with a ClientHello message that contains the client random, the
list of supported protocol versions and the list of the ciphersuites (composed as pairs of symmetric
cipher and HKDF hash). In addition a part of the message is reserved to extensions for key
exchange, that involve the “key share” extension for the portion of the key of the client generated
using (EC)DHE and/or eventually the “pre shared key” extension containing a set of pre-shared
key labels. The server answers with a ServerHello message that contains the server random,
the selected protocol version and the selected ciphersuite. It also includes an extension for key
agreement with the client: if (EC)DHE key establishment is used, then the ServerHello contains
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a “key share” extension with the server’s ephemeral Diffie-Hellman portion of the key compatible
with the client one, otherwise if PSK key establishment is preferred, then the ServerHello contains
a “pre shared key” extension containing the selected PSK from the ones proposed by the client.

The server can optionally send to the client an EncryptedExtensions message in response
to ClientHello extensions and also a CertificateRequest message, needed only in case of mutual
authentication. In addition the server send a Certificate message, containing the server X.509
certificate, a CertificateVerify message, that is a signature computed over the entire handshake
with the private key corresponding to the public key in the certificate, and the Finished message,
that is a MAC over the entire handshake. All these last four messages are encrypted with a
temporary handshake key. After that the server can send application data encrypted with the
session key (long term key), but all these messages are sent to an unauthenticated peer, since all
the information to authenticate the client (if requested) are not received yet.

The client completes the handshake with Certificate and CertificateVerify messages if client
authentication is requested and its Finished message. Also these messages for the client are
protected with the temporary key. At this point the handshake is completed, so client and server
can derive the keying material and start communicating in a protected way.

2.2.3 Session Resumption, PSK and 0-RTT Data

The pre-shared key (PSK) authentication mode can be used to resume a session and it optionally
uses a Diffie-Hellman exchange for key agreement. PSKs can be established in a previous connec-
tion and then used to resume the previous session. After a full handshake process, the server can
send the client a PSK identity that corresponds to a unique key derived from the initial handshake.
PSK could also be OOB (e.g., generated out-of-band, from a passphrase), which is risky if the
passphrase is not sufficiently random so that a brute-force attack could be possible. In general,
OOB-PSK is present but discouraged. The PSK identity can be used by the client in future hand-
shakes to negotiate the use of the associated PSK. The client uses the “pre shared key” extension
in the ClientHello message to negotiate the use of the PSK mode. This extension contains the
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PSK identity and the so called binder. The PSK identity identifies the shared secret and the
binder is a structure that contains one or multiple MAC values. If the server accepts the PSK,
then the security context is related to the original connection and doesn’t need to be negotiated
from scratch. Consequently a lower number of messages during the handshake is needed.

If PSKs are used alone they don’t provide perfect forward secrecy, while this property can
be obtained combining PSKs and (EC)DHE key exchange. As the server is authenticating via
a PSK, the Certificate and the CertificateVerify messages are no more needed. When a client
tries to negotiate the use of PSK, it should also provide a “key share” extension to the server in
order to enable anyway a full handshake if the server refuses the client proposal. If the server
accepts, it must respond with a “pre shared key” extension to select a PSK and can also add a
“key share” extension for (EC)DHE key establishment. When PSKs are provisioned out of band,
the agreement about the PSK to use includes also a KDF hash algorithm.

When clients and servers share a PSK (either obtained externally or via a previous handshake),
TLS 1.3 allows a client to send application data, called “early data”, protected with a key derived
from the PSK, already with the first message. This mode represents a new feature in TLS 1.3
and does not have an equivalent in earlier TLS versions. There are two problems related to this
solution: the key used to protect early data doesn’t provide perfect forward secrecy, since it comes
from something (the PSK) that remains the same for all the connections within the same session
and there is the risk of some kind of replay attack, because the key is created only at the client
side, without any contribution from the server.

2.2.4 Authentication

In TLS 1.3 the authentication and digital signatures algorithms have been removed from the
cipher suites to simplify negotiation. The three main signature algorithms for authentication
allowed in TLS 1.3 are:

❼ RSA (signature only);

❼ Elliptic Curve Digital Signature Algorithm (ECDSA);

❼ Edwards-curve Digital Signature Algorithm (EdDSA).

EdDSA is an elliptic curve-based algorithm. Unlike in the TLS 1.2 handshake, the authentication
portion of the TLS 1.3 handshake isn’t coupled with the actual key exchange itself. Rather, it’s
handled alongside the key exchange and message authentication. In TLS 1.3 the server signs the
hash of all the handshake messages when it returns the ServerHello in order to verify the integrity
of the handshake. The client receives all of the information contained alongside the ServerHello
and runs the standard series of checks to authenticate the TLS certificate it was just presented
with. That includes checking the signature and the validity on the certificate and also verifying
the signature that was added to the hash sent by the server. A match proves possession of the
private key by the server.

2.2.5 Key Exchange

In TLS 1.3 the key exchange part has been heavily changed with respect to TLS 1.2: RSA key
exchange is no more permitted, so RSA keys can still be used but only for server authentication
not for key exchange. The problem is that RSA key exchange is not enabling perfect forward
secrecy and it is also difficult to implement correctly. In this way we are automatically protected
against Bleichenbacher and ROBOT attacks that exploits RSA key exchange. Rather than using
it TLS 1.3 uses Diffie Hellman ephemeral, but arbitrary parameters are not permitted because
there are attacks such as LogJam and WeakDH that force the server to use small numbers for DH
parameters (just 512-bits), so the attacker is able to attack DH exchange. To avoid those kind of
problem TLS 1.3 uses Diffie Hellman ephemeral with few predefined groups so clients and servers
can only choose among these groups from a list (and not create parameters on their own).
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Because of the limited selection of key exchange schemes, the client can successfully guess
the scheme and send its part of the key share during the opening portion (ClientHello) of the
handshake. At the start of the TLS 1.3 handshake, knowing that a DHE key agreement scheme
will be used, the client includes a key share based on the guessed key exchange scheme with
its ClientHello. The server receives this information and, provided the client guessed correctly,
returns its own portion of key share with the ServerHello. Then client and server can compute
the session keys.

2.3 DTLS 1.2

The Datagram Transport Layer Security (DTLS) protocol has been designed by the IETF in
order to provide secure communication for datagram protocols, such as UDP. Version 1.2 of
the protocol has been standardized in 2012 (RFC 6347 [4]). It provides security guarantees
similar to TLS, in fact it allows client and server applications to communicate with one another
preventing eavesdropping, tampering, and message forgery. However, DTLS introduces some
minimal changes with respect to TLS, in order to deal with the unreliable nature of the underlaying
datagram transport protocols. First, stream ciphers, such as RC4, cannot be adopted, and an
explicit sequence number is included in every DTLS message. If datagrams always arrived in order,
it would be sufficient for a DTLS end point to keep track of the most recent record seen in order
to detect replays. But since datagrams may also arrive out of order, a replay window mechanism
is required. From the security point of view DTLS does not offer any improvements over TLS.
In order to deal with packet loss DTLS uses local timeouts and message retransmission policies.
Finally, when an invalid message is received it can be discarded silently and the associated DTLS
connection may not be terminated. Communication among two DTLS peers relies on secure
sessions, identified by a unique session ID chosen by the DTLS server. Messages are transmitted
as a series of DTLS records, that can carry four DTLS upper protocols:

❼ Handshake protocol;

❼ Alert protocol;

❼ Change Cipher Spec protocol;

❼ Application Data protocol.

The Handshake protocol negotiates algorithms and key material to establish a secure authenti-
cated session between two peers. The Alert protocol is used to signal a session closure or eventual
errors, while the Change Cipher Spec protocol signals the change in the algorithms used to protect
the channel.

The DTLS record is prepended with a 13 bytes long header, that composed by various fields,
as depicted in Fig. 2.4. The Type field indicates the higher level protocol used to process the
enclosed data, while the Version field states the employed version of DTLS protocol. The Length
field represents the size of the actual application data conveyed in the record. Then with respect to
TLS, two additional fields are present, namely Epoch and Sequence Number. The Epoch number is
used by endpoints to determine which encryption parameters have been used to protect the record
payload and is required to resolve ambiguity that arises when data loss occurs during a session
renegotiation. Instead, the Sequence Number is incremented for every new message transmitted
by the same peer over the same DTLS connection. The concatenation of the Epoch and Sequence
Number fields is considered as a single 64 bit fresh value, which is used to compute a Message
Authentication Code for assuring integrity of protected DTLS records. The record header is either
followed by the plaintext, if no security has been negotiated yet, or by an encrypted message. If
encryption has been performed using a block cipher, the message is prepended by a random
Initialization Vector (IV), which has the size of the block. The data are followed by an HMAC
which allows the receiver to detect if the DTLS record (including the DTLS header) has been
altered. Finally, the message is padded to a multiple of the block size if a block cipher has been
used.
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Figure 2.4. DTLS 1.2 Packet

2.3.1 Handshake

The handshake phase, as in TLS, establish a new secure session between a client and a server.
It’s possible to reuse a previous established session in order to reduce the number of messages
exchanged during the handshake. The client starts the handshake process sending the ClientHello
message to the server. Multiple handshake messages can be grouped together in a single Flight.
The DTLS handshake is nearly identical to the TLS one. There are two major changes:

❼ Stateless cookie exchange to prevent denial of service;

❼ Message fragmentation and re-assembly.

Because the DTLS handshake takes place over datagram transport that is unreliable it is vulnera-
ble to two denial of service attacks: the standard resource consumption attack and an amplification
attack where an adversary can repeatedly transmit ClientHello messages to a DTLS server, so
triggering the establishment of new DTLS sessions. These attacks lead the server to allocate and
waste a lot of resources and also to send a large message, the Certificate one, to the victim.

To mitigate these attacks, DTLS uses the cookie exchange technique. It’s based on a HelloVer-
ifyRequest message that includes a locally generated cookie, that is sent by the server to the client
after it has received the ClientHello message. The cookie generation should not require keeping
state on the server, in order to avoid memory consumption denial of service attacks. One possible
solution is to create the cookie from a keyed hash of the client IP address, using a global key.
Upon its reception, the client must reply with a second ClientHello message, including the same
cookie received from the server. Then, the server proceeds with the rest of the handshake only
if it successfully verifies the cookie received in the second ClientHello message. With this solu-
tion attacks performed with spoofed IP addresses are more complicated, because the client has
to receive the cookie in order to continue with the handshake. It’s possible to avoid the cookie
exchange phase if the client is trying to resume a previous session and it is providing the server
a valid session ID. In this case the identity of the client must have been previously established.

The ClientHello message contains the protocol version supported by the client as well as the
cipher suites. The server answers with its ServerHello message that contains the cipher suite
chosen from the list offered by the client. The server also sends a X.509 certificate to authenticate
itself followed by a CertificateRequest message if mutual authentication is requested. If requested
the client sends its own Certificate message at the beginning of Flight 5.

The ClientKeyExchange message contains half of the pre-master secret encrypted with the
server’s public RSA key from the server’s certificate. The other half of the pre-master secret was
created and transmitted unprotected by the server in the ServerHello message. Since the first
half of the pre-master secret is encrypted with the server’s public key, it’s a proof of possession of
the corresponding private key. If the server doesn’t control the correct private key the handshake
cannot be completed. All the keys used to protect the channel established during the handshake
are derived from the pre-master secret. In a similar way the client proves the possession of the
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private key that matches the public key in its certificate through the CertificateVerify. It does
this by signing a hashed digest of all previous handshake messages with its private key. The server
can verify this through the public key of the client received within the client certificate.

The ChangeCipherSpec message indicates that all following messages by the client will be en-
crypted with the negotiated cipher suite and keys. The Finished message contains an encrypted
message digest of all previous handshake messages in order to verify the integrity of the hand-
shake. The server answers with its own ChangeCiperSpec and Finished message to complete the
handshake. Some handshake messages are too large to fit in a single DTLS record and therefore
must be fragmented across multiple records. The DTLS handshake layer is responsible for re-
assembling these records into a coherent stream of complete handshake messages. This solution
requires retransmission as well as a more complicated message format.

2.3.2 Timeout and restransmission

DTLS needs a mechanism for retransmission because it’s built on top of UDP and so DTLS
handshake messages may be lost. Each DTLS end-point has a timer and keeps retransmitting
its last message every time the timer expires until a reply is received. If the data fragment that
arrives is the expected next handshake message then the fragment is returned to the higher layers
and the timer is cancelled. Otherwise, the fragment is buffered or discarded as appropriate and
the timer keeps going. If the timer expires before the reply expected arrives, the last flight of
messages is retransmitted.
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Three different states are possible for client and server. In the PREPARING state, the end-
point is preparing the next flight of messages. When the setting phase is finished, the peer enters
the SENDING state and transmits the buffered flight of messages. Once the messages have been
sent, if this is the last flight in the handshake the endpoint enters the FINISHED state, otherwise
enter again the WAITING state setting a retransmit timer.

When an endpoint is in the WAITING state there are two possibilities: the timer expires
without receiving any messages or the endpoint receives a flight of messages. In the first case
the peer has to send again the flight (entering the SENDING state) and then it returns to the
WAITING state. The same thing happens if the endpoint reads a retransmitted flight from the
peer, that likely means that the timer has expired on the peer and a part of a previous flight
was lost. If the endpoint receives the correct flight of messages of the sequence and it is the final
flight, it can enter the FINISHED state. If a new flight must be sent, the endpoint transitions to
the PREPARING state.

A DTLS client starts the handshake in the PREPARING state, while a DTLS server starts in
the WAITING state, with empty buffers and no retransmit timer.

2.4 Google QUIC

QUIC [5] is a transport protocol developed by Google that works on top of UDP. QUIC support
was initially added to Chrome in June 2013 for the development team, and in early 2014 a tiny
number of users were allowed early access. Gradually the number of users increased and QUIC
was enabled for all users of Chrome and the Android YouTube app by January 2017. Many
emerging protocols are using UDP (and even QUIC) as a substrate to target specific application
use-case. QUIC is a user-space protocol that allows for faster development and deployment and
it replaces the traditional (TCP, TLS and HTTP/2) HTTP(S) stack.

QUIC is designed to meet several goals, including deployability, security, and reduction in
handshake and head-of-line blocking delays. The QUIC protocol combines its cryptographic and
transport handshakes to minimize connection setup time. It’s possible to have multiplexing of
different requests/responses over a single connection by providing each with its own stream, so
that no response can be blocked by another. Loss recovery is improved by using unique packet
numbers to avoid retransmission ambiguity and by using explicit signaling in ACKs for accurate
RTT measurements. A QUIC connection is uniquely identified by a CID (Connection IDentifier)
at the application layer and not by the pairs of IP addresses and port number. The problem
with IP address-related identifier is that when an handover between two networks has to be
managed the connection must be re-established. With it’s own CID, QUIC solves this problem
and connections can migrate across IP address changes. Another advantage of using CID is that
QUIC can provide native support to multi-path and so a mobile device could use all the network
connections for the same CID. QUIC employs flow control both at the connection level as well as
the stream level to limit the amount of data buffered at a slow receiver and ensures that a single
stream does not consume all the receiver’s buffer by using per-stream flow control limits.

QUIC packets are fully authenticated and mostly encrypted, except for a few early handshake
packets and reset packets. The parts of the packet header that are not encrypted are useful for
routing and decryption of the packet. The QUIC packet header is composed by various fields:
Flags, Connection ID, Version, Diversification Nonce, Packet Number, as shown in Fig. 2.6. Flags
encodes the presence of the Connection ID field and length of the Packet Number field and must
be visible to read subsequent fields. The Connection ID is useful for routing and identification
purposes. The Version and Diversification Nonce fields are only present in early packets. The
server generates the diversification nonce and sends it to the client in the SHLO packet to add
entropy into key generation. The packet number is used by both sides of a QUIC connection
as a per-packet nonce, which is necessary to authenticate and decrypt packets. In order to let
the receiver decrypting packets also if they are received out of order, the packet number is not
encrypted. The header of a QUIC packet is followed by one or more frames that could encapsulate
data from different streams, implementing in this way QUIC stream multiplexing.
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Figure 2.6. Google QUIC Packet

2.4.1 QUIC Crypto

The QUIC Crypto protocol [6] is the part of QUIC that provides transport security to a connection.
Given its nature, QUIC allows to perform a combined cryptographic and transport handshake
in order to set up a secure transport connection. When a connection is successfully created the
client keeps information about the server in a cache. This information can be exploited later to
resume the session without having to perform the whole handshake (with no round trips). Using a
resumed session the client can send data immediately after the handshake packet without waiting
for a reply from the server.

In TLS, the server picks connection parameters for each connection based on the client’s adver-
tised support for them, while QUIC Crypto protocol states that server preferences are completely
static and are contained inside a server config with Diffie-Hellman public values. This server
config is characterized by an expiry date and is signed by the server with its private key. Since
this element is static, there’s no need that the server executes a timing operation every time a
new connection is established. On the contrary, till the same server config is not expired, the
same signature is sufficient for many connections.

Client and server in Google QUIC agree on the keys to be used to protect the exchanged data
using Diffie-Hellman. The server config contain the Diffie-Hellman value of the server, while the
client provides its part in the first handshake message. Because the server config must be kept for
some time in order to allow 0-RTT handshakes, this puts an upper bound on the forward security
of the connection. As long as the server contribute to Diffie-Hellman key exchange remains the
same, the encrypted data exchange within connection established with the same server config
could be decrypted if they leak.

In addition the necessary key material is generated by an HMAC-based key derivation function
(HKDF) with hash function SHA-256, that uses the approved two-step key derivation procedure
specified in NIST SP 800-56C.

The design of QUIC Crypto protocol involves also the solution for the IP address spoofing
problem. The IP address spoofing problem is addressed by issuing the client a source address
token. It’s an authenticated-encryption block that contains, at least, the client’s IP address and a
timestamp by the server. The server will only send a source address token to a client for a given
IP address and when it receives it back by the client, it considers it as a proof of ownership of
that IP address.

If a client remains on the same IP address, it can use a source address token and include it
inside future requests in order to demonstrate ownership of their source IP address and avoid the
necessary additional round trip to obtain the fresh token. If the client has changed its IP address
or the client doesn’t have a token, then the server may reject the connection and return a fresh
token to the client.
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In TLS, the reply protection is provided inserting in the key derivation process also two nonces,
one generated by the client (client random) and one generated by the server (server random), so
that the freshness of each party is ensured. Providing replay protection without input from the
server is fundamentally very expensive and requires consistent state at the server. Consequently
Google QUIC doesn’t provide replay protection for the data sent by the client before the first
response by the server. It’s up the application to ensure that any such information is safe if
replayed by an attacker.

2.4.2 Handshake

In QUIC the handshake time is reduced with respect to TLS 1.2 and TLS 1.3, indeed it takes
only 1-RTT for first time connections, while for TLS 1.2 3-RTT are required (1 for TCP + 2 for
TLS) and for TLS 1.3 2-RTT are needed (1 for TCP + 1 for TLS). Also for resumed sessions the
handshake for QUIC takes a shorter time: 0-RTT for QUIC, while 2-RTT and 1-RTT for TLS
1.2 and TLS 1.3 respectively. This is because QUIC by design has TLS negotiation built into its
protocol, whereas before starting a TLS handshake you need to set up a TCP channel separately.

The QUIC handshake starts with the client sending a client hello (inchoate CHLO) message
to the server in order to receive back some information, as shown in Fig. 2.7. The server answers
with a REJ message that contains:

❼ a server config that includes the server’s long-term Diffie-Hellman public value;

❼ a certificate chain authenticating the server;

❼ a signature of the server config using the private key of the server;

❼ a source-address token: an authenticated-encryption block that contains the client’s publicly
visible IP address (as seen by the server) and a timestamp by the server.

With the source-address token the client can demonstrate the ownership of its IP address and
can use it to resume the session during later handshake. The client must verify the server config
checking the certificate chain and the signature. At this point the client can continue the hand-
shake with complete CHLO message, that contains the client’s ephemeral Diffie-Hellman public
value.

After that the client can compute initial keys for the connection from the server’s long-term
Diffie-Hellman public value and its own ephemeral Diffie-Hellman private key and can send ap-
plication data to the server protected with the initial keys to reach 0-RTT handshake without
waiting for the server reply. If the handshake is successful, the server returns a server hello (SHLO)
message. This message is encrypted using the initial keys and contains the server’s ephemeral
Diffie-Hellman public value. At this point both sides can calculate the final or forward-secure
keys for the connection because each one peer has received the public value from the other one.
Indeed with the SHLO message both sides switch sending packets encrypted with the forward-
secure keys. QUIC’s cryptography therefore provides two levels of secrecy: initial client data is
encrypted using initial keys, while all the other data are encrypted using forward-secure keys.
The forward-secure keys are better in terms of protection with respect to initial keys because
they are ephemeral and so provide perfect forward secrecy. The client caches the server config
and source-address token and when it connects again to the same server can use them to start
the connection with a complete CHLO. If at least one of these two values is expired or the server
has changed certificates the handshake will fail even if the client sends a complete CHLO. In this
case, the server replies with a REJ message, just as if the server has received an inchoate CHLO
and the handshake restarts from the beginning.

2.4.3 Multiplexing

TCP protocol requires that packets are delivered in order at the connection level and this can
lead to a head-of-line (HoL) blocking problem. This is describing the situation in which there
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Figure 2.7. Google QUIC Handshake

are different parallel transfers over a single TCP connection and one packet is lost. Given the
nature of TCP, the entire connection is stopped until the lost packet is re-transmitted. QUIC
tries to overcome this problem by design, introducing the stream multiplexing in transport and
allowing data to be delivered in order at the stream level. If a packet is lost, only the stream the
packet belongs to is affected and not other streams. Streams are identified by stream IDs, which
are statically allocated as odd IDs for client-initiated streams and even IDs for server-initiated
streams to avoid collisions. A stream is created when one of the two peers sends the first bytes on
an unused stream and is closed when someone sends the last frame of the stream, the one with
the FIN bit set. If a stream is no more needed, it can be cancelled without having to tear down
the entire QUIC connection. For implementing stream multiplexing, a single QUIC packet can
carry stream frames from multiple streams and each frame incapsulates stream data.

2.4.4 Loss Recovery, FEC and Packet Pacing

Another QUIC’s feature is the mechanism for loss recovery: this is based on the same mechanism
used by TCP but QUIC simplifies it. Monotonically incresing packet numbers can help the
loss recovery in QUIC because it’s easier to distinguish an original packet from a retransmitted
one. The packet number represents an explicit time-ordering, which enables simpler and more
accurate loss detection than in TCP. Another important help in loss detection comes from the
precise RTT estimation that is possible thanks to the acknowledgements, that encode the delay
between the receipt of a packet and its acknowledgment being sent, and the packet numbers.
QUIC supports also multiple ACK ranges, which helps in speeding up recovery and reducing
spurious retransmissions and QUIC ACKs are irrevocable, reducing the memory pressure on
the sender. QUIC supports pluggable congestion control and is designed to support different
congestion control algorithms (the default is a modified version of TCP NewReno).

Another design feature of QUIC that involves packet losses is the Forward Error Correction
(FEC). Since this module gives the possibility to recover in a fast way a lost packet, it’s very useful
to reduce the effect of the HoL blocking problem over a single QUIC stream. This mechanism is
based on the concept of a FEC Group (Fg): it’s composed by a series of packets and the FEC
packet, that is the XORsum of the payloads of the other packets of the group. The size of the FEC
group is the number of packets of the series plus one. The FEC packet gives the possibility to
recover at most one packet loss within the FEC group. The FEC group size is a really important
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parameter: a small FG implies high redundancy at cost of bandwidth, whereas a large FG implies
low redundancy at low bandwidth cost.

With TCP data are sent as fast as possible, but if the speed is too high, the number of
losses increases and the transmission can become very bursty because the congestion windows is
repeatedly decreased and increased between losses. Packet Pacing is an approach used by QUIC to
make the transmission less bursty by not sending at full rate. The performance of fast connections
is reduced in this way, but this mechanism is really helpful in scenarios with low bandwidth.

2.5 IETF QUIC

Starting from 2015 a working group of IETF worked on the standardization of QUIC protocol,
including several redesigns of features. The results of this work are contained in RFC 9000 [7]
(2021). One of the most important purpose was to reconcile the cryptographic handshake with
other standards. Google QUIC used its own handshake called QUIC-Crypto, that introduced the
idea of a 0-RTT cryptographic handshake. TLS 1.3 was, in part, inspired by QUIC-Crypto, trying
to integrate all the latency improvements that QUIC-Crypto provided. The working group finally
decided that QUIC had to use TLS 1.3 for the handshake instead of the proprietary QUIC-Crypto,
but still keeping QUIC’s own record layer, meaning that the transport of the handshake messages
would be managed by QUIC.

2.5.1 Stream

Streams are abstraction offered by QUIC to the application protocols in order to deliver informa-
tion over the connection in the form of ordered sequences of bytes. QUIC provides the possibility
to create bidirectional streams, which allow for data to be sent by both endpoints (in both di-
rections), and unidirectional streams, which allow only the endpoint that initiated the stream to
send data to its peer. The duration of a stream can coincide with the duration of the connection
and in this case the stream is called long-lived. Streams can be created and cancelled by both the
endpoints. Streams can operate concurrently and each stream can send an arbitrary amount of
data, subject to flow control constraints and stream limits. There are no guarantees provided by
QUIC about the ordering between bytes on different streams.

Each stream is characterized by a 62-bit integer, called stream ID, that identifies the stream
within a connection, since it’s unique for all the streams of the same connection. Consequently
a stream ID cannot be reused by whatever endpoint if the connection is not changed. The two
least significant bit of the stream ID are important to determine the characteristic of the related
stream. If the identifier is 0-terminated it means that the stream has been initiated by the client,
while if the least significant bit is equal to 1it indicates a server-initiated stream. if the second
least significant bit of the stream ID is equal to 0 the stream is bidirectional, while unidirectional
streams are characterized by the same bit set to 1.

An endpoint uses stream frames to encapsulate (in order) and send data by an application.
In addition endpoints must be able to deliver stream data to an application as an ordered byte
stream, and so a buffer for each endpoint in charge of keeping data received out of order, respecting
always the flow control limit, is needed.

2.5.2 Connection

A connection between a client and a server is created through an handshake phase, during which
the two peers establish the cryptographic parameters that will be used to protect the communi-
cation and negotiate the application protocol. An application protocol can use the connection
during the handshake phase with some limitations. The time needed to complete an entire QUIC
handshake is equal to 1-RTT, but this latency can be reduced at the expense of some security
guarantees. Indeed a client can send 0-RTT application data, before having received server re-
sponse but exposes itself to possible replay attacks. Also a server can also send application data

24



Security Protocols

Client Server

Initial

Handshake

Initial

Handshake

Figure 2.8. IETF QUIC Handshake

to a client before the handshake is completely finished, without waiting for the confirmation of the
identity of the client contained in the final cryptographic handshake messages. QUIC connections
are not strictly bound to a single network path, and connection migration is allowed thanks to
the use of Connection ID. So it’s possible to transfer a QUIC connection from a network path to
a new one, both as a direct choice of an endpoint and when forced by a change in a middlebox.

Google QUIC design employed an 8-byte Connection ID chosen by the client to identify a
connection. This design had two fundamental problems, however:

❼ A server had no control over the Connection ID and the server’s infrastructure could there-
fore not include information in the ID that would be necessary for routing a connection’s
packets to the correct server;

❼ The Connection ID was not based on the IP address of the client and so it supports client
migration to a new network attachment point (a client moving from a WiFi network to
a cellular network, for instance). Doing so there was the possibility of leakage of private
information, since a third-party observer could correlate a client’s movements based on the
otherwise unrelated networks where the same Connection ID showed up.

To solve this problems each connection is provided with a set of connection IDs, that identify
the connection. Each endpoint selects the connection IDs for the other peer of the communi-
cation. In order to guarantee connection migration and to avoid problems for QUIC packets
within a connection when changes in addressing at lower protocol layers (UDP, IP) happen, the
IETF working group also built a mechanism for both endpoints to change their Connection IDs
mid-connection. This allowed a migrating client to move across networks without breaking the
connection, changing the Connection IDs and avoiding any privacy leakage. In addition, using
this strategy, multiple connection IDs are used so that an observer cannot identify packets sent
by an endpoint as belonging to the same connection without the cooperation from the endpoint
itself. Connection IDs does not contain any information that can be used by an external observer
to correlate them with other connection IDs for the same connection.

Packets with long headers include Source Connection ID and Destination Connection ID fields.
These fields are used to set the connection IDs for new connections. Packets with short headers
only include the Destination Connection ID and omit the explicit length. The length of the
Destination Connection ID field is expected to be known to endpoints.
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2.5.3 Handshake

QUIC relies on a combined cryptographic and transport handshake to minimize connection es-
tablishment latency. QUIC uses the CRYPTO frame to transmit the TLS 1.3 cryptographic
handshake messages. The feature of QUIC protocol is that the handshake is encrypted as much
as possible since packet protection is adopted for handshake messages and in addition ordering
and reliable delivery is granted for handshake data. The cryptographic handshake must provide
the following properties:

❼ Mandatory server authentication and optional client authentication, that lead to authenti-
cated key exchange;

❼ Each connection produces distinct and unrelated keys, and 0-RTT and 1-RTT packets can
be protected with the same keying material;

❼ Authenticated exchange of client and server transport parameters and confidentiality for
server transport parameters;

❼ Authenticated negotiation of an application protocol.

In order to execute the handshake QUIC must be able to transport TLS handshake messages
and it uses two functions to interface with TLS: the first function gives QUIC the possibility to
request handshake messages to TLS, while the second one is used by QUIC handshake messages
to TLS. Before the handshake TLS receives by QUIC the transport parameters to carry. In order
to send the first packet and then start the handshake, QUIC client must request to TLS the first
bytes to send. After the reception, the server has to provide these messages to TLS in order to
start the handshake process on his side.

During the handshake four different types of CRYPTO frame are exchanged between client
and server: Initial, 0-RTT, Handshake, and 1-RTT packets. Each crypto frame is characterized
by a distinct encryption level, that determines also the keys that are used to protect the data.
QUIC packets are created putting inside CRYPTO frames, that are in turn filled with the unpro-
tected content of TLS handshake records. Instead of using TLS record protection, QUIC packet
protection is preferred to secure data exchanged between client and server. Each endpoint has a
current sending encryption level and a current receiving encryption level at any time during the
handshake. When an endpoint receives a QUIC packet containing a CRYPTO frame from the net-
work, it has to process that packet. If the packet uses the current TLS receiving encryption level,
all the data received is added to the current input flow into the proper location. Subsequently
the sequence of data will be sent to the TLS stack in the proper order. A protocol violation may
happen if the data received belongs and extends the flow of an old encryption level. If the packet
is characterized by a new encryption level, it is kept by the endpoint and it will be provided to
TLS when the correct encryption level will become the current one. Handshake messages that
arrive out of order or don’t belong to the current encryption level are kept by QUIC waiting to
be processed, while handshake bytes that arrive in order are buffered directly by the TLS stack.
From the moment in time in which the handshake is finished TLS has no more to send any kind
of data unless an application or QUIC request it. For example it may happen that the server
must provide updated session tickets to a client and in this situation the intervention of TLS is
necessary.

Fig. 2.8 shows one possible structure of IETF QUIC handshake (the used implementation of the
protocol and the order in which packets arrive may change the structure of the process). The client
starts the handshake with a Initial message that contains the TLS ClientHello message. The server
answer in its turn with an Initial packet, containing the ServerHello, and an Handshake packet
containing the remaining packet sent by the server to the client during a TLS 1.3 handshake.
At this point the client can complete the handshake with its Handshake packet. From this
moment client and server can exchange data that will be protected with the cryptographic material
established by the two peers during the handshake.
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Header Form (1) Fixed Bit (1) Spin Bit (1)

Reserved Bits (2) Key Phase (1) Packet Number Length (2)

Destination Connection ID (0-160) Packet Number (8-32)

Packet Payload (8...)

Figure 2.9. IETF QUIC Long Header packet

Header Form (1) Fixed Bit (1) Spin Bit (1)

Reserved Bits (2) Key Phase (1) Packet Number Length (2)

Destination Connection ID (0-160) Packet Number (8-32)

Packet Payload (8...)

Figure 2.10. IETF QUIC Short Header packet

2.5.4 Session Resumption and 0-RTT Data

As well as TLS 1.3, also QUIC protocol includes the possibility to resume a previous session,
carrying NewSessionTicket messages in CRYPTO frames after the handshake is finished. In
order to implement session resumption, the endpoints must remember some information about
the previous session. To this purpose the client can store the necessary information along with
the session ticket, while the server can use the session ticket to help carry state.

A privacy issue may arise with session resumption because the resumed connection can be
linked with the original one. Client can choose to disable session resumption to avoid this problem.
To avoid connections correlation by other entities, session tickets should not be reused.

Session resumption in QUIC introduces the ability to send application data before the end of
the handshake, since cryptographic parameters have been negotiated during previous connection.
In order to send 0-RTT data, the client must provide the server with a valid session tickets, so
that the server is can recover important and necessary information about the TLS state, QUIC
transport parameters and the chosen application protocol.

2.5.5 Packet Format

Another novelty introduced by IETF involves the QUIC header, that was encrypted in a big part
in the Google version of the protocol, except for some bits, including the packet number and key
phase bits. The packet number in Google QUIC was used for both reliability and as a nonce
(non-repeating value) for encrypting the packet. The IETF working group wanted to provide
encryption also for the packet number, but this solution required another nonce. In order to
avoid increasing the header overhead of the packet inserting the necessary additional nonce, they
decide to use as random value the encrypted payload of the packet. The strategy to encrypt the
header of the a QUIC packet became a two-step encryption process: first the packet is encrypted
using the packet number as a nonce, then the packet number is encrypted using some of the
encrypted packet as a nonce (and a different key).

Moreover IETF working group decided to define two types of header, long and short. The
packets used during the handshake needed the long header, because they have to carry several
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bits of information, while for packets sent after the connection establishment the short header,
small as four bytes, is enough, since only some data in the header are necessary. The long header,
shown in Fig. 2.9, is composed by the following fields: Header Form, a bit set to 1 for long
headers, Fixed Bit, a bit set to 0 for Negotiation packet, 1 otherwise, Long Packet Type, a group
of two bits containing a packet type, Type-Specific Bits, whose semantics is defined by the packet
type, Version, 32-bit field containing the QUIC version, Destination Connection ID Length, a
field of 8 bit containing the length in bytes (smaller than 20 bytes) of the Destination Connection
ID field that follows it, Source Connection ID Length, a field of 8 bit containing the length in
bytes (smaller than 20 bytes) of the Source Connection ID field that follows it and Type-Specific
Payload, that is the payload of the packet.

A 1-RTT packet uses a short packet header and is depicted in Fig. 2.10. It contains the
following fields: Header Form, a bit set to 0 for the short header, Fixed Bit set to 1, Spin Bit,
representing the latency spin bit, Reserved Bits, a group of two bits that must be 0 (otherwise a
protocol violation happened) and is protected using header protection, Key Phase, bit included
in the header protection that allows a recipient of a packet to identify the keys used to protect
the packet, Packet Number Length, two bits protected within the header containing the length
of the Packet Number field, Destination Connection ID, Packet Number, that is protected with
header protection and occupies from 1 to 4 bytes and Packet Payload.

2.5.6 Packet Protection

After the TLS handshake is completed, QUIC protocol can derive the keys to use in the AEAD
negotiated algorithm to protect the packets. This provides strong cryptographic protections to
all the packets for confidentiality and integrity. The only exception is represented by Initial
messages, for which QUIC uses AEAD AES 128 GCM algorithm with keys derived from the
Destination Connection ID field of the first Initial packet sent by the client. For these packets
the confidentiality and integrity protection is not so strong as for all the others, since the key
derivation process is simpler and less secure. As for TLS 1.3, the keys derived from the TLS
handshake cryptographic negotiated material are computed from the combination of the TLS
secrets with the HKDF function.

For what concerns QUIC packets, also part of the header is protected, such as th Packet
Number field. In this case the keys used for protection are different form the keys used for packet
protection. The packet header protection regards the Packet Number field and four or five least
significant bits of the first byte, respectively for long header packets and short header ones. These
bits include the reserved bits and the Packet Number Length field for both types of header and
the Key Phase bit for short header packets.
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Related Works

In the last years several studies to measure and compare different protocols have been made.
All this works differ from each other for the context in which the protocols are measured, the
architecture and tools used to execute the experiments, the metrics selected for the measurements
and for the results obtained. Given the importance and the spread of the three protocols involved
in the thesis (TLS, DTLS and QUIC), they can be studied and compared in different scenarios
and using several possible techniques. For example it’s possible to make a comparison of them in
an IoT scenario, in which devices with a reduced amount of resources in terms of energy, memory
e computational capacity tries to establish a connection to a server. On the other hand also a
desktop scenario is suitable for a comparison of the protocols, especially QUIC and TLS, that can
be used through a browser, such as Google Chrome that provides support for both of them, to
connect to a webpage. All the works analysed for this thesis are summarized in Tab 3.1.

HTTP over UDP: an Experimental Investigation of QUIC Since the birth of QUIC, a lot
of works about the comparison with the TCP+TLS+HTTP stack have been made, especially
for what concerns the performance of the two protocols. The first one of these studies was
conducted by G. Carlucci et al. (2015) [8] and this work consists of some experiments
on QUIC to compare its performance with SPDY and HTTP/1.1 (over TLS) in terms of
Page Load Time, defined as the time taken by the browser to download and process all the
objects associated with a web page. In this case the experiments are conducted in a desktop
scenario, in which the client, implemented through the Chromium Browser M39, connects
to the server machine, on which a server application for each protocol under test is installed,
and loads the pages available using both protocols. There are three kind of different pages
to download, distinguished by the size intended as the number of images that the page
contains. The measurements are performed with Chromium Browser developer console,
that is able to compute the time elapsed from the request of the page to its full download.
The performance are evaluated also varying the network conditions, such as link capacity
and induced random losses, and this is possible thanks to a proprietary software, named
NetShaper. This is an important point of the research because the results obtained vary
depending on the network parameters setting. For each configuration of the variable network
conditions ten experiments are performed and the result page load time is the average of
all of them. This study revealed that when no additional losses are added to the channel
QUIC has a lower page load time with respect to HTTP/1.1 and it demonstrates better
performance than SPDY in case of a lossy channel . The performance of QUIC are reduced
due to its Forward Error Correction module.

How quick is QUIC? This results are confirmed by a work of 2016 in which P. Megyesi et al.
[9] compared in their study the performance of QUIC, HTTPS and SPDY and found that
there is no a protocol better that the others regardless of network conditions. Also in this
case the measurements are executed in a desktop scenario in which the client is represented
by the Google Chrome browser and to automate the process of measurements a tool named
Chrome HAR capturer [10] is used. This tool gives the possibility during a connection
performed through the browser to generate a HAR (HTTP ARchive) log file, that contains
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all the information needed to compute the page load time (that is again the metric selected
to compare the performance of the two protocols). Differently from the previous work, in
this study on the server side different sized pages are installed on Google Sites, a website-
building platform from Google. As for the other work the performance are measured in
different network conditions that are obtained through a shaper server installed between
the client and the Google Sites server, that manipulates bandwidth, packet loss and delay
of the connection using the Netem function of the Traffic Control package of Linux. For
each combination of network parameters and page size (48 in total) at least a hundred of
measurements are performed. The results of this study claim that QUIC downloads as fast
as HTTPS from websites with small and medium size pages in presence of good network
conditions (high bandwidth, low RTT and low packet loss), while the only situation in which
QUIC demonstrates a poor performance is in presence of very high speed links and large
sized pages. The presence of additional loss in the network has a lower impact on QUIC
with respect to the other protocols, thanks thank to the FEC module.

Does QUIC make the Web faster? In the following years also other researchers obtained
results that are similar to the ones got in the previous works. For example P. Biswal and
O. Gnawli (2016) [11] conducted several experiments to compare the performance of QUIC
and HTTP/2 in terms of page load time. They set up two different testbeds, one for
controlled and the other one for uncontrolled experiments, in which the network conditions
can’t be manipulated but were the one available in the campus. In both the environments
the client is a machine equipped with Chromium Browser and an extension developed to
measure the time taken to load the page (including only resource loading and discarding
script execution time). For controlled experiments the server is a machine connected to the
client through a router, while in uncontrolled environment the server is a machine publicly
available and the client can connect to it through both a wired and a cellular network. As
in the previous work, during controlled experiment Netem function is used to manipulate
network conditions. When a connection to the server is performed different kinds of pages
can be downloaded, depending on the number and the dimension of objects contained in the
page. Also in this case the network conditions influence a lot the performance, indeed QUIC
has good performance in situation with low bandwidth, high delay and lossy links. QUIC is
also faster than HTTP/2 when the page to download contains few small-sized objects. The
only case in which HTTP/2 is clearly better than QUIC is when the target is a page with
many objects of small dimension.

Taking a Long Look at QUIC It’s necessary to consider also the work by A. M. Kakhki et al.
(2017) [12], in which the authors go into a deep analysis of QUIC, in particular evaluating the
performance of different version of the protocol in different environments for the experiments,
that include desktop and mobile scenarios with wired and wireless networks. The testbed
consists of servers running on Amazon EC2 and supporting HTTP/2 over TCP (and TLS)
and QUIC, and three different client devices: a desktop a two mobile phones. All these
devices run two applications, Google Chrome and Youtube, to test protocol performance.
For what concerns Chrome, they use the debugging tool of the browser to evaluate the
page load time while the client tries to download a static HTML page that references some
images. Regarding video streaming performance, they measure QoE metrics through the
Youtube iFrame such as time to start, buffering time and number of rebuffers. For each
protocol and for each configuration, identified as client, server and network conditions, they
execute at least 10 measurements and then compute the average of all the values obtained.
For what concerns desktop scenario the results confirm what has been revealed by previous
research: QUIC outperforms TCP+HTTPS in almost every scenario, especially in poor
network conditions, with the exception of the case of page to download with high number of
small objects. QUIC has also worse performance in presence of packet reordering, because
the protocol interprets this situation as if losses are happening and starts to send packets
more slowly. The same happens in case of a mobile device as a client, indeed QUIC behaves
better than TCP in most cases. A clear advantage in terms of performance of QUIC can
be encountered also in a video streaming scenario, but only in presence of high-resolution
video.
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QUIC: Better For What And For Whom? The last study that took up the measurements
methodology and obtained similar results to the previous works is that of S. Cook et al.
(2017) [13], in which the main goal was to identify in which conditions and for which actors
QUIC is of considerable importance, comparing its performance to HTTP/1.1 and HTTP/2
(over TCP+TLS). They set up two different testbeds for their tests: a local one, to execute
experiments in a controlled environment, and a remote one, to make tests on the real
Internet. For the first kind of experiments QUIC and HTTP web servers are deployed and
installed on the same machine using Docker. The content of each web server is a replica
of one of some public websites (such as Youtube and Orange). The client is a machine
equipped with Perfy, a proprietary tool that gives the possibility to script and automate
tests. Indeed Perfy is able to launch the browser (Google Chrome), accessing a requested
page, and compute the performance metrics (Page Load Time), based on the Navigation
Timing API, that is integrated in the browser and gives information about the process of
page loading. Another feature of this tool is that during a connection to a website it captures
the traffic, that can subsequently be analysed. For the remote testbed the client side is the
same, while on the server side there are the public Youtube and Orange real websites. They
have decided to test the protocols both on first-ever and repeated connections and for each
protocol each test consists of 100 iterations to obtain significant results. As the vast majority
of the other works on the comparison between QUIC and HTTP (over TCP+TLS), they
found that loss and delay have a lower impact on QUIC with respect to HTTP/2, that is
outperformed by the protocol of Google in presence of lossy links or in a unstable network,
such as a wireless mobile network.

QUIC and TCP: A Performance Evaluation Even if it seems that QUIC is better than
TCP+TLS in many scenarios and under a lot of different network conditions, there have
been also some works that state the contrary. In particular K. Nepomuceno et al. (2018)
[14] worked to measure the performance of QUIC and HTTP and noticed unexpectedly that
the second protocol behaved better than the first. They choose 100 pages between the ones
proposed by Alexa site ranking and, thanks to the use of the tool Mahimahi [15], they are
able to record and replay the selected websites emulating also different network conditions.
Then using the Chrome browser as a client they try to connect to these replicated webpages
and to compute the page load time (PLT) as a metric to evaluate the performance. To do so
they capture an HAR log file for each experiment, that involves a webpage and a combination
of network parameters (RTT and packet loss ratio) manipulated through Mahimahi. Each
combination is tested 30 times and then the average PLT was computed. They find that
TCP performs better than QUIC on at least 60% of the pages, considering all the possible
network conditions. Also in this case the configuration of network parameters influences
a lot the collected results, as well as the choice to enable caching in the browser, in fact
setting properly the environment (made of network conditions and cache) the number of
pages where QUIC outperforms TCP can go from 5.37% up to 40.62%.

A Performance Perspective on Web Optimized Protocol Stacks: TCP+TLS+HTTP/2
vs. QUIC Another important study to cite is the one of K. Wolsing et al. (2019) [16],
that decided to use a completely different approach to analyse QUIC protocol and the stack
composed by TCP, TLS and HTTP/2. First of all they tune TCP to match as much as
possible QUIC’s default, for example increasing the initial congestion window and enabling
pacing, in order to provide a fairer comparison between the two protocols with respect to the
ones proposed by the previous approaches. Secondly they decide to evaluate and measure
visual web performance metrics instead of simply computing page load time, because they
are more related with human perception. Indeed they choose metrics derived from video
recording such as First Visual Change (FVC), Last Visual Change (LVC), and time the
website reaches visual completeness of a desired threshold in percent (85% is the value cho-
sen in this work). They create a measurement environment in which at the server side there
are replicated websites with Mahimahi tool [15] and the QUIC (version 43) and HTTPS
servers were generated respectively with Chromium sources and NGINX. On the other hand
the client is a machine equipped with the Browsertime tool [17], that is used for each run
of the experiments to open a fresh Chromium browser and record video while the loading
process is evolving. All the videos are then used to evaluate all the visual metrics. During
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their experiments QUIC performance results to be better with respect to TCP on various
scenarios, but TCP parameter tuning gives the possibility to reduce the gap between the
two protocols. QUIC works well especially in lossy network and it’s due to design features,
such as fast connection establishment and solution of the head-of-line blocking problem.

Evaluating QUIC Performance over Web, Cloud Storage and Video Workloads The
most recent work that evaluated QUIC performance, comparing it with TCP+TLS, was
proposed by T. Shreedhar et al. in 2022 [18] and introduced an approach to measure
protocol performance different from the past. They conducted experiments from 2018 to
2021 using several tests written in C language for active measurements. They decide to test
the two protocols in four different fields: web workloads, cloud storage workloads, video
download and video streaming. To this purpose they develop three groups of tests written
in C: tls perf and quic perf to measure respectively TLS (both 1.2 and 1.3 version) and
QUIC (both in Google and IETF version) both in web and cloud storage workloads, and
video tests to measure performance of the protocols in video download and video streaming.
For what concerns QUIC management they use lsquic [19], an open source QUIC library
developed by LiteSpeed that provides support for QUIC, while to set up connection with TLS
they use libcurl library. Regarding web workloads they measure connection times, TTFB
(Time To First Byte) and download times while the client (a VM or a Raspberry Pi) tries
to connect to Alexa Top-1M websites (they discovered that only 5.7K websites supported
QUIC). During this tests they can notice that QUIC in lossy networks has a clearly lower
mean connection time than TLS 1.2/1.3 over TCP. In addition IETF QUIC has a lower
handshake time also when it is compared to several version of Google QUIC. To evaluate
the performance of the protocols in cloud storage workloads, they use them to download
different sized files (from 1KB to 2GB) from Google Drive and measured throughput and
CPU utilization. The comparison in this case is only between QUIC and TLS 1.2 because
Google Drive doesn’t support TLS 1.3. For what concerns cloud storage workloads, when
considering files of large size (¿20 MB up to 2 GB) TLS 1.2 over TCP results in higher
throughput with respect to QUIC, while it performs better when considering smaller file
sizes (¡20 MB). The explanation can be found in the fact that the total download time is
dominated by the handshake time and the TTFB. In terms of resource utilization, QUIC
has much higher CPU utilization than TLS 1.2, especially when considering large files, due
to in-kernel optimizations. Regarding video workloads, TLS 1.2 results in an higher overall
download rate than QUIC and Google QUIC version 35 is the worst in terms of download
rate. For video streaming performance, TLS/TCP presents a larger startup delay with
respect to QUIC, and the gap in the performance increases in a lossy network. Despite
lower overall download rate, QUIC has a better video content delivery with reduced stall
events and lower stall durations due to its reduced latency overheads and better loss recovery
mechanism.

TLS and Energy Consumption On a Mobile Device: A Measurement Study Most
of the works previously reviewed, about the comparison between QUIC and other protocol
stacks, showed an implementation in a desktop scenario, in which a client machine tries
to connect through some tools and application to a server. There have been also in the
past years, studies that tried to measure performance of a protocol in a different situation,
such as IoT and mobile phone fields. It’s the case of the work set up by P. Miranda et
al. in 2011 [20], in which they made experiments to measure the energy consumption of
TLS on a mobile device. They point out that the energy consumed during an entire TLS
transaction it’s not due only to the cryptographic component of the protocol, but has also
a non-cryptographic part. All the asymmetric, symmetric and hashing operations concur
to compose the cryptographic component of the energy consumption, while all the energy
consumed for data transfer represents the non-cryptographic part. TLS contributes to
increase also the non-crypto component with respect to the TCP only case, because of its
messages that include additional items, such as certificates and message digests. The testbed
is composed by a Nokia N95 phone, that acts as a client, thanks to a program developed with
OpenSSL library [27], and connects to a public server through a dedicated WLAN access
point or 3G access network. The energy is measured with Nokia Energy Profiler application,
that is triggered directly by the client application when the TLS transaction starts, in order
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Title Year TLS DTLS QUIC Perf. Sec. Ref.

HTTP over UDP: an Experimental In-
vestigation of QUIC

2015 x x x [8]

How quick is QUIC? 2016 x x x [9]

Does QUIC make the Web faster? 2016 x x x [11]

Taking a Long Look at QUIC 2017 x x x [12]

QUIC: Better For What And For
Whom?

2017 x x x [13]

QUIC and TCP: A Performance Eval-
uation

2018 x x x [14]

A Performance Perspective on
Web Optimized Protocol Stacks:
TCP+TLS+HTTP/2 vs. QUIC

2019 x x x [16]

Evaluating QUIC Performance over
Web, Cloud Storage and Video Work-
loads

2022 x x x [18]

TLS and Energy Consumption On a
Mobile Device: A Measurement Study

2011 x x [20]

On TLS 1.3 Early Performance Anal-
ysis in the IoT Field

2016 x x [21]

IoTLS: Understanding TLS Usage in
Consumer IoT Devices

2021 x x [22]

DTLS Performance in Duty-Cycled
Networks

2015 x x [23]

DTLS Performance - How Expensive
is Security?

2019 x x [24]

Low-Power IoT Communication Secu-
rity: On the Performance of DTLS and
TLS 1.3

2020 x x x [25]

Which Secure Transport Protocol for a
Reliable HTTP/2-based Web Service :
TLS or QUIC?

2017 x x x [26]

Table 3.1. Studied research papers.

to obtain accurate results. For the same reason, each experiments is repeated many times.
They observe that the use of a ciphersuite that includes Diffie-Hellman increases significantly
energy consumption. The main reason is that a transaction with DH is computationally
much more intensive and lasts longer with respect to transactions with other ciphersuites,
and so the network interface consume much more energy. If the client is connected to
the server through the 3G network, access consumes from two up to four times the energy
consumed over WLAN. The energy consumption can be reduced thanks to the use of session
resumption. In addition to the energy measurements, they install a server locally and use
the client to upload files of different size on it using both TLS and TCP and then compare
the obtained results, in order to measure the communication data overhead of TLS. The
results obtained show that the bigger is the amount of data to transfer, the more the energy
overhead decreases, because the handshake energy is amortized by the energy used by the
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record protocol to transfer data. The use of WLAN instead of 3G has a good impact in
this evaluation, leading to a more important decrease of energy overhead. Moreover they
claim that the choice of symmetric crypto and hash algorithms it’s not important in order
to reduce the energy consumption, because the overhead related to encryption and integrity
protection is quite low. The only situation that differs from that is when the transmission
rate is very high and a bottleneck due to a bad choice in terms of algorithms must be
avoided.

On TLS 1.3 Early Performance Analysis in the IoT Field There are two other papers
that reviewed works in which the performance of TLS protocol are tested in the IoT field.
The first study to cite is the one of 2016 proposed by S. Bossi et al. [21], in which they made
several tests on TLS 1.3 comparing the use of all the different ciphersuites and the one-way
and mutual authentication in terms of performance. They set up a tesbed composed by a
STM32F217IG1 device connected to the server machine through an Ethernet cable. The
client application that run on the IoT device is realized with the wolfSSL library [28] version
3.4.6, while for the application of the server the OpenSSL library 3 [27] version 1.0.2a is used.
They measure on the client the number if clock cycles needed to complete an handshake
and the memory usage as metrics for the performance evaluation. The results reported in
the paper show that in case of one-way authentication elliptic curve algorithms are faster
that Diffie-Hellman ones and if an ephemeral version of these algorithms is use the key
exchange process costs more clock cycles and reaches a level comparable to RSA private
key operations. Diffie-Hellman solutions demonstrate also a greater memory usage with
respect to elliptic curve solutions. In case of mutual authentication the benefit of an elliptic
curve solution is even clearer. Elliptic curve solutions result in less memory requirements
and higher security thanks to their perfect forward secrecy property with respect to RSA
solutions. They also observe that the complexity and the burden for a IoT device to support
a TLS 1.3 handshake that is characterized by the encryption of two third of the messages
are balanced by the preference for AEAD ciphers and the introduction of new signature
algorithms, such as Curve25519 and Ed25519.

IoTLS: Understanding TLS Usage in Consumer IoT Devices Another study regarding
TLS and the IoT field is proposed by M. T. Paracha et al in 2021 [22]. In this work they
wanted to evaluate the effective use by consumer IoT devices of the security protocol to
protect the communication, the presence of correct certificate validation and the changes of
the observed behaviour over time (indeed they collected data from their IoT devices for more
that two years). They execute passive and active experiments inside a testbed composed
of 40 TLS-supporting IoT devices, they can interact with through the companion apps. In
order to capture the traffic generated by the devices, especially regarding TLS, they use
the gateway installed in the testbed to provide network access to all the devices. During
passive experiments they record the network traffic automatically generated by the device,
that happens in particular when a device is not in use or when there is an interaction with
one of the students enrolled in the laboratory to conduct the experiments. On the other
hand in active experiments they intercept the traffic from devices while impersonating to
be the server in a TLS connections (through mitmproxy). To this purpose, they use smart
plugs to turn devices off and on repeatedly on command, based on the fact that a lot of the
traffic is generated by a device when it’s powered on. The obtained results reveal that 28
of the 40 devices use TLS 1.2 exclusively, while for the others they find in some cases the
use of deprecated TLS versions over time. Regarding certificate validation they identify 7
devices that do not perform any certificate validation and other 4 devices that do not check
for correct owner of the certificate indicated in the Common Name field. For these reason all
these devices are vulnerable to different kind of attacks, that exploit these vulnerabilities.

DTLS Performance in Duty-Cycled Networks In addition to QUIC and TLS, also DTLS
has been studied in terms of performance during the last years, especially in an IoT scenario,
which is the field of greatest usage of this protocol. M. Vucinic et al. in 2015 [23] worked to a
study on the performance of DTLS protocol in duty-cycled networks. They measure DTLS
handshake time and energy consumption as metrics for performance evaluation on three dif-
ferent duty cycling protocols: preamble-sampling, the IEEE 802.15.4 beacon-enabled mode
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and the IEEE 802.15.4e Time Slotted Channel Hopping mode. In their testbed they emu-
late WiSMote, a popular IoT platform, running a client application written using tinyDTLS
library [29] for which the support is provided also by the Contiki operating system. To
estimate the energy consumption they used the Energest module of Contiki OS. The DTLS
handshake between client and server is repeated 1000 time and then they compute the aver-
age of all the values to obtain the final results. During their tests DTLS demonstrates poor
performance when employed in radio duty-cycled networks, with an handshake process that
can take till several tens of seconds and increases the duration with the number of hops in
the network. In addition the reduced amount of resources available to the IoT client forces
the node to maintain a maximum of 5 simultaneous DTLS sessions. For all these reasons
they claim that DTLS can be used in applications in which the handshake is performed only
a limited number of times.

DTLS Performance - How Expensive is Security? S. Gallenmüller et al. (2019) [24] con-
structed a model to evaluate the performance of applications that are based on DTLS. This
model is composed by four main building blocks that are related to the most important costs
in a DTLS application: packet IO, cryptographic hashing, state handling, and cryptographic
processing. To this purpose, they create a DTLS VPN architecture, called MoonSec [30], to
validate the model using a different library for each one of the building blocks: DPDK is
dedicated to packet IO, DenseMap is used for connection state tracking, OpenSSL [27] han-
dles encryption and decryption and SipHash-2-4 manages 5-tuple hashing packets. MoonSec
is a modular and flexible architecture, that provides has main features RFC-compliance and
high performance. In their testbed they install two machines, one running MoonSec and
the other one simply acting as a load generator. They execute black box measurements,
in which they considered the machine running MoonSec as a black box and measure only
the throughput, and white box measurements, evaluating the cost of packet reception and
packet transfer, hashing, state table handling and packet processing. All the measurements
are done computing the clock cycles necessary to execute the operation. Regarding the
black box tests, they measure that the throughput grows linearly with the traffic till 950
Mbit/s and after that some packets start to be dropped. During white box measurements
they introduce as input parameters three values: number of connections, number of bytes
transmitted and number of packets transmitted. According to their results, the packet re-
ception results in an average cost of 77 CPU cycle, while the packet transfer needs 66 CPU
cycles. The tests on hashing operation instead produce an average cost in terms of CPU
cycles equal to 62 for each packet, after an initial phase of higher values. Since the state
table handling is divided into two main operations, insertion and lookup, they generate an
equation to compute the clock cycles needed by each one of the two portions of this metric.
The insertion results in a constant cost for each connection, equal to 400 CPU cycles, and
a dynamic part, while the lookup is calculated as a static cost for each packet equal to
118. For what concerns packet processing measurements, they evaluate the costs in CPU
cycles for performing and entire handshake, comparing the value obtained using different
ciphersuites. They find that there is a significant gap between the cost the most expensive
and the least expensive encryption algorithms they have tested, in particular DHE ciphers
have a costs that are four times higher than elliptic curve based DHE ciphers.

Low-Power IoT Communication Security: On the Performance of DTLS and TLS
1.3 In 2020 G. Restuccia et al. [25] published the results of a work in which they evaluated
the performance of TLS 1.3 and DTLS 1.3 in a IoT environment. To this purpose they
provide the first implementation of DTLS 1.3 for systems with a constrained amount of re-
sources. They execute tests with TLS and DTLS protocols on microcontrollers, measuring
as performance metrics bytes over-the-air value, memory requirements and energy consump-
tion. They set up a testbed with three IoT devices that run different implementation of TLS
and DTLS protocol stack: they use the embedded solutions provided by WolfSSL [28] and
MbedTLS [31], in addition to their own implementation. The obtained results reveal that
the memory requirements remain roughly constant for both protocols between the latest ver-
sion (version 1.3) and the previous one (version 1.2). DTLS 1.3 demonstrates a lower bytes
over-the-air overhead with respect to DTLS 1.2 thanks to its record layer optimizations,
while for TLS 1.3 the tests report a little increase in this metric compared to the previous
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version of the same protocol. They notice an important difference in energy consumption
between symmetric and asymmetric cryptography and TLS 1.3 results in a reduction of this
value when PSK handshake is employed if compared to all the other possible handshakes of
both protocols.

Which Secure Transport Protocol for a Reliable HTTP/2-based Web Service : TLS
or QUIC? The protocol object of the thesis can be compared from the security point
of view as well as from the performance one. The paper written by A. Saverimoutou et
al. (2017) [26] contains a security analysis of TLS and QUIC protocols. They focus their
attention on identifying the vulnerabilities of the two protocols and possible attacks against
them, considering the possible impact web services based on HTTP/2. Each identified
attack is related with the corresponding vulnerability and its feasibility and complexity are
described as well as the drawbacks regarding the end-user’s QoE (Quality of Experience)
and QoS (Quality of Service) provided by the service. The TLS vulnerabilities considered
are slow read attacks, Logjam, Lucky Thirteen attack, Broken RC4 as primary ciphersuite,
while regarding QUIC they evaluate Replay attacks, Packet Manipulation attacks, Crypto
Stream Offset. The results of the analysis show that an attack against a QUIC server mainly
impacts end-users, but cannot degrade to much the service offered or make the server crash,
and so QUIC is a more reliable solution to create a server than TLS. On the other hand
the attacks against TLS typically have the purpose of making a DDOS and so have a huge
impact on the server itself.
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Chapter 4

Performance Evaluation

Since there are a lot of possible solutions to protect a communication channel between two peers
it’s important to evaluate strengths and weaknesses of each one of the protocols that offer this
kind of service. Three of the most used solutions nowadays are the protocols analysed in this
thesis: TLS and DTLS are specifically designed to ensure authentication, confidentiality and
integrity to a communication, while QUIC is designed as a transport protocol that integrates
also security features to protect the channel and the data exchanged between the two endpoints.
These protocols will be measured and analysed from the performance point of view in order to
determine which is the best one in different situations. The purpose is to evaluate which one has
the best performance and if it happens at the expense of some security features. There are several
possible ways to measure and evaluate a protocol and in this chapter some of these strategies
(introduced also by other researchers) will be tested.

4.1 QUIC and TLS tests with the browser

As can be noticed analysing the works presented in the previous chapter, there are different
ways to compare protocols, in particular the choice of the metrics that are used to evaluate the
performance is a fundamental part when test have to be executed. Most of the works regarding the
comparison between TCP+TLS+HTTP stack and QUIC used an approach in which the client,
that is represented by the browser, tries to download a page from the server and the page load
time (PLT) is the metric measured in each experiment. PLT is intended as the time taken by
the browser to download and process all the objects that compose a web page. Consequently the
first tests performed in this thesis are focused on measuring with the browser the time needed
to download the page of three of the most accessed websites worldwide using both QUIC and
TCP+TLS protocol.

4.1.1 Google Chrome

Google Chrome1 is a web browser developed by Google based on the Chromium browser. The
browser has grown rapidly over the years to become one of the most used worldwide. It supports
both TLS (up to version 1.3) and QUIC protocols. Chrome added support for QUIC v1 (RFC
9000) in Chrome 90 and default-enabled it for all users in Chrome 93. For what concerns the QUIC
protocol, Google Chrome uses a library named quiche2 in order to implement it. It’s a library
created by Google that contains implementations of QUIC, HTTP/2 and HTTP/3 protocols. On
the other hand, to manage TLS connections Chrome uses BoringSSL library, that is a fork of
OpenSSL designed to meet Google’s needs.

1https://www.google.com/intl/it it/chrome/

2https://github.com/google/quiche
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Figure 4.1. Timeline of the events recorded by the Navigation Timing API (source: W3C)

It’s very easy to install Google Chrome on Linux. You just have to go to the Chrome website
and download the DEB file. Then, double-clicking on the file just downloaded and then pressing
on the “Install” button, it’s possible to install easily Google Chrome browser with Software Install.

4.1.2 Navigation Timing API

The Navigation Timing API3 is an interface for web applications to access the complete timing
information for navigation of a document and can be used to measure performance of a web
application. It should be preferred to JavaScript-based mechanisms because in many cases they
are unable to provide a complete or detailed end-to-end latency picture. Instead the Navigation
Timing API provides high resolution performance metric data related to the navigation of a
document. All time values are measured with respect to the time origin, that is represented by
the moment in time when the navigation started. The following list contains some of the values
that can be measured through this API.

navigationStart This attribute must return the time immediately after the user agent finishes
prompting to unload the previous document. If there is no previous document, this attribute
must return the time the current document is created.

domainLookupStart This attribute must return the time immediately before the user agent
starts the domain name lookup for the current document.

domainLookupEnd This attribute must return the time immediately after the user agent fin-
ishes the domain name lookup for the current document.

connectStart This attribute must return the time immediately before the user agent start es-
tablishing the connection to the server to retrieve the document.

connectEnd This attribute must return the time immediately after the user agent finishes es-
tablishing the connection to the server to retrieve the current document.

secureConnectionStart This attribute is optional. When this attribute is available, if https
has been used, this attribute must return the time immediately before the user agent starts
the handshake process to secure the current connection. If this attribute is available but
HTTPS is not used, this attribute must return zero.

responseStart This attribute must return the time immediately after the user agent receives the
first byte of the response from the server, or from the HTTP cache or from local resources.

3https://www.w3.org/TR/navigation-timing-2/

38

https://www.w3.org/TR/navigation-timing-2/


Performance Evaluation

responseEnd This attribute must return the time immediately after the user agent receives the
last byte of the current document or immediately before the transport connection is closed,
whichever comes first. The document here can be received either from the server, the HTTP
cache or from local resources.

loadEventStart This attribute must return the time immediately before the load event of the
current document is fired. It must return zero when the load event is not fired yet.

loadEventEnd This attribute must return the time when the load event of the current document
is completed. It must return zero when the load event is not fired or is not completed.

Among all the values that can be measured through the Navigation Timing API those just
listed are the most relevant for measuring the performance of the protocol used to download the
page. Fig. 4.3 represents a timeline containing all the parameters that can be measured using the
API from the start of the navigation till the moment when all the elements of a web page are
completely loaded in the browser window.

4.1.3 Page Download Time and Time To First Byte measurements

All the experiments are executed on a virtual machine realized with VirtualBox, running Ubuntu
20.04 as operating system, connected to a home router via Wi-Fi that provides Internet con-
nectivity. The client is the Chrome browser, while the server in each test is the one of the real
websites. The websites chosen to conduct the experiments are www.google.com, www.youtube.com
and www.facebook.com, since they are among the most accessed worlwide every day. As can be
noticed from Table 4.1, these three pages are characterized by different number of objects and
different size.

Website Page Size
www.google.com 45,2 KB
www.youtube.com 66,7 KB
www.facebook.com 28,2 KB

Table 4.1. Size of tested web pages

The servers that host all these pages support the creation of connections with both QUIC and
TLS. All the timing information related to a connection to a webpage through the browser can be
retrieved through the Navigation Timing API, that provides useful information to measure the
performance of a connection to a website, using the Browser console. Once a web page is loaded in
the browser, it’s easy to get access to the console of the browser: one possibility is right-clicking
on the screen and then pressing the “Inspect” button. Then in order to obtain all the values
measured through the Navigation Timing API the following commands must be executed in the
console:

✩ const [entry] = performance.getEntriesByType("navigation");

✩ console.table(entry.toJSON());

Fig. 4.2 shows an example of output obtained using the commands explained above, after a
connection to Facebook webpage was performed.

The first metric measured in these experiments to compare the performance of QUIC and
TLS protocols is the time needed to download the page. Even if a lot of authors decided to
measure the Page Load Time (represented by the loadEventEnd value in the Navigation Timing
API) in their work, this value includes also the time needed by the browser to process all the
elements of the page and then load them. To avoid evaluating the performance of the browser and
concentrate only on the protocol used to download the page the Response End value computed
by the Navigation Timing API is a better choice, since it is defined as the time immediately after
the browser receives the last byte of the current document or immediately before the transport
connection is closed, whichever comes first. In addition, in order to exclude the time needed
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Figure 4.2. Screenshot of the output obtained in the browser console when Navigation
Timing API parameters are retrieved

for the DNS translation, the page download time (PDT) evaluated during these experiment is
defined as responseEnd - domainLookupEnd. The second value measured is the time to first byte
(TTFB), defined as the time between the browser requesting a page and when it receives the
first byte of information from the server and is computed as the difference of other two events
measured thanks to the Navigation API, responseStart - domainLookupEnd (also in this case the
time for the DNS translation is excluded from the computation).

During the experiments for each one of the three websites 20 tests have been executed, the
first time using QUIC protocol and the second time using TCP+TLS. The switch between the
two protocols has been made thanks to the Chrome flags, indeed Experimental QUIC protocol
flag gives the possibility to enable (or disable) the use of QUIC by the browser when performing
a connection to a website. In order to change the value of this flag in Google Chrome, you
must enter chrome://flags/ into the address bar and then select or search for the flag you want
to enable. For each flag you can choose between three possible values: ‘Enabled’, ‘Disabled’ and
‘Default’. Once you have selected the desired value, you must press on ‘Relaunch’ button, in order
to restart Chrome and have the change effectively active. In addition, for all the experiments the
cache of the browser has been disabled, so it was not possible to have resumed session but each
time the client had to establish a new connection with the server. In order to disable the cache
you have to right-click on the browser, select ‘Inspect’, move to the ‘Network’ tab and the check
the ‘Disable cache’ box.

The results of the performance metrics (PDT and TTFB) related to each one of the 20 at-
tempted connections can be retrieved are reported in two charts. As can be seen from Fig. 4.3,
that contains the chart of the page download time metric evaluated during the experiments, QUIC
protocol demonstrated a better performance in terms of time to download the page for Google
and Facebook websites and the mean values obtained are respectively 169,5 ms and 191,8 ms.

40



Performance Evaluation

www.google.com www.youtube.com www.facebook.com
0

200

400

600

800

1000

1200

1400
Pa

ge
 D

ow
nl

oa
d 

Ti
m

e 
(m

s)

QUIC
TLS 1.3

Figure 4.3. Boxplot of Page Download Time of three webpages downloaded with QUIC and TLS

Instead TLS was slower in downloading the two web pages, obtaining higher mean values for
the page download time parameter: 340,9 ms and 259,2 ms respectively. On the contrary for
Youtube website TLS provided a smaller mean download time equal to 905,6 ms with respect to
QUIC that performed worse, with a mean value equal to 1084,9 ms. This results are confirmed
by what can be read from the papers analysed in the previous chapter: QUIC is fast with small
and medium size pages (as Google and Facebook), while performs poorly with large amount of
data to download (indeed Youtube website is the biggest page considered, both in terms of size
and number of elements).

The results of the evaluation of the TTFB are shown in Fig. 4.4. Also in this case QUIC
performed better with respect to TLS when downloading Google and Facebook websites: QUIC
showed mean values for the time to first byte respectively equal to 128,4 ms and 159 ms, while
with TLS 241,9 ms and 215 ms were obtained on average. For what concerns Youtube website,
the performance of the two protocols are similar and comparable. Indeed the mean values for the
time to first byte obtained for QUIC and TLS are respectively 84,7 ms and 85,2 ms.

4.2 QUIC and TLS tests with lsquic and libcurl

TLS and QUIC protocols can be evaluated also using libraries for C language as well as with the
browser, following what has been done in the paper of 2022 by T. Shreedhar et al. [18]. They have
written two groups of tests, named tls perf and quic perf, in order to measure the performance of
the two protocols in terms of connection time and time to first byte (TTFB) while connecting to
websites belonging to Alexa Top-1M ranking. The connection time, defined as the time to set up
a connection, for QUIC protocol corresponds to the handshake time, while for TLS includes TCP
and TLS handshakes. Time to first byte (TTFB) is defined as the time taken from the client start
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Figure 4.4. Boxplot of Time To First Byte of three webpages downloaded with QUIC and TLS

to the reception of the first byte of the server response, so it includes the set up of the connection
(QUIC handshake or TCP+TLS handshake), sending of the HTTP request, server processing and
reception of the HTTP response.

The tests for TLS protocol, written in C language, use libcurl4 library which is necessary to con-
figure and execute connections with different parameters such as URL, port and timeout as well as
to compute and display the metrics requested for the performance evaluation. The libcurl library
includes a function, curl easy getinfo() that can be called in order to retrieve some timing infor-
mation related to a connection. In tls perf the connection time, or handshake time, is measured
by calling that method with CURLINFO APPCONNECT TIME option: this call gives as output
the time elapsed from the client start until the TLS handshake with the server is completed. This
time also contains the DNS lookup time that can be retrieved and then subtracted using the op-
tion CURLINFO NAMELOOKUP TIME, that measures the time from the client start until name
resolution is completed. On the other hand the option CURLINFO STARTTRANSFER TIME
provided by libcurl can be used to measure time to first byte for TCP/TLS. The time retrieved
in this way includes the connection negotiation, the sending of the request and the time for the
server to compute the result. As for the connection time, also in this case the DNS lookup time
must be removed. An example of a C program that contains the use of all the options reported
above with the function curl easy getinfo() of libcurl library is shown in Fig. 4.5

The second group of tests, quic perf, written in C, includes the lsquic5 library, an open-source
QUIC client library for integration purposes that provides support for both Google QUIC versions
(in particular currently number 43, 46 and 50 are supported) and IETF QUIC versions (currently

4https://curl.se/libcurl/

5https://github.com/litespeedtech/lsquic
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#include <stdio.h>

#include <stdlib.h>

#include <curl/curl.h>

int main (int argc, char** argv)

{

curl_global_init(CURL_GLOBAL_DEFAULT);

CURL *curl;

CURLcode res;

double connect_dns, connect_tls, ttfb;

curl = curl_easy_init();

//initialization and setting of curl context

res = curl_easy_perform(curl);

if(res == CURLE_OK) {

res = curl_easy_getinfo(curl, CURLINFO_NAMELOOKUP_TIME, &connect_dns);

if(res == CURLE_OK) {

res = curl_easy_getinfo(curl, CURLINFO_APPCONNECT_TIME,

&connect_tls);

if(res == CURLE_OK) {

res = curl_easy_getinfo(curl, CURLINFO_STARTTRANSFER_TIME,

&ttfb);

}

}

}

return 0;

}

Figure 4.5. Example of use of CURLINFO APPCONNECT TIME and
CURLINFO STARTTRANSFER TIME libcurl options to retrieve TLS handshake
time and time to first byte

Draft-27, Draft-29 and Version 1). For QUIC the connection time is measured thanks to the
use of the callback on hsk done() provided by lsquic library. This function is called every time a
QUIC handshake is completed and can be configured to measure the time form the start to the
end of the handshake and also to capture whether or not the connection attempt is successful.
The DNS lookup time is not included in the measurement and so this solution is compatible
with the definition provided by the authors of the paper. In order to measure the time to first
byte for QUIC it’s necessary to use a callback, named on read(), that is used to process bytes
received by the client after the handshake and is invoked for the first time when the first byte
of the response from the server are received by the client. Also in this case the measurement
includes the handshake time and the sending of the request as well as the server processing time
and the reception of the response. In addition the DNS lookup time is again excluded from the
computation of the result.

4.2.1 libcurl

Libcurl is a client-side library that support a lot of different protocols, among which HTTP and
HTTPS, that can be used to evaluate TCP+TLS performance. This library is free and fast and
can build and work on numerous different platforms. In addition it’s thread-safe and compatible
with IPv6.
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If you want to use libcurl functions in your C program you will need to install curl on your
system. To do so it’s enough to download the latest curl package or one of the specific libcurl
packages listed from the curl download page and follow the instructions below. You have first to
unzip the file just downloaded with the command:

✩ tar xvf curl-[version].tar.gz

Subsequently you have to enter the folder of the library and execute this sequence of commands:

✩ ./configure --with-openssl [--with-gnutls --with-wolfssl]

✩ make

✩ make test (optional)

✩ sudo make install

You need to adjust the configure line in order to select the correct TLS library that you want
to use. The following command can be used to list all the possible options for the configuration:

✩ ./configure --help

The library is provided with a C API that gives the possibility to use libcurl inside a C
program.

4.2.2 lsquic

LiteSpeed QUIC (lsquic) Library is an open-source implementation of QUIC and HTTP/3 for
servers and clients. This library currently supports different IETF QUIC versions (v1, Internet-
Draft versions 29 and 27) and also some Google QUIC versions, such as version 43, 46 and 50.
CMake, zlib, BoringSSL and go are prerequisites to build lsquic library.

If you want to build and install lsquic you have to start cloning BoringSSL with the following
command:

✩ git clone https://boringssl.googlesource.com/boringssl

✩ cd boringssl

If you want to use a specific BoringSSL version use the following command:

✩ git checkout [version]

Compile the library with optimizations:

✩ cmake -DCMAKE_BUILD_TYPE=Release . && make

You need to remember where BoringSSL sources are for the following steps:

✩ BORINGSSL=✩PWD

After having built BoringSSL you can build and install LSQUIC following the instructions
below. First you have to get the source code:

✩ git clone https://github.com/litespeedtech/lsquic.git

✩ cd lsquic

✩ git submodule init

✩ git submodule update

Then you can compile the library statically:

✩ # ✩BORINGSSL is the top-level BoringSSL directory from the previous step

✩ cmake -DBORINGSSL_DIR=✩BORINGSSL .

✩ make
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lsquic_conn_t * lsquic_engine_connect(lsquic_engine_t *engine, enum

lsquic_version version, const struct sockaddr *local_sa, const struct

sockaddr *peer_sa, void *peer_ctx, lsquic_conn_ctx_t *conn_ctx, const

char *sni, unsigned short base_plpmtu, const unsigned char *sess_resume,

size_t sess_resume_len, const unsigned char *token, size_t token_sz)

Figure 4.6. Prototype of lsquic engine connect() function

4.2.3 Connection Time and Time To First Byte measurements

In order to reproduce the tests for the TLS protocol the code made available by the authors
of the paper in a Github repository6 is used. With respect to the code in the repository, two
changes have been applied: the computation of the time to first byte and the total time to
download the page must be supplied with the subtraction of the DNS lookup time, according to
the definition given by the authors of the paper. On the other hand, for the measurements of
QUIC protocol the code provided by the authors is not used and another solution is adopted: on
the Github repository of lsquic library different programs for testing are available and between
them there is an http client that can be used to obtain the same result as quic perf tests, indeed in
addition to the creation and management of the connection, the program is responsible of printing
statistics about the connection if requested, such as TTFB and handshake time. Also in this case
two changes to the code must be applied in order to be compliant with the definitions and the
experiments made by the authors of the paper. The way the time to first byte is computed must
be modified, since in the http client it is intended as the time from the handshake completion
to the reception of the first byte of the response. To do so the starting point of the evaluation
of the TTFB is changed with the moment in time in which the client is started (as it is for the
handshake time). The second change that must be made concerns the insertion of the possibility
to select the version of QUIC protocol that will be used by the client to attempt the connection
with the server. In this way it will be possible to compare the behaviour of different versions
of QUIC as done by the authors of the paper. This change has been implemented inserting an
option in the http client program that let the user to specify the version of the protocol, that will
be then used as parameter in the function of the library named lsquic engine connect() that is
called to start the handshake (with the version of QUIC specified as parameter) and establish the
connection. As is shown in Fig. 4.6, this function receives as second parameter a variable of type
lsquic version that is an enum which can assume 8 different values that correspond to the QUIC
versions supported by the library: LSQVER 043, LSQVER 046, LSQVER 050, LSQVER ID27,
LSQVER ID29, LSQVER I001, LSQVER VERNEG and N LSQVER. After these changes the
http client program can be used to reproduce quic perf since it implements the same logic and
gives as output the same results as the tests created by the authors of the paper. All the code
developed and used to conduct these experiments, for both TLS and QUIC, can be compiled and
executed following the guide in Appendix A, in the corresponding section of the user’s manual.

These two groups of test are executed in the same environment used for the experiments
reported in the previous section: a virtual machine running Ubuntu 20.04 connected to the
Internet through a home router via Wi-Fi. Also the target websites chosen from the Alexa ranking
that are used for the measurements are the same as before: www.google.com, www.youtube.com
and www.facebook.com. Both the groups of test are executed with every version of the protocol
available for each websites 50 times. With tls perf it’s possible to choose between TLS 1.2 and
TLS 1.3, while QUIC tests give the possibility to switch between versions 43, 46, 50 (Google
QUIC), Draft-27, Draft-29 and Version 1 (IETF QUIC) of the protocol. The output of both
programs is recorded and the values obtained for the connection time and TTFB are used to
generate charts. Fig. 4.7 shows the CDF of connection times for all the different versions of QUIC
and TLS for each website. Table 4.2 shows the correspondence between the names in the legend

6https://github.com/RohitPanda/tls perf
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Figure 4.7. Cumulative Distribution Functions of Connection Time values obtained in
experiments with three different sites

of the chart and the real QUIC version. It can be noticed that Facebook doesn’t support the
Google versions of QUIC protocol but only IETF ones (ID-29 and Version 1). However for all the
protocols involved the behaviours for each websites are really similar. Indeed the latest versions of
IETF QUIC (Draft-29 and Version 1) outperform all the Google versions of the same protocol and
also TLS 1.2 and TLS 1.3 for each website as can be expected. The average value for the fastest
versions of QUIC is around 60 ms. Surprisingly TLS 1.3 demonstrates better performance with
respect to Google versions of QUIC (43, 46, 50), that in their turn have a comparable behaviour
with respect to TLS 1.2. For TLS 1.3 the average value of the connection time is around 100 ms
for all websites visited during the experiments, while for Google QUIC versions and TLS 1.2 the
mean value grows till around 120-130 ms. Different enhancements have been provided to QUIC
protocol in the transition between Google version and IETF version and this is the reason why
a better performance of QUIC Version 1 with respect to versions 43, 46 and 50 was expected.
Nevertheless QUIC was expected to be better in all its versions than TLS protocol but the test
results state otherwise. A similar behaviour for what concerns time to first byte measurements can
be noticed looking at Fig. 4.8 that shows the CDF of time to first byte values obtained executing
the experiments on the three websites. Also in this case the latest versions of QUIC protocol
(Draft-29 and Version 1) provide the best performance with an average value for TTFB of around
120-125 ms for Youtube website and around 150 ms for Google website. TLS 1.3 follows the
fastest protocols with a mean TTFB almost 50 ms higher with respect to IETF QUIC for each
website and outperforms TLS 1.2 and again surprisingly Google QUIC. These last two protocols
increase their average TTFB with respect to TLS 1.3 of almost 15-20 ms. Since the TTFB as it
was defined includes the handshake time, it’s easy to understand that both the metrics evaluated
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Legend name QUIC version
Q043 Google QUIC 43
Q046 Google QUIC 46
Q050 Google QUIC 50
ID29 QUIC Internet Draft 29
I001 IETF QUIC v1

Table 4.2. Table containing the translation between the names in the legend of the charts
and the QUIC protocol versions
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Figure 4.8. Cumulative Distribution Functions of Time To First Byte values obtained in
experiments with three different sites

with the experiments maintain the same behaviour. Looking at the chart for Facebook website
something unexpected can be noticed: all the protocols behave in a similar way and the advantage
of using QUIC with respect to TLS is no more noticeable.

4.3 QUIC, TLS and DTLS tests with lsquic and OpenSSL

A feature that characterizes a protocol and differentiates it from the others is the handshake time,
intended as the time needed to establish a connection between a client and a server. Each protocol
studied in this thesis includes an handshake phase in which the client and the server exchange
cryptographic material and agree on which algorithms and keys to use in order to protect the
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channel between them. TLS is characterized by an handshake lasting 2-RTT for version 1.2 of
the protocol and 1-RTT for version 1.3, but since this security protocol is used to protect a TCP
channel, the time needed to establish a secure communication channel between a client and a
server from scratch must be increased of 1-RTT, that is the time needed for the 3-way handshake
of the TCP protocol. So in total 3-RTT are needed for having a TLS 1.2 channel, while 2-RTT for
a TLS 1.3 one. QUIC instead is characterized by a 1-RTT handshake and no additional time is
needed to create a secure channel since this protocol runs on top of UDP. The same consideration
can be made for DTLS (version 1.2), but in this case the handshake process is similar in the
number of messages and their content to TLS 1.2 handshake. The difference in the handshake
with respect to TLS 1.2 is represented by the cookie exchange process, immediately after the
ClientHello message, to prevent DOS attacks.

4.3.1 Mininet

Mininet7 is a tool used to create a realistic virtual network composed of virtual hosts, switches and
links interconnecting them on a single host. In addition Mininet uses NetEm, an enhancement
of the Linux traffic control facilities, and for this reason it’s possible to customize the network
modifying various parameters of the links, such as delay, bandwidth and loss. Delay is emulated by
queueing and holding back all outgoing packets for a fixed amount of time, while loss is emulated
by randomly dropping packets with a certain probability. If you want to install Mininet, you just
have to execute the following command:

✩ sudo apt install mininet

If Mininet complains that Open vSwitch isn’t working, make sure it is installed and running:

✩ sudo apt install openvswitch-switch

✩ sudo service openvswitch-switch start

4.3.2 OpenSSL

OpenSSL8 is an open source toolkit for the Transport Layer Security (TLS) protocol. The protocol
is implemented through a general purpose cryptographic library, which can also be used stand-
alone. The OpenSSL toolkit includes:

❼ libssl, that is an implementation of all TLS protocol versions up to TLSv1.3;

❼ libcrypto, the general purpose cryptographic library;

❼ openssl the OpenSSL command line tool, that can be used for creation of key parameters,
creation of X.509 certificates, CSRs and CRLs, calculation of message digests, encryption
and decryption, SSL/TLS client and server tests and handling of S/MIME signed or en-
crypted mail.

In order to install OpenSSL you need first to get the source code. You can do that cloning
the Github repository of the library with the following command:

✩ git clone https://github.com/openssl/openssl.git

✩ cd openssl

Then you can build and install the library executing the following commands:

✩ ./Configure

✩ make

✩ sudo make install

7http://mininet.org/

8https://www.openssl.org/
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The OpenSSL version that was built and used for all the experiments is 1.1.1f. If you execute
the command indicated above, the library will be compiled automatically with the following
command through the compiler:

✩ gcc -fPIC -pthread -m64 -Wa,--noexecstack -Wall -Wa,--noexecstack -g -O2

-fdebug-prefix-map=/build/openssl-51ig8V/openssl-1.1.1f=.

-fstack-protector-strong -Wformat -Werror=format-security

-DOPENSSL_TLS_SECURITY_LEVEL=2 -DOPENSSL_USE_NODELETE -DL_ENDIAN

-DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -DOPENSSL_IA32_SSE2

-DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m

-DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DKECCAK1600_ASM -DRC4_ASM

-DMD5_ASM -DAESNI_ASM -DVPAES_ASM -DGHASH_ASM -DECP_NISTZ256_ASM

-DX25519_ASM -DPOLY1305_ASM -DNDEBUG -Wdate-time -D_FORTIFY_SOURCE=2

4.3.3 Wireshark

Wireshark9 is the most widely-used tool for network protocol analysis. This tool let the user
inspect deeply hundred of protocols with live capture and offline analysis. Wireshark is a multi-
platform tool and it’s supported by a lot of different operating systems. With this tool you can
record all the packets that go through a specific interface of your system. Wireshark is able to
read and write many different capture file formats, among which one of the most used is tcpdump
(libpcap). Executing the following two commands on Ubuntu it’s very easy to install the latest
version of Wireshark;

✩ sudo apt update

✩ sudo apt install wireshark

Once you have opened the tool, you can start capturing packets with Wireshark by simply
double-clicking on the interface in the welcome screen that you want to monitor. Otherwise if you
already know the name of the capture interface you can start Wireshark from the command line:

✩ wireshark -i [interface_name] -k

4.3.4 Handshake measurements

The experiments have been conducted in an environment created with Mininet on a virtual ma-
chine running Ubuntu 20.04. The network topology used for the experiments is shown in Fig. 4.10
and is generated with Mininet through the following command:

✩ sudo mn --link tc,bw=10,delay=10ms

It’s a simple network in which a client is connected to the server through a switch. The links
between the switch and the two hosts are both characterized by a bandwidth of 10 Mbps and
a delay of 10 ms. Consequently the RTT between the client and the server is equal to 40 ms,
since each packet traverses two links (one to the switch, one to the destination) and the response
traverses two links coming back.

For each one of the protocols under test a client application and a server one have been created
(written in C). All the code developed and used to conduct these experiments can be compiled and
executed following the guide in Appendix A, in the section about the handshake measurements of
the user’s manual. For what concerns TLS and DTLS protocols, the OpenSSL library has been
used to develop client and server applications. The OpenSSL library has been compiled with
the default configuration that includes the use of AES-NI hardware accelerator to optimize AES
operations, if available. The machine used for the tests is equipped with an Intel(R) Core(TM)

9https://www.wireshark.org/
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#include <stdio.h>

#include <stdlib.h>

#include <openssl/ssl.h>

#include <openssl/err.h>

int main (int argc, char** argv)

{

SSL_CTX *ctx;

int server;

SSL *ssl;

struct hostent *host;

struct sockaddr_in addr;

SSL_library_init();

OpenSSL_add_all_algorithms(); /* Load cryptos, et.al. */

SSL_load_error_strings(); /* Bring in and register error messages */

ctx = SSL_CTX_new(TLS_client_method()); /* Create new context */

SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION);

SSL_CTX_set_max_proto_version(ctx, TLS1_2_VERSION);

ssl = SSL_new(ctx); /* create new SSL connection state */

SSL_set_cipher_list(ssl, ’’ECDHE-ECDSA-AES256-GCM-SHA384’’);

//conclusion of the initialization and start of the client

return 0;

}

Figure 4.9. OpenSSL example for choosing TLS version and setting the ciphersuite
to use for the handshake

i7-1065GT CPU that supports AES-NI instruction set, so the OpenSSL library may be up to 10
time faster in performing AES computations.

Regarding TLS protocol, in client and server is possible to select the version of the protocol to
use thanks to two different methods provided by the library, so that both version 1.2 and 1.3 are
tested: SSL CTX set min proto version() and SSL CTX set max proto version(). Fig. 4.9 shows
an example of the use of these functions in a C program.

During the evaluation, the TLS handshake has been tested with all available ciphersuites that
OpenSSL supports for each version of the protocol. For what concerns TLS 1.2 a ciphersuite can
be selected in the client program thanks to the method SSL CTX set cipher list(). An example of
the selection of a ciphersuite in a C client is represented in Fig. 4.9. In this case all the available
ciphersuites are divided into 3 groups:

❼ Ciphersuites that use RSA as signature algorithm and DHE for key exchange;

❼ Ciphersuites that use RSA as a signature algorithm and ECDHE for key exchange;

❼ Ciphersuites that use ECDSA as a signature algorithm and ECDHE for key exchange.

Regarding TLS 1.3 there are 3 ciphersuites that can be used with the OpenSSL library to
attempt the handshake, that are TLS AES 128 GCM SHA256, TLS AES 256 GCM SHA384,
TLS CHACHA20 POLY1305 SHA256. For this version of the protocol the library function to
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Figure 4.10. Topology created with Mininet to execute the experiments

Figure 4.11. Screenshot of Wireshark showing the parameter (timestamp) used for the measurements

select the correct ciphersuite in the client is SSL CTX set ciphersuites() and it can be used in the
same way with respect to the aforementioned function for TLS 1.2.

DTLS 1.2 client and server are implemented with other two C programs including the OpenSSL
library. The most important different between DTLS 1.2 and TLS 1.2 applications is the imple-
mentation of the cookie exchange process. Indeed during the DTLS 1.2 handshake, when the server
receives the first ClientHello message from the client, it answers with a cookie. This cookie must be
sent again by the client to the server in order to proceed with the handshake. This exchange is in-
troduced in the DTLS handshake in order to avoid DoS attacks and IP spoofing. In order to imple-
ment the cookie exchange with OpenSSL, it’s necessary to use SSL CTX set cookie generate cb()
and SSL CTX set cookie verify cb() functions in the server program, as depicted in Fig. 4.12.
The first one receives as parameter an SSL CTX pointer and a pointer to a function that can be
used to generate a cookie, while the second one receives the pointer to the same SSL CTX and a
pointer to a function useful for the verification of the correctness of the cookie sent back by the
client. The handshake of this protocol is tested with the same ciphersuites that are used for TLS
1.2.

In order to setup the experiments with QUIC protocol the lsquic library is used. In particular,
two programs named echo client and echo server that are available on the repository of the
library are used for the tests. These two programs were meant for sending a message with the
client and receiving back the same message by the server. In order to test the handshake of
QUIC protocol the client program has been modified in order to create the connection with the
server and then terminate, after having released all the memory resources previously acquired.
This is obtained inserting the proper instructions for the cleaning of the program at the end of
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#include <stdio.h>

#include <stdlib.h>

#include <openssl/ssl.h>

#include <openssl/err.h>

#include <openssl/bio.h>

#include <openssl/rand.h>

int generate_cookie(SSL *ssl, unsigned char *cookie, unsigned int

*cookie_len) {

//implementation of the logic to generate the cookie

}

int verify_cookie(SSL *ssl, const unsigned char *cookie, unsigned int

cookie_len){

//implementation of the logic to verify the correctness of the cookie

}

int main (int argc, char** argv)

{

SSL_CTX *ctx;

SSL *ssl;

SSL_library_init();

OpenSSL_add_all_algorithms(); /* Load cryptos, et.al. */

SSL_load_error_strings(); /* Bring in and register error messages */

ctx = SSL_CTX_new(DTLS_server_method()); /* Create new context */

SSL_CTX_set_max_proto_version(ctx, DTLS1_2_VERSION);

SSL_CTX_set_min_proto_version(ctx, DTLS1_2_VERSION);

SSL_CTX_set_cookie_generate_cb(ctx, generate_cookie);

SSL_CTX_set_cookie_verify_cb(ctx, verify_cookie);

//conclusion of the initialization and start of the client

return 0;

}

Figure 4.12. OpenSSL example for implementing DTLS 1.2 cookie exchange during the handshake

the on hsk done() callback, a function that is called every time that the handshake is completed.
The version of QUIC selected for the measurements is version 1, that is the most recent of the
protocol, standardized by IETF with RFC 9000 [32].

Another important point to discuss, regarding the handshake, is about the authentication
process. The handshakes measured during these experiments implement server authentication.
To this purpose, it was necessary to create a trusted certificate for a CA (both an RSA and a
DSA one), that issued a certificate for the server. Thanks to OpenSSL toolkit it was possible to
accomplish this task. Indeed it offers the possibility to crate and manipulate keys and certificates.
The first step to execute is about generating a key and certificate for the CA. The following
commands can be used to generate an RSA 2048 bit key and the corresponding trusted certificate:
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✩ openssl req -new -newkey rsa:2048 -nodes -out ca.csr -keyout ca.key

✩ openssl x509 -trustout -signkey ca.key -days 365 -req -in ca.csr -out

ca.pem

At this point the file named “ca.key” contains the key of the CA, while the file “ca.pem”
contains the RSA certificate. The following steps consists in generating the server RSA key,
creating the Certificate Signing Request (CSR) and making the CA issue a certificate for the
server. These procedures can be executed through the following commands:

✩ openssl genrsa -out server.key 2048

✩ openssl req -new -key server.key -out server.csr

✩ openssl x509 -req -days 365 -in server.csr -CA ca.pem -CAkey ca.key

-set_serial 01 -out server.crt

At the end of this process the file named “server.key” contains the server RSA key (2048 bits),
while the certificate can be found inside the “server.crt” file. The same procedure can be executed
to obtain a CA with a DSA certificate that issues a new DSA certificate for the server. The first
two commands to execute to generate the key and the certificate for the CA are the followings:

✩ openssl ecparam -genkey -name prime256v1 -out ca.key

✩ openssl req -x509 -new -SHA384 -nodes -key ca.key -days 3650 -out ca.crt

Now “ca.key” and “ca.pem” contain respectively the key and the certificate of the CA. Sub-
sequently the Certification Authority issues a DSA certificate for a server that owns a DSA key
and requests it. The following commands can be used to implement these last steps:

✩ openssl ecparam -genkey -name prime256v1 -out server.key

✩ openssl req -new -SHA384 -key server.key -nodes -out server.csr

✩ openssl x509 -req -SHA384 -days 365 -in server.csr -CA ca.crt -CAkey

ca.key -CAcreateserial -out server.crt

Also in this case, the output is composed by two files, “server.key” and “server.crt”, inside
which there are the key and the certificate of the server.

During the experiments the handshake time has been measured with Wireshark. With this tool
is possible to capture all the packets exchanged between client and server during the handshake and
then, since each packet is characterized by a timestamp, the time needed to setup the connection
can be computed through the difference between the timestamp of the last packet of the handshake
and the timestamp of the first one. For example, as can be seen from Fig. 4.11, for each TLS (and
TCP) packet Wireshark gives the possibility to read in the Timestamps field the time elapsed
since the first frame in the TCP stream. In this way it’s very easy to compute the duration
of the handshake (TCP+TLS), indeed the timestamps of the last packet of the TLS handshake
represents the time from the client TCP SYN (first packet in TCP handshake) to the client
ChangeCipherSpec message (last packet in TLS 1.3 handshake).

For each protocol and each ciphersuite 10 measurements have been executed, with the ex-
ception of QUIC that has been tested 30 times, since lsquic library doesn’t enable the choice of
the ciphersuite used for the handshake. The results of the experiments are summarized in the
CDF chart in Fig. 4.13. As can be noticed, the fastest protocol to complete the handshake is
QUIC, that results in an average handshake time of around 34,5 ms. As expected the result for
QUIC protocol is very close to 1-RTT (40 ms). TLS 1.3 demonstrates an handshake time higher
than QUIC with a mean value of 87,2 ms. For this protocol the values obtained with different
ciphersuites have been grouped together in the chart since there were no considerable differences
between all the measurements. Consequently, since 10 measurements have been executed for each
ciphersuite, the line of TLS 1.3 in the chart represents 30 values in total (the same as QUIC
protocol). Also in this case the results follow the expectations, indeed TLS 1.3 showed its 2-RTT
handshake (1-RTT for TCP channel setup and 1-RTT for TLS handshake properly). For what
concerns TLS 1.2 handshake 3 groups of ciphersuites have been analyzed. The ECDHE algorithm
for key exchange can be used both with RSA and ECDSA signature algorithm, providing a mean
handshake time of around 116,7 ms and 116,2 ms respectively. If a ciphersuite that employs
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Figure 4.13. Cumulative Distribution Function of handshake time for TLS, DTLS and
QUIC using different ciphersuites

RSA as a signature algorithm and DHE as a key exchange algorithm is chosen to establish the
connection between client and server, the average handshake time for TLS 1.2 increases till a
value of 133,8 ms. This difference is due to the fact that ECC is stronger than RSA and needs
keys of lower size, since ECC key size of 256 bits is equivalent to a 3072-bit RSA key and 10000
times stronger than a 2048-bit RSA key. Consequently smaller keys means less data that must
be transmitted from the server to the client during an SSL handshake. In addition, ECC requires
less processing power (CPU) and memory, resulting in significantly faster response times and
throughput. As the chart shows, DTLS 1.2 provided similar performance with respect to TLS 1.2
on average with all the ciphersuites that have been used for the tests. Indeed the mean handshake
time of DTLS, 1.2 when a ciphersuite that is composed by RSA and DHE is used, is equal to
133,7 ms. Also in this case the use of ECC resulted in an advantage in terms of time spent for the
handshake. Indeed according to the results, DTLS 1.2 demonstrates an handshake time around
116,2 ms when ECDHE algorithms are used for key exchange and RSA for signature, while the
solution that involves ECDSA and ECDHE revealed an average handshake time of 116,4 ms.

4.3.5 File Transfer Time measurements

Another application in which the protocols studied in this thesis are employed, especially TLS
and QUIC, is the file download from a server. For this reason the last metric evaluated during the
performance evaluation phase is the file transfer time. To this purpose a client application and a
server one have been written for all the three protocols under tests. In addition the performance
of the three security protocols is compared also with a solution in which the file is transferred with
the HTTP protocol without any security feature implemented. All the applications are written
in C language: for TLS and DTLS protocols the OpenSSL library has been used, while lsquic
library has been chosen to implement QUIC client and server.

The infrastructure used to conduct the experiments is again created with the help of Mininet.
The base network topology used is the same as the one for the experiments on the handshake:
two hosts (a client and a server) connected through a switch. But this time the file transfer
performance of the protocols are tested in different network conditions, varying through Mininet
the parameters of the link connecting the hosts and the switch, such as bandwidth and delay.
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For both the parameters an high and a low value are chosen. For the bandwidth the two values
selected are 5Mbps and 100Mbps, while the delay can be equal to 5ms or 50ms (consequently the
RTT between client and server will be respectively equal to 20ms or 200ms).

Another factor introduced in each test is represented by the file size, since the performance of a
protocol could be affected by the amount of bytes that it has to transfer. Three files with different
size have been created to execute the experiments, respectively of 500kB, 5MB and 50MB. The
file creation was addressed with the rand command of the OpenSSL toolkit. This command is
used to generate a requested number of random bytes using a cryptographically secure pseudo
random number generator. For example the following command can be used to generate 500K
random bytes and write them to a file instead of the standard output.

✩ openssl rand -out [output_file] 512000

During the tests all the three files are downloaded 10 times with all the protocols, each time
in a different combination of network parameters. The measurements are executed in each one of
the four combinations that can be deduced from the Table 4.3 reported below.

Parameter Values
Bandwidth 5Mbps, 100Mbps
Delay 5ms, 50ms
File Size 500kB, 5MB, 50MB

Table 4.3. Different environment parameters for file transfer experiments

The starting point to implement and execute these tests is the set of applications developed
to measure the handshake, described in the previous section. All these applications are extended,
both client and server side, in order to add the possibility for the client to request a file and
for the server to identify the requested file and send it to the client as a response. All the code
developed and used to conduct these experiments for all the protocols under test, can be compiled
and executed following the guide in Appendix A, in the section of the user’s manual regarding
file transfer time measurements.

For what concerns the OpenSSL library there are two functions that can be used to send and
receive bytes protected through a security protocol (TLS or DTLS): SSL read() and SSL write().
Fig. 4.14 and Fig. 4.15 show an example in which these two functions are used both client and
server side. As can be noticed, the client, after having initialized all the necessary contexts of the
library, first sends the name of the requested file to the server using SSL write() function. Then
it starts a while cycle in order to read in a buffer all the bytes that will be sent by the server,
till the end of the file. All these bytes are then written on a special file, named /dev/null, that
is used in order to discard immediately the input provided to the fwrite() function and avoid
wasting CPU cycles in output operations. In this way only the performance of the protocol will
be measured, without taking into account not relevant CPU operations. On server side instead,
the application, once the variable and contexts have been initialized and the connections has been
established with a client, waits for the name of the file to send and reads it using the SSL read()
function. Once this is done, the server program will read the file in chunks inside a buffer and
will send it to the client through the SSL write() function. When the file has been completely
send the server closes the connection and waits for a possible new one.

There is an important difference to underline between the implementations of DTLS and TLS
protocol with the OpenSSL library, in particular regarding the server side. This difference is
due to the fact that DTLS, differently from TLS, is based on UDP and so each endpoint that
sends some packets doesn’t need to wait for an ACK to proceed sending other data on the chan-
nel. Consequently the problem arises when the throughput of the sender becomes bigger than
the bandwidth of the channel: this situation will lead to packet loss and will make the receiver
impossible to read all the data the sender has sent. For what concerns the experiments of this
thesis, when the DTLS server is requested to send a big file (5MB or 50MB) and no counter-
measures are applied, especially if the network is characterized by a low bandwidth (5Mbps), the
network becomes soon congested and the client can’t receive all the bytes that compose the file,

55



Performance Evaluation

#include <stdio.h>

#include <stdlib.h>

#include <openssl/ssl.h>

int main (int argc, char** argv)

{

//variable and context initialization

//client start and handshake

SSL_write(ssl, req, strlen(req));

fp = fopen("/dev/null","wb");

while ((n = SSL_read(ssl, buf, BUF_SIZE)) != 0) {

fwrite(buf, 1, n, fp);

memset(buf, 0, BUF_SIZE);

}

//resource deallocation and clean up

return 0;

}

Figure 4.14. OpenSSL example for implementing file exchange client side

but only a portion of that. The solution applied to the DTLS implementation to address this
problem is the insertion of an instruction, named usleep(), between sending one packet and the
next one, in order to slow down the server. The value passed as a parameter to the function is
the number of microseconds for which the execution of the calling thread is at least suspended
when the usleep() is called. Obviously this value changes accordingly to the bandwidth: when the
network is characterized by a bandwidth equal to 5Mbps, it’s necessary to pass 1400 as parameter
to the usleep(), in order to let also to the biggest file to be completely exchanged between client
and server, while when the bandwidth is equal to 100Mbps it’s enough that the server waits 15
microseconds between one packets sent and the next one.

Regarding QUIC protocol instead, the functions that are used to send and receive bytes are
lsquic stream read() and lsquic stream write(). Both these functions receive the same parameters:
the identifier of a stream, a buffer (that is used as a destination for reading or as a source for
writing) and the size of the buffer. They are used inside two different callbacks on read() and
on write(), that are called each time the application (client or server) express the intention to
receive or send some data. Every time an application using lsquic library wants to write to a
stream must call the function lsquic stream wantwrite(), that receives two parameters: the first
one is the identifier of the stream to write, while the second is a boolean value indicating whether
the caller wants to write to stream or not. The same thing happens in case of reading willingness
with the function lsquic stream wantread(), whose prototype shows the same input parameters as
the corresponding function for writing.

The starting point for creating the client and server application to implement file transfer with
QUIC protocol is again composed by the echo client and echo server applications available in the
bin folder of the Github repository of lsquic library. If for the previous experiments the only
change applied is the interruption of the computation once the handshake has been completed,
in this situation the two programs must be further extended. On client side, the possibility to
specify as a command line argument (with -f option) the name of the requested file is added.
After the connection with the server is established and a new stream is created, the client informs
the server about the name of the file he is willing to download writing on the stream just created.
Subsequently the client starts the reading phase, waiting for the server response and it will write
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#include <stdio.h>

#include <stdlib.h>

#include <openssl/ssl.h>

int main (int argc, char** argv)

{

//variable and context initialization

while(1) {

//server start and connection accept

SSL_read(ssl, filename, N);

FILE *file = fopen(filename, "r");

while((n = fread(buf, 1, BUF_SIZE, file))>0) {

SSL_write(ssl, buf, n);

memset(buf, 0, BUF_SIZE);

}

fclose(file);

}

//resource deallocation and clean up

return 0;

}

Figure 4.15. OpenSSL example for implementing file exchange server side

all the bytes received on /dev/null in order to avoid affecting the performance of the protocol,
wasting CPU cycles for output operations. On the other hand, when the server has accepted the
connection from the client and a new stream has been created, it immediately reads the name of
the file the client wants to download from the stream. After that the writing phase starts: the
server opens the requested file, reads it in chunks and sends them to the client, writing the buffer
containing each time a new chunk on the stream.

The performance of TLS, DTLS and QUIC security protocols are compared during these
experiments also with the HTTP protocol. This is done to understand what is the price to
pay in terms of performance to obtain a secure communication between client and server. Also
for the HTTP protocol a simple client application and a server one have been written in C
language. These programs exploit socket programming in order to make the client and the server
communicate using the send() and recv() functions. The HTTP server has to create a TCP socket
and bind it to the server address. Then using the listen() function the server socket is put in a
passive mode, where it waits for the client to contact the server to make a connection. When
the execution reaches the call to accept() function, the connection is established between client
and server and they are ready to transfer data. On the client side the C program has to create
a socket and connect it to the server. At this point the client can send an HTTP request to the
server containing the name of the file it wants to download and the server, after having opened
and read the correct file in chunks, has to send it back to the client as a response.

All the results obtained during measurements are summarized in different boxplots. Each
chart is representative for a combination of network conditions and a file size. For what concerns
TLS 1.2 and DTLS 1.2 protocols in each chart has been reported also the ciphersuite negoti-
ated during the handshake. Both protocol has been tested with two different ciphersuites, one
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Figure 4.16. Boxplot of time needed to download a 500kB file with HTTP, TLS, DTLS and QUIC
in a network with 5Mbps bandwidth and 5ms delay

with ECDHE algorithm and the other one characterized by DHE, since the choice of the cipher-
suite demonstrated to affect the performance of the protocol during the experiments about the
handshake. For TLS 1.3 the ciphersuite AES256-GCM-SHA384 has been chosen, since the three
available ciphersuites for the protocol implemented with OpenSSL resulted in very similar with
respect to each other. Among all the available versions of QUIC, the most recent one (Version 1)
has been chosen for the tests.

The first chart reported in Fig. 4.16 is a boxplot about the time needed by the tested protocols
to download a 500kB file in a network characterized by 5Mbps of bandwidth and 5ms of delay in
each link. As can be clearly seen from the chart, QUIC is the fastest protocol in downloading the
file, resulting in a mean file download time equal to 0,75 s, followed by HTTP that demonstrated
an average file download time of around 0,89 s. All the remaining protocols had very similar
results with respect to each other. Indeed TLS 1.3, TLS 1.2 with ECDHE and DTLS 1.2 with
ECDHE resulted in a mean value for the time needed to download the 500kB file respectively
equal to 0,98 s, 0,97 s and 0,97 s. As can be expected, the slowest protocols are TLS 1.2 with
DHE and DTLS 1.2 with DHE with an average file download time equal to 1,03 s and 1,00 s. This
is due to the choice of the ciphersuite, but also to the duration of the handshake (about 3-RTT
for both protocols), that in case of a file of such a small size represents an important part in the
entire time measurement.

Fig. 4.17 shows the results of the experiments in the same network conditions but with a file
of 5MB. As can be noticed from the chart, the results are very close to the one reported above
for the 500kB file. QUIC is again the fastest protocol with an average file download time equal to
6,46 s, while TLS 1.2 and DTLS 1.2 with DHE are the slowest (9,31 s and 9,22 s respectively). In
the middle all the other protocol: HTTP with 8,88 s of mean time to download the file leading the
group and TLS 1.3, TLS 1.2 with ECDHE and DTLS 1.2 with ECDHE that resulted respectively
in an average time equal to 9,19 s, 9,16 s and 9,20 s. Since the size of the file transferred is clearly
increased with respect to the previous experiments (about 10 times larger), the differences in the
results due to the duration of the handshake are less marked, as its importance compared to the
entire time required to download the file (in terms of time) is considerably reduced.
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Figure 4.17. Boxplot of time needed to download a 5MB file with HTTP, TLS, DTLS and QUIC
in a network with 5Mbps bandwidth and 5ms delay
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Figure 4.18. Boxplot of time needed to download a 50MB file with HTTP, TLS, DTLS and QUIC
in a network with 5Mbps bandwidth and 5ms delay

The results for the transfer time values measured considering a big file of 50MB are reported
in Fig. 4.18. In this case the behaviour mirrors that obtained with the two files of smaller size.
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Figure 4.19. Boxplot of time needed to download a 500kB file with HTTP, TLS, DTLS and QUIC
in a network with 5Mbps bandwidth and 50ms delay

QUIC resulted to be again the best solution (64,52 s of average file download time) and it clearly
outperforms all the other protocol, especially the secure ones. HTTP follows QUIC v1 with a
mean time measured equal to 88,52 s. All the other solutions represented by TLS 1.2, TLS 1.3
and DTLS 1.2 resulted in an average file transfer time between 91 and 93 s. The differences
between these last presented solutions are really not noticeable and are reduced due to the big file
size with respect to the experiments previously presented with smaller files in the same network
environment.

The second situation that is presented in the charts is the worst one in terms of network
conditions: it is indeed characterized by the smallest value for the bandwidth (5Mbps) and the
greatest value for the delay (50ms). On average QUIC resulted to be the best choice to download
the file independently of the size also in this scenario. As has been reported in some of the work
analysed in the Related Works chapter, QUIC usually outperforms the other protocols especially
in poor networks conditions. So in this case the results obtained during the tests confirmed what
can be expected.

The boxplot Fig. 4.19 shows the results of the measurements of the file transfer time considering
a network with 5Mbps and 5ms of delay in each link and a file of 500kB. The chart can be divided
in three zones: the first one composed only by QUIC protocol, that is the fastest in downloading
the file, the second one that involves DTLS 1.2 and HTTP and the third zone in which there are
TLS 1.2 and TLS 1.3. The time needed on average by QUIC to download a 500kB file in poor
network conditions is equal to 1,19 s. In the second zone DTLS 1.2 resulted to be a little bit faster
with respect to HTTP with an average file transfer time equal to 1,66 s (independently of the
ciphersuite selected), against 1,72 s that is the value obtained with HTTP. The performance of
DTLS are better that HTTP and considerably better than TLS in this case because the presence
of the sleep() instruction inside the code to slow down the server is mitigated by the high vale of
the delay. In this case it’s easier to exploit the potential of DTLS protocol in terms of speed in
transferring files. In the last zone a similar behaviour for what concerns TLS 1.3 and TLS 1.2
can be noticed. Indeed the average values obtained for the file transfer time are respectively 2,08
s, 2,09 s (TLS 1.2 with ECDHE) and 2,10 s (TLS 1.2 with DHE).
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Figure 4.20. Boxplot of time needed to download a 5MB file with HTTP, TLS, DTLS and QUIC
in a network with 5Mbps bandwidth and 50ms delay
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Figure 4.21. Boxplot of time needed to download a 5MB file with HTTP, TLS, DTLS and QUIC
in a network with 5Mbps bandwidth and 50ms delay

When the values measured during the download of a file of 5MB are analysed a similar situation
is highlighted (Fig. 4.20). QUIC v1 takes on average 7,11 s to download the file and it’s again the
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Figure 4.22. Boxplot of time needed to download a 500kB file with HTTP, TLS, DTLS and QUIC
in a network with 100Mbps bandwidth and 5ms delay

fastest protocol in this set of measurements. In this case, the differences between the second and
the third zone are less remarkable. Indeed HTTP provided values for the file transfer time that
range between 9,68 s and 9,72 s, with a mean value equal 9,70, while DTLS average file download
time is only 0,19 s higher than that (this is valid for both evaluated ciphersuites). In the last zone
TLS 1.3 resulted a bit faster that TLS 1.2, with mean file transfer values respectively equal to
10,23 s and 10,30 s.

If we consider the results obtained transferring a big file (50MB) between client and server, in
the same networks conditions, there are no more three different zones in which the behaviours of
the different protocols can be divided, but QUIC and HTTP resulted faster that all the others,
as can be noticed looking at Fig. 4.21. When QUIC v1 is used as the protocol for file transfer,
the maximum value obtained for the download time is equal to 69,15 s, while the minimum is
65,12. Even if a considerable variability characterizes these values, QUIC v1 is once again the
fastest protocol by far in transferring a big file. It’s again followed by HTTP that provided a
mean file transfer time of around 89,30 s, and so more than 20 s greater than QUIC. All the others
protocol (TLS and DTLS in all their versions) resulted in a similar behaviour, with a mean value
that ranges between 91,54 and 92,16 seconds. It’s important to notice that, keeping the same
network conditions and increasing the file size, the performance of DTLS protocol worsen. This
is probably due to the presence of an instruction (usleep(1400)) in the server code, used to slow
down the server process and to make the client possible to read all the packets. The problem is
that the usleep() instruction gives only guarantees on the minimum number of microseconds that
the process execution will be suspended. Since with the increase of the file size, also the number
of sent packets becomes considerably greater and consequently also the number of calls to the
usleep() instruction, probably the time the server has to wait in order to avoid make the network
congested represents an important portion of the time needed in total by the client to download
the file.

The next scenario considered is the best one in terms of network conditions: it’s indeed
characterized by the links with high bandwidth (100Mbps) and low delay (5ms). Also in this case
all three different files have been downloaded 10 times with all the protocols. The chart in Fig. 4.22
is a boxplot generated with the results of the file transfer time considering the small file (500kB).
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Figure 4.23. Boxplot of time needed to download a 5MB file with HTTP, TLS, DTLS and QUIC
in a network with 100Mbps bandwidth and 5ms delay
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Figure 4.24. Boxplot of time needed to download a 50MB file with HTTP, TLS, DTLS and QUIC
in a network with 100Mbps bandwidth and 5ms delay

As can be easily noticed, there is no a protocol that outperforms the others in downloading
this file: QUIC v1, HTTP, DTLS 1.2 with ECDHE and DTLS 1.2 with DHE provided similar
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Figure 4.25. Boxplot of time needed to download a 500kB file with HTTP, TLS, DTLS and QUIC
in a network with 100Mbps bandwidth and 50ms delay

performance with an average file transfer time respectively equal to 0,14, 0,16, 0,15, 0,16 seconds.
TLS (1.2 and 1.3) resulted in a worse performance with mean values that range between 0,20 s
and 0,25 s.

If the size of the file is increased till 5MB, the behaviour changes a bit. Fig. 4.23 shows the best
performance are obtained when QUIC v1 and HTTP are employed, with 0,58 s as the mean value
for file transfer time for QUIC and 0,59 s for HTTP. For what concerns the remaining protocols,
TLS 1.3 is the fastest on average (0,62 s), followed by all the others that provided a mean file
transfer time that goes from 0,65 (for TLS 1.2 with ECDHE) to 0,69 s (for TLS 1.2 with DHE).
The worsening in the performance of DTLS 1.2, when the file size increases, can be again noticed.

When the size of the transferred file reaches 50MB the results are qualitatively and quantita-
tively different with respect to the ones obtained with smaller sized files. Indeed in this situation
HTTP is the best choice to transfer the 50MB file, resulting in an average file download time
equal to 4,98 s. This protocol is immediately followed by TLS, with version 1.3 faster on average
than version 1.2 of at least 0,1 seconds. QUIC, with its 5,56 seconds average file transfer time, is
positioned in the middle of the chart in Fig. 4.24. This is not an unexpected results, since some of
the works analysed in this thesis, have already highlighted in the past the fact that QUIC is able
to outperforms the other protocols especially in poor networks conditions, but its performance
worsen when it has to deal with big files and high performance networks.

The last combination of network parameters that remains to be analyzed, is the one charac-
terized by high bandwidth (100Mbps) and high delay (50ms). The results about the file transfer
time considering all the files tested (500kB, 5MB and 50MB) in this environment are summarized
in charts, one for each file size, represented in Fig. 4.25, Fig. 4.26 and Fig. 4.27. For what concerns
the small file (500KB), DTLS performance resulted better with respect to QUIC v1. In particular
DTLS with ECDHE provided the shortest file transfer time on average, equal to 0,85 s, followed
by DTLS 1.2 with DHE with a mean value of 0,91 s and QUIC v1 with 1,05 s. The slowest
protocol in this case resulted to be TLS, with comparable performance for versione 1.3 and 1.2
with ECDHE (1,80 and 1,79 mean values) and a slightly grater average file transfer time for TLS
1.2 with DHE equal to 1,84 s. HTTP demonstrated to be a good solution, in the middle between
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Figure 4.26. Boxplot of time needed to download a 5MB file with HTTP, TLS, DTLS and QUIC
in a network with 100Mbps bandwidth and 50ms delay
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Figure 4.27. Boxplot of time needed to download a 50MB file with HTTP, TLS, DTLS and QUIC
in a network with 100Mbps bandwidth and 50ms delay

the fastest and the slowest.

If the 5MB file is considered, the behaviour encountered is still the same, with the only

65



Performance Evaluation

exception that the difference between HTTP and the slowest protocols is reduced. Indeed we
have that, without any kind of security, the file takes on average 2,96 seconds to be downloaded,
while if TLS is chosen to protect the file transfer, the mean value obtained ranges from 3,19 s
and 3,61 s, depending on the version adopted. In this situation QUIC v1 and DTLS 1.2 are still
the best choice and the fastest protocols for the file download. In particular DTLS provided a
mean file transfer time equal to 1,67 s (independently of the ciphersuite used), while QUIC is a
bit slower, resulting in a mean value of around 1,92 s.

The presence of the usleep(15) instruction in the code to slow down the DTLS server affects
the performance of the protocol also in this environment with high bandwidth and high delay.
Indeed, even if the execution of the server process is suspended every time for a reduced amount
of microseconds, when the size of the file reaches a big value, such as 50 MB, the number of
waits after sending each packet grows a lot. For this reason QUIC v1 protocol provided a better
performance than DTLS 1.2 while downloading a 50MB file, providing a mean file transfer time
equal to 7,06 s. All the remaining protocols (HTTP, TLS 1.2 and TLS 1.3) resulted in similar
values for what concerns the mean file download time, between 8,68 s and 9,01 s. Surprisingly
TLS 1.3 is the worst protocol in terms of performance during these measurements.

As a result, QUIC v1 provided good performance almost in all scenarios, especially in the
environment with poor network conditions. The only case in which QUIC is not the best choice
to download a file is when the network offers very high performance (high bandwidth and low
delay) and the file to be downloaded is big sized. For what concerns TLS protocol, it resulted to
be not the best solution for file download compared to the other protocol and in many situations
this protocol provided the slowest performance. TLS 1.3 performed on average a little bit better
than TLS 1.2 (probably it’s due to the reduced handshake latency). DTLS protocol instead
could represent a good solution to transfer a file, especially in a network with high bandwidth.
Unfortunately its performance are limited by the fact that the server needs to be slowed down to
prevent its throughput overcoming the network bandwidth and avoid the consequent packet loss.
The problem of DTLS is that if packet loss occurs, the lack of an ACK mechanism (since DTLS
runs on top of UDP) leads to only partial reception of the file, since packet lost will not be sent
again. In most cases HTTP is a very good choice to transfer a file, but the drawback in this case
is the lack of security and the fact that the file is sent and received completely in plaintext.
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Chapter 5

Security Evaluation

5.1 TLS History

The Secure Sockets Layer (SSL) protocol was designed by the Netscape Corporation in order to
provide a solution for a secure communication between client and server applications. SSL 2.0 was
released in 1995 and represented the first version of the protocol. It was found affected by well-
know security issues, which were addressed by the 1996 release of SSL 3.0 [33]. Nevertheless the
problems weren’t solved, indeed during the following years different vulnerabilities that affected
this version of the protocol were detected and SSL 3.0 was phased out.

The Internet Engineering Task Force (IETF), a technical working group responsible for devel-
oping Internet standards to ensure communications compatibility across different implementations
standardized Transport Layer Security protocol Version 1.0 (TLS 1.0) with RFC 2246 [34] in 1999.
Even if TLS 1.0 is based on SSL 3.0. there are significant differences between the two protocols
that make interoperation impossible. TLS 1.1, specified in RFC 4346 [2] (2006), was developed to
address weaknesses discovered in TLS 1.0, primarily in the areas of initialization vector selection
and padding error processing. Initialization vectors were made explicit to prevent a certain class
of attacks on the Cipher Block Chaining (CBC) mode of operation used by TLS. The handling of
padding errors was altered to treat a padding error as a bad message authentication code rather
than a decryption failure. In addition, the TLS 1.1 RFC acknowledges attacks on CBC mode that
rely on the time to compute the message authentication code (MAC). The TLS 1.1 specification
states that to defend against such attacks, an implementation must process records in the same
manner regardless of whether padding errors exist.

TLS 1.2, specified in RFC 5246 [1] in 2008, made several cryptographic enhancements with
respect to previous versions, particularly in the area of hash functions, with the ability to use
or specify the SHA-2 family of algorithms for hash, MAC, and Pseudorandom Function (PRF)
computations. TLS 1.2 also adds authenticated encryption with associated data (AEAD) cipher
suites. TLS 1.3, specified in RFC 8446 [3] (2018), represents a significant change to TLS that
aims to address threats that have arisen over the years. Among the changes are a new handshake
protocol, a new key derivation process that uses the HMAC-based Extract-and-Expand Key
Derivation Function (HKDF), and the removal of cipher suites that use RSA key transport or
static DiffieHellman (DH) key exchanges, the CBC mode of operation, or SHA-1. Many extensions
defined for use with TLS 1.2 and previous versions cannot be used with TLS 1.3. In addition,
this most recent version of the TLS protocol tries to include solutions against attacks that are
possible against version 1.2. Indeed TLS 1.2 is vulnerable to man-in-the-middle and downgrade
attacks. For example, POODLE is a MITM attack that exploits SSL-3 fallback to decrypt data.
The variant in December 2014 exploits CBC padding vulnerabilities in TLS (version 1.0 and
1.2). To this end, TLS 1.3 introduces a downgrade protection mechanism, that is the inclusion
of two predefined values (DOWNGRD01 or DOWNGRD00) in server random when a client try
to negotiate with a TLS 1.3 server an older TLS version (or SSL 3.0). All the events regarding
SSL/TLS described above are summarized in the timeline in Fig. 5.1.
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Figure 5.1. Timeline of SSL/TLS versions

Since TLS versions 1.0 and 1.1 were superseded by TLS 1.2 in 2008 and subsequently replaced
by TLS 1.3 in 2018, recently IETF published RFC 8996 [35] (2021) in order to deprecate TLS
1.0 and TLS 1.1. There are also several technical reasons for deprecating these versions. They
require the implementation of older cipher suites that are no longer desirable for cryptographic
reasons. There is a lack of support for current recommended cipher suites, especially authenti-
cated encryption with associated data (AEAD) ciphers, which were not supported prior to TLS
1.2. The integrity of both TLS 1.0 and TLS 1.1 depends on a running SHA-1 hash of the ex-
changed messages. This makes it possible to perform a downgrade attack on the handshake by
an attacker able to perform 27̂7 operations, well below the acceptable modern security margin.
Similarly, the authentication of the handshake depends on signatures made using a SHA-1 hash
or a concatenation of MD5 and SHA-1 hashes, allowing the attacker to impersonate a server
when it is able to break the severely weakened SHA-1 hash. Neither TLS 1.0 nor TLS 1.1 allows
the peers to select a stronger hash for signatures in the ServerKeyExchange or CertificateVerify
messages, making the only upgrade path the use of a newer protocol version. In addition, the
support for four TLS protocol versions increases the possibility of misconfiguration. As with any
other protocol upgrade, TLS is seen as more secure than SSL 3.0 because of added measures to
block exploitation and mitigate vulnerabilities on each version. TLS is widely used throughout
the web today, and is the top choice for transaction security.

5.2 DTLS history

DTLS is a communication protocol designed to protect data of application protocols based on
datagram transport. It prevents eavesdropping, tampering or message forgery of the communi-
cating applications having an unreliable connection between them. The DTLS protocol provides
similar communication security guarantees in an unreliable transport channel as that provided by
TLS protocol to a reliable transport channel. DTLS evolution happened with different versions
corresponding to the different versions of TLS evolution as a result of modifications over the pre-
vious versions. These improvements were regarding enhanced security or a patch for the reported
vulnerability or support for different protocols. The DTLS versions released so far are: DTLS 1.0
based on TLS 1.1, specified in IETF RFC 4347 [36] (2006), DTLS 1.2 based on TLS 1.2, described
in IETF RFC 6347 [4] (2012) and DTLS 1.3 based on TLS 1.3, specified in RFC 9147 [37] (2022).
DTLS 1.1 is left to harmonize DTLS version numbers with TLS versions. The different versions
gradually improved in ciphersuite support corresponding to the increasing number of their ver-
sions thereby making them stronger against the cryptographic brute force attacks. In particular
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the standardization of version 1.2 of the protocol involved different modifications with respect to
DTLS 1.0 in order to match the security features provided by TLS 1.2, for example the addition of
AEAD ciphers. Since TLS 1.3 had introduced a large number of changes with respect to TLS 1.2,
in 2022 DTLS protocol was further modified with the publication of the most recent version (1.3).
First of all a new handshake pattern was introduced, which led to a shorter message exchange.
The support for weak and old cryptographic ciphersuite was removed and only AEAD ciphers are
supported with DTLS 1.3. Moreover a new session resumption mechanism was introduced and
the key derivation mechanism was updated.

5.3 QUIC History

QUIC is a protocol introduced by Google in 2012 in order to reduce the latency of transport
between two endpoints and provide security to the communication. Chrome was equipped with
the support for QUIC in 2013. The initial design idea of QUIC came from SPDY, a protocol later
standardized as HTTP/2, which has as main feature the possibility to create different streams
within the same TCP connection (multiplexing). QUIC is able to solve the problem of HOL
blocking that affects TCP, while maintaining at the same time the possibility of stream multi-
plexing. The idea of Google was to create a protocol that runs over UDP and provides high
security as TLS with low latency connectivity. In addition Google QUIC must implement other
features to make up for the lack of a reliable transport protocol in its stack: Among them there
are packet pacing to reduce packet loss, packet error correction to reduce retransmission latency
and a pluggable congestion control mechanism. Moreover the design of QUIC protocol by Google
includes a connection identifier to reduce reconnections for mobile clients.

The QUIC crypto protocol is the part of QUIC that provides transport security to a connection.
With QUIC crypto protocol, when the client has cached information about the server, it can
establish an encrypted connection with no round trips. QUIC handshakes should be around 5
times more efficient than common TLS handshakes (2048-bit RSA) and at a greater security level.

QUIC has to deal with the problems of source address spoofing and replay protection. The
IP address spoofing problem is handled by issuing the client, on demand, a source-address token.
This is an opaque byte string from the client’s point of view. From the server’s point of view
it’s an authenticated-encryption block (e.g. AES-GCM) that contains, at least, the client’s IP
address and a timestamp by the server. The server will only send a source address token for a
given IP to that IP. Receipt of the token by the client is taken as proof of ownership of the IP
address in the same way that receipt of a TCP sequence number is. Clients can include the source
address token in future requests in order to demonstrate ownership of their source IP address. If
the client has moved IP addresses, the token is too old, or the client doesn’t have a token, then
the server may reject the connection and return a fresh token to the client. But if the client has
remained on the same IP address then it can reuse a source-address token to avoid the round trip
needed to obtain a fresh one.

QUIC doesn’t provide replay protection for the client’s data prior to the server’s first reply,
because providing replay protection without input from the server is fundamentally very expensive.
It’s up the application to ensure that any such information is safe if replayed by an attacker.

In 2015 Google brought QUIC to the IETF that then created a working group for the standard-
ization of the UDP-based, stream-multiplexing, encrypted transport protocol based on previous
Google’s implementation and deployment experiences. QUIC addresses the HOL blocking prob-
lem with stream multiplexing in the transport layer, reduces the connection establishment latency
combining the cryptographic handshake with the transport one, providing 1-RTT handshake for
first-time connections as well as 0-RTT handshake for session resumption exploiting TLS 1.3.

5.4 TLS and DTLS attacks

Since its first version in 1999, TLS has obtained popularity and widespread usage and year after
year TLS became the most adopted solution between all the security protocols. Given this im-
portant growth, during years attackers worked to find vulnerabilities, develop exploits and mount
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attacks against TLS. As a result, TLS was often updated and had a significant evolution through
different versions, from 1.0 to 1.3.

Over the last years, various types of attacks have been designed to take advantage of prop-
erties of TLS protocol. There are different targets for the attacker within the protocol design
implementation: from weaknesses in the handshake protocol, passing through vulnerabilities of
some block cipher mode of operations or some stream ciphers, till problems with compression
algorithms and weak export ciphers. In the next sections a lot of known attacks against TLS
protocol will be described, analysing the vulnerabilities exploited, the working principles, the fea-
sibility and complexity, and also possible countermeasures. For each of the analysed attack, the
versions of the protocol that are vulnerable will be indicated.

5.4.1 Attacks on Handshake Protocol

The Bleichenbacher attack [38] is applicable during a TLS handshake (up to version 1.2), when
key-exchange take place using RSA algorithm and the padding used is PKCS#1 v1.5. Note that
during TLS session setup with RSA key exchange, client chooses a random 48 bits number (2 bits
of protocol version and 46 random bits), padded following the PKCS encoding scheme (PKCS
padded data must always starts with 0x00 0x02 with public key operations). The result is then
raised to public exponent e modulo n. After decryption, the receiver checks the correct alignment
of data and verifies if the plaintext starts with 0x00 0x02, otherwise the packet is discarded. Then
all the bytes are skipped until 0x00 is found.

Suppose an attacker, that doesn’t know the message M but only the public key (e,n), gets the
ciphertext C (Me mod n). The attacker then multiplies this ciphertext with a chosen s, obtaining
essentially the encryption of M ∗ s (for the homomorphic property of multiplication), and it will
repeat this procedure, changing every time the value of s, until the result is accepted by server.

C ′ = C ∗ se mod n

When server accept this C’ it means C’ after decryption starts with 0x00 0x02 and C’ is a valid
encryption for M ∗ s with PKCS padding. Consequently:

M = C ′ ∗ s−1 mod n

In order to avoid this kind of attack, the first solution is to avoid using RSA for key exchange,
choosing DH or ECDH instead, that in addition provide also perfect forward secrecy. Give this
consideration, TLS 1.3 could represent a good solution, since RSA cannot be used for key exchange
in the latest version of the protocol. In addition the use of OAEP for padding instead of PKCS
is a mitigation for this attack, as well as not informing the client about failure when pre master
secret decryption failed.

All versions of TLS up to 1.2, and SSL v3 before it, support optional renegotiation. After the
initial handshake is completed the client can request renegotiation by sending a new ClientHello
message in the current record layer. Also the server can do that by sending a HelloRequest
message in the record layer, which triggers the client to send a new ClientHello message. In
November 2009, Ray and Dispensa described a man-in-the-middle attack [39] that exploits how
certain applications based on TLS process data across renegotiations. The attacker delays client
initial ClientHello towards the server and instead establishes its own TLS session with the server.
Then it transmits a message m0 over that record layer and passes client initial ClientHello to the
server, that views this as a valid renegotiation and responds accordingly. The attacker relays the
handshake messages between client and server, who eventually establish a new record layer, to
which the attacker has no access. The client then transmits a message m1 over the record layer
just created with the server. Here comes the problem of some application (including HTTPS and
SMTPS) of TLS-protected data processing. Indeed these applications concatenate m0 and m1

and treat them as coming from the same party in the same context. For example, if the request
sent by the attacker ends with a custom “ignore” header prefix, it causes the first line of the
request from the client to be discarded by the server. The other parts of the message sent by
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the client, including any cookie or other authentication/authorization headers, are kept with the
effect of authorizing the attacker’s request.

Two countermeasures to this attack were standardized by the Internet Engineering Task Force
(IETF) TLS working group with RFC 5746. These countermeasures, named Signalling Ciphersuite
Value (SCSV) and Renegotiation Information Extension (RIE), are applicable to SSLv3.0 and TLS
versions 1.0-1.2 and were adopted by major TLS implementation providers and web browsers and
servers, including Apache, Apple, Google, Microsoft, Mozilla, and OpenSSL. In RIE, the parties
include the Finished message from the previous handshake in a ClientHello/ServerHello extension,
correlating in this way the two handshakes. SCSV is a slight modification that is more compatible
with buggy implementations. With the standardization of TLS 1.3 the renegotiation was removed,
consequently this attack cannot be executed against the latest version of the protocol.

During a 3SHAKE attack [40], a TLS client connects to a malicious server and presents a
client credential. Then the server can impersonate the client at any other server that accepts the
same credential. Concretely, the malicious server performs a man-in-the-middle attack on three
successive handshakes between the honest client and server, and succeeds in impersonating the
client on the third handshake. The attack proceeds in three steps, shown in Fig. 5.2. In the
first phase, the target of the attacker A, positioned in between a client C and a server S, is to
create two sessions that share the same key materials and session parameters (SID, master secret,
client random and server random), but with different server certificates and Finished messages.
To this purpose, A receives the request to establish a connection from C and at the same time it
connects as a client to S using the same client random sent previously by C. Then it answers to
C forwarding the server random and the SID received by S.

The second step of the attack exploits a vulnerability in the session resumption mechanism
of TLS. Indeed session resumption on a new connection happens with an abbreviated handshake
that only verifies that the client and server share the same master secret, ciphersuite, and SID, but
it does not authenticate again the client and server identities. At this point, when C reconnects
to A and asks to resume its previous session, A does the same with S. Since the two sessions
share relevant parameters and keying material, A can simply forward the handshake messages
unchanged between C and S. At the end of the abbreviated handshake, the two connections have
now in common also the Finished message.

The two previous steps are used to prepare the real attack, that is implemented in the last
phase. Indeed the fact that the two connections just created share the same Finished message,
makes the attacker possible to exploit the renegotiation mechanism of TLS, that gives the possi-
bility to switch an open connection from one mode to the other. This is typically used to change
a connection only server authenticated into a mutual authenticated connection. In addition an
extension was introduced, named Renegotiation Indication, to bind the renegotiation handshake
to the previous handshake, by having the client present the old Finished message. During the
third step, S asks for renegotiation with client authentication on its connection with A, in re-
sponse to a restricted resource request by A. Then, A forwards the renegotiation request to C,
that authenticates with its client certificate. A simply forwards all messages from C to S and
back, consequently both the handshake completes successfully, since the expected Renegotiation
Indication extension values on both connections are the same.

During the renegotiation handshake, C receives a certificate for S even though it was expecting
to be connected to A. C silently allow the server certificate to change, because of a vulnerability
in the renegotiation mechanism: during the process both the server and client certificates can
change, but no definitive guidance is given to applications on how to deal with such changes.
At the end of renegotiation, A cannot read or send messages on both the created connections,
because it no longer knows the connection keys or master secret. However, its prior messages on
both connections may well be prefixed to the messages sent after renegotiation.

There are other two potential cyberattack scenarios related to the TLS renegotiation process,
especially if it’s client initiated. A man-in-the-middle attack (injection vulnerability) that in-
serts malicious data into HTTPS sessions through an unauthenticated request. By doing this,
the attacker may run commands with the credentials of an already authorized user and even
gather other users’ credentials. The other scenario regards a DoS attack, that starts hundreds of
handshakes from clients for the same TCP connection.
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Figure 5.2. The 3SHAKE attack (source: [40])

This attack can be conducted against all the versions of TLS up to version 1.2. The reason
TLS 1.3 is not vulnerable is that the renegotiation has been removed in its standardization. The
countermeasures for this attack are the same cited above for the renegotiation attack: to avoid
this attack is necessary to bind the master secret to the full handshake or to bind the session
resumption handshake to the original full handshake.
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5.4.2 Attacks on CBC Mode

BEAST [41] attack allows a man-in-the-middle to decrypt HTTPS-protected session cookies,
simply by injecting Javascript into the user’s web browser. The attack exploits a vulnerability
present in all versions of SSL and TLS 1.0, regarding the way long messages are encrypted using
block ciphers. TLS 1.0 uses a block cipher to encrypt data with Cipher Block Chaining mode
of operation. CBC mode is essentially a means of encrypting long messages in short fixed-size
blocks. When CBC mode is used, the message is first divided into even-sized blocks. In order
to encrypt a block of plaintext, it is before XORed with the previous block of ciphertext. For
the first block of plaintext a random Initialization Vector (IV) is used. TLS designers made an
improvement for the CBC mode, to avoid having to generate a new IV for each message. Indeed
the protocol uses the last block of the previous ciphertext message that was sent as an IV for the
current message.

If we assume that an attacker A is sniffing the encrypted data sent by the browser, then the
IV that will be used for the next message can be obtained. If the attacker can identify the block
of ciphertext C (the encryption of M that maybe contains a cookie) that he wants to decrypt, he
can easily obtain the block of ciphertext C’ that immediately precedes C.

C = Ek(M ⊕ C ′)

If the attacker is able to transmit any chosen block of data M*, it will produce a ciphertext C*
that can be sniffed. The attacker can try to make some guesses about the value of the message
M (that it wants to decrypt) and can generate M* as follows:

M∗ = IV ⊕M ⊕ C ′

The TLS layer will encrypt it as follows:

C∗ = Ek(IV ⊕M∗) =

Ek(IV ⊕ IV ⊕M ⊕ C ′) =

Ek(M ⊕ C ′)

If the attacker guessed correctly, the ciphertext C* that comes out of the browser will be
identical to the captured ciphertext C that it wants to decrypt. The problem with this attack is
that it works only if the number of guesses for the value M is small. But there is an optimization
for this attack which consists in a particular alignment of the TLS messages. For example, in
a situation with block size equal to 16 bytes, it could be useful for the attacker that a 15 byte
padding is inserted before the cookie when it is sent by the browser, so that the first byte of the
cookie is situated in the last byte of the first block sent. Using this optimization the number of
necessary guesses is reduced from 2128 to 16 ∗ 28, since the attacker is guessing the cookie one
byte at time. In order to discover the entire cookie, this operation must be repeated one time for
each byte, reducing each time the size of the known padding.

Initially, switching to the RC4 stream cipher was recommended to quickly prevent the vulner-
abilities associated with CBC in TLS. But later, in 2013, many vulnerabilities were found also
in RC4 stream cipher. Consequently the simplest and most efficient way of preventing a BEAST
attack is to upgrade the version of TLS protocol to the most recent ones (1.2 and 1.3), disabling
support for TLS 1.0 and 1.1, as well as SSL on the server.

LUCKY 13 [42] is an attack against TLS protocol that was found in 2013 by Nadhem AlFardan
and Kenny Paterson of the Information Security Group at Royal Holloway of the University of
London. It’s a cryptographic timing attack that can be used against the implementations of the
protocol that use Cipher Block Chaining (CBC) mode of operation. This attack affects SSL 3.0
and all the versions of TLS up to 1.2. The attack allows a man-in-the-middle to recover plaintext
from a TLS connection when CBC mode encryption is used, exploiting a bug in the way that TLS
data decryption works with CBC. LUCKY 13 uses the same attack mechanism as the padding
oracle attack.
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In TLS Message Authentication Code (MAC) is used to authenticate and to provide integrity
of the message. When a message has to be sent, a MAC is applied to the plaintext, and then up
to 255 bytes of padding are added to make the message size a multiple of the cipher block size (8
or 16 bytes). This message block is finally encrypted using the block cipher with CBC mode. The
receiver takes the encrypted block, decrypts it and XORs it with the previous ciphertext block.
After decryption, the validity of the padding is checked and then, in case of success, it is removed
and integrity of data is checked against the calculated MAC.

LUCKY 13 attack relies on a difference in processing times between TLS messages. Indeed,
because of the way that HMAC-SHA1 works, it takes four units of CPU time to checksum the
first 55 bytes of data, plus an extra time unit for every additional 64 byte chunk. If two bytes
are truncated from an encrypted packet, there is a chance of approximately one in 65000 that
the server would end up wrongly thinking the message was padded, removing the padding and
validating what was left. This would take 4/5 of the time of processing a packet that wasn’t mod-
ified. This would happen because the tweaked packet had tricked the server into checksumming
55 bytes or less of data. By systematically trying all possible two-byte tweaks (216 if the block
size is equal to 16 bytes, such as for AES CBC), and assuming perfect timing measurement, it
could be possible for an attacker to recover two of the encrypted bytes.

A LUCKY 13 attack requires about 223 TLS sessions to collect a whole block of TLS-encrypted
plaintext in its most basic version. With some optimizations and in the best circumstances, the
number of needed TLS sessions to recover one plaintext byte can be reduced to 213. In order
to execute the attack in a precise and efficient manner, the attacker must be placed in the same
network as the web server, in order to reduce any noise and perform the timing attack.

One possible way to avoid LUCKY 13 attack is to use a stream cipher instead of a block
cipher, avoiding this way the need for plaintext padding. Another solution could be to implement
a Encrypt-then-MAC mechanism instead of a MAC-then-Encrypt, so that the quantity of data
to be checksummed does not depend on the plaintext. The best countermeasure to LUCKY 13
attack is to use authenticated encryption algorithm, like AES-GCM. To this purpose the best idea
is to upgrade the version of TLS protocol to TLS 1.3, that always uses authenticated encryption.

The POODLE attack [43] (Padding Oracle on Downgraded Legacy Encryption) exploits a
vulnerability in the SSL 3.0 protocol, that let an attacker eavesdrop on communication. To work
with legacy servers, many TLS clients implement a downgrade mechanism, that consists in offering
the highest supported protocol version during the first attempt of handshake and retrying in case
of failure with earlier protocol versions. This downgrade can be triggered by network glitches or
by an active attacker that controls the network between the client and the server and interferes
with any attempted handshake.

Encryption in SSL 3.0 uses either the RC4 stream cipher, or a block cipher in CBC mode.
RC4 is well known to have biases, meaning that if the same secret (such as a password or HTTP
cookie) is sent over many connections and thus encrypted with many RC4 streams, more and
more information about it will leak. POODLE is not exploiting RC4 vulnerabilities, but it is an
attack against CBC encryption as used by SSL 3.0. The problem is that when a block cipher
in CBC mode is used for encryption in SSL 3.0 the integrity of padding cannot be fully verified
during decryption, because padding is not deterministic and not protected by MAC.

If L is the block size in bytes, the weakness is the easiest to exploit if there’s an entire block of
padding, which consists of L-1 arbitrary bytes followed by a single byte of value L-1. To process
an incoming ciphertext C divided in n blocks (C1...Cn), given an initialization vector C0, the
receiver first determines P1...Pn as:

Pi = DK(Ci)⊕ Ci−1

Then checks and removes the padding and, after that, verifies the correctness of the MAC. If
there’s a full block of padding and an attacker replaces Cn with any earlier ciphertext block
Ci from the same encrypted stream, the ciphertext will still be accepted if the final byte of
DK(Ci) ⊕ Cn−1 results to contain the value L-1, otherwise i will be rejected. In this situation a
padding oracle attack can be executed.

In the web setting, this SSL 3.0 weakness can be exploited by a man-in-the middle attacker to
recover HTTP cookies. To prevent the POODLE attack, SSL 3.0 support must be disabled from
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both servers and browsers, and only TLS 1.2 or higher version must be supported. In addition,
TLS FALLBACK SCSV must be enabled. This protocol extension guarantees that during a
negotiation, the protocol never falls back to earlier protocol versions that are below the highest
SSL or TLS version supported by the server. Implementing TLS FALLBACK SCSV prevents
a downgrade attack to force the use of the vulnerable SSL 3.0, that can be used only when an
existing legacy system is involved.

5.4.3 Attacks on Compression algorithm

Compression Ratio Info-leak Made Easy (CRIME [44]) is an attack on TLS that was developed
by researchers Juliano Rizzo and Thai Duong. CRIME is a side-channel attack that exploits
a vulnerability in TLS compression applied to HTTPS requests. Using CRIME an attacker
can recover secret information, such as session tokens. This attack can be executed on web
sessions protected by TLS that adopts DEFLATE or gzip as compression method. The purpose
of compression in a session is to reduce network congestion or the loading time of web-pages.

Compression is a mechanism to use a reduced number of bits to transmit or store a big amount
of data. DEFLATE is one of the most used algorithms for TLS compression and consists of two
sub algorithms: Lempel-Ziv coding or LZ77, and Huffman coding. LZ77 is used to eliminate
the redundancy when repeating sequences occur, while Huffman coding is used to eliminate the
redundancy if the same symbol is present several times. It works by simply replacing the repeated
strings with the reference to the last occurrence of the same string as (distance, length). Distances
are limited to 32K bytes, and sequence lengths are limited to 258 bytes.

When TLS compression is used, it is applied on all the transferred data, as a long stream. In
particular, when used with HTTP, compression is applied on all the successive HTTP requests
in the stream, including the header. CRIME is a brute-force attack that works by leveraging a
property of compression functions, and noting how the length of the compressed data changes.
To realize a CRIME attack, an attacker can abuse a weakness in the TLS protocol compression
mechanism to decrypt the HTTPS cookies set by a website.

The size of the content of an HTTPS request is equal to the length of the encryption of the
result of the compression of header and body of the request. The important thing to underline
is that an attacker can know the compressed content length, even if the content is encrypted,
and it’s very useful to mount the attack Indeed the attacker, by means of JavaScript, can modify
the request of the client inserting in the header a string that reproduces the website cookie,
already present in the original request (e.g. “secretcoookie=...”). When the compressed content
diminishes in size, it’s likely that the injected content has matched some part of the secret content
the attacker wants to discover. The idea is to change every time the input string in the fake request
and observe the change in length to discover the session cookie.

If the attacker knows the location of the secret, an optimization of this attack can be executed.
Since the maximum size of a TLS record is known and it’s equal to 16kB, the attacker can try
to pad in the proper way the request path, so that there is only one unknown byte to guess in
the first record. The attacker must change the value of the unknown byte in the request until
it’s discovered. In order to recover the entire session cookie, this procedure must be repeated
every time for each byte of the secret value to guess, reducing the padding of one byte every time,
leaving only one byte to guess for each attempt.

This attack can be conducted against each version of TLS up to 1.2 that uses a compression
method. The only useful countermeasure that can be introduced to avoid this kind of attack is
to disable TLS compression. TLS 1.3 is not vulnerable to this attack because compression is no
more allowed in this version of the protocol.

Timing Info-leak Made Easy (TIME [45]) is a chosen plaintext attack on HTTPS responses
that was developed by Tal Be’ery and Amichai Shulman of Imperva. TIME starts from timing
information differential analysis in order to discover the compressed payload size and then applies
the same attack model of CRIME. In order to launch a TIME attack and break the TLS encryp-
tion, an attacker need to have the control only on the plaintext. There are two improvements
introduced with TIME attack model with respect to CRIME model. The first difference is that
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TIME doesn’t require the presence of a man-in-the-middle to be executed, while the second is
that TIME shifts the attack target from HTTP requests to HTTP responses. The problem is
that TLS compression is used for HTTP requests but it has been disabled in most browsers and
servers. On the other hand, for responses HTTP compression is used, as a best practice for speed
and bandwidth gains, and it can be exploited to mount an attack.

The target of the attacker is to force the length of the compressed data to overflow into an
additional TCP packet and then pad the compressed data to align to the amount of TCP packets
allowed within the TCP window. In this way if an incorrect guess occur, despite the compression,
another packet has to be sent and an additional full round trip time is necessary, since the ACK
for the previous packet must be waited. This situation gives the possibility to measure and detect
a significant delay.

The attacker can try to recover the user secret that has been sent to the server (e.g., “secret
element = unknown data”), sending to the server multiple requests and guessing it byte by byte.
The attacker injects malicious code capable of sending multiple requests with attacker controlled
data to the target website. Since the user inputs get reflected within the server response, the
attacker has only to measure the shortest response time for every character in the specific position
of the payload which will happen only in the case of a correct guess. Indeed if payload length
is exactly on the window boundary and the byte the attacker is trying to guess doesn’t match
the secret value, the attacker can measure a significant delay due to the additional RTT. When
the attacker-controlled data matches the correct guess, the response time does not consist of
additional RTT. Every time a byte of the secret is recovered, the padding is adjusted to maintain
1 extra byte more than the boundary. By repeating this procedure for all the bytes, the attacker
can completely recover the secret with no eavesdropping. TIME attack can be used to find out
all sensitive information that is reflected in the response, not only the session cookie.

This timing attack does not directly exploit any vulnerability in TLS, but the timing in-
formation leaks. Adding random timing delays to the decryption could be an idea for slowing
down the attack, but it doesn’t work in order to prevent it. Indeed an attacker who can gather
enough samples can average many observations which make the randomness disappear. Moreover
applications should have a strict restriction on the reflection of user input in the response.

Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (BREACH
[46]) is an attack demonstrated by Yoel Gluck, Neal Harris, and Angelo Prado at BlackHat USA
2013. As well as CRIME attack, BREACH exploited the compression and encryption combination
used to interact with users and web-servers. As a difference with respect to CRIME, BREACH
has as target HTTP compression, that is applied only to the body of responses, instead of TLS
compression. The algorithm used for compression is DEFLATE, composed by LZ77 coding and
Huffman coding, as discussed before. BREACH works by attacking the LZ77 compression while
minimizing the effects of Huffman coding, reducing in this way the number of false positives.

To be vulnerable to this kind of attack, a web application must:

❼ Be served from a server that uses HTTP-level compression;

❼ Reflect user-input in HTTP response bodies;

❼ Reflect a secret (such as a CSRF token) in HTTP response bodies.

The goal of the attacker is to recover the value of the CSRF token and to this purpose a
string containing a guess of it (e.g. “CSRFtoken=...”) is inserted in the HTTP request. Then
the attacker has only to measure the response size. Indeed, since the response will reflect the real
CSRF token and the attacker input in the HTTP response body, if after compression the length
will be smaller it means that the guess matches at least a part of the secret value. The idea is
to change input and measure and compare lengths to guess the correct secret value, repetitively
until the whole secret is recovered.

It is important to notice that BREACH does not require TLS-layer compression, but it focuses
on HTTP compression. Consequently the TLS version used is not relevant and the attack works
against any cipher suite. Moreover disabling TLS compression does not affect the possibility of
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Figure 5.3. The FREAK attack (source: [47])

a BREACH attack. The attack is simple to execute if a stream cipher is used, while if a block
cipher is chosen, additional work must be done to align the output to the cipher text blocks.
There are different solutions that can be used to mitigate this attack: separating ant secret from
user input, hiding traffic length by including random bytes to responses, randomizing token value
in every response and limiting the rate of requests.

5.4.4 Attacks exploiting export ciphers

in 2015 a new TLS vulnerability, called FREAK attack [48, 47], was discovered. It allows an
attacker to intercept HTTPS connections between vulnerable clients and servers and force them
to use weakened encryption, which the attacker can break to steal or manipulate sensitive data.

The attack starts with a vulnerable client sending the client random, the list of supported
ciphers and supported curves to the server within the ClientHello message, as depicted in Fig. 5.3.
The attacker, that must be a MitM, substitutes the list of supported ciphers with a weak export
cipher (40 bit key). The server receives the message modified by the atttacker and answers with
its ServerHello message, containing server random and the selected cipher. Given the change
applied by the attacker to the first client message, the server is forced to choose the weak cipher.
If server is badly configured, it will accept to choose the export cipher and then it will send also
the remaining messages to complete the handshake, such as Certificate, ServerKeyExchange and
CertificateVerify. In this way client generates a 40-bit key that will become the shared key with
the server. At this point the client answers the server with ClientKeyExchange, ChangeCipherSpec
and Finished messages, protected with the weak key. The Finished message is computed over
what the client sent, including the good list of ciphers. The attacker has to intercept the Finished
message sent by the client, brute force the weak key, through 240 attempts, recompute the message
according to the attacker changes, and relay it to the server. In this way the server won’t be able
to detect the attack and in turn will generate the weak shared key. The attacker will be able to
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sniff all the traffic and to create fake messages since weak keys are used also for authentication
and integrity.

In order to prevent this kind of attack the only solution is to disable support for export versions
of cipher suites and all other ciphers whose security is questionable.

DROWN [49] is a cross-protocol attack that exploits a vulnerability in SSL 2.0, an old protocol
version that has several serious flaws. SSL 2.0 has been deprecated for more than 15 years
and has been formally prohibited in 2011. The big problem arises when “export” ciphersuites,
characterized by an encryption strength of about 40 bits, are supported. If the target of the attack
is a server that uses SSL 3.0 or TLS protocol, the attack can anyway be executed if the support
for SSL 2.0 is still provided and both protocols use the same public key. If a DROWN attack is
successful, it may lead to the disclosure of important and sensitive data, that can be read and
stolen by an attacker.

The attack proceeds following different steps. The attacker observes an encrypted TLS session
that uses RSA key exchange in order to decrypt it. It’s an important condition for the execution
of this attack since it cannot be executed against a connection that uses DHE or ECDHE key
exchange. There is a probability of about 1/1000 that the session observed is suitable for the
attack, so the attacker will need to gather about a thousand encrypted sessions in order to succeed
in decrypting one of them.

Another assumption that has to be made for the applicability of DROWN attack is that the
TLS server uses the same RSA private key for a SSL 2.0 system. At the second stage of the
attack, the attacker creates multiple connections to the other system using the cross-protocol
vulnerability. The attacker begins a SSL 2.0 handshake with that system, asking for a 40-bit
export ciphersuite and using as ClientMasterKey message a value derived from the one that the
attacker wants to decrypt. The attacker, observing the server response, brute-forces the 40 bit
value generated by the server when it received the value sent by the attacker. At the end, after
about 40,000 such attempts, the attacker can recover the master secret and obtain the session
key. At this point the attacker can decrypt sensitive data that were sent during previous recorded
sessions. The cost of DROWN is about 250 operations, since the attacker need to run a 40 bit
brute force attack for each one of the 1000 SSL 2.0 connections established with the server.

The only countermeasure that can be adopted to avoid the DROWN attack is to remove the
support of SSL 2.0 on the server. In addition the private ley of the server must not be used in
any other system that supports SSL 2.0 connections, such as web servers or email servers.

Logjam [50] is an attack against TLS (up to version 1.1) protocol implementations that use
Diffie-Hellman key exchange with 512 to 1024 bit keys. The first target of this attack is to
downgrade a TLS connection from non-DHE EXPORT to a DHE EXPORT. At this point the
attacker can exploit the weakness of 512-bit export-grade cryptography in order to maliciously
get access to the connection and inject harmful data into it. In addition, if there were old sessions
that used the same DH parameters, the attacker can decrypt them.

The security of the Diffie-Hellman key exchange is related to the complexity of the solution
of the discrete logarithm problem. This problem is thought to be a mathematically intractable,
at least when Diffie-Hellman is implemented in cryptographically strong groups (2048 bits for
DHE parameters), while the situation is different for export variant of DHE that involves prime
numbers of only 512 bits. Another important point makes easier to solve the discrete logarithm
problem when DHE EXPORT is used. Indeed with this algorithm, in most cases the same pre-
generated prime numbers are used. For this reason the discrete logarithm problem is even easier
to break. Solving this problem, a man-in-the-middle attacker recover all the DH parameters and
take over client connections towards the server. Since the majority of servers use the same built-in
Diffie-Hellman parameters, researchers have theorized that an attacker can use the complex and
expensive precomputation for cracking one server on numerous servers. Fig. 5.4 shows how the
attack works.

In order to avoid Logjam attack, it’s necessary to use only strong cipher suites with 2048-bit
or larger primes, preventing the use of parameters of smaller dimension. Clients have to be set to
reject Diffie-Hellman primes of less than 1024-bit. The latest versions of TLS protocol (1.2 and
1.3) prevent the use of export ciphers and weak prime numbers, consequently are not vulnerable
to this kind of attack.
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Figure 5.4. The Logjam attack (source: [50])

5.4.5 Attacks on RC4 algorithm

RC4 is a stream cipher developed by Ron Rivest in the late 1980s. The first phase of RC4 is
the key scheduling algorithm (KSA), that takes an initial array and initializes it to values 0 to
255. For each index of the array a shuffling occurs that mixes in the key. The second phase of
the stream cipher is the pseudo-random generation algorithm (PRGA), that receives as input the
output of KSA and shuffles again the array. The ciphertext is obtained XORing the plaintext
with the output of the PRGA that is the keystream.

Several weaknesses affecting RC4 stream cipher have been found over the years. A research
by Bernstein, Paterson, Poettering and Schuldt [51] explained two possible ways to mount a
plaintext recovery attack on RC4. The first one of these two attacks, a broadcast attack, recovers
the plaintext when it is sent repeatedly in many different sessions, while the second can lead to
plaintext recovery even if it is sent encrypted repeatedly in the same session.

The broadcast attack is based on strong biases in the first 257 bytes of encryption. If the same
plaintext is encrypted using unique keys from 228 to 232 times, the attacker will be able to recover
roughly the first 200 bytes of plaintext. For position of the plaintext to recover, the full set of
observed ciphertexts is used. The attacker tries each one of the 256 possible values for each byte,
XORing it with each ciphertext in order to obtain the PRGA as output. It then calculates which
plaintext candidate resulted in PRGA outputs which most closely matches the known PRGA bias
for that position.

The other attack exploits long-term biases in RC4 and makes possible to recover half of a
16-byte secret value, analysing 6 ∗ 230 encryptions of the same plaintext message with a single
key. As a difference with respect to the broadcast attack, this attack can be executed to recover
plaintext also from a single encryption stream in which the same plaintext is sent repeatedly.
The vulnerability in this case includes transitional biases in the PRGA stream that recur at fixed
positions in the stream. The attacker starts with a known plaintext byte that repeats at a fixed
position and tries to find a candidate for the plaintext byte that repeats at the next position.
The candidate that most closely matches the transition bias of the PRGA is selected. After that,
repeating this process, the attacker can recover the next unknown plaintext byte.

Different countermeasures have been proposed, but they don’t work to completely protect
against this kind of attacks. Indeed, for example, discarding the initial keystream bytes of output
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and randomizing HTTP requests can be bypassed by an attacker. The only recommended working
solution is to avoid using RC4, preferring instead patched versions of CBC based algorithms or
Authenticated Encryption based algorithms.

Bar Mitzvah [52] is an attack against TLS protocol that can be built exploiting the Invariance
Weakness in the RC4 stream cipher. The Invariance Weakness is a vulnerability in RC4 stream
cipher, that, if exists, leads to the preservation of the least significant bits of the state permutation
intact throughout the initialization process of the keys. These bits are the processed by the PRGA
algorithm and so determine the least significant bits of the pseudo-random output. These biased
stream bytes are XORed with the plaintext bytes and will generate significant leakage of plaintext
bytes from the ciphertext bytes. The big problem with these biases is that, even if they occur
rarely, they are effective in 100 keystream bytes with very high probability.

Since the Invariance Weakness involves only the first 100 bytes of the keystream, only the
first 100 bytes of traffic, respectively upstream and downstream can be targeted by an attack.
In addition the first encrypted bytes that are sent on a TLS connection are represented by the
Finished message (usually 36 bytes). Consequently the attack can only recover about 64 bytes
of protected data. In order to mount the attack, an attacker first sniffs a large number of TLS
connections encrypted with RC4, waiting the use of a weak key. At this point the attacker can
recover the LSBs of the keystream bytes and use them to extract the LSBs of the plaintext bytes
from the ciphertext. The first application of this attack is recovering a part of a session cookie,
using a large number of its encryptions. This attack is expected to have a hit with a weak key
every 224 connections. Since for each hit the probability of the Invariance Weakness is 1-5%, a
lot of hits are required to complete a successful partial plaintext recovery.

There is also a passive variant of this attack, in which the attacker eavesdrops on the inbound
traffic to a web application, aiming to steal credit card number info. The attacker is required to
wait 1 billion connections for a weak key usage event and when it happens, the InvarianceWeakness
can be used to predict keystream LSBs. In this way the plaintext LSBs can be recovered from
ciphertext LSBs by the attacker. It is important to note that the compromised credit card number
or password is of a random victim, with the attacker not having any control over its identity.

The only solution to avoid Bar Mitzvah attack is to not use RC4 stream cipher. Conse-
quently upgrading the version of TLS protocol to the most recent one (TLS 1.3) is a good kind
of protection, since the support for weak ciphers, included RC4, has been removed.

RC4 NOMORE [53] attack exploits weaknesses in RC4 encryption algorithm to reveal infor-
mation which was previously thought to be safely encrypted. It relies on two types of statistical
biases present in the keystream. The first one, commonly called the Fluhrer-McGrew biases, is
that two consecutive bytes are biased towards certain values. The second type of biases, called
the Mantin’s ABSAB biases, is that a pair of consecutive bytes is likely to repeat itself. RC4
NOMORE attack can be mounted exploiting a combination of these two types of biases.

In particular a group of researchers showed that, using RC4 NOMORE, an attacker can decrypt
web cookies, which are normally protected by the HTTPS protocol, that are used to identify users
and authorize their actions. If an attacker can recover a cookie, he will be able to impersonate
the victim to the server, gaining access to personal information and performing actions as if he
were the victim.

In order to execute this kind of attack the attacker has to insert malicious JavaScript code
inside the website visited by the victim. This code will induce the victim to transmit encrypted
requests which contain the victim’s web cookie. By monitoring and analysing all the requests sent
by the victim, the attacker can generate a list containing possible values for the cookie. Then,
testing all the possibilities, the attacker will be able to recover the correct cookie in about 75 hours.
With respect to previous attacks again RC4 stream cipher, this short execution time increase a
lot the feasibility of this attack. In addition any kind of information that is sent encrypted with
RC4 repeatedly on a TLS connection can be recovered, not only web cookies.

Also in this case, the only countermeasure for this attack, is the removal of the support for
RC4, as has been done with TLS 1.3.
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5.4.6 Other attacks

In March 2014, some researchers found an important vulnerability in the TLS implementation
of OpenSSL, named Heartbleed vulnerability [54]. Heartbleed allows attackers to read memory
from vulnerable servers, including cryptographic keys, login credentials, and other private data.
In addition it was one of the most impactful vulnerability, considering OpenSSL, since it was easy
to exploit and a lot of server were using HTTPS and other TLS services.

The Heartbleed attack is based on a bad implementation of the Heartbeat Extension by
OpenSSL. This extension allows the two end-point of a connection to detect whether its peer
is still present. During the handshake each one of the two peers can send a Heartbeat Request
message to verify connectivity. This message is composed by four different parts: a Type filed (1
byte), a Payload Length field (2 bytes), the payload and and at least 16 bytes of random padding.
When an endpoint receives an Heartbeat Request message, it answers with an Heartbeat Response
message, containing the received payload and its own random padding.

The OpenSSL implementation of the Heartbeat Extension contained a vulnerability that al-
lowed either end-point to read data following the payload message in its other’s memory by
specifying a Payload Length larger than the amount of data in the Heartbeat Request message.
Because the Payload Length field is two bytes, the peer responds with up to 216 bytes (∼64 KB)
of memory.

The countermeasure for this attack is represented by the patch for the vulnerability of OpenSSL
library, the revocation of the compromised keys and the redistribution of new keys.

Security Losses from Obsolete and Truncated Transcript Hashes (SLOTH [55]) refers a class
of transcript collision attacks due to the use of obsolete and truncated hash constructions (such
as MD5) on popular cryptographic protocols such as TLS. Cryptographic protocols widely use
hash functions to implement authentication and integrity security properties. Indeed they are
used to generate digital signatures and message authentication codes (MAC) and in combination
with key-derivation functions (KDF). In 2005 MD5, a popular cryptographic hash function, was
broken the first time by a collision attack. From that moment other attacks against cryptographic
hash functions arose, increasing their speed and danger more and more. SLOTH attack forces a
hash-construction downgrade to MD5, reducing the expected security.

In TLS, the client authenticates itself by presenting an X.509 certificate and then signing a
hash of the entire handshake transcript (up to that point) with the private key corresponding to
the certificate. In TLS 1.0 the signature was implemented with SHA1+MD5, while in version
1.1 SHA1 was used. Instead TLS 1.2 allowed clients and servers to negotiate the signature and
hash algorithms they support. Consequently when a TLS handshake is executed, it could happen
that a strong hash algorithm, such as SHA-256 or SHA-512 is negotiated, but also a weak hash
algorithm such as MD5 could be chosen.

If a TLS client C and server S both support RSA-MD5 signatures for client authentication
and C is willing to use the same certificate to authenticate at some malicious server M, M then
can mount a man-in-the-middle transcript collision attack that allows it to impersonate C at S.
In order to execute this attack, shown in Fig. 5.5, the attacker M must compute a chosen-prefix
MD5 collision between two handshake transcripts, one between C and M, and the other between
M and S. The attack complexity depends on the difficulty of finding such collisions. For MD5,
such collisions are known to require computing 239 hashes.

The version of TLS that is vulnerable to SLOTH attack is TLS 1.2. The only possible solution
to counteract this vulnerability is to remove support for MD5 and SHA-1, as has been done with
TLS 1.3 standardization.

The SWEET32 attack [56] is based on a security weakness in the block ciphers used in cryp-
tographic protocols, such as TLS 1.2. It’s similar to the attacks that exploit RC4 vulnerabilities
in terms of computational complexity. Block ciphers are often used by TLS protocol to protect
the confidentiality of data exchanged between client and server. First data to be transferred is
divided into chunks of a certain length, called blocks, and then each block is encrypted following
a specific mode of operation. Another parameter that is introduced when a block cipher is used
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Figure 5.5. The SLOTH attack (source: [55])

is the key length, that is different with respect to the block length. Both these two values are set
by the algorithm. In 3DES algorithm, the block size is 64 bits, while for AES, it’s 128 bits.

The best attack against a block cipher is a brute force attack to recover the key, that has a
complexity of 2k, where k is the key size. But the security of a block cipher cannot be reduced
to the value k, because also the block size n is also an important security parameter, defining
the amount of data that can be encrypted under the same key. The shorter a block size is, the
more vulnerable it is to a birthday attack, a type of vulnerability based on the birthday problem
in probability theory. The birthday bound is defined as the number of attempt needed before a
collision is found and with most modes of operation (e.g. CBC, CTR, GCM, OCB, etc.) it’s equal
to 2n/2. This problem is well-known by cryptographers, who always require keys to be changed
well before 2n/2 blocks.

Short block sizes make web servers vulnerable to hitting the same hash for multiple inputs. An
attacker can exploit this vulnerability in order to recover secure HTTP cookies, observing data
exchange between a web server and a website. With a modern block cipher with 128-bit blocks
such as AES, the birthday bound is equal to 256 EB. But if the block size is reduced to 64 bits,
the birthday bound decreases to only 32 GB. When the amount of data encrypted under a fixed
key approaches this limit, the security guarantees of the mode of operation start to crumble.

Block ciphers are used with a mode of operation in order to deal with messages with a different
length than the block size n. For example, with CBC mode the message M is divided into blocks
mi and is encrypted as:

ci = Ek(mi ⊕ ci−1)

where c−1 is an initialization value usually denoted as IV. The birthday bound with CBC mod is
equal to 2n/2. Indeed after 2n/2 message blocks encrypted with the same key, a collision between
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two ciphertext blocks ci = cj is expected and a birthday attack can be executed. Since Ek is a
permutation, a collision in the output means that the inputs are the same (mi⊕ci−1 = mj⊕cj−1)
which reveals the XOR of two plaintext blocks:

mi ⊕mj = ci−1 ⊕ cj−1

According to the birthday paradox, with 2d blocks of data the expected number of collisions
is about 22d−n−1. In this way an attacker can recover the XOR between two plaintext, that
may be not enough for an attack with practical impact. But if a fixed (HTTP cookie) is sent
repeatedly and some fraction of the plaintext is known, there is a chance that a collision leaks the
XOR between the fixed secret and the known plaintext and consequently the secret is revealed.
Assuming 2s is the number of copies of the secret and 2t is the number of known encrypted blocks,
if s+ t ≥ n this attack is expected to succeed with high probability.

In the case of 64-bit block cipher algorithms, a collision attack can happen after about 32 GB
of data, so if an attacker generates and sends a sufficient amount of data from the browser to
the web server with JavaScript, the HTTP session cookies can be discovered. But experiments
showed that as much as 785 GB of data might be needed for a practical collision attack. The
only way to prevent SWEET32 attacks is to ensure that a block cipher with a big block size is
used (such as 128 bits), so that the probability of having a collisions decreases and the birthday
bound increases.

The truncation attack [57, 58] is a security attack that can be applied when tearing down an
TLS connection and was discovered by researchers Ben Smyth and Alfredo Pironti of the French
National Institute for Research in Computer Science and Control (INRIA) in 2013.

In TLS protocol specification two different modes for the termination of a connection are
indicated. A graceful connection closure represents the end of a successful connection and in this
case all the messages are received as sent. On the other hand, a fatal closure happens at the
end of an unsuccessful connection (for example after receiving a corrupt message) and this means
that the ordered delivery of only a prefix of all fragments is guaranteed. If an endpoint of a TLS
communication wants to close the connection, it must send a specialized close notify alert message
to inform the other party that no more messages will be send on the current TLS connection.

In web applications, the server typically notifies the user about its state using some positive
feedbacks, when state change is successful, or negative feedbacks, when an error occurred. The
lack of feedback can cause confusion and violate basic design principles. For instance, if a user
attempts to save a file and no feedback is provided, then the user does not know if the file was
saved or not.

In order to execute TLS truncation attack, the attacker need to create a situation in which
user’s and server’s perspective of the application state are de-synchronized. To this purpose the
attacker must be placed in the same network of the victim. When the user makes a logout
request to the server, the man-in-the-middle blocks it, so that the user remains logged into a web
service. In addition, the attacker injects an unencrypted TCP FIN message to close the connection.
Consequently the user receives feedback that the sign-out request has been successfully executed,
whereas the server is unaware of the user’s request. In this way the attacker can get control of
the user account without the victim knowing.

5.4.7 Attack against TLS 1.3

All the above mentioned attacks are not executable against the latest version of TLS. Indeed, when
in August 2018 TLS 1.3 was standardized, a set of changes has been introduced in the protocol
with respect to previous version (TLS 1.2) in order to remove all the known vulnerabilities and to
prevent all the known attacks against the protocol. The following elements of the protocol have
been removed:

❼ not-AEAD ciphers, in order to avoid attacks on legacy ciphers;

❼ RSA key exchange, to always provide perfect forward secrecy to the communication channel;
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Attack TLS 1.0 TLS 1.1 TLS 1.2 DTLS 1.2 Ref.

Bleichenbacher x [38]

Renegotiation x x x x [39]

3SHAKE x x x x [40]

BEAST x [41]

LUCKY 13 x x x x [42]

POODLE x x x [43]

CRIME x x x x [44]

TIME x x x [45]

BREACH x x x [46]

DROWN x x x [49]

FREAK x x x x [48]

Logjam x [50]

RC4 biases x x x [51]

Bar Mitzvah x x x [52]

RC4 NOMORE x x x [53]

Heartbleed x x x [54]

SLOTH x x [55]

SWEET32 x x [56]

Truncation x x x x [57]

Table 5.1. Attacks against TLS and DTLS protocol.

❼ broken hash algorithms (MD5, SHA-1), to avoid SLOTH and similar attacks;

❼ CHangeCipherSpec message, in order to reduce the handshake size (in terms of number of
messages and latency);

❼ data compression, in order to prevent CRIME attack;

❼ session renegotiation, to avoid attacks that exploit the renegotiation mechanism.

Moreover two new features have been introduced: EncryptedExtensions message, to avoid
transmitting preferences in plaintext, and the 0-RTT mode to increase session resumption speed.
In addition, with TLS 1.3, all the messages after ServerHello are encrypted, leading to certificates
encryption. Despite all the improvements and changes made to the design and the implementa-
tions of TLS protocol, different authors during recent years have tried to discover whether the
latest version (TLS 1.3) is affected by some vulnerabilities or problems that can be exploited to
mount an attack.

The authors in [59] complained about PSK-based authentication mode for session resumption,
typical of TLS 1.3, and explained that it’s characterized by a misuse vulnerability which can
lead a node to act as client and server at the same time. The attack described by the authors
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is a reflection attack and it is named “Selfie”. It requires that the attacker acts as a man-in-
the-middle, between a client that has created a session S1 with the server, sending a ClientHello
message with pre shared key extension. The attacker captures the message and reflects it back to
client in another session S2, where client and server of session S1 have swapped their role. In this
second session, the server (the client in S1) replies to the client (the server in S1) with ServerHello
and server Finished messages, that are captured again by the attacker and sent to the client in
S1. The client of S1, that is convinced to talk with S1 server, will reply with a client Finished
message, which is again relayed back by the attacker to S2 server (the client in S1). As a result,
the client in S1 has opened a “Selfie” session with himself, meaning that any piece of data that is
sent by him in S1 will be echoed back to him through S2.

TLS, as indicated above, is often vulnerable to version downgrade attacks, where a man-in-
the-middle attacker interferes with the handshake and leads the communicating parties to fall
back from a higher version of the protocol to lower ones. Different mechanism have been designed
in the last years in order to prevent this kind of attacks. One of them is called SCSV (Signaling
Cipher Suite Value) and it consists in mentioning the latest supported TLS version of the client in
the ClientHello message. For this solution to be used and effective, both the client and the server
must support it. Another downgrade protection mechanism introduced in TLS 1.3 uses a version-
specific value in ServerHello message. The authors of [60] studied the SCSV mechanism adoption
in TLS 1.3 and its support in 10 major Web browsers, including Firefox, Chrome, and Edge, in
five operating systems. As a result, they identified that two network stacks of Microsoft and Apple
are vulnerable to downgrade attacks, due to not supporting the adequate protection mechanism.
The authors showed that TLS version can be downgraded till 1.0 in MS Windows, while in iOS
and macOS only to 1.2. Consequently a downgrade attack against TLS 1.3 is practically feasible
and could be quite easily mounted due to the lack of SCSV protection.

The extension of the encryption to all the messages in the handshake of TLS 1.3 after the
ServerHello not only provides stronger security guarantees, but it was also introduced to protect
identities of the server and client (certificates are then encrypted). The authors of [61] tested
the privacy of the full handshake and session resumption mechanisms of TLS 1.3. They stated
that TLS 1.3 offers an rather optimal degree of privacy, especially during a full handshake, during
which the protocol provides a perception of server unlinkability. The level of privacy is slightly
decreased when an old session is resumed, because a method of linking sessions between two
objects is introduced. Moreover, the use of session tickets for session resumption contributes to
the privacy reduction.

In work [62] the authors studied the way protocols supporting 0-RTT mode, such as TLS 1.3
and Google QUIC, are affected by replay attacks. The 0-RTT mode enables a client to establish
a fresh provisional key without interaction, based only on cryptographic material obtained in
previous connections. With this solution client and server can exchange early application data
before the fully secure keys are negotiated, protecting them with the provisional key. The authors
showed that, at least at time of writing, replay attacks were accepted as inevitable by the protocol
creators.

5.4.8 Attacks against DTLS

DTLS can be intended as an adaptation of TLS protocol to run on top of UDP, with TLS 1.1
corresponding to DTLS 1.0 and TLS 1.2 corresponding to DTLS 1.2. DTLS 1.3, standardized
recently on April 2022 by IETF with RFC 9147 [37], is based on TLS 1.3 and provides equal
security guarantees with the exception of anti replay protection. Consequently, all the attacks
presented above against TLS protocol, can be executed also to break DTLS protocol, accordingly
with versions correspondence. The only exception is represented by the attacks against RC4
stream cipher, because this encryption algorithm is not allowed in DTLS.

Because DTLS protocol runs on top of UDP, it’s potentially vulnerable to two denial of service
(DoS) attacks: the standard resource consumption attack and the amplification attack. To prevent
these attacks, the cookie exchange process must be implemented during the DTLS handshake.
When the client sends its ClientHello, the server responds with an HelloVerifyRequest message
containing an opaque cookie. In order to demonstrate it’s not using a fake IP address, the client
must send back the cookie to the server in a second ClientHello message.
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5.5 QUIC attacks

This section only includes QUIC-related attacks. Attacks against the TLS 1.3 handshake are perti-
nent given that TLS acts as a security component of QUIC; basically, the two protocols cooperate.
Specifically, QUIC uses the keys derived from the TLS handshake for providing confidentiality
and integrity to the exchanged packets through its transport layer. The various attacks are split
into five categories, namely cryptographic, handshake, fuzzing, transport-layer, and privacy. In
all the subsections, the discussed works are given in a chronological order.

5.5.1 Attacks against Google QUIC

In the previous section the Bleichenbacher attack against TLS has been presented. It allows an
attacker to decrypt PKCS#1 v1.5 ciphertexts exploiting the responses of an “oracle”, that can be
given by a TLS server. By analysing the time necessary to receive responses from the “oracle”,
the attacker can understand if a ciphertext is correctly padded or not.

In 2015, the authors of [63] presented two attacks against TLS 1.3 and Google QUIC, based
on the Bleichenbacher attack against TLS. In particular they identified a way to transfer the
potential weakness of old TLS versions to these two protocols, that don’t even support PKCS#1
v1.5 encryption by design. The target of this attack is to impersonate a server by generating
valid signature for some handshake messages with the help of “signing oracle”, represented by a
vulnerable TLS-RSA server implementation.

The first attack against TLS 1.3, that has a reduced real impact, need the attacker to forge
requires the TLS CertificateVerify message before the client releases the connection with the aid
of a quick “Bleichenbacher-oracle”. This attack demonstrates that, even if the exploited legacy
algorithm has been removed form TLS 1.3 standard, it’s not enough to protect it against its
weaknesses. The problem is that, TLS 1.3 is not directly susceptible to Bleichenbacher-type
attacks, but it becomes vulnerable if the server supports static RSA in the context of previous
versions of TLS.

The second version of the attack against Google QUIC protocol is more practical in terms of
time. Indeed, thanks to the possibility of using pre-computation, the attacker may take a great
amount of time to use the “Bleichenbacher-oracle” to generate the needed signature and the attack
is anyway effective. Since signed values in QUIC are independent of the client’s connection request,
the attacker can decide to pre-compute the signature before the client initiates the connection.

As described above, TLS protocol is vulnerable to an attack called DROWN, that let an
attacker break a passively collected RSA key for any TLS server if this key was also used for
SSL 2.0. The author of [49] showed that also Google QUIC is vulnerable to DROWN attack,
if it is executed in a man-in-the-middle variant, enabling the attacker to impersonate a server.
This attack requires that the target server exposes its RSA public keys through SSL 2.0. The key
point of this version of the attack is the server config message sent by a Google QUIC server to
the client during a connection attempt. This message is signed by the server and contains the
server Diffie-Hellman public value used for key establishment. In order to execute the attack, the
MitM needs to forge a valid server config, counterfeiting the server signature. To this purpose
the attacker has to find a valid SSL 2.0 ciphertext. Therefore, the next time the client tries to
connect to the server using Google QUIC, the attacker will used the forged server config message
to execute the attack. According to the authors, this attack against Google QUIC requires 217

SSL 2.0 connections and 258 offline work. Since the IETF version of QUIC protocol uses TLS
1.3 in order to execute the cryptographic handshake, instead of Google QUIC CRYPTO, it is not
vulnerable to this attack.

The authors in [64] contributed the first study that focused on Google QUIC security and
provided the definition of a forma security model, named QACCE. They found that Google
QUIC does not provide perfect forward secrecy as it’s done instead by TLS employed with DHE,
and that QUIC may be unable to achieve one of its main goals, such as 0-RTT connections, in the
presence of attackers. In addition they identified three different attacks affecting Google QUIC
protocol, that in the end could easily prevent QUIC from achieving minimal latency advantages
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either by having it fall back to TCP or by making the client and server to have an inconsistent
view of their handshake and then preventing the connection establishment to complete correctly.
They stated that these QUIC security weaknesses are caused by the mechanism used to reduce
latency.

The first one is a replay attack that requires the attacker to be a man-in-the-middle. The
target of the attack is causing an handshake failure with a DoS attack mounted through the
replay of either some key establishment parameters to the client or the packet that contained the
source address token (stk) of the client to the server, where the stk is an authenticated-encryption
block of the client’s IP address and a timestamp. This attack can be related with the TCP SYN
flood attack.

The second attack they presented consists in manipulating unprotected parameters inside
Google QUIC packets, such as the CID or the stk, in order to force a downgrade to a TLS
connection. Also this kind of attack requires a MitM and is related by the authors with the
attack against TLS that exploits SSL downgrade vulnerability. Also in this case the attack results
in an handshake failure, preventing the client to connect to the server.

There is also another way to make the handshake fail and it’s represented by the third attack,
named Crypto Stream Offset attack. In this case the attacker need to inject a four character
string, that is, “REJ\0” into the handshake message. With this attack, the opponent can deny
the client access to the requested application or force the client to fall back to a TLS connection.
The authors compared this attack with the TCP ACK flooding attack, in which an attacker sends
multiple ACKs to the server to confuse it and drop the connection.

The work in [26] provided a comparable study between TLS 1.2 and Google QUIC from
a security point of view. In particular the authors evaluated the impact of the two protocols
vulnerabilities when they are employed to provide an HTTP/2-based web services. Specifically
for Google QUIC, the authors described the same attacks presented in [64] in the context of
HTTP/2 services. They showed that attacks against Google QUIC have impact mainly on the
client, indeed the server can not crash or reach a state where the web service offered to end-users
is largely degraded. On the other hand, TLS attacks target more precisely the server and for this
reason QUIC is a more reliable solution to implement an HTTP/2-based web server, according
to the authors.

The authors in [65] during their analysis on Google QUIC identified two 0-RTT oriented
attacks, namely QUIC RST and Version Forgery. The first attack consists in tricking the client
to give up the connection, sending him a reset packet, as if the server refused to connect. On the
other hand, in Version Forgery attack, the attacker impersonate the server and sends to the client
a version negotiation packet with a not supported version. Also in this case the target is to make
the client give up the connection. Thanks to the use of ARP spoofing, in order to associate the
attacker’s MAC address with the IP address of another host, the authors stated that both these
attacks are more easily mounted in a LAN environment.

J. Zhang et al. [66] presented a modeling and verification method for cryptographic protocols
in order to verify the security of the QUIC handshake protocol. They revealed that if an attacker
is able to forge the CHLO message and the client ephemeral Diffie-Hellman public value and send
them to the server, it can impersonate the client. Moreover, the authors proposed a revised QUIC
handshake protocol which uses the client private key to sign the CHLO message and the public
value of ephemeral Diffie-Hellman, consequently preventing this kind of attack.

5.5.2 Attacks against IETF QUIC

Gagliardi and Levillain [67] analysed QUIC protocol in the Internet drafts from version 18 to
version 23. Using the Scapy Python library, they tested the IETF QUIC handshake protocol of
the various existing implementation and also four different attacks in ten live demo servers.

The first attack was a sort of version negotiation, where the attacker sends a different protocol
version and they found that the only implementation that is vulnerable to this kind of attack and
leads to a timeout was ngtcp2.
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The second attack is an attempt to exploit the behaviour of implementations against the client
Initial packet length. Indeed a mitigation method against amplification attacks states that the
client Initial packet must have a length of at least 1200 bytes and the response of the server
should be at most 3 times the size of the received packet. The authors demonstrated that only
two implementations replied to short Initial client packet (300 bytes) and always with a message
tha respect the mitigation method rule, providing in this way protection against amplification
attacks.

During the analysis on the third attack, named missing parameters, the authors showed that
some servers accepted packets with missing mandatory parameters (as describe in QUIC RFC),
such as the maximum size of each packet.

Finally, they mounted frame mangling attacks by sending forbidden frames to the demo servers.
In QUIC, an Initial packet could contain only four different types of packets, i.e., crypto, ack,
connection close, and padding frames. During their tests the authors found that also four different
packets, including a ping packet, could be encapsulated inside an Initial QUIC packet and the
result is unexpectedly a successful handshake instead of an error.

In 2021 Nawrocki et al. [68] presented two type of attacks against IETF QUIC handshake
protocol, named state-overflow and reflective amplification, in order to prove that QUIC is vul-
nerable to resource exhaustion attacks. State-overflow attacks exploit the fact that QUIC keeps
a state from each connected client. This kind of attack is similar to TCP SYN flood attack. The
authors revealed that a defensive mechanism has been introduced in the RFC of QUIC, but it
introduces additional delays in the authentication procedure and for this reason is considered in
contrast with the target of QUIC protocol of reducing latency. This mitigation method consists
in retrying authentication if the IP address of the client cannot be verified.

On the other hand, a reflective amplification attack can be executed against QUIC, since it is
built on top of UDP. An attacker can send an Initial packet including a spoofed source IP address
to a QUIC server. The server then replies with an Initial QUIC message and an Handshake one.
Since the last message includes the server certificates, it is larger compared to the client request.
Consequently, the server is only allowed to triple the bytes if the request in its response, as long
as the client is unverified.

The authors showed that on average, the Internet is exposed to four QUIC floods per hour
and half of these attacks occur concurrently with other common attack types such as TCP/ICMP
floods.

5.6 Recommendations

As it was explained all along this chapter, there are different solutions to protect a communication
between two parties. Among all the analysed protocols, the best solutions turned out to be TLS
1.3 and IETF QUIC, that offer comparable and adequately strong level of security. The security
guarantees provided by DTLS 1.3 are the same of TLS 1.3, but, if the cookie exchange process is
not implemented correctly, this protocol is vulnerable to DoS attacks. The oldest versions of TLS,
DTLS and QUIC protocol are affected by known vulnerabilities discovered during years and in
some cases have also been deprecated. Consequently the first recommendation is to use always the
latest version of each security protocol, that is the most secure one. Another recommendation is
to configure the system to use the security protocol in the most secure way, whatever the version.
An example for this tip is to prevent the use of weak cipher and always prefer Authenticated
Encryption with Associated Data (AEAD) algorithm for data protection.
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Chapter 6

Conclusion

Protecting the communication between two endpoints has grown in importance over the last few
decades and to this purpose a lot of security protocols were born. TLS (Transport Layer Security),
a protocol to provide security on a TCP channel, became the most important and widely adopted
standard in this field. Throughout all its versions, till the most recent one in 2018 (TLS 1.3), a
lot of changes and improvements have been gradually introduced in order to meet the need for
a ever higher level of security, providing countermeasures for new attacks and strengthening the
security properties.

Since a growing number of application layer protocols were designed to use UDP transport,
a new solution had to be introduced. Indeed TLS cannot go directly on top of UDP because
it’s designed to run on top of a reliable transport protocol, such as TCP, and it’s unable to cope
with the packet loss or reordering that may occur. For this reason DTLS (Datagram Transport
Layer Security) was developed, in particular for applications with an unreliable transport layer,
such as in the case of the IoT, video conferencing, VoIP, VPN and online gaming. When the
protocol was designed, security experts kept it as close to TLS as possible, preserving much of
the code and infrastructure to minimise the number of new security techniques required. This
means that DTLS is basically a datagram-compatible version of TLS and offers the same security
guarantees. In April 2022 the latest version of DTLS protocol (1.3), corresponding to TLS 1.3,
was standardized by IETF (Internet Engineering Task Force).

QUIC (Quick UDP Internet Connections) is an encrypted-by-default transport protocol intro-
duced by Google several years ago. This protocol was designed in order to make HTTP traffic
faster, reducing latency, and at the same time provide at least the same security as TLS. QUIC
resulted to be a real competitor of the TCP+TLS protocol stack on the Internet. In 2015 QUIC
was adopted by IETF and its standardization process started. There were some differences in-
troduced in the new version of the protocol that made Google QUIC and IETF QUIC diverge:
the packet format was changed, as well as the handshake phase, for which the proprietary QUIC
Crypto protocol was abandoned and substituted by the TLS 1.3 handshake protocol. In addition
also the mapping of HTTP was modified. IETF QUIC has improved the original Google QUIC
design thanks to open collaboration from many organizations and individuals, with the shared
goal of making the Internet faster and more secure. The target of this thesis was to analyse
all these three protocols, in particular keeping attention on the performance and the provided
security.

For what concerns the performance different experiments have been conducted in order to
measure different metrics that can be meaningful to quantify and describe the behaviour of each
protocol in different scenarios. Since QUIC has been adopted, firstly by Google Chrome and
subsequently also by several other browsers, as the protocol used to download a webpage, the first
group of experiments is focused on analysing a situation in which the client, represented by the
browser, tries to download a webpage with both TCP+TLS and QUIC. This is one of the most
used approach to compare QUIC and TLS performance also by other authors and researchers
in past works. On average QUIC resulted in better performance with respect to the TCP+TLS
stack, being faster in both receiving the first byte of a webpage tested and carrying out the
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download of the entire requested resource. The only exception to this behaviour is when QUIC
has to deal with big pages composed by an high number of elements: in this situation TLS is able
to provide at least comparable, if not better, performance with respect to QUIC.

Another parameter that has been measured during the experiments, using different libraries,
is the handshake time. Also in this case there were no unexpected results: QUIC is the fastest
protocol to establish a connection between a client and a server, providing on average an handshake
time around 1-RTT. For the other protocol the handshake phase takes on average a longer time.
Indeed, for what concerns TLS, the negotiation of the security parameters is added to the TCP
3-way handshake, while DTLS has an handshake phase with the same messages as TLS, to which
the cookie exchange procedure must be added.

As a last point, the three security protocols are compared in terms of performance when they
have to deal with file download. During this last group of experiments the behaviour of each
protocol has been tested under different network conditions, varying the bandwidth and the delay
of the links of the network. As a result, QUIC provided good performance almost in all scenarios,
especially in the environment with poor network conditions. Instead, when a network with high
bandwidth and low delay is considered and the file to be downloaded is big, the performance of
QUIC deteriorates and it’s no more the best choice. In addition, in almost all the scenarios, on
average the file transfer executed with QUIC resulted to be faster also with respect to the one
with HTTP in plaintext, without any kind of security introduced in the communication between
client and server.

For what concerns TLS protocol, version 1.3 performed on average a little bit better than
version 1.2. Partially, this is probably due to the fact that the latest version of the protocol
is characterized by a reduced handshake latency. Anyway, TLS resulted to be not the best
solution for file download compared to the other protocols (in particular QUIC) and in many
situations this protocol provided the slowest performance. DTLS protocol instead could represent
a good solution to transfer a file, especially in a network with high bandwidth, but it presents
and important drawback: the lack of a mechanism to manage packet loss. Indeed, with DTLS
protocol, if packet loss occurs, the lack of an ACK mechanism (since DTLS runs on top of UDP)
leads to only partial reception of the file, since packet lost will not be sent again.

From the security point of view the evaluation has been done throughout all the versions that
have been designed and standardized for all the protocols. In particular TLS has been enhanced
and changed during the last years, in order to reduce the handshake latency required and to
improve the implementations of the security properties. Indeed this protocol has been analysed in
detail during years and some vulnerabilities and possible attacks has been discovered. The target
of the protocol designers was to strengthen the security guarantees provided and to introduce
countermeasures for all the documented attacks against the protocol. As a result, TLS 1.3 is not
vulnerable to the majority of the attacks presented in this thesis.

Since DTLS is designed as TLS but running on top of UDP, it offers the same security guaran-
tees and it’s vulnerable to the same kind of attacks (with only few exceptions). Given its nature,
the most important difference of DTLS with respect to TLS is that, since DTLS handshake takes
place over datagram transport, it’s potentially vulnerable to two denial of service (DoS) attacks:
the standard resource consumption attack and the amplification attack. To prevent these attacks,
DTLS uses the cookie exchange technique.

QUIC was proposed by Google in order to reduce the latency needed for the connection
establishment. From the security perspective, the target of Google working group was to introduce
in the communication security guarantees comparable to TLS. To this purpose the proprietary
QUIC Crypto protocol has been designed and adopted. When QUIC was adopted by IETF,
the major change applied to the protocol regards the handshake. Indeed the IETF version of
QUIC encapsulates TLS 1.3 packet for the connection establishment. This makes QUIC protocol
completely comparable with TLS 1.3 from the security point of view.

In order to conclude, during this work it has been demonstrated that QUIC offers a very good
and efficient solution to protect the communication between two endpoints. Indeed this protocol is
able to quickly create the channel between the two peers, protect in the proper way the exchanged
data and provide high performance in data transfer. The security introduced by IETF QUIC is
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the same as TLS 1.3, indeed both protocols are vulnerable to a very reduced number of attacks
while writing. Maybe QUIC will not substitute completely TLS in the next future, since it’s
a very important and working standard, but its diffusion and adoption for the communication
management on Internet will almost certainly grow more and more in the coming years.
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[43] B. Möller, T. Duong, and K. Kotowicz, “This POODLE Bites: Exploiting The SSL 3.0
Fallback”, September 2014, http://www.bmoeller.de/pdf/ssl-poodle.pdf

[44] J. Rizzo and T. Duong, “The CRIME attack”, ekoparty Security Conference, Buenos Aires
(Argentina), 2012

[45] A. Shulman, “A Perfect CRIME? Only TIME Will Tell”, BlackHat, Amsterdam (Nether-
lands), 2013. https://paper.bobylive.com/Meeting_Papers/BlackHat/Europe-2013/

bh-eu-13-a-perfect-crime-beery-wp.pdf

[46] Y. Gluck, N. Harris, and A. Prado, “BREACH: reviving the CRIME attack”, 2013, http:
//css.csail.mit.edu/6.858/2020/readings/breach.pdf

[47] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti,
P.-Y. Strub, and J. K. Zinzindohoue, “A messy state of the union: Taming the composite
state machines of tls”, Commun. ACM, vol. 60, Jan 2017, pp. 99–107, DOI 10.1145/3023357

[48] “FREAK attack”, 2015, https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2015-0204

[49] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube, L. Valenta,
D. Adrian, J. A. Halderman, V. Dukhovni, E. Käsper, S. N. Cohney, S. Engels, C. Paar,
and Y. Shavitt, “DROWN: Breaking TLS Using SSLv2”, 25th USENIX Security Symposium
(USENIX Security 16), Austin (Texas, USA), 2016, pp. 689–706. https://www.usenix.

org/system/files/conference/usenixsecurity16/sec16_paper_aviram.pdf

[50] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger,
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Appendix A

User’s Manual

All the code written and used during this thesis is contained inside a set of folders, divided by
protocol (‘HTTP’, ‘TLS’, ‘DTLS’, ‘QUIC’). For each protocol, with the only exception of HTTP,
there is a folder for each library through which the protocol is implement for the experiments. In
this section how to use the code developed for the thesis in order to reproduce the experiments is
explained. Each set of experiments that used some pieces of code is considered separately.

A.1 Connection Time and Time To First Byte measure-
ments

A.1.1 TLS

The code to execute to experiments concerning Connection Time and TTFB with TLS protocol is
contained inside the folder /TLS/libcurl. The source code is inside the ‘src’ subfolder (tls perf.c).
In order to use this code, it’s necessary to install 3 libraries:

❼ BoringSSL

❼ curl

❼ nghttp2

The installation paths of each one of the library must be inserted in the correct place inside
the ‘CMakeLists.txt’ file in order to compile. Subsequently the following commands must be
executed:

✩ cmake .

✩ make

The obtained program can receive the following command line arguments:

-4 to use IPv4

-2 to use HTTP/2

-3 to use TLS 1.3 (the default is TLS 1.2)

-u [website ] to select the url to which the client tries to connect

-p [port ] to select the port for the connection
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The output of the execution of this program is a set of 2 files: the first one containing the
TTFB measured value and the second with the Connection Time measured value. Moreover,
the program prints on the standard output other information about the established connection.
The folder contains also a bash script (‘run experiments.sh’) that can be used to perform 50
connections to each one of the 3 webpages considered during the experiments conducted for the
thesis (Google, Youtube and Facebook).

A.1.2 QUIC

The code to execute to experiments concerning Connection Time and TTFB with QUIC protocol is
contained inside the folder /QUIC/lsquic/bin. The client program is inside the file ‘http client.c’.
The main folder /QUIC/lsquic contains the all the code of the lsquic library, adequately modified
in order to make possible the execution of the experiments. In order to execute the code for the
experiments it’s necessary to install lsquic library and all its dependencies. To this purpose the
instruction in the thesis or the guide at the link https://github.com/litespeedtech/lsquic

must be followed. The folder /QUIC/lsquic/bin contains a Makefile that can be used, with the
make command, in order to build all the code.

In order to reproduce the thesis experiments, the http client program can be used with the
following parameters:

-t to redirect the output of the program on the standard output

-s [website ] for the webpage to visit

-p [path ] for the path requested

-v [version ] to specify the version to use between Q043, Q046, Q050, ID27, ID29 and I001

-K to discard server response

The program gives as output also two additional files containing the values of TTFB and Con-
nection Time measured during the connection to the website. The bash script ‘run experiments.sh’
inside the folder /QUIC/lsquic/bin contains the necessary code to automate the tests and execute
50 connections towards the 3 website tested during the thesis.

A.2 Handshake measurements

A.2.1 TLS

The code to execute to experiments concerning the Handshake Time with TLS protocol is con-
tained inside the folder /TLS/openssl. In order to execute this code is necessary to install the
OpenSSL library on your system, as it’s explained in the thesis. The client and server pro-
grams to perform and measure a TLS handshake are respectively contained in ‘client tls hs.c’ and
‘server tls hs.c’. These are the commands to compile client and server programs:

✩ gcc -Wall -o client_hs client_tls_hs.c -L/usr/lib -lssl -lcrypto

✩ gcc -Wall -o server_hs server_tls_hs.c -L/usr/lib -lssl -lcrypto

Once the programs are compiled, you can run them in the following way:

✩ ./client_hs <hostname> <version> <portnum> <ca_cert> <ciphersuite>

where:

hostname is the IP address to which the client is trying to connect

version is the TLS selected version (‘2’ for TLS 1.2 and ‘3’ for TLS 1.3)
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portnum is the number of the port on which the server is listening

ca cert is the path to the certificate of the CA that issued the server certificate

ciphersuite is the list of ciphersuite that you want to enable for the handshake (must be sepa-
rated by ‘:’)

✩ ./server_hs <version> <portnum> <cert_file> <key_file>

where:

version is the TLS selected version (the same as before)

portnum is the port number for the server

cert file is the path to certificate file for the server

key file is the path to the file that contains the private key of the server (corresponding to the
public one in the certificate)

The file ‘tls 1 2 supported ciphersuites’ contains all the possible ciphersuites for TLS 1.2 and
the same file is available also for version 1.3.

The main folder contains also 4 sub-folder: ca rsa cert contains the RSA certificate file of the
CA that issued the certificate of the server, while server rsa cert contains the RSA certificate and
the RSA private key of the server. There are also 2 folders with the same structure but containing
DSA certificates. These 4 folders and their content can be used to test the programs. The file
‘dh param 2048.pem’ has been generated by the command:

✩ openssl dhparam -out dh_param_2048.pem 2048

and contains additional DH-parameters for the server, that are used in case a DHE ciphersuite is
selected by the client.

The bash script ‘run experiments.sh’ can be used to automate the experiments about the
handshake. Once the server is started, this script can be executed (it receives the same parameters
as the client program) in order to try 10 connections to the server. The handshake time can be
measured through Wireshark as explained in the thesis.

A.2.2 DTLS

The code to execute to experiments concerning the Handshake Time with DTLS protocol is
contained inside the folder /DTLS/openssl. In order to execute this code is necessary to install
the OpenSSL library on your system, as it’s explained in the thesis. The client and server programs
to perform and measure a DTLS handshake are respectively contained in ‘client dtls hs.c’ and
‘server dtls hs.c’. These are the commands to compile client and server programs:

✩ gcc -Wall -o client_hs client_dtls_hs.c -L/usr/lib -lssl -lcrypto

✩ gcc -Wall -o server_hs server_dtls_hs.c -L/usr/lib -lssl -lcrypto

Once the programs are compiled, you can run them in the following way:

✩ ./client_hs <hostname> <portnum> <ca_cert> <ciphersuite>

where:

hostname is the IP address to which the client is trying to connect

portnum is the number of the port on which the server is listening

ca cert is the path to the certificate of the CA that issued the server certificate
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ciphersuite is the list of ciphersuite that you want to enable for the handshake (must be sepa-
rated by ‘:’)

✩ ./server_hs <portnum> <cert_file> <key_file>

where:

portnum is the port number for the server

cert file is the path to certificate file for the server

key file is the path to the file that contains the private key of the server (corresponding to the
public one in the certificate)

The file ‘dtls 1 2 supported ciphersuites’ contains all the possible ciphersuites for DTLS 1.2.

The main folder contains also 4 sub-folder: ca rsa cert contains the RSA certificate file of the
CA that issued the certificate of the server, while server rsa cert contains the RSA certificate and
the RSA private key of the server. There are also 2 folders with the same structure but containing
DSA certificates. These 4 folders and their content can be used to test the programs. The file
‘dh param 2048.pem’ has been generated by the command:

✩ openssl dhparam -out dh_param_2048.pem 2048

and contains additional DH-parameters for the server, that are used in case a DHE ciphersuite is
selected by the client.

The bash script ‘run experiments.sh’ can be used to automate the experiments about the
handshake. Once the server is started, this script can be executed (it receives the same parameters
as the client program) in order to try 10 connections to the server. The handshake time can be
measured through Wireshark as explained in the thesis.

A.2.3 QUIC

The code needed for the handshake measurements with QUIC protocol is contained in two
files, ‘echo client hs.c’ and ‘echo server hs.c’, inside /QUIC/lsquic/bin folder. The main folder
/QUIC/lsquic contains the all the code of the lsquic library, adequately modified in order to make
possible the execution of the experiments. In order to execute the code for the experiments it’s
necessary to install lsquic library and all its dependencies. To this purpose the instruction in the
thesis or the guide at the link https://github.com/litespeedtech/lsquic must be followed.
The folder /QUIC/lsquic/bin contains a Makefile that can be used, with the make command, in
order to build all the code.

Once the programs are compiled, the server code for the handshake measurement can be
executed as following:

✩ ./echo_server_hs -c [domain_name,cert_file,private_key_file]

With no additional parameter the server is executed on port 12345. On the other hand the client
code can be executed as following:

✩ ./echo_client_hs -s [server_addr]:12345

As showed in the corresponding thesis chapter, the measurement of the handshake time can be
executed with the help of Wireshark.

A.3 File Transfer Time measurements

This section refers to the code generated and used to execute the experiments for file transfer
time measurements. To this purpose file1, file2 and file3 in ‘/file samples’ folder are the files used
during the experiments executed to measure file transfer time (respectively of 500kB, 5MB and
50MB).
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A.3.1 HTTP

The code in folder (‘http client.c’ and ‘http server.c’) folder ‘/HTTP’ is used to implement the file
transfer with HTTP protocol. The two programs can be compiled using the following commands:

✩ gcc -Wall -o client client_http.c

✩ gcc -Wall -o server server_http.c

Once the programs are compiled, you can run the server program in the following way:

✩ ./server <port>

where:

port is the port number for the server

In order to run the HTTP client, the following command must be executed:

✩ ./client <hostname> <port> <request path>

where:

hostname is the IP address to which the client is trying to connect

port is the number of the port on which the server is listening

request path is the name of the requested file

The time needed to download a file, once server and client are executed, can be measured with
Wireshark as explained in the thesis.

A.3.2 TLS

The code to execute to experiments concerning the File Transfer Time with TLS protocol is
contained inside the folder /TLS/openssl. In order to execute this code is necessary to install the
OpenSSL library on your system, as it’s explained in the thesis. The client and server programs
to perform and measure the time needed to exchange a file with TLS are respectively contained in
‘client tls ft.c’ and ‘server tls ft.c’. These are the commands to compile client and server programs:

✩ gcc -Wall -o client_ft client_tls_ft.c -L/usr/lib -lssl -lcrypto

✩ gcc -Wall -o server_ft server_tls_ft.c -L/usr/lib -lssl -lcrypto

Once the programs are compiled, you can run them in the following way:

✩ ./client_ft <hostname> <version> <portnum> <ca_cert> <ciphersuite>

<requested file>

where:

hostname is the IP address to which the client is trying to connect

version is the TLS selected version (‘2’ for TLS 1.2 and ‘3’ for TLS 1.3)

portnum is the number of the port on which the server is listening

ca cert is the path to the certificate of the CA that issued the server certificate

ciphersuite is the list of ciphersuite that you want to enable for the handshake (must be sepa-
rated by ‘:’)

requested file is the the name of the file the client wants to download
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✩ ./server_ft <version> <portnum> <cert_file> <key_file>

where:

version is the TLS selected version (the same as before)

portnum is the port number for the server

cert file is the path to certificate file for the server

key file is the path to the file that contains the private key of the server (corresponding to the
public one in the certificate)

The time needed to download a file, once server and client are executed, can be measured with
Wireshark as explained in the thesis.

A.3.3 DTLS

The code to execute to experiments concerning the File Transfer Time with DTLS protocol is
contained inside the folder /DTLS/openssl. In order to execute this code is necessary to install the
OpenSSL library on your system, as it’s explained in the thesis. The client and server programs
to perform and measure the time needed to exchange a file with DTLS protocol are respectively
contained in ‘client dtls ft.c’ and ‘server dtls ft.c’. These are the commands to compile client and
server programs:

✩ gcc -Wall -o client_ft client_dtls_ft.c -L/usr/lib -lssl -lcrypto

✩ gcc -Wall -o server_ft server_dtls_ft.c -L/usr/lib -lssl -lcrypto

Once the programs are compiled, you can run them in the following way:

✩ ./client_ft <hostname> <portnum> <ca_cert> <ciphersuite> <requested file>

where:

hostname is the IP address to which the client is trying to connect

portnum is the number of the port on which the server is listening

ca cert is the path to the certificate of the CA that issued the server certificate

ciphersuite is the list of ciphersuite that you want to enable for the handshake (must be sepa-
rated by ‘:’)

requested file is the the name of the file the client wants to download

✩ ./server_ft <portnum> <cert_file> <key_file>

where:

portnum is the port number for the server

cert file is the path to certificate file for the server

key file is the path to the file that contains the private key of the server (corresponding to the
public one in the certificate)

The time needed to download a file, once server and client are executed, can be measured with
Wireshark as explained in the thesis.
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A.3.4 QUIC

The code needed for the file transfer time measurements with QUIC protocol is contained in
two files, ‘echo client ft.c’ and ‘echo server ft.c’, inside /QUIC/lsquic/bin folder. The main folder
/QUIC/lsquic contains the all the code of the lsquic library, adequately modified in order to make
possible the execution of the experiments. In order to execute the code for the experiments it’s
necessary to install lsquic library and all its dependencies. To this purpose the instruction in the
thesis or the guide at the link https://github.com/litespeedtech/lsquic must be followed.
The folder /QUIC/lsquic/bin contains a Makefile that can be used, with the make command, in
order to build all the code.

Once the programs are compiled, the server code for the file transfer measurement can be
executed as following:

✩ ./echo_server_ft -c [domain_name,cert_file,private_key_file]

With no additional parameter the server is executed on port 12345. On the other hand the client
code can be executed as following:

✩ ./echo_client_ft -s [server_addr]:12345 -f [requested_file]

As showed in the corresponding thesis chapter, the measurement of the file transfer time can be
executed with the help of Wireshark.
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