
POLYTECHNIC UNIVERSITY OF TURIN

Degree course in Computer Engineering

Master of Science Thesis

Exploiting virtual networks for
CPS security analysis

Advisor
prof. Antonio Lioy
eng. Andrea Atzeni

Candidate

Santo Orlando

Academic year 2021-2022

Summary

CPS, or Cyber-Physical System, is the subject of numerous studies nowadays, with
continuous updates from different perspectives. It represents an intelligent system
capable of letting the real world interact with the non-real one, the so called “cyber
world”. There are different types of CPS and, among them, one deserves atten-
tion more than the others due to the fact that it is growing rapidly: the world of
VANET. This acronym stands for “Vehicular Ad hoc NETwork” and represents
a vehicular network composed of cars that can communicate with each other, with
pedestrians and other infrastructures. In the best case, they provide autonomous
driving by making the driver simply become a passenger. The vehicles are known
as CAV, which corresponds to Connected Autonomous Vehicle, and they are able
to exchange messages with each other or with the other elements that are part of
this described subcategory of CPS.
It is important, however, to focus on an essential aspect concerning this network,
namely, the Cybersecurity that involves these systems. It is certainly of primary
importance to make sure that the C.I.A. (Confidentiality, Integrity and Availabil-
ity) triad is secured within a system. In this way it will be possible to make sure
that the systems will be protected and there will be no possibility of attack. Un-
fortunately, this is not always the case: as will be seen in specific sections, some
attack that has occurred in real life has affected well-known car manufacturers. So,
it is necessary that optimal security measures are implemented within the system.
The simulation of a large vehicular network is certainly time and money consum-
ing in many ways. This is precisely why simulators come into play, that is, software
designed to run reasonably real scenarios that allow their analysis in order to make
the right improvements. Through appropriate configurations and appropriate soft-
ware is possible to simulate situations and types of attacks such that it is possible to
observe what could happen in reality. In the course of the discussion, some attacks
will be simulated and it will be possible to observe their consequences and possibly
the damage it could cause in real life. For this reason, a real life scenario will be
simulated, which is part of the city of Turin.
Of all the simulators, a focus will be given on Veins, the main simulator known
nowadays for analysis on VANET systems. As will be seen, however, some at-
tacks cannot always be implemented due to a number of internal limitations of the

3

software, such as lack of cooperation with other tools or because a hypothetical im-
plementation of a solution cannot take place in reasonable time. For those attacks
for which an analysis and implementation is possible, mitigations and countermea-
sures will be defined. Furthermore, what is important and what is a focus to be
taken into consideration is the fact that many simulators are not open source; on
the other hand, these are commercial and, as a consequence, the simulations are
not possible because they are not accessible to everyone.
Hence, the objective of this thesis is to analyse CPS and then describe VANET in
detail. Once the main security concepts are defined, simulators will be introduced
and a scenario of the city of Turin will be simulated, implementing those feasible
attacks. An essential point, which is the core of this thesis, can be observed in the
limitations that the simulator demonstrates. In fact, it is observed how some attack
cannot be totally implemented due to software limitations on the chosen simulator.
Finally, possible strategies to overcome these limitations will be proposed, and the
detection and mitigation of attacks that can be conducted will be outlined.

4

Acknowledgements

Master of Science thesis represents the final point of lots of years spent among
books and moments at the university. For this reason, I would like to thank who
has been next to me in these years.

Firstly, I would like to thank Professor Antonio Lioy and the engineer Andrea
Atzeni for having given to me the opportunity to cover a really interesting topic.

Thank you mum and dad, your encouragement at all times has been a source
of continuity for me and has given to me the strength to accomplish my goals.

Thank you Luana, my sister, for always understanding every circumstance dur-
ing this university period and for providing me with the right advice.

Thank you Fabiola, for having shared five university years in which we have expe-
rienced moments of difficulty and happiness, always facing them with the determi-
nation that distinguishes us.Thank you also for having believed in me, always.

Thank you Antonio and Claudia, childhood friends and university colleagues with
whom I shared good times especially in Turin.

Thank you Alessandro, Francesco, Matteo, Francesco and Marco, friends since high
school with whom I have spent good moments and for having always understood
me.

5

Contents

1 Introduction 8
1.1 Thesis structure . 10

2 CPS overview and its specialization: VANET 12
2.1 CPS overview . 12
2.2 CPS scope . 13
2.3 VANET: characteristics . 13
2.4 VANET components . 14

2.4.1 RSU: Road Side Unit . 15
2.4.2 OBU: On Board Unit . 16
2.4.3 AU: Application Unit . 17
2.4.4 TA: Trusted Authority . 17

2.5 VANET communication . 17
2.6 VANET architecture . 19

3 Cybersecurity and VANET 20
3.1 Security in CPS . 20
3.2 Security in VANET . 22

3.2.1 VANET security requirements 23
3.3 Real attack mechanisms on VANET 24
3.4 Classes of attacks . 26
3.5 Countermeasures on VANET attacks 28
3.6 Real use-case attacks on cars . 31

3.6.1 Jeep Cherokee . 31
3.6.2 Volkswagen and Audi . 31
3.6.3 Toyota Prius . 32
3.6.4 Mercedes-Benz . 32

4 Analysis of the state of the art of VANET simulators 33
4.1 Introduction to simulators . 33
4.2 Simulators . 33

4.2.1 Mobility simulator: SUMO 34
4.2.2 Network simulator: OMNeT++ 35

4.3 VANET simulators . 35
4.3.1 Veins . 36
4.3.2 Eclipse MOSAIC . 37

4.4 Simulators’ functionalities . 38
4.5 Security functionalities . 39

6

4.5.1 Safety . 39
4.5.2 Security . 40

5 Simulation framework: implementation of attacks 42
5.1 Simulation configuration . 42
5.2 Veins settings . 43
5.3 Network configuration . 43

5.3.1 Map generation . 44
5.4 Implementation of attacks . 46

5.4.1 Message Alteration attack 46
5.4.2 Denial of Service attack . 49
5.4.3 Distributed Denial of Service attack 51
5.4.4 Timing attack . 53
5.4.5 Social engineering attack . 54
5.4.6 Black Hole attack . 55
5.4.7 Jeep Cherokee attack . 56

6 Analysis of results 59
6.1 Message alteration attack . 59
6.2 Denial of Service . 60
6.3 Distributed Denial of Service . 62
6.4 Timing attack . 63
6.5 Social Engineering attack . 63
6.6 Black Hole attack . 64
6.7 Jeep Cherokee attack . 64

7 Conclusion 66

A User Manual 70
A.1 VirtualBox installation . 70
A.2 Ubuntu installation . 71
A.3 SUMO installation . 71
A.4 Veins installation . 72

B Simulation execution Manual 73
B.1 Map creation . 73
B.2 Veins attack simulation . 74

Bibliography 77

List of Figures 81

List of Tables 82

7

Chapter 1

Introduction

Nowadays it is right to say that every kind of human operation has become auto-
mated. Starting from the simpler things to the more complex, is possible to observe
a different level of automation.
Industries, health care, medical devices, agriculture, national security, traffic flow
management and many others need to have systems that are capable of solving
problems by computing results, communicating them to other sub-systems in real-
time, monitoring and controlling physical entities, in complete or partial autonomy.
For example, many companies want to improve their cooperation among different
departments, in order to give the right information to the right people, possibly in
real-time.
In health care, it is important to observe and monitor patients’ data, in order to
notify medical doctors if there is something strange, so as to improve the response
time and maybe save a life.
In agriculture, systems that monitor plants can be used to collect data in order to
help farmers.
Under national security’s point of view, is crucial to have real-time systems that
monitor devices to give a correct countermeasure in case of attacks. In other words,
the aim is the simplification of decisional process, augmenting the efficiency and
the productivity.
Furthermore, taking into consideration internet, it is relevant to say that it has
changed the way in which we manage our things and solve our problems.
As a result, there is a sort of gap between the cyber world and the physical one.
Indeed, to be more specific, the former manages transmission, modification and
receipt of information. On the other side, the latter represents the generation of
information for which a solution can be found. The idea that has been introduced
to describe these types of scenario can be found in the concept of Cyber-Physical
System.
CPSs are slowly spreading like wildfire, granting and improving that level of bind-
ing between human-being and machine, so as to make humans’ life easier.
Among all the fields covered by the CPS, the automotive one is constantly grow-
ing.
To be more specific, one specialization of CPSs in that field is represented by
MANET(Mobile Ad hoc NETwork) which, on its turn, includes VANET (Ve-
hicular Ad hoc NETwork). These are able to permit a driving experience partial
or completely autonomous, through communication between vehicles and devices

8

Introduction

placed on road side. In other words, developers are trying to make this kind of
vehicle “smart”, so as to offer services of different nature, in order to improve the
quality of driving.
Thanks to VANET is possible to create a system made of vehicles with a constant
evolving topology of the net, due to the fact that the position of communicating
vehicles is taken into consideration as fundamental parameter. The quality of driv-
ing is referred to those kinds of vehicles that are able to drive autonomously. In
fact, there are six levels of automation; starting from level zero, in which the car
is driven by humans without help by the car to the level six, in which the car is
without pedals, steering wheel and it is self-driven. Up to now, the level three is
particularly used , where the car is partially autonomous but the driver has to be
ready to take the control of the car in case of problems.
Many car manufacturers are investing in that field, in order to develop cars able
to drive themselves with levels of automation greater than three. Audi, Mercedes-
Benz, Tesla, Toyota, BMW, Ford, Volvo, Uber, Hyundai, Nissan-Renault-Mitsubishi
alliance and Google too are an example. For instance, the 2009 has been the year in
which Google has launched their driverless car, the pioneer of that way of driving.
Each of them started studies under the cybersecurity’s point of view even if, as it
will be seen, lots of them have been subject to hacker attacks.
According to [1], it has been observed that:

❼ if the autopilot is enabled, there has been 1 incident every 7,92 millions km;

❼ if not, there has been 1 incident every 2,51 millions of km.

Audi, on its turn, has made a report [2] in 2022 in which describes the myths re-
garding autonomous driving. One of them focuses on the concept of the security,
describing the fact that next to the developing of driverless car (which are more
secure than the normal ones):
“manufacturers are constantly developing protective measures against cyberattacks
and improving the protective mechanisms, both inside the vehicle and outside in the
back end”.
In addition, there are many cybersecurity attacks that affect this category of cyber-
physical systems.
Furthermore, to mention one of the cybersecurity aspect in this field, the communi-
cation one must be able to avoid disruption of systems, generation of misinformation
or tracking of vehicles to retrieve network topology and steal sensible information
about drivers such as places mostly visited.
In other words, what is worrying a lot manufacturers is the fact that many cy-
berattacks can be conducted on this type of cars, and these attacks can be very
dangerous because, in the worst case, the control of the car (under software and
hardware point of view) is lost. For this reason, given the difficulty of analysis of
these systems, also under cybersecurity aspect, and to avoid the possibility of set-
ting up a complex, real and expensive system (i.e. a vehicular one made of roads,
cars, etc.) to perform simulations, a solution can be found in the simulators.
They are able to make a detailed and meticulous analysis, generating data to be
studied in order to have a vehicular system correctly designed under different points
of view, especially under the security one.

9

Introduction

1.1 Thesis structure

For that reason, this thesis will be structured in this way:

❼ chapter 2 starts with the definition of the concept of the CPS for later examine
on its principal specialization: the world of the VANET. So, it will defined the
general architecture of this type of network, analysing each single component
that is devoted to the realisation of it.
Finally, the internal communication protocol will be described, highlighting
the standards implemented for VANET;

❼ chapter 3 focuses its attention on the concept of security which covers the
world of VANET. Specifically, cybersecurity concept is divided into its three
main aspect: cyber, cyber-physical and physical.
Once defined the security requirements, it will follow a detailed analysis of
which can be the real attacks that affects the VANET system with its asso-
ciated countermeasures, through the listing of a series of attacks concretely
happened in famous car manufacturers;

❼ chapter 4 firstly introduces simulators, describing the different types and
showing the principal challenges. Then there will be the analysis of two impor-
tant simulators, Veins and Eclipse MOSAIC, since they are the principal
open-source framework.
Finally this chapter will be concluded by listing the cybersecurity aspects
that they offer and discussing, under a critical point of view, how some func-
tionalities have not been implemented yet, resulting in a difficult realization
of simulations;

❼ chapter 5 contains the simulations of different types of attack. In particular,
lots of them are implemented according to the classes of attack defined in
Chapter 3. It is configured the simulation by defining the map that will be
used. In particular, SUMO commands are used to generate the map obtained
from the city of Turin. As a result, some attack will be simulated inside the
previously generated map. As it will be seen, in some situations the mobility
of nodes inside the network is important and plays a role in the analysis of the
outcome. On others situations there are attacks that, for instance, focuses
primarily on the exchanging of messages or on the wireless communication,
so it is relevant to take into consideration other parameters.
The totality of simulations have been conducted on Veins. Despite being the
latest open-source framework with continuous update and several releases,
some attack is still not implementable, due to the limitation of the simulator;

❼ chapter 6 analyses the simulations previously realized and observes the be-
haviour of the network under attack and how CAVs and RSUs behave. All
implemented attacks are analysed and mitigations are proposed. When fea-
sible, they are practically implemented and proposed as a solution. In some
case it is not possible to do it due to the limitations that will be discussed in
Chapter 7, and solutions are proposed according to the literature. Further-
more, it is interesting to observe the values that have been observed during
the attacks, such as the number of packets that the systems do not have been

10

Introduction

able to manage and the number of packets per second lost, which give a con-
crete idea of what could happen in real life. Again, different limitations are
raised from the analysis of these cybersecurity attacks;

❼ chapter 7 concludes the thesis work. It focuses on what has been explained,
analysed, simulated and observed. As a result of it, it is explained how has
not been possible to implement all cybersecurity attacks and some attack that
has really happened due to the limitation of Veins simulator. In particular,
different limitations are explained and, where possible, improvements for fu-
ture works are proposed. The message that has been given is that nowadays is
still difficult to create a scenario to run a simulation because some pieces are
still missing. These pieces can be identified in different modules that involves
the cars and their functionalities, such as the management of different parts
of the car (horn, car doors etc.) and functional modules (i.e. integrated Veins
security functionalities);

❼ appendix contains the end user guide to install the software that has been
used in the simulations and a manual on how to make a simulation by using
Veins tool. These are Appendix A and Appendix B, respectively.

11

Chapter 2

CPS overview and its
specialization: VANET

2.1 CPS overview

According to NIST (National Institute of Standards and Technology):

“Cyber-physical systems (CPSs) are smart systems that include engineered inter-
acting networks of physical and computational components.” [3]

In line with this definition, it is obvious to understand that CPSs are not the
traditional systems or the real-time ones. On the contrary, they have a set of fea-
tures that makes them unique.
In fact, these interconnected systems are able to provide new characteristics to im-
prove the quality of life. Depending on what is the sector in which this type of
systems is applied, it can be particularly useful. As indicated previously, a CPS

Figure 2.1. View of a Cyber-Physical System [4]

consists of a cyber component and a physical part. The figure 2.1 is the sum of its
formal definition. The core of the cyber component is made by the communication
network, composed by sensor networks and computational units. The former are
used for communication between sensors. The latter is linked to the actuators (for

12

CPS overview and its specialization: VANET

controlling the physical system) through internet with wires or wirelessly and per-
forms computation, generation of results and control signals for other parts of the
system. On the other side, the human-computer interfaces (HCIs) allow humans
to take control decisions based on results that come from other parts of the CPS.
The physical part of a CPS includes the entities that are closer to the particular
kind of physical system under observation. For example, in smart cars, sensors that
take measurements related to the speed of cars and inform drivers about it.
Even though this figure depicts a sort of logical separation, in real life there is a
continuous communication between these components.

2.2 CPS scope

Scopes of a Cyber Physical System are wide. Its segmentation involves many ap-
plication sectors. Among them, it is relevant to take into consideration the one
that includes the smart transportation. It is one of the most studied and, over
time, it is evolving a lot. Smart transportation is composed by different elements,
such as autonomous vehicles and traffic system controls. In other words, these are
a clear example of CPSs.
To be more precise the formers, as it will be seen in section 2.3, are capable of
communicating with other autonomous vehicles or with road side devices; the lat-
ters, on the other hand, receive information from vehicles and are able to make
measurements in order to manage traffic and to inform other vehicles in different
cases, such as during an emergency.
As it can be inferred, CPS can communicate with each other to produce more
complex systems. These are called SoS: “Systems of Systems”. In this way it will
be possible to have a continuous communication in the evolving and just created
cyber space, setting up a sort of community of host that communicates and informs
who comes inside this cyber space, from time to time, so as to make a decision,
depending on what information comes up, such as lane changes to avoid incidents,
vehicles in proximity, deceleration, stop, etc.
Furthermore, vehicles collect data about the on location traffic in order to send
them to traffic monitoring systems which, on their turn, are able to change the
route of vehicles to avoid traffic. CPS can communicate with another CPS regard-
ing weather, which collects data and inform drivers early.
The next section will describe in detail the type of Cyber Physical System previously
mentioned. As it will be seen it is called VANET, Vehicular Ad hoc NETwork.

2.3 VANET: characteristics

VANET is a type of network that wires an enormous field of mobile circulated
applications which runs in vehicle. Vehicular Ad-hoc Network (VANET) are an
exact specialization of the Mobile Ad-hoc Network (MANET) where the vehicle
acts as the mobile nodes; the node should communicate with each other through
single hop or multi hop. Their main characteristics are :

❼ High mobility. In VANET, the node inside the network moves in a fast way

13

CPS overview and its specialization: VANET

and, as a result, it is important to calculate and to have the right position of
the vehicle;

❼ Rapid change of net topology. The node in VANET is high mobile and
their speed is also very random. As a result, the node position will change
with high frequency. For this reason, the topology of the net is dynamic and
it depends on the route of the vehicles;

❼ Frequent exchange of information. Normally VANET collects various
information from their neighbour vehicles and other infrastructures. So that,
the nodes exchange their information periodically;

❼ Time critical. Within the time period, the information in VANET should
send to the accurate node. The node will make a decision and execute action
correspondingly;

❼ Infrastructureless. VANET is an infrastructureless network, if it is con-
sidered that the network is formed by vehicles. For that, there is no need
of any physical medium between vehicles for communication and there is no
need of any centralized controlling authority. In VANET is possible a type
of communication known as “hop-to-hop”, and for that there is no need of
hardware devices like switches or hubs. “Even if we consider other units such
as Road Side Units in the network, these are very basic resources which are
deployed along the road side.”; [5]

❼ Self-organized. “Nodes in VANET takes their own decisions for forwarding
messages. Nodes itself act as a switch for transferring data. Hop-to-hop
communication is possible. These features make VANET as a self-organized
network.”; [5]

❼ Critical latency requirement. “Latency is nothing but the time interval
between sending messages by a source node and receiving messages by a
receiver node is different from zero”. In a VANET, due to highly mobile
nodes, i.e., vehicles, they may be running in opposite directions. The nodes
remain in the vicinity of each other for very short time periods. It is important
to receive the message by the destination vehicle in a given time period. To
achieve this network, a critical latency requirement is needed. Communication
in the VANET network should be made with low latency. [5]

2.4 VANET components

The VANET, as it will be seen, is made of several components, each of them
dedicated to the execution of specific tasks. They allow different kinds of commu-
nication. Figure 2.2 is an example of it. Two of them are particularly relevant to
be analysed:

❼ V2V: “Vehicle to Vehicle”, which represents a direct communication between
CAVs (Connected Autonomous Vehicles). In this type of communication a
vehicle can accept transmission and exchange helpful traffic information such
as information regarding distances, speed, incidents and so on;

14

CPS overview and its specialization: VANET

❼ V2I: “Vehicle to Infrastructure”, that represents a kind of communication
between a CAV and an infrastructure such as the RSU (Road Side Unit). To
be more specific, in this transmission type, the details will become transmitted
between the nodes (i.e auto mobile) and the infrastructure, to talk about
beneficial information such as street safety and conditions events. An auto
mobile (node) launches a connection between RSU and get in touch with
exterior systems, which is usually internet.

In general, the communication between CAV and other entities is marked as V2X,
which stands for “Vehicle to everything”, since it can also communicate with other
components, apart from infrastructures or vehicles, such as pedestrians’ devices or
network (V2P and V2N respectively).
In conclusion, the opposite of V2I is I2V, in which there is a communication from
the infrastructure to the vehicle, generally when there is a broadcast message to be
sent to all vehicles from RSUs.

Figure 2.2. VANET Architecture [6].

After having discussed the way in which CAV can communicate with other devices,
it follows a description of each element.

2.4.1 RSU: Road Side Unit

This component, the RSU, is generally described as a vehicular communication
system. According to the FCC (Federal Communications Commission), it states:

“[..] A Roadside Unit is a DSRC (Dedicated Short Range Communications)
transceiver that is mounted along a road or pedestrian passageway. An RSU may
also be mounted on a vehicle or is hand-carried, but it may only operate when the
vehicle or hand-carried unit is stationary. Furthermore, an RSU operating un-
der this part is restricted to the location where it is licensed to operate. However,
portable or hand-held RSUs are permitted to operate where they do not interfere
with a site-licensed operation. An RSU broadcasts data to OBUs (On Board Units)

15

CPS overview and its specialization: VANET

or exchanges data with OBUs in its communications zone. An RSU also provides
channel assignments and operating instructions to OBUs in its communications
zone, when required.”

RSU includes a processor that runs the applications, data storage such as memory,
and communications capabilities such as 4G/LTE or 5G and GPS receiver that
support secure communications with passing vehicles, other field equipment, and
centres. Each RSU consists of a large electrical cabinet that houses all the different
modules of the RSU. These include modules for wireless communication, modules
for local processing on the RSU, and modules for remote management (reduce field
service operating costs.). The hardware and communication modules inside the
RSU provides support for V2X radio links, such as short-range based on ITS-G5
and C-V2X with PC5 interface working on 5.9 GHz. Vehicles equipped with the
V2X will be able to receive information from the RSU. The long-range communi-
cation is based on 4G. The modular design approach of the RSU has increased the
serviceability as well as making it easy to add new capabilities to the box.

Figure 2.3. RSU Architecture [7].

2.4.2 OBU: On Board Unit

This kind of unit is the electronic device placed inside the vehicles, which is made
of several parts. To be more specific:

❼ Processor: it is the computational part, in which all the operations are
executed;

❼ Global Positioning System (GPS) : it is used for identifying the physical
location acceleration and direction of movement of vehicle at specific interval
of time;

❼ Read/write memory: since each OBU records messages, through this mem-
ory is possible to perform reading and writing operations;

16

CPS overview and its specialization: VANET

❼ Sensor nodes: radars and sensors are used to detect obstacles that appears
during movement of vehicle;

❼ Event Data Recorder module (EDR) : EDR is an electronic device and
part of OBU. It stores all the transmitted and received messages to the nearby
OBUs and RSUs. It also records all activities that happened in vehicle envi-
ronment during the trip.

In general, OBUs are mounted on-board and exchange messages with others CAV
(which mount OBUs) and RSUs. Furthermore, OBUs controls ad-hoc connection,
routing, IP-based mobility management, data security issues and network conges-
tion. A special purpose-computing device is attached with OBU. It is responsible
for taking necessary action corresponding to messages received from other OBUs
or RSUs. To identify a vehicle uniquely, an Electronic License Plate (ELP) is also
associated with every vehicle.

2.4.3 AU: Application Unit

The AU is a device mounted inside the vehicle that is used with the application given
by the provider in order to communicate with the OBU. This type of communication
can be practically implemented through wired or wireless communication, so as
to have a way for sending and receiving data. The distinction between AU and
OBU is purely logical. Physically they are part of a single unit. Furthermore,
the Application Unit is most of the time considered as the Graphical Interface
used between the user and the OBU. The AU can be a dedicated device for safety
applications or a normal device such as a personal digital assistant (PDA) to run
the Internet.

2.4.4 TA: Trusted Authority

As stated by [8], this component is responsible for the trust and security of the
overall VANET. It includes also the verifying of the authenticity of nodes and the
revoking of vehicles in case of malicious behaviour. As a result, TA must have high
computational resource and high storage capacity.

2.5 VANET communication

As seen in section 2.4, nodes inside VANET can communicate or one another or
with fixed location device such as RSU. The exchanging of messages contains dif-
ferent type of information, from the temporary to the emergency ones.
Going into details, the communication inside this type of network is defined through
the concept of DSRC. It is a standard and it stands for “Dedicated Short Range
Communication”. According to its definition, it is stated that:

Dedicated short-range communications (DSRC) are one-way or two-way short-range
to medium-range wireless communication channels specifically designed for automo-
tive use and a corresponding set of protocols and standards .[9]

17

CPS overview and its specialization: VANET

From October 1999 up to now, it has been discussed the band to be used by this
systems. After several years, it has been decided to allocate 75 MHz, divided into 45
MHz to the ISM (portions reserved for Industrial,Scientific and Medical purposes),
and the remaining used by VANET. Both work in the band of frequencies that goes
from 5.850 to 5.925 GHz. Furthermore, the DSRC band is also regulated by ETSI
(European Telecommunications Standard Institute), using only the channels 180 of
CCH (Control CHannel) and 172,174,176,178 of SCH (Synchronisation CHannel).
[10]

Figure 2.4. Protocols used in ISO/OSI stack [11] .

Taking into consideration the figure 2.4, it depicts the layered architecture for DSRC
standard used for VANET. Comparing it with the OSI model, DSRC has an ar-
chitecture made of five levels: physical, data link, network, transport, application.
Focusing on the lowest, DSRC uses 802.11p for physical layer and data link, so
as to manage better the medium access and the physical layer management . It
specifies also the communication frequency, radiant power, data rate.
IEEE 802.11p is based on IEEE 802.11. It is a specialization of the latter, that
has been designed for intelligent vehicles (CAV) so as to guarantee and facilitate
the provision of fast and reliable wireless access in the VANET. It is obvious that
802.11p works in the band between 5.8 and 5.9 GHz.
In particular it is based on an orthogonal frequency-division multiplexing (OFDM)
PHY layer but uses 10-MHz channels. As a result, data rates ranges from 3 to
27 Mb/s for each channel, where lower rates are often preferred in order to obtain
robust communication.
In this way, IEEE 802.11p technology is targeted as the common technology used
for traffic applications.
The upper levels use the IEEE 1609 protocol. It is used in part of the layer two and
three. The union of IEEE 802.11p and IEEE 1609 protocol is denoted as WAVE
(Wireless Access in Vehicular Environments). It is considered the standard for
managing data that routes from one vehicle to another, or from one vehicle to a
fixed unit (such as RSU). In other words, it is seen as the most promising technology
for vehicular networks.

18

CPS overview and its specialization: VANET

2.6 VANET architecture

After having defined the individual components and the various communication
protocols, it is reasonable to define a reference architecture to better understand
how they communicate one another and through what communication mechanisms.

Figure 2.5. A general VANET architecture [12].

According to the figure 2.5, it follows a representation of how all the components
previously mentioned are linked one another.
The principal actors are represented by CAVs and RSU. A general CAV is made
of an OBU, AU and other components that contain sensors and control units.
Internal components of a driverless car communicate through CAN (Controller
Area Network) protocol, which is defined as a serial communication digital bus of
“broadcast” type. It allows a real-time and distributed control with a high level of
security. In other words, it is a way of letting all the CAV components talk.
Furthermore, it is a standard ISO (ISO. 11898). [13]
Each CAV talks with another device (pedestrian, fixed location unit, or other ve-
hicle) through its OBU mounted inside the vehicle. The OBU notifies the user
through the AU installed on the vehicle, in order to give to the user information
of different nature. Meanwhile, RSUs collect data coming from other OBUs and in
emergency case they broadcast emergency message to nearby nodes.
Each OBU, on their turn, communicate each other to be self-managed through the
exchanging of information such as velocity, speed limits, traffic lights, stop signals,
order of precedence, lane changing, weather information etc. All of it is possible
through a 5G communication, that exploits WAVE protocol.

19

Chapter 3

Cybersecurity and VANET

The chapter 2 has described the CPS and its specialization, the VANET. These
two concepts have many aspects through which is possible to perform analysis.
One of them, without any doubt, is the security one. In general, and according to
[14], since VANETs are a particularization of a CPS, its security aspects can be
organized in two macro arguments: security involving CPS and the one that refers
on VANET. Will follow a further description.

3.1 Security in CPS

Under this point of view, it is possible to describe the cybersecurity concept under
three aspects. These are:

❼ Cyber: cyber components do not interact directly with the physical ones.
They are intended to be the software part of the CPS. As a result, it includes
computations, monitoring activities, communication processes;

❼ Cyber-physical: it is considered a sort of bridge between cyber and physical
world. It involves all these cyber modules that interact with the physical
modules;

❼ Physical: this view includes all the components that interact in a physi-
cal way with the physical world. An example of them can be sensors and
actuators.

It is nowadays obvious and, in some situations, predictable to buy a new car
equipped with all kinds of comfort. All these optional functionalities are wide
and lead to significant improvements about the driving experience.
It is important, on the other hand, to understand if these are secure and if the
cybersecurity milestones are respected. It must be considered if the overall aspects
of cybersecurity are taken into consideration too.
These are only partial doubts that is possible to ask about the usage of this kind
of components inside these systems.
It is reasonable, under this terms, to make a notable distinction between what is
safe and what is secure. In fact, according to [15] :

❼ Safety: it is the set of measure and tools used to prevent or reduce accidental
events that could injure people or could damage things;

20

Cybersecurity and VANET

❼ Security: it is the set of actions and tools in response to a running threat,
coming from malicious action, organized with the aim to cause damage.

[14] states that is true that cars are safe by design, but most of the time the
security is not considered during all design stages at system development time.
Consequently it will be obvious to understand the fact that there will be a number
of issues, denoting vulnerabilities of the system.
Having pointed out these two concepts, it is now time to describe something which
is more important, the “security threat”.
Specifically, this type of threat is defined as
“A potential for violation of security, which exists when there is an entity, circum-
stance, capability, action, or event that could cause harm.” [16].
A part from all the components that make a CPS, one of the most critical asset to
be taken into consideration and on which to focus more, without any doubt, is the
people.
In fact, since the CPS components can be analyzed through security software
and malware detection systems, the behaviour of people is, in many cases, un-
predictable. As a result, they are cheated and some attacker can take the control
of their device.
Before going on with the explanation of security factors that affect a CPS (and in
general a VANET since the latter is a subset of the former), is necessary to define
key concepts under security point of view, whatever they are. In details, these are:

❼ Weakness: result from poor coding practices and have the potential to result
in software vulnerabilities; [17]

❼ Vulnerability: A flaw or weakness in a system’s design, implementation, or
operation and management that could be exploited to violate the system’s
security policy; [16]

❼ Exploit: it is a piece of software, a chunk of data, or a sequence of commands
that takes advantage of a bug or vulnerability to cause unintended or unan-
ticipated behaviour to occur on computer software, hardware, or something
electronic (usually computerized).[18]

Each CPS component that could have a threat can be defined under five factors.
These are: source, target, motive, attack vector, potential consequences.

1. Source: the threat source is effectively the initiator of the attack, and it can
be divided into:

(a) Accidental threat: threats that have been caused accidentally or through
legitimate CPS components;

(b) Adversary threat: which pose malicious intentions from individuals,
groups organizations, or states/nations;

(c) Environmental threat: which include natural disasters (floods, earth-
quakes), human-caused disasters (fires and explosions), and failures of
supporting infrastructure (power outage or telecommunications loss).

2. Target: targets are CPS applications and their components or users on which
an attack is conducted;

21

Cybersecurity and VANET

3. Motive: CPS attackers usually have one or more reasons to launch an attack:
criminal, spying, terroristic, political, or cyberwar;

4. Attack vector: a threat might perform one type or more of four mechanisms
for a successful attack. Formally it is known as “[...] a method or pathway
used by a hacker to access or penetrate the target system.”; [19]

5. Potential consequences: Compromising the CPS’s C.I.A., privacy, or safety.
It is known that the acronym CIA stands for Confidentiality, Integrity
and Availability and it represents the milestone on which the cybersecurity
is built. [14]

3.2 Security in VANET

Being VANETs subset of CPSs, the analysis performed at previous paragraph can
be reflected on them, defining under three aspects vulnerabilities to which VANET
could be subject to.

1. Cyber vulnerabilities: since smart cars allow a binding with a mobile
phone in order to have more functionalities inside the vehicles, it has been
observed that many security threats can be identified in attacks on mobile
devices, by tracking GPS and user’s microphone. As a result, it is simple to
understand that the privacy of the user will decrease. This connection reveals
a target’s whereabouts, or can become a spying tool via eavesdropping on the
in-car conversations by exploiting the microphone. Another problem can be
referred to the usage of Bluetooth. In fact, when the user connects his device
to the smart car through the Bluetooth, if there was Bluetooth vulnerabilities,
it would be possible to exploit them to run attacks and to brute force the PIN
used for the binding so as to have the complete control of the system. As a
result, Bluetooth connections could expose the car to traceability attacks if an
attacker successfully extracts the Bluetooth’s media access control address,
which is unique and traceable;

2. Cyber-physical vulnerabilities: under this aspect and according to liter-
ature, smart cars are vulnerable due to the lack of security considerations in
their design. CAN protocol, has lack in encryption, authentication and au-
thorization mechanism. As a result, these vulnerabilities contribute to most
of the attacks on CAVs. Being CAN protocol a bridge between all CAV’s
components, it has been observed how it would be possible to perform eaves-
dropping of the communication through the TPMS(Tyre Pressure Monitoring
System) in order to obtain its ID and trace the car. Furthermore, CAN pro-
tocol can be subject to DoS attack, because it does not manage well the
errors. As a result, it is also missing the concept of non repudiation because,
as previously said, it is a consequence of a DoS attack and it is not possible
to identify the source of the message;

3. Physical vulnerabilities: it represents that kind of vulnerability in which,
sometimes, it is not requested to have cybersecurity skills. Exposing the
smart car to all type of physical access is another kind of vulnerability that

22

Cybersecurity and VANET

can cause critical attacks. For instance, a mechanic could exploit some part
of the car to get access to the components of the CAN network.

3.2.1 VANET security requirements

Going into details, it is appropriate that VANET observes a series of security re-
quirements, since several attacks can be conducted on it. Next to the CIA triad
(Confidentiality, Integrity, Availability), there are other requirements that this kind
of network must respect. To be more specific and referring to [20]:

❼ Authentication: it is a key requirement in the exchanging of messages. It
ensure that sent messages are possible from legitimate nodes; so, unauthenti-
cated nodes or adversary ones are not capable of sending the message. Among
all types of authentication, the one referred to the Connected Autonomous
Vehicles is the entity authentication, that is used in those situations in which
the sender of the message is part of the network, granting the fact that the
message has been sent in a short period of time;

❼ Availability: it ensures the the information is available to the users when
it is required. Also in this case the dynamicity of the nodes foresee that the
response time is very fast, resulting in the idea that every type of delay in
the delivering of the message makes it worthless;

❼ Message Integrity: it states that the message has not been altered during
the transmission and that it has been generated by the legitimate node;

❼ Message Non-Repudiation: it prohibits a sender from denying that he
or she has not sent the message. However, everyone else cannot identify the
sender rather than only authorities should be allowed to identify who has sent
the message;

❼ Access control: authorization specifies what a node can do. It is required to
enforced the access control which state that all nodes will function according
to the roles and privileges assigned. For instance, a node is allowed to perform
a function only if a node is authorized for that. In this way it is granted a
level of security in the topology of the network;

❼ Message Confidentiality: the message transmitted must be confidential i.e.
free from alteration by intruders. In order to grant confidentiality, ciphering
and deciphering is used. Some nodes want to communicate secretly. However
there are borderline cases, that is those situations in which no one other than
the law enforcement authority cannot do that. An example could be the
situation in which is requested to find the location of a criminal or a terrorist;

❼ Privacy: privacy ensures about unauthorized access of the private informa-
tion of the driver. Location privacy assures that the past or future locations
of vehicles cannot be determined in any case. Though, the various law en-
forcement authorities can trace user identities to determine criminal respon-
sibilities;

23

Cybersecurity and VANET

❼ Real time guarantees: the message transmitted should have the hard dead-
line of delivery which is essentially required in safety related applications.

On the other hand, if it is taken into consideration what it is stated by [21], it is
listed in general terms a series of possible vulnerability that affect the VANET. In
fact, in the situation in which some of the requirements listed above were lacking,
it would be observed a vulnerability of the following type:

❼ Jamming: an attack that attempts to interfere with the reception of broad-
cast communications. [16] It is achieved by interjecting electromagnetic waves
on the same frequency; [22]

❼ Forgery: it affects the correctness, validity and reception of transmitted
data. The compromising of one of these fields can cause chaos in the zone in
which the VANET is located;

❼ Impersonation: any vehicle owner deliberately and hideously taking on the
identity of another vehicle and attributing it to his own vehicle or vice-versa
is known as impersonation. It also involves fake message fabrication, message
alteration and message replay. For instance, an attacker appearing falsely
as an emergency vehicle and misleading other vehicles to useless or harmful
consequences is an impersonation attack;

❼ Privacy: the illegal monitoring of driver’s personal data could violate their
privacy. Attacks on driver privacy are a severe vulnerability in VANET due
to the periodic and frequent nature of vehicular traffic. Driver’s personal
data can be retrieved by means of illegal in-transit traffic tampering of safety
and traffic related messages sent by the driver, management messages, or
even from transaction based communications such as automated payments.
Such frauds and deceptive scams have been on an increase especially among
networked devices as cyber criminals get an opportunity to send spurious
messages to any device on the network.

A part from these type of requirements that are necessary in order to have a se-
cure and well designed VANET, there could be situations in which tampering with
the road side infrastructure, removing, dislocating or destroying them is another
security issue in VANET. OBUs are tampered in a manner similar to that of mod-
ifying an odometer in earlier vehicles. Use of magnets, electric fields and malicious
software to damage OBUs is a source of concern that needs to be addressed for
safer and secure VANET communication. Although the OBUs could be subject to
periodic examinations and inspections for any signs of tampering, limitations exist
in relation to the frequency of inspection and the honesty of technicians performing
the inspections. To ensure reliable and secure V2I communication, it is required
that the roadside equipment is not damaged o purpose.

3.3 Real attack mechanisms on VANET

Previous paragraphs have described the concept of cybersecurity at higher levels.
Now it is time to go into details about the real attacks that can be conducted.

24

Cybersecurity and VANET

Firstly it can be said that VANET, unfortunately, are susceptible to several at-
tacks such as unauthorized access, the sending of fake messages, leaking of private
information, eavesdropping and so on. In the security of VANET different entities
are involved. In particular, and as stated by [23], these are:

❼ The vehicles: in VANET world they are considered as Connected Au-
tonomous Vehicle and they represent all types of vehicles such as cars, buses
etc;

❼ The infrastructures: it includes all the infrastructures involved in a VANET,
i.e. RSU, traffic lights and so on;

❼ The drivers: since in future CAV will not have a driver, it is intended as
the human that is inside the CAV and can be confused by the attackers;

❼ Third parties: it includes traffic police, transport regulators and so on;

❼ The attackers: the thing that conducts the attack, which can be of different
types.

In particular, and in order to give a better and clear description about the last
item, it is reasonable to identify the various types of attackers. According to [20],
they can be categorized in:

❼ Insider v/s Outsider attackers: the authenticated members of network,
known as Insiders, have full knowledge about the network and hence are very
dangerous because this knowledge will be used for understanding the design
and configuration of network. On the other hand, outsiders are the intruders
and they have the limited competence to attack;

❼ Active v/s Passive attackers: active attackers are those who attempt to
modify the network resources or disturb their normal operation. They either
generate signals or packet with an intension of some alteration of the original
data or the creation of a false stream. Passive attackers, on the other hand,
only listen the network traffic to identify the information/pattern that is being
transmitted. It is very difficult to detect passive attacks as compared to active
attacks;

❼ Malicious v/s rational attackers: Malicious attackers just check the secu-
rity mechanisms of the network and don’t have any personal benefit; whereas
rational attackers may have the personal profit that’s why they attack on the
network.

It is also important to point out the coverage area, which is the main area in
which the attack is conducted. Generally, and according to [24], it is about 1000
meters that can be improved by exploiting the DSRC channels better. After having
introduced the actors of a general attack, it is now time to describe their classes.

25

Cybersecurity and VANET

Attack class Description Attacks involved

Class 1 Network attack

Denial of Service Attack;
Node impersonation attack;
Black Hole attack;
Sybil attack;
Masquerading attack;
Brute force attack;
Distributed Denial of Service;
GPS spoofing attack;
Worm Hole attack;

Class 2 Application Attack

Bogus information attack;
Safety application attack;
Non safety application attack;
Broadcast tampering attack;
Illusion attack;
Message alteration attack;

Class 3 Timing Attack
Peer to peer timing attack;
Timing attack for authentication;
Extended level timing attack;

Class 4 Social Attack Social engineering attack;

Class 5 Monitoring Attack
Man in the middle attack;
Traffic analysis attack;

Table 3.1. Table of attacks [23].

3.4 Classes of attacks

Attacks, as stated by [23] can be divided into five classes. The table 3.1 describes
properly them. In particular:

1. Network attack:

(a) Denial of Service attack: it is a kind of attack in which a malicious
user sends a huge number of packets to the other nodes such as RSU or
other OBUs. The aim for performing this attack is to stop the user in
the usage of the network services. A concrete example of this type of
attack is the SYN flooding attack.[25]
In fact, a huge number of half-opened TCP connections are created be-
tween two vehicles in a VANET but never closed. Since TCP connection
depends on three way handshake, firstly one connection is established
and then the attacker floods the victim with a huge number of SYN
messages to a specific remote station or a vehicle. The more received
SYN messages by a vehicle (victim node), the more size required in its
buffer to register these messages at its tables. Hence, a lot of resources’
consumption has happened; its system may be out of service for a period
of time;

(b) Distributed Denial of Service attack: it works same as the DoS
attack but it is done through a huge number of nodes;

26

Cybersecurity and VANET

(c) Node impersonation attack: this type of attack is the one in which
the attacker impersonates another node, since each CAV has a specific ID
for being identified. With it, the malicious node is able to impersonate
another node and to act as a real user and showing that the message is
originated by it. As a result, the attacker is able to alter the message;

(d) Black Hole attack: it is an insidious attack because the attacker claims
itself to be the node that has the shortest path to the destination node.
In this way, the victim will discard the other nodes. As a result, the
attacker will receive all the messages and all of them will be lost;

(e) Sybil attack: this attack is performed in those situations in which the
attacker wants to control multiple nodes. For this reason, the attacker
creates fake identities that represent different nodes that will control;

(f) Masquerading attack: a node is able to masquerade its identity and
it is able to act as another node such as the police vehicle. The result of
it is the lost of trust from VANET;

(g) Brute force attack: it can be considered as a cryptographic attack.
In fact, since the exchanging of messages is encrypted, a malicious node
tries to intercept a message and brute forces it in order to read the
plaintext;

(h) GPS spoofing attack: according to [26], in this type of attack attacker
tries to change current geographic location identity and produce false
information from GPS system by using such technique user is hiding
his current position from the network and show the wrong position to
others. This attack can be done by single vehicle or group of vehicles;

(i) Worm Hole attack: according to [27] this type of attack is done in a
way in which two or more malicious nodes are placed in strategic places
inside the network. One of them record part of its communication and
it creates a direct tunnel with the other attacker. In this way, the latter
will broadcast the messages the former attacker received. The result of
this attack can mutate into a DoS attack;

(j) Byzantine attack: analysing what is stated by [25], this attack can be
launched by a single node or by a group of nodes. The aim of it is to
degrades the routing performance and to disrupt the routing service by
creating routing loops by intermediate compromised nodes in order to
forward routing packets in a long route instead of the optimal one, so as
to drop packets in the worst scenario.

2. Application attack: it is a malicious attack since there is an alteration of
the message in V2V communication. Suppose that CAV ’A’ wants to say to
CAV ’C’ to change road due to traffic but there is another CAV ’B’ and the
message goes from ’A’ to ’B’ and from ’B’ to ’C’. If ’B’ is the attacker, the
bad node is able to change the message into “the road is ok there is no traffic”
and to forward it to ’C’;

3. Timing attack: it represents those attacks in which there is a delay in the
communication. In particular, supposing that the sender sends a warning

27

Cybersecurity and VANET

message at time t and the messages are sent and received each second, it
will not be received at t+1 but probably at a time greater than one. The
aim of this attack is to create delay, dangerous situations by increasing the
transmission time of messages;

4. Social attack: the principal scope of this attack is to disturb and distract
the user. The attacker can send messages to another node such as “you are
an idiot” in order to distract it through ugly messages. The result of it can be
identified in the behaviour of the receiver, who will be angry and not happy
of receiving such messages;

5. Monitoring attack: these are types of attack in which there is a sort of
control in the overall network. In particular, vehicles are tracked inside the
VANET. Attackers will monitor the network through man in the middle
and traffic analysis attack.

Since section 3.2 describes the vulnerabilities under three aspects (cyber, cyber-
physical and physical), it is now reasonable to join that separation with the five
classes of attacks, just mentioned.
In particular network attacks can be mostly included in the cyber-physical set, a
part from Brute force and GPS spoofing attack, which are part of the cyber set.
On the other side, Application, Timing and Social attacks are completely part of
the cyber set, because each attack works with the software part of the system.
In conclusion, Monitoring attacks are cyber-physical because there is an involve-
ment of the cyber part and the physical ones.
As a result, this distinction will be useful at simulation time, because it will help
in the choosing of the simulator to be used to conduct analysis.

3.5 Countermeasures on VANET attacks

Previous section has given an overview about the attacks that can be conducted
on VANET. Them can / cannot have mitigations. The fact that there is not a
countermeasure yet is the sign of the fact that is necessary to continue studying
VANET world and to perform several simulations. It, associated with the difficulty
of performing simulations (as will be explained in further chapters), can now give an
idea of how much is difficult to analyse in practice the security aspect of VANET.
However, and referring to an updated literature, it will follow a list of possible
countermeasure.

❼ DoS: in Denial of Service attack the security property that is violated is,
without any doubt, the availability. A possible preventive measure could be
the identification of the IP information. In particular, and according to [28],
they propose a solution in which they create an array X in which they store
incoming and outgoing IP devices. In this way, this algorithm is able to detect
duplicated IP addresses and to detect possible situations that can be similar
to DoS attack;

❼ DDoS: in Distributed Denial of Service the situation is much more dangerous
since its nature. For this reason, a possible countermeasure can deal with

28

Cybersecurity and VANET

statistical approach and the usage of IPS (Intrusion Prevention System). As
described by [29], the sending and receiving of messages among CAV and
RSU can be observed in order to define a normal distribution. As a result,
is possible to compute the entropy of the system. If the DDoS is performed,
the entropy and the normal distribution will not be the same as the normal
situation. Thus, the IPS will notice this changing and will notify the network
by dropping packets that are sent inside it. This implementation has pros and
cons because it depends on where the IPS is mounted. In fact, supposing to
have two IPSs (IPS1 and IPS2) in two different areas (A1 and A2), there could
be situations in which the IPS1 is mounted in A1 with a huge exchanging of
messages and IPS2 in A2 in which there is less exchanging of them. If they
have the same entropy threshold, IPS1 could generate false positives since
there are only more messages exchanged. So, it is necessary to have different
thresholds since the number of packets sent and received is different;

❼ Node Impersonation / Masquerading attack: this attack affects the
authenticity of a CAV. Possible preventive measures deals with the usage
of a trust authority and PKI. In fact, through the usage of a Public Key
Infrastructure, it provides unique digital identities for Connected Autonomous
Vehicles;

❼ Black/Worm Hole attack: a way for counteracting this attack is, and
according to [30], to connect the SIN (So-called Intelligent Nodes) to the
network. They are special nodes that have access to the database. It is
known that all nodes have public and private identifier (keys). Periodically,
SINs send queries to all nodes inside the VANET, asking for their ID. Among
the CAVs, a special RREQ (Route REQuest) message is broadcasted. Each
RREQ keeps an ordered list of all nodes the message passed through. After
receiving a response, the received data are compared with the sent one. When
a RREQ message arrives at destination, a routing REPly (REP) is passed
back to the origin, indicating that a route to the destination was found. If
any of the nodes is not recognized during the backtrace of the REP, it is
considered malicious by the SIN and it is removed from the communication.
If the rest of the answers received are correct, the SIN does not take any
further actions;

❼ Sybil attack: as proposed by [31], a possible solution can be found in the
usage of keys. In fact, since each OBU has its public key, we can identify if the
node is genuine or not, but attack can happen at any time. For this reason
key management technique to identify attacked node at the time of routing
using (Public Key Infrastructure) PKI is used. So, if the node has its unique
public and private keys it is considered as genuine node or else attacked node
and it is rejected. Since its OBU has a PKC (Public Key Certificate), an
iterative check on the CA that signed the Certificate can be done, up to the
root CA, which is trusted for definition. If one of these certificate is untrusted,
the node is not considered genuine;

❼ Brute force attack: this attack can be prevented by using strong cipher
algorithm. In this way, messages exchanged between nodes can be brute

29

Cybersecurity and VANET

forced in amount of times that overcome the years;

❼ GPS spoofing attack: different countermeasures have been developed but
lots of them result in an increasing cost for the development of the devices
to be installed on CAV and, for this reason, they have never been taken into
consideration;

❼ Man in the Middle attack: literature offers a solution through the usage
of the ANN, which is the Artificial Neural Network. [32] describes better the
concept;

❼ Application / Social attack: since application attack deals with the ex-
changing and the manipulation of messages, a countermeasure can be found
in the usage of strong hash and asymmetric encryption mechanism;

❼ Attack on Authentication: according to what is said by [33] among differ-
ent authentication mechanisms, one of them is represented by the “Broadcast
authentication”. This type of technique is used in these circumstances in
which is present a net with a huge number of nodes, such as inside VANET.
This type of authentication is achieved by a public key signature. To ensure
that a public key belongs to a node, reference is made to the PKI (public key
infrastructure). In a PKI, the CAs sign the certificates, which is a kind of
document that certifies that the public key belongs to the respective node.
Referring to the IEEE 1609.2 protocol (used in VANET as explained in sec-
tion 2.5), messages are authenticated by using ECDSA (Elliptic Curve Digital
Signature Algorithm). Each message, by the way, has a certificate. It has
been observed that using this type of mechanism is particularly expensive
due to the hardware cost for verifying the digital signature of each incoming
message.
For that reason, it has been proposed a mechanism called TESLA (Timed Ef-
ficient Stream Loss-tolerant Authentication). With this type of mechanism,
the CAV sender sends the message using a symmetric signature algorithm,
and then broadcasts it with the signature. After a short period of time, the
sender sends the key and it is used only for that message, and it cannot be
used in future. Receivers cache the original message until the key is received
and then verify the signature. Furthermore it has been demonstrated that, by
using symmetric primitive, it requires approximately computational resources
1000 times less than the ECDSA.

Up to now, literature offers a huge number of countermeasure that can be imple-
mented in the world of VANET. Unfortunately, lots of them are only developed
theoretically and never implemented since VANET is an emerging network. Fur-
thermore, many countermeasures lead to the advantage of making the system more
secure but, on the other hand, there are many problems in the fact that security im-
plementation makes systems heavier. As a result, lots of study must be conducted
to avoid this type of problem too.

30

Cybersecurity and VANET

3.6 Real use-case attacks on cars

This section describes the attacks that have been conducted in real life in order to
hack several cars. Different car manufacturers, unfortunately, are listed; it shows
how cybersecurity is a pillar in development of cars.

3.6.1 Jeep Cherokee

In 2015 has been announced a vulnerability present on Jeep Cherokees, manufac-
tured in 2014. The attack has been possible by exploiting a breach present in the
infotainment Uconnect system.
This module is the equivalent of the AU (Application Unit) previously described,
which let the user interact with the car. In fact, the word “infotainment” is the
union of words “information” and “entertainment”. To further analyse what has
been done by attackers, they have been able to exploit a weakness in the cellular
network in order to control:

❼ Jeep’s communication;

❼ breaks and throttle.

All of it has been possible by enabling or disabling the cellular network remotely.
Furthermore, it has been shown the possibility to attack the steering wheel when
in reverse. They have been able to keep track of GPS coordinates and of the speed
of the car, by indicating their position on the map too.
Through the IP address of the car, it has been possible to realize it. FCA (Fiat
Chrysler Automobiles) diffused an ad hoc note regarding the update of the car’s
software, by specifying that the fix could also be installed through a USB pen.[34]

3.6.2 Volkswagen and Audi

Even in this case, as in the previous one, in 2017 it has been announced the found-
ing of vulnerabilities on the infotainment system of cars. In particular, the car
manufacturer which is involved is the Volkswagen (and Audi, which is a brand of
it); the models are Golf GTE and Audi A3 Sportback e-tron.
It has been demonstrated that these cars are vulnerable to remote hacking.
The attack allows the access to the IVI (In-Vehicle Infotainment) system of the
car, manufactured by electronic vendor Harman. Furthermore it has been stated
that it was possible to go inside the system by gaining the root’s access and, as
a result, to have the capability to manipulate all data.
So, it has been possible to execute every type of operation, such as enabling or dis-
abling the microphone or to have access to the contacts list and to the conversation
history. Again, hackers have been able to know the GPS position of the car and to
follow it in real-time, so as to have the control of the acceleration and brake system.
It is interesting to point out that in August 2016, Volkswagen fixed another major
security flaw in its key fob system that affected almost all models sold in the past
20 years.[35]

31

Cybersecurity and VANET

3.6.3 Toyota Prius

Toyota car manufacturer has been involved in cybersecurity attacks in 2013 too.
Attackers have taken the control of some important functions of vehicles. In details:
malware is installed by inserting a “device” under the steering wheel. Once gained
control, it is possible to control brake, horn and headlamps system. Differently from
the previous attacks, in this case it is possible to take the control of the Toyota
only by installing physically the device.
To be more specific, the “device” is a laptop scan tool mounted to the OBD (On
Board Diagnostic) port and it is used for overriding certain functions.
Obviously all of it has been possible when the device is connected, otherwise the
car would have worked normally.[36]

3.6.4 Mercedes-Benz

Security researchers from the sky-go team found more than a dozen vulnerabilities
in the E-class Mercedes Benz. This attack allowed them to open remotely doors
and control the engine. Hooking up a car on the internet puts it at risk of remote
attacks because they are visible in the network and therefore recognizable by all.
Moreover, this model of car is modern, also because it provides navigation infotain-
ment and GPS, as well as several radio stations.
The final result was a series of vulnerabilities that formed an attack chain that
could remotely control the vehicle. The sky-go team thoroughly analysed the TCU
(Telematic Control Unit), one of the most important components of the car that
allows the device to communicate with the internet. Tampering with the TCU’s
file system, the researchers had access to the root shell, so as to perform several
operations. The TCU file system stored car’s secret, such as passwords and certifi-
cates. It’s been shown that these were easily removable and therefore having access
to these, it was possible to manipulate cars.
The attack was possible by tearing down the embedded SIM card of the vehicle and
by modifying the router to falsify the car. With the vehicle’s firmware dumped and
other parts of the system cracked, researchers said they could remotely control an
affected vehicle. [37]

32

Chapter 4

Analysis of the state of the art of
VANET simulators

4.1 Introduction to simulators

Chapter 2 and 3 have given a theoretical description of the overall elements useful
to the usage of a simulator. In fact, simulators are considered valid tools in order
to execute testing operations on VANETs at low cost and without risking the
users. Obviously, simulators must represent as much as possible the reality, thanks
to continuous update and to the adding of new elements. For this thesis’ purpose,
these will be used taking into consideration the fundamental aspect of cybersecurity,
so as to be more useful and convey credible results.
On the other hand, it must be said that simulators do not evolve hand in hand
with respect to the reality. To summarize:

1. many simulators are outdated, so not maintained anymore;

2. many simulators are commercial. Few of them are the open-source ones.
As a consequence, simulations have a cost, because the simulator must be
bought. Luckily, among all of them, Veins represents the simulator with the
best support for novel technologies, being open-source too;

3. simulators lack of support for realistic models, for instance the ones for
modelling faulty nodes (i.e. unreliable RSU).

For this reason, analysis on that type of simulators is not as easy as it could be.
Following paragraphs will give a further and detailed description of the simulators
that will be used in this thesis.

4.2 Simulators

Developing and testing VANETs require an intensive labor since simulations deal
with complex scenarios, each of them requires huge resources to be used at the same
time. For this reason everything is substituted by simulation, which are useful and
less expensive. So, it is reasonable to generate accurate models, so as to obtain
good result to analyse.
In details, simulators are divided into two categories:

33

Analysis of the state of the art of VANET simulators

1. Mobility simulator: these simulators allow the definition of a model which
reflects the real behaviour of vehicles in the traffic. They are used for defining
the pattern in which CAVs move in the traffic, under proper conditions and
following specific route. Mobility simulator, on its turn, are divided into:

❼ Macro-mobility: it considers all these aspects at high level, such as the
topology of the net, movement of cars, speed limits, traffic signs that
govern the crossing rules at intersections;

❼ Micro-mobility: it considers individual drivers behaviours in those situ-
ations in which they interact with the others such as: acceleration and
deceleration, overtaking criteria, driving attitude.

It is obvious that VANET simulation considers both micro and macro mobil-
ity. Examples of these type are SUMO, VISSIM, SimMobility, PARAMICS,
and CORSIM.

2. Network simulator: in this case, it is intended that type of simulation in
which there is an exchanging of messages between nodes. In VANET’s case
it concerns the exchanging of messages between vehicles and devices such as
RSU, through wireless communication. In these simulations are identified
main components and the events that occur among them. The latter incor-
porate those circumstances in which there is the transmission of data and
packet errors.
The output of this simulation deals with network level metrics, link metrics,
and device metrics. It is also analysed cases in which “pending events” are
considered, i.e. the possibility in which an event generate the sending of
another message. Examples of network simulators available (some of them
widely used in VANETs) include OMNeT++, OPNET, JiST/SWANS, NS3,
and NS2.

4.2.1 Mobility simulator: SUMO

SUMO stands for Simulator of Urban MObility. It is one of the most known mo-
bility simulator. It has been developed by the German Aerospace Center. It is free
and available since 2001 and since 2017 it is part of Eclipse Project foundation. It
is divided in different modules, in order to cover a specific area for the network to
be simulated. According to [38]:
“Traffic simulation within SUMO uses software tools for simulation and analysis
of road traffic and traffic management systems. New traffic strategies can be imple-
mented via a simulation for analysis before they are used in real-world situations.
SUMO has also been proposed as a toolchain component for the development and
validation of automated driving functions via various X-in-the-Loop and digital twin
approaches.”
What is essential for understanding its usage is to have the network topology file.
It is the starting point. From that, the routes can be defined in another file. In
other words, a SUMO project will have:

❼ file.net.xml: it will contain the network topology;

34

Analysis of the state of the art of VANET simulators

❼ file.rou.xml: it will contain the routes involved in the network;

❼ file.add.xml: inside this file there will be additional information about the
network.

4.2.2 Network simulator: OMNeT++

On the other side, OMNeT++ (or omnetpp) is the most known network simulator.
According to [39], it is stated that:
“OMNeT++ is an extensible, modular, component-based C++ simulation library
and framework, primarily for building network simulators. “Network” is meant in
a broader sense that includes wired and wireless communication networks, on-chip
networks, queueing networks, and so on. Domain-specific functionality such as sup-
port for sensor networks, wireless ad-hoc networks, Internet protocols, performance
modelling, photonic networks, etc., is provided by model frameworks, developed as
independent projects. OMNeT++ offers an Eclipse-based IDE, a graphical runtime
environment, and a host of other tools.”
The components of it are:

❼ simulation kernel library (C++);

❼ the NED (NEtwork Description) topology description language;

❼ simulation IDE based on the Eclipse platform;

❼ interactive simulation runtime GUI (Qtenv);

❼ command-line interface for simulation execution (Cmdenv);

❼ utilities (makefile creation tool, etc.);

❼ documentation.

4.3 VANET simulators

Going into details, VANET simulators are the union of mobility and network sim-
ulators. The latter are responsible for modelling communication protocols and the
exchange of messages between nodes; on the other hand, the former, controls the
movement of each node.
As can be inferred from the table 4.1, each simulator has its own licence, which can
be “proprietary” or “open-source”. In other words, the usage of the first category
foresees that the software has been bought by someone. On the contrary the lat-
ter can be used without any purchase. For the purpose of this thesis, it has been
chosen to focus on Veins and Eclipse MOSAIC, which have the latest release in the
open-source category.

35

Analysis of the state of the art of VANET simulators

Simulator
Last

release
License

Network
Simulator

Mobility
Simulator

NetSim 2021 proprietary own SUMO
Veins 2020 open-source OMNET++ SUMO

Eclipse
MOSAIC

2020 open-source

NS-3,
OMNET++,
SND and
Eclipse MOSAIC
cell

SUMO
and
VISSIM

EstiNet 2020 proprietary own own
exCar2X 2020 proprietary NS-3 SUMO
VENTOS 2018 open-source OMNET++ SUMO
VANETsim 2017 open-source own own
GrooveNet 2013 open-source NS-2 own

VNS 2012 open-source
NS-3,
OMNET++

own

iTETRIS 2010 open-source NS-3 SUMO
NCTUns 2010 proprietary NS-2 own
CityMob 2009 open-source NS-2 own
TraNS 2009 open-source NS-2 SUMO
FreeSim 2008 open-source NS-3 own
STRAW 2007 open-source JiST/SWAN own
VanetMobiSim 2007 open-source NS-2 CanuMobiSim

Table 4.1. VANET simulators. [40]

4.3.1 Veins

Veins, among all the simulators, is an open source framework for simulating vehicu-
lar network. It is based on SUMO and OMNeT++. According to the figure 4.1, all
the modules that make the Veins architecture are shown. Firstly, it is instantiated
an OMNeT++ node for each CAV present in the simulation and then it is paired
with its movement in the road traffic simulator (SUMO). As can be inferred, both
network and mobility simulations can run in parallel. This is possible because of a
bidirectional coupling achieved by a standardized connection protocol, the Traffic
Control Interface (TraCI).
It allows the exchanging of messaged between OMNeT++ and SUMO while the
simulation runs, as part of the TCP connections.
Veins has different extensions (more than 17) that allow the usage of different pro-
tocol stacks (such as IEEE 802.11p).
In summary, Veins is designed to serve as an execution environment for user-written
programs, which facilitates modelling new environments and applications. As a dis-
advantage, it needs both SUMO and OMNeT++ to run correctly in order to obtain
precise results. Any bug in one of those can cause Veins to give unreliable results.
Veins can run on Linux,Windows, and Mac OS. The figure represents the overall
architecture used by Veins, with its module and how they communicate.

36

Analysis of the state of the art of VANET simulators

Figure 4.1. Veins architecture [40].

4.3.2 Eclipse MOSAIC

Eclipse MOSAIC is another simulation framework, open-source, known as a V2X
Simulation Runtime Infrastructure. Its aim is to give to the users the flexibility
to perform different simulations through different simulators. In fact, in order to
guarantee that, Eclipse MOSAIC uses different simulation framework.
For example, for traffic simulation is supported the usage of SUMO and PHAB-
MACS; for communication simulation OMNeT++ and SNS; and Eclipse MOSAIC
Application for application simulation.
Since Veins works with SUMO and OMNeT++, it has been decided to use them
for MOSAIC too. As a result, it can be deduced that it is a multi-scale and
multi-domain simulator framework. According to the figure, the Eclipse MOSAIC

Figure 4.2. MOSAIC architecture [40].

37

Analysis of the state of the art of VANET simulators

Simulation Runtime Infrastructure is made of three core elements.
The Federation Management has the duty to couple each simulator with the run-
time infrastructure. To give a further description, a federate consists of a simulator
and two connectors, one to receive data from the runtime infrastructure and the
other one to send data to it.
The Time Management coordinates the simulation and synchronyzes the federates
that participate to the simulation by processing information in a correct order.
The Interaction Management enables the exchange of data among federates through
the publish-subscribe pattern.
Since Eclipse MOSAIC is multi-domain and multi-scale, data can be visualized
in several ways. In other words, the same scenario can be evaluated in different
visualization tools, which are connected to a running simulation. Some of them
are WebSocket Visualizer, Integrated Test and Evaluation Framework (IETF), and
PHABMap for 3D visualization.

4.4 Simulators’ functionalities

Technology Veins Eclipse MOSAIC
Software Defined Networking (SDN) X
Edge computing X
5G X X
Self-driving cars X X
Unmanned aerial vehicles(UAV)

Table 4.2. Simulators’ functionalities. [40]

The table 4.2 represents a general overview about the functionalities of different
simulators. As can be seen, not all of them are capable of having all the function-
alities required. Taking into consideration the ones chosen for this thesis, Veins
supports all of them whereas MOSAIC does not. As a result, this is a proof of
what stated before, that is the difficulty to perform simulations since many simu-
lators lack these functionalities.
For example, the SDN (Software Defined Networking) is a technology for dealing
with a lot of nodes. It is the case for vehicular networks. In fact, in this case,
SDN has become SDVN (Software Defined Vehicular Networking). As can be seen,
SDN is present in Veins but not in MOSAIC: it means that is difficult to perform
analysis in particular situations such as traffic with the latter simulator. On the
other hand, self-driving cars and 5G are present in both simulators. Among Veins
and Eclipse MOSAIC, the focus must be given on the former, because it is the tool
that will be used to simulate attacks on chapter 5. Despite all these functionalities,
several limitations will be pointed.
Next paragraph will focus on the security aspects regarding simulators.

38

Analysis of the state of the art of VANET simulators

4.5 Security functionalities

Focusing on this aspect, VANET simulators must provide support for testing safety,
security and other issues such as privacy (with associated countermeasures, where
possible). The following subsections will describe these concepts.

4.5.1 Safety

As can be inferred, VANET development and its continuous study is made to
improve road traffic safety. It can be increased if nodes communicate correctly,
sharing information about position, speed, direction, aquaplaning, accidents, etc.
However, collisions and accidents can occur when safety messages are not correctly
broadcasted through the network. Analyzing what is said by [41], the reliability
of a VANET depends on the reliability of each end nodes and of their communi-
cations. Failure of nodes can be caused by many reasons, from damaged sensors
to general malfunctioning at hardware or software level. They are also subject to
Byzantine faults (3.4). Considering the table, it summarizes the current support of
VANET simulators to different types of faults. As can be seen, simulators do not

Vanet component Fault Type Example Veins
Eclipse
MOSAIC

Node (OBU,RSU)
Software

Malformed packet
OS bug

Hardware
Power outage
Malfunctioning
antenna

Link

Byzantine
interference

False messages X
Congestion X
Ground reflection

Attenuation
Building shadowing
Vehicle
moving away

X

Table 4.3. Simulators safety. [40]

provide any features for simulating faults, but some functionalities can be adapted
to recognize safety issues. Unluckily, since there is not enough support for safety,
it requires the generation of large amount of code.
Observing the functionalities proposed by Veins, it can be inferred that it is able to
simulate Byzantine faults through the F2MD, which is the Framework for Misbe-
haviour Detection. It provides a solution for simulating malfunctioning nodes that
result in the generation of wrong information, such as velocity, acceleration etc. It
has also two modules, used for capturing the effect of buildings and vehicles on the
quality of data transmissions. They are Obstacle Shadowing and Vehicle Obstacle
Shadowing.
On the other hand, Eclipse MOSAIC does not have support for fault injection. As
a result, this is a proof of what has been stated previously, that is the difficulty of
testing all security properties of a VANET system.

39

Analysis of the state of the art of VANET simulators

4.5.2 Security

This section includes the security aspects described in the previous chapter. VANET
security depends on the security of messages exchanged. As a result, there must
not be modification on the messages delivered and received.
Although the usage of simulators cannot solve these issues, they could be used
to analyse security aspects in order to find possible solutions. Among the set of
simulators, security properties and privacy will be considered on Veins and Eclipse
MOSAIC. Table 4.4 shows different security mechanisms and their relationship to

Attribute Example mechanism Veins Eclipse MOSAIC

Confidentiality
Symmetric and
asymmetric cryptography

X X

Integrity
Message Authentication
code
Digital signature X X

Availability
Watchdog
Redundancy X X

Authentication Position verification
Analyze signal
strength
Dual authentication X X
Non-repudiation ID-Based cryptosystem X
Privacy Silent periods
Mix zones X
Periodical
pseudonym change

Table 4.4. Security and privacy in simulators [40].

VANET simulators that can be included when running a simulation. Again, it is
shown that Veins has some mechanism that MOSAIC does not have, highlighting
the difficulty of simulations. A part from the difference in the presence of mecha-
nism, it is important to emphasize a fundamental point. Considering Veins, security
mechanisms that have been labeled ”X” in the table are not to be considered as
implicitly present within the tool; instead, these are features that Veins allows the
user to employ (e.g., through third-party libraries or through coding). It is essential
to emphasize this aspect because this thesis will demonstrate the fact that these
features will not be present inside the tool and will make difficult the implementa-
tion and simulation of attack, even in the latest version of Veins.

1. Confidentiality. Support for confidentiality can be included by both Veins
and Eclipse MOSAIC. It is not directly implemented but through the usage
of third cryptographic libraries such as Crypto++, installed and used by the
network simulator part, OMNeT++. Unfortunately, several bugs are present
due to some incompatibility according to their different versions;

2. Integrity. Similarly to confidentiality, Veins and Eclipse MOSAIC do not

40

Analysis of the state of the art of VANET simulators

have native support for integrity services, but allow them to be included as
third-party libraries or by manually coding, wasting lot of time;

3. Availability. Veins and Eclipse MOSAIC let the programmer implement a
watchdog on the network simulator. In details, the watchdog define a set of
nodes as monitor ones and they monitor the neighbourhood;

4. Authentication. Among Veins and Eclipse MOSAIC, the former imple-
ments this functionality through the ID-Based mechanism. The ID can be
the email address, network address, username or another combination;

5. Non-repudiation. In order to provide this functionality, digital signature
can be used. For this reason, this mechanism is present in Veins and not
in Eclipse MOSAIC. To be more specific, it is implemented internally in the
network simulator, OMNeT++;

6. Privacy. Privacy is one of the most important requirements for VANET
security. In particular, Veins has a privacy extension called PREXT, which
has a set of privacy schemes that can be attached to the development of
simulation. It supports the situation in which an adversary want to track
vehicles by eavesdropping messages. In literature, it has been shown that the
simulation is 30% slower when running this extension.
Eclipse MOSAIC, on the other side, does not support privacy services and,
as a result, makes it difficult to study this fundamental property.

41

Chapter 5

Simulation framework:
implementation of attacks

This chapter defines the implementation part of the cybersecurity attacks that can
be conducted on VANET. These simulations will be performed through the usage
of the tool that has been cited in chapter 4: Veins.
To be more specific and according to what stated previously, it is relevant to ob-
serve that the entire set of cybersecurity attacks can be partially simulated and
subsequently analysed. In fact, simulators such as Veins do implicitly have settings
that do not allow the implementation of some of them. As a result, the behaviour
of these simulators represents a limitation and a challenge in the analysis of cyber-
security in VANET. Chapter 6 will discuss in details these limitations and how and
when is possible to avoid them in order to have a “complete” simulation.

5.1 Simulation configuration

The environment used for the execution of simulations consisted of:

1. Veins 6.0 OMNeT++ IDE simulator. It represents the Integrated Devel-
opment Environment used for developing and running the simulations. It is
based on Eclipse IDE [42], which has been specifically designed and extended
for VANET;

2. OMNeT++ 5.7. It represents the framework used internally to Veins 6.0
and it consists of a library used for simulating networks (in particular Vehic-
ular Ad hoc NETwork);

3. Inet framework 4.4. This framework has been manually inserted inside the
IDE and it is an open-source OMNeT++ model suite for wired, wireless and
mobile networks.
With it, it is possible to define models that are able to communicate wirelessly
so as to simulate moving nodes (i.e., CAVs). The framework library has been
built in order to be used;

4. SimuLTE 1.2.0. According to what stated by [43], it is a simulation tool
for OMNeT++ projects, written in C++ that models the data plane of the
LTE Radio Access Network;

42

Simulation framework: implementation of attacks

5. Veins INET framework. It is included in the IDE. Since Inet framework
allows the modelling of nodes that communicate at wireless level, Veins Inet
has been designed with the aim to join this type of communication with the
VANET world, so as to recreate the type of exchange of messages peculiar to
this network.
Consequently, it has been implicitly defined the protocols used by this ar-
chitecture (explained in section 2.5). Also in this case, the library of this
framework has been built before its usage;

6. SUMO 1.14.1. As mentioned before (see section 4.2.1), it allows the user
to show at graphical level the designed simulation;

7. Oracle VM VirtualBox 6.1.36. It is the software used for the execution
of virtual machines. It creates a virtual environment and give to the user the
possibility to deploy an operating system. In this case, it has been loaded
Ubuntu 20.04 since all software run better under this OS.

5.2 Veins settings

The code developed inside Veins IDE is in a set of file, which follow the predefined
path for this type of project. In detail, its configuration consists of:

❼ Omnetpp.ini : it is the initialization file which contains all references to files,
such as the map, the route, the file containing codes with extension “.cc”. It
contains also general information about the duration of the simulation and
the configuration of the IEEE 802.11p standard;

❼ Package.ned: it lists the package used for the entire simulation;

❼ Scenario.ned: it represents the scenario in which are present all compo-
nents and it is made of a series of submodules, such as the CAVs of types
“VeinsInetCar” and the Road Side Units of type “RSU”. Depending on what
is the current simulation, the scenario could be slightly different;

❼ *.xml: they are a set of files in which there are the descriptions about route,
network and obstacles, created with SUMO tools;

❼ VeinsApplication.cc: it is the core of the simulation, in which the C++
code models the behaviour of cars and infrastructures. It is also the place
in which the attacks are implemented. Will follow further description in the
subsequent sections.

5.3 Network configuration

When a simulation is started, it is necessary and obviously important to observe
graphically what is going on. Veins satisfies it through its internal tool called
Qtenv. At runtime, it executes what written inside the Veins project and shows
the result to the user. Unfortunately this tool does not offer the typical features
of a network simulator. Because of that, it is used SUMO which, thanks to the

43

Simulation framework: implementation of attacks

binding through a port, it receives all the parameters written inside the project and
allows a correct visualization.
Practically, the binding is performed by typing the following line of code from the
terminal, which is

. / sumo❂launchd . py ❂vv ❂c / usr / bin /sumo❂gui

and, in this way, there will be a listener on port 9999 which will receive the simu-
lation parameters from Veins and will prompt it on SUMO.

5.3.1 Map generation

The chosen environment for some attack recalls a piece of the map of Turin city. It
has been precisely chosen this type of network in order to observe how a VANET be-
haves in the context of a real urban environment, so as to analyse how the VANET
is damaged in case of cybersecurity attacks from malicious nodes.
Starting from the map in Figure 5.1, through the tool OpenStreetMap[44] a file
called “map.osm” has been generated. The extension “.osm” stands for Open-
StreetMap, and this tool let the programmer download a piece of map in order to
work with it.

Figure 5.1. Real map chosen for the simulation. Snapshot of Turin city.

After the generation of this file, it has been executed a command from terminal
in order to obtain the equivalent .xml file, by specifying a set of parameters so as
to simplify the visualization. The command is

netconvert ❂ ❂osm❂ f i l e s map . osm ❂ ❂output❂ f i l e map . net . xml

44

Simulation framework: implementation of attacks

❂ ❂geometry . remove ❂ ❂roundabouts . guess ❂ ❂ramps . guess
❂ ❂j un c t i on s . j o i n ❂ ❂ t l s . guess . s i g n a l s ❂ ❂ t l s . d i scard❂s imple
❂ ❂ t l s . j o i n

where the input file is the file called “map.osm” and the output file is “map.net.xml”.
Once obtained the network file, it has been run the program called “randomTrips.py”.
It is a SUMO tools used for the generation of possible trips inside the network, which
is exploited by vehicles inside the map. Again, the command given from terminal
is

/ usr / share /sumo/ t o o l s / randomTrips . py ❂n map . net . xml ❂e
250 map . t r i p s . xml

and in this case, the input file is “map.net.xml” and the output one is “map.trips.xml”.
It is specified the number of possible trips, which has been chosen to be equivalent
to 250. This number depends on how bigger is the network to be simulated. In
fact, the bigger the network, the greater the number written inside the command
so as to generate more trips and to study the network better.
At the end, it has been run the programDUAROUTER (another SUMO tool) for
the routes generation inside the map. In this way each vehicle will be automatically
generated and will have its route to follow. The command is the following:

duarouter ❂n map . net . xml ❂ ❂route . f i l e map . t r i p s . xml ❂o
map . rou . xml ❂ ❂ignore❂e r r o r s

In conclusion, the figure below represents the resulting map that will be used for
the execution of the simulation.

Figure 5.2. Map obtained for the simulation.

45

Simulation framework: implementation of attacks

5.4 Implementation of attacks

The following section implements attack simulations in a realistic environment,
which is the city of Turin, to outline how a hacker attack on a self-driving vehicle
could cause disruption and inconvenience to the urban network and to the vehicles,
and specifically to a VANET. Different attack scenarios will be implemented, mod-
ulated by the writing of code in C++.
Starting from the scenario described above (figure 5.1), these simulations have been
conducted on a network consisting of 67 vehicles. In some situation, since the logic
of the attack is different, the same scenario is considered but with a zoom on the
communication with vehicles.
The following table will contain a reference to the attacks that have been imple-
mented.

Type Description

Message Alteration attack
The attacker is able to send false
information and to confuse CAVs inside
the network.

Denial of Service attack
The attacker breaks the Availability
of the targeted victim by sending lots
of packets infew seconds.

Distributed Denial of Service attack
The attacker simultaneously send
thousands of packets to the victim.

Timing attack
The attacker is able to delay the
sending of the message.

Social Engineering attack
The attacker sends useless message
to alter the behaviour of the victim.

Black Hole attack

The attacker claims to have the
shortest path to the destination and
drops the packet instead of forwarding
it to the receiver.

Jeep Cherokee attack
The attacker is able to control the
car and to execute several operations.

Table 5.1. Implemented attacks.

5.4.1 Message Alteration attack

In this specific case,a particular type of attack has been implemented that falls
into the five classes defined at section 3.4. Specifically, it is known as “application
attack”, that is a type of attack in which false information is sent to the receiving
node, thus creating some sort of confusion within the CAV and the network itself.
The scenario consists of 67 vehicles and one of them is the attacker (“node[11]”).

Simulation

This attack very often is carried out to destabilize the continuity of the nodes inside
the network and, at the same time, the entropy of it. In fact, the victim is forced

46

Simulation framework: implementation of attacks

to recalculate its route to the destination because of false information received
(most of the time) from the node in front of it, which almost always represents the
attacker.
There are two actors involved in this attack, “node[11]” and “node[3]” which
represent respectively the threat actor and the victim. For simplicity, they are
recognized by colour inside the simulation. The attacker has the car icon red
whereas the victim has the same icon but in green. The attack has followed three
steps. In particular:

1. Phase 1: at t=30s, the malicious node spreads the fake message inside its
neighbour network. Figure 5.3 captures the moment of this action. Specifi-
cally, it is sent the following kind of message: “Incident on road [ID]. Change
road.” In this particular case, the ID is equivalent to “38027668#4”;

2. Phase 2: once spread the information by the attacker to the connected
autonomous vehicles inside its neighbour network range, they can discard
or accept the message. It is assumed that it is discarded if the path from
the source to the destination does not contain, at that moment, that road
ID. Conversely, it is considered and managed in the opposite case. For this
reason, the message has been considered only by the victim, the “node[3]”
which, unfortunately, had in its trip the transition in that road.
In this way, once the victim has read the message, at t=30,000,505 micro
seconds it replies by informing its neighbour node that it will change the
road. Again, figure 5.4 shows the spreading of victim’s packet, containing
inside the payload the message “Changing route.”;

3. Phase 3: as a result of this successful attack, the attacker will proceed
its normal trip whereas the victim will, unfortunately, change its route by
inverting its sense of travel. In details, by focusing on the victim and as can
be inferred by figure 5.5, it can be observed that the victim car will be in the
part of the road corresponding to the opposite running direction, with respect
to the situation in the picture at phase 1.

Implementation

The implementation of the attack has included the writing of code referring to
the behaviour of the attacker and the victim. With respect to the attacker, its
behaviour has been modelled through the usage of a callback, executed 30 seconds
after the start of the simulation. In fact, Veins considers the usage of lambda
functions a best practice to manipulate the various nodes in the network in order
to better simulate what is happening inside the VANET.
In details, what takes place within the callback is shown below:

auto payload = makeShared<VeinsInetSampleMessage >() ;
t r a c iVeh i c l e❂>setSpeed (t r a c iVeh i c l e❂>getSpeed () / 2) ;
payload❂>setChunkLength (B(1 0 0)) ;
payload❂>setRoadId (t r a c iVeh i c l e❂>getRoadId () . c s t r ()) ;
auto packetFake = createPacket (‘ ‘ I n c iden t on road id
38027668#4. Change road ’ ’) ;

47

Simulation framework: implementation of attacks

Figure 5.3. Phase 1: attacker spreading the false message.

Figure 5.4. Phase 2: victim replies to attacker’s message.

packetFake❂>insertAtBack (payload) ;
sendPacket (std : : move(packetFake)) ;
t r a c iVeh i c l e❂>setSpeed (❂1);

Analyzing the code, it can be observed the generation of the payload packet of type
VeinsInetSampleMessage, filled with information useful for the proper execution of
the attack. To make the attacker’s behaviour even more malicious and tricky, the
reduction of speed by half has been simulated, as if to simulate the case in which the
CAV realizes of this accident and then preemptively decelerates. This action will

48

Simulation framework: implementation of attacks

Figure 5.5. Phase 3: victim change its road uselessly.

be propagated to following nodes: in this specific case to node[3], which represents
the victim. Once the message has been sent, the malicious node accelerates again.
On the other hand, analysing the victim’s code

void Ve ins Ine tApp l i ca t i on : : processPacket
(std : : shared ptr<i n e t : : Packet> pk){
auto payload = pk❂>peekAtFront<VeinsInetSampleMessage >() ;
i f (strcmp (pk❂>getPayload()❂>getRoadId () . c s t r () ,
t r a c iVeh i c l e❂>getRoadId () . c s t r ())==0){

auto packet = createPacket (‘ ‘ Changing route ’ ’) ;
packet❂>insertAtBack (payload) ;
sendPacket (std : : move(packet)) ;
}

}

it can be observed how is implemented the logic of accepting or rejecting a packet,
thanks to the if-statement. If the node is the one inside the same road of the
attacker (as in the case of node[3]), it will be generated the response packet.

5.4.2 Denial of Service attack

In this specific case has been simulated a well-known attack, the Denial of Service.
Since it is very frequent nowadays, it has been considered as an attack to be anal-
ysed and simulated. As stated at section 3.4, this attack is known to disrupt the
availability of a targeted system, by creating problems and difficulties. The aim
of this particular simulation is to understand and to collect data about the attack,
and also to see what is the behaviour of the involved nodes during the execution
of it. In this way, it will be possible in the next chapter to analyse the obtained
result and to propose practical countermeasures.

49

Simulation framework: implementation of attacks

Simulation

The actors involved in this scenario are the RSU (RoadSide Unit), the threat actor
and a limited number of CAVs (precisely 5). Specifically, the victim is the RSU.
It has been chosen not to include the entire network, but to focus only on a piece
of the network, and in particular the communication between the attacker and the
RSU. As a result of it, it will be possible to concentrate with more details and more
granularity on what is happening, so as to observe how this type of attack is able
to damage a node. Figure 5.6 depicts the starting scenario, in which is possible
to recognize the parties previously defined. The positions of the cars have been

Figure 5.6. Starting scenario for DoS attack.

chosen randomly, as the ones of the RSU and the threat actor. For the purposes of
the simulation, each node contains the information about the number of sent and
received packets.
The simulation of this scenario begins with the exchange of messages between nodes
and RSUs. At time t=3s, the attacker starts flooding the RoadSide Unit with a
huge number of packets. In a few moments, the RoadSide Unit will find itself in
a situation in which it will be unable to process other packets because it will be
flooded with those received by the attacker. As a result, the RSU will have its
system resources completely exhausted, and therefore it will no longer be able to
provide its service to other nodes. It is interesting to observe how the actions prior
to the attack revealed continuous and normal communication between the nodes
and the infrastructure, through the periodic sending of messages from the RSU
to the CAVs and vice versa, which can be inferred from the fact that some CAV
has sent some message to the RSU. From the attack onward, it is evident that
the infrastructure appears to be completely dependent on the attacker, since it is
engaged in attempting to process incoming packets.
According to what stated previously, the attack has started at t=3s. Only after
3,192ms the situation is the one depicted in figure 5.7: the attacker has sent a
number of packets equal to 1824, all of them addressed to the RSU. At each message,

50

Simulation framework: implementation of attacks

Figure 5.7. Execution of attack.

a ping message of size equal to 43B is sent, so the victim is hit with ICMP packets
sent rapidly via ping without waiting for replies from the infrastructure. As a
result, the attacker will not wait for some ack and will restart the attack. At the
end, when the simulation stops at t=20s, the attacker has flooded the RSU with
a number of packets corresponding to 169.528. In other words, 8.476 packets per
second have been sent.

Implementation

With respect to what is the implementation, the nodes within the network were
implemented following the same network configuration. A spotlight on what is
the attacking node is required, in which it has been decided to model the sending
time of packets, by making it short enough and, specifically, equivalent to 0.0001
second. In this way, it has been made an attempt to simulate this particular attack
as closely as possible to the real world.
In order to do so, the “Omnetpp.ini” has been modified to contain the following
line of code:

✯ . Attacker [✯] . app [0] . s end In t e rva l =0.0001 s

5.4.3 Distributed Denial of Service attack

Just as with DoS, the Distributed Denial of Service (DDoS) follows a very similar
logic at simulation level, with the major difference in the involvement of the number
of malicious node: in this particular case and due to the nature of the attack, the
number of them is greater than the previous attack.
In this way a “botnet” is created, which represents a network of nodes that are
affected by malware and then controlled by the attacker with the purpose of harm-
ing the victim. Since it is considered the VANET world, the victims are Connected
Autonomous Vehicles which are considered “zombies”. In fact, they act passively

51

Simulation framework: implementation of attacks

in the sense that they carry out what the attacker orders. The simulation of DDoS
is particularly relevant, since most of the attacks in real life are of this type. Fur-
thermore and according to what is stated by [45], a 300 second attack can have a
cost of about 5✩.

Simulation

In this particular case, the botnet consists of CAVs affected by malware, identified
graphically by red cars. Specifically, the botnet consists of 15 elements. The total
duration of the attack is 300 seconds, just for simulating a real timeline. The net-
work has been slightly modified from the data alteration attack precisely to give a
greater focus on what the packet exchange is about. If this type of simulation had
been done through the libraries of that attack, it would not have been possible to
do the proper analysis and any observations precisely because two different imple-
mentation logics are defined. The network then represents a part of the VANET
on which the attack is implemented.
Figure 5.8 shows that at time t=100s a number equal to 970.000 packets have been
sent for each node. Consequently, the total number of packets sent in that time,
stating that the number of attacker is 15, is 11.640.000. At the end of the simula-
tion, the number corresponding to the amount of packet sent is 34.920.000 , with
an average of 116.400 packets per second.

Figure 5.8. Distributed Denial of Service at t=100s.

52

Simulation framework: implementation of attacks

Implementation

The implementation of this type of attack involved a behaviour similar to what has
been done for Denial of Service with the difference that a distinct number of nodes
have been instantiated, equal to 15. Again, a number corresponding to 0.0001 sec-
onds between packets has been chosen as the sending time. The execution time of
the simulation has been set equal to 300 seconds.
In order to simulate some mobility in the nodes, a linear type of movement has
been applied to them, so as to simulate movement on a road network. The network
protocol employed is the Address Resolution Protocol (ARP) type, so as to imple-
ment a type of DDoS attack by means of ICMP echo-requests (pings).
Since this type of attack is implemented through the use of pings, it is very often
referred to as PoD, or “Ping of Death”. It can be considered as a particular use
case for implementing a DDoS-type attack. Finally, since this type of attack fo-
cuses more on the communication between nodes at the wireless level, it has not
been necessary to employ the SUMO tool, because it has been sufficient only to use
Veins’ internal environment, called Qtenv.

5.4.4 Timing attack

Even in this case, and taking into consideration the table 3.1 that describes the
classes of attack, among these there is one which describes a particular attack
known as “timing attack”. The aim of it is to add delay to the communication
after an event (generally a crash or some emergency message). As a result, there
will be interferences inside the network. Furthermore, the threat actor is able to
manipulate the communication of the network. Due to this delay, the nodes inside
the VANET will be notified with a delay that is the sum of the effective delay
plus possible delays caused by the propagations of the message and the reception
of it. Generally the delay is something that should not be verified because, since
VANET are considered communication in real time, they could not afford to have
some delays, otherwise there will be a sort of chain reaction in which the delay will
cause other problems in the communication.

Simulation

The simulation has used the topology of the network that has been described in
section 5.3.1. In this case, the scenario is the one in which the CAV called “node[9]”
for some reason is forced to stop, at t=20s. The autonomous car that is behind
it, is the “node[15]” which represents the malicious node. The attacker, instead of
starting the notification immediately, starts the process of notification at t=22s.
This time period, which is equivalent to 2 seconds, represents a very dangerous
situations if it would happen in the reality. In fact, if it verified for real, there
would be serious consequence to the other nodes. The following figure represents
the moment in which the malicious node notifies with delay of the car stopped in
front of it.

53

Simulation framework: implementation of attacks

Figure 5.9. Timing attack.

Implementation

With respect to the implementation, the Connected Autonomous Vehicles called
“node[9]” and “node[15]” have been modelled through the usage of callback. In
particular:

❼ as far as it concerns the actions to be performed by “node[9]”, it has been
designed the behaviour in case of stopping of the car, thanks to the following
command

t r a c iVeh i c l e❂>setSpeed (0) ;

❼ taking into consideration the “node[15]” the callback contains lines of code
referred to the operation of sending of the message. Hence, an object of type
VeinsInetSampleMessage is created, its chunk’s size is set, it is put inside the
packet and it is sent through the usage of

sendPacket (std : : move(packet Inc identDe lay)) ;

5.4.5 Social engineering attack

This type of attack, unlike the others, aims to flood the network with messages that
make little sense and deviate significantly from the communication nature of CAVs.
In fact, what occurs is the reception of messages that are useless for the purposes of
the network. For example, a Connected Autonomous Vehicle may receive several
attack messages containing the text “you are stupid”, or “slow down” followed
by “accelerate now”. Furthermore is important to stress that this type of attack
is possible if the OBU has been manipulated in order to send this messages. In
this way, the person inside it has no idea that the victim receives these packets
containing this kind of message.
As a result, what occurs is a lack of trust in the network.

54

Simulation framework: implementation of attacks

Simulation

The network is made of 67 vehicles and one of them is the attacker, which is known
to be the “node[3]”. With a period of 10 seconds, the attacker sends a message
containing the text “You are an idiot!”. The entire network is flooded with these
packets.

Figure 5.10. Social engineering attack.

Implementation

The implementation of this attack consists in the usage of a callback that is executed
each 10 seconds. As previously said, the callback is a key concept in the writing of
code for modelling the behaviour of CAVs and RSUs.
Even in this case, a packet of type “VeinsInetSampleMessage” has been created
and populated with different information, such as the length and the payload.

5.4.6 Black Hole attack

Focusing on this attack, which falls under the network attack class, it is important
to observe its primary purpose. In fact, what is attempted in this particular case
is the fact that the attacker identifies itself in the network as a node containing the
shortest path to the target node. Consequently, what the attacker node will try to
do is precisely to receive packets and subsequently manipulate and/or drop them.
In this way, the recipient node will never receive its message.
In order to better understand the attack, the structure of the network can be
transformed into a graph. In fact, considering the following figure and giving each
edge a unit weight, it is easily observed that the source node is at distance 2 from
the destination node while at distance 1 from the RSU. The next section will better
explain what will happen during the simulation.

55

Simulation framework: implementation of attacks

Figure 5.11. Graph of the network.

Simulation

The simulation can, again, be considered as a focus in a part of the previously
created network in figure 5.2. In detail, three vehicles are moving along the road
and the first one, carA, notifies the presence of an accident in 200m. In this way,
having to notify the RSU, the source node sends the message to this infrastructure.
And that is where the attacker comes in, who is able to break the links with the
RSU and declare himself as the node that has the shortest path to the destination
node. Hence, the attacker receives the packet and will never forward it to the
recipient, precisely the RSU. Therefore, the infrastructure will not be informed and
will not be able to forward the information to other nodes. Figure 5.12 depicts
the execution of the attack, in which the message is sent to the attacker instead of
being received from the RSU.

Implementation

At implementation level, the behaviour of cars and the RSU has been modelled as
objects of type Car and RSU, respectively. The following figure observes the fact
that the attacker’s range is able to include communication with the RSU although
this will never happen, just for the purposes of the attack. It is also important
to note that the attacker’s location could have been even as far away from the
infrastructure, precisely because the attacker claims to have the shortest path to
the target node.

5.4.7 Jeep Cherokee attack

This attack simulates the one happened in real life, as stated in section 3.6.1.
According to what happened, the attackers have been able to take the control of
the car by connecting to its internal Wi-Fi. After that, it has been possible to
control the CAN bus and to manipulate throttle, break, steering wheel and the
opening and closing of car doors. For doing that, the password has been discovered
through brute force and the number of attempt has been reduced because of the
fact that the password is the combination of the first time and the date of the first

56

Simulation framework: implementation of attacks

Figure 5.12. Black Hole attack execution.

usage of the car, to which has been added some seconds that corresponds to the
car to start up.

Simulation

In this particular implementation, the attacker, once he takes control of the vehicle,
is able to give all possible commands.
Specifically, the Jeep is represented by “node[5]” and at time t=10s sees its speed
halved; at time t=20s it is stopped while at time t=30s the car restarts. In this
way, the car behind the Jeep (“node[8]”) is obliged to decelerate, to stop, and to
restart.

Figure 5.13. Jeep Cherokee stopped by the attacker.

57

Simulation framework: implementation of attacks

Implementation

Again, speed manipulation is practically implemented through the use of several
callbacks that are triggered at time t=10,20,30s. Each callback contains respectively

t r a c iVeh i c l e❂>setSpeed (getSpeed () / 2) ;
t r a c iVeh i c l e❂>setSpeed (0) ;
t r a c iVeh i c l e❂>setSpeed (❂1);

and, the first line halves the speed of the car; the second stops it and the third
restart the car.

58

Chapter 6

Analysis of results

After this set of simulations, it is necessary to analyse and observe what happened.
For this reason, the following chapter aims to analyse the simulations and the data
collected in order to produce a series of observations and to propose mitigations
to the types of attacks. Some of these have been realised using simulators; others,
however, could not be carried out due to the limitation of the latter, and will
therefore be proposed countermeasures at a theoretical level. Once again, it is
necessary to point out that it is not always possible to simulate any scenario with
these tools present, as there are internal limitations to the tools themselves.
The following sections will analyse each attack previously implemented so as to
produce observations and mitigations.

6.1 Message alteration attack

As seen at simulation time in section 5.4.1, in this attack an alteration of the
message is observed. The mitigation that can be considered when this type of attack
occurs involves the idea of not having some sort of “direct trust” towards the node
within the VANET that sent the message. This is precisely why an intermediate
step is necessary, so as to make sure that what the attacker has notified is really
happening. One kind of solution, as cited by [46], provides the usage of particular
nodes inside the network which are able to reply to the message received by the
malicious node. It is highlighted the concept of “particular” because they are
considered intermediate nodes, in the sense that they verify what is said by the
attacker. In fact, since they are part of the road which, according to the attacker,
contains the incident, their role is to verify if there is a real one.
Exactly for this reason, it has been defined the function “checkMessageIsOk()” that
checks the payload contained inside the message and verifies if it is true what said
by the threat actor.
In this particular case, the attacker states that an incident occurred inside the road
with id “38027668#4”. For this reason, the function queries the presence of CAVs
inside that specific road, in order to verify if it is really present an incident or, more
generally, if it has happened something for which is necessary to alter the trip of
a node. And in fact, two nodes inside that road with that specific id (“node[24]”
and “node[26]”) analyse the packet received by the attacker and observe that no
incident is present. As a result they forward a message containing a payload with

59

Analysis of results

an attached message which states that the situation is different from what was
said by the attacker (see figure 6.1). So the victim, which is recognized by being
equivalent to “node[3]”, will not consider the message received at the beginning of
the attack and will proceed with its real route, avoiding the alteration of the entire
trip (figure 6.2).

Figure 6.1. Notification of no incident.

Figure 6.2. Victim following its real trip.

6.2 Denial of Service

The purpose of the simulation has been the demonstration of how capable this
attack is of causing disruption within the network. It is appropriate to state that a
DDoS-type attack is preferred to a DoS-type attack as it is more effective. However,
analysing how much a simple node is capable of bringing problems within the
network shows how much there is a need to take appropriate preventive measures.
The Veins tool, used for the simulations, has allowed the creation of graphs, so as

60

Analysis of results

to better study what happened during the simulations. The chart in 6.3 shows the
linear growth in the number of packets sent by the threat actor from the time when
the attack begins, i.e., from time t=3s. The abscissae represent seconds while the
ordinates represent the number of packets sent. The attack starts after 3 seconds

Figure 6.3. Line chart DOS.

and at the end, so at t=20s the number of packets sent is approximately equal
to 170.000. Given the nature of the attack, it is obvious to expect that a certain
number of packets will be lost. In fact, cases arise where the network appears to
be congested given the large number of packets sent to the single node (victim
node), with a higher rate of sending than handling individual packets. Figure 6.4
represents this analysis, where the RSU (the victim) has its packets dropped due
to the attack. For convenience, values are reported within the table 6.1.

Figure 6.4. Packet drop DOS.

One possible solution involves the possibility of implementing an algorithm that is
able to sense the number of packets that come to be exchanged, so as to understand
whether it is a DoS attack or a simple communication, according to what has been
proposed by [28]. In particular, it is firstly created an array X in which incoming
and outgoing IP are stored. In this way it is created a sort of threshold for the
condition of the network. In this way, every time that a CAV generates a RREQ and
does not get RREP, the hop count is checked and then the prevention or detection
is respectively applied by taking into consideration the case in which the packet is
ok or not.

61

Analysis of results

number of packets dropped
t=3s 120
t=4s 120
t=5s 120
t=7s 120

t=7.12s 120
t=10.12s 120

Table 6.1. Values of packet dropped.

On the other hand, taking into consideration what stated by [47], the use of an
Intrusion Detection System (IDS) allows detecting if non-legitimate conditions
arise, so it is possible to detect any anomalies, it is possible to record logs, make
detection of this type of attack. Its function is to detect unauthorized access to
computers or local networks at an early stage, identifying cyber threats-caused by
experienced hackers, automated tools, or inexperienced users using semi automated
programs-before they can cause damage to systems. The only consequence is that
there is more delay and weight in the network.

6.3 Distributed Denial of Service

According to what has been analysed and observed in section 6.2, in this one
is possible to follow a similar study on the values obtained from the simulation.
Firstly, it is peculiar to observe the fact that each attacker, after only about 132
seconds has sent a number of packets very close to 1.300.000 . Figure 6.5 outlines
what has just been said. Continuing the simulation and reaching the time limit,
that is the time limit of 300s (a value chosen to simulate a real time frame), each
threat actor has sent a number of packets equal to 2.910.000 . Multiplying what has
been obtained by the number of attackers, which is 15, the result gives a number
equal to 43.650.000. Considering the fact that each packet has size 56B, the total is
equivalent to 2.27GB. Again, it has been possible to take advantage of the graphs

Figure 6.5. Line chart DDoS.

proposed by the Veins tool, which can collect all the parameters useful for analysis.
2.27GB in a total time of 5 minutes turns out to be an amount that can be tolerated

62

Analysis of results

by a system, in this case by an RSU. But if we take into consideration the fact that
the Mirai malware was able to create a botnet of 380.000 bots, then the value turns
out to be

dimPacket x botnet x packetsIn300sFromOneNode =
= 56 x 380000 x 2910000 = 56 ,3TB

Willing to propose a possible solution, the literature has proposed a number of
countermeasures and mitigations in order to succeed in combating and avoiding
this type of attack. Considering what has been proposed by [29], in order to pre-
vent this type of attack, an algorithm could be implemented and placed inside a
controller, which is able to calculate the entropy of the system and then evaluate,
based on a series of statistical indices such as the frequency distribution matrix
and covariance, whether this value exceeds the threshold. If it does not exceed the
threshold, access is granted; if so, a reCAPTCHA mechanism is implemented and,
if properly passed, access is given to the service.
Another solution, which deviates slightly from what has just been proposed, binds
DDoS attack prevention through the use of an IDS via Machine Learning, as ex-
plained by [48]. Specifically, the Intrusion Detection System that comes to be
placed inside a VANET network first is subject to the training phase and then to
the testing phase. In these two phases the model comes to be trained, able to per-
ceive instances of DDoS attack. Once this is done, at the time an attack is being
detected, it comes to be located and all packets from that area are ignored, later
informing other vehicles about the attack. It is important to point out the fact
that this solution deals only with the DDoS coming from objects that are inside
the VANET, i.e. the botnet is made of CAVs.

6.4 Timing attack

This attack, unlike the others, has as its sole purpose to delay communication and
thus cause the network to experience delays in messaging. It is obvious to expect
that this type of communication involves messages being exchanged with appro-
priate timing, thus almost in real-time. Therefore, it is considered imperative that
everything is sent and received with proper timing. What an attacker therefore
seeks to do in implementing this attack is to delay the communication. The conse-
quence of this is that the receiver may find before him an event for which he should
have received a message before observing what happened.
As a result, according to what is stated by[49], one possible countermeasure about
this type of attack is to define an algorithm that is able to insert within the packet
a timestamp of when it was generated and sent, and then the packet will be en-
crypted. In this way, the receiver will be able to control the actual sending of the
message and will not suffer this type of compromise. What is more, the fact that
the packet is encrypted provides an additional layer of security.

6.5 Social Engineering attack

According to the simulation that previously took place, this attack aims to flood
the network with messages that have no well-defined meaning and/or purpose. In

63

Analysis of results

this way, it is only loaded the VANET with useless messages and changed the mood
of the users inside the CAVs.
A possible countermeasure for this type of attack could deal with the implemen-
tation of a software device capable of filtering incoming packets to other nodes,
so as to avoid the consequences of a social engineering type of attack towards the
network and the person reading the message. In this way, messages can be auto-
matically discarded and precisely this type of message exchanging will be avoided.
What is more, only packets containing valid information related to driving and/or
emergency circumstances will travel within the VANET network.

6.6 Black Hole attack

This category of attack has been mitigated, also in accordance with the present
literature, such as [30], using a system known as SIN, which stands for “So-called
Intelligent Node”. These are nodes installed within the network that periodically
send special RREQ messages to make sure that all nodes are legitimately part of
the VANET and that the path from a source node to a destination node is actually
the one present in the real world. These messages have been defined as “special”
because they can be considered as an alternative version of the RREQ in that
each message internally maintains an ordered list of previously routed nodes. In
this way any node receiving this type of message can register the route back to
the source node. Each node as a consequence will respond with an RREP to the
previous node.The SIN then at the end of everything compares what it has received
with the database present in the TA and checks if there is any unrecognized node
pretending to be a node that has the shortest path to a destination node. If it is,
it would be excluded from future communications.
Analysing what has been implemented under a critical point of view, however, it
could be problematic that the SIN periodically sends messages into the VANET,
because it could overload it.

6.7 Jeep Cherokee attack

The execution of this attack has demonstrated how it is possible for an attacker to
manipulate the car in the moment there is access to its internal Wi-Fi network. In
this way, malicious software is injected so as to manipulate the CAN bus and have
full control of operations. It has been possible to implement behaviours such as
changing the speed and using the brake but it was not, on the other hand, possible
to manipulate parameters such as opening or closing the doors or activating the
windshield wipers. Furthermore, the execution of the brute force attack has not
been implemented and it has been assumed that the simulation is started in the
moment in which the attacker has discovered the password of the Wi-Fi network
and the malware has been injected. In fact, for doing so, the attacker must follow
the car because the malicious node need to be extremely near to the car in order
not to lost the signal for brute forcing the Jeep.
One important mitigation could deal with the generation of password for protecting
the Wi-Fi connection inside the car: it must be safe and complex enough not to

64

Analysis of results

avoid this type of cracking. However, Jeep spread a patch to fix these vulnerabili-
ties.

65

Chapter 7

Conclusion

The aim of this chapter is, at the end of the thesis work, to conclude what has
been discussed in previous chapters and to define different aspects that have been
come up from simulations in order to propose possible improvements for future
developments.
In the course of the thesis work, recent real-life attacks affecting cars that are part
of different car manufacturers, such as Mercedes-Benz, Audi, Toyota and others
have been listed. For simplicity, these attacks can be divided into two categories:
those internal to the vehicle and those external to the vehicle. This thesis work
has focused more, even from the type of simulations conducted, on those outside
the vehicle; it means that have been simulated those situations where an attacker
remotely targeted a victim and then carried out an attack. In this way, those types
of attacks in which the internal software of a vehicle was manipulated have been
excluded. For example, the attack on Toyota Prius, where a hardware device has
been mounted inside the car in order to manipulate the software, has not been
taken into consideration.
By aligning these attacks with the literature, several attack classes have been listed
to which the different attacks that actually occurred can be labelled. In this way,
it has been defined a reference between the attack simulations and the classes
that have been defined in the previous chapter. For each implementation, where
possible, a mitigation has been proposed and in some cases it has also been imple-
mented. Different cyber attacks have been implemented such as Denial of Service,
Distributed Denial of Service, Data alteration etc and also the ones happened in
real life, such as the one to Jeep Cherokee. During the simulation on this specific
car it has been realized a scenario which is similar enough to the real life, where
the attacker has been able to manipulate the speed of the victim’s car remotely,
by reducing it or decreasing it up to zero km/h. The result of this has certainly
been a series of disruptions within the network, resulting in queues in the network
inside the VANET for no real reason, simply because of an attacker exploiting the
vulnerabilities in this car.
For this reason, it is of primary importance to consider cybersecurity as a funda-
mental and essential pillar during the development of these types of devices.
It is right to say that the Veins simulator has allowed the development of this
type of simulation in order to perform analysis, to analyse case that occurred in
reality, and to implement different attacks to observe their consequences on the
network topology. But what is important to be underlined is the fact that, up to

66

Conclusion

now, it is not completely possible to simulate the total behaviour of the car. In
fact, and for giving a detailed analysis, different attacks cannot be simulated due
to Veins’ software limitation. For instance, it has not been feasible to simulate an
attack happened in real life, in which the attacker has been able to manipulate a
car remotely and to disable horn, headlights and the opening/closing of car doors.
Nevertheless, this turns out to be of primary importance, especially the last case,
because at high speeds a malicious hacker could simply manipulate in a remote
way the behaviour of the car to make the doors open and to cause serious damage
to the people inside, theoretically being able to produce considerable damage and
chain reactions with other cars. What is more, disabling the car’s headlights could
lead to serious consequences especially during night hours where light is scarce,
causing in the worst case accidents due to poor visibility. In fact, it is not possible
to control some functionality of the car during the simulation, such as the headlight
or horn management, which are of primary importance. As a future development it
could be possible to think about the realization of an extension for the simulation
software, but still it would be necessary to write ad hoc code for the specific simu-
lator version and especially in a short time or with reasonable efforts, just because
going down to the specifics the management of the functionalities of a car could
vary from car to car and therefore it would be not too easy to implement.
Another aspect to be analysed deals with the fact that when the attack on Jeep
Cherokee has been simulated, it has been assumed that the attacker has been able
to discover the password of the Wi-Fi of the car. This feature is something that is
not implemented in Veins simulator, because it does not have the tool to manip-
ulate this particular aspect of the car. By the way, it is particularly important as
the other that unfortunately cannot be implemented and simulated nowadays.
It is also important to point out the fact that the Veins simulator is one of the few
open-source ones to which updates are periodically released, as explained in table
4.1. Despite this rapid evolution in driving, which will take even more importance
in the coming years, precisely autonomous driving, it should be relevant that sim-
ulation software also keep pace with the changes occurring in reality.
Another negative aspect is to be identified in one of the fundamental aspects of
computer security: confidentiality. In fact, the program does not have internal
mechanisms that are capable of providing encryption and decryption implementa-
tion. A reference could be made to external libraries, which are either out of date
or not compatible with current versions of Veins. Among them NETA(NETwork
Attack framework) could be taken into consideration, which allows the usage of a
library capable of giving to the user mechanisms of encryption of packets. Unfortu-
nately this framework appears to be particularly out of date, as its manual appears
to have been defined in 2013, and the framework versions are not compatible with
current Veins version. It might therefore be considered to use this framework with
an older version of Veins. However this has the cost that improvements and updates
to the simulator would not be taken into account. Software would then be used
but it would result to be deprecated in some parts: this approach therefore does
not match with a development that is constantly updated and in step with contin-
uous technological development. What is more, since the simulations are written in
C++, it is necessary for the external library to be linked to the project created for
the purpose of the simulation, to be build, and subsequently included in the code.
As can be seen, this solution turns out to be particularly time-consuming. As a

67

https://nesg.ugr.es/index.php/en/neta-2

Conclusion

result, simulations may lack encryption and decryption mechanisms. One possible
solution would be to use flags, to specify that the message has been encrypted or
decrypted. Specifically, to the packet sent from one node to another during the sim-
ulation, it could be associated a Boolean variable that says whether the message is
encrypted (e.g., 1) or decrypted (e.g., 0). It comes naturally, though, to think that
this approach does not simulate what is really happening in reality; consequently,
the simulation could provide results that deviate, even if slightly, from reality and
thus not produce reasonably exact results because, for example, one would lose
those (although small) message encryption and decryption timings.
Because of this mismatch between reality and simulators, these issues are still
present.
As a result, many scenarios are not totally feasible according to what could happen
in reality, thus leading to limitations that do not allow for proper simulation and
thus it will not be obtained the correct values of results, observations, analysis,
damage to people or things. Despite these limitations, where attacks with real-life
scenarios have not been fully implemented, it has been decided to simulate a generic
attack (DoS, DDoS etc.) to try to prevent what could be a large-scale attack in
real life and thus be able to implement the right moves in advance, as if they were
considered as precursors in a way that the user can use these simulations to under-
stand the behaviour of the network and of the other actors involved in the attack,
despite the limitations of the simulator. What is more, these simulations have been
implemented on a map that recalls the city of Turin, precisely to simulate an urban
life situation, an “everyday” situation, in which every person could be part of. Also
for this reason, the number of vehicles has been chosen to simulate a busy area, in
order to emphasize what might cause an attack.
Looking critically at the performance of the simulations, some of these have shown
that it is possible for packets to be lost and therefore that optimal communica-
tion is not possible, as explained in section 6.2 and 6.3; others have observed how
the delay in sending messages is highly problematic and causes inconvenience; still
others have outlined the fact that the sending of “altered” messages can lead to
situations in which the path from the point of departure to the destination is al-
tered and so the driver/passenger finds himself in the condition of seeing his car
take completely different routes from those chosen at the beginning just because of
a message that is capable of creating problems to the network path. This is exactly
why it is necessary for all these systems to have internally modules that have been
designed with all security aspects in mind, from the first to the last, in order to
avoid the situations listed in section 3.6, where real attacks have been described.
It is also true the fact that now drivers do not have a level of autonomous driving
equal to 6 (which means total autonomy of the vehicle), so the driver is able to
regain control of the car and consequently be able to switch to a lower level. For
this reason, knowing that these attacks are present nowadays, from a certain point
of view it does not help in the future for the following reason: if nowadays drivers
are under attack, they could try (not in every situation) to regain the control of the
car, even if it does not work in every situation. But in those situations in which
the level of automation is equal to 6, it is much more worrying to think about an
attack and to the consequence of it, because the “driver” could not get the control
of the CAV.
For this reason, it is necessary that a high level of security be achieved. In this

68

Conclusion

way, it is necessary that all strategies/implementations/design choices are put in
place for proper operation from a security standpoint. Consequently, it is of pri-
mary importance that all the limitations previously outlined be overcome through
the implementation of extensions, new tools, libraries, and frameworks that are
capable of aiding research in the realization of simulations that are as close, if not
identical, to what might occur in reality.
Hence, being aware of all these limitations, it is necessary (if not appropriate) that
these limitations are overcome in the shortest possible time by implementing what
is necessary and being able to include a simulation between vehicles that is the
closest possible to reality. This will avoid implementing real scenarios in reality
with the risk of generating unexpected and therefore particularly costly situations.
And this is precisely why simulators are optimal candidates for performing this type
of operation. In this way, as future developments it is surely necessary to define
some sort of extension even to the simulations themselves that has been done in the
previous chapter, to be considered as a stepping stone for defining more detailed
operations and thus be present within the simulation framework.

69

Appendix A

User Manual

The following appendix has been prepared for the purpose of assisting the end user
in the installation of the components necessary to run the simulations previously
demonstrated.
These can be run on a Windows or Linux Operating System. About the former,
it will be necessary to download and install a virtual machine, install a Linux
operating system in order to run the SUMO and Veins programs within it. In the
latter, on the other hand, it will be sufficient to simply install the programs just
mentioned.

A.1 VirtualBox installation

VirtualBox represents a software widely used for the creation of virtual machines
within an operating system. What is attempted is precisely the possibility of recre-
ating an operating system that is effectively “virtual”, just as if it were completely
installed on the device hosting the VirtualBox program, when in fact everything is
done in a virtual manner, dedicating a portion of RAM to it.
To install the software, it is necessary to visit the site https://www.virtualbox.
org/, to click the “Download” button and to proceed with the installation. Sim-
ply the user can follow the guided installation process (“Wizard”), in order to
properly and quickly install it. Once finished, the following steps must be followed:

1. download a version of Linux operating system in “.iso” format. For conve-
nience, it is recommend Linux Mint or Ubuntu. This format is useful for
image-type files, so files that can contain the entire contents of a DVD, as if
it were an installation disk but in the form of software;

2. open Virtualbox and click on “new” button;

3. give a name to the virtual machine, specify the type and operating system.
In this case, assuming we want to use Ubuntu, we will specify “Linux” and
“Ubuntu(64-bit)” respectively;

4. now the amount of RAM to be allocated for the virtual machine will be
specified, which by default is set to 2048MB, that is equivalent to 2GB, which
turns out to be a valid size. Hence, click on “next”;

70

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.linuxmint.com/download.php
https://www.ubuntu-it.org/download

User Manual

5. select “Do not add a virtual hard disk”. This setting will cause the user to
manually add an image file, then the one previously downloaded. Then click
on ”create.”

Once you have created this virtual machine you need to specify the “.iso” file to
proceed to boot. Specifically:

1. selecting the virtual machine you just created, click on “settings”;

2. click on “storage”;

3. click on the icon containing a CD icon with a text field that says “empty”;

4. click on the CD icon on the right and select “choose a disk file”;

5. navigate among folders to find the “.iso” file downloaded in step 1 of the
numbered list above;

6. click on “ok” button and then on “run” button.

A.2 Ubuntu installation

When the virtual machine is booted, the operating system that has just been placed
inside, is started. In this case Ubuntu has been chosen. Below are the steps for
installing this operating system:

1. at the first window that is shown click on “install Ubuntu”;

2. give “continue” until the button that says ”Install now” appears;

3. once the installation is finished, proceed with setting the timezone, a username
and password, as well as the keyboard type;

4. when everything is finished, restart the virtual machine and log in to the
operating system with the previously created credentials.

A.3 SUMO installation

Once you have installed the environment for running a virtual machine and have
installed and started Ubuntu, the following section is aimed for defining the steps
for installing this program.
First you must open a terminal window, either by selecting it from Ubuntu’s pro-
gram menu or by pressing the ctrl+alt+t buttons combination clicked simultane-
ously. When starting a terminal window give the following commands in the order
shown below:

sudo add❂apt❂r e p o s i t o r y ppa : sumo/ s t ab l e
sudo apt❂get update
sudo apt❂get i n s t a l l sumo sumo❂t o o l s sumo❂doc

Once installed you will be able to run commands from the terminal or select the
program from the list of applications.

71

User Manual

A.4 Veins installation

Fortunately, developers of this simulator have made available reference documen-
tation for each type of operation to be performed. In this specific case, its related
operation are available at the following link.
On the other hand, these are the steps that must be followed in order to install and
run it correctly.
First of all download OMNeT++ from omnetpp.org and specify the Linux archive,
called “omnetpp-6.0-linux-x86 64.tgz”. Then copy the downloaded file into a folder.
After that open the terminal, move to the folder and extract its content through

ta r xvfz omnetpp❂6.0❂ l inux❂x86\ 64 . tgz

command. After the extraction a folder called “omnetpp6.0” is created. Move into
it and type

source setenv
. / c on f i gu r e
make

These operations set the environmental variables and then start the configure script
which detects installed software and configuration of your system. At the end it is
possible to run the compile process through the last command.
If everything is performed correctly, is possible to type

. / omnetpp

in order to run the program.

72

https://doc.omnetpp.org/omnetpp/manual/
https://www.omnetpp.org

Appendix B

Simulation execution Manual

This appendix has been defined with the aim to follow the user into the execution
of the simulation of attacks. In particular, will be considered the usage of the tool
named Veins.

B.1 Map creation

There are situations in which is necessary to build a simulation with a specific
environment, so by defining particular scenario. In this way, it is the turn of
OpenStreetMap. It lets the user download a selected piece of map. After that, is
important to transform it in something that is useful for the simulation in Veins.
In order to download a specific map:

1. visit OpenStreetMap and then select the part of the map to be downloaded;

2. click on “Download” button. A file “.osm” will be downloaded.

Once downloaded the map, the user has a file with “.osm” extension. Suppose that
it is called “map.osm”. If the user wants to include it into the simulation, firstly
the terminal must be opened. After that, the following command must be typed:

netconvert ❂❂osm❂ f i l e s map . osm ❂❂output❂ f i l e map . net . xml

/ usr / share /sumo/ t o o l s / randomTrips . py ❂n map . net . xml ❂e 250
❂o map . t r i p s . xml

duarouter ❂n map . net . xml ❂❂route❂ f i l e s map . t r i p s . xml ❂o
map . rou . xml ❂❂ignore❂e r r o r s

po lyconver t ❂❂net❂ f i l e map . net . xml ❂❂osm❂ f i l e s map . osm ❂o
map . poly . xml

The first command transforms the file previously downloaded into a “.xml” file.
The second one defines trips inside the net just created.
The third command receives in input the trips and outputs the routes that the
CAVs will follow.
The latter will put the buildings inside the network.

73

https://www.openstreetmap.org

Simulation execution Manual

B.2 Veins attack simulation

Once the map has been downloaded and all the necessary files have been created
with the proper commands, Veins can be launched. Once started, the following
figure represents the home of the IDE:

Figure B.1. Veins IDE.

Creation of a project

As can be seen, the left bar contains a number of projects included with this
program’s library. In case, however, the user would like to create a project from
scratch, just follow these simple steps:

1. click on “File”;

2. click on “new”;

3. click on “New OMNeT++ project”;

4. follow the wizard and click on “Finish” button.

In this way the folder will contain the following files:

❼ file .ini which contains the initialization of the simulation, with all the files
to refer to.

❼ file .ned which includes the scenario to be run during the simulation.

Running a simulation

The files created in the previous section will then be added in case it is considered
necessary to use a particular map. Once this is done, in case you want to run the
simulation you need to follow the steps shown in the following figure.

74

Simulation execution Manual

Figure B.2. Launching the simulation.

SUMO and Qtenv simulation windows

Once launched, just choose which scenario to run (if more than one was created in
the same .ini file) and then reach this window.
Then clicking on the run button the simulation will start and it will be visible on

Figure B.3. SUMO window.

both SUMO and Qtenv.

75

Simulation execution Manual

Figure B.4. Running of the simulation.

76

Bibliography

[1] Article on autonomous driving, https://www.repubblica.it/tecnologia/
2022/06/16/news/fake_news_la_guida_autonoma_di_tesla_la_piu_

pericolosa-354179281/

[2] Myths about autonomous driving by Audi, https://www.audi-mediacenter.
com/en/press-releases/myths-about-autonomous-driving-14729

[3] NIST Special Publication 1500-201, “Framework for Cyber-Physical Systems:
Volume 1, Overview”, https://doi.org/10.6028/NIST.SP.1500-201

[4] Guturu(1), Bharat Bhargava(2), “Cyber-Physical Systems: A Confluence of
Cutting Edge Technological Streams Parthasarathy”, (1)University of North
Texas, Department of Electrical Engineering, 1155 Union Circle 310440, Den-
ton, Texas 76203-5017, USA guturu@unt.edu (2)Purdue University, Depart-
ment of Computer Sciences, 305 N. University Street, West

[5] S. Al-Sultan, M.M. Al-Doori, et al., “A comprehensive survey on vehicular Ad
Hoc network”, Journal of Network and Computer Applications, vol. 37, pp.
380-392. Elsevier, February 2013

[6] Prabhakar D. Dorge, Dr. Sanjay S. Dorle, Megha B. Chakole, “Implemen-
tation of MIMO and AMC Techniques in WiMAX Network based VANET
System”, I.J. Information Technology and Computer Science, 2016, 2, 60-68,
DOI: 10.5815/ijitcs.2016.02.08

[7] Article on Road Side Unit, https://medium.com/predict/

edge-computing-is-so-much-more-fun-ac2a8a23e696

[8] Zhaojun Lu, Gang Qu, Senior Member, IEEE, and Zhenglin Liu, “A Survey on
Recent Advances in Vehicular Network Security, Trust, and Privacy”, IEEE
transactions on intelligent transportation systems, vol. 20, no. 2, February
2019

[9] DSRC definition, https://en.wikipedia.org/wiki/Dedicated_

short-range_communications

[10] Georgios Karagiannis, Onur Altintas, Eylem Ekici, Geert Heijenk, Boangoat
Jarupan, Kenneth Lin, and Timothy Weil, “Vehicular Networking: A Sur-
vey and Tutorial on Requirements, Architectures, Challenges, Standards and
Solutions”, IEEE Communications surveys & tutorials, vol. 13, no. 4, fourth
quarter 2011

[11] Qiong Yang, Lin Wang, Weiwei Xia, Yi Wu, Lianfeng Shen, “Development
of On-Board Unit in Vehicular Ad-Hoc Network for Highways”, 2014 Interna-
tional Conference on Connected Vehicles and Expo (ICCVE) National Mobile
Communications Research Laboratory Southeast University Nanjing, China

77

https://www.repubblica.it/tecnologia/2022/06/16/news/fake_news_la_guida_autonoma_di_tesla_la_piu_pericolosa-354179281/
https://www.repubblica.it/tecnologia/2022/06/16/news/fake_news_la_guida_autonoma_di_tesla_la_piu_pericolosa-354179281/
https://www.repubblica.it/tecnologia/2022/06/16/news/fake_news_la_guida_autonoma_di_tesla_la_piu_pericolosa-354179281/
https://www.audi-mediacenter.com/en/press-releases/myths-about-autonomous-driving-14729
https://www.audi-mediacenter.com/en/press-releases/myths-about-autonomous-driving-14729
https://doi.org/10.6028/NIST.SP.1500-201
https://medium.com/predict/edge-computing-is-so-much-more-fun-ac2a8a23e696
https://medium.com/predict/edge-computing-is-so-much-more-fun-ac2a8a23e696
https://en.wikipedia.org/wiki/Dedicated_short-range_communications
https://en.wikipedia.org/wiki/Dedicated_short-range_communications

Bibliography

[12] Muhammad Naeem Tahir , Pekka Leviäkangas, Marcos Katz, “Connected Ve-
hicles: V2V and V2I Road Weather and Traffic Communication Using Cellu-
lar Technologies”, Centre for Wireless Communications (CWC)-Networks and
Systems, University of Oulu, FI-90014 Oulu, Finland

[13] CAN definition, https://it.wikipedia.org/wiki/wikipediaController_

Area_Network

[14] Abdulmalik Humayed, Jingqiang Lin, Fengjun Li, and Bo Luo, “Cyber-
Physical Systems Security—A Survey”, IEEE Internet of Things journal, vol.
4, NO. 6, December 2017

[15] Distinction between safety and security, https://poliziamoderna.

poliziadistato.it/articolo/3535e185b1e70134099281328

[16] RFC 4949, https://datatracker.ietf.org/doc/html/rfc4949

[17] Weakness definition, https://csrc.nist.gov/glossary/term/weakness

[18] Exploit definition, https://en.wikipedia.org/wiki/Exploit_computer_

security

[19] Attack vector definition, https://www.sumologic.com/glossary/

attack-vector/

[20] Amit Kumar Goyal, Arun Kumar Tripathi, Gaurav Agarwal, “Security At-
tacks, Requirements and Authentication Schemes in VANET”, 2019 2nd Inter-
national Conference on Issues and Challenges in Intelligent Computing Tech-
niques (ICICT)

[21] Parul Tyagi, Dr. Deepak Dembla, “Investigating the Security Threats in Ve-
hicular ad hoc Networks (VANETs): Towards Security Engineering for Safer
on-road Transportation”, JECRC University Jaipur, India

[22] Guidelines for Securing Radio Frequency Identification (RFID)
Systems, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-98.pdf

[23] Rajdeep Kaur, Tejinder Pal Singh, Vinayak Khajuria, “Security Issues in Ve-
hicular Ad-hoc Network(VANET)”, proceedings of the 2nd International Con-
ference on Trends in Electronics and Informatics (ICOEI 2018) IEEE Confer-
ence Record: # 42666; IEEE Xplore ISBN:978-1-5386-3570-4

[24] Irshad Ahmed Sumra,Iftikhar Ahmad, Halabi Hasbullah, Jamalul-lail bin Ab
Manan, “Classes of Attacks in VANET”, Computer and Information Sciences
Department Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750,
Tronoh, Perak, Malaysia

[25] Bassem Mokhtar - Alexandria University, Mohamed Azab - Virginia Military
Institute, “Survey on Security Issues in Vehicular Ad Hoc Networks, Article
in AEJ - Alexandria Engineering Journal - August 2015

[26] Prof. Ajay N. Upadhyaya, Dr. J.S. Shah, “Attacks on VANET security”, Com-
puter Engineering Department, Faculty of Technology, RK University, Rajkot,
India

[27] Wormhole attack definition, https://www.sciencedirect.com/topics/

computer-science/wormhole-attack

[28] Mithun Sahay Shrivastava, Ravi Khatri, Anand Singh Bisen, “Hybrid Ap-
proach for detecting and preventing DOS attack in VANET”, International
conference on Signal Processing, Communication, Power and Embedded Sys-
tem (SCOPES)- 2016

78

https://it.wikipedia.org/wiki/wikipediaController_Area_Network
https://it.wikipedia.org/wiki/wikipediaController_Area_Network
https://poliziamoderna.poliziadistato.it/articolo/3535e185b1e70134099281328
https://poliziamoderna.poliziadistato.it/articolo/3535e185b1e70134099281328
https://datatracker.ietf.org/doc/html/rfc4949
https://csrc.nist.gov/glossary/term/weakness
https://en.wikipedia.org/wiki/Exploit_computer_security
https://en.wikipedia.org/wiki/Exploit_computer_security
https://www.sumologic.com/glossary/attack-vector/
https://www.sumologic.com/glossary/attack-vector/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-98.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-98.pdf
https://www.sciencedirect.com/topics/computer-science/wormhole-attack
https://www.sciencedirect.com/topics/computer-science/wormhole-attack

Bibliography

[29] M. Poongodi, V. Vijayakumar, Fadi al-Turjman, Mounir Hamdi (Fellow,
IEEE), and Maode Ma (Senior Member, IEEE), “Intrusion Prevention System
for DDoS Attack on VANET With reCAPTCHA Controller Using Informa-
tion Based Metrics”, special section on secure communication for the next
generation 5G and IoT networks

[30] Krzysztof Stepie➫n, Aneta Poniszewska-Mara➫nda, “Security methods against
Black Hole attacks in Vehicular Ad-Hoc Network”, Institute of Information
Technology Lodz University of Technology Lodz, Poland

[31] Salman Ali Syed, B.V.V.S Prasad, “Merged technique to prevent SYBIL At-
tacks in VANETs”, Department of Computer Science, College of Sciences and
Arts Jouf University, Tabarjal , KSA

[32] Robert A. Sowah, Kwadwo B. Ofori-Amanfo, Godfrey A. Mills, Koudjo
M. Koumadi, “Detection and Prevention of Man-in-the-Middle Spoofing At-
tacks in MANETs Using Predictive Techniques in Artificial Neural Networks”,
https://www.hindawi.com/journals/jcnc/2019/4683982, Journal of Com-
puter Networks and Communications, 2019

[33] Hannes Hartenstein, Kenneth P. Laberteaux, “A Tutorial Survey on Vehicular
Ad Hoc Networks”, IEEE Communications Magazine, June 2008

[34] Jeep Cherokee hacked, https://www.quattroruote.it/news/nuove_

tecnologie/2015/07/22/cybersecurity_valasek_e_miller_hackerano_

una_jeep_cherokee.html

[35] Volkswagen Audi hacked, https://www.bleepingcomputer.com/news/

security/volkswagen-and-audi-cars-vulnerable-to-remote-hacking/

[36] Prius hacked, https://news.sky.com/story/

car-hackers-take-control-of-toyota-prius-10439089#

[37] Mercedes-Benz hacked, https://techcrunch.com/2020/08/06/

security-bugs-mercedes-benz-hack/

[38] SUMO definition, https://en.wikipedia.org/wiki/Simulation_of_

Urban_MObility

[39] OMNeT++ definition, https://omnetpp.org/intro/
[40] Julia Silva Weber, Miguel Neves and Tiago Ferreto, “VANET simulators:

an updated review”, Journal of the Brazilian Computer Society (2021) 27:8,
https://doi.org/10.1186/s13173-021-00113-x

[41] Dharmaraja S, Vinayak R, Trivedi KS, “Reliability and survivability of vehicu-
lar ad hoc networks: An analytical approach.”, Reliab Eng Syst Saf 153:28–38

[42] Eclipse IDE website, https://www.eclipse.org/ide/
[43] SimuLTE framework, https://simulte.com/
[44] OpenStreetMap site, https://www.openstreetmap.org/
[45] Distributed Denial of Service cost, https://www.infoced.net/?p=1355
[46] Abdullahi Chowdhury, Gour Karmakar,Joarder Kamruzzaman,Alireza Jolfaei

and Rajkumar Das “Attacks on Self-Driving Cars and Their Countermea-
sures: A Survey”, School of Engineering, IT and Physical Sciences, Federation
University Australia, Ballarat, VIC 3350, Australia publication November 16,
2020

[47] Shivam Kumawat, Harneet Kaur, Omdev Dahiya “An Analytical Study on
Intrusion Detection System in Integrated Vehicular Ad-Hoc Network Attacks”,
2022 3rd International Conference on Intelligent Engineering and Management
(ICIEM)

79

https://www.hindawi.com/journals/jcnc/2019/4683982
https://www.quattroruote.it/news/nuove_tecnologie/2015/07/22/cybersecurity_valasek_e_miller_hackerano_una_jeep_cherokee.html
https://www.quattroruote.it/news/nuove_tecnologie/2015/07/22/cybersecurity_valasek_e_miller_hackerano_una_jeep_cherokee.html
https://www.quattroruote.it/news/nuove_tecnologie/2015/07/22/cybersecurity_valasek_e_miller_hackerano_una_jeep_cherokee.html
https://www.bleepingcomputer.com/news/security/volkswagen-and-audi-cars-vulnerable-to-remote-hacking/
https://www.bleepingcomputer.com/news/security/volkswagen-and-audi-cars-vulnerable-to-remote-hacking/
https://news.sky.com/story/car-hackers-take-control-of-toyota-prius-10439089#
https://news.sky.com/story/car-hackers-take-control-of-toyota-prius-10439089#
https://techcrunch.com/2020/08/06/security-bugs-mercedes-benz-hack/
https://techcrunch.com/2020/08/06/security-bugs-mercedes-benz-hack/
https://en.wikipedia.org/wiki/Simulation_of_Urban_MObility
https://en.wikipedia.org/wiki/Simulation_of_Urban_MObility
https://omnetpp.org/intro/
https://doi.org/10.1186/s13173-021-00113-x
https://www.eclipse.org/ide/
https://simulte.com/
https://www.openstreetmap.org/
https://www.infoced.net/?p=1355

Bibliography

[48] Ammar Haydari and Yasin Yilmaz, “RSU-Based Online Intrusion Detection
and Mitigation for VANET”, Sensors 2022, 22, 7612, https://doi.org/10.
3390/s22197612

[49] Ahmad Arsalan, Rana Asif Rehman “Prevention of Timing Attack in Software
Defined Named Data Network with VANETs”, 2018 International Conference
on Frontiers of Information Technology (FIT)

80

https://doi.org/10.3390/s22197612
https://doi.org/10.3390/s22197612

List of Figures

2.1 View of a Cyber-Physical System [4] 12
2.2 VANET Architecture [6]. 15
2.3 RSU Architecture [7]. 16
2.4 Protocols used in ISO/OSI stack [11] 18
2.5 A general VANET architecture [12]. 19

4.1 Veins architecture [40]. 37
4.2 MOSAIC architecture [40]. 37

5.1 Real map chosen for the simulation. Snapshot of Turin city. 44
5.2 Map obtained for the simulation. 45
5.3 Phase 1: attacker spreading the false message. 48
5.4 Phase 2: victim replies to attacker’s message. 48
5.5 Phase 3: victim change its road uselessly. 49
5.6 Starting scenario for DoS attack. 50
5.7 Execution of attack. 51
5.8 Distributed Denial of Service at t=100s. 52
5.9 Timing attack. 54
5.10 Social engineering attack. 55
5.11 Graph of the network. 56
5.12 Black Hole attack execution. 57
5.13 Jeep Cherokee stopped by the attacker. 57

6.1 Notification of no incident. 60
6.2 Victim following its real trip. 60
6.3 Line chart DOS. 61
6.4 Packet drop DOS. 61
6.5 Line chart DDoS. 62

B.1 Veins IDE. 74
B.2 Launching the simulation. 75
B.3 SUMO window. 75
B.4 Running of the simulation. 76

81

List of Tables

3.1 Table of attacks [23]. 26

4.1 VANET simulators. [40] . 36
4.2 Simulators’ functionalities. [40] . 38
4.3 Simulators safety. [40] . 39
4.4 Security and privacy in simulators [40]. 40

5.1 Implemented attacks. 46

6.1 Values of packet dropped. 62

82

	Introduction
	Thesis structure

	CPS overview and its specialization: VANET
	CPS overview
	CPS scope
	VANET: characteristics
	VANET components
	RSU: Road Side Unit
	OBU: On Board Unit
	AU: Application Unit
	TA: Trusted Authority

	VANET communication
	VANET architecture

	Cybersecurity and VANET
	Security in CPS
	Security in VANET
	VANET security requirements

	Real attack mechanisms on VANET
	Classes of attacks
	Countermeasures on VANET attacks
	Real use-case attacks on cars
	Jeep Cherokee
	Volkswagen and Audi
	Toyota Prius
	Mercedes-Benz

	Analysis of the state of the art of VANET simulators
	Introduction to simulators
	Simulators
	Mobility simulator: SUMO
	Network simulator: OMNeT++

	VANET simulators
	Veins
	Eclipse MOSAIC

	Simulators' functionalities
	Security functionalities
	Safety
	Security

	Simulation framework: implementation of attacks
	Simulation configuration
	Veins settings
	Network configuration
	Map generation

	Implementation of attacks
	Message Alteration attack
	Denial of Service attack
	Distributed Denial of Service attack
	Timing attack
	Social engineering attack
	Black Hole attack
	Jeep Cherokee attack

	Analysis of results
	Message alteration attack
	Denial of Service
	Distributed Denial of Service
	Timing attack
	Social Engineering attack
	Black Hole attack
	Jeep Cherokee attack

	Conclusion
	User Manual
	VirtualBox installation
	Ubuntu installation
	SUMO installation
	Veins installation

	Simulation execution Manual
	Map creation
	Veins attack simulation

	Bibliography
	List of Figures
	List of Tables

