
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Semi-Supervised Techniques for Solar
Panel Segmentation in Aerial Images

Supervisors

Prof. Paolo GARZA

Dr. Edoardo ARNAUDO

Candidate

Antonino MONTI

December 2022

Abstract

There has been an ever-growing awareness in recent years about climate change,
a phenomenon which is caused primarily by the massive use of fossil fuels by
humans. One of the main solutions to this issue is to switch to low-carbon and
renewable forms of energy, which include solar energy.

To promote the use of photovoltaic panels, it is useful to have an extensive and
updated database of installed panels and plants, which could help with performance
evaluations, but the availability of such maps is scarce. A solution to this problem
is to employ artificial intelligence systems that automatically detect panels in
aerial images, specifically by detecting, segmenting and classifying every panel in
a given image. This is the objective of Instance Segmentation, one of the most
frequently-tackled tasks in the field of Computer Vision.

However, the effective training of a Deep Learning model is at times impeded
by the scarcity of data: it is expensive and time-consuming to gather enough
annotated data to form a reasonably large dataset. This is the case for the dataset
used for this thesis, which does not have enough annotations to obtain satisfying
results. It therefore becomes necessary to employ methods to artificially increase
the size of the dataset, such as semi-supervised learning and Unsupervised Domain
Adaptation. The former allows an algorithm to generate annotations by itself on a
set of unlabeled data after training on a small portion of labeled data, while the
latter consists in taking an algorithm that has satisfying performances on a given
domain and apply it to a different but related domain where data is scarce.

The goal of this thesis is therefore to evaluate the efficacy of semi-supervised
methods for a model trained with the purpose of detecting and segmenting solar
panels in aerial images. To this end, two such methods were explored and adapted
for the task at hand. The first is Noisy Boundaries, a framework for semi-supervised
instance segmentation which provides additional components to resist and exploit
the noise inherent in the boundaries of artificially-generated annotations. The
second is the union of DACS, a framework that performs Unsupervised Domain
Adaptation, with Instance Mixing techniques, with the end goal of increasing the
size of the dataset by copying and pasting groups of instances from labeled images
to unlabeled images, along with the automatic generation of labels on the latter.
Said techniques are evaluated and compared, highlighting their differences and
demonstrating their effectiveness in contexts with scarce annotations.

i

Acknowledgements

I would like to thank prof. Paolo Garza for the opportunity and his availability as
supervisor for this thesis. I would also like to thank Edoardo Arnaudo from the
LINKS Foundation, for the patience, support and feedback offered for both the
work performed in these months and the drafting of the thesis itself.

I would like to thank my family, for the unconditional love shown to me in these
23 years, for the financial support and the sacrifices that allowed me to pursue
my master’s degree at the Polytechnic of Turin, but most importantly for their
emotional support, for supporting me and standing by my side through thick and
thin and for bearing with me when I was particularly nervous. Despite what my
sometimes grumpy attitude might suggest, I feel extremely lucky and grateful to
have you in my life.

Last, but most certainly not least, I would like to thank all the friends I made
during these five years of university, especially, in no particular order: Mattia,
Gabriele, Francesco D.S., Giovanni, Francesco S., Riccardo, Emanuele, Francesco
D.G., Giuseppe, Salvatore, Alan, Fausto, Fabio and Gianluca. This adventure
wouldn’t have been as meaningful as it has been for me without all of you, and
you’ve helped me grow a lot as a person. I don’t know what the future holds in
store for us, but I know that I will cherish the memories of all the laughs, the
conversations and the experiences we shared along the way, and I hope we’ll make
as many more as our life paths will allow in the years to come.

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 State of the art 3
2.1 Deep Learning and Computer Vision 3

2.1.1 Deep Learning background 3
2.1.2 Convolutional Neural Networks and CV 5

2.2 Instance Segmentation . 9
2.3 Related works . 10

2.3.1 Instance segmentation . 10
2.3.2 Learning with low resources 13

3 Data Sources 15
3.1 Existing datasets . 15

3.1.1 COCO . 15
3.1.2 DOTA and iSAID . 15

3.2 Solar panels dataset . 17
3.3 Data preparation . 19

3.3.1 Supervised setting . 19
3.3.2 Semi-supervised setting . 20

4 Methodology 22
4.1 Problem statement . 22
4.2 Baselines . 23
4.3 Semi-supervised methods . 24

4.3.1 Noisy Boundaries . 24
4.3.2 IDACS . 26

iv

5 Experiments 30
5.1 Implementation details . 30

5.1.1 Frameworks and tools . 30
5.1.2 Experimental setup . 32

5.2 Evaluation metrics . 33
5.3 Results . 37

5.3.1 Comparison between experiments 39
5.3.2 Qualitative comparisons and observations 41

6 Conclusions 46
6.0.1 Limitations and future works 46
6.0.2 Final remarks . 48

Bibliography 49

v

List of Tables

3.1 Example of metadata associated with the panels. 18
3.2 Number of images for each set for the supervised setting. 20
3.3 Number of images for each set for the semi-supervised setting. . . . 21

5.1 Results on the RGB and RGB-IR datasets for the supervised setting. 37
5.2 Results on the RGB and RGB-IR datasets for the semi-supervised

Noisy Boundaries setting. Metrics in bold represent a significant
improvement over baselines. 38

5.3 Results on the RGB and RGB-IR datasets for the semi-supervised
IDACS setting, with pseudo-label generation at iteration 0. Metrics
in bold represent a significant improvement over baselines. 39

5.4 Results on the RGB and RGB-IR datasets for the semi-supervised
IDACS setting, with pseudo-label generation at iteration 5.000.
Metrics in bold represent a significant improvement over baselines. . 39

5.5 Comparison between performed experiments by using AP0.5:0.95 and
AP0.5 as reference metrics. 40

vi

List of Figures

2.1 Example of the structure of a Neural Network. 5
2.2 Structure of a convolutional layer. 6
2.3 Two examples of pooling: max pooling and average pooling. 6
2.4 Structure of LeNet-5. 7
2.5 Structure of AlexNet. 7
2.6 Structure of VGG-16. 8
2.7 Showcase of some data augmentation techniques applied to images. 9
2.8 Difference between Object Detection, Semantic Segmentation and

Instance Segmentation. 10
2.9 Structure of an R-CNN. 11
2.10 Structure of Mask R-CNN. 12

3.1 A collection of annotated images from the COCO dataset. 16
3.2 A collection of annotated images from the DOTA dataset. 16
3.3 A collection of annotated images from the iSAID dataset. 17
3.4 Comparison between polycrystalline and monocrystalline solar panels. 18
3.5 Example images from the training set of the supervised dataset,

showing annotations for monocrystalline (in red) and polycrystalline
(in blue) panels. 19

4.1 Graphical representation of the RoIAlign operation in Mask R-CNN.
The dashed grid represents a feature map, the solid lines an RoI and
the dots the four sampling points in each bin. 23

4.2 Framework for semi-supervised instance segmentation as detailed in
the Noisy Boundaries paper. 24

4.3 Structure of the Noise-Tolerant Mask head as shown in [44]. 25
4.4 Diagrams comparing the process of "Naive Mixing" (left) and DACS

(right). 27
4.5 Example of mixing in DACS, with XS, XT and XM being source,

target and mixed images, respectively. 27
4.6 Example of the Copy-Paste procedure. 28

vii

4.7 Example of mixing in the solar panels dataset, showing, from left to
right, source, target and mixed images. 29

5.1 Example of a simple confusion matrix. 34
5.2 Examples of precision-recall curves (left) and recall-IoU curves (right). 35
5.3 COCO evaluation metrics for object detection. 36
5.4 Ground truth annotations for a sample image from the test set

depicting an industrial panel plant. 42
5.5 Comparison of inference results between methods on a sample indus-

trial panel plant. The first row depicts results for methods ran on
the RGB dataset, while the second depicts result for the RGB-IR
dataset. 42

5.6 Ground truth annotations for a sample image from the test set
depicting a rural panel plant. 43

5.7 Comparison of inference results between methods on a sample rural
panel plant. The first row depicts results for methods ran on the
RGB dataset, while the second depicts result for the RGB-IR dataset. 43

5.8 Ground truth annotations for a sample image from the test set
depicting panels in an urban setting. 44

5.9 Comparison of inference results between methods on a sample image
depicting panels in an urban setting. The first row depicts results
for methods ran on the RGB dataset, while the second depicts result
for the RGB-IR dataset. 44

5.10 Sample images from the test set showing how panels not present
in ground truth annotations (left) can be detected by the models
(right, Noisy Boundaries RGB-IR as an example). 45

6.1 Inference results showing the models’ difficulty in both classifying
panels and correctly segmenting clusters of separate panels. From
left to right: ground truth, Noisy RGB-IR and IDACS 5.000 RGB-IR. 46

6.2 Inference results showing the models’ difficulty in correctly segment-
ing diagonally-oriented panels, especially when grouped in clusters.
From left to right: ground truth, Noisy RGB-IR and IDACS 5.000
RGB-IR. 47

viii

Chapter 1

Introduction

In recent years, there has been an ever-growing awareness about the phenomenon
of climate change, which has an impact on Earth’s climate system. The increase in
temperatures has been much faster than in previous changes in the planet’s climate,
and the main cause of this, along with other factors such as deforestation, is the
burning of fossil fuels by humans, which causes an increase in greenhouse gases.
Therefore, one of the most effective ways to combat this is to cut such emissions
by drastically reducing the use of fossil fuels and transition to using electricity
generated by low-carbon and renewable energy sources, such as solar energy, which
is exploited by means of photovoltaic panels.

In order to better plan out the installation of solar panels and evaluate their
efficiency, especially in the case of large-scale industrial plants, having a comprehen-
sive and up-to-date database of existing plants is crucial. However, such maps are
not always available, and one way to build them is to employ automatic detection
systems on aerial images, which is possible by using artificial intelligence and,
specifically, Machine Learning and Deep Learning systems.

One of the tasks in the field of Computer Vision that can be employed to carry
this detection out is that of Instance Segmentation, which consists in locating
single instances of objects within a given image and segmenting each of them by
producing a segmentation mask representing the shape of the instance. In the case
of aerial images and solar panels, this consists in locating instances of panels within
the images, computing the shape and extension of each by means of a segmentation
mask and, additionally, detecting the type of each panel, allowing to estimate the
extension and, consequentially, the power and efficiency of each panel.

Manually gathering enough aerial images and especially annotations to effectively
train a Deep Learning model is very expensive, both in terms of time and effort:
this is the case, for instance, for the dataset used specifically for this thesis, which
contains aerial images from the regions of Alessandria and Asti in the Piedmont
region in Italy, but which has few manually-generated annotations of solar panels

1

Introduction

at its disposal. It therefore becomes necessary to employ methods in order to
artificially expand the size of datasets. To this end, two training paradigms in
particular come to the aid: one is semi-supervised training, in which an algorithm
is fed both annotated and non-annotated content in order to learn from the former
how to generate its own labels on the latter, and the other is Unsupervised Domain
Adaptation, which consists in taking an algorithm that already performs well in a
given domain with plenty of training data and employing it to solve a problem in a
different, but related, domain with less data available.

Numerous works have tackled both of these paradigms, and in this thesis two in
particular are explored, adapted for the task at hand and finally compared. The
first is Noisy Boundaries, a framework which employs semi-supervised training
to generate pseudo-labels plus additional components to resist and exploit the
noise inherent in the boundaries of segmentation masks. The second is the union
of an existing framework called DACS, which focuses on Unsupervised Domain
Adaptation, with Instance Mixing techniques, with the aim of extending the
available data by copying annotations from labeled images and pasting them on
unlabeled images.

The thesis is structured as follows:

• Chapter 2, State of the Art, introduces the reader to background information
necessary to understand the problems and corresponding solutions presented
in this thesis and gives an overview of existing literature, with a focus on works
that deal with aerial instance segmentation and working with low resources;

• Chapter 3, Data Sources, gives an overview of the dataset used for the purpose
of this work, detailing both its properties and the procedure used to generate
the datasets;

• Chapter 4, Methodology, presents the problem statement for the thesis and
describes the process used to obtain baselines and the semi-supervised methods
employed;

• Chapter 5, Experiments, presents both the implementation details for the
experiments and a comparison of the results obtained;

• Chapter 6, Conclusions, explores future developments for the work performed
and presents final remarks on the results obtained and the thesis as a whole.

2

Chapter 2

State of the art

This chapter gives the reader background information necessary to understand the
problems and corresponding solutions described in this thesis. It first talks about
fundamental concepts in the field of Deep Learning and Computer Vision (Section
2.1), giving particular attention to Convolutional Neural Networks and image
segmentation tasks (Section 2.2). Then, it follows with an overview of existing
literature (Section 2.3) dealing with image segmentation and training models with
limited resources available, with a focus on works that tackle the problems of aerial
instance segmentation and, in particular, of detection and mapping of solar panels
within aerial images, which is the main objective of this thesis.

2.1 Deep Learning and Computer Vision
This section provides a general overview about the main concepts behind Deep
Learning and Computer Vision. In regards to the second part, it describes Con-
volutional Neural Networks along with a brief history of their development and
applications, and then focuses on the task of instance segmentation, which is at
the heart of this thesis.

2.1.1 Deep Learning background
Machine Learning (ML) is a field of study in Computer Science and a subset of
Artificial Intelligence which is focused on the use of data and algorithms to allow
computer programs to learn autonomously, imitating the way in which humans
learn. A Machine Learning algorithm can make use of Artificial Neural Networks
(ANN), computing systems whose structure is directly inspired by the structure of
an organic brain: Neural Networks are in fact made of interconnected nodes (or
neurons), organized in multiple layers.

3

State of the art

Deep Learning (DL) is a subset of ML in which algorithms use Deep Neural
Networks (DNNs), which are made up of several layers of neurons.

In ML, datasets are split into three separate subsets, each with its own purpose:
the training set, as the name implies, is a subset used during training of the
algorithm; the validation set is a subset used during training to ensure the algorithm
is learning properly and the hyperparameters used are adequate; finally, the test
set is used after training to evaluate the algorithm’s performance.

A ML algorithm learns by comparing its predictions with real data, and by
subsequently modifying its parameters in order to obtain better results for the next
batch of predictions. In practice, learning occurs by using a loss function, which
returns the error between real and predicted data: the lower the returned value,
the better the algorithm’s performance. Thus, the algorithm’s goal is to minimize
the loss function’s value as much as possible.

Algorithms can be classified depending on the way they learn from input
data. There are three main categories under which algorithms fall: Supervised,
Unsupervised and Semi-supervised.

Supervised Learning is a paradigm in which the algorithm uses exclusively
labeled data in order to learn to classify data or predict outcomes. By making use
of labeled data, the algorithm can improve its accuracy over time.

Unsupervised Learning is the opposite of Supervised Learning, meaning that
the algorithm makes use of only unlabeled data during training. Algorithms that
follow this paradigm are often used to discover hidden patterns in data without
any external intervention.

In Semi-Supervised Learning, the algorithm uses both a small portion of
labeled data and a large portion of unlabeled data during training. Usually, at
first the algorithm uses only labeled data, and afterwards uses what it learned to
generate labels of its own (called pseudo-labels) on unlabeled data, which it then
combines with manually-labeled data for further training, this time with the use of
a larger dataset. This paradigm can be particularly useful since manually creating
labels for training data is expensive and time-consuming, while gathering unlabeled
data does not require the same amount of work. Allowing an algorithm to generate
training labels on its own can thus be of great practical value.

This is also true in the case of Unsupervised Domain Adaptation tasks, in
which the aim is to take an algorithm that performs well in one or more domains
and adapt it to work on a different, but related, field. Again, this is useful when
the target domain does not provide labels of its own.

As mentioned earlier, Neural Networks (NNs) are computing systems inspired
by the structure of the human brain and which are made up of nodes (or neurons)
organized in interconnected layers.

These networks are comprised of an input layer, one or more hidden layers and

4

State of the art

Figure 2.1: Example of the structure of a Neural Network.
[Credit: Medium]

an output layer. Each of the neurons is connected to at least another one in the
network and has a weight and a threshold associated with it, plus an activation
function, which is used by the node to process its input.

The number of neurons in the input and output layers depends on what the
network receives in input and what it is expected to return in its output. However,
as the size of the input begins to grow, so does the number of parameters the
network has to handle and fine-tune at each iteration, requiring an ever-growing
expense of time and resources for training the model. This is the case, for instance,
of networks that have to analyze images, which are usually comprised of at least
three channels (RGB, i.e. Red, Green and Blue), thus greatly multiplying the
number of input features.

It is therefore necessary to find a way to compress the input and reduce how
many features are fed to the network.

2.1.2 Convolutional Neural Networks and CV
Convolutional Neural Networks (CNNs) exist to tackle the problem of feature
overgrowth, along with other issues. As the name suggests, the main difference
between a regular neural network and a CNN is the use of an operation called
convolution. The use of convolution allows to compress great numbers of low-level
features into fewer, higher-level features for the next layer in the network; it also
helps reduce overfitting, since the number of input weights is reduced.

Convolution is implemented in convolutional layers inside CNNs, and makes use

5

State of the art

Figure 2.2: Structure of a convolutional layer.
[Credit: towardsdatascience]

of one or more kernels, fixed-size windows of learnable weights that slide across the
image, computing the output features as a weighted sum of the pixels inside the
area delimited by the kernel itself. A convolution is defined by three parameters:
the size of the kernel(s), stride (i.e. by how many cells the kernel moves inside
the input matrix) and padding, the combination of which governs the size of the
output.

After applying a convolution to the input features, convolutional layers finally
apply a non-linear activation function in order to introduce non-linear behavior in
an otherwise linear operation.

Figure 2.3: Two examples of pooling: max pooling and average pooling.
[Credit: researchgate]

Another type of layers commonly found in CNNs are pooling layers, which,
intuitively, implement pooling operations. Pooling is used to further reduce the

6

State of the art

number of features by dividing the input into regions and applying a function to
each of them. There are three main types of pooling: max pooling, which selects
the maximum value from a region, min pooling, which operates in the opposite
way, and average pooling, which computes the average value of a selected group of
features. A pooling operation is defined by the size of the regions and a stride.

Figure 2.4: Structure of LeNet-5.
[Credit: topbots]

One of the first CNNs to ever be designed was LeNet-5, presented by LeCun
et al. [1]. Its structure was very simple and was not as deep as modern CNNs.
LeNet-5 operated on grayscale images and was designed to solve tasks of digit
recognition.

Figure 2.5: Structure of AlexNet.
[Credit: researchgate]

One of the first large-scale applications of CNNs to perform well with RGB
images, and to use the ImageNet dataset [2], was AlexNet, proposed by Krizhevsky
et al. [3]. As shown in figure 2.5, AlexNet has a greated depth than LeNet-5, and

7

State of the art

this characteristic, according to the original paper, was paramount to obtaining
high performances, despite the greater computational costs. The network had a
large number of parameters (about 60 million), increasing its complexity: this was
possible first and foremost thanks to the advent of GPUs as means of parallel
computing, which allowed to cut both computing times and costs by several orders
of magnitude.

Figure 2.6: Structure of VGG-16.
[Credit: researchgate]

VGG-16, presented by Simonyan et al. [4], was an attempt to reduce AlexNet’s
complexity by using a simpler and more uniform network architecture: each level
uses the same parameters for convolution and max pooling, and uses more than one
convolutional layer. Despite being deeper than AlexNet, the structure of VGG-16
is thus more uniform since levels are very similar to each other.

CNNs are nowadays widely used in Computer Vision, a field with the main goal
to give computer systems the ability to derive high-level information from images,
videos and other visual media as a human would. Some of the most frequent tasks
in this field include classification and/or detection tasks such as image classification
or object detection, image segmentation tasks such as semantic segmentation and
instance segmentation, and generative tasks such as Super Resolution and Neural
Style Transfer.

In order to achieve satisfying performances with Deep Learning models, datasets
need to be large and varied enough to provide the algorithm with sufficient data
to learn how to make correct predictions. However, gathering data is often costly,

8

State of the art

both in terms of time and resources, and some datasets can therefore be too small
or too uniform in order to make training efficient or even possible.

A classic solution adopted in literature for this issue is the use of data augmenta-
tion techniques, the purpose of which, as the name implies, is to artificially increase
the quantity and variety of data within the dataset by applying subtle alterations
to existing data.

Figure 2.7: Showcase of some data augmentation techniques applied to images.
[Credit: Medium]

In the field of Computer Vision, which deals with images, there are mainly
two types of data augmentation techniques: geometric augmentations, which
include transformations such as rotation, scaling and translation and photometric
augmentations, which operate on the values of each pixel such as contrast, brightness
and color.

2.2 Instance Segmentation
As mentioned earlier, instance segmentation is among the most frequently tackled
tasks in the field of Computer Vision, and the one this thesis revolves around. It
can be thought of as the union of two other tasks: object detection and semantic
segmentation.

Object detection consists in detecting and classifying objects within an image.
The goal here is twofold: detecting each object’s position inside the image and then
assigning each a class. This is achieved through the use of bounding boxes, which
are essentially rectangles surrounding the objects, defined by their position inside
the image and their width and height.

9

State of the art

Figure 2.8: Difference between Object Detection, Semantic Segmentation and
Instance Segmentation.

[Credit: towardsdatascience]

The goal of semantic segmentation, on the other hand, is to classify every
single pixel inside the image. This means that all the pixels associated to a class
are considered as a single entity, even if they are not close to each other.

The aim of instance segmentation is to identify each instance of each object
inside an image. This is achieved by first predicting a bounding box for each object
(like in object detection) and then applying a segmentation process to the area
inside the box, thus detecting the pixels that represent the instance. The main
difference between this process and the one carried out by semantic segmentation
is that the latter does not distinguish between single instances of an object, while
the purpose of instance segmentation is exactly that.

2.3 Related works
2.3.1 Instance segmentation
Given that part of the process of instance segmentation essentially follows that of
object detection, this paragraph will explore some of the approaches historically
employed to solve the latter problem and will then present solutions devised for
the former.

Unlike tasks such as classification, object detection requires localization of the
(likely many) instances inside the input images. Some of the first solutions proposed
regression as a potential approach; however, later works [5, 6] show that such a
method could prove to be suboptimal in practice. Other works [7, 8, 9] propose the
use of a sliding-window approach, in which a window of fixed size is defined and
moved inside the image, defining regions that are then processed by a convolutional

10

State of the art

network. Sliding-window detectors were initially CNNs with few layers; however,
with the passing of time and the increase in depth of CNNs such an approach
proved to be challenging to implement and possibly inefficient.

Thus, another method employed to perform object detection is region proposals,
consisting in defining regions of interest (RoIs) within the image. These regions
are assumed to have useful information and are fed to a ConvNet, which proceeds
to classify each of them.

Figure 2.9: Structure of an R-CNN.
[Credit: stackoverflow]

Region-based CNNs (R-CNNs) are CNNs that use region proposal, and were
first introduced in the work of Girshick et al. [6]. Such an approach allowed to
manage a reasonable number of RoIs and to evaluate performances independently
on each region. [10, 11, 12, 3] The process of R-CNNs was extended and improved
in order to include RoI Pooling with Fast R-CNN, proposed by Girshick et al. [13].
This, as the model’s name implies, allowed for faster processing and more accurate
detection. Faster R-CNN, later proposed by Ren et al. [14], further built upon this
idea by adding a new stage to detection with a Region Proposal Network (RPN), a
CNN which shared its backbone with Fast R-CNNs.

Given the success R-CNNs had in the field of object detection, they were adapted
and employed to perform instance segmentation as well. Mimicking region proposal,
many approaches used a method called segment proposal [6, 15, 16]. Some works
performed segment proposals before region proposals [17, 18, 19], while others
performed it afterwards [20].

A real breakthrough, both in terms of performance and efficiency, was obtained
with Mask R-CNN. The framework, proposed by He et al. [21], performs segment

11

State of the art

Figure 2.10: Structure of Mask R-CNN.
[Credit: pythonawesome]

proposal in parallel with region proposal, by adding a branch for predicting ob-
ject masks in parallel with the existing branch for bounding box detection and
classification.

The applications of instance segmentation are numerous. An example is the
development of self-driving cars, which are required to have a detailed view of
their surroundings and to recognize the objects in their field of view. A process
of instance segmentation can help by detecting all objects (including pedestrians)
and thus giving the car the information it needs. Another example can be found in
the medical field, where detecting and segmenting anomalies in medical scans can
be of great use.

Another field of application for instance segmentation is the detection of objects
within aerial images. The field has received much attention with the release of
datasets such as DOTA [22], iSAID [23] and Visdrone [24], and many existing
works have designed frameworks and methods to obtain satisfying results for both
object detection [25, 26, 27] and instance segmentation [28, 29, 30].

A specific use case of aerial image segmentation, and the main objective of this
work, is the detection and mapping of solar panels in aerial images. Having a
comprehensive and up-to-date database of the location of solar panels is essential
for policy making and financial assessment, but such maps are not always available,
especially for large areas, making automatic detection a valid choice for building
them. In literature, a few works [31, 32, 33] have addressed the task, with the
prevalent method of choice being semantic segmentation. Few methods employed
instance segmentation, and part of the purpose of the work of this thesis is to
propose a method that tackles this task specifically.

12

State of the art

2.3.2 Learning with low resources

As mentioned earlier, training an algorithm with small datasets can prove challeng-
ing or even impossible, since the model is not provided with enough information
to make reasonable predictions on real data; furthermore, the labeling process is
often time- and resource-consuming, meaning there is often a scarcity of labeled
data. Thus, using non-fully supervised methods such as semi-supervised training
or domain adaptation can be of great help in training models with few resources
available.

In the field of semantic segmentation, several methods [34, 35, 36, 37] have
obtained competitive results on challenging benchmarks while requiring much less
annotations effort than fully supervised methods. Others, like the frameworks
DACS and DAFormer, proposed by Tranheden et al. [38] and Hoyer et al. [39]
respectively, address the issue of data scarcity by making use of synthetic data,
which is much easier to obtain and label, to train algorithms. In particular, the
main contribution of DACS is the mixing of synthetic and real data, along with
the corresponding labels and pseudo-labels. DAFormer further improves on this
idea by employing Transformers [40, 41] and particular training strategies.

The problem of limited data in instance segmentation is aggravated by the need
of bounding box annotations in addition to pixel-wise mask annotations. However,
while masks are rather expensive to annotate, bounding boxes prove to be cheaper
to produce. The ShapeProp framework, proposed by Zhou et al. [42], exploits the
abundance of box annotations by using a model that learns to extract salient regions
from the object detection output and mixes them with the few mask annotations
to extract shape representation. The work of Tian et al. [43] is also based on this
and proposes a framework which supervises mask training without relying on any
mask annotations. This is achieved by redesigning the loss used for mask learning,
without any modifications to the segmentation network.

Other methods employ the use of pseudo-labels generated by the model itself on
unlabeled images, mixing them with existing labeled data. However, the boundaries
of the generated masks and boxes often contain a lot of noise, but the work of
Wang et al. [44] points out that such noisy boundaries are double-edged, and thus
aims to exploit the positive aspects while mitigating the negatives.

Finally, the field of aerial instance segmentation presents some additional chal-
lenges: objects in aerial images are often too small for traditional instance segmen-
tation methods to perform well, and there are few datasets with mask annotations,
most of them being designed for object detection and therefore having only box
annotations. The work of de Carvalho et al. [45] addresses these two problems by
proposing, among other methodologies, a bounding box-free instance segmentation
method which exploits object interiors and contours to isolate them and generate
separate instances. On the other hand, the work of Li et al. [46], similarly to [43],

13

State of the art

exploits solely box annotations by using a box-supervised method, and tackles the
issues of aerial image segmentation by proposing a level set method which is able
to accurately recover object boundaries and distinguish each instance from the
background.

The main limitation of the above works is that only bounding box annotations
are used, without exploiting any segmentation masks. The two approaches outlined
in this thesis both aim to use both types of annotations present in the dataset,
with the first being the Noisy Boundaries framework described above, and the
other employing a semi-supervised method that generates pseudo-labels and makes
use of instance mixing inspired by the techniques used in Unsupervised Domain
Adaptation.

14

Chapter 3

Data Sources

This section provides an overview of existing state-of-the-art datasets (Section
3.1) for the purpose of instance segmentation and, specifically, aerial instance
segmentation, together with the datasets used specifically for the purpose of
this thesis (Section 3.2). In particular, it also describes the processes of data
preparation (Section 3.3) employed for the supervised and the semi-supervised
settings to generate the datasets.

3.1 Existing datasets

3.1.1 COCO
The COCO (Common Objects in COntext) dataset, presented in the work of Lin
et al. [47], was created to help advance the state-of-the-art in object recognition
tasks, including image classification, object detection, semantic segmentation and
instance segmentation. The dataset contains 2.5 million images depicting everyday
scenes containing common objects in their natural context.

All images are labeled using per-instance segmentations, making them particu-
larly useful for precise object localization and also making them useful for all the
aforementioned tasks. The dataset contains natural photos of 91 different object
types, namely people, animals and common objects of varying sizes and shapes.

3.1.2 DOTA and iSAID
DOTA (Dataset for Object deTection in Aerial images), presented by Xia et al.
[22], is a dataset with the specific purpose of advancing research in Earth Vision
applications. As the name suggests, DOTA is a collection of about 2.800 aerial
images, gathered from several sources and platforms, and contains about 188.000

15

Data Sources

Figure 3.1: A collection of annotated images from the COCO dataset.
[Credit: researchgate]

instances, each annotated with an oriented bounding box and a corresponding
class.

Figure 3.2: A collection of annotated images from the DOTA dataset.
[Credit: captain-whu.github.io]

16

Data Sources

iSAID (Instance Segmentation in Aerial Images Dataset), presented by Waqas
et al. [23], builds on DOTA to create a dataset with essentially the same purpose,
but for instance segmentation. The dataset contains the same 2.800 images from
DOTA, but was annotated from scratch for two reasons: first, DOTA only contains
bounding box annotations, making it unsuitable for instance segmentation; second,
DOTA also suffers from problems such as missing instance annotations or inaccurate
bounding boxes. The result is that iSAID contains more than 688.000 annotated
instances, more than double the original number of instances.

Figure 3.3: A collection of annotated images from the iSAID dataset.
[Credit: captain-whu.github.io]

The dataset has been tested with Mask R-CNN and PANet [21, 48], but the
results proved to be suboptimal, indicating that specialized solutions are necessary
for instance segmentation in aerial images.

3.2 Solar panels dataset
The dataset used for this work also comprises high-resolution aerial images. Specifi-
cally, it is an orthophoto dataset comprising two large areas in the Piedmont region
in Italy, including the provinces of Asti and Alessandria. These areas are further
split into 105 different georeferenced tiles in GeoTIFF format: each tile covers
a wide area of about 6 × 4.8 Km with a resolution of 30cm/pixel, equivalent to

17

Data Sources

an average size of 20.000 × 16.000 pixels, and provides four bands, namely Red,
Green, Blue and Infrared (RGB-IR). As for annotations, the dataset was manually
annotated with more than 9.000 panels provided as a shapefile, along with useful
metadata such as panel category, its extent and the plant to which it belongs, as
shown in Table 3.1.

ID Plant ID Region Province Type Category Orientation Power Geometry
0 16346 777777777 Piemonte Asti Industriale Poli cristallino Sud-Est-Ovest 947.60 POLYGON ((8.11165 45.03408, ...
1 16348 777777777 Piemonte Asti Industriale Poli cristallino Sud-Est-Ovest 947.60 POLYGON ((8.11142 45.03477, ...
2 6908 1648 Piemonte Asti Industriale Mono cristallino Sud 100.91 POLYGON ((8.12238 44.86116, ...
3 12013 1727 Piemonte Alessandria Industriale Mono cristallino Ovest 105.69 POLYGON ((8.44282 44.95028, ...
4 14625 1781 Piemonte Asti Industriale Poli cristallino Sud 575.77 POLYGON ((8.32086 44.87613, ...

Table 3.1: Example of metadata associated with the panels.

In particular, each individual panel (i.e. each instance) is classified either
as monocrystalline or polycrystalline, which are the most common categories of
photovoltaic (PV) panels. The main difference between them is the configuration
of silicon: in monocrystalline panels, each PV cell is made of a single silicon
crystal, while in polycrystalline each cell is made up of multiple silicon crystals that
are melded together during manufacturing. This classification is crucial for the
purpose of delineation, given that the silicon structure affects their performance
and appearance.

Figure 3.4: Comparison between polycrystalline and monocrystalline solar panels.
[Credit: prostarsolar.net]

Monocrystalline panels are characterized by black PV cells with rounded edges
and have a higher conversion efficiency. They are also more expensive because the
manufacturing process is more complex.

Polycrystalline panels, on the other hand, have blue PV cells with straight edges
and have a lower efficiency than monocrystalline panels, meaning that more panels
have to be employed to achieve the same power; furthermore, they are also more

18

Data Sources

affected by high temperatures, reducing their effectiveness on hot days. However,
they are also cheaper because the manufacturing process is simpler.

Within the dataset, monocrystalline panels are much more scarce than poly-
crystalline panels, with the latter making up roughly 95% of available annotations,
making it difficult for the model to accurately detect and classify the former.

Another challenge presented by the dataset is precisely the total number of
available annotations, which is too limited to properly train a model on the dataset.

3.3 Data preparation
The generation of the train/test/validation split for training followed two slightly
different processes for supervised training and semi-supervised training, which will
be explained in this section.

In both cases, two different versions of the dataset were produced: one with
RGB-only images and one with RGB-IR images. The number of images produced
is the same, with the only difference being the number of bands. This means
that, ultimately, four different datasets were used: two (RGB and RGB-IR) for
fully-supervised training and two (RGB and RGB-IR) for semi-supervised training.

3.3.1 Supervised setting

Figure 3.5: Example images from the training set of the supervised dataset,
showing annotations for monocrystalline (in red) and polycrystalline (in blue)
panels.

In regards to the supervised setting, each of the 105 large tiles is split into
patches of 512×512 pixels: this size was chosen as a compromise between including
the maximum panels possible in each patch and not slowing down training too
much. Patches are assigned to a set depending on the province they belong to: tiles
comprising parts of the province of Asti are used exclusively for the test set, while

19

Data Sources

tiles comprising parts of Alessandria are used for both the training and validation
sets. The reason behind this decision is that the number of panel instances in
Asti is much smaller than the number of panels in Alessandria, thus providing the
model with a large number of images for training and validation; however, the
distribution of mono and polycrystalline panels remains comparable.

To generate patches, the procedure analyses each tile and checks whether it
intersects any panels. If no intersection is found, the tile is discarded. Otherwise,
the script gathers information from the shapefile metadata about every plant
included in the tile, and then iterates them with a loop. For each plant, the
procedure centers the window on the plant, outlining its boundaries and operating
solely within them; then, it computes the number of patches based on the width
and height of the plant boundaries and finally computes an overlap by dividing the
remainder by the number of patches. This decision was made in order to maximize
the number of panels contained in each image, thus improving the quality of the
sets.

During this windowing process, the procedure checks whether the current patch
intersects any panel from the shapefile; if there is no intersection, the patch is
skipped. Otherwise, the patch is saved as a raster file in TIFF format.

Train Val Test
Number of images 519 95 169

Table 3.2: Number of images for each set for the supervised setting.

Patches generated from the province of Asti were all assigned to a test set, while
patches generated from the province of Alessandria were split into a training and a
validation set with percentages 70/30 respectively, with the end result detailed in
Table 3.2.

As for annotations, panel metadata from the shapefile was converted into a
COCO-compliant format compatible with the adopted framework, described in
Section 5.1.1.

3.3.2 Semi-supervised setting
As mentioned earlier, the pre-processing method for the semi-supervised setting was
organized slightly differently because it was necessary to also generate unlabeled
images.

In the case of the training set, the procedure has to save both labeled and
unlabeled images to be used for semi-supervised training. While labeled images are
generated in the same manner as described for the supervised setting, the procedure
for generating unlabeled images cannot be the same employed for the other sets,

20

Data Sources

since centering on plants would make obtaining images without any panels very
unlikely. Thus, another windowing process was adopted: this procedure takes tiles
from Alessandria and generates patches with a fixed overlap of 256 (half the size of
the sides of a single patch) without centering on plants. This means that it has to
iterate through the entire tile, greatly increasing the number of images produced.
For each patch the procedure checks whether it intersects any panels at all; if it
intersects at least one panel, then the image is skipped; otherwise, if no intersection
is found it is saved as an unlabeled image, with no associated annotations. The
end result is detailed in Table 3.3.

Train - labeled Train - unlabeled Val Test
Number of images 519 55647 95 169

Table 3.3: Number of images for each set for the semi-supervised setting.

21

Chapter 4

Methodology

This chapter presents the problem statement for this work (Section 4.1) and
describes the process followed to obtain baselines in a fully supervised setting
(Section 4.2), together with the semi-supervised methods employed to obtain better
results (Section 4.3).

4.1 Problem statement
This work addresses the problem of semi-supervised domain adaptation in an
instance segmentation setting by employing semi-supervised techniques for a dataset
of aerial images containing solar panels. Specifically, the goal within the task of
instance segmentation is to first locate instances of panels within the image, and
then assign a class to and segment each instance by producing a segmentation mask
which delineates its shape. The end result is the training of a model which, given
an aerial image external to the training dataset as input, can accurately predict
the location, class and precise shape of each panel instance, if any, contained in
the image, producing a set of bounding boxes, class predictions and segmentation
masks as a result.

Let Sl be the set of labeled images, containing Nl samples, and Su be the set of
unlabeled images, containing Nu samples. A batch of b images and ground truth
labels, Xl and Yl respectively, are sampled from Sl, while a batch of b images Xu

are sampled from Su.
Let nl be the number of instances associated with the image xl ∈ Xl. The labels

yl ∈ Yl associated with xl are defined as yl = {(bi, mi, ci)|i ∈ [1, nl]}, where bi, mi

and ci represent the bounding box, mask and class annotation for the i-th instance,
respectively.

The images Xu are fed to the network fθ to generate a batch of pseudo-labels
Ŷu. The algorithm then follows the standard procedure of a supervised learning

22

Methodology

approach, by computing predictions, performing backpropagation and a step of
gradient descent, executing all of these operations with both labeled images and
ground truth labels Xl and Yl and unlabeled images and pseudo-labels Xu and Ŷu.
This process is repeated for a set number of iterations N .

4.2 Baselines
Baselines for the supervised setting were obtained by training Mask R-CNN [21]
on the datasets described in Section 3.3.1. Both RGB and RGB-IR datasets were
used, with slightly different results.

As briefly described in Section 2.3.1, the process and architecture of Mask
R-CNN follow those of Faster R-CNN, with the addition of a mask head to generate
instance mask predictions for instances contained in each RoI.

Specifically, it consists of two stages. The first stage is the Region Proposal
Network (RPN), which is a CNN that takes an image as input and outputs a set
of candidate object bounding boxes.

The second stage is made up by two components that work in parallel with
each other: the first is essentially the architecture of Fast R-CNN, which extracts
features using RoIPool from each candidate box to predict classes and bounding
boxes for each; the second is a component that outputs a binary mask for each RoI.
While useful for classification and bounding box predictions, the RoIPool operation
has a negative impact on the prediction of pixel-accurate masks. Mask R-CNN
therefore introduces RoIAlign to align the extracted features with the input to
improve the quality of mask predictions.

Figure 4.1: Graphical representation of the RoIAlign operation in Mask R-CNN.
The dashed grid represents a feature map, the solid lines an RoI and the dots the
four sampling points in each bin.

In particular, RoIAlign exists to address the problem of misalignments between
the RoI and the extracted features due to the quantizations introduced by the
RoIPool operation. This is achieved by avoiding any quantizations of the RoI
boundaries or bins and by using bilinear interpolation to compute the exact values

23

Methodology

of the input features at four regularly sampled locations in each RoI bin. The
results of this operation are then aggregated by using max or average.

Since the base version of Mask R-CNN works with RGB images, its input layer
has to be adapted for it to accept RGB-IR images, which have 4 channels total.
This is carried out by simply copying the weights of the layer associated with the
red channel of the input to a fourth channel, as is common practice in similar
computer vision tasks [49].

4.3 Semi-supervised methods
This section describes the two semi-supervised methods employed to address the
issue of data scarcity in the proposed solar panels dataset. In particular, it first
outlines the methodology employed by the Noisy Boundaries framework and then
describes an approach designed for this work, referred to as IDACS (Instance-
DACS).

4.3.1 Noisy Boundaries
One of the semi-supervised approaches employed was designed by adapting the
framework of Noisy Boundaries [44] to the solar panels dataset.

Figure 4.2: Framework for semi-supervised instance segmentation as detailed in
the Noisy Boundaries paper.

The Noisy Boundaries framework is composed of three main steps. First, a
teacher model is trained on the set of labeled images by also employing Mask
R-CNN as the model; said teacher is used to generate pseudo-labels on images on
which a student model is later trained.

Second, the pre-trained teacher model is used to make inference on unlabeled
images to generate pseudo-labels. This step makes use of data augmentation such

24

Methodology

as scaling or horizontal flipping (referred to as "weak augmentations") to improve
mask quality and reduce miscalibration of neural networks. To acquire generated
pseudo-labels, the raw inference mask is processed by comparing scores with two
kinds of thresholds: a box-level threshold and a pixel-level threshold. However,
these thresholds are not fixed and are computed to match the distribution between
labeled and unlabeled images: this is done to prevent bias towards dominant classes
in the detection branch and to prevent the imbalance between foreground and
background pixels from affecting predictions.

In the third and final step, the student model is trained on labeled images and
pseudo-labeled images, with both sets being subjected to strong augmentations, in
contrast to the weak augmentations applied to unlabeled data in the previous step.

The contribution of the Noisy Boundaries framework also comprises two addi-
tional components, both employed within the student model’s pipeline: a Noise-
Tolerant Mask head (NTM), which helps the model better resist the noise inherently
existent in pseudo-labels, and a Boundary-Preserving Map (BPM), which improves
the model’s ability to learn from boundary-related regions.

Figure 4.3: Structure of the Noise-Tolerant Mask head as shown in [44].

Specifically, the main idea behind the NTM is that noise is more prevalent in
boundary-related regions, the details and features of which are visible only when
the mask resolution is high enough. If the size and the resolution of the RoI are
small enough, image details, where noise mainly lies, can be implicit. For this
reason, the NTM adds a branch for low-resolution mask prediction: with a smaller
size and lower resolution, its features are cleaner and more noise-resistant, meaning
it is able to use more accurate information. However, the predicted segmentations
are coarse and usually do not preserve details, so the original high-resolution mask
head, which aims to learn fine-grained information, is still retained. The features
from the low-resolution branch are fused into the high-resolution branch.

On the other hand, the BPM was designed to preserve information derived from
instance boundaries, which are essential to the quality of predicted masks. To
promote boundary learning, the model should focus more on pixels close to the

25

Methodology

boundaries, but pixels that are most likely to be noisy are the ones extremely close
to the boundaries. Therefore, the goal of the BPM is to re-weigh mask loss for
pixels, by assigning to each pixel a value that is inversely proportional to their
distance to boundaries, while at the same time assigning a low value to pixels in
extreme proximity to boundaries to suppress noise.

For the purpose of this work, the framework was slightly adapted to fit the
requirements for the task. First, it was modified to handle both RGB and RGB-IR
images, in the same way Mask R-CNN was adapted for the baselines; second, the
second step of the framework used the solar panel dataset’s unlabeled image set to
generate pseudo-labels.

Algorithm 1 Noisy Boundaries algorithm
Require: Labeled set Sl, unlabeled set Su, instance segmentation networks tθ, sγ .

Initialize network weights θ, γ with pre-existing values θ′, γ′.
1: for i = 1 to Nt do
2: Xl, Yl ∼ Sl

3: Train teacher network tθ on labeled batch Xl, Yl

4: end for
5: Ŝu ← ∅
6: for j = 1 to Nu do
7: xu ∼ Su

8: ŷu ← tθ(xu) ▷ Generate pseudo-labels on unlabeled image
9: ŷ′

u ← Pseudo-labels filtered on box-level thresholds Tb and pixel-level thresh-
olds Tp

10: Add unlabeled image and pseudo-label pair (xu, ŷ′
u) to Ŝu

11: end for
12: for k = 1 to Ns do
13: Xl, Yl ∼ Sl

14: Xu, Yu ∼ Ŝu

15: Train student network sγ on labeled and pseudo-labeled batches
Xl, Yl, Xu, Yu

16: end for
return sγ

The algorithm for the Noisy Boundaries framework is detailed in pseudocode in
Algorithm 1.

4.3.2 IDACS
The approach designed specifically for this work is a semi-supervised method that
combines the framework DACS and instance mixing techniques, and was thus

26

Methodology

named IDACS (Instance-DACS).
As mentioned in Section 2.3.2, Domain Adaptation via Cross-domain mixed

Sampling (DACS) [38] is a framework for semantic segmentation tasks that ad-
dresses the problem of Unsupervised Domain Adaptation (UDA). In particular,
DACS attempts to address the issue of low-quality pseudo-labels arising from the
domain shift by mixing images from the source and target domain along with the
corresponding labels and pseudo-labels. The resulting samples are then trained on,
along with the existing labeled data.

Figure 4.4: Diagrams comparing the process of "Naive Mixing" (left) and DACS
(right).

Works prior to DACS that dealt with UDA applied an approach referred to as
"Naive Mixing", where target-domain samples are mixed to generate augmented
images and corresponding pseudo-labels. However, this solution performed poorly
in practice, causing a problem referred to as class conflation, in which classes with
fewer occurrences are confused with more frequent and similar classes.

Figure 4.5: Example of mixing in DACS, with XS, XT and XM being source,
target and mixed images, respectively.

Thus, the main idea behind DACS is to mix images across domains: target-
domain samples are first fed to the network to produce pseudo-labels; then, aug-
mented images are generated by mixing a set of pixels from a source domain sample
and another set of pixels from a target domain sample, along with any ground
truth labels or pseudo-labels associated with each set. These images are then used
to train the network.

27

Methodology

In the context of this work, the source domain and the target domain were
made up of labeled and unlabeled images, respectively, from the same dataset and
domain. The mixing process had to be adapted for instance segmentation by means
of instance mixing.

The work of Ghiasi et al. [50], referred to as Copy-Paste, best summarizes the
approach of instance mixing adopted for this work. The method can be thought
of as a simple copy-paste operation of instances from one image to another. While
in DACS mixing is performed by pasting pixels belonging to a specific semantic
class on the target image, which can thus contain multiple instances of the same
type, in instance mixing this is done by cutting out instances separately from one
another and pasting them on the target image.

Figure 4.6: Example of the Copy-Paste procedure.

The process proposed by Copy-Paste is very simple. Two images are randomly
selected and augmentations such as random scale jittering and random horizontal
flipping are applied to each of them. Then, a random subset of instances from one
images is selected and pasted on the other. Finally, ground-truth annotations are
adjusted accordingly, by removing fully-occluded objects and updating their mask
and bounding box annotations.

Testing for Copy-Paste was done on COCO [47], which, as explained earlier in
Section 3.1, is a dataset containing natural photos depicting common objects in their
everyday context. This means that geometric augmentations, such as rotations, are
not suited for this dataset, since certain transformations could mislead the model
during its training by generating potentially unnatural scenes. However, in the
setting of aerial images and, specifically, of solar panel detection and segmentation,
such problems do not exist, since panels are always viewed from above, so for the
purpose of this work augmentations such as rotation, shifting and vertical flipping
were applied to the source images before performing instance mixing. Furthermore,

28

Methodology

Figure 4.7: Example of mixing in the solar panels dataset, showing, from left to
right, source, target and mixed images.

only a percentage of panel instances were selected before mixing to add more variety.
An example of mixing in the solar panels dataset is shown in Figure 4.7.

Algorithm 2 IDACS algorithm
Require: Labeled set Sl, unlabeled set Su, instance segmentation network fθ.

Initialize network weights θ with pre-existing values θ′.
1: for i = 1 to N do
2: Xl, Yl ∼ Sl

3: Xu ∼ Su

4: Ŷu ← fθ(Xu) ▷ Generate pseudo-labels on unlabeled batch
5: Ŷ ′

u ← Selection of pseudo-labels from Ŷu where confidence ≥ T
6: Y ′

l ← Selection of n′
l out of nl(0 < n′

l ≤ nl) labels for each image yl ∈ Yl

7: Xm, Ym ← Result of mixing and augmentation of Xl, Y ′
l with Xu, Ŷ ′

u

8: Train fθ on labeled and mixed batches Xl, Yl, Xm, Ym

9: end for
return fθ

The implementation of IDACS is detailed as pseudocode in Algorithm 2, where
Xm and Ym represent the batch of images and labels generated as the result of
instance mixing, Y ′

l is the subset of labels selected from each labeled image and T
is the threshold value for pseudo-label filtering.

29

Chapter 5

Experiments

This chapter presents the implementation details for the experiments ran for the
purpose of this work (Section 5.1), together with an explanation of the metrics
used to do evaluation (Section 5.2). Finally, the results of the experiments are
presented in detail (Section 5.3), along with a qualitative comparison.

5.1 Implementation details
This section first gives an overview of the frameworks and tools used to run the
experiments described in this chapter, together with a detailed description of the
hyperparameters and the procedures used during the experiments, starting with the
setup for the supervised setting and then moving on to the setup for experiments
made with the Noisy Boundaries and IDACS frameworks.

5.1.1 Frameworks and tools
The following is a list of frameworks and tools used in the context of this thesis:

• Python is a high-level programming language, supporting multiple program-
ming paradigms, including structured, object-oriented and functional program-
ming. It is one of the most popular programming languages overall, commonly
used in several computer science fields including artificial intelligence and
machine learning.

• QGis is an open-source Geographic Information System (GIS) which allows
the user to analyse, edit, compose and export spatial information through a
graphical user interface. It displays information through different layers and
it was useful to map out the distribution of panels in the areas of Alessandria
and Asti.

30

Experiments

• pandas and GeoPandas are open-source tools, based on Python, used to
analyse and manipulate data, with the latter being an extension of the former
with the purpose of facilitating the analysis and processing of geospatial data.
They were mainly used to process the panel annotations contained in the
shapefiles provided.

• raster.io is a library offering APIs based on n-dimensional arrays to read and
write geospatial raster data organized in formats such as GeoTIFF. It was
used, along with pandas and GeoPandas, during the pre-processing phase to
build the solar panels datasets used for this work.

• OpenCV is an open-source computer vision library, written in C++ and
offering APIs for languages such as Python, Java and MATLAB.

• PyTorch is a machine learning framework based on the Torch library, frequently
used to develop deep learning software. One of the main features it offers is
computing through tensors, a custom class similar to NumPy arrays which
can be operated on with an NVIDIA GPU supporting CUDA.

• MMDetection is an open-source object detection and instance segmentation
library based on PyTorch, and it is part of the OpenMMLab project. It
supports most popular and contemporary object detection frameworks such as
Faster R-CNN and Mask R-CNN and organizes its content modularly, simpli-
fying the construction of a custom object detection framework by combining,
creating and editing different modules. It was used as the basis to implement
frameworks and run experiments.

• MMCV is a library developed for computer vision research as part of the
OpenMMLab project, offering functionalities such as IO APIs, image and
video processing and visualization of images with relative annotations. It is
used extensively in the context of MMDetection to implement and support a
variety of features.

• Tensorboard is a toolkit, developed as part of the TensorFlow platform, used
in the field of machine learning and it offers visualization tools such as tracking
of metrics (e.g. loss and accuracy), visualization of model graphs and more.
In the context of this work, it was used to track the evolution of losses and
average precision during training in order to evaluate model performances.

Every experiment was performed on a machine with an Intel Xeon Silver 4126
CPU and one NVIDIA RTX 2080Ti GPU.

31

Experiments

5.1.2 Experimental setup
All experiments described in this chapter were done on the solar panels dataset
described in Section 3.3, which comprises images of size 512× 512 pixels. Unless
specified otherwise, batch size was set at 10 as a compromise between shortening
training times and GPU memory capabilities.

Within the training pipeline, images were augmented both geometric and pho-
tometric augmentations. Horizontal and vertical flip, random 90-degree rotation
and transposition were chosen as geometric augmentations, while gaussian noise
and blur (only one applied at a time) were used as photometric augmentations, all
with a probability of 50% to be applied to each image. Geometric augmentations
were set to be applied to all the channels of a single image, while photometric
augmentations were applied solely to RGB channels, leaving the IR channel (if
present) unchanged. Additional photometric distortions (which included randomly
changing brightness, saturation, hue and contrast values) were also applied after
these augmentations.

Finally, all models had their weights initialized with a checkpoint from a pre-
trained ResNet model on DOTA [22], which does not provide RPN and RoI head
weights.

Supervised setting

For the supervised setting and for both RGB and RGB-IR datasets, training was
set to last 300 epochs, with an SGD optimizer and a learning rate set to 3e− 3,
with a warm-up of 30 epochs and a warm-up ratio of 1e− 4. The learning rate was
also set to decay from epoch 250 to epoch 295, while momentum was set at 0.9
and weight decay at 1e− 4.

Noisy Boundaries

As mentioned in Section 4.3.1, the Noisy Boundaries framework is made up of three
steps. The hyperparameters used for the first and third steps were exactly the same
as the ones detailed in the supervised setting, given that the former is essentially a
supervised training of Mask R-CNN and the latter is again a supervised training
with pseudo-labeled images and additional components.

IDACS

For IDACS, training was set to last 40.000 iterations instead of 300 epochs. This
choice was made because the size of the dataset was computed by accounting for
all possible combinations of labeled and unlabeled images, meaning a single epoch
would have to iterate through about 22 million images, making training unfeasible

32

Experiments

in a reasonable amount of time. Considering that 300 epochs for the previous
datasets were equivalent to about 20.000 iterations, this number of iterations felt
appropriate. The learning rate was kept at 3e− 3, while its warm-up was set to end
at 500 iterations and its decay started at iteration 32000 and ended at iteration
35000. Batch size was reduced to 6 due to limited GPU memory capabilities.

Before mixing, 75% of instance annotations from labeled images were selected,
and they were augmented with additional augmentations in order to increase
variety in the resulting mixed images. Namely, the set of geometric augmentations
described earlier was used, along with additional affine augmentations (with a 50%
probability of being applied), which included translation, free rotation, scaling and
shearing; however, transformations such as translation bear the risk of producing
images without any annotations, so in cases where this happened only the result of
geometric augmentation was kept.

As for pseudo-labels, the confidence threshold for generated predictions was
set to 0.968, as done in [38], in order to keep only the model’s best predictions.
Furthermore, two kinds of experiments were run: one kind where pseudo-labels
are generated starting from the very first iteration, and another where they are
generated after 5.000 iterations. This choice was made in order to see whether
it is better for the model to start right away with generating pseudo-labels or to
delay generation in order for the network to first learn only with ground truth and
mixed annotations and possibly generate pseudo-labels with a higher quality. This
means that four experiments in total were run with this setting: two with the RGB
dataset and two with the RGB-IR dataset.

5.2 Evaluation metrics
The performance of models performing object detection and instance segmentation
is often evaluated by using Mean Average Precision (mAP). The mAP formula is
based on a few sub-metrics, namely Intersection over Union (IoU), the confusion
matrix, precision and recall.

For each instance of each object in a given image, a region called ground truth
must be defined, representing the actual location of the object inside the image.
In the case of instance segmentation tasks, ground truths are defined both for
bounding boxes and for segmentation masks.

Intersection over Union (IoU) is a metric that evaluates the precision of each
prediction based on the overlap between the predicted region and the corresponding
ground truth. It can be formally defined as follows:

IoU = AI

AU

(5.1)

where:

33

Experiments

• AI is the area of the intersection between the predicted region and the ground
truth;

• AU is the area of the union between the two regions.

A prediction is considered correct if the value of IoU is equal to or greater than
a set threshold tIoU , which typically has a value of 0.5.

Figure 5.1: Example of a simple confusion matrix.
[Credit: towardsdatascience]

A confusion matrix is an N × N table (with N being the number of classes)
used to evaluate the number of correct and incorrect predictions made by a model.
In the case of object detection and instance segmentation, predictions are evaluated
by using a confusion matrix in conjunction with IoU; specifically:

• True Positive (TP): correct class prediction and IoU ≥ tIoU ;

• False Positive (FP): wrong class prediction or IoU < tIoU ;

• False Negative (FN): the object is part of the ground truth, but no prediction
was made;

• True Negative (TN): the object is not part of the ground truth and no
prediction was made.

The definitions of precision and recall are based on the number of predictions
that fall into each of the above categories. Formally:

Precision = TP

TP + FP
(5.2)

Recall = TP

TP + FN
(5.3)

34

Experiments

In short, precision measures how many predictions out of the ones that predicted
a positive value are correct, while recall measures how many predictions correctly
predicted a positive value.

Figure 5.2: Examples of precision-recall curves (left) and recall-IoU curves (right).
[Credit: researchgate]

The evolution of precision and recall can be represented graphically, generating
precision-recall curves. The area underneath the curve is called Average Precision
(AP), and is a measure of the model’s performance for a specific class. Similarly,
the evolution of recall over multiple IoU values can be represented by means of
recall-IoU curves, with IoU values usually ranging between 0.5 and 1; the area
underneath this curve is called Average Recall (AR).

Mean Average Precision (mAP), as the name implies, is defined as the
mean of all APs for all classes:

mAP =

Ø
c∈C

APc

|C|
(5.4)

mAP is often denoted as mAP IoU , where IoU is the threshold value used to
identify True Positives and False Positives: the higher the threshold, the better the
model will have to be at making predictions.

Mirroring mAP, Mean Average Recall (mAR) is defined as the mean of all
ARs for all classes:

35

Experiments

mAR =

Ø
c∈C

ARc

|C|
(5.5)

Figure 5.3: COCO evaluation metrics for object detection.
[Credit: cocodataset.org]

In recent years, the COCO dataset has become the standard to evaluate object
detection algorithms, and for this reason a specific evaluation metric has been
proposed by its creators, as shown in Figure 5.3. While COCO uses mAP as the
main evaluation metric, it is simply referred to as AP, and likewise mAR is referred
to as AR. Unless specified otherwise, all metrics are computed by considering a
maximum of 100 possible detections on a single image (this is specified in the
maxDets column in the tables of Section 5.3).

The first three AP metrics are computed over multiple IoU values. Specifically,
the first AP is computed over values of IoU ranging from 0.5 to 0.95, with incre-
mental steps of 0.05, while the second and third are computed with IoU values
above 0.5 and 0.75, respectively.

The fourth, fifth and sixth metrics, on the other hand, are computed across mul-
tiple object scales, by considering only small, medium and large objects respectively,
with small objects being defined as having an area smaller than 32 square pixels,
medium objects having an area included between 32 and 56 square pixels and large
objects having an area larger than 56 square pixels. All three are computed by
considering IoU values ranging from 0.5 to 0.95.

The first three AR metrics are computed by considering only 1, 10 or 100
detections per image respectively, and IoU values ranging from 0.5 to 0.95 for the
first and IoU values above 0.5 and 0.75 for the second and third. Finally, the last

36

Experiments

three AR metrics are computed across different scales, following the same criteria
described for AP across scales.

5.3 Results
For the sake of simplicity, all comparisons between results are made by mainly
taking into account the first and second metric in the list of COCO metrics, namely
AP between IoU values of 0.5 and 0.95 (referred to as AP0.5:0.95) and AP with
IoU above 0.5 (referred to as AP0.5). Furthermore, for comparison purposes a
"significant increase" in metrics is defined as an increase of at least 0.015.

Supervised setting

Results for the supervised setting baselines are detailed in Table 5.1 for both the
RGB and the RGB-IR datasets. As can be easily inferred, the RGB-IR dataset
tends to produce better results than its RGB counterpart, with an increase over the
latter of 0.02 for AP0.5:0.95 for both masks and bounding boxes and about 0.05 and
0.04 for AP0.5 for bounding boxes and masks, respectively. This is likely thanks to
the extra information provided by the IR channel, and represents a trend that is
repeated for the other settings as well.

Metric IoU Area maxDets BBox - RGB Mask - RGB BBox - RGB-IR Mask - RGB-IR
Average Precision (AP) 0.50:0.95 all 100 0.258 0.224 0.278 0.244
Average Precision (AP) 0.50 all 100 0.403 0.369 0.450 0.406
Average Precision (AP) 0.75 all 100 0.302 0.255 0.302 0.270
Average Precision (AP) 0.50:0.95 small 100 0.256 0.218 0.275 0.243
Average Precision (AP) 0.50:0.95 medium 100 0.275 0.241 0.293 0.246
Average Precision (AP) 0.50:0.95 large 100 0.374 0.353 0.294 0.291

Average Recall (AR) 0.50:0.95 all 1 0.028 0.026 0.031 0.029
Average Recall (AR) 0.50 all 10 0.171 0.152 0.178 0.160
Average Recall (AR) 0.75 all 100 0.328 0.292 0.328 0.295
Average Recall (AR) 0.50:0.95 small 100 0.301 0.280 0.303 0.289
Average Recall (AR) 0.50:0.95 medium 100 0.377 0.323 0.386 0.305
Average Recall (AR) 0.50:0.95 large 100 0.575 0.430 0.605 0.375

Table 5.1: Results on the RGB and RGB-IR datasets for the supervised setting.

Noisy Boundaries

Results for the Noisy Boundaries setting are detailed in Table 5.2 for both the RGB
and RGB-IR datasets. While there is a definite improvement with the RGB-IR
dataset compared to its baseline counterpart, with an increase of 0.012 for AP0.5
for bounding boxes and 0.052 and 0.043 for AP0.5:0.95 and AP0.5 for masks, results
for the RGB dataset actually worsened in some cases, with a decrease in AP0.5:0.95
and AP0.5 for both bounding boxes and masks. A possible explanation for this

37

Experiments

phenomenon is that since the teacher model has less accurate performances with
the RGB dataset so are the pseudo-labels it generates, making it difficult for the
student model to properly learn from what it considers ground truth annotations.

Metric IoU Area maxDets BBox - RGB Mask - RGB BBox - RGB-IR Mask - RGB-IR
Average Precision (AP) 0.50:0.95 all 100 0.255 0.245 0.286 0.296
Average Precision (AP) 0.50 all 100 0.374 0.364 0.462 0.449
Average Precision (AP) 0.75 all 100 0.312 0.301 0.325 0.370
Average Precision (AP) 0.50:0.95 small 100 0.239 0.230 0.278 0.285
Average Precision (AP) 0.50:0.95 medium 100 0.297 0.290 0.296 0.319
Average Precision (AP) 0.50:0.95 large 100 0.393 0.471 0.239 0.284

Average Recall (AR) 0.50:0.95 all 1 0.032 0.030 0.029 0.028
Average Recall (AR) 0.50 all 10 0.172 0.164 0.172 0.171
Average Recall (AR) 0.75 all 100 0.306 0.296 0.366 0.400
Average Recall (AR) 0.50:0.95 small 100 0.273 0.278 0.340 0.387
Average Recall (AR) 0.50:0.95 medium 100 0.371 0.337 0.390 0.389
Average Recall (AR) 0.50:0.95 large 100 0.590 0.530 0.530 0.475

Table 5.2: Results on the RGB and RGB-IR datasets for the semi-supervised
Noisy Boundaries setting. Metrics in bold represent a significant improvement over
baselines.

IDACS

Results for the IDACS semi-supervised settings are detailed in Table 5.3 and Table
5.4 for the IDACS 0 and IDACS 5.000 settings, respectively, and for both RGB
and RGB-IR datasets.

The IDACS 0 setting (i.e., the one with pseudo-label generation starting at the
first iteration) performs slightly better than baselines, with an increase of 0.021 for
AP0.5:0.95 for masks for the RGB dataset and slight increments for other cases.

Generally speaking, however, delaying pseudo-label generation seems to improve
performances, both for the RGB and RGB-IR datasets, with the IDACS 5.000
experiments presenting an increase of 0.028 (RGB) and 0.009 (RGB-IR) for AP0.5:0.95
for bounding boxes and 0.036 (RGB) and 0.015 (RGB-IR) for AP0.5:0.95 for masks.
There was no significant increase for AP0.5 except for masks for the RGB dataset,
where there was an increase of 0.016. Despite this, the model generally performed
better than baselines, with an overall increase in both AP and AR metrics all over
the board, especially in the cases of AP and AR across scales, with a significant
improvement in multiple metrics.

This increase in results for the model with delayed generation suggests that
letting the model initially train solely on labeled data allows it to learn how to
generate higher-quality predictions, while generating them from the start can result
in the model misleading itself with its own inaccurate predictions. Interestingly
enough, the model with delayed pseudo-label generation seems to perform slightly
better on mask predictions with the RGB dataset rather than with the RGB-IR

38

Experiments

dataset, while bounding box scores remain comparable overall between datasets.

Metric IoU Area maxDets BBox - RGB Mask - RGB BBox - RGB-IR Mask - RGB-IR
Average Precision (AP) 0.50:0.95 all 100 0.269 0.245 0.272 0.245
Average Precision (AP) 0.50 all 100 0.372 0.358 0.375 0.358
Average Precision (AP) 0.75 all 100 0.327 0.293 0.329 0.296
Average Precision (AP) 0.50:0.95 small 100 0.249 0.229 0.257 0.233
Average Precision (AP) 0.50:0.95 medium 100 0.324 0.298 0.328 0.293
Average Precision (AP) 0.50:0.95 large 100 0.303 0.436 0.324 0.397

Average Recall (AR) 0.50:0.95 all 1 0.029 0.027 0.032 0.029
Average Recall (AR) 0.50 all 10 0.167 0.155 0.169 0.154
Average Recall (AR) 0.75 all 100 0.300 0.284 0.299 0.281
Average Recall (AR) 0.50:0.95 small 100 0.267 0.258 0.271 0.263
Average Recall (AR) 0.50:0.95 medium 100 0.384 0.361 0.373 0.338
Average Recall (AR) 0.50:0.95 large 100 0.710 0.500 0.605 0.450

Table 5.3: Results on the RGB and RGB-IR datasets for the semi-supervised
IDACS setting, with pseudo-label generation at iteration 0. Metrics in bold
represent a significant improvement over baselines.

Metric IoU Area maxDets BBox - RGB Mask - RGB BBox - RGB-IR Mask - RGB-IR
Average Precision (AP) 0.50:0.95 all 100 0.286 0.260 0.287 0.259
Average Precision (AP) 0.50 all 100 0.395 0.385 0.396 0.378
Average Precision (AP) 0.75 all 100 0.341 0.311 0.342 0.307
Average Precision (AP) 0.50:0.95 small 100 0.274 0.246 0.260 0.238
Average Precision (AP) 0.50:0.95 medium 100 0.332 0.303 0.370 0.328
Average Precision (AP) 0.50:0.95 large 100 0.392 0.439 0.305 0.381

Average Recall (AR) 0.50:0.95 all 1 0.029 0.028 0.033 0.030
Average Recall (AR) 0.50 all 10 0.168 0.154 0.176 0.159
Average Recall (AR) 0.75 all 100 0.315 0.294 0.315 0.295
Average Recall (AR) 0.50:0.95 small 100 0.289 0.274 0.278 0.269
Average Recall (AR) 0.50:0.95 medium 100 0.379 0.354 0.410 0.367
Average Recall (AR) 0.50:0.95 large 100 0.615 0.465 0.645 0.440

Table 5.4: Results on the RGB and RGB-IR datasets for the semi-supervised
IDACS setting, with pseudo-label generation at iteration 5.000. Metrics in bold
represent a significant improvement over baselines.

5.3.1 Comparison between experiments
A comparison of the results obtained is reported in Table 5.5, put together by
considering the metrics mentioned earlier for both bounding boxes and masks.

By taking AP0.5 as the comparison metric, the best results are obtained with
the RGB-IR Noisy Boundaries setting, for both masks and bounding boxes, while
IDACS settings unfortunately do not outperform neither Noisy Boundaries nor
baselines.

On the other hand, by taking AP0.5:0.95 as reference, all semi-supervised methods
outperform baselines (with the exception of the RGB Noisy Boundaries setting,
presumably for reasons stated earlier). In particular, for bounding boxes the best

39

Experiments

Method AP0.5:0.95 - BBox AP0.5 - BBox AP0.5:0.95 - Mask AP0.5 - Mask
RGB - baseline 0.258 0.403 0.224 0.369

RGB-IR - baseline 0.278 0.450 0.244 0.406
RGB - IDACS 0 0.269 0.372 0.245 0.358

RGB-IR - IDACS 0 0.272 0.375 0.245 0.358
RGB - IDACS 5.000 0.286 0.395 0.260 0.385

RGB-IR - IDACS 5.000 0.287 0.396 0.259 0.378
RGB - Noisy 0.255 0.374 0.245 0.364

RGB-IR - Noisy 0.286 0.462 0.296 0.449

Table 5.5: Comparison between performed experiments by using AP0.5:0.95 and
AP0.5 as reference metrics.

results were obtained by the RGB-IR Noisy Boundaries setting and both IDACS
5.000 settings, with all three obtaining almost the same score and a definite increase
from the baselines. This discrepancy in results for bounding boxes obtained with
IDACS in different IoU values could suggest that it makes fewer predictions than
Noisy Boundaries, but that these few tend to be of a higher quality, meaning it
is more capable of correctly locating instances within images. This assumption is
corroborated by the fact that if a stricter metric like AP0.75 (i.e. AP computed
by setting the IoU threshold to 0.75, which is the third AP metric) is taken as
reference, results with IDACS tend to be better.

For masks, the best results with AP0.5:0.95 were obtained with the RGB-IR Noisy
Boundaries setting, likely because of the NTM and BPM components, described
in Section 4.3.1, employed by the framework, although all other semi-supervised
settings still outperform baselines.

In conclusion, while the best overall results were obtained with the RGB-IR
Noisy Boundaries semi-supervised setting, the IDACS settings, especially IDACS
5.000, do perform rather well with both datasets and hold a lot of potential. In fact,
by taking metrics other than AP0.5:0.95 and AP0.5 into account, it can be noted that
there is a notable difference between the Noisy Boundaries and IDACS settings: the
latter tends to obtain better results in both AP and AR metrics across scales, with
significant increases in metrics over baselines in both bounding boxes and masks
across all datasets. For instance, by taking AP over medium objects as reference
metric, we can see that IDACS 5.000 performs better than Noisy Boundaries, with
a difference of 0.035 (RGB) and 0.013 (RGB-IR) for bounding boxes and 0.074
(RGB) and 0.009 (RGB-IR) for masks. Furthermore, overall IDACS 5.000 was able
to make improvements on the RGB dataset as well, on which Noisy Boundaries
was not able to produce satisfying results as stated earlier.

40

Experiments

5.3.2 Qualitative comparisons and observations
Qualitative comparisons of the results obtained on the test set are shown in figures
from 5.4 to 5.9. Specifically, Figures 5.4, 5.6 and 5.8 depict ground truth annotations
for industrial, rural and urban panels, respectively, while Figures 5.5, 5.7 and 5.9
depict inference result on those same images. These three settings were chosen to
show how the models perform on different panel configurations.

An interesting phenomenon is depicted in Figure 5.10. As mentioned, the solar
panel dataset suffers from a scarcity of annotations, meaning test set images might
have some areas where panels are not annotated despite being plausibly present.
In these cases, the models can still predict the presence of such panels, though they
are penalized because no ground truth annotations were provided for them.

41

Experiments

Figure 5.4: Ground truth annotations for a sample image from the test set
depicting an industrial panel plant.

Base IDACS 0 IDACS 5.000 Noisy Boundaries

Figure 5.5: Comparison of inference results between methods on a sample
industrial panel plant. The first row depicts results for methods ran on the RGB
dataset, while the second depicts result for the RGB-IR dataset.

42

Experiments

Figure 5.6: Ground truth annotations for a sample image from the test set
depicting a rural panel plant.

Base IDACS 0 IDACS 5.000 Noisy Boundaries

Figure 5.7: Comparison of inference results between methods on a sample rural
panel plant. The first row depicts results for methods ran on the RGB dataset,
while the second depicts result for the RGB-IR dataset.

43

Experiments

Figure 5.8: Ground truth annotations for a sample image from the test set
depicting panels in an urban setting.

Base IDACS 0 IDACS 5.000 Noisy Boundaries

Figure 5.9: Comparison of inference results between methods on a sample image
depicting panels in an urban setting. The first row depicts results for methods ran
on the RGB dataset, while the second depicts result for the RGB-IR dataset.

44

Experiments

Figure 5.10: Sample images from the test set showing how panels not present
in ground truth annotations (left) can be detected by the models (right, Noisy
Boundaries RGB-IR as an example).

45

Chapter 6

Conclusions

This chapter presents known limitations for both the methods described and the
dataset used for this thesis and possible future extensions for the work (Section
6.0.1) and finally some closing remarks (Section 6.0.2).

6.0.1 Limitations and future works
The methods analysed present some limitations. The architecture of Noisy Bound-
aries is composed of multiple stages, meaning its efficiency is limited and that
it requires more resources. Meanwhile, the proper functioning of IDACS heavily
depends on the images sampled for mixing, since using the same labeled images over
and over is bound to cause overfitting and performance issues in the model itself
despite augmentations. All methods are also limited by the discrepancy between
classes in the dataset, due to the fact that polycrystalline are much more frequent
than monocrystalline, making proper classification of the latter more difficult.

Figure 6.1: Inference results showing the models’ difficulty in both classifying
panels and correctly segmenting clusters of separate panels. From left to right:
ground truth, Noisy RGB-IR and IDACS 5.000 RGB-IR.

46

Conclusions

Furthermore, all models present difficulties in correctly segmenting clusters of
multiple panels grouped together, as shown both in Figure 6.1 and Figure 6.2.
The latter, in particular, shows how this is exacerbated when panels are oriented
diagonally.

Figure 6.2: Inference results showing the models’ difficulty in correctly segmenting
diagonally-oriented panels, especially when grouped in clusters. From left to right:
ground truth, Noisy RGB-IR and IDACS 5.000 RGB-IR.

A few possible solutions and improvements can be examined for potential future
works. Perhaps the most immediate among them is to turn Noisy Boundaries into
a single-stage framework, simplifying its architecture and potentially making it
more efficient. As for IDACS, it is important to have as much variety as possible in
the combination of labeled and unlabeled images to obtain satisfying results, and
randomly sampling a relatively small subset of the 22 million possible combinations
does not guarantee the generation of diverse mixed images. Thus, it could greatly
benefit from a proper sampling method for the choice of images to mix together.

The problem of class discrepancy is already partly tackled by Noisy Boundaries
itself, which employs box-level and pixel-level thresholds to prevent bias towards
dominant classes in generated pseudo-labels. Implementing this filtering procedure
in IDACS could improve the model’s performances during classification. Further-
more, the sampling method mentioned above could be designed in order to create
a balance in the frequency of classes, by evening out as much as possible the
number of monocrystalline and polycrystalline panels to be pasted on unlabeled
images. Another possibility is to integrate the Noise-Tolerant Mask head and the
Boundary-Preserving Map used in Noisy Boundaries in the IDACS pipeline: these
two components could help the model better learn from its own pseudo-labels.

Finally, the issue of diagonally-oriented panels could be solved by employing
Oriented Bounding Boxes for object detection, which, as the name implies, are not
axis-aligned but are rotated in order to better fit the instance’s shape. This would
be particularly useful also considering panels have a rectangular shape most of the
time.

47

Conclusions

6.0.2 Final remarks
In summary, the purpose of this work was to evaluate and compare two semi-
supervised methods with the goal of addressing the issue of data scarcity in a
setting where aerial images are used. Experiments produced interesting results,
highlighting the differences and demonstrating the overall effectiveness of the
presented techniques.

In conclusion, this thesis showed how semi-supervised methods are a valid
choice for situations in which data is scarce and where there is therefore a need
to artificially increase the size of datasets, specifically in the case of aerial images
segmentation. The results showed how both of the methods presented are viable
approaches for this problem, and the above considerations suggest there is much
room for improvement.

48

Bibliography

[1] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. «Gradient-
based learning applied to document recognition». In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324 (cit. on p. 7).

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. «Ima-
genet: A large-scale hierarchical image database». In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee. 2009, pp. 248–255 (cit. on
p. 7).

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet classifi-
cation with deep convolutional neural networks». In: Communications of the
ACM 60.6 (2017), pp. 84–90 (cit. on pp. 7, 11).

[4] Karen Simonyan and Andrew Zisserman. «Very deep convolutional networks
for large-scale image recognition». In: arXiv preprint arXiv:1409.1556 (2014)
(cit. on p. 8).

[5] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. «Deep neural
networks for object detection». In: Advances in neural information processing
systems 26 (2013) (cit. on p. 10).

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. «Rich feature
hierarchies for accurate object detection and semantic segmentation». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2014, pp. 580–587 (cit. on pp. 10, 11).

[7] Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann LeCun.
«Pedestrian detection with unsupervised multi-stage feature learning». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2013, pp. 3626–3633 (cit. on p. 10).

[8] Henry A Rowley, Shumeet Baluja, and Takeo Kanade. «Neural network-based
face detection». In: IEEE Transactions on pattern analysis and machine
intelligence 20.1 (1998), pp. 23–38 (cit. on p. 10).

49

BIBLIOGRAPHY

[9] Régis Vaillant, Christophe Monrocq, and Yann Le Cun. «Original approach
for the localisation of objects in images». In: IEE Proceedings-Vision, Image
and Signal Processing 141.4 (1994), pp. 245–250 (cit. on p. 10).

[10] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. «Selective search for object recognition». In: International journal
of computer vision 104.2 (2013), pp. 154–171 (cit. on p. 11).

[11] Jan Hosang, Rodrigo Benenson, Piotr Dollár, and Bernt Schiele. «What makes
for effective detection proposals?» In: IEEE transactions on pattern analysis
and machine intelligence 38.4 (2015), pp. 814–830 (cit. on p. 11).

[12] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. «Backpropagation applied
to handwritten zip code recognition». In: Neural computation 1.4 (1989),
pp. 541–551 (cit. on p. 11).

[13] Ross Girshick. «Fast r-cnn». In: Proceedings of the IEEE international con-
ference on computer vision. 2015, pp. 1440–1448 (cit. on p. 11).

[14] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. «Faster r-cnn: To-
wards real-time object detection with region proposal networks». In: Advances
in neural information processing systems 28 (2015) (cit. on p. 11).

[15] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik.
«Simultaneous detection and segmentation». In: European conference on
computer vision. Springer. 2014, pp. 297–312 (cit. on p. 11).

[16] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik.
«Hypercolumns for object segmentation and fine-grained localization». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 447–456 (cit. on p. 11).

[17] Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, and Jian Sun. «Instance-
sensitive fully convolutional networks». In: European conference on computer
vision. Springer. 2016, pp. 534–549 (cit. on p. 11).

[18] Pedro O O Pinheiro, Ronan Collobert, and Piotr Dollár. «Learning to segment
object candidates». In: Advances in neural information processing systems 28
(2015) (cit. on p. 11).

[19] Pedro O Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr Dollár. «Learning
to refine object segments». In: European conference on computer vision.
Springer. 2016, pp. 75–91 (cit. on p. 11).

[20] Jifeng Dai, Kaiming He, and Jian Sun. «Instance-aware semantic segmentation
via multi-task network cascades». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 3150–3158 (cit. on p. 11).

50

BIBLIOGRAPHY

[21] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. «Mask r-cnn».
In: Proceedings of the IEEE international conference on computer vision. 2017,
pp. 2961–2969 (cit. on pp. 11, 17, 23).

[22] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo,
Mihai Datcu, Marcello Pelillo, and Liangpei Zhang. «DOTA: A large-scale
dataset for object detection in aerial images». In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, pp. 3974–3983
(cit. on pp. 12, 15, 32).

[23] Syed Waqas Zamir et al. «isaid: A large-scale dataset for instance segmentation
in aerial images». In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 2019, pp. 28–37 (cit. on pp. 12,
17).

[24] Pengfei Zhu et al. «VisDrone-VDT2018: The vision meets drone video de-
tection and tracking challenge results». In: Proceedings of the European
Conference on Computer Vision (ECCV) Workshops. 2018, pp. 0–0 (cit. on
p. 12).

[25] Murari Mandal, Manal Shah, Prashant Meena, Sanhita Devi, and Santosh
Kumar Vipparthi. «AVDNet: A small-sized vehicle detection network for
aerial visual data». In: IEEE Geoscience and Remote Sensing Letters 17.3
(2019), pp. 494–498 (cit. on p. 12).

[26] Murari Mandal, Manal Shah, Prashant Meena, and Santosh Kumar Vipparthi.
«SSSDET: Simple short and shallow network for resource efficient vehicle
detection in aerial scenes». In: 2019 IEEE international conference on image
processing (ICIP). IEEE. 2019, pp. 3098–3102 (cit. on p. 12).

[27] Bin Zhou, Xuemei Duan, Dongjun Ye, Wei Wei, Marcin Woźniak, Dawid Połap,
and Robertas Damaševičius. «Multi-level features extraction for discontinuous
target tracking in remote sensing image monitoring». In: Sensors 19.22 (2019),
p. 4855 (cit. on p. 12).

[28] Lichao Mou and Xiao Xiang Zhu. «Vehicle instance segmentation from aerial
image and video using a multitask learning residual fully convolutional net-
work». In: IEEE Transactions on Geoscience and Remote Sensing 56.11
(2018), pp. 6699–6711 (cit. on p. 12).

[29] Xiangfeng Zeng, Shunjun Wei, Jinshan Wei, Zichen Zhou, Jun Shi, Xiaoling
Zhang, and Fan Fan. «CPISNet: delving into consistent proposals of instance
segmentation network for high-resolution aerial images». In: Remote Sensing
13.14 (2021), p. 2788 (cit. on p. 12).

51

BIBLIOGRAPHY

[30] Prateek Garg, Anirudh Srinivasan Chakravarthy, Murari Mandal, Pratik
Narang, Vinay Chamola, and Mohsen Guizani. «Isdnet: Ai-enabled instance
segmentation of aerial scenes for smart cities». In: ACM Transactions on
Internet Technology (TOIT) 21.3 (2021), pp. 1–18 (cit. on p. 12).

[31] Jiangye Yuan, Hsiu-Han Lexie Yang, Olufemi A Omitaomu, and Budhendra L
Bhaduri. «Large-scale solar panel mapping from aerial images using deep
convolutional networks». In: 2016 IEEE International Conference on Big
Data (Big Data). IEEE. 2016, pp. 2703–2708 (cit. on p. 12).

[32] Poonam Parhar, Ryan Sawasaki, Alberto Todeschini, Hossein Vahabi, Nathan
Nusaputra, and Felipe Vergara. «HyperionSolarNet: Solar Panel Detection
from Aerial Images». In: arXiv preprint arXiv:2201.02107 (2022) (cit. on
p. 12).

[33] Roberto Castello, Simon Roquette, Martin Esguerra, Adrian Guerra, and
Jean-Louis Scartezzini. «Deep learning in the built environment: Automatic
detection of rooftop solar panels using Convolutional Neural Networks». In:
Journal of Physics: Conference Series. Vol. 1343. 1. IOP Publishing. 2019,
p. 012034 (cit. on p. 12).

[34] Qizhu Li, Anurag Arnab, and Philip HS Torr. «Weakly-and semi-supervised
panoptic segmentation». In: Proceedings of the European conference on com-
puter vision (ECCV). 2018, pp. 102–118 (cit. on p. 13).

[35] George Papandreou, Liang-Chieh Chen, Kevin P Murphy, and Alan L Yuille.
«Weakly-and semi-supervised learning of a deep convolutional network for
semantic image segmentation». In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1742–1750 (cit. on p. 13).

[36] Yunchao Wei, Huaxin Xiao, Honghui Shi, Zequn Jie, Jiashi Feng, and Thomas
S Huang. «Revisiting dilated convolution: A simple approach for weakly-
and semi-supervised semantic segmentation». In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, pp. 7268–7277
(cit. on p. 13).

[37] Nasim Souly, Concetto Spampinato, and Mubarak Shah. «Semi supervised
semantic segmentation using generative adversarial network». In: Proceedings
of the IEEE international conference on computer vision. 2017, pp. 5688–5696
(cit. on p. 13).

[38] Wilhelm Tranheden, Viktor Olsson, Juliano Pinto, and Lennart Svensson.
«Dacs: Domain adaptation via cross-domain mixed sampling». In: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision.
2021, pp. 1379–1389 (cit. on pp. 13, 27, 33).

52

BIBLIOGRAPHY

[39] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. «Daformer: Improving network
architectures and training strategies for domain-adaptive semantic segmen-
tation». In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2022, pp. 9924–9935 (cit. on p. 13).

[40] Alexey Dosovitskiy et al. «An image is worth 16x16 words: Transformers
for image recognition at scale». In: arXiv preprint arXiv:2010.11929 (2020)
(cit. on p. 13).

[41] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez,
and Ping Luo. «SegFormer: Simple and efficient design for semantic segmen-
tation with transformers». In: Advances in Neural Information Processing
Systems 34 (2021), pp. 12077–12090 (cit. on p. 13).

[42] Yanzhao Zhou, Xin Wang, Jianbin Jiao, Trevor Darrell, and Fisher Yu.
«Learning saliency propagation for semi-supervised instance segmentation».
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 10307–10316 (cit. on p. 13).

[43] Zhi Tian, Chunhua Shen, Xinlong Wang, and Hao Chen. «Boxinst: High-
performance instance segmentation with box annotations». In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 5443–5452 (cit. on p. 13).

[44] Zhenyu Wang, Yali Li, and Shengjin Wang. «Noisy Boundaries: Lemon or
Lemonade for Semi-supervised Instance Segmentation?» In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 16826–16835 (cit. on pp. 13, 24, 25).

[45] Osmar Luiz Ferreira de Carvalho, Osmar Abılio de Carvalho Júnior, Anesmar
Olino de Albuquerque, Nickolas Castro Santana, Renato Fontes Guimarães,
Roberto Arnaldo Trancoso Gomes, and Dıbio Leandro Borges. «Bounding
Box-Free Instance Segmentation Using Semi-Supervised Iterative Learning
for Vehicle Detection». In: IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 15 (2022), pp. 3403–3420 (cit. on p. 13).

[46] Wentong Li, Yijie Chen, Wenyu Liu, and Jianke Zhu. «Deep Level Set for
Box-supervised Instance Segmentation in Aerial Images». In: arXiv preprint
arXiv:2112.03451 (2021) (cit. on p. 13).

[47] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. «Microsoft coco:
Common objects in context». In: European conference on computer vision.
Springer. 2014, pp. 740–755 (cit. on pp. 15, 28).

53

BIBLIOGRAPHY

[48] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. «Path aggregation
network for instance segmentation». In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 8759–8768 (cit. on
p. 17).

[49] Edoardo Arnaudo, Fabio Cermelli, Antonio Tavera, Claudio Rossi, and Bar-
bara Caputo. «A contrastive distillation approach for incremental semantic
segmentation in aerial images». In: International Conference on Image Anal-
ysis and Processing. Springer. 2022, pp. 742–754 (cit. on p. 24).

[50] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D
Cubuk, Quoc V Le, and Barret Zoph. «Simple copy-paste is a strong data
augmentation method for instance segmentation». In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,
pp. 2918–2928 (cit. on p. 28).

54

	List of Tables
	List of Figures
	Introduction
	State of the art
	Deep Learning and Computer Vision
	Deep Learning background
	Convolutional Neural Networks and CV

	Instance Segmentation
	Related works
	Instance segmentation
	Learning with low resources

	Data Sources
	Existing datasets
	COCO
	DOTA and iSAID

	Solar panels dataset
	Data preparation
	Supervised setting
	Semi-supervised setting

	Methodology
	Problem statement
	Baselines
	Semi-supervised methods
	Noisy Boundaries
	IDACS

	Experiments
	Implementation details
	Frameworks and tools
	Experimental setup

	Evaluation metrics
	Results
	Comparison between experiments
	Qualitative comparisons and observations

	Conclusions
	Limitations and future works
	Final remarks

	Bibliography

