
POLITECNICO DI TORINO

Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

Surrogate modelling and Optimisation in
EnergyPlus environments for Smart

Buildings

Supervisors

Prof. Giacomo CHIESA

Dott. Paolo GRASSO

Candidate

Paolo CARRISI

Dicembre 2022

Abstract

The work of this thesis is linked to the design and management of smart buildings.
A smart building is one that employs technology to make efficient and economical use
of resources while also providing residents with a safe and comfortable environment.
Smart buildings may utilise a variety of existing technologies and are planned
or modified in such a manner that future technological improvements may be
integrated. The specific goal of this thesis is to add functionality to the PREDYCE
software (Python semi-Realtime Energy DYnamics and Climate Evaluation), which
is a Python library developed inside the E-DYCE and PRELUDE projects to
work as an EnergyPlus simulation platform, allowing automatic editing of IDF
files (building models) and KPIs computation on both simulation results and
monitored data. The added functions are optimization methods that use genetic
algorithms (e.g., NSGA2) to solve multi-objective problems, as well as "black-box"
simulation methods that use the design and training of artificial neural networks
(ANN) to simulate or predict the KPIs of a building, using the building’s structural
parameters or external climate data as input. These functions have been designed
to be helpful during the design phase of a building, but also as a tool in the context
of smart buildings, useful in terms of saving consumption and comfort management,
since the implementation of artificial neural networks allows for a large number of
simulations to be performed almost in "real-time."

Acknowledgements

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 1
1.1 Problem Statement . 1
1.2 Building Managment System . 3

1.2.1 Building Energy Model . 4
1.3 Mathematical models for complex systems 5

1.3.1 EnergyPlus as white-box model 7
1.4 Objectives . 8
1.5 Thesis Structure . 9

2 Sate-of-Arts 10
2.1 EnergyPlus Software . 10

2.1.1 DesignBuilder . 10
2.1.2 OpenStudio . 11
2.1.3 BESOS . 12

2.2 PREDYCE . 12
2.2.1 Sensitivity Analysis with PREDYCE 14

3 Mathematical Methods 15
3.1 Multi-objectives optimization . 15

3.1.1 NSGA-II . 16
3.1.2 NSGA-III . 19

3.2 Surrogate model . 20
3.3 Artificial Neural Network . 22

3.3.1 Multi-Layer Perceptron . 22
3.3.2 Mathematical formulation 24

iv

3.4 Python Libraries . 25
3.4.1 Pymoo . 25
3.4.2 Scikit-Learn . 27

4 Methodology 28
4.1 Optimization . 28
4.2 Optimization with Surrogate Model 31
4.3 Surrogate model with metereological data 33

5 Results 35
5.1 Example of Optimization scenario - NSGA2 40

5.1.1 Results discussion . 45
5.2 Example of Optimization scenario - NSGA3 46

5.2.1 Results discussion . 47
5.3 Example of Optimization with Surrogate Model 47

5.3.1 Results discussion . 55
5.4 Example of Surrogate Model with meteorological data 56

5.4.1 Results discussion . 66

6 Conclusions 67

Bibliography 68

v

List of Tables

5.1 Range parameters . 41
5.2 Optimum solutions (NSGA2) . 44
5.3 Optimum parameters (NSGA2) . 45
5.4 Initial database configuration . 48
5.5 Prediction errors . 53
5.6 Range parameters (Surrogate optimization) 54
5.7 Errors on test-Database . 57
5.8 Heatmaps legend . 57

vi

List of Figures

1.1 World: Primary energy consumption. Source: U.S. Energy Informa-
tion Administration, International Energy Outlook 2019 [1] 2

1.2 Energy Consumption by sector from [2] 3
1.3 Building Management System from [3] 4
1.4 Mathematical models for complex systems from [4] 6
1.5 EnergyPlus process from [6] . 8

2.1 DesignBuilder interface from [10] 11
2.2 OpenStudio interface from [14] . 12
2.3 PREDYCE architecture from [17] 13

3.1 Multi-objective Optimization . 16
3.2 Non-dominated sorting method from [23] 17
3.3 Crowding distance from [24] . 18
3.4 Pseudocode of NSGA-II (adapted from (Coello et al. 2006) 19
3.5 Reference Directions from [27] . 20
3.6 Surrogate Modeling from [28] . 21
3.7 Multi-layer perceptron network . 23

4.1 Input/output sequence of a basic PREDYCE Optimization from [17] 29
4.2 Input JSON file . 29
4.3 Optimisation range parameters . 30
4.4 Population example . 31
4.5 eplusout.csv example . 33

5.1 Render view . 35
5.2 Building plant . 36
5.3 Interior render view . 37
5.4 External walls construction layers 38
5.5 Internal walls construction layers 39
5.6 Windows construction layers . 40
5.7 Population example . 43

vii

5.8 Pareto Front (NSGA2) . 44
5.9 Pareto Front (NSGA3) . 47
5.10 EnergyPlus results of Cooling demand 48
5.11 EnergyPlus results of Heating demand 49
5.12 Regression Line for Cooling . 50
5.13 Regression Line for Heating . 51
5.14 Residuals plot for Cooling . 52
5.15 Residuals plot for Heating . 53
5.16 Pareto Front with Surrogate model 54
5.17 Optimization results with Surrogate model (Cooling demand) . . . 55
5.18 Optimization results with Surrogate model (Heating demand) . . . 55
5.19 Correlation matrix - Aalborg . 58
5.20 Correlation matrix - Athens . 59
5.21 Correlation matrix - Torre Pellice 60
5.22 Residuals plot Aalborg-PMV . 61
5.23 Residuals plot Athens-RadiantTemp[°C] 62
5.24 Residuals plot Torre Pellice-Cooling[J] 63
5.25 Regression line Aalborg-PMV . 64
5.26 Regression line Athens-RadiantTemp[°C] 65
5.27 Regression line Torre Pellice-Cooling[J] 66

viii

Acronyms

AI
artificial intelligence

x

Chapter 1

Introduction

1.1 Problem Statement

Because of global climate circumstances, the subject of energy conservation has
taken on, and continues to take on, increasing relevance in Western society. As a
result, energy production from fossil fuels is becoming increasingly unsustainable,
owing to the high costs and low quality of these raw resources. To address this
tendency and the ongoing growth in global energy demands (Figure 1.1) , it
is consequently vital to rely more and more on renewable sources that do not
exacerbate our planet’s climatic circumstances. Furthermore, to support this
move, it is vital to invest in processes of crucial energy conservation, discovering
increasingly "smart" solutions on all levels that enhance efficiency by restricting
waste to a bare minimum.

1

Introduction

Figure 1.1: World: Primary energy consumption. Source: U.S. Energy Informa-
tion Administration, International Energy Outlook 2019 [1]

The construction industry consumes a major share of total energy on a worldwide
scale (Figure 1.2), and for this reason energy efficiency programs attempt to reduce
the usage of thermal or electrical energy in the building sector. Based on this
premise, European Union member states are already implementing policy review
measures, as well as the deployment of new regulatory instruments and techniques
capable of integrating design with a detail attention to the energy component of
the structure. As a result, we seek to achieve a specified building process through
the application of legal criteria and the concrete potential of achieving optimal
performance in terms of energy efficiency and living comfort.

2

Introduction

Figure 1.2: Energy Consumption by sector from [2]

1.2 Building Managment System

BMS (Building Managment System) is a computer based control system used to
monitor and control mechanical and electrical equipment in a building, or a part of
a building. Based on both software and hardware entities, the main goal of this
system is to manage heating and cooling of the building, mechanical and natural
ventilation and the air conditioning system (HVAC). BMS is now based on open
communications protocols like DeviceNet, SOAP, XML, BAcNet, LOnWorks and
are WEB enabled. It can be divided into 3 different levels, FIELD level (with
all the sensors, actuators, room controls...), AUTOMATION level (including
LON to BacNet router/gateway and automation level controllers) ad the last
MANAGMENT level (Web Browser server and work stations). An important
aspect of BMS is the IoT technology in the sensors and valves at th field level, that
enables smart metering and remote monitoring and control. Data collected from
IoT devices can be used for different purposes like control policies development,
visualization for facility and energy managers, and also for BEM .

3

Introduction

Figure 1.3: Building Management System from [3]

1.2.1 Building Energy Model
Building Energy Model (Figure 1.3) is a versatile, multipurpose tool that is used
in new building and retrofit design, green certification, real-time building control.
Is a physics-based software simulation of building energy use, that takes as input a
description of a building (BIM). BIM modelling is a process involving the generation
and management of digital representation of physical and functional characteristics
of places. The geometry, building materials, lighting, HVAC, refrigeration, water
heating, and renewable generating system configurations, component efficiency,
and control methods are all included in a BIM file. It also collects details on how
the facility is used, such as occupancy schedules, lighting requirements, plug loads,
and temperature settings. Building information models (BIMs) are data files that
may be extracted, traded, or networked to assist decisions about a building or
other architectural asset. The thermal loads, system reaction to those loads, and
associated energy usage, along with related metrics like occupant comfort and
energy costs, are calculated by a BEM algorithm using these inputs and local
meteorological data. BEM programs do computations on an hourly or shorter basis
for a whole year. They also take into consideration system interactions, such as
those between heating and cooling and lighting.

Applications for BEM make use of its capacity to respond to inquiries that are
difficult to resolve through conventional channels. The following are significant

4

Introduction

usage cases:

Applications for BEM make use of its capacity to respond to inquiries that are
difficult to resolve through conventional channels. The following are significant
usage cases:

1. Design of Buildings: BEM is used by architects to create energy-efficient struc-
tures, especially to explain quantitative trade-offs between initial construction
costs and ongoing energy expenses. BEM may frequently lower both energy
expenditures and initial building costs.

2. Commercial building HVAC systems may be big and sophisticated in terms
of design and operation. BEM aids mechanical engineers in creating HVAC
systems that effectively satisfy building thermal demands. It aids in the
development and evaluation of control techniques for these systems.

3. Building Performance Rating: BEM can be used to evaluate a building’s
intrinsic performance while accounting for its intended purpose and mode of
operation. Processes like code compliance, green certification, and financial
incentives are all based on inherent performance rating.

4. Building Stock Study: BEM analysis on prototype models aids in the creation
of energy codes and standards and aids in the development of large-scale
energy-efficiency initiatives by utilities and municipal governments.

1.3 Mathematical models for complex systems

Which models should be used in an energy consumption prediction framework?
There are three different approaches available: white box model, black box model,
gray box model (Figure 1.4).

5

Introduction

Figure 1.4: Mathematical models for complex systems from [4]

If there is sufficient building information to characterize the set of heat transmis-
sion, heat storage, and heat flux, as well as the accompanying physical-significance
parameters, then this may be done using a white box model. White-box modeling’s
degree of difficulty is mostly determined by the precision levels of the known
phenomena connected to the building system that will be represented. White-box
model parameters have physical relevance (e.g. thermal conductivity of certain
materials) Despite the application of fundamental physical principles, mistakes
due to random factors that are not represented by the known parameters (such as
window openings and air exchange rates in natural ventilation) will always exist.

The settings of the black-box are typically changed automatically. The biggest
advantage over white-box devices is this automated calibration modification of the
black-box settings. Their inherent connection to the underlying laws of physics is a
drawback. When used in challenging circumstances, black box model identification
is discovered to be incompatible with physical reality (little building system data).
Black-box models are therefore mostly utilized for error detection rather than
optimization. Their benefit is the quick, automated detection of thermal energy
consumption outputs from buildings. Black-box models can be static or dynamic,
linear or nonlinear, exactly as white-box models, depending on the underlying
structure of the model.

6

Introduction

1.3.1 EnergyPlus as white-box model
Engineers, architects, and researchers utilize the whole building energy modeling tool
EnergyPlus[5] to simulate how much energy is used for heating, cooling, ventilation,
lighting, plug and process loads, and water use in buildings. EnergyPlus has a
number of remarkable characteristics and capabilities, some of which are:

1. Without assuming that the HVAC system system can handle zone loads and
with the ability to model unconditioned and under-conditioned spaces, an
integrated, simultaneous solution of thermal zone conditions and HVAC system
response is possible.

2. Calculations for thermal comfort and condensation are done using a heat
balance-based solution to the radiative and convective actions that result in
surface temperatures.

3. Sub-hourly, user-definable time steps are used for interactions between thermal
zones and the environment, while time steps for interactions with HVAC
systems are automatically changed. These enable EnergyPlus to simulate
systems with quick dynamics while balancing simulation speed and accuracy.

4. Air flow across zones is taken into consideration via a combined heat and mass
transfer model.

5. Controllable window blinds, electrochromic glazings, and layer-by-layer heat
balances that estimate the solar energy absorbed by window panes are examples
of advanced fenestration models.

6. Calculations of illumination and glare are used to report on visual comfort
and to drive lighting settings.

7. HVAC that is component-based and accommodates both common and unusual
system designs.

8. Several pre-installed HVAC and lighting control methods, as well as an ex-
pandable runtime scripting framework for user-defined control

9. Energy source multipliers are included in all of the standard summary and
comprehensive output reports as well as user-defined reports with a choice of
time resolution from annual to sub-hourly.

EnergyPlus is a command-line software that receives input and outputs it to text
files. It comes with a number of utilities, including IDF-Editor, which allows you
to create input files using a simple spreadsheet-like interface, EP-Launch, which
allows you to manage input and output files and perform batch simulations, and

7

Introduction

EP-Compare, which allows you to compare the results of two or more simula-
tions graphically. EnergyPlus is free, open-source, and cross-platform, developed
by Building Technologies Office (BTO) of the United States Department of Energy
(DOE).

Figure 1.5: EnergyPlus process from [6]

1.4 Objectives
The primary goals of this thesis are two:

1. to exploit optimisation enablers into EnergyPlus multiple runs

2. to design a tool for the creation of a Surrogate Model after EnergyPlus multiple
runs

Concerning Optimisation, the goal is to be able to introduce within the sensitivity
analysis of genetic algorithms (NSGA2, NSGA3) capable of selecting the best
configurations of a building in terms of consumption and/or comfort as the building
construction parameters such as window-to-wall ratio, insulation layer thickness,
type of glazing, and so on. In this way, it provides the user with not only a way to
evaluate which parameters have the greatest impact on the outcome of building
energy simulations, but also the ability to choose which of these configurations
may represent a fair trade-off for the various output values that one wants to
maximize/minimize.

The surrogate model, on the other hand, is intended to replace traditional
simulations such as EnergyPlus with a black-box prediction method such as artificial
neural networks, which are significantly less expensive in terms of computational
complexity and execution time. This approach’s specific goals are as follows:

1. perform sensitivity analysis/optimization of building parameters by utilizing
a much larger number of samples while maintaining high accuracy

2. train a network capable of predicting, given a specific building configuration,
the consumption and/or comfort score as the external environment’s climatic
data changes.

8

Introduction

Both optimization and surrogate modeling tasks were implemented within the
PREDYCE tool, which was developed by the Politecnico di Torino as part of the
PRELUDE[7] and E-DYCE [8] project and was discussed in the chapter State-
of-Arts that follows. The EU-funded PRELUDE project proposes a proactive
optimisation service based on smart technologies. The service provides clear and
appropriate feedback and suggests retrofitting operations on a cost-efficient basis. It
uses natural ventilation and cooling to reduce the energy consumption of mechanical
heating, ventilation and air conditioning (HVAC) systems. Big Data and advanced
analytic instruments will encourage demand-side flexibility and moderate the
integration into district heating and electricity grids. The innovative service will
be demonstrated in a wide range of applications in individual multi-apartment and
large-scale residential buildings in cities across Europe. This thesis is part of the
PRELUDE project under T9.5 activities (education and citizen science).

1.5 Thesis Structure
Following is a brief explanation of the structure of the topics covered in this thesis.
In the first section of State of Arts, a brief description of several software and tools
that use EnergyPlus for building modeling and functional and energy optimization
is provided. With great care, the tool PREDYCE was presented, which will be
used in this thesis project as infrastructure to execute the features described
in the Objectives chapter. Following that, in the methods chapter, a simplified
proposal of the algorithms used to accomplish both optimization and surrogate
modeling tasks is presented, along with a brief description of the Python libraries
used to implement these algorithms within the PREDYCE tool. In the chapter
methodology, three different functions implemented in the PREDYCE tool are used:

1. Multi-objectives optimization as a result of sensitivity analysis

2. Multi-objectives optimization with the assistance of Surrogate model

3. Surrogate modeling using meteorological data

Then, in the results section, three practice examples of using the tool’s new features
are used, commenting on the results and output graphics obtained.

In the final analysis, in the chapter conclusion, the potentialities of using these
codes within a real-world energy optimization context are illustrated, as are thoughts
and ideas for future changes and improvements.

9

Chapter 2

Sate-of-Arts

2.1 EnergyPlus Software

EnergyPlus software may run performance-driven energy and comfort evaluations
and/or optimization activities using graphical interfaces or code tools that enable
the integration of a single dynamic energy simulation into a more organized workflow
that includes input editing and output analysis. Several graphical interfaces, which
are regularly updated and provide a variety of features, have been created to aid
professionals in their use of EnergyPlus.

2.1.1 DesignBuilder

DesignBuilder is the most extensive Energy-Plus interface currently available [9].
The program has a simpler CAD interface, guided processes, and more compact
Energy-Plus airflow modeling setups. The typical application of DesignBuilder
enables a variety of facade envelope alternatives, solar illumination analysis via site
location, fluid dynamics modeling, and HVAC equipment sizing. DesignBuilder was
created mainly as a tool to assist all phases of the design process. DesignBuilder
is intuitive and straightforward to use, however, it does not currently offer all
Energy-Plus features. The software’s structure is comprised of HVAC systems
that give basic and concise descriptions, but do not provide specific information
about their components and topology. Another limitation is that Energy-Plus
input files cannot be imported, so a 3D geometry model must be made for each
energy analysis.

10

Sate-of-Arts

Figure 2.1: DesignBuilder interface from [10]

2.1.2 OpenStudio
OpenStudio [11] is a graphical interface for building energy modeling that uses
Energy-Plus and Radiance [12] for lighting analysis. A version of the program
is included in a SketchUp plug-in [13], which is highly beneficial for merging
architectural and energy design. Modules for viewing and modifying the envelope’s
constituent components, as well as an interface for simulating interior loads and the
air and water-conditioning systems, are included in the application. The Radiance
module may be used to integrate energy simulations. The "ParametricAnalysisTool"
module gives a variety of energy choices for the given analysis scenario, whilst
the "RunManager" module enables you to execute energy simulations using the
Energy-Plus engine in parallel. The findings are shown using the "ResultsViewer"
module, which provides a basic summary as well as specifics of the energy analysis.
There are just a few restrictions while utilizing this program. Those who are skilled
with the SketchUp module will have no trouble modeling building geometry. One
restriction may be the three-dimensional model’s tremendous flexibility, which may
induce the user to simulate architectural elements that are insignificant for the
aim of energy simulation, increasing modeling time and particularly computational

11

Sate-of-Arts

ones.

Figure 2.2: OpenStudio interface from [14]

2.1.3 BESOS
To carry out optimizations and other building-related tasks, there are libraries and
apps built on the EnergyPlus platform. One option is to bring up BESOS [15], a
Python package and a JupyterHub platform that both let users create building
optimization tasks using simple coding. It performs parametric IDF editing using
the Eppy [16] library, and building optimization is carried out while the parametric
analysis is being carried out using genetic or optimization methods (such those
found in the Platypus Python library).

2.2 PREDYCE
PREDYCE [17][18] [19](Python Realtime Energy DYnamics and Climate Evalu-
ation) is a new Python-based platform, executable on both personal computers
and servers, that can handle parallel simulation runs with an asynchronous multi-
processing strategy, support the integration of additional modules, script existing
EnergyPlus input files, support sensitivity analysis, elaborate outputs, and cal-
culate KPIs (such as thermal comfort, indoor air quality, free-running potential,
ventilative cooling).

12

Sate-of-Arts

The software tool is built around three key components (Figure 2.3):

1. the EnergyPlus input file editor (*.idf),

2. the KPI (Key Performance Indicators) calculator

3. the runner module, which can execute numerous concurrent simulations auto-
matically.

Figure 2.3: PREDYCE architecture from [17]

The weather input file (.epw) and the .idf file itself can both be modified using
additional functions. The tool uses an input JSON file to define the actions and
KPIs to be performed and calculated, as well as to hold the dictionary-formatted
data required to edit the *.idf files (such as the compositions of materials, programs,
and construction parts). EnergyPlus input files may be read, edited, and saved
using the *.idf editor module. It simplifies the editing process by providing a
mechanism to carry out certain complex activities using Python methods that
can be quickly called from a custom script. The KPI calculator module may
use the EnergyPlus output files to do calculations, analysis, and graph displays.
Typically, the studies involve resampling output data and using algorithms to
calculate indicators in accordance with European standards. Graphs that can be
preserved in subfolder structures can also be included in some computations. Each
row represents a simulation, and each column an output (including EnergyPlus
base outputs if necessary) or generated KPI. All data are combined into a final
CSV file. This module was designed to analyze data received from monitoring

13

Sate-of-Arts

campaigns or simulated by other tools, in addition to EnergyPlus outputs, in order
to compute and perhaps compare pertinent KPIs across several datasets. The script
called runner module contains a Python class that allows for simultaneous execution
of several simulations and analysis. The runner is responsible for setting up a pool
of simulations that are subsequently conducted asynchronously by several instances
of EnergyPlus on the same system; this pool of simulations can be a straightforward
combination of all potential user-described actions in the input JSON file.

2.2.1 Sensitivity Analysis with PREDYCE
Sensitivity analysis [20] is the fundamental and most significant PREDYCE scenario
since it serves as the base for all others. By automatically updating the building
model in accordance with combinations of all the parameters given in the input
JSON file and computing the desired KPIs, it enables the performance of parametric
analysis. Other situations could use other logics to choose or combine parameters,
but at its core, PREDYCE is capable of running EnergyPlus simulations in parallel
and storing the results in an aggregated and lightweight format. Currently, analysis
on the best value combinations must be performed after looking through all of
the results in the CSV file using scripting, because optimization procedures using
optimization algorithms or surrogate modeling have not yet been implemented
in order to speed up the scanning of the parameter space and identify the best
building configuration. However, the tool’s versatility makes it easy to integrate
optimization techniques in the future while also employing the numerous Python
libraries already in use for this purpose.

14

Chapter 3

Mathematical Methods

3.1 Multi-objectives optimization
Multi-objectives optimization [21], or MOOP (Multi-Objectives Optimisation), is
a procedure that seeks the best solution to a problem with multiple objectives.
Because the "best solution" to a genuine problem is typically influenced by several
variables, these sorts of challenges have been the topic of extensive research since
the mid-1900s. If these variables do not contradict each other (or if there is a
hierarchy of priority for the different objectives), the complexity of the issue may
be readily reduced by converting a MOOP to a SOP (Single Objective Problem)
and seeking solutions in a one-dimensional space. However, when we consider the
subject of building energy optimization, we see that this strategy is not always
relevant. For example, we can reduce the size of a window to maximize cooling
usage during the summer, but this would increase heating consumption during
the winter and lower the house’s comfort score. It becomes evident, then, that in
these sorts of situations, obtaining a univocal answer is not feasible; hence, the
right strategy will be to seek a collection of solutions, as compact as possible, in a
multi-dimensional space, that can represent "a reasonable compromise" between
the many objectives. Formally, the MOOP is defined as follows:

min/MAX fm(x) for m = 1,2, .., M

gj(x) >= 0 for j = 1,2, ..., J

hk(x) = 0 for k = 1,2, ..., K

x
(L)
i <= xi <= x

(U)
i for i = 1,2, ..., N

Where:

1. M number of goals

2. J number of constraints

15

Mathematical Methods

3. K number of equality constraints

4. n number of decision variables

5. x(L)and x(U) limit of decision variables

Figure 3.1: Multi-objective Optimization

In a space of multidimensional solutions, it is consequently required to specify a
criterion that allows for the unambiguous determination of whether one solution is
superior to another. In this context, the idea of Pareto dominance is presented,
which states that a solution x_1 dominates (▷) a solution x_2 if and only if:

1. fi(x(1)) /▷ fi(x(2)) for i = 1...M

2. ∃i | fi(x(1)) ◁ fi(x(2)) for i = 1...M

3.1.1 NSGA-II
NSGA-II (Elitist Non-Dominated Sorting Genetic Algorithm), proposed by Deb in
2000 [22], is one of the most extensively utilized algorithms for this type of issue
(especially when addressing 2-objective situations). It is an advanced refinement
of NSGA, in which the concepts of solution dominance and "crowding distance"
are employed to preserve solution variety. Its strategy is to rank the solutions in a
given population by giving a level based on the dominance criterion. Non-dominant

16

Mathematical Methods

solutions in the entire population will be ranked first. Non-dominant solutions
among the whole population, except for rank 1 solutions, will have rank 2, and
so on. Figure 3.2 depicts a ranking example in a minimization problem with two
objective functions.

Figure 3.2: Non-dominated sorting method from [23]

After all solutions have been ranked, the crowding distance (Figure 3.3), which
measures how isolated a solution is, is taken into account. The crowding distance
is applied to each group of solutions with the same rank individually. With respect
to each goal function, the solutions are repeatedly ranked in pejorative order. As
illustrated in Figure 5, the extreme solutions with the highest and worst fitness
in a given goal have a crowding distance value of infinity, while the rest have a
value proportional to the distance between the i-th solution and the preceding and
next solutions. The more isolated a solution’s crowding distance value is, the more
viable it is. When comparing two solutions, the rank of the two solutions is first
compared; if the rank is the same, the crowding distance is compared. When the
rank of two solutions is the same, the element with the greater crowding distance
value is chosen.

17

Mathematical Methods

Figure 3.3: Crowding distance from [24]

18

Mathematical Methods

Figure 3.4: Pseudocode of NSGA-II (adapted from (Coello et al. 2006)
[25]

3.1.2 NSGA-III

The Non Dominating Sorting Genetic Algorithm (NSGA-III) is a many-objective
algorithm based on the non-dominated sorting for NSGA-II and a new diversity
preservation technique based on "reference directions" (Figure 3.5).

The crowding distance employed in NSGA-II is replaced in NSGA-III by a
survival mechanism that takes into account the distance of equivalent solutions,
i.e. those belonging to the same front, to a set of reference locations. The list of
reference points can be supplied by the user, simulating the most interesting search
paths, or it can be produced automatically using Das and Denni’s approach [26].

19

Mathematical Methods

Figure 3.5: Reference Directions from [27]

3.2 Surrogate model
Computer simulations are intended to forecast the behavior of a physical system
by solving the mathematical equations related to the physical process. EnergyPlus
simulations, for example, may be used to determine a building’s performance in
terms of energy usage and comfort score.

These simulations are useful because they give engineers with extensive insights
into building performance without the need to physically create the building,
making them essential for virtual prototyping. Engineers are often required to
execute the following tasks in order to promote an effective and reliable design

20

Mathematical Methods

process:

1. sensitivity analysis, which investigates product performance when design
parameters change;

2. optimizations, to determine the best design in order to maximize/minimize
the objective function.

Both of these tasks require several simulation runs, with different combinations
of design parameters as inputs in each run. However, computer simulations are
typically expensive, and analyses that require multiple simulation runs would result
in high processing costs, making them impractical in real-world settings.

Surrogate modeling [28] (Figure 3.6) is the process of developing a statistical
model (or surrogate model) that accurately approximates the simulation output.
Following that, this trained statistical model can be used to replace the original
computer simulation in tasks such as optimization and sensitivity analysis.

Figure 3.6: Surrogate Modeling from [28]

Because a single assessment of the trained statistical model is typically sig-
nificantly faster than a single evaluation of the original simulation, completing
hundreds of thousands of outputs given different combinations of input parameters
is much easier, and make such costly analyses more affordable. A data-driven

21

Mathematical Methods

technique is used to train a surrogate model. It obtains training data by probing
simulation outputs at various rationally or randomly chosen points in the design pa-
rameter space. A complete simulation is run at each of these positions to determine
the associated simulation outcome. The training dataset is built by collecting the
pairs of inputs (design parameters) and outputs from which the statistical model
may be developed. Surrogate modeling is a kind of supervised machine learning
that is used in engineering design. Popular machine learning approaches, such
as polynomial regressions, support vector machines, Gaussian Processes, neural
networks, and so on, are also commonly used as surrogate models to speed up the
product design and analysis processes.

3.3 Artificial Neural Network

Artificial neural networks (ANNs) [29], also known as neural networks (NNs) or
neural nets, are computer systems that are inspired by the biological neural systems
in animal brains.

An ANN is built from a network of linked units or nodes known as artificial
neurons, which are roughly modeled after the neurons in the human brain. Each
link, like synapses in a human brain, has the ability to send a signal to other neurons.
An artificial neuron receives impulses, analyses them, and can signal neurons to
which it is linked. Each neuron’s output is generated by some non-linear function
of the sum of its inputs, and the "signal" at a connection is a real number. The
connections are referred to as edges. Neurons and edges usually have a weight that
changes as learning progresses. The weight changes the intensity of the signal at a
connection. Neurons may have a threshold that causes a signal to be transmitted
only if the aggregate signal passes it.

3.3.1 Multi-Layer Perceptron

The Multi-layer Perceptron (MLP) [30] is a supervised learning technique that
learns a function f(·) : Rm → Rn by training on a dataset, in which mis the
number of dimensions for input and n is the number of dimensions for output.
Given a collection of features and an objective y, it can learn a non-linear function
approximator for both classification and regression. It differs from logistic regression
in that one or more non-linear layers, known as hidden layers, can exist between
the input and output layers (Figure 3.7).

22

Mathematical Methods

Figure 3.7: Multi-layer perceptron network

The first layer, called the input layer, is made up of neurons that represent the
input parameters. Each neuron in the hidden layer performs a weighted linear
summation on the data from the preceding layer, followed by a non-linear activation
function, such as the hyperbolic tan function. The values from the last hidden
layer are received by the output layer and transformed into output values.

The following are the benefits of Multi-layer Perceptron:

23

Mathematical Methods

1. Possibility of learning non-linear models.

2. The ability to learn models in real-time.

The following are some of the drawbacks of Multi-layer Perceptron (MLP):

1. MLP with hidden layers has a non-convex loss function when there are several
local minimums. As a result, different random weight initialisation might
result in varying validation accuracy.

2. MLP necessitates the adjustment of several hyperparameters, including the
number of hidden neurons, layers, and iterations.

3. Prone to feature scaling

MLP uses Stochastic Gradient Descent, Adam, or L-BFGS to train. SGD updates
parameters by applying the gradient of the loss function with respect to a parameter
that requires adaptation, i.e.:

ω ← ω − η(α∂R(ω)
∂ω

+ ∂Loss

∂ω
) (3.1)

where η is the learning rate that determines the step size in the parameter space
search. The loss function for the network is Loss.

3.3.2 Mathematical formulation
Given a set of training examples (x1, y1), (x2, y2), . . . , (xn, yn) where xi ∈ Rn and
yi ∈ {0, 1}, a one hidden layer one hidden neuron MLP learns the function
f(x) = W2g(W T

1 x + b1) + b2 where W1 ∈ Rm and W2, b1, b2 ∈ R are model
parameters. W1, W2 represent the weights of the input layer and hidden layer,
respectively; and b1, b2 represent the bias added to the hidden layer and the output
layer, respectively. g(·) : R → R is the activation function, set by default as the
hyperbolic tan. It is given as,

g(z) = ez − e−z

ez + e−z
(3.2)

For binary classification, f(x) passes through the logistic function g(z) = 1/(1+e−z)
to obtain output values between zero and one. A threshold, set to 0.5, would assign
samples of outputs larger or equal 0.5 to the positive class, and the rest to the
negative class. If there are more than two classes, f(x) itself would be a vector of
size (nclasses,). Instead of passing through logistic function, it passes through the
softmax function, which is written as,

softmax(z)i = exp(zi)qk
l=1 exp(zl)

(3.3)

24

Mathematical Methods

where zi represents the i th element of the input to softmax, which corresponds
to class i, and K is the number of classes. The result is a vector containing the
probabilities that sample x belong to each class. The output is the class with the
highest probability. Regression results are always expressed as f(x), hence the
output activation function is simply the identity function. Different loss functions
are used by MLP depending on the type of problem. Average Cross-Entropy, which
is presented as the binary case’s loss-function for classification, is as follows:

Loss(ŷ, y, W) = − 1
n

nØ
i=0

(yi ln ŷi + (1− yi) ln (1− ŷi)) + α

2n
||W ||22 (3.4)

where α||W ||22 is an L2-regularization term (aka penalty) that penalizes complex
models; and α > 0 is a non-negative hyperparameter that controls the magnitude
of the penalty.

For regression, MLP uses the Mean Square Error loss function; written as,

Loss(ŷ, y, W) = 1
2n

nØ
i=0
||ŷi − yi||22 + α

2n
||W ||22 (3.5)

Starting with random weights, the multi-layer perceptron (MLP) minimizes the
loss function by updating these weights periodically. A backward pass propagates
the loss from the output layer to the previous layers, supplying each weight
parameter with an update value aimed to reduce the loss.

In gradient descent, the gradient ∇LossW of the loss with respect to the weights
is computed and deducted from W . More formally, this is expressed as,

W i+1 = W i − ϵ∇Lossi
W (3.6)

where i is the iteration step, and ϵ is the learning rate with a value larger than 0.
The algorithm stops when it reaches a preset maximum number of iterations; or

when the improvement in loss is below a certain, small number.

3.4 Python Libraries

3.4.1 Pymoo
A multi-objective optimization problem may be implemented in Python using the
Pymoo packag [31]. In Pymoo, every optimization issue must descended from the
Problem class. The problem’s attributes, including the number of variables (n var),
objectives (n obj), and constraints (n constr), are first initialized by invoking the
super() method. Additionally, a NumPy array with the bottom (xl) and higher
(xu) variable limits is provided. Additionally, the superclass’s evaluation method

25

Mathematical Methods

_evaluate needs to be rewritten. A two-dimensional NumPy array with n rows and
m columns is the input for the procedure. An individual is represented by each row,
and an optimization variable by each column. The objective values and conditions
are then added to the dictionary using keys F and G, respectively, following the
appropriate computations.

1 import autograd . numpy as anp
2 from pymoo . model . problem import Problem
3

4 c l a s s MyProblem(Problem) :
5 de f __init__(s e l f) :
6 super () . __init__(n_var=2,
7 n_obj=2,
8 n_constr=2,
9 x l=anp . array ([−2 , −2]) ,

10 xu=anp . array ([2 , 2]))
11 de f _evaluate (s e l f , x , out , ∗ args , ∗∗ kwargs) :
12 f 1 = x [: , 0] ∗ ∗ 2 + x [: , 1] ∗ ∗ 2
13 f 2 = (x [: , 0] −1) ∗∗2 + x [: , 1] ∗ ∗ 2
14 g1 = 2∗(x [: , 0] −0.1) ∗ (x [: , 0] −0.9) / 0 .18
15 g2 = − 20∗(x [: , 0] −0.4) ∗ (x [: , 0] −0.6) / 4 .8
16 out [" F "] = anp . column_stack ([f1 , f 2])
17 out ["G"] = anp . column_stack ([g1 , g2])

The problem optimization algorithm must then be initialized. For optimization
in Pymoo, an algorithm object must be defined. An API description is supplied for
each algorithm, and by providing various parameters, algorithms may be modified.

1 from pymoo . a lgor i thms . nsga2 import NSGA2
2 from pymoo . f a c t o r y import get_sampling , get_crossover , get_mutation
3

4 a lgor i thm = NSGA2(
5 pop_size =40,
6 n_of f sp r ing s =10,
7 sampling=get_sampling (" real_random ") ,
8 c r o s s o v e r=get_crossover (" real_sbx " , prob =0.9 , eta =15) ,
9 mutation=get_mutation (" real_pm " , eta =20) ,

10 e l im ina t e_dup l i c a t e s=True
11)

The initialized algorithm object is then used to optimize the defined problem.
As a result, the minimize function is called with both the instances problem and
the algorithm as inputs. Furthermore, we provide the termination condition of
running the algorithm for 40 generations, resulting in 40 + 40 x 10 = 440 function

26

Mathematical Methods

evaluations. In addition, to assure repeatability, we specify a random seed and
activate the verbose parameter to view printouts for each generation.

1 from pymoo . opt imize import minimize
2

3 r e s = minimize (MyProblem () ,
4 algor ithm ,
5 (’ n_gen ’ , 40) ,
6 seed =1,
7 verbose=True
8)

3.4.2 Scikit-Learn
The MLPRegressor class of Scikit-Learn python library implements a multi-layer
perceptron (MLP) that trains using backpropagation with no activation function in
the output layer, which may alternatively be thought of as employing the identity
function as an activation function. As a result, the square error is used as the loss
function, and the output is a set of continuous numbers.

1 from sk l ea rn . neural_network import MLPRegressor
2 from sk l ea rn . da ta s e t s import make_regress ion
3 from sk l ea rn . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
4 X, y = make_regress ion (n_samples=200 , random_state=1)
5 X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (X, y ,

random_state=1)
6 r eg r = MLPRegressor (random_state=1, max_iter=500) . f i t (X_train ,

y_train)
7

8 r eg r . p r e d i c t (X_test [: 2])
9

10 r eg r . s c o r e (X_test , y_test)

27

Chapter 4

Methodology

4.1 Optimization
Figure 4.1 depicts the input/output sequence of a basic PREDYCE Optimization
use scenario. Currently, in order to run a PREDYCE script from the command
line, an EnergyPlus command line launch structure made of options and an IDF
model was maintained (e.g., -w option is followed by the EPW weather file, -i by
the IDD version), easing the tool’s usage for users already familiar with EnergyPlus
software. The following are the major required input files for the task:

1. the building model in IDF format

2. the weather file in EPW format

3. a PREDYCE JSON file organized to include all user requests (e.g., KPIs to
be computed, parameters to be modified, run period)

4. a OPTIMIZATION JSON file with the maximum and lowest values that may
be assumed for each parameter that the user desires to change.

While the main outcomes will be:

1. a CSV file called data res.csv that contains aggregated KPIs for all simulations
executed within the specified run period.

2. Plots to display optimization outcomes

As was mentioned earlier, the tool uses input and database JSON files to
describe actions and KPIs that will be carried out and retrieved during a pool of
simulations as well as to store information needed to adjust IDFs in dictionary
form (e.g., materials composition, schedules, construction elements). The format
of a typical PREDYCE JSON input file is seen in Figure 4.2: The tool uses the

28

Methodology

Figure 4.1: Input/output sequence of a basic PREDYCE Optimization from [17]

building name, which is the name of the IDF’s central structure, to determine
which zone components to update and do calculations on. Before performing the
simulations for the parametric analyses, the preliminary actions are the steps that
are only taken once. All simulated buildings share the identical alterations that
are specified in the preliminary action section. The actions are the parametric
changes that must be made to the structure; all actions and their parameters are
combined to produce a series of simulations, each of which comprises a different
variant (combination of actions) of the original structure. The final indicators
that are calculated at the conclusion of each simulation are included in the KPI
section. Figure 4.3 shows the OPTIMIZATION JSON file structure in which the
threshold values of the individual parameters are reported, from which the genetic
algorithm that will perform optimization draws the information to create a random
population of parameters within the space defined by the user.

Figure 4.2: Input JSON file

29

Methodology

Figure 4.3: Optimisation range parameters

To perform the optimization on the parameters described in the JSON above, the
functions of the pymoo library are used (see Chapter 3). The user must specifically
indicate:

30

Methodology

1. the type of problem (e.g. maximization / minimization)

2. the particular algorithm to be used (for example, nsga2 / nsga3)

3. the number of population samples generated by the algorithm at each iteration

4. how many times the algorhythm must recreate a new population (number of
generations)

5. the number of reference points (only in the case of NSGA3)

When the software is launched, the input JSON file is modified (using a specific
JSONeditor.py script), resulting in an initial population of samples that follows
the user’s requests with random values within the specified ranges. EnergyPlus
will next execute a number of simulations equal to the number of samples in the
population, and the user’s requested KPI will be generated for each of them(figure
5.7). The optimization method picks and saves the "non-dominated" solutions
from among these. The operation is repeated as many times as the number of
generations specified by the user.

The script will deliver a list of all optimal solutions, that is, the points in the
constructed space that belong to the Pareto Front, at the end of the operation.
When the number of KPI (i.e., objectives) required by the user is less than or equal
to 3, a graph displaying all points belonging to the optimal front can be visualized.

Figure 4.4: Population example

4.2 Optimization with Surrogate Model
This scenario is very similar to the previous one, but the KPI requested by the
user will no longer be calculated through an EnergyPlus simulation, but will be
predicted by a neural network, which will be assisted by a relatively small number
of simulations carried out using the previously mentioned "white-box" method.
The first step is to run the code from the command line, specifying the same

31

Methodology

input files used in the first scenario, to obtain a file CSV containing all parameter
combinations and relative KPI calculated by Energyplus, which will be used for
network training. The user at this point, through the scikit-learn library described
in the paragraph 3 will have to specify the settings for the model training phase.
In particular:

1. the type of model you intend to use (e.g. MLPregression)

2. The hyperparameters that are intended to be modified in the gridSearch (e.g.
"hidden-layer-size" , "learning-rate" etc...)

3. The percentage of simulations used for train and test (e.g. 70-30 respectively)

The program then performs gridsearch, and once the best hyperparameters are
found, it proceeds with the model fit using the train database. The performance of
the neural network is measured using the following information, which the program
will output:

1. Mean square error, mean absolute percentage error and R squared (calcolati
confrontando i risultati ottenuti dal modello rispetto al test database)

2. Residuals plot

3. scatter plot with real values versus predicted values

4. Model score evaluated on train and test database and hyparameters selected
from gridsearch

Using the Python library "pickle [32]," the model that has been created thus
far will be saved and reused in the final step of this scenario. With the exception
of substituting the simulation with EnergyPlus within the evaluate module of the
pymoo library with the KPI calculation using the newly trained neural network,
retrieved using the same "pickle" library that had made it possible to save it in
memory, we perform an optimization process very similar to the one described in
the previous step in this final section.

Finally, the following conclusive plots are returned from the script:

1. Visualisation of the obtained Pareto Front

2. Two graphs showing the correlation between the value of individual parameters
and the calculated KPI. the first referring to the initial simulations performed
with EnergyPlus and used to train and test the network. The second for the
values obtained using the neural network.

32

Methodology

4.3 Surrogate model with metereological data
The approach in the latter scenario is different. Its goal is to create a surrogate
model that can predict building KPI without relying on the building’s construction
parameters. However, after selecting a building configuration, one wishes to estimate
the KPI required by the user, using daily or hourly meteorological data from a
given area as input to train the neural network.

The input to the code’s launch are the same as in previous cases, with the
exception of the JSON file, which contains the range of values used to vary the
building’s parameters, which are fixed in this scenario. Furthermore, for the same
reason, in the JSON file where the actions are listed, there is no need to add
more than one value for each parameter that needs to be specified. As a result,
only one EnergyPlus simulation will be run, but this time the values calculated by
PREDYCE will be ignored in favor of the EnergyPlus file eplusout.csv. This specific
file (4.5) contains as many rows as there are timesteps within the user-selected
run period. As for timestep, you can choose between monthly, daily, hourly, and
sub-hourly frequencies.

The rows in the CSV file are the simulation predictions for each timestep. From
this file, the columns containing information about:

1. climatic variables of interest (e.g. "external dry-bulb temperature")

2. the EnergyPlus output that we want to predict using the surrogate model (e.g.
heating consumption, comfort score, etc..)

Figure 4.5: eplusout.csv example

As a result, a database is created using the library "numpy" [33] using a procedure
similar to the previous one, dividing the train and test datasets and running a

33

Methodology

gridsearch to find the best hyperparameters to use for the neural network’s fit and
test.

In this case, the code will also be output:

1. Mean square error, mean absolute percentage error and R squared (Calculations
that compare the model’s results to the test database)

2. Residuals plot

3. Scatter plot with real values versus predicted values

4. Model score evaluated on train and test database and hyparameters selected
from gridsearch

In addition, in this type of scenario, a heat-map will be displayed to show the
degree of correlation between all input and output variables taken into account,
allowing the user to make changes to the parameter selection in the event of a
second code launch.

34

Chapter 5

Results

Some practical examples of applying the methods described in Chapter 5 will be
provided in the following paragraphs. To carry out these analyses, a reference model
of a building (Figure 5.1 5.2 5.3) was created using the software DesignBuilder.

Figure 5.1: Render view

35

Results

Figure 5.2: Building plant

Because it is a residential apartment on the seventh floor of a building, the
ceiling and floor are modeled as adiabatic surfaces, as are the north and south walls
that connect the apartment to the rest of the building. There are three bedrooms,
a living room, a kitchen, and two bathrooms on 110m2 of space. The apartment’s
eight windows and two balconies are located on the east and west sides. The most
important information about building materials for walls and windows can be found
in the figures 5.4 for exterior walls, 5.5 for interior partitions, 5.6 for windows.

While as far as the .epw files is concerned, the weather file of Torre Pellice
(Turin) from the year 2022 was used for the first 3 cases, and in the last scenario
also the weather files of Aalborg (Denmark) and Athens (Greece), both referring
to the year 2022.

36

Results

Figure 5.3: Interior render view

37

Results

Figure 5.4: External walls construction layers

38

Results

Figure 5.5: Internal walls construction layers

39

Results

Figure 5.6: Windows construction layers

5.1 Example of Optimization scenario - NSGA2
To evaluate the effectiveness of the NSGA2 optimization algorithm, it was decided
to use the yearly consumption of the building in terms of insulation and heating.
The following four "actions" have been used to modify some aspects of the building
(as reported in the input file PREDYCE JSON):

1. predyce.idf_editor.change_ufactor_windows(idf, value)

Set an U-Factor value to all windows of type SimpleGlazingSystem.
Parameters:
(a) idf (class:predyce.IDF_class.IDF)

– IDF object
(b) value (float)

– New U-Factor value

2. predyce.idf_editor.add_overhangs_simple

(idf, extension=1, tilt=90, shift=0.04)

40

Results

Add simple overhang.
Parameters:
(a) idf (class:predyce.IDF_class.IDF)

– IDF object
(b) extension (int, optional)

– Extension of the overhang, defaults to 1
(c) tilt (int, optional)

– Tilt of the overhang, defaults to 90
(d) shift (float, optional)

– Shift of the overhang, defaults to 0.04

3. predyce.idf_editor.add_external_insulation_walls

(idf, ins_data=None, filter_by=’’, **fields)

Add external insulation layer and plaster layer on external walls.
Since layers are added externally internal building area and volume
are not impacted. Parameters:
(a) idf (class:predyce.IDF_class.IDF)

– IDF object
(b) ins_data (list of two string elements, optional)

– Construction objects list (insulation material and plaster), de-
faults to None

(c) filter_by (str, optional)
– Filter zones by name. Can be the block name or specific zone
name, defaults to “”

(d) fields
– Additional fields to be set, passed as keyword arguments

The range of values within which these four parameters can vary is defined in
the OPTIMIZATION JSON file and is shown in the table 5.1 below:

Parameter Upper value Lower value
external insulation layers (thickness) 0.2 0.025

ach 5 0
overhangs extension 0.8 0.2
U-factor windows 2.5 0.6

Table 5.1: Range parameters

41

Results

In addition, to quantify consumption, the PREDYCE KPI "Q_h" and "Q_c"
are defined in the JSON file.

1. class predyce.kpi.EnergyPlusKPI

Q_h

(em_factor=1,reg_factor=1,distr_factor=1,gen_factor=1,ep_factor=1)

Prepare eplosout.csv to compute primary energy need for heating
in kWh/m2, applying correction factors for emission, regulation,
distribution and generation losses, then multiplying by primary energy
factor. Parameters;
(a) em_factor(float, default 1) – correction factor for emission losses,

in range [0,1].
(b) reg_factor (float, default 1) – correction factor for regulation

losses, in range [0,1].
(c) distr_factor (float, default 1) – correction factor for distribution

losses, in range [0,1].
(d) gen_factor (float, default 1) – correction factor for generation

losses, in range [0,1].
(e) ep_factor (float, default 1) – primary energy conversion factor,

in range [0,1].
Primary energy need for heating Return type float

2. class predyce.kpi.EnergyPlusKPI

Q_c

(em_factor=1,reg_factor=1,distr_factor=1,gen_factor=1,ep_factor=1)

Prepare eplosout.csv to compute primary energy need for cooling
in kWh/m2, applying correction factors for emission, regulation,
distribution and generation losses, then multiplying by primary energy
factor. Parameters;
(a) em_factor(float, default 1) – correction factor for emission losses,

in range [0,1].
(b) reg_factor (float, default 1) – correction factor for regulation

losses, in range [0,1].

42

Results

(c) distr_factor (float, default 1) – correction factor for distribution
losses, in range [0,1].

(d) gen_factor (float, default 1) – correction factor for generation
losses, in range [0,1].

(e) ep_factor (float, default 1) – primary energy conversion factor,
in range [0,1].

Primary energy need for cooling Return type float

In terms of optimization algorithm settings, a population_size = 10 and
a number_of_generations = 10 have been chosen, for a total of 100 different
simulations that will be run by EnergyPlus. In the figure 5.7, an example of a
population generated by the program in a single iteration of the algorithm is shown.

Figure 5.7: Population example

The optimization algorithm’s results are collected in the table 5.2and 5.3 and
plotted in 5.8.

43

Results

Figure 5.8: Pareto Front (NSGA2)

Qh[kWh/m2] Qc[kWh/m2]
6.65994887 33.69224876
4.23878238 41.26321231
4.49480282 39.20246354
4.73772248 32.50229932
4.95736529 36.54262851
5.52018012 35.41922911
6.02619611 34.48299198
5.67160084 35.11029891
4.28262026 49.52289614
6.43572347 33.94868526

Table 5.2: Optimum solutions (NSGA2)

44

Results

InsulationLayer[m] Ach Overhangs.extension[m] U-factor.windows
0.02508885 3.84243725 0.75451836 1.95532076
0.1748817 3.83203216 0.78925307 1.95533367
0.07340091 0.0918481 0.57414189 2.3361689
0.06006117 3.83203216 0.74366178 2.41522721
0.05237747 3.83173585 0.79341151 1.95026845
0.03929166 3.83206607 0.78925307 2.42160995
0.03187373 3.84243725 0.79839574 1.98786399
0.03678158 3.82979811 0.79341151 2.42322217
0.1066005 4.80877817 0.64102581 1.99565975
0.02725227 3.82921768 0.77196224 1.95555858

Table 5.3: Optimum parameters (NSGA2)

5.1.1 Results discussion

The results show that the optimization algorithm can find the configurations that
best satisfy the problem, in this case minimization of the annual heating and
cooling consumption of the building, in a set of numerous simulations. However,
the points on the pareto front (5.8) could be subjected to further sorting, depending
on which of the two objectives is more important to the user. Indeed, the figure
shows that the points at the two extremes of the front tend to minimize one of
the two consumptions rather than the other, whereas the "middle" points could
be considered the "right compromise" for both objectives. However, this approach,
while effective, has a flaw. In fact, analyzing the entire space of combinations of our
input parameters necessitates a large number of simulations, which, as previously
stated, can be very wasteful in terms of computational complexity and execution
time. Another interesting aspect of using this approach when optimizing building
parameters is that we can identify which of our input parameters have the property
of influencing the outputs in a concordant way. If, for example, we see in the
table (??) that a specific parameter takes values in a very narrow range at all
points belonging to the pareto front, we can assume that that specific parameter
minimizes Heating and Cooling consumption simultaneously. If, on the other hand,
a parameter in the table has a similar range of variation to that given as input by
the user, we can conclude that that parameter affects the value of the two outputs
in opposite ways.

45

Results

5.2 Example of Optimization scenario - NSGA3

The previous studio case was used again to test the NSGA3 optimization algorithm,
with some minor changes. Instead, from the time this algorithm is recommended for
resolving optimization problems with three or more objectives, it takes into account,
in addition to heating and cooling, the building’s electric consumption. This final
calculation was performed using the KPI "Q I" suggested by the PREDYCE tool,
as shown below.

def Q_I(self, em_factor=1,

reg_factor=1, distr_factor=1, gen_factor=1,ep_factor=1):

Prepare eplosout.csv to compute primary energy need for lighting in
kWh/m2, applying correction factors for emission, regulation, distribution
and generation losses, then multiplying by primary energy factor.

Parameters:

• em_factor: correction factor for emission losses, in range [0,1].

• reg_factor: correction factor for regulation losses, in range [0,1].

• distr_factor: correction factor for distribution losses, in range [0,1].

• gen_factor: correction factor for generation losses, in range [0,1].

• ep_factor: primary energy conversion factor, in range [0,1].

return: Primary energy need for lighting
rtype: float

Furthermore, as previously stated in the understanding of "methodology," the use
of this algorithm necessitates defining, in addition to n_population = 33 and
n_generations = 3, the number of reference directions and the method for gener-
ating the same. In this example, reference_directions = 3 were selected using
the das-dennis method.

The obtained results are summarized below.

46

Results

Figure 5.9: Pareto Front (NSGA3)

5.2.1 Results discussion
All of the considerations made in the preceding paragraph are obviously valid
in this case. Another thing to think about is the placement of the points on
the tridimensional front, as seen in the figure 5.9. It is worth noting that the
distribution of optimal values does not have the typical sail shape that one would
expect from a graph of this type, but instead maintains the hyperbolic shape that
was revealed in the previous case. This characteristic can be attributed to the fact
that the third objective that is considered is clearly unaffected by any of the four
parameters that we can change within our space.

5.3 Example of Optimization with Surrogate Model
In this scenario the same parameters as in the previous paragraph have been chosen
as input.

47

Results

The initial database with which to train the net was created using the parameters
shown in the table 5.4. A total of 81 different simulations were therefore performed
by EnergyPlus, considering all the possible combinations assumed by the input
parameters, and the KPI calculated by PREDYCE were "Q_h" and "Q_c".

Parameter Values
external insulation layers (thickness[m]) 0.15 0.10 0.01

ach 5 2.5 1
overhangs extension [m] 0.9 0.7 0.3

U-factor windows 0.6 1.2 1.8

Table 5.4: Initial database configuration

And the results obtained by EnergyPlus in terms of consumption are shown in
the figure 5.10 5.11.

Figure 5.10: EnergyPlus results of Cooling demand

48

Results

Figure 5.11: EnergyPlus results of Heating demand

The database thus created was used for training the network, dividing the 144
simulations between Train and Test with a ratio of 70/30. The figures 5.12 5.13
5.14 5.15 below show the performance report of the neural network created and
tested on the portion of simulations not used during the training phase, and in the
table 5.5 the value of the calculated errors.

49

Results

Figure 5.12: Regression Line for Cooling

50

Results

Figure 5.13: Regression Line for Heating

51

Results

Figure 5.14: Residuals plot for Cooling

52

Results

Figure 5.15: Residuals plot for Heating

MSE MAPE R2
0.378 0.005 0.998

Table 5.5: Prediction errors

At this point it was possible to carry out the optimization algorithm using the
neural network instead of EnergyPlus, always having as reference the 4 parameters
and the two outputs described above. In particular, the algorithm (NSGA2
in this case) carried out 10 iterations (n_generations = 100) generating five
hundred samples each time (population_size = 500), for a total of 5000 different
simulations analyzed by the algorithm in search of optimal points.

53

Results

Parameter Upper value Lower value
external insulation layers (thickness[m]) 0.15 0.02

ach 5 1
overhangs extension[m] 0.95 0.2

U-factor windows 2.2 0.6

Table 5.6: Range parameters (Surrogate optimization)

As in the simple case of Optimization, here too it was necessary to specify the
ranges of values within which the parameters could vary.

In total 319 optimum results were found, shown in the figure 5.16.Finally, a
parallel cordinates plots equal to that shown in figures 5.17 and 5.18 were generated,
but this time reporting the values of the points belonging to the pareto front just
calculated.

Figure 5.16: Pareto Front with Surrogate model

54

Results

Figure 5.17: Optimization results with Surrogate model (Cooling demand)

Figure 5.18: Optimization results with Surrogate model (Heating demand)

5.3.1 Results discussion
The first point to emphasize in this example is the high accuracy that the neural
network achieves in consumption prediction. As shown in the table 5.5, the errors
compared to the values calculated with EnergyPlus are negligible, and this ensures
that the neural network (when properly tuned) can be an effective tool for launching
an infinite number of "simulations," which can then be used to scan the entire
space of the building’s possible input parameter configurations in search of the
best. Obviously, the quality of these consumptions forecasts is directly related to

55

Results

the number of simulations that are performed prior to training the network, which
are generally reduced in comparison to the number of simulations required for a
"white-box" optimization process. With this approach, you can see how the Pareto
front graph 5.16 looks much better, and you can also create a parallel cordinates
graph to see if the objectives are in conflict with one another. As seen in Figure
5.17 and 5.18, the two graphs are mirrored and have parallel lines that cross over
each other, indicating that the parameters chosen have an opposing influence on
the two consumptions.

5.4 Example of Surrogate Model with meteoro-
logical data

In this scenario, since the emphasis is on developing a neural network that can
predict a building’s performance based on meterological data, it was necessary
to run a single EnergyPlus simulation with predetermined building structural
parameters for each of the three meterological files used in the various tests.

To evaluate the script’s efficiency, three different scenarios were created in which
the same building described in the previous pragraphs is accompanied by three
different epw files relating to the locations of Torre Pellice, Aalborg, and Atene
(year 2022). For training the network, the file CSV that EnergyPlus returns in
output after starting the simulation until the end of the selected period, with daily
data frequency, is used. In this particular case, the following measurements were
chosen as network input parameters:

1. Outdoor Air Drybulb Temperature [°C][Daily]

2. Diffuse Solar Radiation Rate per Area [W/m2][Daily]

3. Direct Solar Radiation Rate per Area [W/m2][Daily]

Instead, based on output data, the following values were chosen:

1. DistrictCooling:Facility [J](Daily)

2. DistrictHeating:Facility [J](Daily)

3. Electricity:Facility [J](Daily)

4. Zone Mean Radiant Temperature [°C](Daily:ON) (average value calculated
between all zones of the building)

5. Zone Thermal Comfort Fanger Model PMV [](Daily) (average value calculated
between all zones of the building)

56

Results

Despite the fact that the neural network can predict all of the objectives at
the same time, it was decided to report the model’s accuracy graphics while only
considering one target per climate zone. The results of the surrogate model are
reproduced in this section using the following combinations:

1. Aalborg - PMV (winter simulation)

2. Athens - Zone mean radiant temperature (annual simulation)

3. Torre Pellice - Heating demand (annual simulation)

The network, as described in the methodology chapter, was built by using the
file eplusout.csv as a database, with a number of rows equal to the number of days
in which the simulation is run. The created database has been divided into two
parts, with one part (70 per cent) being used for training and the other (30 per
cent) being used as a gauge for the predicted results from the network. The results
for the three different cases are followed by graphs and tables that quantify the
accuracy of the surrogate models.

Error Aalborg-PMV Athens-Radiant Temp.[°C] Torre Pellice-Cooling[J]
MSE 0.031 0.168 14545849.72

MAPE 0.089 0.006 ??
R2 0.784 0.953 0.969

Table 5.7: Errors on test-Database

Index Parameter
1 Outdoor Temperature [°C][Daily]
2 Diffuse Solar Radiation [W/m2][Daily]
3 Direct Solar RAdiation [W/m2][Daily]
4 Cooling demand[J]
5 Heating demand[J]
6 Electricity demand[J]
7 Fanger model PMV
8 Fanger model PPD
9 Zone mean radiant Temp. [°C]
10 Tot. consumption[J]

Table 5.8: Heatmaps legend

57

Results

Figure 5.19: Correlation matrix - Aalborg

58

Results

Figure 5.20: Correlation matrix - Athens

59

Results

Figure 5.21: Correlation matrix - Torre Pellice

60

Results

Figure 5.22: Residuals plot Aalborg-PMV

61

Results

Figure 5.23: Residuals plot Athens-RadiantTemp[°C]

62

Results

Figure 5.24: Residuals plot Torre Pellice-Cooling[J]

63

Results

Figure 5.25: Regression line Aalborg-PMV

64

Results

Figure 5.26: Regression line Athens-RadiantTemp[°C]

65

Results

Figure 5.27: Regression line Torre Pellice-Cooling[J]

5.4.1 Results discussion
Just as in the previous case, the neural network trained using input meteorological
data also manages to achieve very good accuracy in all three scenarios reported.
In particular, it can be seen from the table 5.7 how the annual simulations have r2
values close to 1, while the seasonal Aalborg simulation shows a lower accuracy,
due to the smaller number of points with which the network was trained, but still
satisfactory. This aspect is also evidenced by the graphs showing the regression
line 5.25 5.26 5.27 in which a larger spread of points is evident in the graph for
Aalborg-PMV. It should also be pointed out that the results reported were obtained
by considering as input only 3 values related to the outdoor environment. Thanks
to the correlation matrix shown in Figure 5.20 5.21 5.19 it is possible to investigate
what other factors might have a positive correlation with the target values that
are intended to be predicted, so as to expand the amount of information in the
training matrix, improving performance.

66

Chapter 6

Conclusions

The examples provided in the previous chapter demonstrate how the new features
implemented in the PREDYCE tool produce satisfactory results. Particularly
for the optimization task, genetic algorithms have been found to be perfectly
suited for completing and refining PREDYCE’s sensitivity analysis. The new
scripts provide the user with a tool for more clear and immediate visualization of
results, allowing them to assess the impact of input parameters on the building’s
KPIs, and automatically isolate the best parameter configurations for the building
in analysis. These functionalities may be very important in the planning phase
because they provide the user with support in the selection of specific structural
elements (type and thickness of wall insulation layers, types of windows, U-value,
ventilation systems, shading, etc.) in order to find the right balance between
cost, comfort, and maximizing a building’s consumption. The implementation of
Surrogate modeling has also demonstrated significant potential since it appears
to be capable of surmounting one of the most significant limitations of white-box
simulations such as EnergyPlus, specifically calculation complexity and execution
time delays. It was possible to explore the whole space of parametric configurations
and predict the corresponding results with a high degree of accuracy using machine
learning methods and a limited number of simulations. This type of black-box
approach, due to its low computational complexity, is ideal for use within the
ecosystem of a Smart Building, which, even with limited computational power (as
in the RaspBerry Pi), would be able to make accurate predictions in a short period
of time by inputting climatic and/or structural parameters and providing solutions
to optimize comfort and consumption in real time within the building.

67

Bibliography

[1] EIA projects nearly 50 per cent increase in world energy usage by 2050, led
by growth in Asia. https://www.eia.gov/todayinenergy/detail.php?id=42342.
[Online; accessed 2022-10-30]. Oct. 2022 (cit. on p. 2).

[2] . Working Toward the Very Low Energy Consumption Building of the Future
- Berkeley Lab. https://newscenter.lbl.gov/2009/06/02/working-toward-the-
very-low-energy-consumption-building-of-the-future/. [Online; accessed 2022-
10-28]. June 2009 (cit. on p. 3).

[3] BMS. https://intelik.eu/sample-page/building-management-system-bms/. [On-
line; accessed 2022-10-28] (cit. on p. 4).

[4] Lev Kalmykov and Vyacheslav Kalmykov. «A white-box model of S-shaped
and double S-shaped single-species population growth». In: PeerJ 3 (May
2015), e948. doi: 10.7717/peerj.948 (cit. on p. 6).

[5] U.S. Department of Energy’s (DOE) Building Technologies Office (BTO).
«EnergyPlus». In: (2022). url: https://energyplus.net/ (cit. on p. 7).

[6] Germán Campos Gordillo, Germán Ramos Ruiz, Yves Stauffer, Stephan
Dasen, and Carlos Fernández Bandera. «EplusLauncher: An API to Perform
Complex EnergyPlus Simulations in MATLAB® and C». In: Sustainability
12.2 (2020). issn: 2071-1050. doi: 10.3390/su12020672. url: https://www.
mdpi.com/2071-1050/12/2/672 (cit. on p. 8).

[7] . Home - Prelude project. https://prelude-project.eu/. [Online; accessed 2022-
11-14]. May 2022 (cit. on p. 9).

[8] homepage - E-DYCE. https://edyce.eu/. [Online; accessed 2022-10-26]. Sept.
2022 (cit. on p. 9).

[9] «https://www.designbuilderitalia.it/». In: () (cit. on p. 10).
[10] Danny Lobos, Gerth Wandersleben, and Lorena Castillo. «Interoperability

Map between BIM and BPS Software». In: June 2014, pp. 601–608. doi:
10.1061/9780784413616.075 (cit. on p. 11).

[11] OpenStudio. [Online; accessed 2022-10-26]. url: https://openstudio.net/
(cit. on p. 11).

68

https://doi.org/10.7717/peerj.948
https://energyplus.net/
https://doi.org/10.3390/su12020672
https://www.mdpi.com/2071-1050/12/2/672
https://www.mdpi.com/2071-1050/12/2/672
https://doi.org/10.1061/9780784413616.075
https://openstudio.net/

BIBLIOGRAPHY

[12] Radiance. https://floyd.lbl.gov/radiance/. [Online; accessed 2022-10-26] (cit.
on p. 11).

[13] 3D Design Software | 3D Modeling on the Web | SketchUp. [Online; accessed
2022-10-26]. url: https://www.sketchup.com/ (cit. on p. 11).

[14] OpenStudio 2.9.1 Download - ArchSupply.com. [Online; accessed 2022-10-28].
url: https://download.archsupply.com/get/download-openstudio/
(cit. on p. 12).

[15] BESOS platform. https://besos.uvic.ca/. [Online; accessed 2022-10-26] (cit. on
p. 12).

[16] Welcome to eppy’s documentation! - eppy 0.5.59 documentation. [Online;
accessed 2022-10-26]. url: https://eppy.readthedocs.io/en/latest/
index.html (cit. on p. 12).

[17] Fasano Francesca Chiesa Giacomo and Grasso Paolo. «"A new Tool for
Building Energy Optimization: First Round of Succesful Dynamic Model
Simulations" Energies 14, no. 19: 6429.» In: (2021). url: https://doi.org/
10.3390/en14196429 (cit. on pp. 12, 13, 29).

[18] Fasano Francesca Chiesa Giacomo and Grasso Paolo. «Simulated Versus
MOnitored Building Behaviours: Sample Demo Applications of a Performance
Gapp Detection Tool in a Northern Italian Climate.» In: Sayigh, A. (eds)
Towards Net Zero Carbon Emissions in the Building Industry. Innovative
Renewable Energy. Springer, Cham. (2023). url: https://doi.org/10.
1007/978-3-031-15218-4_6 (cit. on p. 12).

[19] Fasano Francesca Chiesa Giacomo and Grasso Paolo. «Thermal Comfort anc
Climatic Potential of Ventilative Cooling in Italian Climates.» In: Sayigh, A.
(eds) Achieving Building Comfort by Natural Means. Innovative Renewable
Energy. Springer, Cham. (2022). url: https://doi.org/10.1007/978-3-
031-04714-5_18 (cit. on p. 12).

[20] G. Chiesa. «Energy flexible DYnamic building CErtification.» In: (). url:
https : / / edyce . eu / wp - content / uploads / 2022 / 03 / E - DYCE _ D3 . 1 _
Dynamic-simulation-platform_28.02.2022_Final.pdf (cit. on p. 14).

[21] S. Panzieri (Univ. Roma Tre) F. Moretti (ENEA). «METODOLOGIA DI
OTTIMIZZAZIONE MULTI-OBIETTIVO DELLA CLIMATIZZAZIONE
TERMICA DI EDIFICI. VALIDAZIONE SU SISTEMA DI SIMULAZIONE.»
In: (2013) (cit. on p. 15).

69

https://www.sketchup.com/
https://download.archsupply.com/get/download-openstudio/
https://eppy.readthedocs.io/en/latest/index.html
https://eppy.readthedocs.io/en/latest/index.html
https://doi.org/10.3390/en14196429
https://doi.org/10.3390/en14196429
https://doi.org/10.1007/978-3-031-15218-4_6
https://doi.org/10.1007/978-3-031-15218-4_6
https://doi.org/10.1007/978-3-031-04714-5_18
https://doi.org/10.1007/978-3-031-04714-5_18
https://edyce.eu/wp-content/uploads/2022/03/E-DYCE_D3.1_Dynamic-simulation-platform_28.02.2022_Final.pdf
https://edyce.eu/wp-content/uploads/2022/03/E-DYCE_D3.1_Dynamic-simulation-platform_28.02.2022_Final.pdf

BIBLIOGRAPHY

[22] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. «A Fast
Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Opti-
mization: NSGA-II». In: Parallel Problem Solving from Nature PPSN VI.
Ed. by Marc Schoenauer, Kalyanmoy Deb, Günther Rudolph, Xin Yao, Eve-
lyne Lutton, Juan Julian Merelo, and Hans-Paul Schwefel. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 849–858. isbn: 978-3-540-45356-7 (cit.
on p. 16).

[23] Kamel Goudjil and Badreddine Sbartai. «Optimization of Shear Wave Velocity
(Vs) from a Post-Liquefaction Settlement Using a Genetic Algorithm Multi-
Objective NSGA II». In: WSEAS Transactions on Applied and Theoretical
Mechanics 18 (July 2018) (cit. on p. 17).

[24] Choi and Kim. «Self-Adaptive Models for Water Distribution System Design
Using Single-/Multi-Objective Optimization Approaches». In: Water 11 (June
2019), p. 1293. doi: 10.3390/w11061293 (cit. on p. 18).

[25] «A multi-objective test data generation approach for mutation testing of
feature models - Scientific Figure on ResearchGate.» In: (). url: %22https:
//www.researchgate.net/figure/Pseudocode-of-NSGA-II-adapted-
from-Coello-et-al-2006_fig7_305662662 (cit. on p. 19).

[26] «Normal-Boundary Intersection: A New Method for Generating the Pareto
Surface in Nonlinear Multicriteria Optimization Problems | SIAM Journal on
Optimization». In: SIAM Journal on Optimization (Jan. 1998) (cit. on p. 19).

[27] pymoo - NSGA-III. https://pymoo.org/algorithms/moo/nsga3.html. [Online;
accessed 2022-10-30] (cit. on p. 20).

[28] Shuai Guo. «An introduction to Surrogate modeling, Part I: fundamentals».
In: (2020). url: https://towardsdatascience.com/an-introduction-
to-surrogate-modeling-part-i-fundamentals-84697ce4d241 (cit. on
p. 21).

[29] Wikipedia. «Artificial neural network». In: (). url: https://en.wikipedia.
org/wiki/Artificial_neural_network (cit. on p. 22).

[30] scikit-learn developers (BSD License). «Neural network models (supervised)».
In: (). url: https://scikitlearn.org/stable/modules/neural_network
s_supervised.html (cit. on p. 22).

[31] Julian Blank and Kalyanmoy Deb. «Pymoo: Multi-Objective Optimization in
Python». In: IEEE Access 8 (2020), pp. 89497–89509. doi: 10.1109/ACCESS.
2020.2990567 (cit. on p. 25).

[32] pickle — Python object serialization — Python 3.11.0 documentation. [Online;
accessed 2022-11-26]. url: https://docs.python.org/3/library/pickle.
html (cit. on p. 32).

70

https://doi.org/10.3390/w11061293
%22https://www.researchgate.net/figure/Pseudocode-of-NSGA-II-adapted-from-Coello-et-al-2006_fig7_305662662
%22https://www.researchgate.net/figure/Pseudocode-of-NSGA-II-adapted-from-Coello-et-al-2006_fig7_305662662
%22https://www.researchgate.net/figure/Pseudocode-of-NSGA-II-adapted-from-Coello-et-al-2006_fig7_305662662
https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-i-fundamentals-84697ce4d241
https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-i-fundamentals-84697ce4d241
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://scikitlearn.org/stable/modules/neural_networks_supervised.html
https://scikitlearn.org/stable/modules/neural_networks_supervised.html
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1109/ACCESS.2020.2990567
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html

BIBLIOGRAPHY

[33] NumPy Documentation. https://numpy.org/doc/. [Online; accessed 2022-11-
25] (cit. on p. 33).

71

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Problem Statement
	Building Managment System
	Building Energy Model

	Mathematical models for complex systems
	EnergyPlus as white-box model

	Objectives
	Thesis Structure

	Sate-of-Arts
	EnergyPlus Software
	DesignBuilder
	OpenStudio
	BESOS

	PREDYCE
	Sensitivity Analysis with PREDYCE

	Mathematical Methods
	Multi-objectives optimization
	NSGA-II
	NSGA-III

	Surrogate model
	Artificial Neural Network
	Multi-Layer Perceptron
	Mathematical formulation

	Python Libraries
	Pymoo
	Scikit-Learn

	Methodology
	Optimization
	Optimization with Surrogate Model
	Surrogate model with metereological data

	Results
	Example of Optimization scenario - NSGA2
	Results discussion

	Example of Optimization scenario - NSGA3
	Results discussion

	Example of Optimization with Surrogate Model
	Results discussion

	Example of Surrogate Model with meteorological data
	Results discussion

	Conclusions
	Bibliography

