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Abstract

Providing an accurate, reliable and low-cost estimate of indoor positioning remains
an active area of research, despite the availability of popular localization techniques
like Acoustic Systems, Infrared Systems, etc. The aim of this thesis is to introduce
a new methodology for indoor localization combining Ultra-WideBand (UWB)
technology with Artificial Intelligence (AI). Albeit UWB is not a new technology, it
is now being revitalized and employed for wireless connections over short distances.
Many companies such as Intel, Xiaomi, Sony, Samsung, Apple and Bosh claim that
this technology could prove more successful than Bluetooth as it is faster, cheaper,
less power consuming and more secure.

UWB is a short-range wireless communication protocol (like Wi-Fi or Bluetooth)
using short radio pulses with large bandwidth. The resulting radio waves can pass
through walls and other obstacles and do not interfere with different radio signals,
such as those from cellular telephones. The only main limitation could be the
short range, which could be easily overcome using multiple well-positioned receivers.

The localization that has been performed in this thesis uses the Channel Im-
pulse Response (CIR) shape to understand in which subarea of the environment
the antenna is positioned. The tracking is achieved by classification using Machine
Learning (ML). Indeed, when the two antennas communicate with each other, what
the receiver gets is a composition of the direct signal with all its reflections. The
process consist in analyzing at which time these signals reach the target (or Tag),
and, based on the reflections delay (which are dependent on the surrounding),
estimating the position in the indoor environment.

The main steps performed in the thesis development are the collection of multiple
datasets, the analysis and post-processing of the collected data, and the identifica-
tion of the neural network able to offer the best classification performances.

The final selected network shows high validation accuracy when all the datasets have
been combined with each other and successively split into training and validation
samples. Conversely, performance deteriorates when the datasets are kept separate
and used individually as training and validation sets.
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Chapter 1

Introduction

The term UWB signal had become always more common nowadays (particularly in
the areas of radar, communications, electromagnetic interference and high-power
directed energy), even if the technology itself has been discovered many years ago.
The research on the UWB technology started right along with the discovery of the
radio communication. It is said that the birth date of the UWB was around 1885
when Guglielmo Marconi used spark-gap transmitters for radio communication
(Morse Code) over the Atlantic Ocean [1].

Of course, the usage of the UWB back then was quite different than how it is used
nowadays in the commercial market, even if the main principles is the same.

Due to its military potentials applications, the use of UWB was prohibited in
the USA until 1990. After 1990 first commercial, licensed products were released,
leading to the general unlicensed operation (between 3.1 GHz and 10.6 GHz [2])
in 2002 from the Federal Communication Commission (FCC). Despite the public
access, the technology did not become so popular in these years, mostly due to
the high implementation cost and low initial performances. It took nearly two
decades for the market to mature enough in order to get UWB chips available to
the general public. Today, UWB chips are cheap and small enough to put them
inside other devices like smartphones, becoming widely used.

1.1 UWB

UWRB is a fast, secure and low power radio protocol used to determine short dis-
tance location with higher accuracy than any other wireless technology (within few
centimeters). In addition, thanks to the low-power spectral density, UWB signals
cause very little interference with existing narrow-band radio system.
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This technology is a short-range wireless communication protocol, using radio
waves as information messages (similarly to Bluetooth). In other words, UWB
(standardized by IEEE 802.15.3) can also be defined as a data transmission method,
in a wireless network, that offer a very large bandwidth. FCC has define these
systems as those operating with an absolute BW (BW = fy — f1) larger than 500
MHz and at maximum power density at a central frequency (f.) above 2.5 GHz
(or, equivalently, with a fractional bandwidth greater than 0.25 and f. lower than
2.5 GHz).

Bfrac: (fH_fL) — 9% (fH_fL) (11)

fc (fH + fL)

where fy and f; are respectively high and low frequencies at which the power
spectral density is 10 dB below f.. The main signal classification is performed by
Brqe, as follow:

Narrowband : if 0.00 < Bfpae < 0.01;
Wideband : if 0.01 < Bypge < 0.25;
Ultra — wideband : 1f 0.25 < Bypge < 2.00;

1.1.1 Advantages of UWB

Differently from other radio frequency (RF) technologies, UWB was specifically
designed to enable precise, secure and real-time measurements of location, while
concurrently supporting two-way communication [3].
The key strength of this technology is that it calculates the distance between devices
through the time-of-flight (ToF) of signals (see section 1.4 for better explanation
of it). This simply difference with respect to other wireless technologies, such as
Wi-Fi and Bluetooth (whose use the received signal strength indicator - RSSI)
results in a more accurate precision.

As it possible to see in figure 1.1, UWB signals use much greater BW than
prevalent narrowband technologies, leading to extremely short wavelength and

short signals (due to the inverse relationship between time and BW: ¢t = —).

Wider channel bandwidth allows more energy to be transmitted into the channel.
This indicates that UWB signals have extremely high time resolution (typically in
the order of nanoseconds), allowing accurate determination of ToF.

Moreover, UWB offers advantages with respect to:

« Data transfer rate: provides more than 100 Mb/s effective transfer rate
compared with Bluetooth (1Mb/s max)

e High performance in multipath channels: due to the short pulse duration

2
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Figure 1.1: Spectrums comparison [4].

« Low power consumption: since the pulses are transmitted only during a
small percentage of the transmission time, the average power emitted by the
transmitter is very low, on the order of microwatts.

« Simplicity of implementation

1.1.2 IEEE 802.15.4

The IEEE established the 802.15.4 Study Group to define a new physical layer
concept (which is responsible for data transmission and reception using a certain
radio channel) for low-data-rate applications. The IEEE 802.15 is intended to
operate in unlicensed, international frequency bands.

The working group considered many options, including using UWB technology at
the air interface. The study group looks at novel applications such low-rate wireless
personal area network and sensors, both demanding a moderate data throughput
and long battery life.

1.1.3 Working principle

A UWB transmitter sends billions of pulses over the wide spectrum frequency
(UWB was previously known as “pulse radio”). A corresponding receiver then
converts the pulses into data ("0" or "1") by listening for a recognizable pulse
sequence delivered by the transmitter. There are numerous "modulation techniques"

3
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TX pulse g EI/

First path
Early-path Early-path
5 - \ |
\ 4
\V

RX pulse

Figure 1.2: Working principle [5]

to encode pulse as digital numbers (see sec. 1.1.4).

The goal to send several pulses in very short time is to achieve the real-time
accuracy. This is possible with UWB thanks to the fact that pulses are sent one
every two nanoseconds.

1.1.4 Modulation techniques

Every time data need to be transmitted from one device to another, modulation
takes a significant role. Modulation is the process of converting digital numbers
(i.e. bits) to electrical signal (optimized for transmission).

There are several types of modulation, each of which is intended to change a certain
feature of the carrier wave. Unlike other radio technologies, UWB does not use
amplitude or frequency modulation to encode the information that its signals carry.
Instead, UWB uses short sequences of very narrow pulses with a binary phase-shift
keying (BPSK) and/or burst position modulation (BPM).

The main modulations techniques for UWB are depicted in figure 1.3, which
are:

o Pulse Amplitude Modulation (PAM): the classical binary PAM is imple-
mented using two antipodal Gaussian pulses, as shown in figure 1.3 (a). The
transmitted amplitude’s pulse signal s(t), can be represented ad:

o0

s(t)= > ay p(t — kT}) (1.2)

k=—o00

where ay, is the amplitude of the pulse p(t) and T} is the frame duration.

4
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/\ /\ /\ /\ a) PAM

/\ ; b) OOK

A M c) PPM

/\ FaWaN d) PSM

Figure 1.3: UWB modulations techniques

« On-Off Keying (OOK): as illustrated in Fig. 1.3 (b), the pulse is sent only
if represent "1", while no pulse to describe "0".

« Pulse Position Modulation (PPM): with this modulation, the information
of the data to be transmitted is encoded by the position of the impulse with
respect to a nominal position (Fig. 1.3 (¢)). More precisely, each pulse is
delayed or sent in advance of a regular time scale, according to:

e}

S(t) = Z Qg p(t — k‘Tf + 55}”']%) (13)

k=—o00

where, as for PAM, a; is the amplitude of the pulse p(t), Ty is the frame
duration and dgp,f is the pulse shift.

« Pulse Shape Modulation (PSM): as depicted in Fig. 1.3 (d), PSM is an
alternative to PAM and PPM modulations. Here, the information data is
encoded by different pulse shape. This requires a suitable set of pulses for
higher order modulations.

1.1.5 Topologies

In order to satisfy different needs, UWB technology has been thought in order to
be implemented in different ways. Before proceeding describing all these method-
ologies, it is important to define "anchor" and "tag".

An anchor generally is an electronic UWB device with a well-known position, while
tag refers to a mobile one [3]. The typical setup is, in general, fixing the anchor in

5)
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a wide area and the tag on the element needed to be localized. To establish the
distance between them they have to exchange a lot information, which includes
CIRs (par. 1.2) and ToF (par. 1.4).

It is worth to highlight that nowadays, most of the commercial devices can act
either as an anchor, as a tag, or both. This include the boards used in this project

to collect the dataset, where with a simple switch, they could change their setup
(par. 1.5).

As mentioned before, there are several way to estimate the distance between

two or more antennas, and depend mostly on the topology it has been decided to
use. The main one are:

o Two-way ranging (TWR): this method determines the distance between a
tag and an anchor by measuring the time UWDB’s RF signals takes to move
back and forth between the two antennas (ToF). Once the ToF is stored, the
distance computation become straightforward (eq. 1.4):

d=ToF xc
ToF — Troundl X TroundQ - TT@plyl X TreplayZ (14)
Troundl + Tround2 + T’r‘eplayl + TreplayZ

where d is the distance [m], ¢ is the speed light (299'792°458 [m/s]) and 7} are
defined in figure 1.4.

le——— T, > Trepp——>
TAG | | ’
— =l I = =
=X S o |
L ! [ I b |
\r ' I p ! b ‘
| e 17> 7 | |
Lo e - L ey
I | [ I [ 1
RX— TX RX
RMARKER-"" 1 Fgppys > Towmpy——>

Figure 1.4: Two-way ranging between anchor and tag

As depicted in Fig. 1.4, the tag initiates TWR by sending a first signal (poll
message) with the known address of an anchor. The anchor records the time
it receives the poll message and send a response. When the tag receives the
new message, it computes the ToF based on the round-trip time and reply

6
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time. Once the distance has been computed, the tag share the information
through a final message (if required).

In case is desired to increase the accuracy, multiple anchors can be used.
The disadvantages of using multi TWR for location measurements, is that the
tag has to communicate contemporaneously with all the anchors, increasing
the power consumption.

In this project, single TWR has been the selected setup.

» Time difference of arrival (TDoA): this setup is based on measuring the

time difference between signals arriving at different anchor sensors. As it
can bee seen in Fig. 1.5, multiple anchors are deployed in fixed and known
locations and since the distance is computed on the relative difference, they
must be accurately synchronised (running on the same clock).
With TDoA, tags sends brief "blink messages" in regular intervals. Each
anchors that receive the message, timestamps its arrival and forward it to
a central location engine Real-Time Location System (RTLS), which runs
multilateration algorithms to determine the device’s locations.

((9)
Timestamp at Anchor
reception: To @

N Mobile tag
() . __ )
éA ------------ :0" ~~~~~~~~~ >é
® 7

Figure 1.5: Time difference of arrival scheme [6]

o Phase difference of arrival (PDoA): the PDoA technology is used to
determine the tag’s coordinates (x, y). The required devices are 2 antennas
(with known orientation and distance between each others) and a tag (Fig.
1.6). The tag sends the signal to both the antennas and once the signal arrives
to the antennas, the difference in phase between them is measured, obtaining
the angle of arrival (AoA). The final position is computed combining the latter
information with the relative antennas’ distance.

7
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Antenna A Antenna B

Figure 1.6: Phase difference of arrival scheme [7]

1.2 CIR

UWB channels can be measured by sounding the channel with pulses, and thereby
obtaining the Channel Impulse Response (CIR). Since the 2 antennas communi-
cate with electromagnetic signals, it’s needed to compute the magnitude from the
quadrature and phase component.

The main elements of the CIR are the multipath components, that are related on
the type of transmitter and the surrounding area. The fact that multipaths are
associated to the around environment gives the possibility to associate a single
CIR, ideally speaking, to a unique point of the environment itself. Indeed, as it
can see from figure 1.7, there are different peaks in the channel response, and all of
them correspond to a specific multipath, which is a delay of the received signal due
to objects reflections. Taking as reference figure 1.8, is possible to understand the
relation between transmitted signal, multipath and CIR (fig. 1.7). The longer the
path, the more delayed the peak appear in the final CIR.

The CIR could be divide in 3 main sections:

1. Noises: part of the CIR where there is no transmitted signal, and the receiver
capture only noise.

2. First path: it represents the shortest path between transmitter and receiver.
It is depicted in the CIR by the first peak and from its magnitude is possible
to understand if it is LOS or NLOS.

3. Multipath/delays: they are all the peaks that from reflections on the
surroundings reach the transmitted signal at different time. For example,
looking at figure 1.8, the bottom red NLOS path will be represented as a

8
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Figure 1.7: Example of a CIR

closer peak to the first-path with respect to the upper one, where the distance
is longer.

The sections which have been analyzed for this thesis are "First path" and "Multi-
path". Indeed, the noise before and after the signal is somehow useless. This led us
to consider only 157 samples, starting from FP_INDEX (time instant in which
the signal overcome the noise threshold) to 157 successive samples. This CIR’s
subsection is the one which effectively provide information about the surroundings.
In fig. 1.7, more than 157 samples have been reported, but only to show the signal
with a portion of its noise.

As mentioned before, the acquired channel response is just a simple array of
complex values. With reference to fig. 1.7, the green line is the plot of the imagi-
nary values, the yellow line is the real values, while the red line is the computed
magnitude values. It is also possible define 4 different values in the CIR:

« NOISE THRESHOLD: it is referred to the maximum magnitude that the
noise could reach, after which it is no more noise, but it is recognized ad
transmitted signal. An internal algorithm computes the threshold based on
the noise/signal found in the first 200-300 samples of the accumulator.

« FP_INDEX: it is the index on which the received signal overcome the noise
threshold.

o FP1: this is the amplitude of the first point after FP_INDEX. In case the
9
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Figure 1.8: Example of multipath (LOS and NLOS) [§]

index is not an integer, it is rounded to the greater integer (ceiling operation).
o FP2: this is the amplitude of the second point after ceiling FP_INDEX.
o FP3: this is the amplitude of the third point after ceiling FP_ INDEX.

These latter values are used to assess the signal power and estimate the receive
signal power (sec. 1.5.5).
The indoor radio propagation channel can be modeled as a linear time-varying
filter, with the following impulse response:

h(t,7) = Z ar(t)o(T — Tk(t))eje’“(t) (1.5)

where 7 is the delay, t refers to the impulse response at instant t and ¢ is the Dirac
delta function transmitted at t = 0, while all the parameters at the k'* path are
ap, Tr and 0. This is a generalized model that may be used to derive the channel
impulse response to any sent signal s(t), by convolving s(t) with h(t, 7) and adding
noise.

In case the the aim is specifically determine the UWB channel characteristic
for a base-band UWB signal, equation 1.5 can be reduced as follow:

h(t,7) = Z ar(t)6(T — 11(t)) (1.6)

To calculate the estimate of the CIR data (fig. 1.9), %' (t) is down-converted to
the baseband. Successively, a low-pass filter is used to remove irrelevant signal
components.

10
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Figure 1.9: Convolution of an exemplary CIR h'(t) with reference pulse to
estimate y'(¢) [9]

LOS

LOS stands for Line of Sight. Communication in LOS is possible when there is
no obstruction between transmitter and receiver. This condition provides strong
signal strength and greater throughput due to less attenuation on the path.

NLOS

NLOS, instead, stands for Non Line of Sight. It means that the communication
happen when natural and/or man made structure block the path between the two
antennas. Anyway, the signals are able to reach the receiver, with the only difference
that they have to go through many obstruction, getting attenuate. A typical result
of NLOS, is to obtain the first component smaller then the following multipath
signals. This is the consequence of having an attenuation due to material’s obstacle.
Due to NLOS, multiple copies of the signals arrive at different times with different
amplitudes.

It is clear that distint NLOS cases exist. For example, it is possible to differ-
entiate a case where the signal is mainly obstructed by relatively low attenuation
materials such as plasterboard and doors (soft NLOS), and a case where it is mostly
obstructed by high attenuation materials, such as multiple concrete walls (hard

NLOS).
11
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1.3 SNR

SNR, or Signal-to-Noise Ratio, is defined as the ratio between the desired trans-
mitted information (or power) of a signal and the undesired signal (background
noise).

Psi na
SNR = %ﬁ (1.7)

where P is average power [10]. Both signal and noise power must be measured
at the same or equivalent points in a system, and within the same system band-
width. Because many signals have a very large dynamic range, they are frequently
represented in logarithmic decibels.

Psi na
SNRap = 10log;y(—** LY = 1010819 (Paignat) — 101081(Proise)  (1.8)

However, when the signal and noise are measured in volts (V) or amperes (A),
which are amplitude measurements, they must first be squared to get a power
proportional quantity.

In wireless technology, the key to device communication is the ability to dis-
tinguish the applied signals as legitimate information from any background noise,
or signals on the spectrum.

As easy to guess, the goal in the transmission is to have SNR as higher as possible,
meaning that the signal is strong enough to travel in the channel, and being easily
distinguishable from the receiver.

1.4 ToF

Time of Flight (ToF) is the time an item, particle, or wave (whether acoustic,
electromagnetic, etc.) takes to travel a distance across a medium. This information
can then be used to measure velocity or path length, or as a way to learn about
the particle or medium’s properties (such as composition or flow rate) [11].

The basic way to compute the distance is the following:

d=c-t (1.9)

where c is the speed light [m/s| and t is the effectively time of flight (from TX to
RX in fig. 1.10).

As anticipated in sec. 1.1.5 (and with reference to fig. 1.4), when a signal is
transmitted it must be take care to use the real time of flight. It means that
all the delays in the signal communication must not be considered in the final
computation.

12
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TX s RX

‘A L’
= 4

Figure 1.10: Schematic representation of signal transmission

1.5 EVK1000

The EVK1000 consist of a pair of EVB1000 boards, where each of the pair is
configured to run a pre-programmed "DecaRanging" two-way ranging application.
The main purpose of the application is to control the IC mounted on the boards to
exchange messages, calculate ToF, estimate the resultant distance between the two
boards and display the final result on the on-board display [12].

The boards may optionally be driven via USB interface using a PC version of the
"DecaRanging" software, or through a simple DC power supply (or battery) with
Voltage from 3.6 to 5.5V, if the program is already present on the IC.

1.5.1 EVB1000 board description

The EVB1000 evaluation board is 7 cm x 7 cm in size. Figure 1.11 depicts its two
sides, which indicate the key components. The LCD display, situated in the front
side, is used to show ranging information and the operating mode of the board,
whose is possible to select from the DIP switch (S1). Moreover, while in use, it
shows also information about the computed distance.

The rear side contains the DW1000 IC, the ARM IC, the ARM reset button,
two DIP switches (S2 and S3), the JTAG connection header, the external SPI
connection header, and various jumpers and power connectors for configuring the
input powering mode. For more explanations on these components, or setup mode,
see "evk1000_user_manual [12]".

1.5.2 DW1000 (UWB) transceiver IC

The DW1000 is a fully integrated low power, single chip CMOS radio transceiver
IC compliant with the IEEE 802.15.4-2011 (par. 1.1.2) UWB standard.

The main characteristics of this transceiver, based on "DW1000 User Manual" [13],
are:

13
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Figure 1.11: Main EVB1000 components

« Facilitation of the proximity detection to an accuracy of +/- 10 cm using
TWR time-of-flight measurements.

e Spans of 6 RF bands from 3.5 GHz to 6.5 GHz
« Support of data rates of 110 kbps, 850 kbps and 6.8 Mbps

o Its high data rates allow it to keep on-air time short and thereby save power
and extend battery lifetimes

o The ability to deal with severe multipath environments makes it ideal for
highly reflective RF environments

The IEEE 802.15.4-2011 standard [14] specifies a chipping rate of 499.2 MHz. This
frequency is the same the DW1000 system clocks are set at.

1.5.3 Transmitted signal

The UWB technology is based on transmission and reception of specific frames.
The general structure of this frame is depicted in figure 1.12.

It starts with a synchronisation header (made up of single pulses) that includes the
preamble and the SFD (Start of Frame Delimiter), followed by the PHY header
(PHR), which determines the length (and data rate) of the frame’s data payload.
The data portion is transmitted as burst, with specific modulation (BPM or BPSK).

14
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Preamble Data
IEEE STD : 16, 64, 1024 or 4096 symbols Up to 127 coded octects

Figure 1.12: UWB PHY frame structure

Preamble

The preamble consist of a fixed sequence of pulses, without carrying the identity
of the sender. Its length, standardize by IEEE 802.15.4a [14], is of 16, 64, 1024
or 4096 symbols and is strictly related to the positioning system demands and
performance. Indeed, larger packet size helps low quality receivers to gain higher
SNRs (because travel more information), while smaller packet size reduces the
channel occupancy, leading to more efficient energy consumption and an increase
of devices in the same channel. It needs to be chosen in conjunction with the data
rate. There is no point of using a very long preamble with a fast data rate at
long range because the receiver will not be able to receive the data irrespective of
the length of the preamble. However at slow data rates longer preambles give an
increase in operating range. To maximize range, a slow data rate in conjunction
with a long preamble (2048) should be chosen.

The symbols used in the preamble part of a packet is one of the eight symbols

Table 1.1: Symbol set present in the preamble

Type Symbol
1 -1000010-1011101-10001-111100-110-100
0101-10101000-1110-11-1-1-10010011000
-11011000-11-111001101000-10000-1010-1
00001-100-100-1111101-1100010-10110-1
-101-100111-11000-1101110-1010000-00
1100100-1-1-11-1011-10001010-11010000
100001-101010010001011-1-1-10-1100-11
0100-10-10110000-1-1100-11011-111101000

Q0| 3| O U | W

present in table 1.1. Each preamble symbol has an approximately duration of 1 us.
The important property they have, is the perfect periodic auto-correlation, which
reduce the ranging error caused by multipath propagation.

15
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Start of frame delimiter

The SFD, composed by only 8 or 64 symbols, is a short sequence used to established
the completion of the preamble section of the frame, and the commencement of
the payload section (PHR). The SFD is a narrow signal used to trigger starting
and stopping of time counting, necessary for a precise timing.

PHR

The length of PHR is 19 bits. The information it carries is data rate, frame length,
ranging flag, preamble length, error correction and detection bits. The information

PHR
. Number of Error correction and
Data rate Frame length Ranging flag . .
preamble symbols detection bits
SRR Frmemim i ;
{00:110kbps | . Digits | symbols
i 01:850kbps | i 00 16 5
i 10: 6.81 Mbps : :' """" (')1 """""""" é4 _______ :
i 11:27.24 Mbps | Frmmmimemememenfe ;
_____________________ ! ! 1 1004 :
E 11 4096

Figure 1.13: PHR structure

in the data rate and preamble length are represented as two bits, as shown in Fig.
1.13, while the whole PHR package is transmitted at the mandatory data rate.
Lower data rates have longer range than higher data rates, so, to maximise range,
the lowest data rate (110 kbps) should be selected.

1.5.4 UWRB channels and sampling period

Despite the IEEE 802.15.4 standard UWB PHY defines 16 different channels, those
supported by DW1000 are only 6 and are listed in table 1.2. The preamble codes
specified by the standard for a specific channel has been chosen to have a low
cross correlation factor with other channels, with the intention to let each channel
operate independently from each other.

The DW1000 measures the CIR upon packet received with a sampling period
T, = 1.0016 ns and stores it in a large internal buffer. The time span of the CIR is
the duration of the preamble symbol: 1016 samples for a 64 MHz pulse repetition

16
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Table 1.2: UWB channels supported by DW1000

Channel frgc(;lrllgliy Bandwidth | Preamble Codes | Preamble Codes
number (MHz) (16 MHz PRF) | (64 MHz PRF)
(MHz)

1 3494.4 499.2 1,2 9,10,11,12

2 3993.6 499.2 3,4 9,10,11,12

3 4492.8 499.2 5,6 9,10,11,12

4 3993.6 1331.2 7.8 17,18,19,20

5 6489.6 499.2 3,4 9,10,11,12

7 6489.6 1081.6 7.8 17,18,19,20

frequency (PRF) or 992 for a 16 MHz PRF. Each sample is a complex number
whose real and imaginary parts are 16-bit signed integers. In order to move from
sampling period to sampling frequency, it is simply needed to compute the inverse:

T, = 1.0016ns means that f, = T = 10016 — 998.4MHz = 1GHz.

1.5.5 Quality of reception and RX timestamp

The DW1000 receiver is able of receiving messages under many different conditions.
In a network, it may be beneficial to examine the quality of message receipt from a
specific node in order to adjust network routing or settings associated to that node,
such that the communication reliability could increase. For example to improve
communications reliability the frame length might be shortened, or the data rate
might be reduced, or the preamble length might be increased.

In order to assess the quality of a received message and any related timestamp, is
possible to use different information:

« Standard Deviation of Channel Impulse Response Estimate (CIRE)
Noise: the standard deviation of the noise can be used as an absolute value or
it may be compared with the First Path Amplitude. Higher CIRE and more
probably the quality of receive timestamp is poorer. This condition could be
associated to the case when the real first path is irretrievable buried in the
noise.

« Estimate receive power and estimate power: using these two calculations
it may be possible to say whether the channel is LOS or NLOS. As a rule of
thumb, if the difference between the estimate recevie power and the estimate

17
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power is less than 6 dB, the channel is likely to be in LOS, while if the
difference is greater than 10 dB the channel is likely to be NLOS [13].

Estimating the signal power in the first path

To estimate the power in the first path signal (in dBm), is possible to use eq. 1.10:

F12 + F22 4+ F3?
N2

First Path Power Level = 10 x logo( )—A (1.10)

where:

o F1, F2 and F3 are the amplitude of the respectively point FP1, FP2 and FP3.

o A is the constant 113.77 for a PRF of 16 MHz, or, the constant 121.74 for a
PRF of 64 MHz.

e N is the preamble accumulation count.

Estimating the receive signal power

To calculate an estimate of the receive power level (in dBm), is possible to use:

C x 27
RX Level = 10 x loglo(T) —A (1.11)
where C is the Channel Impulse Response Power value which can be found as a
16-bit in the register file: 0x12 - RX Frame Quality Information, while A and N

are the same constant of equation 1.10.

1.5.6 DW1000 APP

The EVK1000 board comes with the DecaRanging application, which is aimed
to display in real time the CIR and others meaningful data. Additionally, from
the application, is possible to log the data, in order to store them and perform
post-processing or analysis. Since the basic DecaRanging application didn’t store
some variable of our interest, the code has been slightly changed, obtaining a
modified DecaRanging app version.

First, the basic app will be evaluated in this section. Then, a comparison with the
updated one will be shown.
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Figure 1.14: Main window of the DecaRanging app

Main DecaRangning Application window

To run the DecaRanging.exe executable the computer must be connected to the
board. Once they are connected, the main display windows appear, as depicted in
fig. 1.14. Initially, when the executable is launched, the software starts in listener
mode, where it listens and reports all received message. To enable the ranging
function the role must be reconfigured in order to switch one of the ends as a Tag
and the other as an Anchor. This role selection can be done by the application using
the drop-down list of the role group to the bottom left of the main DecaRanging
window (fig. 1.14, green dashed circle) or manually (in case the other antenna is
not working with the DR app) through the switches. Before switching one antenna
as Anchor, it needs to spend some time in the initial Listener role to receive some
blink messages from the tag. The number of blinks received is reported in text
below the role selection windows.

When the ranging is running, the lines at the top of the main windows (fig.
1.14, red dashed box) give a status report of the measurements. The status box
contains the following information:

e TX: is the number of frame transmitted.

e RX: is the number of frame received.
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CE: is the number of CRC errors.
RSE: is a count of unrecoverable errors in the Reed Solomon decoder.

HE: is count of uncorrectable errors detected in the PHY header SECDED
code.

STO: is count of SFD timeout events.

FFE: is the number of frame filtering errors (when the destination address is
incorrect).

TO: is the number of times the Tag has timed out from receiving without
getting a response frame. This results in another transmission attempt,
increasing the number of TX signal.

L: is a count of late TX enables and late RX enables. These can occur in
the delayed transmission and reception. If this happens frequently then it
probably means that the response time configuration needs to be increased.

Instant ToF: is the measured Time of Flight, in nanosecond.

Dist: is the conversion from ToF (in [s]) to distance in [m], by multiplying

299'702°547.0 [m/s], which is the speed of the light in air.

Mean (n) Dist: is the average of the distance over (8) measures. Since in
the figure no measurements have still be taken, it shown n = 0.

STDEV: is the standard deviation of the calculated distance (of last 50 range
values), in centimetres.

Long Term Average: is the average distance over all the collected mea-
surements, in meters. The number in brackets represent the number of
measurements taken as average.

The main window (1.14) contains the controls button in the lower gray area. As
already mentioned at the start of this section, it is possible to find the role button,
which is used to switch the antenna as Listener, Tag or Anchor. On the right of
the windows, 4 different buttons are present:

Pause: it is used to pause the measurements collection and disable all activity
in the lower layer application state machine, halting all sending and all receive
processing.

Restart: it is used to reset the software and start it again.

Configure: it is used to access to the channel setup dialog box (fig 1.15).
20
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o Clear Counters: it is used to clear the measurements averages.

Finally, in the center of the control area (fig. 1.14, purple dashed circle), is present
the Antenna Delay section. This box is designed to change the delays to and from
the antenna so that these may be subtracted from the round trip. Indeed, changing
the antenna delay is a possible calibration method, where by trial and error is
possible to find the right value for the respectively settings. The value specified
here is used to correct the reported message sent and received times, half in the
transmitter and half in the receiver, compensating for the system delays between
physical timestamp and signal presence at the antenna.

Channel Setup Configuration Box

The Channel Setup dialog box allows to customize all the settings and parameters
controlling the format of 802.15.4 messages. In tab. 1.3 have been explained all

Channel Setup X
Channel Selection Preamble Code
2 - Centre 4.0 GHz (500 MH2) |4 B |
Preamble Length (Symbol Repetitions) Pulse Repetition Frequency
T 64 (128 " 16 MHz & 64MHz
" 256 " 512 * 1024
o~ ~ -~ Data Rate
€ 1536 ( 2048 ( 4096 -
% 110 kbitsfs " 850 kbits/s
" 6.81Mbits/s
¥ Non Std SFD
Cancel I Configure |

Figure 1.15: Channel setup configuration dialog box

the parameters.

Timing Setup Configuration box

Before performing TWR measurements, certain parameters of the tag and anchor
message interactions must be set. These parameters can be configured from the
Timing Setup dialog box, which is represented in fig 1.16.

The configurable parameters are described in table 1.4.
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Table 1.3: Channel Setup paramters [15]

Item

Quick description

Channel Selection

Contains the possibilities for the channels, with the infor-
mation of center frequency and bandwidth.

Preamble Code

Defines the Complex Channel for the inter device communi-
cation. These codes depend on the channel selection.

Preamble Lenght

Preamble lengths of 64, 1024 and 4096 are defined in the
IEEE 802.15.4 standard. The additional preamble lengths
provided by the DW1000 allow designers more opportunity
to optimise system performance trade-offs. Ideally, the same
preamble length should be set at both ends to give a balanced
communications range, set to be consistent with the data
rate. For long range at the 110 kbps data rate, one would
use a preamble of 1024 (or more) symbols, while at the 6.8
Mbps data rate a long preamble will bring no benefit and a
shorter preamble would be used in practice to save power
and air-time (increasing network capacity).

Pulse Repetition

This selects the Pulse Repetition Frequency to be used in

Frequency the transmitter and receiver. NB: both units need the same
PRF configuration setting.

Data Rate The data rate may be selected to be any one of the data
rates available here. NB: both units need the same data rate
setting.

Non Std SFD This tick box enables the use of a non-standard SFD. The

SFD is the component of the IEEE 802.15.4 UWB frame
marking the end of the preamble and the start of the data
frame, which is actually a certain pattern of normal, inverted
and deleted preamble symbols. Decawave has found an
alternative SFD pattern that is more robust than the one
defined in the IEEE 802.15.4 standard, giving an extra dB
or so of performance.
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Timing Setup X
Tag blink period (ms): Anchor response delay (ms): [ 15p
Tag poll period (ms): W Tag response delay (ms): 200
Cancel ‘ SET

Figure 1.16: Timing setup configuration dialog box

Table 1.4: Timing Setup paramters [15]

Item Quick description

Tag blink period | This sets the time for which the tag waits between the blinks
that are sent while the tag has not been paired with an
anchor.

Tag poll period This sets the time for which the tag waits between ranging
attempts.

Anchor response | This sets the response delay used in anchor for sending the
delay response to the tag poll message.

Tag response de- | This sets the response delay used in tag between receiving
lay the anchor response and sending the final message.

Basic vs Updated log-file

The log-file is an automated file that starts to be created when the "log channel
response’ button is clicked. It stores all SPI traffic. In fig. 1.17 is depicted an
example of log-file, where all the changes with respect to the standard version are
highlights through red boxes. Indeed, the adjustments have only be performed in
order to store all the values of our interest, for the specific project.

The file is divided in 4 main sections:

1. Setting information: in this first portion of the file is reported the name of
the file (with time and day of the creation) and the channel setup configured
variable.

2. First received signal: before sending the real main signal (the CIR), the
board stores different information (like RX time, condition of the RX signal,
FP_index, RSL, etc.). All these data could still be acquired from the standard
version.
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The updated one, instead, include all the information enclosed in the red-
dotted box, that are: device id, threshold value, all the point relative to the
first path, the CIRE, the signal’s power, board temperature [°C], voltage
consumption [V], clock offset [Hz| and recovery phase [°] (even if these latter
two have not been successively used).

The core of the received message has been saved as a collection of real and
imaginary number and are situated below "CIR accumulator'. Its length is
equal to the preamble length. The final information of this section is the TX
time of the new signal.

. Second received signal: since the working principle is two-way ranging, the
antenna needs to exchange two signals in order to compute the ToF. For this
reason this section is divided exactly as section 2 - First received signal.

. Final computations: once the antenna have the information of the two
messages, it could start to compute the ToF. Indeed, in the log-file it is
reported every two exchanged signals. It is reported also the distance, in
meter, which differ from ToF only by a constant (c: speed of light).
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Setting

File:20220603-095805_DecallaveAllAccum.log, created by DecaRanging MP Version 3.05 (build:May 18 2022, 11:32:41) IN FO
Mode: 2, Chan 5, Code 9, PRF 64, Plength 1024, DataRate 1, PAC 2, ic:10435cle, ucode:xxxx, antdl:8082

21 49 Rx time = 2.048472587155073e+00 1E79CCC5C1
21 49 Rx time(un) = 2.048472828525641e+80 1E79CDO208

txdly 4066 rxdly 4066
RX DATA: 41ccdbcadele5c4141bb2950111a5c4141bb305011218d8d

RX OK WInd(0735), HLP(0744.0781), PSC(0265), SLP(0000.0000), RC(002D 697B839F), DCR(8), DCI(@), NTH(0798), T(87AA), RSL(-079.1991), FSL(-082.6901), RSMPL(38)
Accum Len 1016

DEVICE : 3737780528

Thresh_value: 304, length: 57005

FirstPathPoints

FP_IDX : 744.5 [ns] , FPhw : 744.078125 [ns]

FP_AMPLL : 3627 , FP_AMPL2 : 17133 , FP_AMPL3 : 16049
STD_NOISE(CIRE): 76 , RSL : -79.19907@ , totSNR : ©.300930 [dBm]

CIR_PWR : 9618 [dBm]

VoltageV

Vreal : 3.27 V , Vrow : 170 (@xaa)
TemperatureT

Treal : 39.55 C , Trow : 135 (6x87)

Carrier Recovery Integrator Register
Clock Offset : -5458.116699 [Hz]
RC Phase: 40 [degrees]

CIR accumulator

First message (CIR)

64, -143
-31, -a1

20, -280

TX Frame TimeStamp Raw = 2F A4C54266
Adding Antenna Delay = @02F A4C54266
02 Tx time = 3.202434112173227e+00

}

29 4B Rx time = 3.402433836122170e+00 329E7CFD7F
29 4B Rx time(un) = 3.402434070512820e+00 329E7D3800

txdly 4066 rxdly 4066
RX DATA: 41cc4bcadele5c4141bb2950111a5c4141bb305011294122090967198253446941620b3e6c48a9

RX OK WInd(0735), HLP(8751.2031), PSC(0264), SLP(0@00.0000), RC(0032 9E7CFD7F), DCR(), DCI(@), NTH(867), T(87A9), RSL(-078.6280), FSL(-082.3048), RSMPL(3B)
Accum Len 1016

DEVICE : 3737780528
Thresh_value: 304, length: 57005

FirstPathPoints

FP_IDX : 751.13 [ns] , FPhw : 751.203125 [ns]

FP_AMPLL : 3629 , FP_AMPL2 : 17244 , FP_AMPL3 : 17362
STD_NOISE(CIRE): 84 , RSL : -78.627996 , totSNR : ©.872004 [dBm]

CIR_PWR : 10887 [dBm]

VoltageV

Vreal : 3.26 V , Vrow : 169 (@xa9)
TemperatureT

Treal : 39.55 C , Trow : 135 (@x87)

Carrier Recovery Integrator Register
Clock Offset : -5374.896484 [Hz]
RC Phase: 52 [degrees]

CIR_accumulator

Second message (CIR)

35,7758
7, 73
-30, -339

113, -104

Anchor ToF: 6.326 ns Dist: 1.895787 m DistRaw: 1.805787 m DistScal: 1.805787 m Bias: -0.090 m ClockOffset: ©.803 ppm
Ra ©00000023b4a5fd8 Db 000000023bda3ec?

Ral 383.989383 Dbl 251.511794 ns

Rb ©0000002f9b7bb19 Da 00000002f9b7e028

Rb1l 49999723.948943 Dal 49999872.420873 ns

Figure 1.17: Standard vs Updated version of the log channel response
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Chapter 2

From Machine Learning to
Deep Learning

Nowadays, intelligent system that offer Artificial Intelligent (AI) capabilities often
rely on Machine Learning (ML). Machine learning refers to a system’s ability
to learn from problem-specific training data in order to automate the process
of developing analytical models and solving associated tasks. ML is a subset of
artificial intelligence, seeking to automatically lean meaningful relationships and
pattern from large amount of data. The ability of such systems to solve complex
problems is based on analytical models that create predictions, rules, responses,
suggestions, or other comparable outputs. During the last decades, the field of ML
has brought forth a variety of remarkable advancements in sophisticated learning
algorithms and efficient pre-processing techniques. One of these developments was
the evolution of Artificial Neural Networks (ANNs) into deeper and deeper neural
network topologies with better learning capabilities, summarized as Deep Learning
(DL). The hierarchical relationship between all of these terms is depicted in fig.
2.1.

In order to have a better conceptual distinction, Al includes any method that
enables computers to replicate or outperform human decision-making to solve
complicated problems on their own or with minimal human intervention. Machine
learning overcomes such limitations. Indeed, MLL means that a computer program’s
performance improves with experience with respect to some class of tasks and
performance measures. As such, it aims at automating the task of analytical
model building to perform cognitive tasks like object detection or natural language
translation. This is achieved by applying algorithms that iteratively learn from
problem-specific training data, which allows computers to find hidden insights and
complex patterns without explicitly being programmed [16]. Thanks to the ability
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Figure 2.1: Artificial Intelligence classification

of learning from previous computations and extracting regularities from massive
databases, it produces, if well designed, reliable and repeatable decisions. For this
reason, ML algorithms have been successfully applied in many areas, such as fraud
detection, credit scoring, next-best offer analysis, speech and image recognition, or
Natural Language Processing (NLP).

Based on the available information, we can defines three types of machine learning:

e Supervised learning: it is defined by its use of labeled datasets to train
the algorithm for classification. This means that it is known a priori how the
training set is categorized. This training dataset includes inputs and correct
outputs, which allow the model to learn over time. The algorithm measures
its accuracy through the loss function, adjusting weights until the error has
been sufficiently minimized.

o Unsupervised learning: this learning takes place when the learning system
is supposed to detect patterns without any pre-existing labels or specifications.
In this case, training data only consist of variables "'x", with the goal of finding
shared common properties (known as clustering) or data representations that
are projected from a high-dimensional space into a lower one (known as

dimensionality reduction).

e Reinforcement learning: here, instead of providing input and output pairs,
we describe the current state of the system, specify a goal, provide a list of
allowable actions and their environmental constraints for their outcomes, and
let the ML model experience the process of achieving the goal by itself using
the principle of trial and error to maximize a reward [16].

Inspired by the principle of the biological neural networks, that constitute animal
brain, artificial neural networks, instead, are a mathematical representations of
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From Machine Learning to Deep Learning

collections of connected units or nodes, called artificial neurons. Like synapses in
a brain, each connection between neurons transmits signals whose strength can
be amplified or attenuated by a weight that is continuously adjusted during the
learning process. ANN could be differentiated by layers. Typically is possible to
split them in 3: input layer, which receives the data input (e.g., images), output
layer, which returns the final result (e.g., classification), and hidden layers, that are
effectively responsible for learning a non-linear mapping between input and output
(fig. 2.2).

INPUT
LAYER

Figure 2.2: Example of an artificial neural network scheme

The output of the neuron is typically the weighted sum of all the inputs plus
a bias term. The weighted sum is then passed through a (usually nonlinear)
activation function to produce the output. The number of layers and neurons,
as well as other internal parameters such as learning rate or activation function,
cannot be learned by the algorithm. This means that they constitute a model’s hy-
perparameters and must be set manually or determined by optimization procedures.

Deep neural networks is formed by ANN with typically more than one hidden layer,
organized in deeply nested network architectures. The difference with the classical
ANN is that they contains advanced neurons, besides that they perform also more
complicated operation like convolutions or recurrent connections. These features
allow deep neural networks to extract automatically the main information from the
input, enabling the possibility to feed them with raw input data. DL is particularly
useful when working with large and high dimensional data (e.g., most applications
in which text, audio, image and video needs to be processed).
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2.1 Activation function

The activation function take an important role in ML. Indeed, if the activation
function is not used in a neural network, the result is a simple linear function which
is a one degree polynomial. In other words, neural networks without an activation
function acts as a Linear Regression model with limited performances.
Since almost every problem in real life can not be represented by linear functions,
it is important to have non-linear functions. The usefulness of these functions
is that they have to learn, represents and process any data and any arbitrary
complex problem which maps the input to the output. An important feature of an
activation function is that it must be differentiable so that backpropagation could
be implemented [17].

To enable a limited amplitude of the output of a neuron different functions

could be used [18]:
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There are a lot of parameters to increase performances and decrease erroneous
results, like number of hidden layers, training methods, hyperparameter tuning and
activation function. The former represent one of the most important parameters to
consider, even if choosing the right one may be a tedious process and may require a
lot of research and studies. From studies has been discovered that both sigmoid and
tanh functions are not suitable for hidden layers because the slope of the fucntion
become very small as the input becomes very large or very small, leading to to slow
down gradient. ReLu is the most preferred choice for applying in hidden layers as
the derivative of it is 1

2.2 Underfitting and overfitting

The purpose of a machine learning model is to approximate an unknown function
that map input elements to outputs one. Since the analytic expression of the
function is unknown, when training, it is necessary to think about fitting the model
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2.2 — Underfitting and overfitting

but keeping it free to generalize when an unknown input is presented. This simple
idea becomes to a very hard condition to fulfil, leading to two possible errors:

o Underfitting: when a model is underfitting the data, means that the selected
function is not able to capture the dynamics shown by the same training set,
and the same time, it is not able to model new data. Typically, underfitting
is easy to detect given a good performance metric. The remedy is to move on
and try alternate machine learning algorithms.

o Overfitting: it happens when the model has an excessive capacity in adapting
to the details and noise of the training dataset, loosing the generalization
ability. In other words, it can associate almost perfectly all the known samples
to the corresponding output values, but when a new dataset is given as input,
the prediction error become very high. Overfitting is more likely with non-
parametric and non-linear models that have more flexibility when learning a
target function. As such, many non-parametric machine learning algorithms
also include parameters or techniques to limit and constrain how much detail
the model learns.

In fig. 2.3 are depicted interpolations with low-capacity (underfitting), normal-
capacity (correct fit), and excessive capacity (overfitting).

Underfitting Correct fit Overfitting

\ 4
\ 4
\ 4

Figure 2.3: Underfitting vs Overfitting

In all the possible situations, it is very important to avoid both underfitting and
overfitting. A generic rule of thumb is to check the residual error, since it must be
always present to guarantee a good generalization. Indeed, it is very likely that
models having validation accuracy similar at 99.999 percent are overfitting the
dataset, that means they will not be able to predict correctly when never-seen
input samples will be provided.

31



From Machine Learning to Deep Learning

2.3 Validation metrics

One of the most important steps after developing a model is to evaluate its training
and predictive performance. Different metrics exist and the use of one with respect
to other depends on many factors. The main factor that drastically change the use
of metrics is the final result of the ML algorithm, meant as if we are classifying or
predicting. Since in this thesis project the final goal is classification, the analysis
of predicting metrics has not been carried on.

It is important to highlight that all the validations techniques must be performed
on a new dataset, different from the training one.

2.3.1 Confusion matrix

The confusion matrix is a NxN matrix, where N is the number of classes being
predicted. The matrix gives an immediately visualization of the performance of a
specific algorithm (fig. 2.4). On each row is specified the number of predicted class
for each class, while on the columns is represented the number of actual true class.

True Class
Positive Negative

Predicted Class
Positive

Negative

Figure 2.4: Confusion matrix for binary classification

where TP: True Positive, FP: False Positive, FN: False Negative and TN: True
Negative. The goal is to correctly predict all the elements, which means get almost

0 value off the diagonal.
It is also possible to find confusion matrix in which Predicted and True class

are swapped.

2.3.2 F1 score

The F1l-score, also called the F-score, is a measure of a model’s accuracy on a
dataset. Contrary to the confusion matrix which can have multi classes, this metrics
could be used only to evaluate binary classification systems, which classify examples
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2.3 — Validation metrics

into ‘positive’ or ‘negative’. The Fl-score is a way of combining the precision and
recall of the model, and it is defined as the harmonic mean of the model’s precision
and recall. The formula for F1l-score is as follow:

= : TP - 2 . _ 9y precz:szion X recall 2.1)
TP+ ~(FP + FN) y precision + recall
2 recall — precision
where:
Precisi I is the fracti ft 1 11 th 1
e Precision: ———— is the fraction of true examples among all the examples
TP+ FP’ P s P
classified as positive.
Recall I is the fracti f les classified iti
o Recall: ———— is the fraction of examples classified as positive amon
TP+ FN P P &

the total number of true class positive examples.

2.3.3 AUC-ROC

The receiver operating characteristics (ROC) curve is one of the most important
and widely used performance metrics for the evaluation of classification models in
terms of their goodness-of-fit. This method is a probability-based curve that can
measure models at different thresholds. The threshold is the specific value with
which the probability of belonging to a class is compared. Based on the comparison,
the element is then classified as positive or negative. The curve plots the True
Positive Rate vs the False Positive Rate, which are defines as follow:

TP

« True Positive Rate (TPR): TPR= TP FN’ which is a synonym
of recall.
False Positive Rate (FPR): FPR a
. itiv : ="
alse Positive Rate FPLTN

To build the ROC, the classifier must be run every time with different threshold.
For example, in fig. 2.5, is possible to see that when the threshold is equal to
1 (impossible to overcome since the probability p is always bounded between 0
and 1) no classifications are performed. Contrary, with threshold equal to 0, the
classification assign the element always to the same class. A perfect algorithm
should have TPR closer as possible to 1, with low FPR.

The Area Under Curve (AUC), instead, represents the degree or measure of
separability, in other words, it tells how much the model is capable of distinguishing
between classes. It measures the entire two-dimensional area underneath the entire
ROC curve (by integrating from (0,0) to (1,1)). AUC ranges in value from 0 to
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Figure 2.5: ROC Curves

1. A model whose prediction are 100% correct has an AUC of 1, while if are all
wrong, it has an AUC of 0. The usefulness to use the AUC with respect to test the
model with different threshold are:

o AUC is scale-invariant.

o AUC is a classification-threshold-invariant. It measures the quality of the
model’s predictions irrespective of what classification threshold has been
chosen

However, these two characteristic are not always desired.

2.3.4 Other statistical metrics

The statistical metrics used for machine learning are useful in order to have a first
quick idea on how the model is performing the classification. In the main used is
present the threshold metric, which includes:

Specificity = Recall = TPR: defined in sec. 2.3.2 and 2.3.3

. . . FP
Sensitivity: SST = TN+ FP (2.2)
TP+TN
A : A =
ccuracy cc TP+TN+FP+FN
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2.4 — Machine learning algorithms

Using these performances metrics, is possible to investigate how well the model
makes decisions when tested with unseen dataset (i.e., generalization ability).

2.4 Machine learning algorithms

Machine learning algorithm are all of those which takes decisions and does predic-
tions or forecasting based on data and training operations. An example could be
an algorithm able to forecast when a patient has cancer based on different feature
(e.g., blood pressure, age, blood glucose values, etc.), or, simpler, when a mail is
SPAM or not, looking, for example, at specific words.

Furthermore, algorithms that are designed for binary classification could be adapted
to use with multi-class problems. This involves using a strategy of fitting multiple
binary classification models for each class vs. all other classes (called one-vs-rest)
or one model for each pair of classes (called one-vs-one).

Binary classification Multi-class classification
VANWIN A,
A pSY
& <&
O o ) O @
S @ 3] @ @
<><><>..o <><§> oo ®
O <><> ® @ O <><> ® @
X1 X1

Figure 2.6: Binary and multi-class classification

2.4.1 Logistic regression

Logistic Regression (LR) is a linear and supervised model, used for classification’s
problem. It means that the space could be divided with line (2-D), hyperplane
(3-D), etc. It is usually used for binary classification, but it can be easily adapted
for multi-class classification.

Using the sigmoid as activation function, it return the probability of the item
to belong to each class. The item will be then assigned to the class with higher
probability.

Since the output of the logistic regression is a probability score, the threshold
over which the classification take part is a very important variable. For example,

35



From Machine Learning to Deep Learning

Sigmoid function

Threshold value

y=0 . oo o

\ 4

Figure 2.7: Logistic regression for binary classification

Table 2.1: Advantages and disadvantages using Logistic Regression

Advantages Disadvantages

Simplicity of implementation Inability to solve non-linear problem as
its decision surface is linear

Computational efficiency Prone to overfitting

Ease of regularization

Input features scaling not required

looking at figure 2.7, it has been used a threshold of 0.5, which means that if the
probability p > 0.5 we get y = 1, y = 0 otherwise. The classification changes if a
threshold value of 0.2 would be used.

2.4.2 Decision Tree

Decision Tree (DT), is a supervised ML approach to solve classification and regres-
sion problem, by continuously splitting data based on a certain parameter. In the
classification the outcome is categorical (e.g., Yes or No), while in regression tree
the decision variable is continuous.

It is possible to define:

« Root Node: it is the main node, representing the attribute with largest
Information Gain.

o Internal Node: it is the decision node inside the main decision tree, repre-
senting other attributes values, with smaller IG value moving from the top to
the bottom.
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2.4 — Machine learning algorithms

o Leaf Node: it represent the final class.

Different method exist on the selection of the splitting node. The most used one
is the Information Gain function, known as "reduction in entropy", which try to
order the nodes based on the impactful they have, that means choosing as the root
node the feature which split most the data.

" Internal
Node

Internal Leaf Node

. Node

N

’ Leaf Node Leaf Node

Root
Node

/\

Sub-Tree

:/ Internal
. Node

Leaf Node Leaf Node

Figure 2.8: Components of a Decision Tree

Table 2.2: Advantages and disadvantages using Decision Tree

Advantages

Disadvantages

Simple to understand and interpret

Unstable, meaning that a small change
in the data can lead to a large change
in the structure of the optimal decision
tree

High performance due to efficiency of
tree traversal algorithm

Inaccurate

Ease of handling categorical and quan-
titative values

Calculations can get very complex

Moreover, Decision Tree might encounter the problem of over-fitting for which
Random Forest is the solution, that is based on ensemble modelling approach.

2.4.3 Random forest

Random Forest is an ensemble method in ML. It is tree-based algorithm which
leverages the outcome of multiple decision tree, to get a final decision. As the
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name suggest, the multiple decision trees are randomly created (via bootstrap
aggregation, which only use a subset of variables when deciding how to split
each node). Fach tree predicts a classification independently and “votes” for the
corresponding class. The majority of the votes decides the overall random forest
prediction. The aggregate votes of several decision trees reduce the dependence to
outliers with respect of using a single tree. Combination of bootstrap and random
forest lead to the so called "bagging" techniques. One way to validate the model
is to use the permutation test, which consist by measuring the increase of error
if the variable under question are permuted across out-of-bag observations. This
score is computed for each constituent tree, averaged across the entire ensemble
and divided by the standard deviation.

Instance
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| Final - Class ‘

Figure 2.9: Random Forest scheme

2.4.4 Boosting

Boosting is an ensemble learning technique that uses a set of machine learning
algorithm in order to convert, or combine, weak learners to strong learners, trying
to increase the accuracy of the model. The main difference with the Bagging,
which is an ensemble method as well, is that with the former we use weak learners
over different dataset (parallel method), while in boosting we try to combine them
(sequential method).

When using boosting, the entire dataset is fed to the algorithm, obtaining as
a result the classification of all the item. With this technique more attention is
focused on the miss classified data-points, increasing it’s weight. These steps will
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Table 2.3: Advantages and disadvantages using Random Forest

Advantages

Disadvantages

Tend not to overfit. The processes
of randomizing the data and variables
across many trees means that no single
tree sees all the data

A forest is less interpretable than a sin-
gle decision tree

Accuracy calculated from out-of-bag
samples is a proxy for using a separate
test data set. The out-of-bag samples
are those not used for training a spe-
cific tree and as such can be used as an
unbiased measure of performance

A trained forest may require significant
memory for storage, due to the need for
retaining the information from several
hundred individual trees

Works well “out of the box” without
tuning any parameters. Other models
may have settings that require signifi-
cant experimentation to find the best
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Figure 2.10: Bagging vs Boosting technique

be continuously repeated until all the wrong predicted samples will be correctly
classified.

Let’s understand better the followed steps in Boosting. Consider the example in
figure 2.11, we have 2 classes, square and circle. At the beginning the algorithm
assign at each data the same weight, and after a first analysis, it try to draw a
decision stump (which is a single level decision tree). Successively, it checks for all
the miss-classified data-points and assign them an higher weight (greater size in
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Decision stumps

Final model

Figure 2.11: Adaptive boosting technique

the figure), in order to let classify them correctly in the next iterations. These 2
steps are repeated until all the elements are correctly classified.

There exist 3 main Boosting techniques:

o Adaptive Boosting: it is the technique used in the previous example, where
it combine several weak learners into a strong learner.

o Gradient Boosting: in gradient boosting, base learners are generated se-
quentially in such a way that the present base learner is always more effective
then the previous one (through loss function optimization).

o« XGBoost: it is an advance version of the Gradient boosting method that is
designed to focus on computational speed and model efficiency.

Table 2.4: Advantages and disadvantages using Boosting

Advantages Disadvantages

Easy to read and interpret algorithm | Sensitive to outliers

Method impossible to scale up, since
Efficient prediction capability every estimator bases its correctness on
the previous predictor

Less probability to encounter overfit-
ting
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2.4.5 K-nearest neighbor

K-Nearest Neighbor (KNN) is frequently used for solving clustering problem. The
KNN algorithm is positioned under the supervised type learning technique and
is considered one of the easiest-to-use algorithms in machine learning, since it
does not need any training data points for model generation. In KNN, K is the
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Figure 2.12: K-nearest neighbor scheme

number of nearest neighbors, and it is the core deciding factor. Indeed, the whole
classification is based on the K value. When K = 1 (corresponding to the nearest
algorithm) the new element is assigned to the same class of the closest data-point.
In general, first is needed to find the K closest points to the new element, and then
classify it by majority vote of that K neighbors.

Table 2.5: Advantages and disadvantages using KNN

Advantages

Disadvantages

Simple to implement

Expensive classification for unknown
records

It is extremely flexible classification
scheme and well suited for multi-modal
classes

Distance computation of k nearest
neighbors

Less probability to encounter overfit-
ting

It does not work well when dataset is
noisy

Computationally intense with the
growth of the training set size
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2.4.6 Support Vector Machine

Contrary to the other methodologies, Support Vector Machine (SVM) needs the
definition of the decision boundary, which is an hyperplane (element that separe
different classes). In case the classes are not linearly separable, complex mathemat-
ical function called kernels are needed to map the elements in a different dimension
which can be again easily separable. In fig. 2.13 are depicted 2 linearly separable
classes with a maximum-margin hyperplane.
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Figure 2.13: Maximum-margin hyperplane and margins for SVM

Table 2.6: Advantages and disadvantages using SVM

Advantages

Disadvantages

It handle both semi structured and
structured data

Its performance goes down with large
dataset due to the increase in the train-
ing time

It handle complex function if the appro-
priate kernel function can be derived

It will be difficult to find appropriate
kernel function

Less probability to encounter overfit-
ting

It does not work well when dataset is
noisy

It can scale up with high dimensional
data

It does not provide probability esti-
mates

It does not get stuck in local optima

Understanding the final SVM model is
difficult
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2.4.7 Perceptron

Perceptron, or Fully Connected Layer, is the oldest neural network. It is a feedfor-
ward neural network in which the connections between nodes do not form loops. It
accept multiple inputs, where each of them is then multiplied by different weights
and all of them sum up. The role of the weight is to simulate synapses in biological
neurons (to enhance or inhibit a signal). For every layer a bias term is added to
the result, before the summation, result is passed to an activation function. A
perceptron network has been already shown, indeed it corresponds to fig. 2.2.
This has been the basic for the development of Deep Neural Network, which include
more complex interconnection.

2.5 Deep learning algorithms

Deep learning algorithms have developed in order to solve the problem of large
dataset. Indeed, once the size of the data increases, it becomes challenging for
traditional ML approaches to solve it, mostly due to the manual feature extraction.
Deep Neural Network methods guarantee an opportunity to develop a more robust
model to perform well on both small and large datasets. The most common
networks are CNN, RNN, ResNet, Inception Time and LSTM. A quick analysis is
carried out in the next sections.

2.5.1 Recurrent neural network

RNN is a popular algorithm used mostly for NLP and speech processing. Unlike
traditional neural networks, RNN utilizes the sequential information in the network.
In other words, this new topology of network insert for the first time an idea of
memory, in which give importance also at the sequence of the input. For example,
to understand a word in a sentence, it is necessary to know the context rather than
the singular word. Therefore, an RNN can be seen as short-term memory unit
which analyse the single word, remembering the context based on the previous
inputs.

One main issue of an RNN is its sensitivity to the vanishing and exploding gradients
[19]. In other words, since the algorithm involves the multiplications of small or
big derivatives during the training, the gradient might decay (become too small
to be used) or explode exponentially. This sensitivity reduces over time, meaning
that the networks tends to forget the initial inputs with the entrance of the new
ones. For this problem, Long Short-Term Memory (LSTM) has been developed by
providing an additional block used to memorize specific elements in its recurrent
connections.
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Figure 2.14: Recurrent neural network in: compact form (left), expanded in time
(center) and completely expanded (right)

2.5.2 Convolution neural network

The main beneficial aspect of CNNs is reducing the number of parameters in ANN.
For this reason it has been widely used in a variety of field related to pattern
recognition, NLP, image processing, voice recognition, and so forth.

The main structure is based on series of convolution and-sampling layers, followed
by a FNN and a normalization layer (e.g., softmax function) layer. The series of
multiple convolution layer perform progressively more refined feature extraction at
every layer moving from input to output layers. Sub-sampling or pooling layers are
often inserted between each convolution layer to reduce the dimensionality of the
problem. Different from the previous networks, CNNs takes a 2D n x n input, and
each layer consist of group of 2D neurons called filters of kernels. Since the use
of CNN will be for signal analysis (which are time series - 1D), the final network
result is depicted in figure 2.15. For every layer, we have different depth, which
corresponds to the number of applied filters.

Unlike other networks, neurons are not connected to all neurons in adjacent
layer, reducing the number of parameters [20]. These factors speed up the learning
and reduces the memory requirements for the network. The final classification is
then performed only by the last layer, where neurons between the layers are fully
connected. The main algorithm for parameter training is usually backpropagation,
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Figure 2.15: 1D CNN architecture

even if it will not be covered in this thesis.

2.5.3 Residual neural network

The modular unit of the generalized residual network architecture is a combination
of CNN blocks, direct connection and skip connection (or shortcuts). Typical
ResNet models are implemented with double or triple skips containing non linearity
(activation function like ReLu) and batch normalization in between.
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Figure 2.16: ResNet architecture

There are two main reasons to skip some connections:
1. to avoid vanishing gradients problem

2. to mitigate the degradation (or accuracy saturation) problem, since typically,
adding layers to a suitable deep model leads to increase the training error.
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2.5.4 Long short term memory

LSTM is an implementation of the Recurrent Neural Network aiming to solve the
problem of vanishing gradients by letting gradients to pass unaltered. Unlike the
earlier described feed forward network architecture, LSTM has the ability to retain
knowledge of earlier states. As depicted in figure 2.17, LSTM consist of blocks of
memory cell state, input cell, output gate and forget gate.

Forget Gate Cell Gate

................................................................................................................

Input Gate Output Gate

lIl: Layer @: Componentwise X¢: Input vector ht: Output vector

Cyt: Cell state vector

Figure 2.17: LSTM block unit

The cell remembers values over arbitrary time intervals and the three gates
regulate the flow of information into and out of the cell. LSTM networks are
well-suited to classifying, processing and making predictions based on time series
data, since there can be lags of unknown duration between important events in a
time series.

2.5.5 Inception time

Inception was first proposed for end-to-end image classification. Now the network
has evolved and it is able to work also with time series classification. The first
invented module was simpler than the one shown in fig. 2.18. It was initially
proposed without the dash boxes. The embedded of these three new boxes is
related on dimensionality reduction. Indeed, since they are simple 1x1 convolutions
layer, their aim is to reduce the space. For example, RGB images are store in
matrices m-by-n-by-3 data array that defines red, green, and blue color components
for each individual pixel. Applying a 1x1 convolution layer, we reduce the matrix
to n-by-m-by-1, reducing the number of parameter needed in the next filter by a
factor of 3.
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Figure 2.18: Inception time module with dimension reduction

The final version contains 3 dimensionality reduction blocks, 3 convolutions layer
with different filter size (in order to extract different features from the same layer)
and one max pooling filter.
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Chapter 3

Measurements and logged
data

Now, after that all the theoretical aspects have been covered, let’s move to the
beginning of the project. The first step has been analyse the environment over
which the UWB localization would be performed. The selected area has been the
third floor of the Engineering building, starting from the elevator and going up half
of the hallway. It has been decided to divide the whole area in small rectangles of
100cm x 80cm (as depicted in fig. 3.1), getting a trade-off between measurements
time-consuming and grid density.

The two boards had been configured and located in different locations:

o Tag: the board used as a Tag has been fixed to the showcase, and it has been
charged by direct power supply. It is highlights in fig. 3.1 from the red box.

o Anchor: the antenna that plays the role of Anchor, instead, has been con-
nected to a movable cart in order to easily reach any possible point in the
selected environment. This antenna has been controlled by USB interface,
over which the modified version of the DecaRanging application can operate
as a simple USB to SPI controller.

Finally, the two antennas had been setup following the parameters present in
tab. 3.1.

Table 3.1: Boards’ setup

Channel | Preamble C. | Preamble L. | PRF | Data Rate | Non Std SFD

5 9 1024 64 | 110 kbits/s Checked

49



Measurements and logged data

Before starting to log all the measurements, the EVK1000 needs to be calibrated
based on the selected frequency (channel).
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Figure 3.1: 2D model of the analysed environment

3.1 Calibration

The operating characteristics and performance of the DW1000 is dependent on
the IC itself, on its external circuitry and on its operating environment. To give
optimum performance it is necessary to calibrate the IC to account for factors
which affect its operation [13]. Some calibration parameters may vary according to
the operational environment of the DW1000. This include having a large variation
in the ambient temperature (e.g., moving from a warm into a cold area) and/or a
drastic changes in battery voltage supply.

There are mostly 3 elements of the DW1000 that may be subject to calibration:

e Crystal trimming: the DW1000 contains trimming capacitors that can fine
tune the operating frequency of its crystal oscillator

e Transmitted output power and spectrum: the output spectrum of the
DW1000 may be tuned to suit regional spectral standards and maximize
output power to obtain the maximum operational range.
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3.1 — Calibration

« Antenna delay: the DW1000 antenna delay may be fine-tuned to give best
possible ranging or location

When the boards are brand-new, they already performed a calibration cycle
by the company before being sold. For this reason, what has been done before
starting the measurement process was only tune the two antennas through antenna
delay, keeping crystal trimming and transmitter output power and spectrum at the
original status.

The calibration procedure of the antenna delay is trivial. It is necessary only
locates the two antennas at a known distance, and by trial and error modify the
antenna delay until the known distance and the reported range match.

Table 3.2: Suggested calibration distance for antenna delay

Channel | PRF (MHz) | Calibration Separation (m)
1 16 14.75
1 64 9.3
2 16 12.9
2 64 8.14
3 16 11.47
3 64 7.24
4 16,64 8.68
3 16 7.94
IR R T
7 16/64 5.34

From the calibration process, it has been discovered that the measured distance

changes based on if we are logging the data or if we are deploying the computed
distance on the built-in LCD screen. Luckily, the aim of the project is to localize
the UWB signal (CIRs), which not involve the computed distance, but it still
remain an important concept for possible next development.
The reason why the calculated distance changes is because it takes longer time
to store/log all the data in the ".txt" file. Indeed, when the measurement process
starts, the deployed distance increase, on average, about 2.5 cm. Since the two
boards will always be used logging the data (both when we have to store all the
CIRs and when we have to localize our new measurement), it has been decided to
calibrate them considering the result when the log option is on.
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The channel selected and the used PRF are shown in tab. 3.1, which leads
to select a calibration separation of 5.01 m (highlighted row in tab. 3.2). Multiple
measure had been collected with different Antenna Delays.

The value which minimize the error had been the following:

Calibrated Antenna Delay = 516.025 ns

3.2 Collected Dataset

Once the antennas have been calibrated and properly setup, the measurement
of the environment begun. In order to collect datas as independent as possible,
different dataset had been collected:

ID - Ideal condition: this dataset is made of 41 points, which cover the whole
selected environment. For each point, 800 total CIRs had been collected,
producing 400 whole distance measurements since the antennas work in two-
way-ranging mode. This dataset, as the name says, has been collected in ideal
conditions, which means that all the measures where in LOS and with static
environment (e.g., no people in the surrounding).

R1 - Real Condition 1%: after collecting the dataset ID, it has been realized
that ideal conditions are not really useful for a real localization since they
are quite different from the reality. For this reason, a new dataset has been
collected, trying to simulate as much as possible real condition (e.g., people
walking between the antenna leading NLOS measurements, people moving in
the surrounding, people seated on the benches or people using the elevator).
This dataset, contrary to the previous one, has been collected for less points
to speed up the measurements process, reducing the number of points from 41
to 13. In order to consider all the main points of the grid, the 13 points have
been selected to cover both the main hall and the hallway, plus the point 5
that could be considered as special point since slightly NLOS and in front of
the elevator, which could leads more interferences (green box in fig. 3.1). For
each point a total of 2800 CIRs (1400 computed distance) had been collected,
splitting them in specific conditions, such that it becomes easier analyse their
influence on the specific point:

0-800 s.: ideal conditions

801-1000 s.: people walking

1001-2000 s.: seats on a bench

2001-2200 s.: antenna rotated about +45°
2201-2400 s.: antenna rotated about -45°
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3.2 — Collected Dataset

- 2401-2800 s.: waiting and using the elevator

R2 - Real Condition 2"?: this new dataset is composed similarly to the R1 one
(same selected points) with the only difference that the number of collected
CIRs is 1000, and that the conditions are no more considered separately but
they randomly overlap. The aim of collecting this new dataset, is just to have
more real measurements collected in different moments to reduce possible
offset errors.

R3 - Real Condition 3": composed like dataset R2, with only difference in time
instant of collecting the dataset. Indeed, also in this dataset, each point have
almost 1000 CIRs.

To collect all the measurements, the Anchor (which connected to the movable
cart, fig. 3.2 - a) has been moved such that its position matches with the one in
the CAD file. The position has been taken with respect to the walls on the x and
y-axes using a laser distance measurer (fig. 3.2 - b).

Figure 3.2: a) Measurements setup; b) Laser distance measurer

Once the Anchor reached the correct position, the modified version of the De-
caRangning application has been run. All the setting has been changed to match
the ones in tab. 3.1 and once all has been set correctly, it has been started to log
all the measurements in a ".txt" file, named as the measured point.
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3.3 Logged data

In order to log the data, the log button in the final version of DecaRangin application
must be clicked. It automatically creates a new ".txt" file, where all the new TWR
collected measurements will be stored. Due to the topology used, two CIRs are
needed to complete a whole measurement estimator.

To extract all the needed information, a python script have been developed.

The data that have been finally used, with reference to fig. 1.17, are:

o First Path Points: it includes FP_IDX, FP_ AMPL1, FP_ AMPL2 and
FP AMPL3. As described in chap. 1, they give the information of amplitude
overcoming the threshold noise, and the relative amplitudes of the first peak,
which is associated to the LOS contribution.

o CIR accumulator: the accumulator is composed by two values, real and
imaginary part, over which the final amplitude can be computed. It correspond
to the final shape of the CIR, nevertheless the current localization information.

Data like SNR, CIR’s power and carrier recovery have been extracted as well,
but since they were not adding tracking information, it has been preferred to
ignore them. On the other hand, Voltage and Temperature, even if not useful for
localization, have been used for monitoring the antennas’ correctness functioning.
Indeed, have been considered as correct working conditions: 2.3 <V [V] < 3.75
and —40 < T [°C] < 100.
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Chapter 4

Dataset analysis

Before proceeding to feed the data to the network, is very important to analyse the
data in their overall. In such a way, errors in the acquisition could be immediately
discovered and correct. Moreover, knowing the data help for a deeper understanding
of the problem. After that, comparison between different points have been carried
out, in order to understand if data are effectively sensitive of the surroundings
and/or at the dynamics caused by people.

From a first analysis, it shows up that the collected CIRs have the maximum
peak always around 18/20k. Unfortunately, this means that their amplitudes do
not add information about the strength of the signal (and so neither about the
distance). Indeed, from the manual "DW1000 device driver application programing
interface (API) guide" [21] is possible to read that an internal algorithm, called
"LDE", which "details on the operation of the LDE algorithm are protected by IP
and so are not publically available' [21], try to standardise the highest peak to
18/20k as a magnitude. Moreover, it can be highlighted analysing the amplitude of
the direct path at the increase of the distance. From fig. 4.1, becomes easier to
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Figure 4.1: Amplitude at the variation of the distance
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understand that the amplitude is not proportional to the distance. Except for the
first four points, where seem that the amplitude increases at the increase of the
distance, it randomly changes, remaining always nearby 18K.

4.1 CIRs’ comparison

The first observation that has carried out has been on the magnitude’s shape of
the CIRs, where:

CIRump = \/CIRZ,, + CIR} (4.1)

real imag

The aim has been trying to find some pattern via graphical intuition. As mentioned
in paragraph 1.2, the useful and used samples from the whole CIR are only 157
time instant, rather than all 1016. It started analysing the dataset ID since it is
related only on the surrounding, becoming easier to understand how CIRs change
based on it. R1 and R2, instead, are affected from disturbances caused by people,
leading to not have a direct correlation with the environment. This means that
they will be slightly different from the ID, but with the same main shape.
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Figure 4.2: Comparison between different CIRs for different points

Since compare all the CIRs in a unique picture could be not clear, it has been
preferred to use only four points (chosen as the most representative ones) and four
random signals for each point. The result is depicted in fig. 4.2. The selected
points are: 05, 15, 26 and 27 (with reference to fig. 3.2). All of them, as it is
possible to see from fig. 4.2, are similar, but with specific different features. Point
05, indeed, is the only one having high magnitude multipaths. The reason why
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4.1 — CIRs’ comparison

this happens is because this particular point is in front of the metal doors of the
lift and slightly in NLOS. This leads to strong reflections. Point 15, instead, is
completely in LOS but it is still close to the metal doors of the lift, which increase
the multipaths” magnitude with respect to farther points. For example, point 26
and 27, which should not be affected by the elevators since in the hallway, have
strong magnitude for the first peaks, but very low for all the others.

Another important detail to highlight is that these two latter points are at the
same X location, distance 80 cm on the y axes. Even if structured in the same way,
they still remain visible different (e.g., point 26 has higher magnitude in the second
peak) which is a positive result since it means that the CIR is sensitive enough to
sufficiently change for two adjacent points.

Point 05 Point 15

Magnitude [dB]
&

Figure 4.3: Comparison between different CIRs for different points, in log,, scale

In order to highlight also the differences when signals are close to 0, they have
been represented in log,, scale. Unfortunately, even if from fig. 4.2 seems that the
signals reach values close to 0, they still remain pretty high as magnitude (around
300) leading signals to look more similar, opposite of the initial goal. Indeed,
looking at point 26 and 27 in fig. 4.3, they have more similar features than in
normal scale. For this reason, it has been decided to not consider signals in log;,
scale for all the next analysis, but keeping them as they are.

The following step has been comparing the behaviour of CIRs to the variation of
the distance. For sake of simplicity, the average CIR has been computed for every
point, obtaining a single final signal. First, analysis at the variation of the depth
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have been conducted (points 16, 23, 24, 27). Secondly, at the variation of the width
(points 16, 17, 18, 19).
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Figure 4.4: Averaged CIR’s variation over x-axes distance

Analysis along the x-axis (depth)

The behavior of the averaged CIRs along the x-axes (moving along the depth of
the hallway) is depicted in fig. 4.4. The main differences are located in the first
60 samples. The first peak, which correspond to the direct path, is almost the
same for each point. This result is reasonable since the analyzed points are in line
and the inside LDE algorithm try to equalize all the magnitudes. On the other
hand, the second peak can be already considered different for the majority of cases.
For example, in point 16, it is smoothed with respect to all the others. Another
interesting behavior is that starting from the third peak (around the 10" sample),
until sample 60, all the peaks occur differently and with different magnitude.

Analysis along the y-axis (width)

Moving along y-axis, as for x-axis, produce different final CIRs. In this case, the
closer we are to the walls, the higher magnitude the peaks will be. For example,
looking at fig. 4.5, point 16 and point 19 are the points respectively at the wall and
in front of the elevator and consequently they are the one with higher multipaths’
magnitude. The second peak is an exception, which result to be lower with respect
to the other 2.

In conclusion, moving along a single direction return slightly changes in the shape
of the CIRs, which lead to think that ML algorithms should be able to properly
classify the signals.
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4.2 — Power Delay Profile
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Figure 4.5: Averaged CIR’s variation over y-axes distance

4.2 Power Delay Profile

It has been understood that multipath occurrences are one of the most important
feature in order to characterize a point in a room, leading us to use the Power Delay
Profile (PDP). PDP gives the intensity of a signal received through a multipath
channel as a function of time delay. In other words, it focus the attention on the
relative time and amplitude of the relative maximum peaks. The difference in
travel time between multipath arrivals is the time delay. The abscissa is in time
units (in this example, ns, which correlates to delays) and the ordinate is commonly
in decibels (dB).

To plot the PDP of the averaged CIRs, at first they have been normalized as
to get 0 dB for the point with the maximum amplitude (being the first path signal).
Consecutively, all the other multipaths (peaks) have lower amplitude with respect
to the first path signal.

Usually, the number of reflection paths are around 10 and, to achieve this
result, a specific threshold value has been selected, cutting off all the other paths.
From fig. 4.6, is possible to see that point 05 has much more than 10 path reflec-
tions. It happens because it has been decided to have a single threshold for all
the points (1200 in normal scale), and since point 05 is the one in front the ele-
vator (and with higher reflections), the number of paths will be more than the usual.

From this analysis, it is easier to highlight the difference in features between
the 4 different points (compared to the simple CIRs of fig. 4.2). Indeed, comparing
two adjacent points (e.g., point 26 and point 27), is possible to better understand
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Figure 4.6: Power Delay Profile of 4 different points

their differences in paths. For example, point 26 has more reflection with higher am-
plitude. Moreover, all the 4 points have different time delay between one reflection
to the other, characterizing in a unique way each point.

4.3 Histogram of delays

Another important analysis that can be carried out, is to analyse the frequency, or
occurrences, of specific amplitude’s multipath. The histogram of delays is the plot
most relevant to show them.

As expected, from fig. 4.7 (a), is possible to see that for small amplitude (from
0 to 1000, first bin) the frequency of occurrence is very high. Unfortunately, this
section of the histogram is not useful to the localization purpose, since small
amplitude is mostly related to noises. A zoom on the rest of the graph has been
performed (fig. 4.7 (b)). Contrary to what awaited, the histogram of delays do
not give an easy interpretation on the feature of the points. Indeed, all the bins of
amplitude higher than 7000 have an occurrences around 1 or 2. The peculiarity in
this section of the graph, could be in understanding the exact amplitude on which
there is the reflection, even if overlapping is present many times, which loose the
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Figure 4.7: Histogram of delays of 4 different points

specificity of the point.

The bins whose represent the most distinct features are from the second to the
amplitude value 7000. Here, occurrences ranges from 0 to 30 and all the 4 points
have different trends. For example, point 05 (blue line), is the one having more
reflection in this range of bins, giving immediately the idea of being the point in
front of the elevator since metal material reflect more than normal walls. This
means that the number of occurrences in this portion of the graph can give a first
idea on how points are characterized.

4.4 What the non-idealities introduces

Until now, it has been used the ID dataset to perform all the comparison and
analysis. The reason why it has been selected only this dataset is because it has
been wanted to highlight how different points are dependent to the environment.
This means that it has been desired to check the simple relation between specific
points with respect to the surroundings, trying to avoid all the different noises
coming from people’s dynamic.

So, what people’s dynamic means? In this thesis, people’s dynamic is referred
to reflection, attenuation or other kind of disturbances that people introduces
when moving close to the antennas. As mentioned in chap 3 - sec. 3.2, the main
introduced noises have been: people walking in the area and between the antennas,
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people sitting on benches, rotation of antenna about 4 45° (even if not related to
persons) and people waiting and using the elevators.

In this section, the analysis of each specific disturbance has been carried out
on R1 dataset, with the aim of understanding what they singularly introduce with
respect to their absence. Since plot all the collected CIRs for each point could
result in a not very clear graph, it has been decided to average all of them and
compare the different conditions for only two point, which are point 05 and 26.
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Figure 4.8: Comparison between ideality and non-ideality

Even if from fig. 4.8 is very complicated to understand which are the differences
(due to overlapping of 6 similar graphs), it proves that, on average, the conditions
change when people are in the surroundings. For a better interpretation on the
introduced differences, multiple plots for two points (05 and 26) have been used.

Let’s start considering ideal conditions with people walking (fig. 4.9). The main
signal shape remains unaltered. Indeed, there are not so many differences between
the blue line (ideal conditions) and the dashed red one (people walking in the
surrounding). The reflections occur at the same time with small attenuation or
amplification of some peaks. This trend takes place in both points, with more
differences in point 05. It is important to remember that these are averaged signals,
which means that, in general, multipaths could have higher and lower magnitude
but, on average, they behave similarly to ideal conditions.

In fig. 4.10 is depicted the effect of people sitting on benches. As for people
walking, the multipaths occur at the same time of ideal condition but, contrary to
previous case, the magnitude tends to be slightly more attenuate. For example, in
point 05, all the first reflections with people walking are attenuate with exception
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Figure 4.9: Comparison between ideal condition and people walking

of the direct path (higher peak). This exclusion is due to the fact that the LDE
algorithm try to leverage the direct path around 18k. Point 26, instead, has the two
conditions quite similar, with the signal almost perfectly overlapping. A possible
reason why point 26 is not particularly affected by people sitting on the bench,
could due its position in the environment. In other words, point 26 is located in
front of the receiver (see fig. 3.1) with benches not very close to it, leading few
reflections passing through people sitting on them.
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Figure 4.10: Comparison between ideal condition and people sitting

Next, the influence of people using the elevator (including people waiting in the

hall and effectively using it) is depicted in fig. 4.11. This condition is the one who
affect more the original CIR’s shape. Luckily, also in this situation what change is
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Figure 4.11: Comparison between ideal condition and people using elevators

not the shape itself, but is more the magnitude. Both points 05 and 26 kept their
original shape with amplification of most of the reflections. This does not mean
that the shape have been completely unaltered, indeed small variation are present,
but still a minor part. In addition, also few peaks have been delayed in time, but
always within 1 ns.

The last introduced non-ideality has been the rotation of the transmitter about
+ 45°. The result is shown in fig. 4.12. Here, the two points behave slightly
differently. Point 26 suffers a little less about the introduced disturbance. The
shape remains mostly the same, with peaks amplification after the direct path.
Instead, reflections in point 05, have been both amplified and attenuated (does
not matter if the antenna are rotated about + or - 45°), with some peaks who
change also in shape. Moreover, also the time when some multipath occur have
been slightly shifted.

To sum up, is possible to state that the introduced non-idealities mostly change
the magnitude of some multipath, leaving the main shape unchanged. This is
a positive result since the ML algorithm can use the information of when the
reflection happens and its shape. In such a way, even if it is slightly amplified
or attenuated, it is still possible to extract unique features. Contrary, a critical
situation could be when the antennas are rotated, since point 05 have been changed
non only in amplitude but also in shape. Anyway, it does not mean that all the
point will change their CIR’s shape, but only that there is an higher probability.
Indeed, point 26 has kept its shape, slightly modifying its amplitude.
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Figure 4.12: Comparison between ideal condition and antenna rotations

4.5 CIRs’ correlation factors

After understanding how CIRs are different from each other and how they are
related to the environments, the successive study has been on finding how much
they are correlated between different points and different dataset.

First, the correlation formula (eq. 4.2) has been used to compare all the sig-

nals.
N (2 — 7) (s — 7) Xz —7z)(y —7)
=Y N, C X 1.2
; (N —1)sz8, \/(m _I>2\/(y —g2 (4.2)
N N
where,

e 1 is the product-moment correlation and indicates the similarity’s strength of
the analyzed variable. It ranges from - 1.0 and + 1.0, where the sign indicate
the direct or inverse relationship and the magnitude indicates the strength.

e s, and s, are the standard deviation of x and y respectively
o T and ¥ are the respectively mean of x and y
e N is the number of cases

Then, it has been reported the correlation trend comparing each CIR of the same
point (fig. 4.13 (a)) with different dataset (fig. 4.13 (b))

Fig. 4.13 a) shows how much CIRs are consistent for the same point. In other
words, it depicts the average of the correlation coefficient for all the CIRs belonging
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Figure 4.13: Correlation trend for CIRs of the same dataset (left - a)and for
different dataset (right - b)

to the same point. All the correlation coefficient are bounded between 0.85 and
0.98. R1 is the dataset with lower r, while the most consisting one is ID (as it is
reasonable to be since it includes only static measures).

In order to highlight the effect of people’s dynamic, the global R1 trend (green
line) has been split in two. The correlation has similar trend to the dataset ID
when considering only the first part of the measures, which correspond to ideal
conditions. This is a logical result since the environment and conditions are the
same. Contrary, performances degrade (green dash-dotted line) when dynamic is
introduces, decreasing, in the worst scenario, 9% of correlation (point 05). Since
the overall trend is the average of all the correlation coefficients belonging to the
same point, the final R1 trend remains closer to the dynamic condition because
static and dynamic samples are not balanced. Indeed, (with reference to sec. 3.2)
R1 contains three times more dynamic samples with respect to the static ones.

Points 05, 21, 22 and slightly 24 show the lower r, realizing that for these points it
could be challenging collect consistent data, becoming for the ML network more
difficult the classification.

In order to analyse the correlation between different dataset, the attention must be
focused on fig. 4.13 (b). Here, all the CIRs belonging to the a point’s dataset have

1.C. = Ideal Condition

2G.C. = General Condition (used to indicated that includes both ideal condition and people’s
dynamic)
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been compared with the collected CIRs of different dataset, for the same point. It
is instantly noticeable the worsening of performances, having r bounded between
0.55 and 0.91. The most critical points seem to be the same of when analysing the
same dataset (that are 05, 21, 22 and 24). Point 19, instead, result a "weak" point
when comparing R1 with R2.

Moreover, looking deeper at the graph is possible to notice that when comparing
both the dataset with dynamics, the results are more consistent. The reason behind
this result is straightforward: dynamics affect the dataset in a similar way, or
simpler, there are more similar samples in same condition. For example, when
comparing ID with R1, we are comparing thousand of ideal condition’s CIR of ID
with hundred of ideal condition in R1, plus all the one with dynamics.

It is also worth to highlight that the ideal correlation coefficient must not be
1, otherwise, even if has been collected 2 millions samples, they do not add new
information to the network. Similarly, it neither must be too small, otherwise the
classification becomes impossible.

In short, the goal is to give as input to the neural network signals which are
unique for each point, but with a lot of subtle differences, in order to generalize
the classification and not overfit.
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Figure 4.14: Correlation coefficient between ID-ID (left) and R1-R1 (right)

Finally, to have a broader perspective, the correlation coefficient has been com-
puted between all the points of the three dataset, forming matrices where each
cell represent the average r of the points on x and y-axes. Inside these matrices
are present all the possible combinations between all the points and dataset. The
values on the main diagonal of ID-ID, R1-R1 and R2-R2, correspond to the same
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Figure 4.15: Correlation coefficient between R2-R2 (left) and ID-R1 (right)

values of fig. 4.13, with only difference of data view.

Point 05 is the most distinct from all the others points. This is true, since is
the only one slightly NLOS and with high reflective material nearby. Indeed,
in all the matrices, the correlations between point 05 and all the other points
is always bounded between 0.20 and 0.50, which are less than half compared
to the average. Albeit on the main diagonal the desired value is neither 1 nor
values too small, the desired coefficient value off the diagonal is as smaller as
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Figure 4.16: Correlation coefficient between ID-R2 (left) and R1-R2 (right)
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possible. The optimal situation occurs when the CIRs of different points are
mostly different. Obviously, it is impossible to get a correlation coefficient equal to
0 since the environment is the same and the points are distant few cm to each other.

Unfortunately, from fig. 4.14, 4.15 and 4.16, all the coefficients off the main
diagonal remain pretty high (always above 0.70), by exception, as mentioned before,
for point 05. This could lead to higher classification complexity, being harder to
identify uniquely new unseen data.

4.6 ToF

The last performed analysis has been on the ToF.It has been decided to study how
much consistent are these measurement. In fig. 4.17 are depicted all the collected
ToF for dataset R1 (point 05 and 26 has been used as references, as showing the
trend for all points could be confusing).

Before starting to analyze the trend, it is worth to remember that, to measure
one ToF, two CIRs are needed. For this reason, with reference to sec. 3.2, there
are half ToF’s measures then CIRs.

Point 05 Point 26

11.04 26.25 4

26.00 1

25.75 1

25.50 1

25.25 1

25.00 1

24.75 1§

24.50 1

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Measure Measure

Figure 4.17: Measured ToF for point 05 (left) and 26 (right) - dataset R1

In both the graphs has been highlighted, with a dashed line, the parting line
between measures collected in static (or ideal) condition (on the left) and measures
collected in dynamic condition (right side). It is instantly recognizable that, in
both the cases, dynamic alters a lot the final measure. In tab. 4.1 are shown the
average ToF for the different conditions.

The different between static and dynamic condition may seem small. It is
0.068800 ns for point 5 and 0.014939 ns for point 26. The main problem here, is
that to compute the distance in m, the ToF must be multiplied by the speed of
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Table 4.1: Averaged ToF in different conditions - dataset R1

Point | Static Cond. [ns] | Dynamic Cond. [ns] | Global [ns]
05 8.6179 8.6867 8.6670
26 24.7101 24.7624 24.7474

light, which is 299'792’458 m/s. So, small delta in time, will result in significant
distance error. For example, the different ToF's result in cm, are:

Apoint 05 = 0.068800 - 1077 x 299792458 = 0.020625 m = 2.0625 cm
Apoint 26 = 0.014939 - 1077 % 299792458 = 0.004478 m = 0.4479 cm

which, for indoor localization, could be a critical factor.

Moreover, when considering dynamic conditions (fig. 4.17), a large number of
outliers are present (measures farther than 3¢ from average). It could be due
to situation in NLOS, where people passed through the two antennas, or due to
interferences with other objects. So, it is important to collect big dataset, such
that when training the network it is less affected from outliers.

In addition, for point 05, there has been a constant offset for measures from
1000 to 1100, corresponding to CIRs from 2000 to 2200 (antenna rotation about
+45°) and a rise in number of outlier for the last 200 measures, corresponding to
people waiting and using elevators.

Since it has been observed that ToF is very sensitive to dynamic, the indoor
localization will be attempted only using CIRs.
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Chapter 5
Pre-processing operations

After having an idea on how the data are formatted, some preliminary operations
must be performed in order to have robust and consistent data for the network. It
is well known that, nowadays, ML algorithms are strong enough to use raw data,
but the more they get simplify, the easier will be the classification.

5.1 Alignment

During the dataset collection, it has been noticed that the main shape of CIRs
were pretty similar for data of the same point, with the only exception of starting
point. Indeed, almost all the CIR started delayed in time, and since the LDE!
algorithm was the cause of it, it has been impossible to set it at priori. For this
reason all the data have been post aligned.

To do the alignment, it has been decided to use the maximum correlation. It
has been used a random CIR as reference, and all the other have been shifted in
order to have most similarity to the referenced one. Equation 5.1 shows the formula
for the correlation’s computation:

with —oo < n < 400 and 7, denoted the complex conjugate of y.

The result is an array containing the value of correlation for each shifted sample.
The index containing the maximum value, identify how much the CIR must be
shifted.

Tt is the DW1000 internal algorithm responsible of signal identification, over which not details
are provided from the company
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As example, in fig. 5.1 is reported the obtained result for point 26.
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Figure 5.1: Before (up) and after (down) the alignment processing, for point 26 -
dataset ID

5.2 Normalization

Normalizing input data aims to create a set of features that are all on the same
scale, as well as to avoid common problems known as vanishing and exploding
gradient problem. This means that normalization is not used to get normally
distributed data, but it is only related to obtain data that work better with the
network algorithm.

The goal is usually to recenter and rescale data such that they are between 0
and 1, or -1 and 1, depending on the data itself.

In this thesis’ project, data have been normalizing by scaling each CIR to a
given range [ryin = 0 - e = 1]. All the collected CIRs have been scaled in this
range. The transformation is given by eq. 5.2:

T — Tmin
Tmaz — Tmin (52)

Tnormalized = Lstd * (rmam — Tmin) + T'min

Tstd =
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5.2 — Normalization

In fig. 5.2 is shown a random CIR of point 26, both in normal scale (left axes)
and after the normalization (right axes).
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Figure 5.2: Example of normalization on a random CIR of point 26 - dataset R1

As it is a simple normalization, the shape remain unchanged.
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Chapter 6

Network selection

Neural network selection remains a difficult problem whose solution can only be
achieved through trial and error. The main reason why it remains challenging, is
because the training process is solved using optimization algorithms containing
lot of parameters, where each of these can improve or worsen the final result.
This means that the user must try to find the best values to achieve the best
final result, and since there are no equations for its detection, choosing the most
promising hyperparameters and well-functioning model architectures continues to
be a challenge also for experts.

These issues have led to approach the machine learning area from a different
perspective, entering in a new area of research called autoML. The aim of this
research is to search some well-performing ML models or algorithms with the
automated choice of hyperparameters.

6.1 What is mcfly

Mecfly! is an autoML software tool that focuses on deep learning for multivariate
time series classification. It is a Python library developed by the Netherlands
eScience Center to generate different deep learning networks and train them on
specific dataset. A peculiarity of mcfly is that it provides the user the ability to
choose particular ranges of values for the hyperparameters (depending on domain
knowledge and data science) or to explore a large number of networks [22].

Mecfly is a packaging around the Keras? API in Tensorflow®. Even though the

Thttps://github.com/NLeSC/mcfly
2Keras is an effective high-level neural network library that runs on top of Tensorflow.

3Tensrflow is an end-to-end open-sourced deep learning framework, developed by Google and
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Keras API in Tensorflow is a powerful and user-friendly API, it still requires the user
to define the architecture of the model and other hyperparameters (e.g., learning
rate). What mcfly propose, is searching architectures and other hyerparamethers
through random search?[22].

The steps performed have been:

e Prepare input data: the input data format accepted by mcfly coincide with
the one accepted by the Keras API, but limited to matrices representing single
or multi-channel time series data. All sequences in the dataset should have the
same length. The input data X should be of shape (numerg X NUMimestamyp
X NUMpanner ), While the output data y should be (nume;g x numclasses),
as a binary array for each collected CIR.

+ (Re)generate model(s): there are four types of networks architecture that
are available in mcfly: CNN, DeepConvLSTM, ResNet and InceptionTime. In
case it is preferred to use only a subset, it is possible to set which one to use
in the mcfly algorithm.

e Find the best model: the best model is obtained looking over the perfor-
mances of all the random generated model. Few optional settings are tunable
for training the models in mcfly, such as the number of epoch and early
stopping (whether the training process should stop when performances does
not increase).

e Fine tuning and store the model: once the best model has been found,
a final tuning with the whole dataset must be performed. If the model
still returns good performances, the model can be used for the definitive
classification.

6.2 Selection process

Let now deeper analyze the steps mentioned in the previous section.

STEP 1 - Data split

Before start generate different models, it is important to have proper subsets on
which train the networks. Indeed, once all the data have been properly processed

released in 2015.

“Different studies[23] affirm that random search is more efficient than other commonly used
techniques, as grid search.
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and organized in structures compliant with mcfly’s algorithm, three different subset
have been extracted. It has been decided to use only dataset R1 for the model
research. So, the three subsets have been split as follow:

o Training: 70%
o Validation: 20%
e Testing: 10%

These are common percentage in Machine Learning.

STEP 2 - Generate models

The second step has been generate different models through random search to
investigate which architecture is most suitable for our data and classification task.
The number of models is an user parameter, which means it must be specified in
mcfly by the user. In order to have a wider analysis, it has been decided to generate
12 different random models. The number of generated models could be arbitrary
chosen to the user. Below, is reported the code to generate models.

num__classes = y_train_enc.shape[1]

metric = ’'categorical accuracy’

models_1st = mecfly.modelgen. generate__models(X_train.shape,
number_ of classes=num_ classes,
number_of models = 12,

metrics=[metric])

The 12 generated models are reported in tab. 6.1, highlighting their hyperparame-
ters, which are: learning rate (that determines how fast moving toward a minimum
of a loss function for each iteration) and regularization rate (that controls the
regularization applied to the model, modifying bias and variance)

STEP 3 - Train models

Once all the models architectures have been generated, the weights have been tuned
by training on the training dataset and evaluating on the validation subset.

In order to quickly train the models and get good results, early stopping (which
is the parameter that will stop the training once the validation accuracy is not
improved) has been set to 10, the subset size has been set 3000 and the epoch (that
is the number of times the subset is iterated over) to 100.

Below, the code used to train all the models has been reported.
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Table 6.1: List of generated models

Model Model Learning Regularization Tot

n. type rate rate params

1 ResNet 0.02432507 0.00138735 32807521
2 InceptionTime 0.00136961 0.00258567 603’954
3 DeepConvLSTM 0.02796922 0.00044054 66’419

4 CNN 0.01285124 0.01368969 2371507482
5 ResNet 0.00892321 0.00395036 723’810
6 InceptionTime 0.00041757 0.00102521 27195470
7 CNN 0.00296089 0.02229411 89577966
8 DeepConvLSTM 0.00198869 0.00521629 177670
9 DeepConvLSTM 0.00284828 0.02172788 294’100
10 InceptionTime 0.01074923 0.00051785 7247122
11 CNN 0.00474171 0.00307608 5108995
12 ResNet 0.08381990 0.00103132 77238832

histories_1st , val_ accuracies_1st, val_ losses 1st =

train_models_on_samples(X_train, y_train_enc,
X_wval, y_val enc,
models_1st, nr_epochs=100,
subset_ size=3000,

early stopping patience=10)

STEP 4 - Models performances

In STEP 2, when training the model, four different parameters have been computed
and stored, which are: training accuracy, training loss, validation accuracy and
validation loss. All of these are used to asses the performances of the model.

The model’s performances are shown in tab. 6.2.

The evaluation of the best model, must be performed on the validation dataset,
which are data not used in training. It means that when comparing different
networks, an important parameter to observe is the validation accuracy.

Based on this observation, it has been decided to narrow the model research by
considering only types whose validation accuracy reached, in at least most of the
cases, good percentage. "DeepConvLSTM" has been the worse model type among
the four, with validation accuracy of 7.01% and 6.87% (model 3 and 9). So, it has
been decided to not consider it for the following steps. All the other types, at least
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Table 6.2: Performances of generated models

Model Model Training Training | Validation | Validation

n. type accuracy loss accuracy loss

1 ResNet 0.6813 0.9216 0.3423 7.5334
2 InceptionTime 1.0000 5.14E-05 0.9936 0.0252
3 DeepConvLSTM 0.0729 2.6464 0.0701 2.6516
4 CNN 0.9380 0.5753 0.6292 1.7881
5 ResNet 0.9916 0.0282 0.5680 4.0723
6 InceptionTime 1.0000 3.42E-07 0.9961 0.0193
7 CNN 0.9693 0.2900 0.0781 59.7078
8 DeepConvLSTM 0.8190 0.8585 0.6906 1.2550
9 DeepConvLSTM 0.0769 2.6392 0.0687 2.6403
10 InceptionTime 0.9969 0.0129 0.8515 0.7041
11 CNN 0.9840 0.2343 0.8277 0.7229
12 ResNet 0.0753 2.7651 0.0684 2.6858

2/3 have validation accuracy higher than 50%.

STEP 5 - Narrowing model generation

Once it has been decided to examine only "CNN", "InceptionTime" and "ResNet"
as model types, 20 new random models have been generated. Below, the code used
to generate the new model.

num__classes = y_train_enc.shape[1]

metric = ’categorical_ accuracy’

types = ['CNN’, ’ResNet’, ’InceptionTime’]

num_ models = 20

max_ layers = 12

models_ 2nd = mecfly.modelgen.generate_models (X_train.shape,
number_of classes=num_ classes,
number_of models = num_ models,
model_types = types,
cnn__max_ layers = max_ layers,
resnet__max_network_ dept = max_ layers,
IT max_network dept = max_layers,

metrics=[metric])

In addition, as it can seen in line 5, the maximum number of layers have been lim-
ited to 5. The reason behind it, is that, in STEP 1, the generated models were really
deep. Using an upper limit in the number of layers reduces the network’s complexity.
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The new generated models are reported in tab. 6.3.

Table 6.3: List of generated models

Model Model Learning Regularization Tot

n. type rate rate params

1 CNN 0.00021631 0.00562004 6’082’935
2 ResNet 0.03080126 0.00022648 3’304°299
3 InceptionTime 0.00024731 0.00056710 817503
4 CNN 0.00037876 0.00040303 4’568’105
5 InceptionTime 0.00134682 0.02950281 876’530
6 ResNet 0.01086536 0.00643040 479’743
7 CNN 0.00406230 0.00027741 27°405°936
8 InceptionTime 0.05177687 0.01408421 3767364
9 ResNet 0.00385275 0.00224652 309’965
10 InceptionTime 0.07135029 0.02012080 1’155’438
11 CNN 0.00024522 0.02227372 9’802’394
12 ResNet 0.08095274 0.00848389 2'850°792
13 ResNet 0.00034802 0.05356596 2'953'447
14 InceptionTime 0.00098791 0.02546353 928’898
15 CNN 0.00173172 0.00010569 17628097
16 InceptionTime 0.00264728 0.07459546 331°173
17 CNN 0.04015362 0.09334354 8'254°467
18 ResNet 0.00061688 0.00374441 2'761°336
19 InceptionTime 0.00015089 0.04938399 2557762
20 ResNet 0.08027593 0.06263171 992’494

It is possible to see that the total number of parameters between all the models
range from ten thousand until reaching millions. These are a large number of
parameters.

So, even if nowadays, computer are able to perform complex computation in
very little time, it has been preferred to consider number of parameters as crucial
factor in the model selection, trying to get it as small as possible.

STEP 6 - New model performances

In tab. 6.4 are reported all the performances of the 20 models.
In order to pick the best model, different aspects have been considered. The

best model must best fulfill the requirements listed below:

« High validation accuracy
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Table 6.4: Performances of the new 20 generated model

Model Model Training Training Validation Validation

n. type accuracy loss accuracy loss

1 CNN 0.9163 0.9147 0.2122 7.3786
2 ResNet 0.8767 0.3979 0.3962 11.6138
3 InceptionTime 1.0000 0.0003 0.9795 0.0743
4 CNN 1.0000 0.0333 0.9902 0.0633
5 InceptionTime 1.0000 4.26E-06 0.9934 0.0269
6 ResNet 0.9740 0.0872 0.7840 2.0212
7 CNN 0.9970 0.0363 0.4909 4.2755
8 InceptionTime 1.0000 3.75E-05 0.9864 0.0694
9 ResNet 0.9903 0.0355 0.8868 0.4637
10 InceptionTime 1.0000 2.11E-05 0.9891 0.0526
11 CNN 0.9987 0.1969 0.9870 0.3451
12 ResNet 0.0747 2.7524 0.0745 2.7243
13 ResNet 1.0000 7.93E-05 0.9925 0.0301
14 InceptionTime 1.0000 1.12E-05 0.9952 0.0201
15 CNN 1.0000 0.0164 0.9885 0.0505
17 CNN 0.7997 3.0394 0.7735 3.6095
18 ResNet 1.0000 0.0001 0.9887 0.0445
19 InceptionTime 1.0000 2.79E-05 0.9938 0.0198
20 ResNet 0.2797 1.9953 0.0732 26.6911

« Small number of parameters (it has been decided to use an upper limit of 1
million)

o No overfitting or underfitting

To display performances more easily, in fig. 6.1, it has been reported the trend of
all the models at each iteration.

Now, analysing tab. 6.4 and fig. 6.1, 5 models (model n. 1, 2, 12, 17, 20) have
been discarded since perform poorly on the training set.

Moving forward, it has been analyzed the validation accuracy (tab. 6.4 and fig.
6.2). Here only 12 models (model n. 3, 4, 5, 8, 10, 11, 13, 14, 15, 16, 18, 19) have
a validation accuracy higher than 97%. So, all the other have not been considered.

Model n. 8, 10, 13 and 18 follow a particular behaviour. Indeed, looking at
fig. 6.2, even if most of the iteration have an acceptable validation accuracy, they
oscillated for the first 35/50, 19/38, 15/27 and 17/28 iterations, respectively. Since
other models have better response, it has been decided to reject all of them, keeping
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Figure 6.1: Performance on training set

models n. 3, 4, 5, 11, 14, 15, 16 and 19 as a final possible networks.

This means

that all of these 8 models are a good fit to be the best model.
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Figure 6.2: Performance on validation set

Successively, the number of parameters have been considered (tab. 6.3). Here,
only models n. 3, 5, 14, 16 and 19 have number of variables less than 1°000’000
(1 million). Between these five, the best model has been chosen as the one with

higher validation accuracy.
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STEP 7 - Selection of the model

Following all previous considerations, the "InceptionTime" model (number 16) as
been considered as the final best model.

After the model has been selected, another test has been performed: it has been
checked if the model overfit or underfit the data, by looking at the loss functions.

—— Modell6-train.
---- Modell6-valid.

0 10 20 30 40 50

60
Iteration

Figure 6.3: Comparison of training and validation loss of model 16

In fig. 6.3, the training loss and validation loss both decrease and stabilize at a
specific point, which means model 16 optimally fit the data.

Now that the model has been identified, its final shape is reported in fig. 6.4, and
its hyperparameters are reported in the following:

'learning _rate’ : 0.00264728226737, 'regularization_rate’ : 0.0745954647986,

'network__depth’ : 3, ' filters _number’ : 55, 'max_kernel size' : 46

STEP 8 - Longer training of the best model

To maximize the final selected model performance, it has been trained on more
data (removing the subset size) and with more epochs.

#Making a copy of the model and training with the whole dataset
best__model_index = 16 — 1 #-1 to get its index
_,_,_ = train_models_on_samples(X_train, y_train_enc,

X _wval, y_val enc,

[models_2nd [best__model__index]]
6 nr__epochs=200,
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6.2 — Selection process

subset__size= None,
early stopping_patience = 10)

After the final training has been completed, the model reached its final shape,
containing the best computed weights.

STEP 9 - Model validation

The validation of the model consist in classifying data that have never been used

by the network, in our case this correspond to use the testing subset. The testing

accuracy can be computed by comparing the predicted output with true label.
Below, the code used to compute the testing accuracy.

s|#Evaluating the model on the test data

datasize = X_ test.shape[0]

results = best_model.evaluate (X_test, y_ test_enc, batch_ size = None)
print ("Test loss, Test accuracy: ", results)

# Generate prediciton (probabilities of the last layer)
probs = best_model. predict (X_test [: datasize ,: ,:] , batch_size=1)
y_test_pred = probs.argmax(axis = 1)

The obtained results are:
Test loss : 0.0187443308532, Test accuracy : 0.9954163432121

This result established that the classification of a time-series using Deep Learning
algorithm is possible with high precision.
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Chapter 7

Classification results

When using Machine Learning and Deep Learning algorithms, a very important
aspect is to validate the models in different scenarios, as closer as possible to the
real application. For this reason, even if the obtained DL model (InceptionTime)
reached a test accuracy of 99.5%, other test have been performed.

Three different scenario have been created:

CASE A - Same setup used in chap. 6, that is:

o Training: 70% of dataset R1
« Validation: 20% of dataset R1
o Testing: 10% of dataset R1

CASE B - With this scenario, the training and validation subsets remain unchanged,
while the testing has been extracted from dataset R2, which has never been

used before:
« Training: 70% of dataset R1
« Validation: 20% of dataset R1
o Testing: dataset R2

It has been decided keep training and validation subsets as they are in CASE
A, such that it’s not needed to retrain the network.

CASE C - In the last case the dataset R1 and R2 have been joined and shuffled, so to
have a new bigger dataset. From it, training and validation subsets have been

extracted, while the testing has been obtained from dataset R3, which has
never seen from the network:

o Training: 70% of the new dataset (R1 + R2)
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« Validation: 20% of the new dataset (R1 + R2)
o Testing: dataset R3

In this situation, two positive aspect can be highlight. First, the dataset is
bigger, it contains more samples, so that the network have more information
to analyze. Then, the training process uses dataset coming from two different
measurements time instant, obtaining a dataset which have samples less related
to each other.

Successively, also the ML algorithms explained in sec. 2.4 have been exploited to
highlight their performances between all the 3 scenarios.

Let start analyzing the result of the obtained DL best model, InceptionTime-
16.

7.1 InceptionTime-16 results

Once the mcfly’s process has been concluded, the tested accuracy reached almost
100%, meaning that only few samples have been misclassified. In fig. 7.1 is shown
its confusion matrix, which give a graphical interpretation on the wrongly predicted
point.
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Figure 7.1: InceptionTime-16’s confusion matrix on testing subset - case A

88



7.1 — InceptionTime-16 results

57 28 5 188

885 AN I
EPEY 0 38 0

(] 7 0 151 10

800

3 3 205 425 0

140 258 0 10

0 61 0

True label

1

2 0

20 335 0

0 21 g3} 0
1 0 EEy 1

Predicted label

Figure 7.2: InceptionTime-16’s confusion matrix on testing subset - case B

Based on the reached accuracy, it is predictable that only few point have been
mislabelled. For example, point 22 has been correctly predicted 287 times, while
it has been classified as point number 16, 17, 21, and 26 only few time, with an
overall misclassification of 5 samples.

At a first sight, it could sound like a good result. Unfortunately, this is not the
case. Indeed, when using Machine Learning algorithms, have a minimum error is a
necessary condition to prove the correct operating. Too high accuracy could mean
overfitting.

Moreover, it is also important to remember how that value of accuracy has been
achieved. Indeed, when training the networks dataset R1 has been used and, from
it, the three subsets (training, validation and testing) have been extracted. This
means that the used samples for testing the network were unseen, but still coming
from the same measurement campaign (CASE A).

When localizing a robot in an indoor environment, measures come from different
time instant, being completely unrelated to the samples used in the training model.
In this regard, and trying to verify the robustness to overfitting, it has been decided
to move forward testing the model with the second scenario, CASE B. The obtained
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Figure 7.3: InceptionTime-16’s confusion matrix on testing subset - case C

results have been:
Test loss : 12.27202606201, Test accuracy : 0.27134102582

Here, the first contradictory result. The testing accuracy drops from 99.5% to
27.1%, which means that when using data never seen before and coming from a
different time instant, the model is no more able to predict correctly the position.
For a wider understanding, in fig. 7.2 is shown its confusion matrix. From it,
it is possible to see that almost all the samples have been wrongly classified, for
example, most of them have been labelled as 26. Point 5 is the only one with all
the sample correctly classified. This is a reasonable result since it is located in
front of the elevator and slightly in NLOS, leading to a different CIR’s shape.

After this poor result, it has been decided to understand which could be the
effective reason of the degradation. The dataset have been collected in different
time instant, but the surrounding conditions were pretty similar, which could not
be the cause of it. The main problem could be that too few CIRs have been used
for the training, leading the network to overfit the data. Indeed, using thousands
of data for each point is not satisfactory. Most of the powerful networks used in big
companies have been trained with millions, if not billions, of data before getting
good results.

Unfortunately, since the acquirement process for a single dataset composed of
thousand data requires different days, it has not been able to collect much more
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CIRs. Only a fourth dataset (R3) has been collected in order to train the model
with more data and still test it with unrelated dataset.

Keeping the InceptionTime-16 as it is, it has been merged dataset R1 and R2, and
from it, the training and validation subsets have been extracted (CASE C). The
new dataset R3, instead, has been used for testing the network. The obtained
results have been:

Test loss : 4.26345968246, Test accuracy : 0.59645742177

with its relative confusion matrix in fig. 7.3.

With this small variation, accuracy almost double, increasing from 29.1% to
59.96%. This result confirm the idea that the network was previously overfitting
a small dataset. So, to reach high performances with the selected network, more
dataset must be collected in different moments and used in the training.

As mentioned before, it has not been possible in this thesis, but it is the pur-
pose of the continuation of it.

7.2 ML results

Machine Learning algorithms are typically lighter than Deep Learning’s one. On
the other hand, the latter, are usually better performing and more robust. The goal
of this thesis is to localize an autonomous robot in an indoor environment, which
does not constraint on which network must be used. In this regard, an overview
also on classical ML algorithms have been conducted.

To summarize the discussion, it has been decided to not include all the exe-
cuted steps but only the main results, which are reported in tab. 7.1. As for the
InceptionTime-16, all the model have been analyzed using three different scenarios
(CASE A, CASE B and CASE C).

At first sight, all the 6 selected model performed optimally in CASE A, with
testing accuracy always higher than 98%, with exception of "Decision Tree" model,
which achieve 93.86% (that is still a good accuracy result). Performances completely
change in CASE B (as it happened for InceptionTime-16). The testing accuracy
reduces by 8 times, which means that there is not a single network able to localize
properly when using a dataset collected in a different time instant.

Luckily, training the models with different datasets and an higher number of
samples leads to achieve better results. Almost all the networks doubled their
testing accuracy, with the highest percentage reached by the "Random Forest"
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Table 7.1: ML model’s performances, testing in 3 different scenarios

Testing accuracy [%

Model type Case A \gCase B \yC[aS(]a C
Logistic Regression 98.22 11.58 29.46
Decision Tree 93.86 9.94 22.80
Random Forest 99.41 20.06 47.55
Gradient Boosting 99.31 16.82 41.43
K-nearest neighbor 99.67 14.98 42.29
Support Vector Machine | 99.19 12.54 38.70

model (47.55%). On the other hand, "Logistic regression" and "Decision Tree'
have been the models which obtained the lowest accuracy (29.46% and 22.80%,
respectively).

Of course, it does not mean that all the other properly become acceptable for
the localization. Indeed percentage remains below 50% which is still completely
unacceptable for the project’s purpose. To understand if all these model are suitable
for the indoor localization, millions of more unrelated samples are needed.

Instead, regarding the "K-nearest neighbor" model, it is worth to highlight that
the selected accuracy is the highest one. Indeed, this accuracy percentage has been
achieved exploiting the number of neighbors points from 1 to 50 (fig. 7.4) and it
has been selected the one with higher performance.
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Figure 7.4: KNN’s performances for the three cases
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For example, the best testing accuracy are achieved picking: npeighpor = 2 in
CASE A | npeighbor = 5 in CASE B and npeighpor = 4 in CASE C.
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Conclusions

This research has been aimed at exploring a new approach for indoor localization,
trying to understand if, given a reference transmitter, the different points in an
indoor environment could be characterized with a sort of "electromagnetic signature”.
The central questions considered in the thesis were:

1. Is it possible to characterize a point in a room using its complex impulse
response (CIR) (or, more specifically, its amplitude)?

2. If an “electromagnetic signature” exists, could it be identified using Al tech-
niques?

To determine the answers to these questions, two UWB transceivers have been
used to perform CIR measurements in an indoor environment.

They have been configured to work as Anchor and Transmitter and, after having
placed them on a wall and on a cart, respectively, a measurement campaign has
been performed. Thousands of samples have been collected for every point, spaced
roughly 1 m from each other, in front of the elevator area and in the hallway of
the third floor of the Engineering building at the California State University of
Los Angeles (CSULA). Several types of data have been collected, including ToF,
SNR, and others, but only the CIR (that is the impulse response of the channel in
the time domain) has been used to effectively perform the localization within this
thesis.

Once different datasets had been collected, they have been analyzed and pro-
cessed. From the preliminary analysis it has been observed that the CIR’s shape is
indeed related to the surrounding environment, and that moving from one point to
another the CIR shape changes. It has however also been possible to observe that
the changes are not only related to the position itself and to the fixed objects con-
tained in the environment, but also to the non-static elements of the environment,
such as people and mobile objects, that can create a very rich statistics.

Successively, the time-series data have been processed. CIRs associated to the
same point have been shifted in order to align the starting point, with aim to
increase the robustness of the dataset. Then, they have been normalized to avoid
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possible problem (e.g., vanishing gradient) in the Machine Learning and Deep
Learning networks.

Once the input have been properly processed and organized in structures com-
pliant with neural networks, the focus has been moved on the network itself.
New questions have arisen: "Which network should be used?”", "How to set the
parameter to get the best performances?'. In order to avoid mistakes due to inex-
perience, it has been decided to follow a new and different approach, called autoML.

The aim of autoML is to research some well-performing Machine Learning models
or algorithms using an automated choice of hyperparameters. In this regard, the
software mcfly has been employed, which focuses on Deep Learning algorithms for
time series classification. Four different networks have been examined with this
methodology: CNN, DeepConvLSTM, ResNet and InceptionTime. The hypepa-
rameters have been optimized with a random search approach, that is finding the
optimal value via random selection of them.

After an initial analysis, the DeepConvLSTM network has been the only model
not achieving sufficiently result in the classification accuracy, and it has therefore
been discarded. Successively, also CNN and ResNet have been eliminated since
InceptionTime was the model with best trade off between testing accuracy and
number of parameters.

To validate the model, three different scenarios have been considered, denoted
respectively as CASE A, CASE B and CASE C. In the first one, training, validation
and testing subsets all belong to the same dataset (named R1). In the second
one, instead, only the testing subset has been modified with respect to CASE A,
using data from R2. Finally, in CASE C, dataset R1 and R2 have been joined and
shuffled, using them for training and validating the model, while a third dataset,
R3, has been used to form the testing subset.

With these 3 different scenarios, both InceptionTime and Machine Learning models
(e.g., Logistic Regression, Decision Tree, Random Forest, Gradient Boosting and
SVM) have been tested.

Different results have been achieved in the 3 cases. All the model get high testing
accuracy in CASE A. Indeed, the worse performing model has been the "Decision
Tree" with test accuracy of 93.86%. Results completely change in CASE B. In this
scenario, both InceptionTime and all the ML algorithms drop their performance by
8 times, obtaining testing accuracy in the range between 9.94% and 27.13%. These
are very low percentages, which indicate that localization is impossible when using
samples coming from a set of measurements performed in different conditions and
never seen before by the network. Since this would be the final real application (a
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robot using real-time samples, coming from a measurement not belonging to the
training set), it has been decided to find out more about the cause of problems. In
this regard, a new dataset has been collected and the previous two have been used
together in the training phase (CASE C). As expected, increasing the number of
samples and training the model with data that are more unrelated to each other,
increases the testing accuracy by a factor of 2. The best performance model has
been the InceptionTime with a testing accuracy of 59.65%. Similarly, the same
behavior have been followed by all the Machine Learning algorithms. The main
difference has been the accuracy itself. Indeed, the model who performs better
between all the ML algorithm has been the "Random forest" with a testing accuracy
of 47.55%.

Of course the final computed accuracies remain low for a real localization goal. But
thanks to this analysis, it has been clarified that, given the very rich statistics of
the problem at hand, the collection of the samples is one of the most important
contributions in order to have realistic Machine Learning models. Indeed, the main
problem in our datasets, could have been having CIRs that are too similar when
coming from the same dataset and when testing with a different dataset (measured
in different conditions), samples looks random to the network. In other words, the
different indoor locations have probably a distinctive “electromagnetic signature”,
but the problem has an extremely rich statistical variability, that has not fully
been captured by the limited measurement campaign that we were able to perform
during the thesis development.

To better identify the “electromagnetic signature” of the environment, further
studies are being performed, collecting larger dataset in different environmental
conditions.

These conclusion are also verified by a parallel study were better performance have
been obtained using a larger dataset (obtained not with additional measurements
but with data augmentation techniques). Moreover, additional studies are also
trying to improve the classification performance by exploiting the additional data
(such as the ToF and SNR values), as well as considering larger indoor areas and
datasets with finer spatial resolution.
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