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Abstract

The high programmability provided by Software-Defined Networking (SDN)
paradigm facilitated the integration of Machine Learning (ML) methods to design
a new family of network management schema. Among them, we can cite self-
driving networks, where ML is used to analyze data and define strategies that
are then translated by SDN controllers into network configurations, thus making
networks autonomous and capable of auto-scaling decisions based on the network’s
needs. Despite its attractiveness, the centralized design of the majority of proposed
solutions cannot keep up with the increasing size of the network. To this end,
this thesis investigates the use of a multi-agent reinforcement learning (MARL)
model for auto-scaling decisions in an SDN environment. Physically distributed
controllers raise new challenges to be addressed: in absence of a central entity with
global knowledge, controllers must cooperate sharing their information in order
to make the best decision. In particular, we study two possible alternatives: a
logically decentralized control plane and a fully distributed control plane. The
former implementation is defined by multiple controllers that collect statistics over
their own area and share them to feed the model with the same input; the latter
deploys many controllers that collaborate to correctly perform routing but feed the
model with their local information only. Results showed that both approaches can
guarantee high throughput while minimizing the set of active resources.
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Chapter 1
Introduction

The presence of new requirements, e.g., high reliability, zero packet loss, and
real-time interaction, posed by data-intensive applications, e.g., augmented /virtual
reality, industrial 4.0, or healthcare, exacerbates the need for more performant,
scalable, resilient, and self-adapting networks [1, 2]. To support such applications,
there is a need to rethink the design of both networks and applications, creating
more intelligent and autonomous networks. Next-generation networks are envi-
sioned as the answer to network operators and service providers to replace existing
infrastructures and to introduce a new platform able to support new telecommuni-
cation businesses and services. They are considered key enablers for delivering new
services that are available to any place, at any time, on any device.

To provide such (artificial) intelligence, there is an increasing interest in equipping
networks with autonomous run-time decision-making capabilities incorporating
distributed machine learning (ML) algorithms, to foster automation in network
configurations, network management, and network resiliency. While AT/ML tech-
nologies continue to evolve at a rapid pace, moving from a paradigm of supervised
learning towards distributed self-learning requires solving several challenges in the
design and deployment of wide-scale networks. Among those challenges, the scala-
bility of AI/ML models for managing the Next Generation Internet is particularly
critical.

Recent studies have partially addressed some of these challenges by employing
model-free approaches to efficiently manage network resources. In particular,
Reinforcement Learning (RL) finds profitable applicability given its ability to fit
the network dynamics well without any prior knowledge [3, 4, 5, 6]. With such
auto-scaling solutions, networks can deactivate idle resources that may increase
unnecessary (energy) costs and provide redundant facilities to face workload peaks
or unexpected failures.
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However, current solutions fail to manage large-scale networks as they are limited
by the single-controller architecture. In this thesis, we argue that a multi-agent ap-
proach is needed to overcome limitations. At the same time, distributed controllers
raise new challenges to be addressed, for example, controllers must cooperate by
sharing their information in order to make the best decision.

In this thesis, we propose and evaluate two different multi-agent designs. A first
collaborative distributed solution, in which controllers share their local network
information to achieve a common global view of the network state to make the
finest decisions; and a second individually distributed approach, in which controllers
autonomously manage their own network area and only share topology information
or its changes. To share information among controllers, the adoption of a Distributed
Hash Table (DHT) is investigated. However, this approach was found to be adequate
for data that require weak consistency only. In addition to evaluating different
control plane architectures, we also study the impact that different data plane
technologies can have. In particular, we implemented a network based on P4-
enabled switches and OpenFlow-enabled switches, where the network is emulated
over Mininet.

Regarding the data-plane level, we experienced how P4 implementation is more
efficient, while performance with OpenFlow are fluctuating. Regarding the control-
plane level, we have observed that the individually distributed approach, despite its
simplicity and less overhead, leads to similar results, thus being a valid solution in
a real deployment.
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1.1 Thesis structure

The second chapter of this thesis discloses about the research solutions to the prob-
lem of a single centralized controller in the context of Software-Defined Networking,
including many examples of developing physically distributed controllers, from
a logical point of view to an architectural point of view. We compare the two
physically distributed architecture we implemented, e.g. logically decentralized and
logically distributed, to the well-known described before.

Later in the second chapter, we also discuss distributed decision processes. We
focus on how other researchers implemented auto-scaling networks using different
methodologies, underlying why our solution based on Multi-agent Reinforcement
Learning is innovative. Some successful MARL deployments in other domains are
also investigated to give an overview of how the distributed system can be designed.

Chapter 3 introduces the crucial concepts and technologies to know in order to
better understand the work presented in this thesis. We start defining the path
towards Software-Defined Networking, its pillars and the main protocols deployed
in this context, e.g. OpenFlow and P4; we later explain two possible technologies
used to share information in distributed systems such as Distributed Hash Table
and Raft; finally, we explain the concept of Reinforcement Learning and how Deep
Reinforcement Learning works.

We investigate how to deploy a Distributed Hash Table in Chapter 4, through a
heavy hitter detection use case. We first define the concepts of heavy hitters and
counting bloom filter, secondly we describe the system architecture and functioning.
The implementation of data plane and control plane is explained in detail. We
created a software-defined network that links a controller to every switch in the
network and promote collaboration among network devices to identify and kill
heavy hitter flows. To do so, an overlay network of controllers is created, and a
database containing data about flows is shared in the form of a DHT.

In Chapter 5 we present our autonomous network planning framework developed
in the context of a multi-controller SDN adopting MARL in two possible designs.
We start defining what self-driving networks are and what challenges they rise.
Then, we explain how our network is designed and how all the components interact.
Finally, we concentrate on the designs we propose, the collaborative distributed
solution and the individually distributed. The first design proposed leverages the
use of Raft protocol to create a consistent global state of the network to share among
controllers, while the second one deploys controllers that individually manage their
own subnetwork.

Chapter 6 provides the description of how the implemented solutions are tested.
In addition, some aspects are clarified in order to understand the results obtained.
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Then, several graphs and tables show the results of our tests. We mainly compare
the two auto-scaling designs and two different data plane techonologies.

Chapter 7 ends the thesis summarizing the found results and suggesting a direction
for possible improvements to the system.



Chapter 2

Related work

In this chapter, we deep dive into related research works defining two sections.
In Section 2.1 we present the possible implementations of physically distributed
controllers in terms of architectures and logical point of view, arguing how they
are implemented in real frameworks and what problems they solve. In this regard,
we compare our logically decentralized and logically distributed control plane
implementations to the ones previously discussed. In Section 2.2 we focus on the
concept of distributed learning applied in the networking domain, arguing that
machine learning techniques are efficiently leveraged. Although other works related
to the concept of autonomous networks employ ML techniques, as we do, we debate
how our methodologies differ and how, instead, similar techniques are employed
but in other domains.

2.1 SDN controller architecture

The SDN paradigm promoted a single centralized controller capable of a network-
wide view that easily managed the whole network. In fact, this approach can
easily guarantee that the network is in a consistent and optimal state. However,
despite the attractiveness of this scenario, this centralized architecture is limited
in terms of scalability, reliability, and availability. For this reason, researches
turned their gaze towards physically-distributed control plane architectures,
which can face big dynamic networks such as data centers and WANs. In this
scenario, every controller manages a network area but still can reach a global view
by communicating with other controllers. This solution overcomes single point of
failure and bottleneck drawbacks and provides availability, partition tolerance, and
eventual consistency (CAP theorem), but brings up new challenges. Distributed
controllers must synchronize their virtual network topology views, an operation
that introduces overhead and becomes arduous with the increasing size of the
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network.

We can classify physically distributed controller, based on controller instances
organization, between flat, hierarchical and hybrid distributed SDN controllers.
Another distinction we can do is based on how knowledge is partitioned among
controllers so that we can have logically centralized or logically distributed
SDN control.

The SDN control is defined as flat when controllers are horizontally distributed
over multiple network areas, where each area is managed by one controller. Every
network event or information is shared among all controllers. Since many controllers
are deployed, this solution decreases latency and improves resiliency.

Typical examples of flat controller platforms are ONIX [7], ONOS [8], and Hyper-
Flow [9], designed to improve scalability by deploying multiple controllers. In all
these solutions, controllers operate on a global view of the network, and the plat-
forms themselves provide state distribution services. The differences between these
architectures rely on data structures they imply and their replication mechanisms.

ONIX network state is stored in the Network Information Base (NIB), a graph
representing all the entities in the topology. Controllers extrapolate information
about the underlying topology and send it to other controllers to build the global
view, later stored in the NIB. Control logic is implemented reading/writing from/to
the NIB, while ONIX takes care about distributing it: it offers two types of data
store based on consistency needs. For information needing strong consistency, e.g.
topology structure, a replicated distributed database is provided, while for more
volatile data, e.g. link usage, a Distributed Hash Table can be used.

Similarly to ONIX, ONOS controllers are aware of a portion of the network only,
that they will discover and share with other controllers to construct the global
view. Applications make forwarding and policy decisions based on the global view,
modifying it accordingly; changes are then propagated to physical devices. ONOS
exploits Raft [10] algorithm to provide distributed primitives such as ConsistentMap,
which guarantees strong consistency [11].

HyperFlow differs from the previous cited architecture because all controllers have
the same global view of the network and run with the illusion to have control
over all of it. It is event-based and uses a publishing/subscribe message model
to communicate state changes to other controller instances, synchronizing their
network view. The mechanism is based on a persistent storage of events for
resiliency, but only local events that change the network state are published.
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All the solutions we just presented, they all are physically distributed for scalability
and reliability reasons, but practically work with a centralized logical view.
Controllers maintain a global view of the network and share network information to
collaborate in the management of the network. Every controller can take decision
based on the whole network status. For ONIX and ONOS, the global view is
obtained exchanging information with other controllers, while HyperFlow provides
controllers with the global view at the same time they are instantiated.

In this regard, another example of logically-centralized architecture is provided
by OpenDayLight [12] (ODL), a collaborative open-source platform developed
by Linux Foundation with the intent to ease the spread of SDN in traditional
network environments. Like ONOS, it provides full functionalities of a Network
Operating System, but differently, all data shared to build the network state is
handled leveraging Raft algorithm.

A big limitation of the previously discussed implementations can be the static
mapping between controllers and switches. Elasticon [13] is another logically
centralized solution whose goal is to address this problem. It is defined as an
"elastic controller architecture" because it permits to migrate switches from one
controller to another or increase the number of controller instances based on the
workload. The system is composed of three main modules: Load Measure, Load
Adaptation and Decision Module. Based on the measurement of the workload of the
network, when a threshold is exceeded, the Load Adaptation Module redeploys the
workload to balance controller instances and can also decide to expand/reduce the
controller pool. Then, the Decision Module verifies that the new configuration can
handle the network load and defines new thresholds. The centralized network view is
granted by the Distributed Data Store Module while inter-controller communication
relies on TCP channels.

Opposed to the concept of a logical central view, there are logically distributed
architectures, such as the one proposed by DISCO [14]. The network is divided in
domains, and every controller, in charge of a single domain, manages intra-domain
and inter-domain activities separately. Intra-domain operations include traditional
control plane job such as managing network and flows, reacting to failures etc.
Inter-domain part manages the exchange of information about hosts, metrics and
topology with other controllers through a publish /subscribe channel to guarantee
essential services, e.g. routing. The main difference, with respect to previous
solutions, is the fact that in distributed implementations, each controller takes
decisions based on its local view. Having a per domain structure, DISCO provides
a distributed control plane that can manage large and heterogeneous networks such
as WANS.
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As we cited flat architectures, we now explain the hierarchical structure. The
hierarchical distributed controller is a vertical model that requires many layers
of controllers. Low-layer controllers directly communicate with underlying de-
vices, upper-layer controllers achieve non-local requirements, such as inter-domain
connectivity.

Kandoo [15] is an example of a two-level hierarchical control structure to improve
scalability. Low-level controllers manage their domain without having global
network information nor interacting with each other. Upper-layer is composed of
a root controller with a centralized view of the network to provide services like
routing. This configuration can linearly scale in the number of local controllers and
reduces central controller overhead.

We explained flat and hierarchical architectures, therefore we can present a mixed
solution: the hybrid approach. The hybrid approach involves both control plane
and data plane in networking decisions, optimizing the use of network resources,
and tries to take the advantages of both flat and hierarchical solutions.

Orion [16] controller is representative of this approach. It has a per-domain structure,
deploying a controller for each domain, as a flat architecture. Inside a domain,
the control plane is implemented in a hierarchical manner: it is then vertically
partitioned in two layers. The bottom layer, called Area Controller, has access to
physical devices and abstracts network topology; the upper layer, called Domain
Controller, synchronizes the abstracted global network view. Inter controller
communication relies on the Horizontal Communication Module to synchronize
information and build a network wide view; intra-domain communication leverages
the Vertical Communication Module: a set of TCP connections that permit to
send the abstracted topology of the physical layer. Many controller modules are
used, such as routing module. This solution alleviates the complexity of the control
plane by dividing the area in subdomains where a hierarchical architecture is then
adopted.

In this thesis, two different controller designs are compared, here referred to as
logically decentralized and logically distributed architectures. The former, similarly
to ONIX and ONOS, deploys multiple controllers that share their network state
through Raft protocol to achieve a consistent view of the entire network state,
later used for the RL decision-making process. In the latter, similarly to DISCO,
controllers feed the model with their local network state and are equipped with
a TCP channel for inter-controller communications in order to trade topological
information for routing.
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2.2 Distributed learning

Machine learning techniques are increasingly being used to understand network
behaviors, provide predictive analyses, as well as provide run-time fixes for network
problems. These configurations make networks capable of taking remedial actions,
or even avoid some network issues, autonomously.

A Reinforcement Learning approach to automate networking tasks has been pro-
posed with DeepConf [17]. It applies Deep Reinforcement Learning (DRL) to
automate some networking tasks and proposes an auto-scaling use case where the
model is trained to learn which are the best links to activate at each step based on
previous traffic. In particular, the model input is a double state space composed
of a traffic matrix and a network topology matrix. The network topology matrix
reflects changes caused by actions, in fact, the action space determines a list of
links to activate at each step. The model is rewarded considering the throughput
of flows and their duration.

Some studies applied RL to optimize power-consumption by consolidating traffic
in the minimum amount of links, as done in SmartFCT [18]. With the goal of
optimizing power-consumption in data center networks, they deploy a DRL agent on
top of the SDN controller to consolidate traffic flows in a few links. The controller
periodically collects statistics querying OpenFlow switches and computes per-link
throughputs which is the input of learning agents. The DRL agent will output as
action a list of margin ratio for each link, which is the reserved bandwidth in a link,
considering a leeway to avoid congestion caused by unpredicted bursts. Considering
power minimization and Flow Completion Time (FCT), the model is rewarded.
Finally, the controller will update routes based on the decision of the model and
will turn off all unused links or devices for power saving.

With the same goal of reducing energy costs, a deep learning model is employed by
Chen et al. in [19]. The main idea is to collect metrics thanks to SDN controller,
use a deep learning model to predict the traffic and activate sleep/wake up model
for some switches and links based on current and predicted traffic. They maintain
a virtual topology representing the current state of the network on which routes
and energy consumption are recomputed after a decision, to analyze if it leads to
an improvement; if it does, sleep/wake mode is then applied.

The main difference between our work and the solutions so far proposed relies
on the controller design. We propose an auto-scaling framework that reduces
unnecessary power consumption, but we employ multiple controllers and manage
every network area with a different model instance. Although the usage of possible
distributed architecture in auto-scaling networks is mostly unexplored, Multi-Agent

9
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Reinforcement Learning (MARL) has been successfully used in other domains, with
different possible designs.

Naderializadeh et al. proposes a solution for resource management in wireless
networks with distributed MARL [20]. Specifically, they try to solve the problem
of user selection and optimization of resources. User equipments (UE) make
periodic measurements reported to Access Points (AP) with a certain delay; these
measurements are then shared among APs. The distributed approach sees every
AP equipped with a MARL agent that makes decisions on its own even though it
also exchanges information with neighbors. They consider a centralized training
and distributed execution which means that all agents train a single policy, thus
have the same reward feedback. Since they want to jointly optimize resource and
user scheduling, actions are defined as transmit power-UE pairs.

Mai et al. [21] deals with in-network load balancing and utilizes Multi-agent
Actor-Critic RL to split traffic across multiple paths to minimize link occupancy
and supporting size of flows. Each switch of the network is an agent and takes
actions based on its local observation, while a centralized critic observes the global
state of the network to give agents a reward so that they are globally coordinated.
Reward is produced in order to minimize the maximum link utilization after a
switch decides to send a fraction of flow across a link.

The collaborative approach proposed in the last solution is abandoned in [22],
which focuses on routing with multiagent DRL in order reducing packet delivery
time. Each router is also an agent and has its proper neural network with proper
parameters that are not shared. Since it is difficult for a router to have a global
view in real networks, routers exchange information. Each router has to decide
who will be the next hop for a certain packet based on the state composed of the
final destination, proper information and neighbor nodes shared information. The
reward will be assigned minimizing the average delivery time.

A similar approach, with multiple model that don’t share parameters, is adopted in
Magnetic [23], which applies multi-agent machine learning to the problem of virtual
machine (VM) consolidation With the goal of minimizing energy consumption in
data centers. To choose the best host power mode, they rely on ML: they deploy
one learning agent per host that takes decisions based on its state. In fact, no
information about other agents is known. A central logic unit will take care of VM
migration.

As we presented some examples of MARL application in networking environment,
two possible design concepts can be distinguished. In some solutions, multi-agents
cooperate on the achievement of a common goal, either sharing model parameters

10
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or training the same policy. Another possible approach deploys multiple agents
that are unaware of the other learning units. This thesis investigates the use
of a multi-agent reinforcement learning model for auto-scaling decisions in an
SDN environment with two possible alternatives for distributing operations: a
collaborative one, where controllers share the same observations, and an individual
one, where controllers make decisions according to their own logic and do not share
any model parameters.

11



Chapter 3
Background

This chapter will introduce the main concepts needed to better understand this
thesis work. We will explain the Software Defined Networking paradigm and the
main technologies used to enable it; we will describe what a Distributed Hash Table
is, what Raft algorithm is and finally we will introduce the concept of Reinforcement
Learning and Deep Reinforcement Learning.

3.1 Network device architecture

The architecture of many network devices is composed of three parts called "planes'
which are in charge of different operations (Fig. 3.1).

1. Data plane: in charge of forwarding packets. It is designed to be as fast as
possible to support modern network speed. It receives, processes and forwards
traffic that traverse the device following predefined rules established by the
controller. Commonly, a fast/slow path design is implemented: most of the
packets follow a fast path because they match some configured rule and the
output port is simply determined; other packets are sent to the controller for
further elaborations and that’s why this is called slow path. The data plane is
hardware friendly because of the high speed required, simple tasks and rare
updates, in fact it is mainly implemented through ASICs, FPGA or NPUs.

2. Control plane: it is in charge of configuring how data plane should forward
packets, populating tables. Sometimes, it manages particular packets that
don’t fit any kind of rule. Its job depends on the purpose of the network
device. For example, in case of a router device, the control plane executes
routing protocols, performs connectivity management, adjacent device discov-
ery, service provisioning. For firewall applications, it is programmed to react

12
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dynamically to possible threats. It is implemented in software, because of its
slow tasks, through general purpose CPUs.

3. Management plane: it manages all the devices, monitors traffic, thus its
use is destined to the network administrator.

ﬂ

b

Management plane

Control plane ’—I

|

Traffic Data plana

Figure 3.1: Network device architecture [24].

3.2 Software-defined networking

The tightly coupled control and data planes of traditional networks fostered verti-
cally consolidated markets that were closed to innovation. The control over the
network was limited by proprietary solutions, which caused difficulties in the man-
agement of the network because of different hardware with different functionalities.

This closed infrastructure couldn’t provide control over the network or the appli-
cations, the attractiveness of programmable devices grew. This necessity opened
the path for new innovations, like the separation of control and data plane and the
introduction of open interfaces between them, thus posing the basis for the SDN
paradigm.

Software-defined networking is a paradigm born to make networks more pro-
grammable in order to simplify management operations, increase flexibility and
enable innovation. SDN paradigm key ideas were:

e Decoupling data plane and control plane: forwarding switches are
conceived as simple devices that follow the logic established by the control
plane through a software application.
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- -

Yy g

Operating system +
software applications

(e.g., routing protocols,
NAT, firewall, etc.)

Cisco
Huawei

Hardware
(specialized data plane)

Figure 3.2: Traditional networking domain. Adapted from [25].

o Centralizing the control in one single object that has a complete view over
the network to easily control it.

o Context-based forwarding enabled by the "big switch" view of the control
plane that abstracts the network, allowing to set high-level rules.

The focus on separating hardware and software implementations, dynamic forward-
ing and high programmability led to the integration of machine learning approaches
to collect data, manage the network and improve performance.

3.2.1 Data plane and control plane

The concept of separation emerged in the early 2000s because of the increasing
volume in traffic and the will to manage flows controlling their paths. To sustain
the higher links speed, equipment vendors started to program forwarding logic in
hardware, thus practically separating it from the control plane in software. This
new idea permitted the independent evolution of the two components and to two
fundamental innovations: open interfaces between data and control plane and a
centralized controller for the network.

In this view, the control plane logic is implemented in software and exports an
open interface so that making changes becomes easier. The forwarding devices are
simple switches that follow configured rules, so they become faster and cheaper. A
standard southbound interface, like OpenFlow, guarantees interoperability among
different vendors devices.

14
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3.2.2 Controller

SDN paradigm promoted the idea of a centralized controller that could have a
global view of the network to facilitate management and control, but this idea was
found unfeasible to apply in real scenarios. In fact, SDN centralized controller
was found to have scalability, reliability, availability issues and does not scale with
large networks. One of the first solutions was to replicate the controller for failure
recovery, but consistency issues arose, so the research focused on the idea of a
physical distributed controller, which is more complex but more robust.

Depending on the needs, various design are available for physical distributed
controllers:

o Flat SDN control: Controllers are horizontally distributed over multiple
network areas, where each area is managed by one controller. Every network
event or information is shared among all controllers. Since many controllers
are deployed, this solution decreases latency and improves resiliency.

e Hierarchical SDN control: This vertical model requires many layers of
controllers based on the services they provide. Low-layer controller directly
communicates with underlying devices but do not have global view of the
network nor can interact with each other. Upper-layer controllers achieve
non-local requirements, such as inter-domain connectivity.

e Hybrid approach: The hybrid approach involves both control plane and data
plane in networking decisions, optimizing the use of network resources.

Another distinction can be made inside physical distributed controllers:

« Logically centralized: Controllers maintain a global view of the network and
share network information to collaborate in the management of the network.
Every controller can take decision based on the whole network status.

« Logically distributed: Network is separated in domains, so we can dis-
tinguish intra-domain and inter-domain activities. Intra-domain operations
require configuring network devices, retrieve metrics from them, flow engineer-
ing. Inter-domain part handles communication with other controllers for the
exchange of information needed for services, such as routing. Every controller
takes decision for his area based on local information.

3.2.3 Context-based forwarding

With this new configuration, the control plane can take decisions about forwarding
at run-time, for example, based on the current traffic (the context). The switch
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can send a packet to the intelligent controller that inspects the packet and tell the
switch where to forward it, potentially installing new forwarding rules.
3.2.4 Architectural overview

SDN architecture is composed of three main layers connected by southbound and
northbound APIs:

o Application layer: control program designed to implement the network
control logic. It may run locally or on a remote machine.

¢« Northbound interface: well-defined API.

o Control layer : also referred to as "Network Operating system', it represents
the brain of the network. It translates commands from the application to the

underlying layer and get information back. It provides a global view of the
network to the upper layer.

e Southbound interface: standard open interface towards physical devices.

o Data layer: it identifies the distributed forwarding elements.

‘Server 2

Advanced services I
{e.g., end-to-end
o -

rchestration)

Morthbound interface

SDON contm;ier {or Network
Operatill'ig System)

—
Basic services (e.qg., l
network topology)

L ¥ 3

Server 1

’
v

Southbound interface ]

rf’ SDN

4 swich
3 L]
SDN SDN
swich swich

Figure 3.3: Software-defined network architecture [25].
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Due to its wide adoption, OpenFlow became the de facto standard for the South-
bound interface.

3.3 OpenFlow

OpenFlow [26] is a protocol that allows the control plane to access and control
forwarding devices from a central point. It is an open interface for network
abstraction layer, in fact, the controller doesn’t need to be directly attached to the
network devices. OpenFlow is just one way to achieve abstraction, but in 2011,
Open Networking Foundation defined OpenFlow the de facto standard for SDN
Southbound interface.

The OpenFlow architecture defines a centralized controller that communicates with
switches to populate forwarding tables, to collect statistics or to learn the status of
the network; an OpenFlow-enabled switch who does nothing but follows rules; a
secure channel for the communication between them, see Fig. 3.4.

App 1 App N
(Feature 1) | ... | (Feature N)

[ OpenFlow controller ‘

o e e e e e e e e e

(software)
OpenFlow « Traffic from MAC aa:bb:cc:dd:ee:ff:
protocol send to port 1
+ All remaining traffic: send to port 3
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Figure 3.4: OpenFlow architecture [27].

Forwarding is based on rules (match-action) decided by the user and injected into
the switch by the controller. They can be configured in two ways:

e Proactive mode: the forwarding table is populated a priori.

« Reactive mode: the only configured rule sends packets to the controller
(table-miss entry), which will establish and write a new FlowMod.
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The OpenFlow switch is composed of one or more flow tables, group tables, meter
tables and some OpenFlow channels. The pipeline is divided in ingress and egress,
where flow tables are queried in series, so if the match starts at the first flow table,
it may continue in others in the pipeline.

Controller Controller

OpenFlow Protocol

OpenFlow Switch
; Datapath
OpenFlow | | OpenFlow :
Channel || Channel |!|Group || Meter
Control Channel 1 | Table || Table
Se Port
Flow Flow Flow
T | Table [ | Table [ | Table |
Port Pipeline Port
™ o

Figure 3.5: OpenFlow switch [26].

Every flow table entry is formed by:

Match fields: values used for matching. Typically, involve input port and
header fields.

Priority: defines the importance of this entry over others.
Counters: they are incremented whenever a packet matches.
Instructions: actions to perform when the packet matches.
Timeouts: indicates for how much time the rule is active.
Cookie: used by the controller to grab statistics about the entry.

Flags: used to distinguish the management of entries.

OpenFlow also offers the possibility to apply some behaviors to multiple entries
through the configuration of a group table. Instead, The meter table is used to
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implement QoS operations. The OpenFlow Channels present in the switch, are
used to communicate with the control plane.

Although multiple connection can be established with multiple controllers, Open-
Flow promote a single centralized controller with a global view of the network, and
delivers multiple instances in a master-slave configuration for resiliency purposes
only.

One of the most employed controllers is Ryu.

3.3.1 Ryu controller

The most adopted SDN Controller is Ryu !, an open-source component-based
software defined networking framework that exports well-defined APIs to easily
create applications that can manage network devices. It provides some components
that can be modified or extended to build SDN applications. It supports many
protocols, among them, we find OpenFlow.

Ryu applications are single-threaded entities which implement various functionalities
in Ryu. Events are messages between applications, and one example of such event
sources is OpenFlow controller. A Ryu application can register itself to listen for
specific events, so if it subscribes for OpenFlow messages, whenever a switch sends
a message, this will be automatically decoded. Any OpenFlow event has at least a
message object, a datapath identifier to clarify which switch is the source of the
message, a timestamp. Based on the specific goal of the message, new attributes
can be present. Typical events to subscribe to are: the connection/disconnection
of a switch, the change in the status of a port, host registration.

Ryu controller can modify Flow tables, establishing new rules, deleting old ones,
modifying match fields or actions etc. It is also used to collect metrics from switches,
regarding the state of ports, tables, flows that can also be aggregated. Metrics are
collected thanks to counters integrated in the tables, that measure bytes, packets or
flows. The possible actions to perform upon the matching of a packet are: choose
output port for the forwarding of the packet, change Ethernet source/destination
address, change IP source/destination address, set TCP/UDP port, set a VLAN
id, set the queue to which send the packet.

Thttps://ryu-sdn.org/
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3.3.2 Conlcusion

In conclusion, the OpenFlow approach is flexible, enables context-based decisions
through the use of a controller but is complex, suffers from scalability and per-
formance issues and does not support new header definitions. To overcome these
limitations, new protocols were proposed, such as P4.

3.4 P4

Programming Protocol-independent Packet Processors (P4) [28] is a high level
programming language to describe packet forwarding and a protocol independent
architecture. Usually, network devices are designed with a "bottom-up" approach,
which means that they are based on fixed-function chip from third-party vendors.
P4 promotes the opposite approach, which is "top-down". With this method, the
programmer establishes the features set in a P4 program, which is later compiled
and pushed into the network device to configure. The chips that support this
approach contain programmable blocks.

BOTTOM-UP TOP-DOWN
Network Network / /
functions functions P4 Program

SWITCH 0OS SWITCH OS

i 4
O &} e

Fixed-function chip Programmable chip

Figure 3.6: Bottom-up vs top-down approach.

The tree main goals of P4 are:

« Reconfigurability: controller should be able to redefine processing and
parsing of packets

« Protocol independence: controller should be able to create and parse new
headers with new fields and a set of match-action tables to process them.

o Target independence: the programmer doesn’t need to know implementa-
tion details of the underlying switch, instead, specific compilers are used.
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3.4.1 Abstract forwarding model

A generic P4 program is made of a parser, which is implemented as a finite-state
machine, a match-action pipeline and a deparser. Differently to OpenFlow, P4
parser is programmable to create new packet headers and match-action pipeline
stages can be in series or in parallel. When a packet arrives to the switch, the parser
extracts headers fields from the packet and pass them to match-action tables. Two
tables of this kind are present: ingress and egress. Ingress processing determines
the output port of the packet in case of forwarding, but the packet can also be
dropped, sent to the controller or re-inserted into the pipeline. Egress pipeline
executes modification of the headers, e.g. remove some headers before sending the
packet to the controller.

A P4 switch can maintain a state thanks to tables, registers, counters and meters:
tables trigger some actions in case keys match, registers are used to store data and
can be written/read both from data plane and control plane, counters and meters
are mainly used to collect metrics and act accordingly. Communication between
data plane and control plane can be established through digest or cloning.
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Figure 3.7: P4 abstract forwarding model [28].
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3.4.2 Controller

We can use the Thrift API to control the switch establishing a connection with the
server running on the switch. We can use the controller to populate tables, read reg-
isters, counters. Two methods are possible for switch-to-controller communication:
digest and cloning.

Digest extern permits to send some small information to a controller. Receiving
digested packets is not simple because the switch includes a control header that
must be processed, furthermore the switch expects an acknowledgement message
for each digested packet (used to filter duplicates). A packet’s digest often has a
lesser size than the packet itself, since it can only be used to deliver a portion of
the headers or metadata related to the packet.

Cloning extern permits to clone a packet and send it to the egress pipeline or back
to ingress pipeline for further elaborations. When a packet is cloned, a mirror ID
can be configured to decide to which port the packet should be cloned, so it can
identify the CPU port to send it to the controller.

3.5 Distributed hash table

Distributed Hash Table (DHT) [29] is widely adopted in large-scale distributed
systems because it manages resources efficiently and develops a Peer-to-Peer (P2P)
network, which offers better robustness and node’s capability exploitation than a
client /server model.

A Distributed Hash Table is a database that, as the name suggests, differently from
a simple centralized version, is distributed among many nodes. Since it deploys a
P2P network, where peers are nodes with the same functionalities, it doesn’t need
a central server, which usually behave as a bottleneck, and it also provides the
advantages of hash functions, e.g., high efficient searching.

The peers in a DHT network are identified with an integer ID and store a part of
the hash table, which means that are responsible for modifying, deleting or adding
these entries. Elements of the hash table are treated as (key, value) pairs, and every
peer can query it if it knows the key: the database will then locate the peer who
has that entry and returns the (key, value) pair to the asking peer. The mapping
between entries and peers is done through the use of a hash function, in fact, every
non integer key is hashed to map it into a range of values used to identify the peers.
The peer who is responsible for a key is the closest to it, so a distance function has
to be defined.
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One of the most successful DHT variants is Chord [30]. It is a distributed lookup
protocol designed to efficiently locate peers and guaranteeing load balancing, avail-
ability, scalability and decentralization. Chord deploys a circular overlay network,
denominated Chord ring, where peers are distributed clockwise in ascending order.
The distance function, used to locate the node responsible for a key, is given by the
Euclidean distance in the one-dimensional ring space. To efficiently address the
joining/leaving of nodes, every peer maintains a list of successors. Chord heavily
inspired our DHT design.

= |
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Figure 3.8: How to query a Distributed Hash Table.

We can summarize the properties of a DHT as:

o High efficiency. Inherited by the hash table, this property concerns the efficient
location of data. It is very desirable in a large-scale network.

e Decentralization. The hash table is divided in portions, each assigned to a
peer. There is no central entity, thus hot spots are avoided, instead, a good
balance is achieved.

o Scalability. As a decentralized design, it can be applied to all type of systems,
from small ones to very big ones. However, it must handle node removal /addi-
tion and node failures.

As a result of its properties, the DHT is widely adopted. It is adopted by search
engines, for storage purposes and to efficiently implement file sharing. The tradi-
tional client/server system, where all data are stored in a server, lacks of scalability
and charges the central entity with too many responsibilities. A first improvement
was achieved with the distribution of the content to peers, charging the server to
maintain the peers indexes only. One step forward is taken by BitTorrent [31], a
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self-scaling file-sharing P2P application. It leverages the DHT to build a distributed
tracker. In BitTorrent, a tracker maintains a list of active peers interested in a
file [32] which is associated to a torrent identifier. When a new peer joins the
network, it can query the DHT with the torrent identifier used as key to find the
peer responsible for it in order to track all the participating nodes for that file.

A DHT-based approach can achieve weak decentralized consensus, but when
nodes join or leave the network, inconsistency issues may arise for some period. To
achieve strong consistency, other protocols, e.g. Raft, may be needed.

3.6 Raft

Raft is a consensus algorithm used in distributed systems. Since some machines
can be faulty or unreliable, nodes need to agree on single values to create a reliable
large-scale distributed system. For a long time, Paxos was the most used consensus
algorithm, but since it was difficult to understand and to apply in practical context,
new approaches were developed, such as Raft. Raft uses similar ideas but breaks
down the concept in different separated tasks:

o Leader election: the algorithm consists on the election of a leader who takes
decisions about the state and replicates them among others. Nodes start as
followers and can candidate themselves when leader fails, vote for themselves
if candidates and send Request Vote RPCs. Whenever a new leader is elected,
a new term starts. In case of draw, the process is repeated.

o Log replication: the leader communicates with the client and executes com-
mands. Every command is appended in its logs and then sent to all other
nodes through Append Entries RPCs to replicate the entry. Whenever the
majority of nodes has committed the current entry, the leader updates its
state machine and responds to the client. Persistent state of servers include:
log entries with commands received for every term, candidate ID the server
has voted for in this term, current state machine value.

o Safety: the goal is that every node must execute the same commands in
the same order, and some restrictions are considered in leader election to
guarantee it. For example, new leader must contain all previous committed
entries. For this reason, if a leader discovers another node with a higher term,
it will proceed to copy the missing entries into logs and become a follower.

Summarizing, Raft algorithm achieves consensus through the election of a leader,
which takes decisions and replicate them among other nodes. To guarantee strong
consistency, the state machine is changed only when every node in the network
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has logged the new decision, to correctly handle eventual failures. In this way, the
correct order of instructions is also preserved.
The whole state machine diagram describing Raft protocol is pictured in Fig. 3.9

Another node wins

Election start /J\ Most voted wins
START Follower 3 C e

® g Leader

Mo winner,
election re-start

Discover node with higher term

Figure 3.9: State machine diagram for Raft protocol.

3.7 Reinforcement Learning

Reinforcement learning is a part of Machine Learning whose principles are based
on human learning. It is widely deployed in many fields, from healthcare, image
processing, robotics, to the networking field. Here we illustrate the basic idea at
the core of RL and explain the terminology used.

We first define some keywords:

Agent : The agent is the operator that has to learn how to maximize the
reward function, interacting with the environment.

State : The state represents the environment in a certain moment.
Action : An action is performed by the agent and modifies the environment.

Environment : The environment is everything that surrounds the agent.
When actions are performed, it goes into a new state e returns a reward based
on the desired final state.

Reward : Scalar value that represent how good is the action performed.

We can observe a graphical representation of how RL works in Fig. 3.10. The
agent interacts with the environment, performing actions with some effects. The
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environment changes and returns the new state representation and a reward to
the agent. This interaction goes on continuously until the agent has sufficiently
explored his possibilities and, knowing the consequences of his actions, it now
knows how to act to maximize the reward function, which represents its goal.

':| Agent Il
state reward action
S i, A,

Ra+1 ( .
Se | Environment

Figure 3.10: Basic diagram of RL [33].

3.7.1 (Deep) Q-Learning

Q-Learning [34] is a model-free reinforcement learning algorithm based on a value
function, because it maps a value to the action performed in a particular state:

Q(s,a) =r+Vy (3.1)

The optimal action-value function has the highest value for all states, the optimal
Q-function tells how good is to perform an action in a given state. There exists a
relationship between these functions:

V*(s) = maz,Q"(s,a) Vs €S (3.2)

In other words, the highest Q-value over all feasible actions in state s is the
maximum expected total reward. The Q-value for a pair action-state is computed
through the Bellman equation:

Q(s,a) =r+ ymazyQ(s',a’) (3.3)

where 7 is a discount factor between 0 and 1. This tells us that the maximum
reward is given by the reward obtained for arriving at this state plus the future
maximum reward for the next state. The Q-Table is initialized with zero values
and updated at each step using approximations between the old and new Q-Value:

Q(S> a) = (1 - O./)Q(S, CZ) + CY(T + ﬂ}/mama’Q(Sla CL/)) (34)
where « is a tunable hyperparameter known as learning rate.

26



Background

Since a Q-table cannot scale with bigger state and action space, we employ Deep
Q-Learning algorithm [35] which incorporates the use of artificial neural networks
to the idea of QQ-Learning. Neural networks are function approximators, which
means that we can train them on samples from the state space to learn to predict
the action to perform when new states are encountered. For this reason, this is
particularly useful when the state space is very large. The state is now entered into
a Deep Neural Network, which generates a different Q-value for each action. Once
more, we select the course of action with the highest Q-value. The iterative update
strategy keeps the learning process constant, however here we update the weights
in the neural network rather than the Q-Table to enhance the outputs.
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Chapter 4

Distributed Hash Table

In this chapter, we study the deployment of a Distributed Hash Table as a way
of sharing information among controllers in a multi-controller software-defined
network. The use case presented concerns the detection of heavy hitters through
a counting bloom filter. We will first explain the concepts of heavy hitters and
counting bloom filter, then we present our solution in detail.

4.1 Heavy hitter detection

Heavy hitters can be defined as network sources sending unusual large traffic
and can be categorized by source IP address or flow’s 5-tuple. Since network
measurements show that few heavy hitters account for a large percentage of the
traffic [36], their detection can be very important for many application, e.g. routing
optimization, traffic engineering, Dos detection.

4.2 Counting bloom filter

A bloom filter is a probabilistic data structure used to test if an element belongs to
a set. It maps elements of a set into a bit array through the use of multiple hash
functions, and can tell whether an element is present if all entries to which it is
mapped are 1.

A counting bloom filter is similar to a bloom filter but uses counters instead of
binary values and permits to query a dynamic set, because elements can be deleted.
Every element is mapped through multiple hash functions to an array, whose values
are updated according to the operation to perform. To establish if a certain item
belongs to the set, all the cells to which it is mapped must exceed a threshold value.
This is the data structure we employ in our solution, it is represented in Fig. 4.1.
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The use of hash functions in probabilistic data structures enhances look-up perfor-
mance and space efficiency. Despite this, because of hash collisions, false positives
are possible, so an error rate is introduced. Bloom filters can be properly di-
mensioned to trade off between space and accuracy according to the application
requirements.

X Xy X3 Xy y?

[1]o]o]2]o]o]o]o]4]|o]o|3]0[o]o[1]0[0]0[1]

Figure 4.1: Counting bloom filter [37]. Every element is mapped to cells through
multiple hash functions. When all the cells exceed the established threshold, the
element is considered part of the set.

4.3 System overview

This implementation is based on a distributed SDN environment, where pro-
grammable switches are leveraged for efficient measurements, each associated to a
controller. Controllers are nodes in a decentralized peer-to-peer network (overlay
network), which is deployed to maintain a DHT. The DHT is a counting bloom filter
which keeps track of heavy hitter flows in order to stop them. Fig. 4.2 represents
the interaction among these elements.

4.4 Data plane

To build the data plane, the P4 technology is employed, which permits to program
the switch device as needed. For this solution, we program a new table called
Heavy__hitter that will contain the TCP 5-tuple of all flows that should be stopped.
The 5-tuple is defined by:

e IPv4 source address

e [Pv4 destination address

TCP source port
o TCP destination port

o IPv4 protocol field
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Figure 4.2: System design. Controller form an overlay network to exchange
information about their portion of distributed counting bloom filter.

Physical network

Whenever a TCP packet is received, the switch will check the Heavy hitter table
and in case of hit it will drop the packet. Otherwise, the packet will be sent
to the controller, which updates the counting bloom filter, decides if the packet
belongs to a heavy hitter flow and eventually populates the switch forwarding table
accordingly. Two methods were tested for the communication with the control
plane: digest and cloning.

The Digest extern function permits to send some small information to the controller,
typically a subset of the headers or metadata associated with the packet, while the
Cloning extern function permit to clone a packet and send it to the CPU port
to reach the controller. We found that the digest method couldn’t keep up with
the high number of messages per second that our controllers should receive, due to
the overhead associated with parsing operations, while cloning option was found to
properly sustain the high rate of messages.

4.5 Control plane

The control plane is implemented in a distributed manner: every switch has its
own controller. Controllers form an overlay network to share their information,
since they own a portion of the distributed counting bloom filter. During the
initial phase, every controller is instantiated and assigned with an integer ID, based
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on which a circular linked list of controllers is created. Integers IDs are used to
associate keys to peers, since keys are mapped into integers in the range [0,2" — 1]
where n is the number of bits used. The mapping between controller and keys
is done through a distance function: given a key, the peer who must handle
it is the closest one, here defined as the closest successor of the key based on its
identifier. We can use Fig. 4.3 to clarify with an example. Controller with ID 12 is
the closest successor, then responsible, for keys 7,8,9,10,11 and 12.

When a controller needs to update or read a table entry, it has to contact the
responsible for that key, but keeping track of all the peers in the overlay network
is not a scalable approach; keeping track of the predecessor and successor only,
generates O (V) messages per query, so a tradeoff is here implemented which consists
on the use of shortcuts. The number of neighbors per peer and the number of
messages per query are O(logN) in a circular DHT-based network with shortcuts.

Every controller will put all CPU messages received by the switch into a queue
and will eventually process them. When a packet is taken from the queue, TCP’s
5-tuple is extracted to identify the flow and hash functions are applied in order to
obtain its keys and update the bloom filter after having contacted the controller
responsible for that entries. To check if a flow is in the bloom filter, which means
that it is considered a heavy hitter, both entries to which it is mapped must
have counted more packets than the threshold. When a threshold of packets is
exceeded, an entry identifying that flow will be added in the heavy hitter table of
the switch. The counting bloom filter here uses two hash functions, CRC16 and
CRC32, therefore every TCP flow will be associated to two different keys used as
indexes for accessing the bloom filter. Since the number of flows in our network is
pretty limited, the use of two hash functions is sufficient for us to balance space
occupancy and performance.
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S2

Figure 4.3: Overlay network with shortcuts. Every controller has an integer 1D
used in the distance function to determine who is responsible for a key.
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Chapter 5
Auto-scaling decisions

In this chapter, we discuss the path toward our autonomous network planning
framework, here presented in two different designs, collaborative distributed and
individually distributed. The differences among these design choices are stressed in
this chapter, while results are evaluated in Chapter 6.

5.1 Self-driving networks

The rapid expansion of the Internet led to over-provisioning and high power
consumption. To face traffic spikes, failures and congestion, redundant devices and
links are deployed which result in additional energy consumption not always well
exploited. Backbone average link utilization is estimated to be around 30-40% [38]
but energy consumption doesn’t depend much on the work load, so sleep states for
links and devices or dynamic resource adaption are required for power savings [39].

The SDN paradigm brought innovation, re-configurability and flexibility in the
network management field. A possible way to exploit this flexibility is to move
towards a fully automated network, often referred to as self-driving network. Self-
driving networks can measure, analyze, and control themselves in an automated
manner, reacting to environmental changes, e.g., traffic volume, while adjusting
and optimizing themselves as needed [40]. Increased automation has the ability to
not only make network operations simpler, but also make it possible to perform
more precise improvements by utilizing all the network data available rather than
just relying on established models. Any algorithm for network optimization must
contend with the difficulty of the future’s inherent uncertainty: there might be
an unanticipated increase in demand, an edge failure, or any other unexpected
behavior of a component inside or outside the network. As a result, a self-driving
network should not only adapt to the current environment as best it can, but also
be ready for any requirements that may arise in the near future. In other words,
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networks need to be robustly optimized, taking both current and potential future
demands into account.

With this thesis, we attempt to build a completely automated network that dy-
namically adapts resources based on traffic need, with the goal of reducing power
consumption.

5.2 System design

In particular, in this chapter, we propose an autonomous network planning frame-
work that can dynamically scale up and down network resources as traffic volume
changes to guarantee high applicative throughput in a multi-controller environment
through the use of Mutli-Agent RL. The basic idea of our solution is to activate
supporting switches that are typically unused, but that can be leveraged to deal
successfully with congestion. On the contrary, to consolidate resources, they can
be deactivated in order to save computing power.

We sketch the main operations of our solution in Figure 5.1. First, the multiple SDN
controllers deployed collect and maintain traffic statistics from local switches and
calculate the throughput of flows. Based on the chosen design, specific information
are exchanged with other controllers and the network state is built up. The DRL
model generates the best action to take based on the input received and gets
rewarded. The action list is sent to the power optimization module that may
change the status of supporting switches. In these circumstances, the virtual
topology view is modified and re-routing is performed, preferring less congested
paths.

5.2.1 DRL formulation

Our solution employs a Deep Reinforcement Learning (DRL) approach where the
agent observes the state of the environment, our network, and generates an action
that will alter the environment. Every action is rewarded with a scalar value to
learn the best policy to actuate. The DRL agent receives the inputs, selects the
best action, uses the reward value to evaluate the goodness of the chosen action,
and proceeds with this process continuously.

We deploy the Deep Q-Learning algorithm because it is appropriate for a large state
space, since it uses a deep neural network to approximate state values. Differently
from vanilla Q-Learning, the neural network in this implementation maps input
states to pairs of (action, Q-value), where the Q-value is the maximum estimated
return for taking action into a given state, but, equivalently, updates the neural
network weights conforming to the Bellman Equation.
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Figure 5.1: System architecture. The SDN controllers receive in input the network
statistics and, using the DRL model, select the best set of network resources to
deploy. According to this decision, routing tables should be appropriately updated.

During the training phase, we adopt the Epsilon-Greedy method in order to balance
exploration and exploitation. The model initially explores the environment by
taking randomized actions and stores the received reward values. As the training
proceeds, the probability to take random actions is decreased, and the temporarily
learned policy is leveraged to choose the action with the highest return.

To optimize the learning process, the RL agent periodically makes use of an
experience replay buffer. The learning phase is separated from acting and relies
upon randomly sampled batches of recorded data. This solution removes temporal
dependency built into the data and treats our data as identically distributed.

Another improvement we introduced in the algorithm is the use of two different
neural networks, main and target network. This approach is called Deep QQ Network
(DQN) and uses the target network to compute Q(s',a’) while the main network
is used for the calculation of Q(s,a). Their weights are updated with a different
frequency, in particular, the target network is the copy of the main network in a
previous instant. This solution overcomes possible training instabilities.

In our models’” implementation, agents have two fully connected layers that elaborate
the input, followed by a Softmax layer that converts output to a distribution of
probabilities. When the model produces an output, the action with the highest
probability is accomplished.
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As in any other RL-based algorithm, we need to define the main variables of
the framework: state, action, and reward. In our solution, we have the following
mappings:

« State space: The agent state space is based on the load of links. The number
of links considered as input depends on the specific distribution framework
selected.

o Action space: For each supporting switch, the model defines if such a switch
has to be powered on or off in the current step.

« Reward: The purpose of the model is to find the best resource allocation
that maximizes the network-aware reward, where our objective is to detect the
minimal set of active resources that can satisfy traffic demands. With this in
mind, we construct the reward function considering the network performance
and a penalization for resource over-provisioning to discourage a scenario
where supporting switches are active but unhelpful to traffic. The reward
equation results as the average network throughput deducted by the power
associated with each activated supporting switch. It is here defined:

1 k N
R:EZBi—AZSj (5.1)
i=1 j=1

where k indicates the number of active flows in the last t seconds, used to
measure the average throughput, and A is the power associated to the N active
supporting switches.

5.2.2 Data plane implementation

The proposed framework is tested under two different data plane techonologies, P4
and OpenFlow. Therefore, we here describe the two implementations, underlying
the differences between them.

Every controller we deploy in our network interacts with the underlying switches to
collect metrics and to configure rules in the forwarding tables. These two operations
generate sufficient differences in the two technologies we study.

OpenFlow-based switches are managed by the Ryu controller, which exports some
APIs to create flexible applications that can manage network devices. Every OF
switch maintains counters for each table to collect metrics about flows or entries.
To interrogate the switch, Ryu exports multiple APIs for request with different
granularity. In our implementation, we need to collect port statistics, e.g., the

36



Auto-scaling decisions

number of packets that traverse a switch, and flow statistics, e.g. the throughput.
The request messages used are OFPPortStatsRequest and OFPFlowStatsRequest.
Ryu simplifies a lot the work of the programmer, but this simple approach is
the cause of some troubles, since, to collect individual flows statistics, we had to
configure rules for every possible flow in the network, creating tables with many
forwarding rules that increased the lookup time.

P4-based switches, instead, let us define custom counters to associate directly or
indirectly to tables. In this case, we defined a counter for ingress packets, indexed
by the port used, that is incremented in the Ingress processing as first operation,
and a counter for egress packets that is incremented after the forwarding port is
established. To compute the throughput of flows, the switch maintains a counter of
bytes for every TCP flow, indexed by the hashed 5-tuple value. This configurability
provided by P4 enables flexibility and efficiency.

37



Auto-scaling decisions

5.3 Collaborative distributed

The first design choice we propose deploys multiple controllers training DRL agents
that learn how to produce collaborative behaviors. To achieve this goal, controllers
agree on a common input to feed their model, which represents the state of the
global network.

In particular, the state space we use is the aggregate of subnetworks information
on link utilization and the state of all supporting switches, i.e., whether they are
active or not. In such a manner, agents can see the actions performed by other
controllers and their effects on the network, then they can make a decision.

Actions about the planning of network resources of the SDN controller, instead,
regard the single subnetwork. In other words, the model is logically centralized,
but it runs in a multi-agent setting for reliability and scalability reasons.

Data consistency and consensus

Since we want our controllers to have a global view of the network, the information
they collect needs to be combined and distributed among all instances. In our
systems, agents must agree on the global state of the network, constituted by
links utilization and helping switch status, which is later sent as input to the
multiple instances of the DRL model. Moreover, it is fundamental that agents
are synchronized in communicating the state to the model, since it chooses what
actions to perform based on the current state of the environment. With this in
mind, we can state that our system requires consensus and data consistency to
perform as desired. Here we explain what are the differences among these two
properties and how we decided to achieve them.

Consensus is the procedure to reach a common agreement in a distributed or
decentralized multi-agent environment. Data consistency refers to whether the
same data maintained in different places still matches, besides possible modifications
that must be propagated to all the locations.

The study we conducted on DHT in Section 4 was preparatory for this. A DHT-
based approach can achieve a weak decentralized consensus and weak consistency
if node joining/leaving the network are well handled, but still there may be some
instants where the ring is not stable. Since we want to obtain a consistent network-
wide view, we choose to deploy the Raft algorithm. It is a leader-based algorithm
that allows achieving consensus-based replication even in the presence of failures,
guaranteeing consistency with the real-time ordering of operations.
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We made some modifications to the Raft algorithm to adapt it to our scenario.
Periodically, metrics are collected by controllers, which add information about
the state of the supporting switch, i.e. whether it is active or not, and then send
its information to the Raft leader. The leader, which is one of the controllers,
aggregates the local states received and its own, builds up the global network state
and replicates it. When nodes receive the updated state from the leader, they
register the event in their log files and change their state machine accordingly.

Local data

Global state

@ lnpm@
DRL model
@ Input
DRL model
@ lnpm@

DRL model

Figure 5.2: Use of Raft in the collaborative setting. Controllers send their local
information to the Raft leader, which aggregate all the information received and

builds the global state. This is replicated among all nodes and sent to DRL agents
as input of the model.
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5.4 Individually distributed

Opposed to the aforementioned design, we also present a fully distributed solution.
The leading idea is to train agents independently of each other to make a comparison
between the learned behaviors and reached performance of the two study cases.

To achieve the goal of independence, the state space is determined by local link
utilization rather than global network utilization. Controllers collect metrics from
the switches they manage, and send these exact information to their model.

Actions produced by DRL agents affect the local network and are taken for the
sake of it, since controllers act as they don’t have knowledge of other networks. In
this scenario, agents are independent of each other, considering that they do not
share network state information nor model parameters.

Despite the fact that networks are autonomous from each other, some information
still has to be exchanged. In order to do routing and configure forwarding tables,
controllers must be informed about other networks topology and hosts. We needed
to design a protocol for the exchange of this knowledge. Controllers exchange
JSON messages composed as follows:

e Sender: IP address of the controller in the cluster.

o Graph: graph representing the local network topology suitable for JSON
serialization.

« Edges: list of edges to interconnect subnetworks.

Topology information is exchanged for the first time when controllers are instan-
tiated to build a virtual network wide view. Later on, whenever changes in
subnetworks occur, updated data is re-sent to correctly re-route flows. Changes
relate to the removal of nodes from the graph, which represent the actions of
sleep/wake up of supporting switches, for the sake of routing service only.
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Chapter 6

Results

This section provides the results obtained after some experiments conducted on
the proposed implementations. As far as concerns the application of a Distributed
Hash Table in a heavy hitter detection use case, we will test the accuracy and
response time of the implementation. Regarding our autonomous network planning
framework, we will analyze the training phase, and later, we will test the learned
behavior in an emulated environment to demonstrate that it is proficient in reaching
the goal it was designed for. We will compare the two different designs we introduced
in Chapter 5 in terms of performance and the two data plane technologies we
employed.

All the experiments were conducted in a virtualized environment through Mininet!.
Mininet is a network emulator widely used to test software-defined networks.It
offers a simple and inexpensive testbed for network applications, it allows defining
custom topologies without configuring a physical network and provides extensible
Python API. The most important advantage surely is the portability of the code,
because it runs real code that requires small changes to be run in real systems.
Mininet employs virtualization to run hosts and switches in a single OS kernel, in
particular, it leverages Linux namespaces, that provide separated environments for
different set of resources, and virtual ethernet interfaces. However, the fact the
Mininet depends on the Linux kernel is a limit and, anyway, it still remains an
emulator that may produce misleading results.

Thttp://mininet.org/
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6.1 DHT

We here evaluate the performance of our heavy hitter detector implemented with a
distributed counting bloom filter. Starting from a real traffic capture, we reproduced
many heavy hitter flows during the simulation time. The metrics we tested are
accuracy, i.e. how many heavy hitters the program can identify, and response time,
i.e. the time spent to block the traffic, measured as the difference between the
insert in the forwarding table and the instant in which the 1000 packet arrived.

6.1.1 Testbed

The reproduced topology is composed of 10 P4-enabled switches and 60 hosts.
Every switch communicates with a proper controller to send TCP 5-tuple of the
packet through CPU cloning. Controllers update the counting bloom filter cells
belonging to that flow and if a threshold is exceeded, switches are reconfigured to
drop future packets, adding a new entry into the Heavy hitter table.

s7

Figure 6.1: Network topology
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6.1.2 Simulated traffic

We replicated real traffic from NETRESEC? collection of PCAP files. Particularly,
we picked a PCAP file from "Hands-on Network Forensics" and selected 15 minutes
of traffic to analyze.

I extracted all unique IP addresses using tshark -r filename -T fields -e ip.src -e
ip.dst command and created a topology big enough to contain that number of hosts,
but my hosts IPs are of the form 10.x.y.2 where x is the switch they’re attached
to and y is the ID of the host. For example, 10.1.6.2 is the IP address of host
H6, which is attached to switch S1. The objective was to create a new PCAP file
where host IPs belonged to my network in order to replicate the traffic. To edit the
capture file to make it suitable for our network, we employed Scapy?, a tool used
both for packet manipulation and traffic replay. Scapy’s rdpcap function reads a
PCAP file and let us do per-packet operation, so for every packet of the capture
file T substituted source and destination IP addresses (every "old" IP was always
substituted with the same "new" one) with new ones belonging to my network and
wrote every new packet into a new PCAP file.

The final version of the PCAP file was analyzed with Wireshark*, the most employed
packet analyzer/sniffer. Considering a threshold of 1000 packets, 7 bidirectional
flows are heavy hitters in the selected packet capture file, as shown in Fig. 6.2
(Packets field is the total number of packets exchanged by the two hosts).

The traffic was replayed in the network through a script, started by some hosts,
that reads a pcap file and sends only the traffic with IP source address equal to its
own. Replicated traffic will respect the timing of the capture in order to have a
more realistic scenario and leverages the Scapy’s library.

Zhttps:/ /www.netresec.com/?page=PcapFiles
3https://scapy.net/
‘https://www.wireshark.org/

43



Results

Address A Port A  AddressB Port B Packets + Bytes PacketsA—B Bytes A= B Packets B — A

10.1.4.2 34478 10.4.22.2 80 69,372 68 M 23,388 1,546 k 45,984
10.8.46.2 41970 10.2.12.2 80 32,665 31 M 11,375 691k 21,290
10.1.4.2 34446 10.4.22.2 80 22,697 22 M 7,525 497k 15,172
10.1.4.2 41090 10.4.22.2 80 7,641 7,388k 2,659 159k 4,982
10.1.4.2 41089 10.4.22.2 80 5701 5,538k 1,971 130k 3,730
10.8.46.2 34266 10.6.33.2 443 4,297 4,051k 1,507 159k 2,790
10.1.4.2 41113 10.4.22.2 80 3,157 2,994k 1,135 68k 2,022
10.1.4.2 34456 10.4.22.2 80 952 903 k 339 20k 613
10.1.4.2 34472 10.4.22.2 80 873 778k 345 20k 528
10.8.46.2 47458 10.1.3.2 80 692 571k 269 18k 423
10.1.4.2 34464 10.4.22.2 80 623 653k 175 10k 448

Figure 6.2: Wireshark "conversations" extrapolated from a properly modified ver-
sion of the original PCAP file from NETRESEC. There are 7 different bidirectional
TCP flows that send more than 1000 packets.
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6.1.3 Test 1: one flow

We first want to test our program against one heavy hitter flow at a time, selecting
a minor portion of the capture file we chose. We want to see if the heavy hitter is
stopped and after how much time.

A - H46 to H12

In this first experiment, H46 sends 11375 packets to H12. The flow is stopped after
0.22 s since the 1000 packet is sent. The host H46 is directly attached to S8 and
the keys generated by CRC16 and CRC32 for the flow directed to two cells owned
by S8, which means that no other controllers were conducted to update the DHT.

No. Heavy Hitters 1
No. packets since stop || 1139
Accuracy 100%
Response time 0.22 s

Table 6.1: Test 1 - A

B - H12 to H46

H12 sends 21290 packets to H46. The heavy hitter is directly attached to switch S2
and the generated keys are 21 and 27. According to picture 4.3, and the distance
function we designed, S2 is responsible for keys 26 and 27. To update the cell
indexed with key 21, S2 has to contact three other controllers until it finds the
responsible, which is S6. To update the cell 27, no messages are required because
it owns that cell. The overhead introduced by the DHT structure increases the
response time registered in this experiment.

No. Heavy Hitters 1
No. packets since stop || 1090
Accuracy 100%
Response time 0.36 s

Table 6.2: Test 1 - B
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6.1.4 Test 2: more flows

In this advanced set of tests, we evaluate the behavior of our program in presence
of multiple concurrent flows. Among these, multiple heavy hitters are present.

A - H22 to H4

The traffic contains two concurrent flows from H22 towards H4 that exceed the
threshold. From port 80 to port 41090 are sent 4982 packets. From port 80 to
port 41089 are sent 3730 packets. As far as concerns the flow towards port 41090,
six controllers are contacted to update the bloom filter cells, while for the second
flow 4 messages are enough. This causes the higher response time in the first case.
Since the source host is the same for both flows, the same controller is in charge of
handling packets coming from both flows, this means that the queue of messages
between switch and controller is shared and vied.

80:41090 | 80:41089
No. packets since stop 1097 1100
Response time 0.28 s 0.23 s
Accuracy 100%
Average response time 0.25 s

Table 6.3: Test 2 - A

B - Bidirectional H46-H12

We now test the program under a bidirectional flow between H46 and H12. H46
sends 11375 packets. H12 sends 22190 packets. H46 is directly attached to S8, H12
is directly attached to S2. Based on the keys generated by hash functions, the
controller of S2 faces more overhead to find the responsible node for those cells and
reacts slower. If we compare the responsiveness between tests A and B, we notice
more latency in the previous test, this is caused by the fact that in this case the
number of packets to handle to update the DHT is distributed among two different
controllers, while in the previous situation there was one controller doing double
the amount of work.

C - Multiple concurrent flows

In this more complex scenario, hosts H46 and H4 replay a capture file containing
many small flows but also some big ones. In particular, there are 7 heavy hitters to
be stopped. Table 6.5 contains the detailed results of this scenario. It is important
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H46 to H12 | H12 to H46
No. packets since stop 1112 1070
Response time 0.07 s 0.12 s
Accuracy 100%
Average response time 0.1s

Table 6.4: Test 2- B

to notice that the last encountered heavy hitter flow, referred to as H4-H22:34478 in
the table, is stopped after a large amount of packets over the threshold, especially
compared to other flows. This is caused by the fact that controllers handle packets
from switches through a FIFO queue. This creates more latency in case a single
controller handles multiple flows, as in this case with many flows generated by
H4, because it has to deal with previous packets, also over the threshold, before
handling new ones.

‘ H Flow ‘ No. packets since stop ‘ Response time ‘
H46-H12 at 1119 0.14 s
H4-H22:41089 at 1055 0.08 s
H4-H22:41090 at 1070 0.20 s
H4-H22:41113 at 1057 0.23 s
H4-H22:34446 at 1037 0.36 s
H46-H33 at 1080 0.15 s
H4-H22:34478 at 1662 0.27 s
Accuracy 100%
Avg. response time 0.20 s

Table 6.5: Test 2 - C

Fig. 6.3-6.4 show the entries registered in Heavy hitter tables of switches S1
and S8. All heavy hitters were recognized and stopped, but three more entries
are present in the switch S1 than expected. In fact, entries 0x4,025 and 0x7 are
referred to three flows from H4 to H22 that were blocked that aren’t actual heavy
hitters. This is the effect of hash collisions.

6.1.5 Conclusion

This heavy hitter detector is 100% accurate, it can recognize and stop all flows
exceeding 1000 packets threshold. Average time spent to make a decision is about
0.2 seconds, and it strongly depends on how many controllers are contacted in order
to update the bloom filter. We can notice that some flows with higher response
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Figure 6.3: Table Heavy-hitter of switch S1
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time were blocked before others, that is because more consistent flows (faster and
bigger) fill the queue faster. The employment of a DHT is enough for small pieces
of data but does not provide strong consistency, since data is not replicated.
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TABLE ENTRIES

gk g e o o e e e

Dumping entry 0x8
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* ipv4.srcAddr : EXACT fabB82ed2
ipv4.dstAddr : EXACT Bafz2ecoz2
tcp.srcPort : EXACT a3f2
tcp.dstPort : EXACT 0050
ipv4d.protocol : EXACT 06

Action entry: NoAction -
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Dumping entry 0x1

Match key:
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tcp.srcPort : EXACT 85da
tcp.dstPort : EXACT 01bb
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Figure 6.4: Table Heavy-hitter of switch S8
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6.2 Two auto-scaling designs

We will now analyze and compare the two auto-scaling network designs proposed.
We test performance when switches are programmed with the two most used
languages: first P4-enabled and then OpenFlow (OF)-enabled switches. The
network topology used contains 13 nodes, where 3 of them are supporting switches
that can be activated /deactivated, they are remarked with red links in Fig. 6.5. We
also employ 3 SDN controllers to manage different subnetworks, in particular each
subnetwork contains one of the supporting switches. Half of the clients send iPerf3®
traffic with custom scripts that, for each training episode, alternate highly rated
traffic and weakly rated traffic. We also used iPerf3 to measure the throughput of
flows at receiver’s side during all the experiments.

511

i

Figure 6.5: Auto-scaling framework topology. S11, S12 and S13 are supporting
switches, they can be activated/deactivated by controllers. The goal is to power
them on only when necessary to reduce congestion. The network is divided in
three subnetworks, each managed by a different controller and each containing one
support switch.

Shttps://iperf.fr/
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6.2.1 Convergence analysis

Firstly, we inspect the training process, analyzing the trend of cumulative reward
and total reward to demonstrate that our model converged to an optimal policy.
Then, we evaluate the reward over a testing episode.

The cumulative reward is the sum of all the returns received so far, it indicates
whether the model converged or not. Fig. 6.6 and Fig. 6.7 plot the cumulative reward
obtained in the first and last episodes of training, respectively for the collaborative
and individual solution. The different controller instances, that manage different
subnetworks, are referenced as "Subnet1","Subnet2" and "Subnet3". Generally, a
higher value of cumulative reward indicates that a model dominates another with
a smaller value, but this is correct when the conditions over episodes are the same.
Unfortunately, this is not the case for the first and last episodes of our training,
because the traffic can be slightly different, and we know that the reward we
designed highly depends on the throughput of flows. What is important to notice
is that, in the first episodes, where a random policy governs, the cumulative reward
decreases for some steps, which means that supporting resources are powered on,
but no advantage is taken from that. Whereas, during last episodes this doesn’t
happen, which suggests that the policy learned by the model recognizes when
additional resources can be helpful or not.

Another indicator of the convergence of the model is the total reward trend during
the training phase, which is showed in Fig. 6.8. Typically, the total reward
increases over episodes until the maximum is reached. Since our models perform
experience mini-batch replay after each episode, which takes a variable amount
of time, episodes face different traffic conditions, which determines different total
rewards. For this reason it may not appear as obvious on our graphs, but the total
reward across episodes is still increasing. The upward trend of the reward over
episodes demonstrates that the model learned how to augment returns, and that it
performs better than a random policy adopted at the beginning as a consequence
of the Epsilon-greedy algorithm. It is also possible to see that each implementation
converged in a different number of episodes, but most important we can notice
that the collaborative framework took fewer episodes to learn.

If we have a look at Fig. 6.9, plotting the reward over time in a single episode
during the testing phase, it shows that the collaborative approach, supported by
the efficient P4 technology, stabilizes returns around 4000 for all agents when the
traffic is intense. OF based implementations show in both cases an inferior return,
which is also unsteady in the collaborative solution, fig.6.9b.
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6.2.2 Network throughput

Now, we evaluate the network performance obtained with our framework in terms
of throughput.

Fig. 6.10 presents the average throughput for two concurrent flows during the train-
ing phase of the agents in the two management designs and for both P4 and Open-
Flow protocols. For each setting, we stop the monitoring when the reward converges.
As training proceeds, the exploration probability decreases in favor of exploitation,
and as our model learns the best policy, throughput is encouraged. This increasing
trend highlights the fact that our program learns to maximize the designed reward
function, and it reaches better network performance than a random policy. We can
observe how, in the case of collaboration (Fig. 6.10a), the throughput is more stable.
Moreover, in the case of P4 the throughput is notably higher than OpenFlow.
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Figure 6.10: Throughput of flows during training. While differences between
collaborative or individual is negligible, the throughput differ for P4 or OpenFlow
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Fig. 6.11 provides a closer look at the throughput achieved with P4 and OpenFlow
protocols during the test phase of the RL model. When using P4, the maximum
throughput (as our network setup permits) is reached. All OpenFlow-based imple-
mentations face a lower and unstable throughput. This poor performance may be
due to the higher number of rules configured in OpenFlow switches, which affect
configuration and look-up time. If P4-based switches let us program one rule per
destination address, this could not be possible with OpenFlow.This means that
forwarding tables contain rules for every possible source-destination pair. More-
over, we notice a steady throughput in the P4-enabled collaborative distributed
implementation in Fig. 6.11a.
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Since our model should also detect when resources are needless, we simulated
congestion in the subnetwork 2, followed by less intensive traffic. We show in
Fig. 6.12 the throughput after the model has been trained. It can be observed
that the corresponding controller powers it off when the traffic decreases (around
30 seconds), and it also autonomously decide to power on the supporting switch
to sustain the increment in traffic (around 60 seconds). As far as concerns the
collaborative solution, even though simulated flows traverse the whole network and
all controllers are aware of the congestion, our model can identify the best spot
where additional resources overcome congestion. It is clear from the figure that
other agents keep supporting switches powered off. Whereas, in the individually
distributed design, controllers don’t know about congestion in other subnetworks
and learned to act independently for the sake of their local network.
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Figure 6.12: Evolution of throughput (left side) and actions (right side) in the
three network regions.

From the graphs it appears how, despite the conceptual difference between the two
implementations, the experienced behavior produces a similar result, with a slightly
higher throughput for the collaborative framework. This result is particularly
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important since it can suggest that an individual distributed setting, which requires
less exchange of packets among controllers, can still obtain acceptable performance.
Regarding the switch languages then, with the P4 implementation, the achieved
throughput is the maximum allowed by our network setup. As OpenFlow networks
reach lower throughput in respect of P4, we can also observe a more stable and
higher throughput in our collaborative distributed solution.

Lastly, to understand the convenience of an auto-scaling system, we compare our
model performance against a network with supporting switches always powered
off (minimal setting) and a network with always active resources (always on) that
implement equal-cost multi-path routing (ECMP). Fig. 6.13 demonstrates that our
independent version of logic distribution can achieve pretty similar performance to
an always on case where switches are always active. However, in addition to this,
our reactive logic can also reduce energy consumption powering off resources when
they are not needed, as demonstrated previously.
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Figure 6.13: Throughput evolution for a minimal setting, always-on configuration,
and our model.
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6.2.3 Conclusion

We can conclude that our autonomous auto-scaling network dynamically manages
network resources, without compromising network performance when supported
by efficient data plane technologies. The multi-agent approach adopted make our
framework scalable over large-scale networks, and two possible designs can be
discussed. A collaboration among controllers can be established, but this solution
brings new challenges to efficiently share information. We also experienced that
the trained models can be interchanged among the multiple implementations.
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Chapter 7

Conclusion

In this thesis, we addressed the need of deploying Reinforcement Learning with
a multi-agent approach to help creating self-driving networks, in response to new
strict requirements posed by data-intensive applications.

We first investigated how to possibly exchange information among multiple controller
instances. We explored the use of a Distributed Hash Table through a heavy
hitter detection use case where we distributed a counting bloom filter that stored
the number of packets per flow. We concluded that a DHT can achieve weak
decentralized consensus but doesn’t provide strong data consistency. For this
reason we decided to adopt Raft, a consensus algorithm based on the election of a
leader that replicates data, making it highly-available and strong consistent.

We proposed an autonomous network planning framework that can dynamically
scale up and down based on the traffic demand to guarantee high throughput
and the reduction of unnecessary energy consumption. With the intent to achieve
scalability, we presented two possible alternatives to manage multiple subnetworks:
a collaborative approach and an individual one.

The collaborative solution leverages Raft protocol to build and distribute the global
network state among all the controllers, which is later used by the RL model to
make decisions based on the combined behavior.

The individual solution deploys multiple controllers and multiple RL agents, which
operate independently of others. The only type of information exchanged are
topological ones, used to offer routing services.

Experimental results showed that both solutions are capable of deploying appropri-
ate reactive changes based on the traffic load and that an individually distributed
approach, which adopts a simpler mechanism for data exchange among controllers
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and share less information, can still achieve good performance. In addition to di-
verse control-plane settings, we evaluated diverse data-plane languages experiencing
how tests with P4-enabled switches are more stable and performant.

Future work will further investigate the behavior obtained with the two discussed
solutions with more realistic traffic conditions to analyze deeper the effects of
collaboration and individualism in this scenario. We also plan to study how to
describe the network state in a more intelligible way for neural networks, in order
to represent efficiently all the network features in a smaller state space.

62



List of Tables

6.1 Test 1-A . . . . . 45
6.2 Test1-B . . . . . . . 45
6.3 Test 2-A . . . . 46
6.4 Test 2-B . . . . . 47
6.5 Test 2-C . . . . . e 47

63



List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1

4.2

4.3

5.1

5.2

6.1

Network device architecture [24]. . . . . .. .. ... ... 13
Traditional networking domain. Adapted from [25]. . . . . ... .. 14
Software-defined network architecture [25]. . . . . . . ... ... .. 16
OpenFlow architecture [27]. . . . . ... ... ... ... ... ... 17
OpenFlow switch [26]. . . . . . .. ... ... ... .. ... 18
Bottom-up vs top-down approach. . . . . . .. ... ... ... 20
P4 abstract forwarding model [28]. . . . . ... ..o 21
How to query a Distributed Hash Table. . . . . .. ... ... ... 23
State machine diagram for Raft protocol. . . . . . . . ... ... .. 25
Basic diagram of RL [33]. . . . . ... ... ... ... ... 26

Counting bloom filter [37]. Every element is mapped to cells through
multiple hash functions. When all the cells exceed the established
threshold, the element is considered part of the set. . . . . . . . .. 29
System design. Controller form an overlay network to exchange
information about their portion of distributed counting bloom filter. 30
Overlay network with shortcuts. Every controller has an integer ID
used in the distance function to determine who is responsible for a

key. . 32

System architecture. The SDN controllers receive in input the
network statistics and, using the DRL model, select the best set
of network resources to deploy. According to this decision, routing
tables should be appropriately updated.. . . . . . . ... ... ... 35
Use of Raft in the collaborative setting. Controllers send their local
information to the Raft leader, which aggregate all the information
received and builds the global state. This is replicated among all
nodes and sent to DRL agents as input of the model. . . . . . . .. 39

Network topology . . . . . . . . ... 42



List of Figures

6.2

6.3
6.4
6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

Wireshark "conversations" extrapolated from a properly modified
version of the original PCAP file from NETRESEC. There are 7
different bidirectional TCP flows that send more than 1000 packets. 44
Table Heavy-hitter of switch S1 . . . . . . ... ... .. ... ... 48
Table Heavy-hitter of switch S8 . . . . . . .. ... ... ... ... 49
Auto-scaling framework topology. S11, S12 and S13 are supporting
switches, they can be activated/deactivated by controllers. The goal
is to power them on only when necessary to reduce congestion. The
network is divided in three subnetworks, each managed by a different

controller and each containing one support switch. . . . . . . . . .. 20
Cumulative reward over first and last episodes of training in the

collaborative distributed framework. . . . . . . . .. ... ... 52
Cumulative reward over first and last episodes of training in the

individually distributed framework. . . . . . ... .. ... ... .. 53
Total reward over episodes during training. . . . . . . . . ... ... 54
Reward over time during testing. . . . . . . . ... ... ... ... 55

Throughput of flows during training. While differences between
collaborative or individual is negligible, the throughput differ for P4

or OpenFlow (OF). . . . . ... ... 56
Throughput of flows during testing. OpenFlow metrics are more
JUMDY. .« o o o o7
Evolution of throughput (left side) and actions (right side) in the
three network regions. . . . . . . .. ... L. o8
Throughput evolution for a minimal setting, always-on configuration,
and our model. . . . .. ... 59

65



Acronyms

SDN Software-Defined Networking

ML Machine Learning
MARL Multi-Agent Reinfrocement Learning

AT Artificial Intelligence

RL Reinforcement Learning
DHT Distributed Hash Table
NIB Network Information Base
ODL OpenDayLight

DRL Deep Reinforcement Learning
FCT Flow Completion Time
UE User Equipment

AP Access Point

VM Virtual Machine

OF OpenFlow

P4 Programming Protocol-independent Packet Processor

P2P Peer-to-Peer
DQN Deep Q Network

ECMP Equal-Cost Multi-Path Routing

66



Bibliography

Adnan Aijaz, Mischa Dohler, A Hamid Aghvami, Vasilis Friderikos, and
Magnus Frodigh. «Realizing the tactile Internet: Haptic communications over
next generation 5G cellular networks». In: IEEE Wireless Communications
24.2 (2016), pp. 82-89 (cit. on p. 1).

Alessio Sacco, Flavio Esposito, Guido Marchetto, Grant Kolar, and Kate
Schwetye. «On edge computing for remote pathology consultations and com-
putations». In: IEEE Journal of Biomedical and Health Informatics 24.9
(2020), pp. 2523-2534 (cit. on p. 1).

Deze Zeng, Lin Gu, Shengli Pan, Jingjing Cai, and Song Guo. «Resource
management at the network edge: A deep reinforcement learning approachy.
In: IEEE Network 33.3 (2019), pp. 26-33 (cit. on p. 1).

Alessio Sacco, Flavio Esposito, and Guido Marchetto. «Supporting Sustain-
able Virtual Network Mutations with Mystique». In: IEEE Transactions on
Network and Service Management 18.3 (2021), pp. 2714-2727 (cit. on p. 1).

Doyoung Lee, Jae-Hyoung Yoo, and James Won-Ki Hong. «Deep Q-Networks
Based Auto-Scaling for Service Function Chaining». In: International Con-
ference on Network and Service Management (CNSM). IEEE. 2020, pp. 1-9
(cit. on p. 1).

Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja, Yuandong Tian, Ying
Zhang, and Xin Jin. «Network planning with deep reinforcement learning».

In: Proceedings of the 2021 ACM SIGCOMM Conference. ACM. 2021, pp. 258—
271 (cit. on p. 1).

Teemu Koponen et al. «Onix: A distributed control platform for large-scale
production networks». In: 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 10). 2010 (cit. on p. 6).

Pankaj Berde et al. «ONOS: towards an open, distributed SDN OS». In:
Proceedings of the third workshop on Hot topics in software defined networking.
2014, pp. 1-6 (cit. on p. 6).

67



BIBLIOGRAPHY

[11]

[12]

[13]

[16]

[17]

Amin Tootoonchian and Yashar Ganjali. «Hyperflow: A distributed control
plane for openflow». In: Proceedings of the 2010 internet network management
conference on Research on enterprise networking. Vol. 3. 2010, pp. 10-5555
(cit. on p. 6).

Diego Ongaro and John Ousterhout. «In search of an understandable consen-
sus algorithmy. In: USENIX Annual Technical Conference (ATC 14). 2014,
pp- 305-319 (cit. on p. 6).

ONOS' developoer guide. https://wiki.onosproject.org/display/0ON0S/
Distributed+Primitives. Last edit: 2020 (cit. on p. 6).

Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. «OpenDaylight:
Towards a Model-Driven SDN Controller architecture». In: Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014. 2014, pp. 1-6. DOT: 10.1109/WoWMoM.2014.6918985 (cit. on
p. 7).

Advait Dixit, Fang Hao, Sarit Mukherjee, T. V. Lakshman, and Ramana
Rao Kompella. «ElastiCon; an elastic distributed SDN controller». In: 2014

ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS). 2014, pp. 17-27 (cit. on p. 7).

Kevin Phemius, Mathieu Bouet, and Jérémie Leguay. «Disco: Distributed
multi-domain sdn controllersy. In: 2014 IEEFE network operations and man-
agement symposium (NOMS). IEEE. 2014, pp. 1-4 (cit. on p. 7).

Soheil Hassas Yeganeh and Yashar Ganjali. «Kandoo: a framework for efficient
and scalable offloading of control applicationsy. In: Proceedings of the first
workshop on Hot topics in software defined networks. 2012, pp. 19-24 (cit. on
p. 8).

Yonghong Fu, Jun Bi, Kai Gao, Ze Chen, Jianping Wu, and Bin Hao. «Orion:
A hybrid hierarchical control plane of software-defined networking for large-
scale networks». In: 2014 IEEFE 22nd International Conference on Network
Protocols. IEEE. 2014, pp. 569-576 (cit. on p. 8).

Saim Salman, Christopher Streiffer, Huan Chen, Theophilus Benson, and
Asim Kadav. «DeepConf: Automating Data Center Network Topologies Man-
agement with Machine Learning». In: Proceedings of the 2018 Workshop on
Network Meets AI € ML. NetAI’18. Budapest, Hungary: Association for
Computing Machinery, 2018, pp. 8-14. 1SBN: 9781450359115. por: 10.1145/
3229543 .3229554. URL: https://doi.org/10.1145/3229543 . 3229554
(cit. on p. 9).

68


https://wiki.onosproject.org/display/ONOS/Distributed+Primitives
https://wiki.onosproject.org/display/ONOS/Distributed+Primitives
https://doi.org/10.1109/WoWMoM.2014.6918985
https://doi.org/10.1145/3229543.3229554
https://doi.org/10.1145/3229543.3229554
https://doi.org/10.1145/3229543.3229554

BIBLIOGRAPHY

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]
[26]

[27]
28]

[29]

Penghao Sun, Zehua Guo, Sen Liu, Julong Lan, Junchao Wang, and Yuxiang
Hu. «SmartFCT: Improving power-efficiency for data center networks with
deep reinforcement learningy». In: Computer Networks 179 (2020), p. 107255
(cit. on p. 9).

Xiangyi Chen, Xingwei Wang, Bo Yi, Qiang He, and Min Huang. «Deep
Learning-Based Traffic Prediction for Energy Efficiency Optimization in
Software-Defined Networking». In: IEEE Systems Journal 15.4 (2021), pp. 5583+
5594. DOI: 10.1109/JSYST.2020.3009315 (cit. on p. 9).

Navid Naderializadeh, Jaroslaw J Sydir, Meryem Simsek, and Hosein Nikopour.
«Resource management in wireless networks via multi-agent deep reinforce-
ment learning». In: IEEE Transactions on Wireless Communications 20.6
(2021), pp. 3507-3523 (cit. on p. 10).

Tianle Mai, Haipeng Yao, Zehui Xiong, Song Guo, and Dusit Tao Niyato.
«Multi-agent actor-critic reinforcement learning based in-network load bal-
ancey. In: GLOBECOM 2020-2020 IEEE Global Communications Conference.
IEEE. 2020, pp. 1-6 (cit. on p. 10).

Xinyu You, Xuanjie Li, Yuedong Xu, Hui Feng, Jin Zhao, and Huaicheng Yan.
«Toward packet routing with fully distributed multiagent deep reinforcement
learningy. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems
(2020) (cit. on p. 10).

Kawsar Haghshenas, Ali Pahlevan, Marina Zapater, Siamak Mohammadi,
and David Atienza. « MAGNETIC: Multi-Agent Machine Learning-Based
Approach for Energy Efficient Dynamic Consolidation in Data Centers».
In: IEEE Transactions on Services Computing 15.1 (2022), pp. 30-44. DOIL:
10.1109/TSC.2019.2919555 (cit. on p. 10).

Fulvio Risso. Architecture of network devices. https://swnet.frisso.net/
(cit. on p. 13).

Fulvio Risso. SDN intro. https://swnet.frisso.net/ (cit. on pp. 14, 16).
Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. «OpenFlow:

enabling innovation in campus networks». In: ACM SIGCOMM computer
communication review 38.2 (2008), pp. 69-74 (cit. on pp. 17, 18).

Fulvio Risso. OpenFlow. https://swnet.frisso.net/ (cit. on p. 17).

Pat Bosshart et al. «P4: Programming protocol-independent packet proces-
sors». In: ACM SIGCOMM Computer Communication Review 44.3 (2014),
pp. 87-95 (cit. on pp. 20, 21).

Distirbuted Hash Table. https://en.wikipedia.org/wiki/Distributed_
hash_table. Last edit: 2022 (cit. on p. 22).

69


https://doi.org/10.1109/JSYST.2020.3009315
https://doi.org/10.1109/TSC.2019.2919555
https://swnet. frisso.net/
https://swnet. frisso.net/
https://swnet. frisso.net/
https://en.wikipedia.org/wiki/Distributed_hash_table
https://en.wikipedia.org/wiki/Distributed_hash_table

BIBLIOGRAPHY

[30]

[39]

[40]

Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari
Balakrishnan. «Chord: A scalable peer-to-peer lookup service for internet
applicationsy». In: ACM SIGCOMM computer communication review 31.4
(2001), pp. 149-160 (cit. on p. 23).

Bittorent. https://www.bittorrent.com/ (cit. on p. 23).

Giovanni Neglia, Giuseppe Reina, Honggang Zhang, Donald F. Towsley, Arun
Venkataramani, and John S. Danaher. «Availability in BitTorrent Systems».
In: IEEE INFOCOM 2007 - 26th IEEFE International Conference on Computer
Communications (2007), pp. 2216-2224 (cit. on p. 24).

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018 (cit. on p. 26).

Christopher JCH Watkins and Peter Dayan. «Q-learning». In: Machine
learning 8.3 (1992), pp. 279-292 (cit. on p. 26).

Volodymyr Mnih et al. « Human-level control through deep reinforcement
learningy. In: nature 518.7540 (2015), pp. 529-533 (cit. on p. 27).

Cristian Estan and George Varghese. «New directions in traffic measurement
and accounting». In: Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications. 2002,
pp. 323-336 (cit. on p. 28).

Denis Kleyko, Abbas Rahimi, Ross W Gayler, and Evgeny Osipov. « Autoscal-
ing bloom filter: controlling trade-off between true and false positives». In:
Neural Computing and Applications 32.8 (2020), pp. 3675-3684 (cit. on p. 29).

Will Fisher, Martin Suchara, and Jennifer Rexford. «Greening Backbone
Networks: Reducing Energy Consumption by Shutting Off Cables in Bundled
Links». In: Aug. 2010, pp. 29-34. DOI: 10.1145/1851290.1851297 (cit. on
p. 33).

Raffaele Bolla, Roberto Bruschi, Franco Davoli, and Flavio Cucchietti. «En-
ergy efficiency in the future internet: a survey of existing approaches and trends

in energy-aware fixed network infrastructures». In: IEEFE Communications
Surveys € Tutorials 13.2 (2010), pp. 223-244 (cit. on p. 33).

Nick Feamster and Jennifer Rexford. « Why (and how) networks should run
themselves». In: arXiv preprint arXiv:1710.11583 (2017) (cit. on p. 33).

70


https://www.bittorrent.com/
https://doi.org/10.1145/1851290.1851297

	Introduction
	Thesis structure

	Related work
	SDN controller architecture
	Distributed learning

	Background
	Network device architecture
	Software-defined networking
	Data plane and control plane
	Controller
	Context-based forwarding
	Architectural overview

	OpenFlow
	Ryu controller
	Conlcusion

	P4
	Abstract forwarding model
	Controller

	Distributed hash table
	Raft
	Reinforcement Learning
	(Deep) Q-Learning


	Distributed Hash Table
	Heavy hitter detection
	Counting bloom filter
	System overview
	Data plane
	Control plane

	Auto-scaling decisions
	Self-driving networks
	System design
	DRL formulation
	Data plane implementation

	Collaborative distributed
	Individually distributed

	Results
	DHT
	Testbed
	Simulated traffic
	Test 1: one flow
	Test 2: more flows
	Conclusion

	Two auto-scaling designs
	Convergence analysis
	Network throughput
	Conclusion


	Conclusion
	List of Tables
	List of Figures
	Acronyms
	Bibliography

