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Summary

The main cause of mortality in the world are cardiovascular diseases (CVDs). Each
year, around 17.9 million people die from CVDs and this number represents the
32% of all global deaths. Early diagnosis and treatment are very important for
people which present high cardiovascular risk.

Irregularities in the heartbeat rhythm are defined "Arrhythmias" and they can
rarely occur during human’s life. This kind of problems can lead to some compli-
cations that may constitute an immediate risk for life and may cause potentially
fatal events. The premature classification and detection of arrhythmias is a good
starting point for cardiac disease diagnosis.

The most important element to detect these events is the electrocardiogram
(ECG), a non-expensive, non-invasive method, which gives a record of heart’s
electrical functionality. The interpretation process of ECG requires a high de-
gree of training and is time-consuming. So, the first attempts to automate the
interpretation of ECG are dated at the end of 1950s.

The ECG is used for diagnosis of cardiovascular disease, and it mainly consists
of three principal waves: P-wave, QRS complex and T-wave. The most relevant
feature is the QRS complex because it represents the heartbeat, i.e., the ventricular
contraction. It can also be the starting point for obtaining further useful medical
information. Thus, for ECG-based evaluation, the QRS detection is critical. ECG
signal, hence, contains a huge amount of information and it is difficult to analyse
them just with a visual evaluation. For this reason, the design of an automated
efficient system to detect the relevant features in an ECG signal is a critical task.

A new interesting approach, developed in the last decade, is Deep Learning. The
huge impact of Deep Learning has motivated the implementation of this methodol-
ogy for automatic classification of ECG features. In particular, the application of
Deep Neural Networks in electrocardiographic signals is gaining importance to ex-
plore the enormous quantity of information that these signals contain. Today, deep
learning enlarges the vision, introducing new methods to achieve better accuracy
and increase time management in ECG features detection.

ii



This thesis project focuses on a deep learning method to automatic detect the
most relevant features in ECG signals. The learning-based approach is hybrid
because it combines two different learning models. After signal pre-processing,
using local regression, data are downsampled, then 1D ECG signals are converted
into 2D Scalogram images to make easier the feature extraction. Finally, two
methods are combined to construct the model: Convolutional Neural Networks
(CNNs) and Bidirectional Long Short-Term Memory Networks (BiLSTMs), so
that a hybrid model, called CNN-BiLSTM, is constructed.

For training purposes, a k-fold cross validation (with k = 10) was used to test
the model’s ability to predict data that was never seen before. At the beginning, for
training and testing of the proposed method and for evaluating the performances of
the CNN-BiLSTM approach, a publicly available dataset, named "QT Database",
was used. With this large amount of data, the proposed method provides an
accuracy of 97.5% in QRS complexes detection. The relevant features extracted
are finally measured and analysed to acquire the complete information of ECG
signal.
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Chapter 1

Principles of Heart
Anatomy

1.1 Heart Anatomy
The main muscular organ of the body is the heart, which pumps blood along
all the body and makes it circulating through the circulatory/vascular system,
transporting nutrients and oxygen to every tissue and organ. Its position is in the
middle mediastinum, and it is wrapped in a serous sac composed of two layers,
called pericardium, which provides mechanical protection. The heart has a shape
of a quadrangular pyramid, whose base faces in the posterior thoracic wall and apex
points towards the anterior thoracic wall. It is composed by striated involuntary
muscle tissue and it can generate autonomously the electrical signal that allows
its correct movement. The heart wall consists of several layers enclosed in the
pericardium and clearly shown in Figure 1.1. In particular, the main layers are:

• Epicardium: formed by the visceral layer of the serous pericardium, it com-
pletely covers the external surface and gives it a translucent and smooth
aspect.

• Myocardium: formed by striated excitable tissue, it is the muscular middle
layer of the wall and constitutes the conducting system; in other words, this
layer is responsible for contractions.

• Endocardium: which is the inner wall. The heart’s cavities and valves are
coated by this layer. It is formed by loose connective and simple squamous
epithelial tissue. This layer also regulates heart’s contractions.

The subepicardial and subendocardial layers mainly compose the rest of the heart.
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Principles of Heart Anatomy

In particular, the subepicardial layer joins the myocardium and the epicardium,
while the subendocardial one joins the endocardium with the myocardium. The
subendocardial layer contains the vessels and nerves of the heart’s conducting
system so, a damage to this layer can lead to arrhythmias.

Figure 1.1. Layers of Heart Wall.[1]

Aorta, pulmonary vein, pulmonary artery, superior vena cava (SVC) and in-
ferior vena cava (IVC) are the great vessels of the heart. All these vessels carry
blood to and from heart. Aorta, in particular, has branches which supply the
oxygenated blood to the whole body. Some of the most important branches of the
aorta are the left subclavian and common carotid arteries and the brachiocephalic
trunk. The SVC supply blood to the upper half of the body through left and right
brachiocephalic veins, while the IVC supply the lower half of the body through
the common iliac veins.

In the heart, there are also two pairs of valves: two atrioventricular and two
semilunar valves. They maintain the unidirectionality of the blood’s flow and pre-
vent backward flow of the blood in the opposite direction. Atrioventricular valves
(tricuspid and mitral valves) are located between atria and ventricles, semilunar
ones (aortic and pulmonary valves) are in the ventricles’ outflow tracts.

The heart (Figure 1.2) is divided into right and left halves by the septa and
each half is subdivided into two cavities by a constriction. The upper cavity is
called atrium, while the lower is the ventricle. Therefore, the heart consists of four
chambers: right and left atria and ventricles. The atria differ in position and size,
and they are not symmetrical. They communicate with ventricles through two
valves. The left ventricle has muscle walls thicker than the right one.

2
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Figure 1.2. Heart Anatomy.[2]

1.1.1 Cardiovascular System
The heart has two atria and two ventricles. Furthermore, as said before, it has
four valves: two semilunar valves, pulmonary and aortic, which regulate the flow
between heart and blood vessels, and two atrioventricular valves (tricuspid and
mitral) which allow unidirectionality of the blood flowing between atria and ven-
tricles. The blood flows through the heart following this path (clearly visible in
1.3):

• The SVC, IVC and coronary sinus drain venous blood coming from the body
into the right atrium. This blood comes in the atrium full of carbon dioxide
deriving from cells and tissues.

• The right atrium pumps the blood into the right ventricle through the tricus-
pid valve.

• The right ventricle pumps blood into the pulmonary trunks by the pulmonary
semilunar valve in order to oxygenate it into the lungs.

• Blood, rich of oxygen after returning from the lungs, drains into the left
atrium through the four pulmonary veins.

• The left atrium pumps blood into the left ventricle via the bicuspid (mitral)
valve.

• The left ventricle, through the aortic semilunar valve, pumps blood into the
ascending aorta in order to return to cells and tissues and to supply the body.

3



Principles of Heart Anatomy

Figure 1.3. The Heart and Circulatory System.[3]

Summarizing, the deoxygenated blood is received by the right atrium and ven-
tricle from systemic veins and pumped to the lungs, while the oxygenated blood
is received by the left atrium and ventricle and pumped to the systemic vessels
that can distribute it to the whole body. This heart cycle is completely regulated
subconsciously by the cardiac plexus, an autonomous nerve plexus.

The blood circulation can be subdivided into systemic and pulmonary circula-
tion:

• The systemic circulation, also called large circulation, transports blood
oxygenated and rich of nutrients to the body’s cells and tissues, and, when
the exchanges have happened, transports it to the right side of the heart.

• The pulmonary circulation, also called small circulation, transports the
blood rich of carbon dioxide to the lungs, and, when it becomes rich of oxygen,
returns it to the heart’s left side in order to reintroduce it into the systemic
circulation.

In addition, each cardiac cycle has a phase in which the heart chamber is relaxed
and fills with blood, called diastole, and a phase in which it is contracted and
pumps blood, called systole.
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1.1.2 Electrical Conduction System
The time of contraction of the heart’s chambers and the pumping of the heart are
regulated by the electrical conduction system (shown in Figure 1.4). In response
to the electrical stimulus received, the heart muscle contracts. Electrical impulses
are generated and conducted through the heart, inducing the muscle to contract
and pump blood. The main elements in the conduction cardiac system are the
atrioventricular and sinus nodes and the autonomic nervous system.

• The electrical impulses are generated in the sinus node, which is the cluster
of cells located in the right atrium’s wall (in its upper part). The sinus node,
also called sinoatrial (SA) node, represents the heart’s natural pacemaker.

• This generated electrical signal moves between cells down through the heart to
reach the atrioventricular (AV) node. The AV node is a cells’ cluster located
between atria and ventricles in the centre of the heart.

• The AV node slows the electrical current and acts as a gate before letting the
signal to pass down through the ventricles. Thanks to this delay, the atria
have the possibility to fully contract before the stimulation of the ventricles.

• After passing through the AV node, the electrical current arrives to the ven-
tricles flowing along special fibers, called bundle of His. In particular, the His
bundle divides into two paths, one going to left and the other to right (bun-
dle branches), which conduct the signal up to the respective Purkinje fibers
(embedded in the lower part of the heart’s walls), in order to give electrical
stimulus to both the ventricles.

• The autonomic nervous system triggers the cardiac cycle’s start by firing the
sinus node. It can send a quick message to the sinus node so that it can,
in turn, increase the heart rate very quickly (e.g., it can increase the rate
to twice normal in 3 to 5 seconds). This is a fundamental response during
exercise when the body increases its demand for oxygen so, the heart has to
increase its beating speed.

In particular, the autonomic nervous system includes:

• The sympathetic nervous system, which makes the SA node’s impulses
faster, in order to increase the heart rate (fight or flight response).

• The parasympathetic nervous system, which makes the SA node’s im-
pulses slower, in order to decrease the heart rate (rest and digest response).
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The discharge of an electrical stimulus is called "depolarization" while the
recharge is called "repolarization". So, three stages form a single heartbeat: atrial
depolarization, ventricular depolarization and finally atrial and ventricular repo-
larization.

Figure 1.4. The Heart Electrical Conduction System.[4]

The electrical stimulus generated by heart is called "action potential" and it
represents a voltage change through the heart cells’ membrane. This change in
voltage is caused by the ions’ movements in and out the heart cells across proteins
(called ion channels). As said before, the action potential arises from a specialized
group of cells which is able to automatically generate potential, without help from
nervous activity. Figure 1.5 shows the cardiac action potential propagation during
the heart cycle.

The cardiac membrane potential in rest conditions is around -90mV and it
means that cell is more negative inside than outside. In the same conditions,
the main ions outside the cell are Na+ and Cl- while inside the cell there is a
greater K+ ion concentration. When the voltage becomes more positive, the action
potential is triggered and the depolarization happens, due to the opening of sodium
channels. Thanks to these channels, Na+ moves inside the cell. On the contrary,
the repolarization happens when the voltage becomes more negative, due to the
opening of potassium channels allowing to K+ to move outside. Inside and outside
the cell, there are calcium ions (Ca2+), responsible of the connection between
the electrical signal and the muscle contraction. The action potential opens the
calcium channels, inducing the release of a huge amount of Ca2+ ions. The Ca2+

release is essential for the plateau phase of action potential [22].
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Figure 1.5. Cardiac Action Potential Propagation.[5]

1.2 Electrocardiography
The main method to monitor the heart’s electrical activity is the electrocardio-
gram (ECG), a non-expensive and non-invasive method. Using electrodes placed
on the skin, in fact, it is possible to obtain a graph with voltage versus time,
which describes the electrical functionality of the heart. The electrodes detect the
electrical changes that happen during each cardiac cycle and make possible to find
numerous cardiac anomalies.

Conventionally it is used the 12-lead ECG, whose configuration has ten elec-
trodes placed on the patient’s surface of the chest and on his limbs. Then, the
magnitude of the heart’s electrical potential is recorded in a period of around ten
seconds and is measured from twelve different angles, called "leads". With this
technique, it is possible to capture the overall magnitude and direction of heart’s
electrical depolarization in the whole cardiac cycle. The ECG can be used to mea-
sure the size and position of the heart chambers, the rate and rhythm of heartbeats
and the presence of some problems to the heart’s cells or to the conduction system
[23].

A lead is the dipole vector associated to each pair of electrodes or to an electrode
and a zero reference, which is a virtual electrode with a potential equal to the
average potential of the limb leads. A lead follows the electrical field generated by
the heart. The 12 ECG leads are subdivided into two types:

• Six peripheral (or limb) leads, three unipolar and three bipolar.
• Six precordial (or chest) leads, all unipolar.

7
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The limb leads are located in the coronal plane (vertical) while the chest leads lie
on the perpendicular transverse plane (horizontal), as shown in Figure 1.6.

Figure 1.6. ECG leads on vertical (in blue) and horizontal (in red) planes.[6]

The difference between two electrodes positioned on the wrists or between a
wrist and the ankle is represented by the bipolar, peripheral leads. In particular,
leads I, II and III are the so-called limb leads and are located on the limbs (one
on each wrist and one on the left leg). The limb leads constitute the Einthoven’s
triangle [24] and are derived from Equations 1.1, 1.2 and 1.3.

• Lead I: voltage between (positive) left arm (LA) and right arm (RA) elec-
trodes. It gives 0 degree angle of orientation.

I = LA−RA. (1.1)

• Lead II: voltage between (positive) left foot (LF) and right arm (RA) elec-
trodes. It gives +60 degree angle of orientation.

II = LF −RA. (1.2)

• Lead III: voltage between (positive) left foot (LF) and left arm (LA) elec-
trodes. It gives +120 degree angle of orientation.

III = LF − LA. (1.3)

Unipolar, limb leads are aVR, aVL and aVF and are also called augmented
limb leads (described in Equations 1.4, 1.5 and 1.6). They derive from the same
electrodes of the previous leads with the difference that they use Goldberger’s
central terminal as negative pole. This reference is obtained, with respect to a
vertex, as the average of the potential of the other two vertices.
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• Lead aVR: is the lead augmented vector right and has the positive elec-
trode on the right arm. The negative pole is a combination of the other two
electrodes. It gives -150 degree angle of orientation.

aV R = RA− 1
2(LA+ LF ) (1.4)

• Lead aVL: is the lead augmented vector left and has the positive electrode on
the left arm. The negative pole is a combination of the other two electrodes.
It gives -30 degree angle of orientation.

aV L = LA− 1
2(RA+ LF ) (1.5)

• Lead aVF: is the lead augmented vector foot and has the positive electrode
on the left foot. The negative pole is a combination of the other two electrodes.
It gives +90 degree angle of orientation.

aV F = LF − 1
2(RA+ LA) (1.6)

These six limb leads are shown in Figure 1.7 and are used to calculate the heart’s
electrical axis in the frontal plane.

Figure 1.7. Einthoven’s Triangle: ECG Limb and Augmented Limb Leads.[6]
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The six precordial, unipolar leads are V1, V2, V3, V4, V5 and V6. They are
perpendicular to the limb leads and their electrodes are the positive poles. The
potential is measured between an electrode and the Wilson’s central terminal,
which is obtained as the weighted sum of the potential of the other bipolar leads,
virtually placed in the heart’s centre.

1.2.1 ECG Signal
The ECG signal has typically an amplitude between 1 and 3 mV, a frequency range
of 0.5-200 Hz and its interpretation is generally based on pattern recognition. The
heart’s depolarization and repolarization, in fact, produce some deflections that
form what is called electrocardiogram. The main characteristics are:

• A positive deflection caused by the heart’s depolarization toward the positive
electrode.

• A negative deflection caused by the heart’s depolarization away from positive
electrode.

• A negative deflection caused by the heart’s repolarization toward positive
electrode.

• A positive deflection caused by the heart’s repolarization away from positive
electrode.

In particular, normal rhythm (1.8) produces: a P wave, which represents the atrial
depolarization, a QRS complex, which represents the ventricular depolarization,
a T wave, which represents the ventricular repolarization, and a U wave, which
indicates the papillary muscle depolarization (it is typically not present). Changes
in heart’s structure can change this pattern.

Figure 1.8. ECG Signal Waves.[7]
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As said before, the ECG records the heart’s electrical activity, so the sequence
of ECG signal generation can be seen in Figure 1.9 and described as follows:

Figure 1.9. Sequence of ECG Signal Generation.[8]

• SA node produces P wave. Heart’s electrical activity, in healthy conditions, is
autonomously generated by the SA node. This impulse propagates in the right
atrium and arrives to the left atrium thanks to the Bachmann’s bundle. The
impulse stimulates the atria’s myocardium to contract and this conduction
is seen on ECG signal as P wave. The normal duration is < 80ms. Then,
through the internodal tracts, the impulse travels from SA to AV node [25].

• AV node and bundles produce PR interval. The AV node delay is fundamental
in the conduction system because it allows the right blood’s flow between atria
and ventricles. The PR interval represents this AV delay and part of atrial
repolarization. The normal duration of this interval is from 120 to 200 ms.

• The PR segment represents the impulse’s transmission from the AV node the
the Purkinje fibers and it is located between the P wave’s end and the begin
of QRS complex.

• Purkinje fiber and ventricular myocardium produce the QRS complex. It is
composed of three waves, Q, R and S (which may be absent is some leads)
and it is the main complex since it represents the ventricular depolarization,
i.e., the effective heartbeat. Its normal duration is from 80 to 100 ms.

• Ventricular repolarization produces J-point, ST segment and T and U waves
[26]. In particular, J-point represents the end of QRS complex and the be-
ginning of ST-segment. ST-segment is a neutral period between ventricles’
depolarization and repolarization, and it is placed between the end of QRS
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complex and the beginning of T wave. During this period the heart expels
most of the oxygenated blood, remaining contracted. Finally, the T wave rep-
resents the ventricles’ repolarization, and it has a normal duration of around
160 ms.

• All events of ventricular systole are represented by the QT interval, which has
a normal duration < 440 ms and is located between the beginning of QRS
complex and the T wave’s end. Its duration can vary with the age, gender
and heart rate.

1.2.2 ECG Grid
The ECG signal is generally printed on a special paper that contains a grid, shown
in Figure 1.10. This paper is divided into grid-like boxed of 1 mm2 size and the
paper speed is around 25 mm/sec. At the end, the small horizontal boxes, which
have a size of 1 mm, corresponds to 0.04 sec, so to 40 ms. Darker lines that form
the bigger boxes are composed of five small boxes, so they represent intervals of
0.20 sec (200 ms).

Figure 1.10. Grid Scale for ECG Wave Interpretation.[9]

Sometimes, to better define the waveforms, the paper speed can be increased
to 50 mm/sec. In this situation, instead of 12-leads, there are only six leads, and
the small boxes have a size of 0.02 sec while the large ones have a size of 0.10 sec.

Since in this case the speed is twice the previous speed, also the ECG intervals
will be twice as long as normal, while the heart rate will be one-half of what is
seen with 25 mm/sec speed. On occasion, also other paper speeds may be used.

The ECG graph, in vertical, measures the amplitude (height) of a wave or
a deflection. Generally, it has a standard calibration of 10 small boxes, which
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correspond to 10 mm, so to 1 mV. Sometimes, when the waveforms are small, a
double standard is used, where 20 mm are equal to 1 mV [27].

Voltages and speeds are usually printed on the paper’s bottom for reference.

1.3 Cardiovascular Diseases (CVDs)
Disorders that involve the heart and the cardiovascular system are called Car-
diovascular Diseases (CVDs). These disorders are the first cause of death in the
world, involving around 32% of all global deaths. The most of these deaths are due
to heart attack and stroke (around 85%). Among 17 million of premature deaths
(under the age of 70), in 2019, CVDs caused around 38% of them [28].

These kinds of diseases may be due to genetic risk factors. Sometimes, also a
single gene’s defect can involve all parts of the heart’s structure. An interesting
observation is that a genetic mutation in a household, is not carried but exhibits
clinical variability (can range from symptom-free to premature death) [29].

In addition, it is known that men develop cardiac disorders 10-15 years ear-
lier than women [30]. The hypothesis for understanding this difference is that
the endogenous estrogen produced by women is cardioprotective and, in fact, the
coronary heart disease rates increase in women after menopause or ovariectomy
[31].

The risk factors of these diseases are principally: the use of tobacco and alcohol,
an unhealthy diet or the absence of physical activity, which leads to obesity. These
factors can lead to an increasing of blood pressure (hypertension), blood sugar
(diabetes mellitus) or blood lipids (dyslipidaemia). Drug therapy (aspirin, beta-
blocker or diuretic) can reduce myocardial infarction of 75%.

When the heart’s functionality is not in normal conditions, there is a presence
of a heart disease, which blocks blood vessels and can lead to heart attack, angina
and stroke. The heart diseases found in new-born babies are called congenital,
while those ones found at later ages, are called acquired. A lot of possibilities and
challenges are designed for finding these diseases in early stages.

Heart disease’s most common types are:
• Coronary Artery Disease (CAD): problems with blood vessels due to smoking,

high blood pressure, diabetes and high cholesterol. A symptom of CAD is
the angina, a chest pain.

• Congestive Heart Failure (CHF): it happens when heart cannot pump a nor-
mal level of blood.

• Abnormal heart rhythms: problems due to the heart’s electrical activity. This
kind of problem makes the heartbeat too slow or too fast.

Most of the CVDs can be prevented and, their early detection is an important
task nowadays.
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Chapter 2

Principles of Deep Learning

2.1 General Introduction
The computer system’s ability to simulate human cognitive functions, such as
learning and problem solving, is called Artificial Intelligence (AI). It can be seen as
a system that, using mathematics and logic, simulate the human brain’s functions
of learning information and making decisions based on the processed data.

An application of AI is Machine Learning (ML), a process that allows the
computer to learn and improve autonomously, without direct instructions, using
mathematical models. This technique essentially represents the machine’s ability
to learn from a series of data. It automates the analytical model’s construction
through statistical modelling methods and operational research. In practice, ML
consists in the use of algorithms to analyse data, learn from that data and then
make a determination or prediction about new data.

One of the machine learning’s approaches is the Deep Learning (DL), which
takes inspiration from the brain’s structure, in particular from interconnection
of its neurons (neural networks). The Artificial Neural Networks (ANNs) are
mathematical models based on direct acyclic graph models, which consist of a
variables’ set and conditional dependencies. Deep Neural Networks (DNNs) are a
very innovative tool because they work very well with complex data and can be
easily updated with other new data through batch propagation. Many kinds of
problems can be solved with DNN architectures, which can be simply adapted by
changing number and structure of layers.

The use of DL can lead to the following main advantages:

1. Automated feature generation: DL can produce new features, without human
intervention, starting from limited number in the training dataset. This func-
tion permits to perform complex tasks without additional extensive feature
engineering.
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2. Better works with unstructured data: the ability of ML algorithms to anal-
yse unstructured data is limited while the training of a deep learning neural
network with unstructured labeled data, can help to optimize businesses.

3. Improved self-learning capabilities: models become more efficient to learn
complex features and to improve computational tasks (i.e., capability to exe-
cute many complex operations at the same time) thanks to the multiple layers
in DNN. This happens thanks to the DL ability to learn from its own errors,
verifying the accuracy of the predictions and adjusting them when necessary.
Furthermore, in DL, the larger are the datasets, the higher is the accuracy.

4. Advanced analysis: the more effective processing models of DL can be seen
when it is applied to data science. The DL ability to learn unsupervised leads
to improvements in accuracy and outcomes.

5. Scalability: the ability to process huge amounts of data and to perform a large
number of computations with time and cost saving, makes DL highly scalable.
This characteristic impacts on productivity, modularity, and portability [32].

As said before, deep learning using artificial intelligence is represented by neural
networks. All deep learning algorithms, in fact, use different neural network’s
types to perform specific tasks, as shown in the next section.

2.2 Types of Deep Neural Networks
Artificial Neural Networks take inspiration from the brain’s biological neurons of
the human body, which, under specific circumstances, activate and perform an
action. They consist of multiple layers of interconnected neurons which are acti-
vated by an activation function that switches them. Each connection between
neurons can transmit a specific signal from one neuron to another. Certain values
are learned from the network in the training phase.

Practically, what happens is that each neuron receives multiplied versions of
inputs and random weights. These first elements are added with a static bias
value, which is unique to each layer. At the end, an activation function decides
the final value to be obtained at the outside of the neuron. When the output is
generated, the loss function is calculated, as input versus output, and the weights
are adjusted in order to minimize the loss, through back-propagation. The whole
operation focuses on finding the weights’ optimal values.

DNNs are multi-layer fully-connected neural networks structured as shown in
Figure 2.1. They consist of:
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• An input layer.
• Multiple hidden layers.
• An output layer.

Every node of each layer is interconnected with every node of the next layer. The
network can be deeper just by the increase of layers’ number.

Figure 2.1. Artificial Neural Network Structure.[10]

Zooming into one of the hidden nodes, the following structure will be encoun-
tered. As it is possible to observe, in a neural network, each connection from one
unit to another has its own assigned weight (a number between 0 and 1) which
represents the strength of the connection between units.

Figure 2.2. Hidden Node Structure.[10]

In particular, as shown in Figure 2.2, a specific given node takes the weighted
sum of its inputs and passes it to the activation function (which is non-linear).
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The output of the node becomes then the input of the node of the next layer and
the signal flows from one node to the other until the final output is calculated.
The weights (wi) are numerical values which have to be multiplied with inputs,
they are modified to reduce loss and they represent the values learned from neural
network by the machine. So, training a deep neural network means to know the
weights associated with all edges. The equation resulting for each node is written
below. The weighted sum can be represented as a vector dot product with n equal
to the number of inputs for the specific node.

z = f(b+ x · w) = f(b+
nØ

i=1
xiwi) (2.1)

x ∈ d1xn, w ∈ dnx1, b ∈ d1x1, z ∈ d1x1

The bias term (b) has a value equal to 1 and it is an input to all the nodes.
It has the purpose to shift the activation function’s result and it helps the model
training when all input features are 0. Finally, the working mode of a DNN is
the following: each node receives information from data in the form of inputs, the
inputs are multiplied by the node with random weights, which are then calculated;
after this process, bias is added and finally the non-linear activation functions are
applied to choose which neuron to fire.

DNNs are typically organized in layers. Different types of layers include:

• Dense (or fully connected) Layers: used frequently in models that link every
input to every output within a layer.

• Convolutional Layers: used in a model that works with image data.
• Recurrent Layers: used in a model that works with time series data.
• Pooling Layers, Normalization Layers and many others.

In the following subsections, the main deep learning algorithms are explained and
analysed in order to have an idea of what tasks they can perform.

2.2.1 Multi-Layer Perceptrons (MLPs)
Multi-Layer Perceptron models (MLPs) are the most basic neural networks (Figure
2.1) and they are a class of feedforward ANN. They consist of a series of fully
connected layers and each of the new layers represents a set of non-linear functions
of a weighted sum of all outputs coming from the previous one.

These kinds of models have the same number of input and output layers, but
they may have multiple hidden layers. Their working mechanism is the following:

• MPLs feed the data to the network’s input layer. The signal passes in one
direction through the connected layers of neurons.

• MPLs compute the input with the weights between input and hidden layers.
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• MPLs use activation function to fire the nodes.
• MPLs train the model to learn dependencies between variables of the training

dataset [33].

2.2.2 Convolutional Neural Networks (CNNs)
Another class of DNNs is constituted by Convolutional Neural Networks (CNNs, or
ConvNets), which are inspired to the human visual cortex. These kinds of networks
are mainly employed in computer vision and image recognition. CNNs take images
or videos from real world and automatically learn to extract the features of the
inputs that they receive to complete a specific task, such as image classification,
image segmentation or face authentication.

In CNNs, one or multiple convolutional layers extract the simple features from
input by executing operations of convolution. The fundamental element in a CNN
is the convolutional layer. Each neuron in this layer only processes a small part of
the image; in fact, in this kind of networks, input features are taken in batch (like
a filter) and then, operations are computed multiple times to fully complete the
image processing. Figure 2.3 shows the CNN schematic architecture.

Figure 2.3. Convolutional Neural Network Structure.[11]

Since neurons in each layer are not connected to each single point but only to
the points in their receptive field, this architecture allows the network to focus on
small features in the first hidden level and then assemble them into larger items
[34]. Convolutional kernels or filters are built at the bottom of the convolutional
levels. During each passage, each filter is convoluted producing a 2-dimensional
activation map, called feature map, of that filter. The neurons of the same feature
map share the same weights and biases. When the network detects a specific
feature in a spatial position in the input, it learns which filters are activated.
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In order to reduce the computational load, the memory usage and the number
of parameters, an important concept is the pooling layer, which is a non-linear
downsampling. It has a receptive field but no weights, so it just aggregates the
inputs. Max pooling is the most common pooling function: it partitions input
image into rectangles and, for each region, outputs the maximum [35].

2.2.3 Recurrent Neural Networks (RNNs)
An ANN in which the neurons’ connections make a graph directed along a sequence
is called Recurrent Neural Network (RNN). With this neural network it is possible
to reconstruct a phenomenon’s dynamic temporal behaviour. For input sequences
processing, RNNs use internal memory, which makes them applicable to activities
that extend over a period of time such as handwriting and speech recognition
or automatic translation. In RNN, the relationships between the elements are
maintained during training so, all inputs are related to each other. These networks
model a function that can provide output based on input.

Long Short-Term Memory (LSTM)

The main type of recurrent network is the Long Short-Term Memory (LSTM),
which manages information in memory for a period longer than RNN. So, LSTMs
can maintain long-term temporal dependencies but remember just the most impor-
tant information. These networks are based on special units: the memory blocks.
The difference between a RNN simple cell and the LSTM cell is shown in figure
below:

Figure 2.4. RNN simple cell versus LSTM cell.[12]
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The hidden state ht represents the working memory, while the gates regulate
the cell’s state. The forget gate drops some memories and the input gate replaces
these memories with new ones. The rule of the forget gate is given by the following
equation:

f t = σ(W f[ht-1, xt] + bt) (2.2)

where W is the vector of weights, bt represents the bias, σ is the sigmoid function
and t is the current instant.

One copy of the new state is passed to a tanh function and filtered by output
gate, as shown in 2.3, the other one is sent to the next iteration.

ot = σ(W o[ht-1, xt] + bo) (2.3)

New output is created by combining this result with the current inputs and the
previous output. The hidden state is used for predictions, contains information on
previous inputs and its output is equal to:

ht = ot ∗ tanh(ct) (2.4)

Important inputs are recognized by the input gate and stored into the long-term
state. Inputs that are no longer needed are deleted by the forget gate, while the
output gate decides when an input from long-term state has to be extracted [36].
The layer controlled by the tanh function calculates the new memories.

The short-term state is constituted by current input and previous output, and
it is fed to four different fully connected layers. The layers controlled by sigmoid
function control the gates, they have a range from 0 to 1 and are fed to element-
wise multiplication operations. If the output is zero, the gate will be closed, if it
is one, the gate will be opened.

2.3 Parameters Setup
The parameters are chosen by the model and they represent its coefficients.
While learning, the algorithm optimizes these values and returns a parameters’
array which minimizes the error.

The hyperparameters are element that have to be set. The model, in fact,
does not update them according to the optimization strategy and they need manual
intervention.

The strategies are the approaches towards the model. So, for example, nor-
malizing data before managing them can help to improve the algorithm’s perfor-
mances.
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2.3.1 Parameters
The only thing to do with parameters is to initialize them and the best way is to
not set them equal to zero.

2.3.2 Hyperparameters
These elements need manually intervention. Some of them are:

• Number of Hidden Layers: the idea is to find a trade-off between keeping
a model as simple as possible and having a model that classify well the input
data. The best way to proceed is with manual attempts: after a certain
number of layers, in fact, the accuracy stops to improve so, adding other
neurons, is useful and just makes the algorithm heavy.

• Learning Rate: this rate refers to the backpropagation’s step. In particular,
the training process starts with arbitrarily set weights and then these weights
are incrementally updated to minimize the loss. The size of these incremental
steps represents the learning rate.

• Activation function: function through which the weighted sum is passed.
The main activation functions are: ReLU, Tanh and Sigmoid. A variant of
Sigmoid is the SoftMax, which is used for multiclass classification, and it
returns as output a vector of probability with sum equal to one. Activation
function can be placed in any point of the neural network and many times.
These functions are showed below:

Figure 2.5. Main Activation Functions.[13]

Sigmoid is a complex function and requires more time, while ReLU is very
fast. A good choice is to use ReLU for hidden layers and Sigmoid in the last
one.
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• Epochs: this hyperparameter represents the number of times for which the
algorithm trains the whole dataset (it is different from the number of itera-
tions, which is the number of batches necessary to complete one epoch). It is
better to impose a condition such that epochs stop when the error is near to
zero or, it is good to start with a little number of epochs and then increase it
on the basis of some metrics, like accuracy.

• Dropout: this is useful to make the neural network not too heavy and it
consists of removing some nodes during the training phase. It is better to
keep each node with probability p, called ’keep probability’ or to drop that
one with probability 1-p, called ’drop probability’ [37].

2.3.3 Optimization Strategies
Optimization strategies are the best approaches to have a more performing algo-
rithm. Some of these strategies are:

• Parameter initialization: as explained before.
• Data Normalization: which means converting all data to the same scale

in the range 0-1. Another choice is to standardize the data making them
normally distributed with a standard deviation equal to 1 and mean equal to
0. Another way to normalize data is to apply, after the weighted sum, ’Batch
Normalization’, and apply it also before the activation function.

• Optimization Algorithm: one of the main used optimization algorithm is
Gradient Descent (GD) but there are many variants, such as: the Stochas-
tic Gradient Descent (SGD), which minimizes the loss according to the GD
optimization and, for each iteration, randomly selects a training sample; the
RMSprop, in which each parameter has an adapted learning rate; the Adam
Optimizer, which is often the best choice since it allows to customize the
neural network, setting different hyperparameters.

• Regularization: optimal strategy to avoid overfitting and keep a simple
model. Regularization adds a new term to the loss function, which tends
to increase if the re-calibration increases weights. The main two types of
regularization are: the Lasso (L1) and the Bridge (L2):

L1 : Loss = L(w) + λ
Ø

|wi| (2.5)

L2 : Loss = L(w) + λ
Ø

w2
i (2.6)

L1 shrinks weights to zero (so, it risks getting rid of some inputs that will
be multiplied with null values), while L2 shrinks weight to low values but
different from zero (so, inputs are preserved) [37].
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2.4 Metrics and Performances
The process of identification and aggregation of the elements of some data into
predefined classes is called classification. This approach refers to a set of properties
of the data elements, called features, and defined a-priory. In particular, at the
beginning of this approach, the data are pre-classified, knowing the target values.
By exploiting these values, the model’s structures and patterns between input and
output are detected and then the model can learn to classify correctly new data.

This thesis project is based on a classification problem and its aim is to correctly
classify the ECG features, in order to detect the ECG waves and the relevant points
of ECG signal.

The performances of a classification model are estimated by the analysis of
Confusion Matrices (figure 2.6) and associated AUC (Area Under Curve). In
particular, the performances are a measure of the number of times in which the
network makes a correct classification, i.e., how many times a certain condition
(event/non-event) is understood by the neural model.

Figure 2.6. Confusion Matrix.[14]

The values forming the confusion matrix are the following:

• True Positive (TP): number of correct predictions that the result is positive,
i.e., positive class correctly identified as positive.

• False Negative (FN): number of incorrect predictions that the result is
negative, i.e., positive class incorrectly identified as negative.
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• False Positive (FP): number of incorrect predictions that the result is pos-
itive, i.e., negative class incorrectly identified as positive.

• True Negative (TN): number of correct predictions that the result is neg-
ative, i.e., negative class correctly identified as negative.

Other important advanced metrics, based on confusion matrix, are:
• Sensitivity: also known as Recall or as True Positive Rate. It measures

the positive results correctly labeled as positive by the classifier and it has to
be higher. In medical field, tests with high sensitivity are used for screening
purposes. It is expressed by Equation 2.7

Sensitivity = TP

TP + FN
(2.7)

• Specificity: also called True Negative Rate. It measures the negative
results correctly labeled as negative by the classifier and it has to be higher
too. In medical field, tests with high specificity are used for confirmation
purposes. It is expressed by Equation 2.8

Specificity = TN

TN + FP
(2.8)

• Accuracy: is the proportion of correct predictions with respect to the total
number of predictions. It is expressed by Equation 2.9

Accuracy = TP + TN

TP + TN + FP + FN
(2.9)

• Positive Predictive Value (PPV): also called Precision, it is the ra-
tio between the positive results classified correctly and the total number of
predicted positive results. It is expressed by Equation 2.10 and gives the
correctness of positive predictions.

PPV = TP

TP + FP
(2.10)

• Negative Predictive Value (NPV): it is the ratio between the negative
results classified correctly and the total number of predicted negative results.
It is expressed by Equation 2.11 and gives the correctness of negative predic-
tions.

NPV = TN

TN + FN
(2.11)

• F-score: it is calculated from the test’s precision and recall. In particular,
the harmonic mean of the precision and recall is represented by the F-score.
It is expressed by Equation 2.12 and gives a measure of a test’s accuracy.

F − score = 2 · Precision ·Recall
Precision+Recall

(2.12)
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Receiver Operating Characteristic (ROC) curve and AUC

The Receiver Operating Characteristic (ROC) curve determines the classifier’s
capability to classify. It shows the TPR (Sensitivity) values versus the FPR (1-
Specificity) at various cut-off values, as shown in Figure 2.7.

A perfect classifier presents no false negatives so, a value of 100% for sensitiv-
ity, and no false positives so, a value of 100% of specificity. A classifier without
prediction capabilities produces a straight line, called ’line of no discrimination’,
passing through (0,0) and (1,1). The points on this line produce a random guess,
the points above this line represent good results, while the points below this line
represent bad results in classification.

Figure 2.7. Receiver Operating Characteristic Curve.[15]

The AUC (Area Under Curve) represents the area under the ROC curve. It
measures how good are the classifier’s performances. For a random classifier, it has
a value of 0.5, for the perfect classifier, it has a value of 1. Many classifiers assign
to each class a number proportional to the probability that the point belongs to
a certain target class. This classification depends on a threshold: the data above
this threshold belong to the positive class, the data below belong to the negative
one. The ROC represents points as function of this threshold and gives an idea of
the model performances with different thresholds.
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Precision-Recall Curve

The Precision-Recall (PR) curve (Figure 2.8) plots the Precision (PPV) versus
the Recall (Sensitivity or TPR) as function of the threshold and it assesses the
classifier’s performances focusing only on the positive.

Figure 2.8. Precision-Recall Curve.[16]

So, both curves represent the TPR, one with the FPR (ROC) and one with
the Precision (PR), indicating to which reference quantity compares the elements’
total wrongly classified as positive (FP).

If the true negatives’ number is more significant than true positives’ numbers,
the FPR can be small. This may happen when using easily classifiable data, in
which case the precision is much more informative than FPR. If data are not
classifiable, the precision is no more too informative.

In general, the advantage of the ROC curve is that it allows an intuitive inter-
pretation. For example, an AUC of 0.7 means that the probability for classifier
to correctly classify a data is of 70%. So, this graph tells the expected TPR and
FPR for a specific threshold.
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Chapter 3

State of Art

Algorithms in medicine have a lot of benefits for doctors and patients but to
adjust these algorithms is a hard task. Since this is an innovative field, some
of these algorithms have been approved by the United States Food and Drug
Administration (FDA) but currently there are not universal guidelines for their
approval. For clinical trials, in fact, FDA has very strict acceptance criteria and
the algorithms, before being approved, have to show extreme transparency on
scientific methods. Some algorithms are based on mathematics very difficult to
decode, so they are considered as black boxes. Failures to clarify the algorithm’s
internal mechanisms impact the likelihood of the FDA approving trial [30].

The most relevant tool in diagnosis of diseases is medical imaging, which is user-
dependent since it depends on human skills and interpretation in the acquisition
and processing phases. For this reason, it may be potentially inaccurate. Auto-
matic imaging analysis can overcome this problem thanks to adequately designed
AI algorithms. The ML studies’ relevance is related to the used model’s design:
an inefficient model design, in fact, does not produce generalizable outcomes. So,
DL in medical imaging, with a correctly designed model, can produce a sensitivity
and specificity similar to healthcare human professionals.

The AI application to the ECG can permit a diagnosis of not previously de-
tectable conditions with an efficiency greater than before.

3.1 Deep Learning in Electrocardiography
Among the fields in which ML methods are applied, one important field is the
electrocardiography. By the training of algorithms to learn classification functions
from a set of labeled data, the researchers focused especially on identification
of cardiac abnormalities. The main typical algorithms used are Support Vector
Machine (SVM), Decision Trees (DT), Random Forests (RF), k-Nearest Neighbour
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(KNN) and Artificial Neural Networks (ANNs), which include DL models such as
Convolutional Neural Networks (CNNs) [38].

Most of ML algorithms are fed with handcrafted feature vectors, such as QRS
duration, QT and RR intervals, morphological and frequency domain features, in
order to accomplish the classification task. Thanks to the recent advent of DL, an
innovative learning strategy has been developed. This strategy lets the classifier
to directly learn relevant features from raw or slightly pre-processed data. ANN
with multiple layers are the most common DL algorithms and perform specific
operations such as convolutional filters in CNNs and subsampling, creating a model
called Deep Neural Network (DNN). This kind of model already showed promising
results for abnormal heart rhythms identification.

The electrical activity of heart can be seen with ECG, which comprises differ-
ent waveforms representing the myocardium polarization or depolarization. The
most prominent waveform is the QRS complex, which reflects the ventricular con-
traction. This complex, thanks to its specific shape, provides the most significant
information in heartbeats’ automatic detection.

The QRS complexes’ detection is a difficult task, due to its physiological vari-
ability and to the presence of artefacts, such as baseline drift, power-line interfer-
ence and activity of muscles. The traditional QRS detection methods can be seen
in [39], while most recent QRS detection algorithms can be found in [40] and in-
clude Pan-Tompkins algorithm, algorithms based on derivatives and thresholds, or
algorithm based on Wavelet Transform. Modern approaches, which include robust
and well optimized linear methods, are ECG morphology compression, adaptive
mathematical morphology or, as said before, ANNs.

Through AI algorithms it is possible to identify the current heartbeat and
potential anomalies, such as episodic atrial fibrillation, structural dysfunctions
(valvular heart diseases, ventricular low ejection fraction, channelopathies, car-
diomyopathies). Medical professionals can identify some specific characteristics
and related abnormalities in ECG traces but there may be huge discrepancies
from the normal ECG for specific clinical conditions. Since the ECG is the cu-
mulative recording of the action potential of cardiac cells and instrumental noise,
the changes’ magnitude can alter the ECG and be invisible for human eye. DL
models can detect single feature anomalies not clearly visible and learn potential
relations between feature variations.

By far, the most common architecture used for ECG analysis is the CNN. This
kind of networks use the operation of convolution to localize key features and to
reduce the noise. The term ’convolution’ refers to the working mode of taking a
small pattern, called ’kernel’, and identify where this pattern arises in the input
(similar to a sliding window). The ’heat map’ helps the identification of where
pattern is located in the image, which can be used to localize the most important
features.
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So, DL methods applied to ECG data have various clinical applications; in
particular, five distinct medical applications are identified: CVD diagnosis, ECG
analysis, Blood Pressure (BP) estimation, biometric recognition and sleep analysis.
In the following sections, the main DL clinical applications are explained in order
to have a general systematic review of the DL State of Art in Cardiology.

3.1.1 Deep Learning for ECG Analysis

Historically, the first data analysis tasks performed were the heartbeat classifica-
tion and segment identification of P-QRS-T, achieved from a signal processing ap-
proach. Originally, these ECGs were decomposed, with Fourier and Wavelet trans-
formations or with Hermite techniques, into wavelike components. This procedure
may be seen as a feature extraction; for example, wavelet-based convolutional
techniques achieved an accuracy of 93% on the MIT-BIH arrhythmia database.

In general, ML and DL models achieve better performances and are favoured.
In this case, it is important to identify the best way to represent the signal relying
on the task that has to be solved. As shown in Figure 3.1, the ECG signal can be
subsampled into individual fixed-length heartbeats to generate many samples from
which deriving the features. In addition, the signal can be sent as 2D boolean image
formed by zeros or ones, which is suitable for diagnosing conditions and highly
compatible with the traditional image-based CNN architectures. Depending on the
leads’ number, the signal can be one or multi-dimensional, allowing the capture of
more information. Finally, the ECG can also be represented as a beats’ sequence,
linked each other in time, treated as a time series, which can be analysed by an
RNN.

The representation type of ECG depends in particular on the available dataset.
The first released database was the MIT-BIH AF, which contains 25 two-lead ECGs
with a length of around 10 hours. The low number of ECGs can be compensated
by their length: in fact, the signals can be subsampled in order to generate small
ECGs that contain a beat and that can be used in the attempt of a perfect beat
classification.

The Computing in Cardiology Challenge datasets introduced new datasets
much larger, useful for novel tasks such as ECG abnormalities identification or
AF classification. In addition, also the MIMIC database is useful, even if it has
less clean and less extensive annotations. It offers a number > 67000 ECGs of
ICU patients. However, the number of institutional datasets has also increased
over the last half decade, surpassing the number of annotated ECGs in the open
databases.
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Figure 3.1. Simple deep learning pipeline for ECG analysis.[17]

3.1.2 Deep Learning for CVD Diagnosis

The most natural cardiac disorders in ECGs are given by the conduction system
anomalies. Many works are dedicated to AF diagnosis, which is the most common
arrhythmia, since it has a high prevalence of around 3% in adult population, while
few works are dedicated to ventricular tachyarrhythmias diagnosis.

DL models have shown performances similar to medical professionals’ level.
Hannun et al., which cured a dataset of ECGs of patients in ambulatory setting
[41], noted that the experienced cardiologists’ annotations performed worse than
the model’s performances in detection of arrhythmias except for junctional rhythm
and ventricular tachycardia. The same result was seen in a work of Ribeiro et al.
[42], in which the performances of the DL model was better than those of medical
trainees.

In particular, the model learns low-level features such as peaks, troughs, up-
ward or downward slopes in the signal. This relates to the efforts of the model to
remove baseline biases and identify key landmarks for diagnosis. The most clas-
sical of pattern recognition problems is the tackling arrhythmias but few works
investigated their role in patients’ management and their main characteristics for
diagnosis purposes.

32



State of Art

DL methods in CVD research are the best approach for prediction, management
and diagnosis of a disease. Using DL techniques, also efficient data capturing from
health records can be achieved.

For the MIT-BIH Arrhythmia Database, Wang et al. [43] achieved the best
accuracy of 99.94% with a fused autoencoder-CNN model able to classify 6 different
rhythms. For this kind of purposes, the most used model is the CNN structure.
Lu et al. [44] and Yu et al. [45] used, in fact, a 1D-CNN to detect respectively
arrhytmias (99.31% of accuracy) and premature ventricular contraction (99.7% of
accuracy).

Other studies proposed a 1D-capsule NN for Coronary Artery Disease detection
[46] and multiple convolutional and pooling layers for arrhytmia classification and
myocardial infarction detection [47], reaching accuracy respectively of 99.44% and
99.90%.

Radhakrishnan er al. [48] and Petmezas et al. [49], used a 2D bidirectional
LSTM network and a CNN-LSTM model respectively, for AF detection in ECG
signals of public databases. In addition, Jahmunah et al. [50] used a CNN ar-
chitecture for myocardial infarction, coronary artery disease and congestive heart
failure detection, while Dai et al. [51] used a CNN for CVD diagnosis reaching
very high accuracies.

So far, it is possible to note that most of the models for CVD detection involved
CNNs or LSTMs and reached a very high accuracy (above 99%).
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Chapter 4

Methodology

4.1 Google Colab
Since the Deep Neural Network’s training requires a huge amount of time if per-
formed on a low-end machine, this thesis project was elaborated on Google Colab,
which makes available a virtual server with a powerful GPU (in particular, Nvidia
Tesla k80 GPU), able to speed the training process.

The network is built in Python language with Tensorflow, an open platform
end-to-end source developed by Google for machine learning. It has a complete
and flexible ecosystem of community tools, libraries and resources which allow
researchers to promote the state of the art in ML and developers to create and
derive easily on ML. In Tensorflow, the inputs and outputs are made up of tensors:
they are multidimensional arrays with a unified type (called dtype). All tensors
are immutable like Python numbers and strings: the contents of a tensor cannot
be updated, the only thing that is possible to do is just to create a new tensor.
Tensors can be multidimensional.

4.2 Dataset Description
For this thesis purposes, the QT Dataset from Physionet was used [52][53]. This
dataset contains 105 two-leads ECG recordings of fifteen minutes with P, QRS
and T waves onset, peak and end annotations. These recorded ECG are sampled
at 250 Hz and provided as digital signals. Every ECG sample, for this project,
is divided into segments of length of 125 data points with an overlap of 10 data
points between previous and next segment. The two leads are split into separate
recordings, and both used as features. These 125 samples windows are used as
input for the deep neural network.
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Regarding annotations, within each recording, between 30 and 100 representa-
tive beats were manually annotated by cardiologists. They identify the beginning,
the peak and the end of the P wave, the beginning and the end of the QRS com-
plex, the beginning, the peak and the end of the T wave and (if present) the peak
and the end of the U wave. Overall, 3622 beats were annotated. In the Table 4.1
the number of annotations is indicated for each of the features:

Waves Annotations
Pon 2596
P 2626

Pend 2627
QRSon 3130

R 3130
QRSend 3130

Ton 1241
T 2932

Tend 2996

Table 4.1. Annotations of QT Database.

In particular, this database contains the following recordings (with related an-
notations):

• 15 recordings from the MIT-BIH Arrhythmia Database, which contains
a total of 48 half-hour extracts of two-channel ambulatory ECG recordings;

• 6 recordings from the MIT-BIH ST Change Database, which includes a
total of 28 ECG recordings of various lengths, most of which were recorded
during exercise tests and which show transient ST depression;

• 13 recordings deriving from the MIT-BIH Supraventricular Arrhythmia
Database, which contains a total of 78 half-hour ECG recordings on exam-
ples of supraventricular arrhythmias;

• 10 recordings from the MIT-BIH Normal Sinus Rhythm Database,
which includes a total of 18 long-term ECG recordings of subjects without
significant arrhythmias;

• 33 recordings deriving from the European ST-T Database, composed in
total of 90 annotated extracts of outpatient ECG recordings of 79 subjects,
contains a representative selection of ECG abnormalities such as the shift of
the basal ST segment resulting from hypertension, ventricular dyskinesia, or
drug effects;
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• 24 recordings from patients with BIH “sudden death”;

• 4 recordings from the MIT-BIH Long-Term ECG Database, which con-
tains a total of 7 long-term ECG recordings (14 to 22 hours each), with
manually reviewed beat annotations.

MIT-BIH MIT-BIH MIT-BIH MIT-BIH ESC MIT-BIH Sudden
Arrhyt. ST DB Sup. Vent. Long Term STT NSR DB Death

15 6 13 4 33 10 24

Table 4.2. Records’ distribution according to the original Database.

Around thirty consecutive beats of the dominant morphology are annotated
in each track in order to permit the studies of beat-to-beat variations and, up
to twenty beats of non-dominant morphologies are annotated in recordings with
significant QRS morphology variations. The beats are annotated only in the final
5 minutes of recordings in order to permit to the algorithms a minimum of ten
minutes for learning.

For the manual annotations, each expert added his estimated waveform bound-
aries and then, looking to both leads simultaneously, the time location of fiducial
point is established. The aim of these annotations is to correct inconsistencies
such as missing or misplaced annotations.

4.3 Signal Pre-processing
The recordings are extracted from QT Database through WFDB (waveform -
database) tool and those ones not useful to the analysis are excluded. Some
recordings have annotated complexes just in some few periods and not in the whole
duration of the track. So, the areas without annotations have been excluded from
the set of useful data.

At the beginning, the work started with the analysis of the most prominent
and important feature, the QRS complex, which represents the heartbeat, i.e.,
the ventricular contraction. This complex is identified in the database with (’N’)
annotation. Therefore, excluding all the tracks that do not contain annotations of
this complex, the main function, which extracts the data and annotations from the
database and defines an associated index, has been defined. This index corresponds
to regions where QRS annotations are present. The non-annotated zones of the
dataset have been removed since they could create network problems. One of the
signal with annotated QRS complexes is shown in 4.1.
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Figure 4.1. Example of signal extracted from ’QT Database’ with anno-
tations of QRS complexes.

The signals in the database are already quite clean, so it was enough to apply
the linear regression method for the baseline wander removal to get good signals
usable by the network.

4.3.1 Linear Regression Method for Baseline Wander
Removal

Instead of using a FIR filter, which removes inevitably the frequencies of interest
regardless of how well it is designed, the method of local linear regression was used.
The idea is to calculate the linear regression over a window of about 1.5 seconds,
then define the "baseline" as the centre of that window. After this, the window is
moved forward of one point and the process is repeated again.

So, a robust locally weighted linear regression algorithm executes the removal
of the baseline variation. In particular, the iterative algorithm takes ECG signal
as input and assigns lower weights to the outliers of the regression. In this way,
the main features relatively short-lasting such as P waves, QRS complexes and T
waves become the outliers in the regression. Therefore, the algorithm converges
to a solution which better represents the ECG signal’s sole baseline.

This algorithm, due to its complexity, is used locally on windows of a duration
of 1.5 seconds and this windowing reduces the time of execution without signif-
icant losses in information. The process is extremely efficient because the linear
regression can be solved in an analytic solution in closed form, as can be seen in
the following formulas.

WindowLength = N

LinearModel : ŷi = axi + b
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L =
NØ

n=1
(ŷi − yi)2 (4.1)

L =
NØ

n=1
(axi + b− yi)2 (4.2)

, where yi is equal to the ECG data from this window
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In Figure 4.2 is shown an example of signal before and after the pre-processing
procedures of baseline wander removal. The blue signal represents the original
signal extracted from the database, while the light blue one represents the signal
after the pre-processing operations. As it can be clearly seen, with the removal of
the baseline variation, the signal is centred on zero.
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Figure 4.2. Example of signal before and after removal of baseline variation.

4.3.2 Scalogram Derivation
The Continuous Wavelet Transform (CWT) was used to derive the scalogram so
that it is possible to transform the 1-D ECG signals into 2-D images. Then the sig-
nal is downsampled from 250 Hz to 125 Hz to reduce the computational complexity
of the model. Since the ECG signal is made by different frequency components, it
has been transformed in time-frequency domain in order to facilitate the features’
extraction. The CWT is defined as follows:

CWT (a, b) = 1√
a

Ú ∞

−∞
f(t) ∗ ψ(t− b

a
)dt (4.7)

a ∈ R+ − {0} , b ∈ R

In other terms:

CWT (scale, position) =
Ú ∞

−∞
f(t) ∗ ψ(scale, position, t)dt (4.8)

The terms of Equation 4.7 represent:

• a: it is a scale factor for resizing the function ψ(t)
• b: it is a displacement factor for translating the function ψ(t).
• The result of the CWT is therefore a matrix filled with wavelet coefficients

localized for scale and position.

The scalogram is a tool that builds and displays the 2D spectrum of the Contin-
uous Wavelet Transform and represents the absolute value of the CWT coefficients
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of the signal. Its colour represents the magnitude of the frequency components: a
lighter colour represents the highest components while a darker colour represents
the lowest ones.

CWT was calculated using the Wavelet Morlet which has a one-sided spectrum
and has complex values in the time domain. Below a sample wavelet equation and
its corresponding wavelet are shown (Eq. 4.9 and Fig. 4.3):

ψ(t) = e−t2/2cos(5t) (4.9)

Figure 4.3. Wavelet Morlet.[18]

In this project, the CWT coefficients in the form of scalogram have the aim to
become the image input of the deep neural network for features classification.

An example of scalogram with its associated ECG signal is shown in Figure 4.4:

Figure 4.4. Example of ECG signal with its associated scalogram.
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The colour variations in the scalogram correspond to the amplitude of the
frequency components of the signal. In particular, a darker colour indicates a
larger amplitude, while a lighter colour indicates a smaller amplitude.

The differences between the scalograms of a healthy subject and those of a
subject with pathology lie instead in the different frequencies in which certain parts
of the tracks are located. Some particular cardiac conditions present differences
in scalograms of abnormal complexes and normal ones. These differences can be
useful eventually for the neural network to detect anomalies of the heart rhythm.
An example of what happens in the case of Premature Ventricular Contraction
can be seen in the image below.

Figure 4.5. Example of Scalogram in presence of Premature Ventricular
Contraction Event.

The frequencies in which the PVC event is located, in fact, are slightly lower
than those in which the normal QRS complexes are located. As well as in this case,
also other anomalies can be observed, such as Atrial Premature Beat, Supraven-
tricular Premature Beat, Paced Beat and Right Bundle Branch Block Beat.

4.4 Data Segmentation
Dynamic DL models, such as CNNs, are used for feature extraction and, for train-
ing, require a lot of data. Sometimes, the signals sent to CNN input are lengthy
so, the estimated performances may have problems due to degradation. In this
situation, the ECG signals and their related label have to be broken to prevent
this side effect.
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The general strategy has been to create windows which have a length of 1
second (125 points, since the sampling frequency is 125 Hz), with a sliding length
of 10 points. At the end of this procedure, approximately 15,000 data windows
have been obtained, containing QRS complexes annotations useful to train the
network.

Each of the windows contains a QRS complex or part of it with the associated
annotation. The total number of windows obtained by this process is equal to
15089.

At the beginning, 90% of the previously obtained windows was used for the
training procedure, while 10% was reserved for the testing procedure. This op-
eration is repeated for both channels to get the same subdivision and then the
windows are merged together. However, at the end, a k-fold Cross Validation
(CV) was performed.

Figure 4.6. Example of ECG data segmentation: each window contains one QRS
complex or part of it with its associated label.

4.5 Used Deep Learning structures
The implemented DNN model includes two Convolutional Neural Networks and
two Bidirectional Long-Short Term Memory Networks. Let’s see in detail how
these models work, and which are the main characteristics and parameters involved
in the DL models of this thesis project.

4.5.1 Convolutional Neural Networks’ Layers
The CNN main functions are convolution, max pooling, classification, and non-
linearity. The CNNs in this project have the purpose of extracting temporal fea-
tures. Its main layers are:

• A 2D Convolutional Layer: it is responsible for generation of feature maps
from 2D filters.
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• A ReLU Activation Function: it is critical and its aim is to choose if an
information coming from one neuron is useful or not. The ReLU function
works as an activation mechanism; it is a non-linear function, which reduces
the image’s linearity through the deactivation of neurons when they have
values less than zero. In particular:

Y = ReLU
Ø

((W ∗X) + b) (4.10)
, where Y is the output value, W are the weights, X represents the inputs and
b is the bias.

• A Batch Normalization Layer: the previous parameters can affect the
distribution of the input of the following layer. The most important layer
is the batch normalization because it normalizes the output of the last layer
and behaves as a regulator to avoid overfitting. This parameter estimates
the input batches’ mean and variance. Then, it scales, normalises, and shifts
them.

• A Max Pooling 2D Layer: it is used for input matrices’ downsampling and
for reduction of dimensions.

• A Dropout Regularization Layer: it avoids the overfitting problem dur-
ing the model training by the discard of some nodes and the reduction of
dependencies between them. A Dropout of 25% is used in this model.

4.5.2 Bidirectional Long Short-Term Memory Neural
Networks’ Layers

For transition from CNN to LSTM, it is necessary to do a time-distributed flatten
in order to transform a 2D matrix into a 1D vector, which can be fed in a fully
connected layer. The LSTM neural networks are able to predict the future QRS
complexes, thanks to the previous ones since they can deal with ECG features
related to time series. The implemented structure consists in two LSTM layers,
each one with a dropout layer with 25% drop. The proposed method has two
classes as output: QRS complex or not QRS complex.

The idea of Bidirectional Neural Networks involves the duplication of the first
recurrent layer in order to obtain two layers side-by-side. Then, the input sequence
is provided to the first layer and a reversed copy of it is provided to the second
one. In this project, the first hidden layer of the first LSTM has 100 memory
units, while the first of the second LSTM has 50 memory units. The output goes
through another time-distributed wrapped layer in order to obtain one predicted
value for each time-step. Then, two other layers for Batch Normalization and
Dropout Regularization (25%) are involved and the final output will be a dense
layer with the softmax activation function used to predict the final binary value.
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4.5.3 Training of the Model
The training process of the model is divided in two passways: the forward and the
backward propagation.

• The forward propagation is the phase in which the network processes the
inputs thanks to the multiple neurons organized in layers and returns the
result of the processing operations on the output layer. This propagation
process includes the feed of inputs in the first neurons’ layer, the processing
of these inputs by the activation function and the feed of output in the next
neurons’ layer until the reaching of the final output layer.

• The backward propagation is the phase in which the difference between
the predicted output and the actual target values is minimized. This phase,
travelling back through the network, reduces the error by minimizing the
weights’ neurons that contribute mostly to this error. This error management
through the update of the weights is called BackPropagation.

An epoch, or training iteration, is one round of forward and back propagation.
The chain rule of differentiation is implemented by the backpropagation algorithm,
and it has the aim to calculate the gradients of cost function with respect to its
parameters in each layer. So, BackPropagation is the recursively gradient compu-
tation from the output layer backwards through the network. It calculates, through
the chain rule, the function’s derivative given by another function’s derivative. The
gradient represents the partial derivatives’ vector of a target function with respect
to the input variables, as shown in Equation 4.11. The first order derivatives of a
function represent the slope (a positive derivative represents an upward function’s
slope).

Gradient = ∂L
∂w

(4.11)

, where L represents the loss function and w represents the weights, which make
this function variable.

As the gradient increases to a lower target function, a downward slope follows
to carry the negative of the gradient forward (as shown in Figure 4.7). Each step
of gradient estimation is called learning rate. This process continues iteratively
until the target function’s minimum is found or other stopping conditions are met.

When the training process starts, the weights of each layer are randomly ini-
tialized. Then, in a forward way, the inputs are processed to obtain the outputs.
These outputs are compared with the target value to compute the error, and, at
the end, the error’s gradient is computed with respect to each weight through the
differentiation chain rule. The weights’ update is proportional to the learning rate
in the direction of error gradient’s minimization.
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Figure 4.7. Gradient Optimization Process.[19]

Various optimization algorithms can be introduced to reduce the number of
iterations necessary to find the correct weights’ combination for the minimization
of errors between actual outputs and predicted ones, such as Gradient Descent
(GD) or Stochastic Gradient Descent (SGD). The GD performs a backprop-
agation on the network for finding the loss function minimum. The SGD, which
represents a stochastic approximation of GD optimization, is an adaption of GD
for the minimization of the loss function of a predictive model. It reduces the
computational effort of the optimization problem by replacing the gradient cal-
culated on the whole dataset with an estimation calculated on randomly selected
data subset.

4.5.4 Optimizer and Activation Functions
Optimizer

So, finally, in this model, the categorical cross-entropy loss is used and the
chosen optimizer for the model’s training is the Adaptive Moment Estima-
tion, also known as Adam, which gives a good computational efficiency. This
efficient optimization algorithm is used for finding the weights. For each epoch,
the accuracy, loss and AUC metrics are calculated.

The Adam optimizer can be used as another variant of the Stochastic Gradient
Descent (SGD) algorithm in order to update the iterative weights of network in
the training data. SGD maintains, for each weight update, a single learning rate,
which doesn’t change during the training procedure. Adam, instead, adapts the

46



Methodology

learning rate to the single parameter trough estimation of the gradients’ first and
second moments. It can be seen as the combination of the advantages of two others
SGD extensions:

• The Adaptive Gradient Algorithm (Adagrad): which, at each time step
and for each parameter, updates the learning rate based on the gradients
calculated for the individual parameter up to that time step. It improves
performances on problems thanks to the sparse gradients and allows to avoid
the learning rate manual tuning.

• The Root Mean Square Propagation (RMSProp): which, for each pa-
rameters, updates the learning rate based on the average of gradients’ recent
magnitude for the weight. So, this algorithm works well on non-stationary
problems.

Adagrad has the squared gradients accumulation as main drawback. In fact, in
this method, the learning rate can become small and can encounter the vanishing
gradient problem.

Anyway, Adam merges Adagrad an RMSProp benefits. In particular, it uses the
average of the gradients’ second moments (uncentred variance) instead of adapting
the learning rate on the base of average first moment (mean) such as in RMSProp.
Specifically, this algorithm computes a gradient’s exponential moving average and
the squared gradient, while its parameters control the rates of decay of these
moving averages.

Activation Functions

First of all, the Rectified Linear Unit (ReLU) function is used in the two CNNs
as activation function. It is the positive part of the function’s argument (as ex-
pressed in Equation 4.12 and in Figure 4.8).

Figure 4.8. ReLU Activation Function.

f(
nØ

i=1
wixi + b0) =

1, if wixi + b0 ≥ c

x, if wixi + b0 < c
(4.12)
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This activation function does not activate simultaneously all the neurons, but it
activates a neuron only when the linear transformation’s output is more significant
than zero. The deactivated neurons, however, has a gradient value of zero. So,
these neurons’ weights and biases are not updated, and these neurons are never
activated.

Finally, the Softmax activation function is used to measure the occurrences
probability distributions. In particular, it computes the probability (ranging from
0 to 1) of a data to belong to a certain target class. This function is expressed in
the Equation below:

σ(z)j = ezj

Kq
k=1

ezk

(4.13)

The activation function is one of the hyperparameters which has to be set
manually by the user and it depends on the specific task of the single model.

4.6 k-fold Cross Validation
The k-fold Cross Validation is the method employed in this project to compute
the metrics and evaluate the performance of the model.

Figure 4.9. k-fold Cross Validation.[20]

This kind of approach assesses the model performances by using a validation
set without involving the test set, which has to remain independent in order to be
used after the optimization process. This Cross-Validation model is employed as
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a validation technique, and it uses randomly split data for iterative training and
validation of the model. Its working principle is shown in Figure 4.9.

First, the training set is split in k parts, called folds, with k = 10 in this specific
case. The model is then trained k times on k-1 subsets and validated on the left
part. In this way, each subset used for validation is different for each iteration.
The estimate of the produced out-of-sample error of each iteration is averaged
and, finally, the Cross Validation (CV) error is obtained. This method allows a
validation of performances while the model is still training.

4.7 Other Features Extraction
The same procedures and methodologies described before, are applied for P and
T wave detection.

The image below shows an example of signal extracted from ’QT Database’
together with its labels for P waves. The annotations indicate the beginning and
the end of P waves.

Figure 4.10. Example of signal with annotation of P Waves.

The same pre-processing procedures followed the signal analysis until, as in
QRS complexes, the signal segmentation is executed as shown in Figure below.

Figure 4.11. Example of ECG data segmentation for P waves: each window
contains one P wave or part of it with its associated label.
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The image below shows an example of a signal extracted from ’QT Database’
together with its labels for T waves. The annotations indicate the beginning and
the end of T waves.

Figure 4.12. Example of signal with annotation of T Waves.

The same pre-processing procedures followed the signal analysis of T wave until
the signal segmentation is executed also for this feature.

Figure 4.13. Example of ECG data segmentation for T waves: each window
contains one T wave or part of it with its associated label.
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Chapter 5

Implementation and Results

5.1 Deep Neural Network Implementation
In this chapter, the DNN implementation will be shown together with the obtained
metrics and results of the three Neural Networks’ models trained respectively for
P, QRS and T features of ECG signal. This section will start with a description of
the sequential layers which form the proposed model (as described in Section 4.5).

Layer (type) Output Shape Parameters

conv2d (Conv2D) (None, 125, 62, 32) 832
activation (Activation) (None, 125, 62, 32) 0
batch_normalization (None, 125, 62, 32) 128
(BatchNormalization)
max_pooling2d (None, 125, 15, 32) 0
(MaxPooling2D)
dropout (Dropout) (None, 125, 15, 32) 0

conv2d_1 (Conv2D) (None, 125, 15, 32) 25632
activation_1 (Activation) (None, 125, 15, 32) 0
batch_normalization_1 (None, 125, 15, 32) 128
(BatchNormalization)
max_pooling2d_1 (None, 125, 3, 32) 0
(MaxPooling2D)
dropout_1 (Dropout) (None, 125, 3, 32) 0

time_distributed (None, 125, 96) 0
(TimeDistributed)
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bidirectional (Bidirectional) (None, 125, 200) 157600

bidirectional_1 (Bidirectional) (None, 125, 100) 100400

time_distributed_1 (None, 125, 5) 505
(TimeDistributed)
batch_normalization_2 (None, 125, 5) 20
(BatchNormalization)
dropout_2 (Dropout) (None, 125, 5) 0

time_distributed_2 (None, 125, 2) 12
(TimeDistributed)

Table 5.1: Deep Neural Network Implementation.

The column of parameters in the table indicates the parameters’ number that
each layer has. First of all, the model input is a 2d-image of size 125x62x1, which
represents the scalogram of the ECG signal from both channels of the Database.
This input is fed in the model’s input layer and then it passes through a 2d-
convolutional layer. The convolutional layer has 32 filters, kernel size equal to 5 and
produces an output of shape 125x62x32. Then the data go through the activation
function, the batch normalization and the max-pooling 2d layer, which has a pool
size equal to (1, 4), producing an output of shape 125x15x32. This output is then
passed to the dropout layer until it reaches the second 2d-convolutional layer. This
other convolutional layer has the same filters, the same kernel size and executes
exactly the same operations of the previous one. The data pass again through the
activation function, the batch normalization and the max-pooling 2d layer (with
the same pool size as before), producing an output with shape 125x3x32, which is
passed to the dropout layer.

The output of all these layers is subjected to a time-distributed flattening (as
transition from CNN to LSTM) and then passed to a Bidirectional LSTM layer
with a total of 200 LSTM cells with 100 LSTM cells in each direction. Then,
another Bidirectional LSTM layer is used, which contains 100 LSTM cells (50 in
each direction). This architecture is called 2D-CNN-BiLSTM. The output of the
final bidirectional layer is fed to a time-distributed dense layer, which is followed by
another batch normalization layer and a dropout layer. The last time-distributed
dense layer assigns one of the two labels to each of the data points of the entire ECG
window signal. In particular, the DNN’s output is 1 or 0, depending respectively
on whether or not the network finds a QRS complex.
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Figure 5.1. Deep Neural Network Model Architecture.

The DNN proposed architecture is implemented in Python using TensorFlow,
an open-sourced end-to-end platform, and Keras, a high-level NN library that
runs on top of TensorFlow. Some of the functions, such as the k-fold CV, are
implemented using scikit-learn library.

To avoid overfitting, the minimum change of validation loss calculated by the
model in each training step is set, monitoring this quantity for early stopping.
This mechanism stops the training process when the model’s performances on the
validation dataset do not improve with respect to the defined metric (in this case
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the loss). In particular, if the absolute change of the validation loss is less than
the imposed delta equal to 0.001, the step is considered to have no improvements,
so the mechanism stops the training process earlier.

For better training purposes, the k-fold Cross Validation (with k = 10) is used.
The validation dataset is composed of samples randomly selected from the dataset
and it is different for each of the 10-folds of the CV. The monitored metrics for each
of the folds are accuracy, loss and AUC while the calculated evaluation metrics
are the ROC, the Sensitivity, the Specificity and the F-score.

The model is trained over 30 epochs and the categorical cross entropy is used
as the loss metric throughout the training process.

In the following sections, the metrics and results obtained after model’s training
will be analysed, firstly for each of the single trained networks (QRS, P and T
detectors) and finally for all the models used together.

5.2 Results for QRS Complexes Detection
In the table below, the results of k-fold CV are shown for DNN model which
detects QRS complexes. The dataset is divided into folds, and, for each iteration,
k-1 folds are used for training and one for validation. In particular, table 5.2 shows
the Accuracy, Loss and AUC results of each of the folds used for Cross Validation.

QRS Results Loss Accuracy AUC
Fold-1 0.0593 97.505% 99.767%
Fold-2 0.0681 97.172% 99.684%
Fold-3 0.0622 97.408% 99.733%
Fold-4 0.0775 96.787% 99.592%
Fold-5 0.0697 97.067% 99.672%
Fold-6 0.0633 97.427% 99.718%
Fold-7 0.0713 97.021% 99.668%
Fold-8 0.1038 95.871% 99.325%
Fold-9 0.0756 96.903% 99.616%
Fold-10 0.0763 96.814% 99.611%

Table 5.2. Results of k-fold Cross Validation for QRS Detection.

The learning curves plot the accuracy and the loss of the model against the
training epochs. Training the model for 30 epochs is enough for the model to
converge. In Figure 5.2, it is possible to observe that the accuracy training and
validation both increase and stabilize at a specific point around 0.97 (and around
epoch 14). The same happens in Figure 5.3, where the loss training and validation

55



Implementation and Results

both decrease until a point near to zero. This behaviour indicates an optimal fit,
i.e., the model does not overfit or underfit.

Figure 5.2. Accuracy for QRS Detection during each epoch.

Figure 5.3. Loss for QRS Detection during each epoch.

Loss Accuracy AUC
Average Scores for all folds 0.0727 96.997%(±0.447) 99.639%

Table 5.3. Average Scores for all folds of CV.
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The area under the ROC curve (which is shown in Figure 5.4) is the AUC. The
AUC provides a measure more accurate of prediction accuracy (the higher is the
better is) because it indicates the probability that a randomly selected positive
sample is higher than the corresponding negative sample.

Figure 5.4. ROC for QRS Detection.

The validity of the approach can be tested on some random data. In particular,
in Figure 5.5, the predicted outputs of the model are plotted for some test inputs.
Since this is a binary classifier, just the first column of probabilities is taken. Then
an optimum threshold value is applied to the obtained probabilities in order to get
a coherent result.

Figure 5.5. Model’s predictions on new signals.

The classification performances are estimated analysing the confusion matrix,
shown in 5.6. This matrix is normalized and obtained by dividing each column
element by the sum of the entire column.

57



Implementation and Results

Figure 5.6. Confusion Matrix for QRS Detection.

From TP, FN, FP and TN values obtained by the confusion matrix, it is possible
to calculate some of the most important metrics that define the validity of the
model. In this case, Accuracy, Sensitivity, Specificity and F-score are calculated
for validation of model’s performances.

Accuracy = TP + TN

TP + TN + FP + FN
= 0.9771

Sensitivity = TP

TP + FN
= 0.9022

Specificity = TN

TN + FP
= 0.9815

F-score = 2 · Precision ·Recall
Precision+Recall

= 0.9127

Accuracy Sensitivity Specificity F-score
0.9771 0.9233 0.9815 0.9127

Table 5.4. Various Metrics for QRS Detection Results.
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5.3 Results for P Waves Detection
In the table below, the results of k-fold CV are shown for DNN model which
detect P waves. The dataset is divided into folds, and, for each iteration, k-1 folds
are used for training and one for validation. In particular, table 5.5 shows the
Accuracy and Loss results of each of the folds used for Cross Validation.

P Results Loss Accuracy AUC
Fold-1 0.0940 96.211% 99.522%
Fold-2 0.0848 96.563% 99.352%
Fold-3 0.0990 95.918% 99.463%
Fold-4 0.0808 96.571% 99.497%
Fold-5 0.1068 95.592% 99.552%
Fold-6 0.0955 96.044% 99.408%
Fold-7 0.1000 95.849% 86.980%
Fold-8 0.3799 87.348% 99.493%
Fold-9 0.0918 96.198% 99.538%
Fold-10 0.094 96.028% 99.175%

Table 5.5. Results of k-fold Cross Validation for P Detection.

The learning curves plot the accuracy and the loss of the model against the
training epochs.

Figure 5.7. Accuracy for P Detection during each epoch.
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Figure 5.8. Loss for P Detection during each epoch.

Training the model for 30 epochs is enough for the model to converge. In Figure
5.7, it is possible to observe that the accuracy training and validation both increase
and stabilize at a specific point around 0.96 (and around epoch 16). The same
happens in Figure 5.8, where the loss training and validation both decrease until
a point near to zero. This behaviour indicates an optimal fit, i.e., the model does
not overfit or underfit.

Figure 5.9. ROC for P Detection.

Figure 5.9 represents the ROC curve for this model. Results for P waves are
slightly worse than those of the QRS complexes but however they reach good
results in terms of performances.
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Loss Accuracy AUC
Average Scores for all folds 0.1227 95.232%(±2.644) 98.198%

Table 5.6. Average Scores for all folds of CV.

The validity of the approach can be tested again on some random data. In
particular, in Figure 5.10, the predicted outputs of the model are plotted for some
test inputs.

Figure 5.10. Model’s predictions on new signals.

The classification performances are estimated analysing the CM, shown in 5.11.

Figure 5.11. Confusion Matrix for P Detection.

From TP, FN, FP and TN values obtained by the confusion matrix, it is possible
to calculate some of the most important metrics that define the model’s validity.
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In this case, Accuracy, Sensitivity, Specificity and F-score are calculated for
validation of model’s performances.

Accuracy = TP + TN

TP + TN + FP + FN
= 0.9619

Sensitivity = TP

TP + FN
= 0.8782

Specificity = TN

TN + FP
= 0.9742

F-score = 2 · Precision ·Recall
Precision+Recall

= 0.8558

Accuracy Sensitivity Specificity F-score
0.9619 0.8782 0.9742 0.8558

Table 5.7. Various Metrics for P Detection Results.

5.4 Results for T Waves Detection
In the table below, the results of k-fold CV are shown for DNN model which
detects T waves. The dataset is divided into folds, and, for each iteration, k-1
folds are used for training and one for validation. In particular, table 5.8 shows
the Accuracy and Loss results of each of the folds used for Cross Validation.

T Results Loss Accuracy AUC
Fold-1 0.1208 95.383% 99.349%
Fold-2 0.1088 95.664% 99.425%
Fold-3 0.0933 96.053% 99.283%
Fold-4 0.0986 96.041% 99.150%
Fold-5 0.1371 94.444% 99.247%
Fold-6 0.1239 95.165% 99.397%
Fold-7 0.1113 95.598% 99.354%
Fold-8 0.1452 94.125% 99.061%
Fold-9 0.1237 94.827% 99.442%
Fold-10 0.1106 95.646% 99.446%

Table 5.8. Results of k-fold Cross Validation for T Detection.
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The learning curves plot the accuracy and the loss of the model against the
training epochs.

Figure 5.12. Accuracy for T Detection during each epoch.

Figure 5.13. Loss for T Detection during each epoch.

Loss Accuracy AUC
Average Scores for all folds 0.1173 95.294%(±0.618) 99.315%

Table 5.9. Average Scores for all folds of CV.
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Training the model for 30 epochs is enough for the model to converge. In
Figure 5.12, it is possible to observe that the accuracy training and validation
both increase and stabilize at a specific point around 0.95 (and around epoch
17.5). The same happens in Figure 5.13, where the loss training and validation
both decrease until a point near to zero. This behaviour indicates an optimal fit,
i.e the model does not overfit or underfit.

Figure 5.14 represents the ROC curve for this model. Results for T waves are
slightly worse than those of the other features but however they reach satisfying
results.

Figure 5.14. ROC for T Detection.

Also in this case, the validity of the approach can be tested on some random
data. In particular, in Figure 5.15, the predicted outputs of the model are plotted
for some test inputs.

Figure 5.15. Model’s predictions on new signals.
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The classification performances are estimated analysing the confusion matrix,
shown in 5.16. This matrix is normalized and obtained by dividing each column
element by the sum of the entire column.

Figure 5.16. Confusion Matrix for T Detection.

From TP, FN, FP and TN values obtained by the confusion matrix, it is possible
to calculate some of the most important metrics that define the validity of the
model. In this case, Accuracy, Sensitivity, Specificity and F-score are calculated
for validation of model’s performances.

Accuracy = TP + TN

TP + TN + FP + FN
= 0.9641

Sensitivity = TP

TP + FN
= 0.9347

Specificity = TN

TN + FP
= 0.9738

F-score = 2 · Precision ·Recall
Precision+Recall

= 0.9246

Accuracy Sensitivity Specificity F-score
0.9641 0.9347 0.9738 0.9246

Table 5.10. Various Metrics for T Detection Results.
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5.5 Features Measurements
5.5.1 Features Segmentation with Developed Models
Finally, the obtained results for each of the analysed features are grouped in the
table 5.11, shown below:

Accuracy Loss Sensitivity Specificity F-score
P waves 96.19% 0.1227 87.82% 97.42% 0.8558
QRS complexes 97.71% 0.0727 92.33% 98.15% 0.9127
T waves 96.41% 0.1173 93.47% 97.38% 0.9246

Table 5.11. Obtained Results for each of the Features’ Predictions.

Once the single features are detected, the next step of this project is to detect
them together in a signal, putting the developed DNN’s together. In particular, at
the end of the work, it will be a model composed by three deep neural networks,
one for each of the main features (P waves, QRS complex and T waves) in order
to obtain the data windows with all the features labeled at the same time. This
procedure permits to measure the features and the intervals between them.

So, first of all, the pre-trained three developed models are saved separately.
After this procedure, a signal from the database is taken and pre-processed in
order to obtain for it the same shape of the neural networks’ input.

The signal chosen as example in this part is ’sel871’ but then, all the other
signals coming from the database are subjected to the same procedure in order to
validate the obtained results. The chosen signal is firstly pre-processed to remove
baseline wander, then a scalogram is obtained in order to get a 2d image to be
fed to the networks. After the signal segmentation to obtain windows, the signal
is fed to the pre-trained three models saved before. The outputs coming from the
neural networks are shown in Figure 5.17.

Every predicted output of each of the networks is a sequence of 1 and 0 de-
pending on the probability to have or not a predetermined feature in each sample.
For example, with reference to the Figure 5.17, the yellow label represents the
network’s prediction of the probability in each sample that the signal represents a
P wave. The same happens for QRS complexes and T waves, with red and light
blue labels, respectively.

So, in detail, the yellow signal’s starting and ending points (sequences of 1)
represent the prediction of the network for the beginning and the end of P wave,
the starting and ending of the red one are the beginning and the end of QRS
complex, while the starting and ending of the light blue sequence of 1 represent
the beginning and the end of T wave.
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Figure 5.17. Predictions of the three networks on a random signal from Database.

The same procedure is used for signals completely external to the trained
database in order to verify that the DNN model is able to predict outputs correctly
also on signal that it has never seen before.

The following signal, with its 12-leads, is pre-processed and given as input to
the DNN model, obtaining for each window a result similar to that one shown
below.

Figure 5.18. Predictions of the three networks on a new signal never seen before.
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5.5.2 Widths and Intervals Measurements
Since CVDs affect the electrophysiological activity of the heart, ECG features
are quantitatively and extensively analysed to assess their potential incremental
contribution to an event’s risk.

Once the features have been obtained, the last step is to calculate their widths
and the intervals between them, since they are a great starting point for developing
of automated cardiac diagnostic methods and facilitating large-scale screening.
The main features calculated are PR intervals, QRS complex widths and QT
intervals. These features are analysed in detail in the following subsections.

PR Interval

PR interval in ECG, as seen before, is the period between the starting of P wave,
which is the atrial depolarization’s onset, and the starting of QRS complex, which
is the ventricular depolarization’s onset (measured in msec). Its normal duration
extends from 120 and 200 ms (around 3-5 small horizontal boxes) and it is also
called PQ interval (shown in Figure 5.19).

Figure 5.19. Normal PR Interval on ECG grid.

PR interval’s variations could be associated with some medical conditions:

• Long PR Interval: over 200 ms. It is a sign of atrioventricular block (AVB).
It is often due to a slow conduction of the atrioventricular node and it can
indicate a slow conduction between atria and ventricle. This condition is also
known as first degree heart block and it can be associated with AV node’s
fibrosis, medicament which slow the AV node (beta-blockers), high vagal tone,
carditis (associated to Lyme disease), acute rheumatic fever or hypokalaemia
[54].
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• Short PR Interval: less than 120 ms. It is often due to pre-excitation syn-
dromes (Wolf-Parkinson-White or Lown-Ganong-Levine) and junctional ar-
rhythmia (atrioventricular reentral tachycardia or junctional rhythm).

Other types of heart blocks can be assumed by a variable PR.
So, given the Figure 5.17, PR interval has been calculated through the following

algorithm:

Figure 5.20. Algorithm for Calculation of PR Interval in Each Window.

, where predictions_tmp_p indicates the vector of predictions (the yellow one)
for P waves, predictions_tmp indicates the vector of predictions (the red one) for
QRS complexes, and the other variables are set to make possible the calculations.
Finally, the obtained result for this interval calculation is shown below:

PR_Interval = 136ms

, which is in the normal range of supposed values.
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QRS Widths

QRS complex on typical ECG is the combination of the three central and most
visually obvious deflections (Q, R and S) of the track. It is the main feature and
corresponds to the depolarization of the two heart’s ventricles and to the large
ventricular muscles’ contraction.

The normal QRS width, in adults, ranges from 80 to 100 ms, while it may be
shorter in children. The three deflections are in rapid succession and they reflect
a single event (for this reason they are considered together). These waves don’t
appear all in all leads, but their sequence is:

• Q wave: which is a downward deflection that immediately follows the P wave.

• R wave: which is an upward deflection that follows the Q wave.

• S wave: which is a downward deflection that immediately follows the R wave.

For measuring purposes, QRS interval starts at the beginning of the Q wave (or
at the end of the PR interval) and finishes at the end of the S wave. It is shown
in Figure 5.21.

Figure 5.21. Normal QRS Complex on ECG grid.

A normal QRS complex has an amplitude in range of 5 to 30 mm and a duration
between 0.06 and 0.12 sec (around 1.5-3 small horizontal boxes). QRS interval’s
variations in width, amplitude and shape could be associated with some medical
conditions and they are useful for diagnosis of cardiac arrhythmias, ventricular
hypertrophy, myocardial infarction, electrolyte derangements and other diseases.

An abnormal QRS complex can vary its shape from nearly normal to slurred
and notched to wide and bizarre. QRS complexes lower in voltage or abnormally
small can be seen in obese or hyperthyroid patients and in pleural effusion, while
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high QRS complexes are usually seen in hypertrophy of the ventricles or in an
abnormal pacemaker or in aberrantly conducted beats.

The various shapes that a QRS complex may assume are showed in the figure
below.

Figure 5.22. Different QRS Shapes for Various Anomalies.[21]

QRS width, under depolarization hypothesis, plays an important role because
it quantifies the duration of the depolarization of the ventricles, and it can identify
anomalies due to delayed conduction and dysfunction of sodium current.

• Long QRS complex: over than 120 ms. It can indicate intraventricular con-
duction delays (such as bundle branch block) or hyperkalaemia.

• Narrow QRS complex (normal): less than 120 ms. It indicates that the
ventricles are depolarized normally.

So, given the Figure 5.17, QRS complex width has been calculated through the
following algorithm:
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Figure 5.23. Algorithm for Calculation of QRS Width in Each Window.

, where predictions_tmp indicates the vector of predictions (the red one) for
QRS complexes and the other variables are set to make possible the calculations.
Finally, the obtained result for this interval calculation is shown below:

QRS_Width = 96ms

, which is in the normal range of supposed values.

QT Interval

QT interval in ECG is usually used to assess the heart’s electrical properties. It
measures the time starting from the beginning of Q wave until the end of T wave
and it indicates approximately the time from the starting of ventricles’ contraction
to their final relaxation.
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Figure 5.24. Normal QT Interval on ECG grid.

An increased risk of developing sudden cardiac deaths and abnormal heart
rhythms can be associated to an abnormally long or short QT interval. Normal
values range of QT interval is from 350 to 450 ms for males and from 360 to 460
ms for females.

So, with reference to the Figure 5.17, QT interval has been calculated through
the following algorithm.

Figure 5.25. Algorithm for Calculation of QT Interval in Each Window.
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, where predictions_tmp indicates the vector of predictions (the red one) for
QRS complexes, predictions_tmp_t indicates the vector of predictions (the light
blue one) for T wave and the other variables are set to make possible the calcula-
tions. Finally, the obtained result for this interval calculation is shown below:

QT_Interval = 440ms

, which is in the normal range of supposed values.
Anomalies of QT interval are generally due to genetic conditions (such as long

QT syndrome), to certain medicament (such as sotalol or pitolisant), to concentra-
tion disturbances of some salts in the blood (such as hypokalaemia) or to hormonal
derangements (such as hypothyroidism).

After these specifications, the final output results of the three networks are the
following for each of the windows created during data segmentation.

Figure 5.26. Results of Intervals Measurements on a Prediction.
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Chapter 6

Validation and Discussion

In this chapter, a results’ validation is performed in order to demonstrate the
correct working of the DNN algorithm also on signals that have never be seen
by the neural networks. Then, a discussion part follows enumerating the various
DNN models used nowadays and their performances with respect to the proposed
method.

6.1 Results’ Validation
The results’ validation is performed on fifteen signals coming from the simulator
"Fluke ProSim 4 Vital Signs Simulator". This simulator is able to generate an
ECG signal and export it, with its 12-leads, on an XML file, permitting to use it
for other analysis purposes.

In particular, the signals coming from the simulator are firstly pre-processed as
the other signals used in the NN model, getting their scalogram. Then, they are
segmented into windows with length of 125 samples and they are fed to the neural
networks in order to extract the main features seen before (P and T waves and
QRS complexes).

An important detail to note is that, in the evaluation of a learning algorithm,
the dataset must all have the same characteristics, such as the same normalization
and the same sampling rate (it has to be re-sampled).

Finally, the intervals’ measurements are performed obtaining the following re-
sults. The table 6.1, in particular, shows the actual values of the intervals cal-
culated by the simulator, with respect to the predicted values coming from the
DNNs’ output.
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Tracks PR Interval (ms) QRS Width (ms) QT Interval (ms)
Actual Predicted Actual Predicted Actual Predicted

File_1 168 168 86 88 390 384
File_2 148 152 86 79 348 336
File_3 160 128 86 88 362 328
File_4 164 184 88 96 368 360
File_5 166 160 88 88 366 360
File_6 160 152 86 88 412 408
File_7 160 136 84 88 425 408
File_8 158 152 84 88 438 432
File_9 152 152 70 78 462 440
File_10 / / 100 96 443 456
File_11 162 176 90 96 370 368
File_12 154 160 86 88 370 368
File_13 / / 100 96 522 488
File_14 152 136 70 80 372 368
File_15 / / 80 80 379 376

Table 6.1: Results’ Validation.

As it is possible to see from the table, the predicted results for PR intervals
and QRS complexes are very close to the actual values. In other hand, the QT
values are slightly underestimated since the T end is a difficult parameter to be
recognized by the network.

For a better evaluation of the table’s results, the values of the average and
standard deviation are calculated for each of the features, as follows:

µ(x) = 1
N

NØ
i=1

xi (6.1)

σ(x) =

öõõô 1
N − 1

NØ
i=1

(xi − µ)2 (6.2)

The fiducial intervals’ variations are analysed by calculating mean and standard
deviation of each interval. Their results for actual and predicted values are shown
in the table below.
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Mean and Standard Deviation
Actual Predicted

PR Interval 158.67 ms ± 6.11 ms 154.67 ms ± 16.48 ms
QRS Width 85.60 ms ± 8.32 ms 87.80 ms ± 6.34 ms
QT Interval 401.80 ms ± 47.95 ms 392.00 ms ± 45.56 ms

Table 6.2: Mean and Standard Deviation for Each of the
Analysed Feature.

So, the mean errors for PR Interval, QRS Width and QT Interval measurements
are respectively equal to 4 ms, 2.2 ms and 9.8 ms. The standard deviation (SD)
measures the variation or dispersion amount of a set of values. A high standard
variation means that the values cover a wider range. In contrast, a low standard
deviation indicates that the values are closer to the mean of the set. The SD of
predicted values is useful to understand the values’ dispersion in different models.

Then, also the maximum and minimum deviations are calculated for each of
the intervals, as the absolute value of the difference between predicted and actual
values. So, for each of the fifteen simulated case, three deviations are obtained,
one for every interval. At this point, the minimum and maximum between the
deviations are taken and shown in following table:

Deviation Minimum Maximum

PR Interval 0 ms 32 ms
QRS Width 0 ms 10 ms
QT Interval 2 ms 34 ms

Table 6.3: Minimum and Maximum Deviations for Each
of the Analysed Feature.

6.2 Discussion
In this thesis project, a deep neural network model is proposed for detection of
ECG signal’s most important features. The proposed deep learning model per-
forms significantly better than other deep learning ECG segmentation models,
especially in segmentation of P waves and QRS complexes. Accurate automated
ECG segmentation would help to develop automated cardiac diagnostic methods
and facilitate large-scale screening.
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ECG have a lot of variations, and this is the main challenge in ECG features
segmentation. The variations of ECG can be present in shape, duration, fre-
quency and amplitude and they can derive from the differences between patients,
placement of ECG leads or monitoring equipment. For this reason, an automatic
approach is useful to handle all the possible variations of ECG waves in an efficient
way.

The traditional automatic models usually identify the R wave peak and then,
through rule-based approaches [55] or Hidden Markov Models (HMM) [56], identify
the remaining waves’ positions. But these approaches are often not generalizable
and not robust enough to manage all the variations of ECG signals, so they have
very low average performances. The proposed method has instead the following
main contributions:

• The 2D-CNN-BiLSTM approach labels each data point as P-wave, QRS com-
plex or T-wave, creating a neural network model able to segmenting ECG
waves.

• The CNN and BiLSTM combination is able to remove the noise, creating ad-
ditional features and achieves a better accuracy with respect to other methods
of deep learning or rule-based.

Automatic segmentation of ECG waves can be obtained through multiple meth-
ods such as Fourier transforms, wavelet transformations or pattern recognition.
The focus of these methods is to detect just some parts of the signal, often the
QRS complexes. The most used algorithm employed to find these complexes is
the Pan-Tompkins [57], a derivative based algorithm. The Discrete Wavelet Trans-
form (DWT) approach [58] is used to improve the extraction of information from
P waves, QRS complexes and T waves. Also, adaptive threshold algorithms can be
used to identify the important parts of the ECG signal. Finally, another method
to identify the various part of the ECG is to train a Hidden Markov model with
labeled data.

Deep Learning approaches are widely used in signal processing for biomedical
applications. In particular, the LSTM architecture is used for ECG waves segmen-
tation [59]. Using ECG raw signals, in addition, other features can be extracted
through different filtering kernels also including the ECG first and second deriva-
tives. The obtained results in this thesis project are better than those of other
existing methods and prove that deep learning techniques are a good method to
automatically extract most important features from ECG wave.

The comparison of performances of 2D-CNN-BiLSTM with respect to the other
existing methods are shown in table 6.4 and in Figure 6.1.
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Methods P(%) QRS(%) T(%)
2D-CNN-BiLSTM 96.19% 97.07% 96.49%
ECG-SegNet (Bidirectional LSTM) 92.00% 94.00% 92.00%
HMM on raw ECG data 5.50% 79.00% 56.03%
HMM on wavelet encoded ECG 74.20% 94.40% 88.23%
LSTM 95.00% 98.00% 97.00%

Table 6.4. Results for each of the Features’ Predictions with Different Methods.

Given the task of automatic detect the most relevant ECG features, the best
results are generally obtained with HMM on wavelet encoded ECG data but, as it
is possible to see from the bar graph, the proposed method is able to reach better
performances.

The 2D-CNN-BiLSTM approach can produce relevant improvements, in par-
ticular in P waves and QRS waves segmentation. Moreover, this model overcomes
also the performances of existing Bidirectional LSTM architectures, such as ECG-
SegNet, and of other traditional methods.

Figure 6.1. Performances Comparisons between Different Methods.

The disadvantage of this algorithm is that it has an higher computational pro-
cessing cost.
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6.3 Conclusions
The computerized ECG systems increased the collection of more ECG data, and
these produced data require to be analysed by cardiologists and require a huge
amount of time. ECG signal processing tools already exist and are available for
supporting these processes, but they require an engineering human-assisted to
perform the feature extraction.

The systems based on ECG classification can work simultaneously with sys-
tems that perform prediction on cardiovascular diseases, which are based on data
mining. These systems, in case of emergency, can automatically alert public safety
points or hospital, making faster the aid and increasing the prevention of diseases.
The implementation of mobile monitoring system can affect positively the benefits
of patients which require access to continuous care.

This thesis project proposes a 2D-CNN-BiLSTM model for automatic ECG fea-
tures segmentation and extraction, and it performs significantly better than other
existing methods based on signal processing or HMM. The LSTM architecture can
understand the temporal relations and it is very able to perform the time series
segmentation task. Specifically, the Bidirectional LSTM is able to capture the
long-term temporal dependencies [60] and to solve the vanishing or exploding gra-
dient problem (where the error derivative after a very short period tends to zero or
infinity). The CNN works as a feature extractor, while the LSTM considers only
the temporal information of the ECG waves in the input. The 2D-CNN-BiLSTM
network uses both spatial and temporal information to segment the ECG wave.

Summarizing, the proposed method involves mainly the use of two Convolu-
tional and two LSTM Neural Networks. After the pre-processing operations, re-
moving the baseline through the local linear regression method, the scalograms of
the signals are derived. Through the use of Continuous Wavelet Transform, in fact,
it was possible to transform signals from time domain to frequency domain, turn-
ing 1D signals into 2D coloured images, in order to make them an ideal input to
feed the CNN. Scalograms are very powerful method and represent a very robust
approach since they exhibit optimal performances for the classification of mor-
phological images. For the extraction of ECG features, 2D scalogram images are
then segmented into windows in order to obtain images of size 125x62x1. Around
15000 scalogram images are obtained to train the CNN-BiLSTM model with a
k-fold Cross Validation. After enhancing the model (using layers such as batch
normalisation, time-distributed layer, and fully connected layer), a confusion ma-
trix, and other performance metrics are used to assess the classifier’s performances.
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The performed experiments show the usefulness and ability of this model to
outperform other approaches in terms of classification performances. The confu-
sion matrix for P, QRS and T detection in the testing dataset shows respectively
96.19%, 97.71% and 96.41% of validation accuracy. Furthermore, sensitivity and
specificity for P wave are 87.82%, 97.42%, while sensitivity and specificity for
QRS Interval are 92.33% and 98.15%, and for T wave, sensitivity and specificity
are 93.47% and 97.38% respectively.

The obtained results are better than other techniques and they greatly reduce
the interventions’ amount required by doctors. The model’s performances are
also better than other deep learning segmentation methods, especially in P-waves
and QRS complexes. This kind of automated algorithm can help to automate
diagnosis of cardiac diseases and to simplify large-scale screening tasks. Likewise,
the suggested model can assist clinicians in correctly identifying ECG features
during routine ECG monitoring.
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Acronyms

SVC Superior Vena Cava

IVC Inferior Vena Cava

SA Sinoatrial Node

AV Atrioventricular Node

ECG Electrocardiogram

CVD Cardiovascular Disease

CAD Coronary Artery Disease

CHF Congestive Heart Failure

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

NN Neural Network

ANN Artificial Neural Network

DNN Deep Neural Network

MLP Multi-Layer Perceptron

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short Term Memory

BiLSTM Bidirectional Long Short Term Memory
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Acronyms

ReLU Rectified Linear Unit

GD Gradient Descent

SGD Stochastic Gradient Descent

CM Confusion Matrix

TP True Positive

FN False Negative

FP False Positive

TN True Negative

TPR True Positive Rate

TNR True Negative Rate

FPR False Positive Rate

FNR False Negative Rate

PPV Positive Predictive Value

NPV Negative Predictive Value

ROC Receiver Operating Characteristic

AUC Area Under Curve

FDA Food and Drug Administration

SVM Support Vector Machine

DT Decision Tree

RF Random Forest

KNN k-Nearest Neighbour

BP Blood Pressure

AF Atrial Fibrillation

ICU Intensive Care Unit

GPU Graphics Processing Unit
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Acronyms

FIR Finite Impulse Response

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

PVC Premature Ventricular Contraction

ADAM Adaptive Moment Estimation

ADAGRAD Adaptive Gradient Algorithm

RMSProp Root Mean Square Propagation

CV Cross Validation

HMM Hidden Markov Model

SD Standard Deviation
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