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Summary

Computer Vision is a branch of Artificial Intelligence that aims to enable machines
to simulate the human visual system by extracting features of the physical world
from images and videos usually taken by a camera, including tasks such as image
classification, image segmentation, object detection, and many others. To perform
them, artificial vision today’s applications exploit the most diverse algorithms and
tools involving geometric transformations, filtering operations, and also modern
Deep Learning technologies such as Convolutional Neural Networks.

The present work explores the possibility of using some of them as a proof of con-
cept for an automatic a posteriori check on the assembly of automotive seat frame
parts, specifically colored motors, in an industrial environment where a bench lets
the frames translate back and forth while a camera captures the scene from above.
For this purpose, a PyTorch-based CNN model called YOLOv5 has been adopted
for the real-time recognition of motors, combined with a color detection algorithm
for the association of one color, among those of a predefined set, with them. The
two entities work simultaneously: given a video stream, at each frame, YOLO lo-
cates the motors through bounding boxes, and the color detection algorithm is
subsequently run to find the ones inside them. More specifically, three different ap-
proaches for detecting colors have been investigated, but only one of them has been
chosen taking into account accuracy and especially real-time application suitability
in terms of speed per frame.

Due to the difficulty in collecting a vast number of real variegated photos for the
network training, a dataset of synthetic images with labels has been created start-
ing from a 3D model of the seat frame. In particular, the joint use of the Unity
game engine and C# scripts has enabled the generation of simulated videos from
which screenshots at different conditions have been automatically taken and anno-
tated. In this connection, an ad-hoc algorithm has been designed for the automatic
computation of the bounding box coordinates for each motor.

The knowledge acquired on such virtual data has then been the basis for a second
training phase involving the few available real images according to the widespread
approach of Transfer Learning. This helped to better generalize on real samples.
Various training trials have been done in the Google Colab online platform to get a
final tuned model capable of providing decent results in terms of precision, recall,
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and mAP regarding the object detection task independently; in addition, a statisti-
cal analysis procedure, to be performed on real video footages at inference, has also
been implemented to further measure the recognition goodness in terms of average
frequency and confidence, and concurrently evaluate color confidence. All of these
values are not quantifiable at training time.

The entire training architecture complies with the ETL paradigm: datasets are
extracted from Dropbox for Colab import, annotation files are filtered to discard
eventual ones containing illegal coordinates together with the relative images, and
relevant values such as losses and metrics, together with the trained model and
metadata, are uploaded every epoch to the non-relational cloud database MongoDB
Atlas, making them accessible for further reporting activities and keeping track of
all the trials done until then.. Then, a user-friendly Python-based dashboard has
been designed through the Streamlit app framework for the real-time visualization
of detection results and other relevant information at inference so that a human
operator can rapidly see how the system is working.

Despite the encouraging results in object and color recognition, some limitations
lurk in this project: firstly, the sensitivity of the color detection algorithm to the
environmental conditions, but perhaps more importantly, the challenges in guaran-
teeing a high speed of execution in real-time video processing, mostly when YOLO
is integrated with the dashboard.

The work is organized as follows: Chapter 1 gives a theoretical comprehensive
overview of the world of Computer Vision, focusing on color models, image process-
ing and Deep Learning techniques, and critical issues which affect them; Chapter 2
presents the purpose of the current study together with a discussion on the related
state of the art publications; Chapter 3 details the Unity-based synthetic data gen-
eration process; Chapter 4 precisely reports all the technologies employed for object
and color detection together with the methodology adopted; Chapter 5 describes
the ETL architecture and the data visualization part via dashboard; finally, Chap-
ter 6 is about the best-performing experiments and the relative results based on
the metrics chosen for evaluation. A conclusion section is then included to collect
some final considerations and suggest eventual future developments of what has
been done.
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Chapter 1

Introduction to Computer
Vision

1.1 A brief survey

Computer Vision is a branch of Al that aims to artificially simulate the human vi-
sual system by extracting features of the real world starting from images and videos
usually taken by a camera [1] [2] [3]. It includes several tasks with different goals
[4]: image classification, object detection, object tracking, semantic segmentation,
instance segmentation, and many more.

However, outsourcing the human visual capabilities to machines is not a trivial ques-
tion: the structure and the functioning of the visual cortex provide humans with an
incredibly good tool, hardly reproducible, to recognize what they see in terms of
colors, shapes, edges, and much more, even in the case of significant variations [5]
[6]. A computer, on the other hand, has a completely different way to handle visual
information: it interprets the physical world as a huge collection of numbers corre-
sponding to pixels’ color and intensity, treating digital images as multi-dimensional
arrays consisting of one or more channels according to the reference chromatic scale,
that is, color or grayscale [7].

Despite that, the interest of researchers in CV themes emerged and evolved from
the 60s onwards: Roberts, Marr, and others gave a fundamental contribution to the
evolution of artificial vision through their pioneering works [8]. New studies have
been then conducted on the possibility of merging CV at its primal stage with
other intertwined fields, such as digital image processing, pattern recognition, and
computer graphics [2]. The real breakthrough came anyway with the birth and the
success of Artificial Neural Networks, currently an interesting effective solution for
the most diverse Al problems, especially those concerning vision. A more detailed
description of what they are and how they work will be given later, while this section
emphasizes how they revolutionized the CV field despite being born independently.
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1 — Introduction to Computer Vision

Already in the 40s and 50s, some initial steps were taken with algorithms that tried
to emulate the behavior of the human brain: the goal was to create something able
to learn, in a sense, through experience, as human beings do. These studies led to
the forerunner element of ANNs: the so-called perceptron [9].
In the following years, the popularity of similar tools increased a lot, and a new
family of architectures, known as Convolutional Neural Networks, has been pro-
posed. LeNet-5 [10], one of the earliest of this kind, turned out to be quite good
for simple vision tasks like handwritten digit recognition, consisting of reading and
understanding numbers from 0 to 9, written by humans, from papers, documents,
photos, etc.
Despite the encouraging results, neural networks started to be on the wane in
the late 90s and early 2000s because of still limited computational resources and
lack of data at that time [11] [12]. It was only many years later that, thanks to
the increasing spread of GPUs and an even-greater availability of data, together
with innovative ideas, they regained their popularity until they became the current
state-of-the-art methodology for most Al tasks, including CV-related ones [11] [12].
In the next sections, some key concepts for understanding which techniques can
be applied to artificial vision problems are illustrated: what processing an image
means, how a machine can be "trained" to make it capable of learning and improving
at specific tasks, thus which are the basic principles of neural networks. Then, an
explanation of the Transfer Learning approach is given, and, to conclude, some
critical aspects of CV are briefly discussed.

1.2 Color models

As stated before, computers use multi-dimensional arrays to store digital images,
with each value in the array corresponding to a pixel. In order to understand how
these data structures are filled, an explanation of the most used color models is
required. In simple words, a color model is a mathematical way to represent colors
as a combination of numbers associated with primary colors, typically three or four
[13]. In the case of monochrome pictures, the representation is quite intuitive: given
a 2D matrix, each element is the level of gray in the grayscale; whilst, regarding
colored ones, there exist multiple viable ways, some of them illustrated below.

1.2.1 RGB and CMY

As shown in Figure 1.1, RGB and CMY [14] are strongly correlated, since the
primaries of one are the secondaries of the other, which gives them a sort of com-
plementarity property.

RGB uses red, green, and blue as primary colors, with a value range of 0+-255 for

2



1 — Introduction to Computer Vision

C

Y

(a) RGB (b) CMY

Figure 1.1: RGB and CMY color models. Images taken from [15].

each,! according to the 24-bit representation (8 bits per channel) adopted by the
majority of current digital devices. The combination of the three maximums, that
is 255-255-255, gives pure light, which means white color. For this reason, RGB is
an additive model, in the sense that increasing values of primaries give more light.
The opposite combination 0-0-0 generates darkness instead, thus black color. What
is more, some tools use a fourth additional alpha channel to regulate opacity, re-
sulting in an RGBA model.
CMY uses cyan, magenta, and yellow as primaries, with a percentage value for each.
In contrast to RGB, the maximal combination 100%-100%-100% gives black here,
whereas the minimal one 0%-0%-0% gives white. Hence, the opposite functioning of
this model is clear: CMY is a subtractive model indeed, which means that decreas-
ing values of primaries are needed for increasing light. However, it should be said
that more than three colors are used for implementing the CMY model in many
practical cases. For instance, printers use black as the fourth primary because of
the ink transparency, producing a CMYK model. The reason is that the maximal
combination of cyan, magenta, and yellow does not provide enough darkness, with
a plain black tonality as result; but, by adding a 100% black extra component and
properly tuning the C, M, and Y percentages, a richer black tonality is obtainable.
In conclusion, it is noted how some tools may use a reversed system for color
memorization in computers: for instance, BGR triplets instead of RGB ones [16].
Nevertheless, this does not affect reading and processing operations: a BGR digital
image is simply an RGB one with inverted channels.

1.2.2 HSL and HSV

The RGB model presented before is efficient for image display, but it does not ex-
actly reflect the way human beings perceive colors. Over time, researchers discussed
the possibility of representing all the possible color variations that the human eye

! Actually, it is often convenient to normalize pixels, with values mapped to the range 01, for
faster computations.
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Figure 1.2: HSL and HSV color models. Images taken from [13].

can capture up to propose new alternative models. Among them, HSL and HSV
[14], depicted above, have the capability of treating colors of each hue through a
cylinder slice, so that:

o The rotation around the central axis, expressed in degrees, gives hue in both
models;

o The shift along the radius from the origin outwards gives saturation in both
models;

 The shift from the bottom up gives lightness in (a) and value in (b).

Typical ranges used for implementing them are 0360 degrees for hue and 0255
for the other two parameters. Anyway, they can vary in accordance with the soft-
ware/device adopted: in some cases, 0179 degrees is used as a range for hue,
keeping the 8-bit representation.

1.2.3 Conversions

Clearly, given a digital image represented with a certain color model, it is possible
to move it to another format, among those just discussed, by performing specific
operations. In this respect, some color conversion formulas are available in [14].
It should be noticed that different and valid approaches could exist for the same
generic conversion from model A to model B.?2

As can be guessed, RGB«+>CMY is quite trivial, since they are complementary color
models, as previously said: for example, starting from an RGB image, it is possible
to obtain its CMY counterpart by simply subtracting the R, G, and B normalized
values from 1, obtaining the respective C, M, and Y percentage quantities. The
same goes for the opposite conversion. In the case of CMYK format instead, the

2From now on, the notation A<+B will be used to simultaneously indicate the conversion from
A to B and the one from B to A.
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process also involves the computation of the extra black component, and the for-
mulas for conversion become a little more complex.

What is more, conversions like RGB«+HSV and RGB<«+HSL are surely more inter-
esting, since the absence of evident correlations between the models involved makes
the transformations not immediate. In particular, the focus of this subsection is on
the passage from RGB to HSV, considering that such a conversion has been used
in this work to facilitate color detection, as will be shown later. Thus, given an
RGB normalized image, with pixels in the range 01, a way to move it to the HSV
format is the following:®

V = max(R,G,B)

g Vfrnin\(/R,G,B) iV 7& 0
0 otherwise
V—?gi(r?(;{]?g B) if V=R (1)
60(B—R) . o
b 120+ R itV =a
60(R—G) : _
0 ifR=G=8B

If negative, the hue value is turned into positive by adding 360. Then, according to
what has been said in 1.2.2, the quantity can be divided by 2 in order to make it
conform to the 8-bit memory encoding. In this way, at the end of the process, the
output HSV-converted image will have H in the range 0+-179 degrees, while S and
V in the normalized range 0-+1. Clearly, it is sufficient to multiply S and V by 255
to remap them in the standard 0-+-255 range.

1.3 Image processing

Image processing concerns all those actions aimed at processing digital images to
transform and make them suitable for any kind of analysis, generally made as a
pre-processing step for fuller CV algorithms and consisting of mapping pixels from
an input image to an output one [3].

The next subsections provide a discussion of different types of common image pro-
cessing operations employed in today’s CV applications.

3This is one possible procedure (also available here), but other approaches exist. Moreover,
the fact that some tools use BGR as the standard model for digital images does not affect the
validity of the conversions involving RGB, keeping the formulas unchanged.

5
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1.3.1 Binarization

With regard to images, binarization is a technique that consists of mapping each
pixel of a given grayscale image from its standard discrete range 0+255 (with pos-
sible values 0,1,2,...,255) into one between 0 and 1, i.e. black or white [3]. The
simplest approach to do that is the following: if a pixel exceeds a certain threshold
value, it is converted to 1; if below such value, it is set to 0. In this way, a pure
black-and-white image is generated, with just 1 bit required for color representation
in memory.

(a) Original (b) Binarized

Figure 1.3: Example of binarization with global threshold ¢ = 127.
Original from Author.

The choice of such threshold is fundamental to obtain decent results: as in the exam-
ple above, a first trivial solution is to globally set it to 127 [17], the median number
in the 0+255 range, but unforeseeable events such as varying lighting conditions
and difficulties in distinguishing foreground objects from background could affect
the input image, making this method inefficient. An alternative is the one proposed
by Otsu [18], which automatically groups pixels into foreground and background
based on a threshold autonomously found, not requiring any parametrization.

Other binarization techniques provide an adaptive thresholding approach to the
problem, identifying different regions with different illuminations and properly de-
termine the specific threshold value to be used in each area, or even for each pixel
[19]. In order to do that, a pixel is not considered singularly, but some neighbor-
hood values around it are analyzed too, performing mathematical operations (for
instance, mean or weighted sum) between all the ones involved in such region.

1.3.2 Quantization

Quantization consists of reducing the color palette of an image, where palette refers
to the totality of colors in it, with the aim of preserving relevant information while
reducing the quantity of RGB triplets to be stored [20]. Obviously, the more the
number of colors decreases, the less the resulting image is true to the original: a
poor palette could make shapes and borders of objects hardly recognizable indeed.
In this respect, Figure 1.4 shows the effects of quantization on a digital image.

Among the many current algorithms to do that, Median Cut [21] is one of the fastest

6
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(a) Original (b) n =132 (c)n=28 (d)yn=2

Figure 1.4: Example of quantization to vary the number of colors n.
Original from Author.

and the most employed in the context of image processing. Simple but effective, it
works as follows:

Algorithm 1 Median Cut
1. Given an RGB image, find the channel with the greatest range.
2. Sort pixels according to the values of that channel.
3. Split them into two groups on the basis of the median pixel.
4. Repeat for each group until the desired number of colors (groups) is reached.

At the end of the process, there exist n groups, being n prefixed. The average RGB
triplets calculated for each one form the new image color palette, whose dimension
is dependent on the number of iterations, with a base-2 exponential growth: 2, 4,
8, etc. Therefore, if a 32-color quantization is requested, the process above is run
2% = 32 times. When n is not a power of 2, the algorithm gives a quantity that is
the greatest power of 2 closest to n; then, some of the colors must be aggregated
in some way to exactly obtain n.

1.3.3 Geometric transformations

Another interesting aspect in the image processing field is the possibility of spatially
transforming digital images and video frames, thus performing geometric transfor-
mations [22]. It can be a crucial step in those applications which intend to highlight
specific features or information related to the image content, as well as data aug-
mented is needed (this last concept will be investigated later).

A matrix is required for giving images the new desired appearance: in this sense,
geometrical transformations boil down to matrix-vector multiplications, since an
image is itself a matrix and every pixel inside can be expressed as an x-y pair,
where x is the column and y is the row of such pixel’s location inside the image
matrix. Anyway, since transformations matrices are compliant with the 3D space,
the pixel vector must be adapted accordingly. To this end, an augmented vector of
homogeneous coordinates [z, y, 1] is used for representing the 2D pixel points. As a

7
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Transformation Matrix Example
1 00
Identity 010 :
0 01
1 0 0
Translation 0 1 0 ;
Lo =
cos  sinf 0
Rotation —sinfd cost 0
0 0 1
s, 0 0
Scaling 0 s, O -
0 0 1
1 hy O] (1 0 0 _
Shearing 0 1 Ofor|h, 1 0 -
0 0 1] 10 01
1 0 O] -1 0 0
Flipping 0 —1 Olor| O 1 O e
0 0 1} |0 0 1

Table 1.1: Common geometric transformations in image processing.
Original (first row image) from Author.

result, a generic geometric transformation can be written as follows:

x ail Q12 0 x
Y| = |az axn Of |y (1.2)
1 asy a3 1 1

where z'-3' is the new pixel pair obtained from the original one -y, while the
the submatrix obtainable by removing the third column assumes different forms
depending on what is to be done, as shown in Table 1.1. Hence, distinct parameters
must be set up according to the transformation selected: for instance, shifts ¢,
and t, for translation, angle # for rotation, scale factors s, and s, for scaling, and
shear factors h, and h, for shearing. There are cases when more than one matrix
is possible: the already mentioned shearing and flipping, which both use one over
the other based on whether they are performed along x-axis or y-axis.

In closing, an operation of this kind is called affine: it means something that

8



1 — Introduction to Computer Vision

preserves lines and their parallelism, with the possibility of changing angles and
distances instead. (1.2) is the general formula for affine transformations indeed.

1.3.4 Filtering and morphological transformations

Although a filter is in effect a matrix, it performs calculations in a completely
different way compared to the typical algebraic matrix multiplications. In fact,
filtering an image implies doing particular operations such as convolution (%) and
cross-correlation (x) [23], both consisting of summing the terms of an element-wise
product. They are expressible with the following formulas, respectively:

T11 -+ Tin Yii o Yin m—1n—

| 0 Z Z(i4+1)(+1)Y(m—i)(n—j) (1.3)
Tl - ZTomm Ynl **° Ymn =00
T11 -+ Tin Yir 0 Yin m—1n-1

.| : T(i+1)G+1)YE+1)(G+1) (14)
Tml **° Tmn Ym1i ° Ymn =

In both, the matrix on the left is the image patch covered by the filter (i.e., the
image portion with the same dimension) containing pixel values x;;, while the one
on the right is exactly the filter containing values y;;.

Practically, filtering means to shift along the entire image seeing all the pixels in
groups, with a parameter called stride specifying the step size of such movement.
In some cases, an outside border called padding is added to the input image, setting
all such pixels to 0 or something. At this point, given the input size n;,,* the filter
dimension f, the stride s and the padding p, the output size n,,; can be calculated

beforehand in this way:

Nout = i ¥ 2P f +1 (15)
S

It should be noted that being the image and the filter both squared, only one
dimension (which is the same horizontally and vertically) is specified but, more
in general, it is necessary to provide width and height when different from each
other. Anyway, in most of today’s CV tools, images are reshaped to be squared
and convolutional filters are picked as non-rectangular too, typically "odd-sized"
like 3x3, 5x5, 7x7, and so on. The reason behind that is given by the functioning
principles of CNNs; as will be seen further below. According to (1.5), it is also
possible to apply a certain padding border to the input image so that the output
shape remains the same, being all the other parameters previously fixed.

All the formulas presented so far refer to single-channel images; extending to the

4The input image is taken as squared, thus nxn shaped. The output will be squared too.
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(a) Original (b) Dilated (c) Eroded

Figure 1.5: Two main morphological transformations in image processing. While
dilation adds pixels to the object boundary, erosion removes pixels from it.
Original generated by Python script [link].

multi-channel case, they are still valid with the difference that output values are
summed along channels so that an RGB n;, x n;, x 3 input patch is mapped into
a single-channel output one 7,,; X Nyy. In this way, multiple filters can be used to
augment volume depth, as usual in CNNs,; as will be seen later.

The values inside filters must be chosen accordingly to what is to be found in
the source image: in this sense, those used in digital applications are helpful when
it comes to performing edge detection, sharpening, blurring, and more. Besides,
filters allow a set of particular operations based on the morphology theory® and
consequently referred to as morphological transformations [3]. Dilation and erosion
are classic examples: both aim to change the shape of objects in binary images to
highlight or hide some details. As can be seen in Figure 1.5 above, dilation makes
objects thicker, while erosion makes them thinner. What is more, it is possible to
perform such operations sequentially on the same image: an erosion followed by a
dilation is an opening, whereas a dilation followed by an erosion is a closing. The
former is useful for noise reduction, the latter helps to remove undesired points
from within the foreground objects. Filters used for morphological transformations
are all-ones matrices, dimensioned as said before.

1.4 Machine Learning and ANNs

Machine Learning concerns the development and the use of intelligent systems ca-
pable of finding relationships in data of a given starting set, called training set,
and making future predictions on new data on their own, that is, without requir-
ing external explicit instructions [12]. In other words, a ML tool is, in general,
an algorithm that enables computers to learn something and use such knowledge
to perform a specific task, so that some inputs are given and some outputs are

5Tt is a mathematical theory which concerns the analysis of images, with the focus on shapes,
for component and information extraction.
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returned. As a result, a differentiation can be done: the first stage of knowledge ac-
quisition goes by the name of training, the second stage of knowledge exploitation
is usually referred to as inference [24].

1.4.1 Supervised vs. Unsupervised Learning

The fact of knowing the real output for each input of the training set can be
resumed in the Supervised Learning paradigm [1] [12] [25], according to which
labeled data are given to the model. In such cases, even a new set of never seen
data can be created and fed into the model to receive predictions and evaluate the
performance based on how the estimated outputs differ from the true ones. At this
point, it is clear that the adjective "supervised" refers to a situation in which some
a priori knowledge is provided by an external instructor: for instance, a human who
possesses the true outputs related to inputs. Regression and classification problems
are good examples in this sense. Popular and efficient algorithms to perform such
tasks are Linear Regression, Logistic Regression, SVM, K-NN, Random Forest, and
others, all reviewed in [26]. However, they are not deepened in this work, but only
a general overview on regression and classification categories is given.

On the other hand, there are scenarios in which data are not labeled, making the
supervised approach not suitable anymore. In these cases, the opposite Unsuper-
vised Learning paradigm [1] [12] [25] is embraced. Here, the model does not receive
any known example, thus it must be able to find relationships in data based on
patterns and common characteristics discovered during training. Clustering [27],
dimensionality reduction [28], and generative methods [29] are typical examples of
that, but only the first one is discussed in this work.

Regression and classification

Given a collection of data representing known examples, typical supervised ML-
solvable problems can be grouped into the two following macrofamilies [30]:

e Regression, that is estimating a continuous curve that fits data;

o Classification, that is predicting labels, from a set of N identifiable classes, and
assign them to data using label encoding or one-hot encoding [31], as illustrated
in Table 1.2.

Inside each group, a further differentiation can be done: for instance, there exist
linear and polynomial regression problems, depending on the grade of the function
selected to approximate data trend (this choice must be made carefully); or binary
and multiclass classification problems, based on how many classes of belonging the
algorithm is supposed to find: two or more.

Both regression and classification can suffer problems of "bad fitting", in the sense

11
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Label | One-hot
Class 1 0 1,0, ..., 0]
Class 2 1 0, 1, ..., 0]

Class N | N—11{]0,0, ..., 1]

Table 1.2: Label encoding vs. one-hot encoding.

that the estimated model fails to make accurate predictions on new data constantly,
being subject to one of these two problems [32]:

o Underfitting, when it is not able to capture enough in data relationships;

o Querfitting, when it fits too much to training data with the risk of being too
far from new samples when it comes to making predictions on them:;

Both are visually reported below, together with the desirable case in the middle.
Efforts are needed to find a possible cross between (a) and (c) obtaining a situation

(a) Underfitting (b) Good fitting (c) Overfitting

Figure 1.6: Comparison between bad and good model fitting.

like (b), even if overfitting remains a very common problem in nearly all the ML
applications. Going more specifically, an underfitting model is mostly simple, which
suggests that few parameters may have been selected; on the other hand, an over-
fitting model could be too complex for its designed task, resulting in an excessive
number of parameters. Thus, in presence of such criticalities, a first trivial approach
might be to increase or decrease the model complexity. Anyway, when ANNs are
involved, these two problems, especially overfitting, could be not that easy to solve
and other techniques should be concept will be explored later.

So far the focus has been on how ML-solvable problems can differ one from
the other and potential critical issues which may occur. At the beginning of this
subsection, the basics of machine knowledge acquisition have been mentioned, but
without going into detail. To be more precise, a tool of this kind constantly updates
a function J to be minimized, called cost function, including true outputs y and
estimated ones . It assumes different form depending on the task and the problem
formulation: for instance, it can be an MSE in regression problems, or a CE in
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classification problems, as will be seen further on. The parameters contained in
are initialized (randomly, for example) and then adjusted at each iteration of the
so-called Gradient Descent algorithm [33], a popular mathematical approach to the
continuous optimization of functions through the gradient, that is the collection
of the partial derivatives. The idea is to descend in the opposite direction of the
gradient so that, in the case of convex functions, the minimum is reached after some
iterations. The general steps are reported hereunder:

Algorithm 2 Gradient Descent
0 e R" k=0
while VJ(6;) # 0 do
Ory1 = O — Oékvf(gk)
kE=k+1
end while

where the model parameters have been considered as part of vector #: for instance,
in the simplest case of univariate linear regression, 6 = [w, b]. This generates a line
with slope w and intercept b, the latter also known as bias.

The fundamental quantity which determines the size of a descent step is «, called
learning rate in the context of ML applications. This parameter must be positive
and tuned properly: too small values could cause slow convergence, while too large
values may result in an oscillating behavior. However, it is not so trivial to find a
suitable middle ground for that.

As can be noticed, GD involves the simultaneous update of parameters at each new
iteration: in this sense, it is said that the ML model learns such values, getting
every time new correlations between data.

Moreover, it can be seen that the algorithm theoretically ends when the gradient
reaches 0: this means that the function is exactly located at its minimum point
when convex. Anyway, such a situation is quite difficult to obtain in a real scenario,
mostly due to the difficulties in calibrating «, thus a stop criterion is usually defined
to determine the end of GD. For instance, a maximum number of iterations can be
specified, or a tolerance under which the convergence is held to be achieved.
Nevertheless, there exist many ML real scenarios in which the cost function is
not convex in its entire domain: for example, it may present some local minima
instead a unique absolute one. In such situations, the GD algorithm could fall into
the trap of mistaking a local minimum as the absolute of the function and then
stop. This is not a solvable problem: designers must pay attention in building their
ML tool to guide the descent into the absolute minimum, as far as possible, or
into a decent local one at least. The shape of J is always characterized by high
complexity, not being predictable in advance in many cases; consequently, it is not
easy to understand which kind of minimum the function is bound to during the
learning phase. This remains an open problem in the ML field.
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5
Training || Select batch Train model
set of data on batch W

Figure 1.7: Batch learning. Image from Author.

One last remark: the one presented above is the Batch version of GD, in the sense
that samples are picked all together as a single batch having the same size as the
training set every iteration. It is also possible to adopt a Mini-Batch descent, with
data taken in smaller groups so that parameters are adjusted more times during
the same iteration every time a batch of samples is seen. This concept extends to
nearly all the supervised algorithms and simply works as schematized in Figure
1.7. At this point, it can be seen how some parameters, beyond those contained
in J formulation which are to be learned during training, are to be tuned before
the procedure starts: the reference is to learning rate and batch size. Quantities
like these are called hyperparameters in the jargon of ML, given that they are
not to update over iterations but are prexifed and kept unchanged impacting on
the efficiency of the descent. As will be seen later, nearly all the ML tools and
algorithms, especially ANNs, have hyperparameters to be tuned.

In addition to the vanilla GD discussed here, there exist different and multiple
variants of this algorithm to date: among them, Stochastic Gradient Descent (SGD)
[33] is probably one of the most popular.

Clustering

The aim of clustering is to divide data space into groups called clusters and dis-
tribute data among them on the basis of patterns autonomously found during
training (see Figure 1.8). One of the most popular algorithms to do that is cer-
tainly K-Means, concurrently referable to Lloyd [34] and Forgy [35] in its standard
version, and reviewed in [27]. It essentially works as follows:

Algorithm 3 Standard K-Means
Let k£ be the number of clusters to be identified.
1. Get initial clusters with centroids ¢V, ..., ¢®.
2. For each data z(®:
a. Compute its Euclidean distance from each centroid.
b. Assign it to the cluster with the nearest centroid.
3. Recompute centroids as the mean all over data in their clusters.
4. Repeat 2-3 until a stop criterion is satisfied.

As anticipated, the one above is precisely the standard version, also called Batch
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Figure 1.8: Example of 2D data clustering with two clusters.

K-Means since data are picked and processed all at once at each new iteration. A
Mini-Batch version of it also exists [36], with data being selected in groups, helpful
in case of numerous samples or insufficient memory.

Regardless of the version considered, there are basic functioning principles of K-
Means anyway. Firstly, the so-called centroids are, in some way, the points repre-
senting clusters, and they are computed as the mean vector of all the data assigned
to their relative cluster, as specified above. Then, the algorithm stops when a pre-
defined condition is fulfilled, with multiple possibilities of implementing that:

 Stop when centroids do not change anymore;®

« Stop when data continue to be assigned to the same clusters;
e Stop when a prefixed number of iterations is reached.

Some of these can be combined: for example, centroid variations and number of
iterations can be checked at the same time so that, if the algorithm is not able to
converge in terms of centroids, at least it will not run for too long. [27].

In closing, the choice of initial clusters (thus, centroids) is not trivial and can
influence the convergence time: a more careful initialization, as the one presented
in [37], is preferable than a random start.

At this point, a brief discussion about the choice of k, i.e. the number of clusters
to be generated, is needed, being the fundamental hyper-parameter to be tuned in
such a context. One simple way to get an optimal value is given by the heuristic
elbow method [38], a generic and simple technique, valid for all clustering algorithms
beyond K-Means, which aims to find the best number of clusters by simply plotting
the grouping distortion to the vary of k, resulting in a decreasing curve that folds
at an elbow point: here is the optimal value.

6As in many computer applications, a tolerance is introduced to determine if something has
stopped updating, since it is almost impossible to have the exact same quantity between two
consecutive iterations.
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As said before, the one discussed is the standard version of K-Means, but other
unsupervised clustering approaches are possible, some of those included in [27].

1.4.2 Performance evaluation

While cost functions are used to update weights making a ML model able to learn,
some metrics are needed to have an estimate about how good such a model is or,
in other terms, how accurate its predictions are. Clearly, as in the case of cost
functions, the choice and the shape of metrics are dependent on the task. One
remark: all the metrics that are going to be presented are reported in [26]. As far
as generic regression problems are concerned, two typical examples are:

1 & .
MSE = n Z(yz — ;) (1.6)
=1
1 & .
MAE = — >y — il (1.7)
i=1

which stand for Mean Squared Error and Mean Absolute Error respectively. It is
quite intuitive to understand why these functions are helpful in this context: since
regression algorithms aim to find the best curve fitting to data, a simple measure
of their goodness is given by how precise the predictions are in terms of distance
from the true output values. Developers can adopt one or more metrics depending
on the requirements.

On the contrary, when it comes to classifying, the error functions above lose
their meaning. In the specific case of binary classification, precision and recall are
generally used instead:

TP
Precision = ———— 1.
recision TP T FP ( 8)
TP
n= 1.
Recall = 757 (1.9)

As can be seen, the former expresses how many true positives exist among all the
values predicted as such, while the latter considers how many values are correctly
predicted as positives on the totality of positives. In this sense, precision is a measure
of fidelity and recall is a measure of completeness. Since one tool” could outperform
another in terms of precision but fail in terms of recall, an aggregative metric called
Fi-score, consisting of the harmonic mean of the two quantities, is introduced to
make the comparison sensible.

Then, the typical metric for multiclass classification is accuracy, a sort of overall
precision that takes into account both true positives and true negatives, resulting in

“In this context, it indistinctly refers to algorithms, neural networks, and any other method.
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the ratio between the number of correct predictions and the totality of predictions
made:
#correct predictions

(1.10)

Accuracy =
Y #predictions

However, it should be noticed that precision and recall are sometimes employed
in multiclass problems too and, complementarily, accuracy is usable for evaluating
binary classification performance, although the latter is a rare case. Clearly, when
P and R are used for multiclass, the concepts of positive and negative are not
available anymore and the focus is on one class at a time. Everything said about
precision and recall can be graphically summarized through the so-called confusion
matriz, where actual and predicted values are arranged in rows and columns.

What is more, precision and recall are especially used to deal with imbalanced
datasets [39], that is, in all those cases where a class is overrepresented compared
to the others, in the sense that the majority of the samples available belongs to
such class. Thus, it is understandable how accuracy could distort the perception
of model goodness, while precision and recall could lead to better evaluations: in
fact, accuracy considers the correct predictions over all the predictions done, in an
absolute way, while precision and recall can take into account the performance on
each single class individually.

In closing, these are only a few of the possible metrics usable for the performance
evaluation of ML algorithms. More complex situations, e.g. ANN-oriented tasks
such as object detection, often require the adoption of sophisticated yardsticks, as
will be seen further on. In various applications, one feasible way to obtain a new
upscale metric is to combine together some of those just discussed.

1.4.3 Basic principles of ANNs

Artificial Neural Networks [1] [25] consist of elementary computing elements, called
units, organized in layers and interconnected in a structure inspired to that of bio-
logical neural networks. As shown below, their structure generally includes: an input
layer containing the input data, shapeable as an n-dimensional array xi,...,x,; a
certain number of hidden layers containing sorts of intermediate values; at the end,
an output layer returning the predicted values 4, ..., ¥, relative to the given in-
puts, with a number of units depending on the task. It should be noted, however,
that the input is not an actual layer of the network and it is not considered in the
total layer count (in fact, it is marked as Layer 0 in Figure above).

The number of layers determines the depth of a network. Many studies have shown
that a deeper architecture is preferable, enabling machines to learn more about
data: here the term Deep Learning is used instead of Machine Learning when deep
multi-layer ANNs are used for performing tasks.

The values contained in the artificial neurons are often referred to as activations,

17



1 — Introduction to Computer Vision

Figure 1.9: Example of simple ANN architecture with two inputs, two hidden
layers with three activations for each, and one single output. The input layer is
not in the count of total layers, while the units set to 1 are included to deal with
biases. A structure like this is often called MLP, i.e. Multilayer Perceptron [11].
Image from Author.

and the following formula explicits the computation of activation ¢ at layer j:

agﬂ = g(Wi[g]a([)jfl] + VVZ-[f]a[lj*H +...+ W-ma[j’”) (1.11)

m T n

where W is the weight matriz linking layers 7 — 1 and j. As can be guessed, there
exists a matrix like that for each transition between successive layers. The weights
contained are the so-called parameters of the network, i.e., the numbers that are
updated by the network itself at each iteration of the learning phase.
To be more precise, the multiplication between the weight matrix W and the activa-
tion vector a at a certain layer involves in general an extra term, known as bias, to
be added to the result. For instance, in the simple case of a single-output architec-
ture with no hidden layers, the output value can be trivially written as y = Wax +0,
where b is exactly the bias. In such situation, W and x are both n-dimensional,
being n the size of input vector. An alternative way to write that expression con-
sists of putting weights and bias together in W and accordingly adding a 1 entry
at the top of z, changing both W and x dimension into n+ 1. As a result, y = Wz.
This concept can be extended to the more generic case of larger networks with an
arbitrary number of inputs, outputs, and hidden layers in between, by adding a
first component ay = 1 to each activation vector and including the bias vector in
each matrix weight row as W;qg = b;, as done in 1.11. In this respect, Figure 1.9
shows how the first unit of each layer is fed into the next layer units, but it does
not have any incoming link, accordingly to what has been just said about bias.
Formula (1.11) also highlights the fact that a nonlinear function g is applied to
the result of the weights-activations product, so that the final value of ag-j Vis a little
bit transformed. Such g is called activation function [40] in the context of ANNs,
and its introduction is due to the frequent necessity of separating data in a nonlin-
ear way [25]: in the jargon, it is said that the network learns "something nonlinear",
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Name Plot Equation Mapping
1
Sigmoid 05 flx) = ! R — (0,1)
l+e= ’
0
0
1
tanh 0 _loe® R - (~1,1
an f(x)_l—F@Q*x _><_7 )
-1
0
10
ReLU > / f(z) = max(0, x) R — [0, 400)
0
0
10
x
SiLU 3 = R —0.28
i J fo =1 | R 028 400)
’ 0
0.5 .
e 7
Softmax f(x); = = R — (0,1)"
0 — =16
0

Table 1.3: Some common non-linear activation functions.

and this enables it to better perform on the most diverse tasks. Table 1.3 reports
typical activation functions utilized today. They take a quantity as an argument,
here the result of the multiplication between W and a, and they convert it into
something else: for example, sigmoid maps its input to the interval (0, 1), while
ReLU keeps its input unchanged when positive and sets it to 0 when negative.
Sigmoid is always employed as the activation function of the last layer’s single
neuron of networks designed for binary classification since in such applications the
output is expected to be false or positive, thus 0 or 1. As the effect of mapping,
values above 0.5 are positive, and those below are false. It is possible to change
a different threshold from the default one: for example, greater than 0.5 if high
confidence for positives is required, or smaller than 0.5 if the aim is lowering false
negatives (i.e., l-outputs incorrectly predicted as 0).

ReLU, on the other hand, is largely employed in neural networks in the interme-
diate layers, having outperformed sigmoid and tanh in this role, providing higher
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robustness to the problem of zeros in the gradient and sparse activation too [41].
SiLU, first proposed in [42] for Reinforcement Learning applications, is the multi-
plication between the input and the sigmoid function, resulting in a behavior very
similar to that of ReLLU, as can be seen in Table 1.3. It is approximately zero for
x — —oo and approximately x for x — 400 indeed. The fact that there is a min-
imum in (-1.28, -0.28) gives SiLU an implicit regularization property that avoids
weight updates of large magnitude.

To conclude, softmax is a peculiar activation function, different from the others dis-
cussed since it has a discrete domain. It is used in ANNs for multiclass classification
as the activation of each last layer’s neuron. Its formula provides the probabilities
associated to the classes so that the final neuron quantities are transformed into
something more intuitive and, more importantly, greater values are brought out
with respect to smaller values. For example:

2.45 0.7626
—0.45]| softmax_ |0.0420
1.02 0.1825
—-1.63 0.1289

In this case, it can be said that Class 0 is the one predicted with a certainty equal
to about 76%. Clearly, since softmax outputs are probabilities, their sum is 1.

Everything said so far suggests ANNs are trained complying with the supervised
approach. This is often true, especially in the case of CNNs used for CV, but there
also exist networks capable of learning in an unsupervised way: for instance, Self-
Organizing Maps [43] and Autoencoders [44].

In this part, some of the most employed activation functions have been presented,
although limited to models designed for CV. Anyway, it is important to remark that
others exist [40] and may find application in different contexts.

Datasets

Training a neural network to have good performance at a desired task requires a
sufficiently large amount of input data [12]. In fact, as said in the introduction, one
of the reasons that caused the decline of ANNs in the past has been the difficulty in
gathering data. The model selected must be capable of fitting to training samples
but, more importantly, it is expected to succeed in predicting outputs for new ones,
so that its general behavior is referable to a good fitting, as specified in 1.4.1.

In the ML field, a collection of data used to feed a neural network both in its
training and inference stages goes by the name of dataset. It can contain labeled
or unlabeled samples depending on whether the learning procedure is supervised
or not. It is vitally important that the dataset depicts the real scenario where the
model is intended to work with high fidelity. Since networks need annotations to
learn in a supervised context, the label format is also fundamental: as an example,
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it is not possible to use something annotated in the same way both for image clas-
sification and object detection. The reason behind that is easy but will be clearer
in the next parts, where CNNs for image classification, object detection, and other
tasks will be discussed.

Datasets are generally split into three subgroups, named respectively training set,
validation set, and test set [45], even if the last is not always present. As can be
imagined, training set is the one used to train the network and, reasonably, it must
be the greater portion of the original dataset. Validation set is to validate the model
at the end of each training epoch instead: in other words, it is as the network were
gradually tested on a small set of new data every n intervals during training, being
n the prefixed number of epochs. This can help developers to understand whether
the learning procedure is heading in the right direction or not. What is important
to say is that the network updates its parameters while seeing training samples but
no changes happen at each validation stage: here, the model is considered as defini-
tive, although training has not finished yet, and predictions can be made on new
ever seen samples. Now, a supervised ANN-based scenario is taken as an example:
it is easy to deduce that training intermediate predictions are constantly compared
to true outputs so that the parameters can be adjusted accordingly, while during
validation the model has no knowledge about the labels associated with data and
is supposed to perform as if it were used for inference. In conclusion, test set is a
sort of validation set that can be employed once training ends, thus adopting the
definitive tuned model. It is generally used to get and report the permanent perfor-
mance. Given the starting set, typical partitions assign much more data to training
and the remaining samples are equally distributed between validation and test: for
instance, 80%-10%-10%, 70%-15%-15%, and such. More advanced techniques, like
cross-validation, are also included in [45].

Among the multiple existing datasets, ImageNet [46] represents the standard for
image classification, while COCO [47] and Pascal VOC [48] are the most employed
for object detection benchmarks. In fact, state of the art classifiers and detectors
have been trained on them and, when a new model (or family of models) is proposed,
the relative performance is evaluated on such datasets. All of them include a very
large amount of images representing the most diverse situations in relation to the
specific task. They are quite challenging, since such a variety tests in some way the
adaptability of a network to as many scenarios as possible.

Given a dataset, another important aspect is the distribution of the classes
included: in fact, in the case of imbalance, the network could underperform on the
less represented classes, although providing acceptable results on the others. Hence,
adequate countermeasures must be taken to avoid an incorrect learning [39].
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Training

In Subsection 1.4.1 enough has been said about training machines to make them
capable of performing tasks. However, the specific case of neural networks has not
been deepened yet. Training modern ANNs is often harder than it might seem
due to their complicated structure and the huge number of calculations to do,
that is why GPUs are employed for such purpose instead of CPUs. Having more
computing power, they allow to train complex models with millions of parameters
to be learned indeed. At this point, a brief overview on how ANNs are treated
for training is given, considering that some details will be overlooked. For a start,
neural networks use GD, in one of its variants, to update weights, on par with
every generic supervised algorithm. Once learning rate and batch size are fixed, the
whole training procedure starts involving different batches, one per step, at each
new epoch. The concept of epochs is the same as iterations seen before, with each
of them divided into steps depending on how many batches compose the training
set. Clearly, such information is determined by the initial choice on batch size. For
instance, if training set contains 320 samples and batch size is set to 32, one epoch
will last 10 steps. In summary, a step is one cycle through the samples of a given
batch, while an epoch is one cycle through the entire training set.

At the end of each epoch, the model with the weights obtained until then is used for
predictions on validation data to have an idea of how the learning procedure is going.
Among many things, it is possible to understand whether overfitting is occurring
over epochs, for example. In fact, performance on validation set is evaluated based
on the metrics chosen every time.

As introduced before, a cost function is to be formulated and used for GD. In the
context of ANNS, it is improperly called loss, referring to the mean discrepancy
between true and estimated outputs over all the samples while such term should
indicate the discrepancy calculated on the single generic pair y;-7; instead. The
form of this function depends on the type of problem to be solved. In the case of
regression, MSE and MAE are typically used for that, with the same formulation
as the ones introduced for evaluation. On the other hand, classification requires a
different loss. In fact, being y™, ..., y™ the actual outputs associated with the
inputs 0, ..., 2™ and g0, ... § the estimated output provided by the model,
it can be Binary Cross Entropy (BCE) in binary classification problems:

1 & ; (7 7 (7
BCE = —— 3 (y"logj + (1 — y)log(1 - 5)) (1.12)

i=1
and Cross Entropy (CE) in the more general scenario of multiclass classification:
1 . .
CE=——> yPlogy" (1.13)
m =

where the superscript ¢ in both suggests a vectorial shape for inputs and outputs
(both true and estimated), in a way that takes into account the generic size n for
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each of them. Therefore, z(") represents the i-th input vector of size n out of m.
The same goes for y and §. Moreover, these two losses are called categorical when
y and ¢ are one-hot encoded, and sparse categorical when they are label encoded.
Nothing changes in their formulation, but there is a difference in seeking matches
between true and predicted output values: in the case of one-hot encoding, the
adopted loss does an index-based check; in the case of label encoding, it does a
value-based check.

Everything said at the beginning of this subsection is about the calculation of
activations, i.e. neuron values, from the first hidden layer to the output layer, as
resumed in (1.11). The path to compute an activation starting from a previous
layer takes the name of feedforward, making neural networks with a structure simi-
lar to that of Figure 1.9 also known as feedforward networks [49]. On the contrary,
the backward path is the one used to update weights, thus learn, through the so-
called backpropagation [50], which more specifically consists of the computation
of derivatives, required by Gradient Descent, with the chain rule. All the modern
architectures rely on these two fundamental principles: when training, they con-
stantly go back and forth throughout layers to have a measure of the output error
and accordingly adjust the learnable parameters. One downside of such procedure
is that there is no guarantee in reaching the global minimum of the cost function
when backpropagation is applied, but only a local minimum, due to the frequent
non-convexity of cost functions. This issue had already been discusses before in
relation to the GD algorithm introduction (see 1.4.1 for a recap).

Overfitting and solutions

As discussed in 1.4.1, overfitting is a common issue when it comes to training
neural networks, easy to discover but hard to solve in some cases. Likely, different
strategies are adoptable to address such a problem, some of them collected in [51]
and presented below.

One first trivial approach goes by the name of early stopping and simply consists
of stopping training when no more improvements on a quantity ¢ are recorded for
a certain number of consecutive epochs, thus prematurely interrupting the process
before the prefixed number of epochs is reached (see Figure 1.10). As is guessable,
the absence of improvements is detected when changes within the window selected
remain under a tolerance 6. With regard to ¢, the more meaningful quantity to be
monitored is probably the validation loss because overfitting has a visible impact on
validation data the moment predictions are made on them. Over epochs, a situation
with a decreasing training loss against a steady-state or increasing validation loss,
just as the one in the figure, suggests an overfitting model. As last thing, many
modern frameworks allow developers to constantly check more than one quantity
at the same time so that training is stopped if both do not keep improving.

What has been not said so far is that noise learning is another possible cause of
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]

Figure 1.10: Early stopping. After a certain point onwards, validation loss (red)
increases over epochs, in contrast to training loss (blue). Next time, training is
interrupted preventing overfitting. Image taken from [51].

overfitting: a network that explores noise in data could not be able to perform as
hoped. With the aim of reducing it, decreasing the model complexity is mostly a
good solution. In fact, it can happen that the architecture adopted is too complex for
the designed task: in other words, it is overly depth and presents lots of parameters.
In the context of ANNs, model reduction means eliminating layers and lowering the
number of parameters as a result.

Another possibility is to add more data to the training set. It has been said more
than once that networks require a huge amount of data to perform well: thus,
the more inputs are given in training, the more models learn. Since collecting more
training data is not a trivial question, it is often convenient to generate new samples
starting from those available, coherently with the dataset and possibly keeping the
same distribution of original data. This approach, also discussed in [52], takes the
name of data augmentation and it is widely used in today’s applications: expanding
datasets often helps networks to better generalize indeed. In the case of CV-oriented
networks, thus CNNs, data consist of images and videos and the augmentation
process gives new images and videos accordingly. They are obtained by randomly
applying geometric transformations on original samples, like those introduced in
1.3.3, at each epoch [53]. In this respect, see the scheme of Figure 1.11. As a result,

Training Select batch Augmentation Train model on
set of data transformed batch W

I

Figure 1.11: Data augmentation pipeline. Image from Author.

the network sees always different samples, which are translated, rotated, scaled,
sheared, or flipped as against the original, but true to the scenario depicted by the
starting (poor) dataset. There are situations in which data are very few or it is even
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impossible to get some for the desired task: to overcome this problem, synthetic
samples can be generated from scratch, resulting in a full-fledged virtual dataset,
with the highest possible conformity to the real scenario [52].

A different technique is regularization, that is adding an extra regularizer term to
the cost function formulation, in this way:

J = L @) 5@y 4 2L 1.14
Loy, ) + A0 (1.14)

where A is the regularization coefficient, generally picked as small, while p, the
penalty term that is a function of the weight vector 8, can assume one between two
norm expressions depending on the type of regularization selected:

o [j-regularization: ¥;|6;|
o ly-regularization: X;6%

One last approach to counter overfitting is dropout, which serves as a regularizer
too, but in a different way compared to those above. It works as follows: at each
step of the training phase, some neurons are "turned off', in the sense that they
are set to 0, with a rate r in relation to their layer. As shown in Figure 1.12 below,
this operation truncates some links in the network architecture, not resulting in a
fully-connected structure anymore. On the other hand, the uninvolved neurons are
still active and continue to compute as in the dropout-free ANNs. The procedure
selects neurons randomly every time enabling the network to use always different
configurations (this is true for all the layers in which dropout has been enabled) and
not becoming too dependent on some of them rather than others. While r refers to
the rate of neurons shut down, p is used to indicate the probability of using a given
node in a layer. The two quantities are complementary, of course. Typical sensible
values for p are between 0.5 and 0.8.

p=075 p=05 p=025

Figure 1.12: Example of dropout regularization. Image from Author.
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1.4.4 Convolutional Neural Networks

Convolutional Neural Networks [11] [12] are a family of networks largely used in
CV today’s applications to handle and analyze images. They proved to be the best
architecture in most artificial vision tasks thanks to their capability of exploring
spatial and temporal correlations in data, extracting features, low-level or high-level
ones depending on the depth considered, automatically. A small-scale representa-

[+]+]+]

o
conv poaol conv poal g softman
In3 ity 3x3 2x2 ft ¥ g .
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28x28x3 26x26%8 13x13x8 11x11x16 5x5x16 400 3

Figure 1.13: Example of simple CNN architecture. The input, a 28x28 RGB
image, is fed into two consecutive convolution-max pooling pairs, similarly to
many modern CNN structures. Each of them forms one single layer. At the end,
the volumetric information is flattened obtaining an MLP-like array of neurons.
The final softmax layer provides the estimated one-dimensional output.
Image from Author.

tion of the typical CNN layout is reported above. Convolutional layers are generally
made up of a pair including a convolutional filter followed by a pooling operation.
The former performs a cross-correlation with the image coming from the previous
layer, while the latter summarizes relevant pixel information reducing the resolu-
tion, that is, grouping pixels. Several pooling techniques exist, and those shown in
Figure 1.14, which are max pooling and avg pooling, are surely the most employed
for CNNs. Beyond the fact that cross-correlation-based filters used here are ambigu-
ously called convolutional filters, it is interesting to note that activation functions
are applied to the output of such filters, but not before adding bias to each pixel
value.

2x2 max pooling
with stride s =2

10 (44| 7 |19

50

71

2x2 avg pooling
with stride s =2

49

Figure 1.14: Max pooling vs. avg pooling. In averaging, decimal values have
been truncated to give an integer, but a ceiling approximation is allowed too.
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Another relevant characteristic of CNNs is the frequent use of Batch Normaliza-
tion (BN), whose use for CNNs was first proposed in [54]. It is a statistical agent
that acts as a normalizer directly inside the network, introduced to deal with the
distribution changes which affect different layers’ inputs during training. Two pa-
rameters to be learned are included, namely ~ and 3, which represent scale and
shift respectively, together with a constant positive quantity €, normally picked as
small (e.g., e = 0.001). Having said this, its general procedure can be reported here:

Algorithm 4 Batch Normalization
Let x € R™ a batch of m samples.
1. Compute mean g and variance ¢ over the batch.
: I wi—p
2. Normalize as z; = T
3. Get the new samples as y; = v} + .

It is important to highlight how BN acts differently based on the network mode:
training or inference. In the first case, always new mean and variance values are
used being calculated every time on the current batch, while in the second case u
and 0 correspond with the cumulative mean and variance got when learning.

CNNs for image classification

Classifying an image refers to the action of understanding what it depicts or, from
the network perspective, finding a class label to assign among those of a predefined
set [4], as in the example of Figure 1.15. In order to do that, the model involved
must be able to extract low-level features (e.g., edges and borders) and high-level
ones from what it sees. As previously mentioned, CNNs provide such a possibility
thanks to their architecture based on convolutional layers. In general, predictions
are included in a range of N possible classes, two or more depending on the classi-
fication kind, with ¢ going from 0 to NV —1 in the case of label encoding, or being a
zero vector with one single 1 entry at the index corresponding to the class number
in the case of one-hot encoding, as previously reported in Table 1.2. This is what
the network is intended to return as output.

Among the most popular today’s architectures for image classification, VGG [55],
ResNet [56], and Inception [57], despite substantial differences in their structures,
stood out for sharing the capability of providing surprising results on the chal-
lenging ImageNet dataset over time [11]. The former is probably the most simple,
while the other two present innovative architectural ideas (see Figure 1.16), devi-
ating from the more traditional CNNs like the VGG-inspired one of Figure 1.13.
However, new families of advanced networks have been recently presented [58] [59],
giving even better performance on such benchmark for classification, fueling the
continuous research on CV themes. In this connection, state-of-the-art results on
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truck

CNN — — car

bike
Input image scooter

Figure 1.15: Example of image classification using CNN. The final softmax layer
has been extracted from the CNN block to highlight the probabilities associated
with the four possible classes. The second one, labeled with 1, is the highest, thus
the predicted class is "car". Image from Author.

ImageNet are available at this link.

Always new adjustments are made in these architectures, giving birth to newer
versions of the same original models over time. In particular, persistent efforts are
made by researchers to reduce the complexity of modern neural networks, expressed
as the total number of parameters, since it has a noticeable impact on the speed
of execution. Lowering such a quantity while maintaining high performance can be
arduous but it is crucial when it comes to using such a powerful tool for real-life
artificial vision applications.

T —

A—///
(Pool3x3 ] [convixt ] [comvixt ] [ convixt |
} ! !
[ Conv 1x1 ] [ Conv 5x5 ] [ Conv 3x3 ] &
(a) Inception module (b) Residual block

Figure 1.16: Two architectural innovations for CNN image classifiers. (a) allows
deeper networks avoiding an excessive increase of parameters, while (b) exploits
skip connections to address vanishing gradient and accuracy saturation problems.
Both Inception and ResNet have less parameters than VGG although they are
much more deeper. Images from Author.

In Subsection 1.3.4, it has been said that filters are typically picked as squared with
size 3x3, bxH, and so on. Anyway, Figure 1.16a shows the presence of 1x1 convolu-
tions inside the Inception module. Its introduction, as stated by authors, is due to
the necessity of reducing the filtering depth (i.e., the number of channels) to speed
up calculations since convolutions between deep volumes can be computationally

28


https://paperswithcode.com/sota/image-classification-on-imagenet

1 — Introduction to Computer Vision

onerous. For instance, two consecutive convolutions with 256 filters for each are less
expensive if a 1x1 convolution is inserted in between, acting like a bottleneck. The
way it works still complies with (1.4), except that the filter and accordingly the
image patch covered both consist of one single integer. As a result, it comes down
to multiplying each value in the image matrix by the single filter value, as below:

012 [0 2 4
34 5 1?*” 6 8 10
6 7 8 T |12 14 16

Finally, as far as performance evaluation is concerned, the most used metric
for CNN-based image classifiers is accuracy, as is guessable. When large datasets
are used, slightly different metrics can be adopted: for instance, Top-N accuracy
considers as correct all the predictions which are in the top N output probabilities
given by the softmax layer.

CNNs for object detection

Detecting objects in images means not only identifying a reference class for each
one of them, as in the image classification case, but also estimating their locations
by means of bounding boxes [4], i.e. rectangles drawn around the objects found as
accurately as possible. It is easy to understand that such a task is more difficult,
in some respects, than the only classification. The idea is viewable here:

X width

height

Figure 1.17: Abstraction of 2D bounding box concept in images. The reference
system used is an zy-plane with y-axis inverted. Image adapted from [link].

Given an zy reference system as the one of Figure 1.17, there exists more than one
notation to write bounding boxes and express them in terms of coordinates relative
to the whole image:

o xyxy, that is by specifying the minimum horizontal coordinate x,,;, and the
minimum vertical coordinate 9,,:,, together with the maximum horizontal one
Tmae and the maximum vertical one ¥,,q44;

o xywh, that is by specifying x,,;, and Y, together with the width w and the
height h of the rectangle;
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Figure 1.18: Comparison between one-stage and two-stage object detection.
Image adapted from [60].

o ccwh, that is by specifying the center coordinates x. and y., together with w
and h. Sometimes, this notation is ambiguously referred to as xywh.

As can be guessed, it is quite trivial to convert one notation to another: for in-
stance, the width and the height can be calculated as %00 — Timin a0d Yimaz — Ymin
respectively, the center pixel (x., y.) can be obtained from w/2 and h/2, and so on.

Object detectors are groupable into two macrocategories [60] [61]:

e One-stage detectors, like YOLO, first introduced in 2015 by Redmon et al.
[62], which provide dense predictions in one shot;

« Two-stage detectors, i.e. networks based on region proposal, called R-CNNs
[63] [64] [65], which provide sparse predictions by identifying some regions of
interest before and classifying them later.

While the first ones are faster and more suitable for real-time applications, the
others are sometimes better in terms of performance but suffer a (much) lower
speed of execution. In this respect, state-of-the-art results on COCO over years
are available at this link. Such differentiation is reported in Figure 1.18, which
also shows how the generic structure of an object detector stands apart from that
of CNNs for image classification detailed before, resulting in a more complicated
architecture separable into three main parts [60] [61]:

» Backbone: pretrained CNN deprived of its non-convolutional layers for feature
extraction (one among VGG, ResNet, and others is usable);

o Neck: additional convolutional part to collect and concatenate intermediate
feature maps at different resolutions;

» Head: prediction stage to retrieve classes and bounding boxes;

Nearly all the modern detectors use a hand-crafted algorithm as the last detec-
tion step to extract one single bounding box (out of many) per object: the so-called
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Figure 1.19: IoU for object detection. The predicted box has been represented
overly imprecise to emphasize the difference between the ground truth and the
estimation, as well as between their relative areas. Image from Author.

Non-Maximum Suppression (NMS) [66]. It exploits the ratio between the actual
box area and the predicted box area, which takes the name of Intersection over
Union (IoU), to do that. The whole procedure works as follows:

Algorithm 5 Non-Maximum Suppression
1. Select the box with highest confidence and keep it.
2. Compute IoU of every other box with it.
3. Remove all the boxes with IoU > threshold.
4. Move to the next highest confidence and repeat 2-3.

The algorithm stops when there are no more clusters of boxes to explore. It is still
necessary today to use the hand-crafted NMS although the DL features given by
the current models, and one of the reasons is exactly the fact that YOLO and sim-
ilar detectors are not able to provide one single final prediction per object [67], as
already mentioned above.

Another important difference compared to CNNs for image classification is in
the output form provided by the network: since objects must be located as well
as classified, a single numeric label no longer suffices. For each object in the input
image, the relative output prediction is generally expressed as the combination
of three pieces of information indeed: the reference class, which can be one-hot
or label encoded; the bounding box coordinates in one of the formats presented
before; finally, a new quantity called confidence, which is a percentage measure
of the certainty associated with the predicted class (similar to softmax outputs).
Therefore, a possible output formulation for one detection is § = [conf, b, cls], where
conf is the confidence, b is the quartet vector representing the bounding box, and
cls is the class predicted (one-hot vector or single numeric label). In case of multiple
objects detected, ¢ is a tuple of vectors, one per object.

In conclusion, since object detection is a complex task, a more sophisticated set
of metrics needs to be used, as anticipated in 1.4.2. Firstly, precision and recall
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(a) Step 1 (b) Steps 2-3

(c) Step 4 (d) Steps 2-3

Figure 1.20: NMS application. The box with the highest confidence is picked
(a), then all the others having IoU>0.5 are removed (b). Similarly, the box with
the next highest confidence is selected (c) and the remainder having loU>0.5 are

discarded (d). The final predicted boxes are visible in (d). Image from Author.

are still adoptable but with a different interpretation: given a class, true positives
are detected objects and false negatives are missed objects, while false positives
are something detected as objects of such class but which are not in the scene in
reality. Furthermore, a metric called mean Average Precision (mAP) is always used,
as specified below:

Zf\;_ol AP;

AP =
m N

(1.15)

where AP; is the Average Precision (AP) associated with the i-th class on a set of
N classes going from 0 to N — 1. AP is a good approximation of the area under the
precision-recall curve. As already mentioned before, it can be computed as the sum
of consecutive trapezoidal regions. The notation mAP™Y indicates mAP calculated
at a certain IoU threshold. Hence, beyond precision and recall, two typical values
employed for evaluating an object detector are mAP%® and mAP%*%%  where the
first one is mAP corresponding to an IoU threshold set to 0.5 and the second one
means average mAP over various loU thresholds from 0.5 to 0.95 with step 0.05.
Clearly, the higher mAPs are, the more precise an object detector is.
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Figure 1.21: Example of image segmentation using CNN. Here, semantic
segmentation is performed and output pixels are differentiated into "car"' and
"background". CNNs used for this task generally consist of an encoding part, that
downsamples the image, and a decoding part, that upsamples the reduced
information to lead back to the input form. Image from Author.

CNNs for other tasks

This last part devoted to CNNs begins with a brief overview of those used for
semantic and instance segmentation [4], two similar but different tasks. Semantic
segmentation consists of grouping image pixels based on what they represent or, in
other words, classifying each pixel as belonging to one class rather than another (see
Figure 1.21). One typical approach to do that is to rebuild the volumetric informa-
tion after a certain number of consecutive convolutions, with an opposite decoding
path including a series of upsampling blocks, considerable as the complementary of
convolution-pooling sequences since they aim to gradually reincrease the image size
up to the original. Nearest Neighbor interpolation is one of the most simple and
used techniques to do that (see Figure 1.22). A segmentation-oriented network is
often referred to as Fully Convolutional Network (FCN), because of the absence of
other layers besides convolutional ones resulting in an encoding-decoding structure.
One state-of-the-art architecture for this task is SegNet [68].

Given an input square volume of size n;,, it is possible to known in advance the
size ngy of the upsampled output, similarly (1.5) to seen before:

Nout = (Nin — 1)s —2p+ f (1.16)

Instance segmentation is more specific: beyond labeling pixels, networks designed
for instance segmentation are also able to distinguish the different instances of the
same class [4], thus count the number of equal objects in images. Such complex
task is usually performed through R-CNN equipped with segmentation masks, like
the Mask R-CNN model does [69].
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Figure 1.22: Example of image upsampling through NN interpolation.
Image from Author.

There also exist 3D-CNNs for human action recognition [70], which differ from
the architectures discussed so far in that they use 3D convolutions to perform
tasks directly on videos, not images. A video can be seen a sequence of images, i.e.
frames, thus the number of samples composing it is an extra dimension to add to
the input. 3D convolutions act as 2D convolutions but with one more dimension
which singularly takes into account all the frames.

1.4.5 Transfer Learning

Transfer Learning [71] refers to the action of using the knowledge acquired on a
dataset on another one, thus performing a similar yet different task. Being T; the
original task and 7, the new one, such operation has meaning when:

o 17 and T require inputs of the same type (e.g., images);
o Data available for T5 are far fewer than those available for 77;
o T, can exploit low-level features of T7;

For instance, a YOLO model pretrained on COCO could be used for a new custom
task that consists of recognizing only cars based on a new reduced dataset of few
images depicting only cars. This approach can be successful since COCO, that has
more than 300,000 samples, represents 80 classes including "car" already.

After this brief introduction, an explanation of how transfer learning can be
performed is given here. For a start, the classical transfer strategy used in most
applications lies in replacing the non-convolutional layers at the end of the network
and then freezing all or part of the preceding convolutional backbone. Freezing a
layer implies not to update its weights while others are trained: thus, the weights
from the original task 7T are used and kept unchanged until the whole training
process finishes. The results obtained by the only new added layers in the train-
able mode are generally good when T, data are similar to those of 77. If the two
datasets differ significantly, a further improvement is usually needed to have decent
performance: the whole architecture is unfreezed and a second training phase is
started with a very low learning rate. This can help the network to slowly adapt
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the features previously learned to the samples of the new dataset. Such procedure
of unfreezing and retraining is known as fine tuning, so named because a proper
refinement is done to adjust the weights and make the model conform to 75 as much
as possible, and differs from the first stage generally referred to as hot start.

1.5 Critical issues

As said at the beginning, it is not easy to make machines able to understand
the scene: in addition to the difficulties in emulating human vision in terms of
functioning, some trouble may occur in handling the visual information. In this
respect, Figure 1.23 shows a collection of critical conditions which make CV hard,
also reported in [1] and listed below:

« (a) loss of details due to camera limitations (e.g., low resolution);
« (b) partial or total occlusion of objects of interest;

e (c) blur given by abrupt camera movements or objects changing position in
successive video frames;

e (d) significant brightness variations or poor illumination conditions;
« (e) same object reproduced on diverse scales or seen from several viewpoints;

o (f) clutter, that is the simultaneous occurrence of many different objects (some
are to be identified, some are not);

* (g) distortion phenomena;

o (h) multiple instances of an object in classification problems where a class of
belonging (e.g., "chair") must be properly identified.

A human generally handles all such situations; from a computer perspective, they
often represent deceptive cases instead.

With that said, CV has nonetheless provided surprisingly good results in many
real-life applications, becoming a burgeoning field of study and research and even
sometimes matching or outperforming human skills [11].
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(a) Low resolution (b) Occlusion (d) Poor illumination

(f) Clutter (g) Distortion

(h) Intra-class variability

Figure 1.23: Main critical issues in CV. Images from Openverse [link].
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Chapter 2
Project overview

In this section, the two companies involved in the project are briefly presented:
the consulting firm and the customer requiring a service. Then, a generic overview
of the entire work is given, lingering on its purpose and adding a note about the
ensuing challenges. In closing, one of the most meaningful parts of this work is
reported: it is a discussion about the state of the art on the use of neural networks
and artificial vision algorithms for object and color detection applied in real-life
industrial automation contexts.

2.1 Companies presentation

The former is Orbyta Tech, which provides professional consultancy and solutions
in multiple information and communication technology fields such as software de-
velopment and system support. In particular, the unit called Data Science & An-
alytics focuses on integrated solutions which use methodologies and technologies
concerning multiple areas: Artificial Intelligence, Business Intelligence, and Data
Engineering. For more information, visit here.

The latter is DMC Automation, which focuses on providing engineering solutions
in the fields of Automation and Robotics instead. In this respect, one of the main
businesses of the company is the production of special machines for construction
assembly testing of automotive seats. For more information, visit here.

2.2 Tasks and goals

This work explores the possibility of using some of the algorithms and tools pre-
sented in Chapter 1, putting them all together in a single application, as a proof
of concept for an automatic a posteriori check on the assembly of automotive seat
frame parts, specifically colored motors, in an industrial environment where a bench
lets the frames translate back and forth while a camera captures the scene from
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above. More precisely, there is a steel support base on the bench controllable by
a hydraulic-mechanical device through a red lever in its upper-left corner so that,
once it is activated, it starts moving, dragging the seat frame mounted above.

The one put at disposal is a frame made up of multiple components, some big and
some small, but the focus of this project is only on its three motors, placed at differ-
ent parts but close to each other. Compared to other frame elements, such motors
are medium-sized and, perhaps more importantly, have a defined and recognizable
shape, suggesting that an Al system could be employed for their identification and
localization.

As mentioned before, motors are colored. This can serve to differentiate eventual
multiple seat frames on the basis of their belonging: for instance, frames destined
to Car A could present motors marked with Color A, those destined to Car B
could present motors marked with Color B, and so on. When the check is done, one
can be directed to a line rather than another for further operations if everything
is fine. In a simpler scenery, the automatic check tool can be employed directly
as the final step of the entire assembly procedure. In any case, the whole can be
supervised by a human operator who constantly monitors the real-time information
given by the application on a dashboard implemented specifically for the purpose.
It is noted that the check is done by seeing consecutive frames of the camera stream,
not single photos. Accordingly, such information can include statistical results on
motors, colors, but also average processing speed, and other stuff, with the eventual
print of error messages on the screen when something anomalous is detected.

For the present study, three colors have been provided: red, yellow, and white.
In this respect, 16 video footages showing the frame translating on the base have
been retrieved, including the most diverse situations: not yet colored motors, some
colored and some not, some colored in one color and some in another, and all
marked with the same color. However, the light conditions of the environment are
not ideal, since a glass ceiling lets sun rays enter with the risk of distorting the
perception of colors. The methods designed to correctly identify them have taken
into account this issue, as far as possible.

In summary, the main activity of this work has consisted of developing a tool
capable of recognizing motors, with the possibility of counting them, together with
their color, in real time on video frames.

2.3 State of the art

As is now clear, identifying the color, shape, or location of work pieces may ease
typical automated operations such as pick and place, assembly monitoring, defect
detection, and others in the context of industrial automation processes. In this con-
nection, the concept of Industry 4.0 has become increasingly popular in the last
years thanks to the enhancement of powerful and efficient cutting-edge technolo-
gies such as Internet, cloud computing, robots, and intelligent devices [72] [73] [74].
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Many believe that a new era of smart factories, composed of several interconnected
parts constantly fed by data, has already begun giving way to another industrial
revolution to all effects. The ever-growing worldwide data exchange and the contin-
uous improvement of software and hardware technologies blend well with the rise
of Deep Learning that started a decade ago indeed. One should try to imagine the
factory of the future as a complex mechanism of intelligent artificial entities that in-
teroperate to support humans in complicated tasks, minimizing error probabilities,
or even work autonomously to ensure efficient production.

Everything said so far is normally referable to the common tasks of object and
color detection in the manufacturing field, and recent studies have shown how ar-
tificial vision tools can be employed to achieve good performance in them. More
precisely, the possible use of modern detectors as an active part of industrial pro-
cesses has been largely investigated. Among the various applications, informative
automotive engine compartment label recognition has been studied by Ferreira,
Barroso, and Filipe [75]. They compared three detectors, namely two YOLO vari-
ants and Faster R-CNN, with the aim of finding one able to assist human operators
in the conformity check of such labels. This can help to avoid a fully manual as-
sessment saving time, fatigue, and stress, thereby reducing errors. A small set of
real photos, annotated by hand, has been used as the dataset for training, with
data augmentation enabled. Surprising results have been reached in terms of mAP,
precision, and recall with all the three models, but Faster R-CNN has turned out
to be rather slower than the others, thus not suitable for real time.

In addition to this, many other YOLO-based solutions to typical manufacturing
tasks have been proposed over the past few years [76] [77] [78].

Remaining in the automotive sector, Rio-Torto et al. have examined the pos-
sibility of identifying several car parts (doors, bars, lights, windows, etc.) based
on only labeled simulated data before [79] and a mix of labeled simulated and
pseudo-labeled real samples later [80]. In both cases, the goal has been to secure
high-quality inspection replacing manual checks with human-machine interaction,
in line with what has been discussed above. The second work has also included
the implementation of a graphical interface to give operators an easy infographic
to confirm or deny the network’s predictions. As said, in the first experimental
study, only synthetic images have been employed, both for training and testing,
all of them generated and automatically annotated through segmentation masks in
Unity. The encouraging results have compelled authors to expand their study in-
cluding screenshots taken from real videos in the dataset, thus performing transfer
learning on the model pre-trained on synthetic data. Good detection results have
been provided by the ResNet-like-backboned network adopted.

A different but equally interesting approach is the video-oriented one proposed
by Chen et al. to find eventual mistakes in manual assembly actions by recognizing
them in video streams [81]. A 3D-CNN model boosted with Batch Normalization
is used to retrieve spatio-temporal information about the input streams, then a
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VGG-like FCN segments it to separate background pixels from those relative to
work pieces. For training, the former has been fed with annotated video frames,
the latter with labeled segmented images. It has been found that BN has led to
faster accuracy convergence, as well as a more stable loss, compared to the BN-free
architecture. Performance has been great for the FCN, less for the 3D-CNN.

Another important aspect in industries, actually related to the works just dis-
cussed, is the necessity of supplying products free of impurities, that is, surface
defects. In this regard, quality checks have always been done manually until today,
but research is pushing to adopt intelligent tools for automatic defect detection.
Sun et al. have investigated the use of a modified Faster R-CNN model as the
possible solution to the wheel hub assembly check task [82], aiming at improving
the accuracy of such operation. Scratches, oil stains, holes, and griming are just a
few of all the surface defects which could compromise production in that scenario.
A set of real images manually annotated has been used for training; however, un-
satisfactory results have been obtained. Authors state that poor illumination and
intra-class variability could be identified as two possible causes. A lighting improve-
ment, namely multi-angle lighting, is suggested for future developments. It is still
said that the network adopted has been faster than other detectors available at the
time.

One more work relevant to this sector is the one by Huang, Wei, and Yao [83],
which have used Mask R-CNN combined with SVM to identify anomalies in a set of
four mechanical parts: flywheels, shafts, beanings, and sleeves. Few real images have
been collected and manually annotated with instance segmentation masks. A con-
sistent use of data augmentation transformations have been done to deal with the
limited amount of training data. Segmentation results, including area and perimeter
for example, are fed into the subsequent SVM module that is responsible of clas-
sifying the impurities with a one-vs-one approach. Excellent performance has been
achieved in both segmentation and classification tasks, together with high speed.
As future developments, it is suggested to explore more challenging environmental
conditions.

All the solutions seen so far have in common the adoption of an object detector as
the model to perform recognition via the usual bounding boxes. However, a totally
different approach based on image classification has been also presented [84]. Such
work aimed at using a new enhanced VGG version to classify images presenting
generic industrial objects or specific surface defects of mechanical components. The
original architecture of 19-layer VGG has been transformed into a multipath one
by branching off intermediate feature maps from predefined convolutional stages
and concatenating them with the final feature vector to have a richer quantity of
information in the output stage for softmax classification. The proposed modified
model has overcome the original one for each class in terms of accuracy.

With regard to color identification, the possibility of recognizing objects based
on their color through color models had already been theorized in the past [85].
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Recent approaches have been aimed at differentiating a set of objects of the same
type (e.g., all cars, all motors, or whatever) but different colored. In particular,
the task of recognizing generic vehicles labeled with their color (green, red, white,
etc.) has been studied by Rachmadi and Purnama [86], outperforming the previous
solution provided by Chen, Bai, and Liu [87] in terms of accuracy but appearing
to be slower. It has been found, anyway, that different color models than RGB
are preferable for such problem. One suggestion is HSV. The same has been done
in the work by Malburg et al., already mentioned before, where workpieces have
been marked with a different label based on their color in a simulated industrial
environment [77]. It is interesting to note how all these studies tried to change,
in some way, the nature of CNNs, which usually detect meaningful shape features
such as edges and lines in images, not necessarily colors. Going back a few years,
when the outbreak of the first neural network technologies occurred, an MLP-based
method has been explored to identify colors independently as tuples of values, not
in relation to objects [88].

In closing, still referring to color-based applications, other feasible techniques are
centered on machines extended with color constancy, which is the human skill of
preserving a constant perception of colors in varying lighting conditions [89]. The
aim is to trace back non-ideal images to a predetermined baseline illumination.
Beyond the statistical approaches to this problem [90], many researchers have pro-
posed solutions based on artificial vision over years, some of them suggesting the use
of semantic information, like segmentation masks, as the input of the subsequent
color constancy module [91], others favouring the direct feed-in of CNN-derived
low-level features [92] [93]. An unsupervised method has also been designed with
the goal of avoiding the time consuming preliminary stage of image calibration [94],
usually required for this task.
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Chapter 3
Data collection

As already said, a huge amount of data is required to achieve good results when
it comes to training ANNs even though, in many real-life situations, it could be
difficult to collect a consistent number of images and videos. In order to ensure
optimal learning, several samples at different conditions of framing, positioning,
coloring, and illumination should have been provided to the model selected. In this
work, a sufficiently large dataset of synthetic images with YOLOv5-formatted labels
has been created starting from a 3D model of the seat frame, kindly provided by
DMC Automation, to overcome this problem. In this regard, the next section gives
an overview of the software used for that, while the other two lay out a detailed
description of how the synthetic images have been extracted from simulated videos
in a 3D virtual environment where the 3D frame model has been placed.

3.1 Unity overview

The software used to generate data has been Unity [95], precisely in its 2020.3
version. It is a game engine widely adopted for 2D and 3D game development,
quite popular among newbies, which relies on C# 8.0 (no paper, visit here), a
Microsoft-developed compiled object-oriented language able to interact with Unity
and simplify the activity of programmers thanks to ad-hoc classes and methods. All
the code is editable in Visual Studio 2019 (no paper, visit here), a Microsoft IDE
for the most diverse software products including computer programs, web services,
and mobile apps. It is integrated with Unity, and offers tools to deploy, organize,
and test scripts such as a C# compiler.

Now, it is necessary to introduce some fundamental notions about Unity ob-
jects and how they are treated in the relative C#-based API called UnityEngine,
considering that all the special terms that will be nominated are explained and
accompanied by examples in the Unity scripting reference at this link. Thus, please
see it to have a clearer insight into this part. A further point is that objects and
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Name Description

Color Color defined by its RGBA channels.

Rect Rectangle defined by the upper-left corner
(Tmins Ymin), the width w, and the height h.

Vector?2 2D point expressed as z-y pair.

Vector3 3D point expressed as z-y-z triplet.

Table 3.1: Some C# structs from the System namespace.

game objects are slightly different concepts in Unity, as indicated by their relative
classes, but both terms will indistinctly refer to game objects from now on.

With that said, a game object is, in general, something that can be placed in the
scene and afterward involved in the game application. Some operations involving it
are translation, rotation, hiding, and color change, but many others exist. In Unity,
there is a set of basic geometric 2D and 3D shapes consisting of plane, cube, sphere,
and others joined by environmental objects such as lights and cameras. In addition,
custom 3D models can be imported in the scene and employed as game objects
too.! Every model, regardless of how it has been realized, is the sum of a certain
number of polygons, precisely triangles, put together through a mesh. Moreover,
those representing real-life complex objects, like seat frames, are generally made
up of several children objects, a sort of subparts hierarchically under the main
one which is their parent. Each of them, being to all effects a 3D object, is in
turn composed of triangles. In Unity, the maximum number of polygons allowed
is 256. Over-threshold objects are still usable, but a partial hull is employed for
collisions instead of their full convex one in such case. Naturally, the more triangles
compose an object, the more computational effort is required to perform any kind
of operation on it. For instance, looping over vertices could be very CPU intensive.

At this point, one can get a rough idea of how Unity works, although limited
to the artificial vision field. Accordingly, it should be noted that only few of its
functionalities have been explored for the purpose of this project, when in fact it
offers much more. Do not forget that Unity is a game engine, certainly not a data
generator, but some of its features like the greater user-friendliness compared to
other engines, the programming-oriented approach, and the availability of effective
graphics tools make it attractive to ML and CV developers to create perform-
ing synthetic datasets, which can even bring benefits if compared to classical ones
based on real data [96]. Dealing with synthetic data might sometimes be more con-
venient than collecting samples from the real world: in fact, assuming that some
real data are available in large quantity, the steps necessary to build a dataset of
this kind often require human intervention, one above all the manual annotation

1Unity supports different file formats for 3D import: .fbx, .dae, .3ds, .dxf, and .obj.
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of images/videos that can be very tiring and time-consuming. Moreover, such data
are usually raw and messy: cleanup operations are thus needed to organize them
in a suitable form for training. Then, if a model trained on a real dataset does
not perform as hoped, more data must have been collected, and this may be diffi-
cult. Datasets based on virtual samples, on the other hand, are typically generated
with parameters randomly set, which can be easily adjusted in the case of poor
performance. Another advantage is that annotations can be handled automatically
through ad-hoc algorithms and tools, as done in this work indeed. A downside is
that it may not be as easy to recreate a true-to-life simulated scenario, besides that
complex procedures often entail a high computational cost, as already mentioned
in relation to the number of polygons.

3.2 Virtual environment setup

The 3D seat frame model has been imported into the Unity software and here used
as a support for the generation of synthetic images. Anyway, before getting to the
heart of the procedure, a description of how the whole virtual environment has been
designed and set is needed. The idea was to recreate a simple but realistic industrial
scenario, specifically an assembly line so that multiple consecutive frames can enter
and exit from the scene continuously. The first trivial step has therefore been to
place two orthogonal planes to form the floor and one wall, both colored gray. A cu-
bic object shaped like a long parallelepiped has been used as a sort of conveyor belt
so that frames on it can be transported. Such functionality has been obtained by
attaching a C# script, called ConveyorBelt.cs, that detects collisions with frames
and accordingly sets their velocity, different from zero, together with the direction
of motion. Collisions are managed with the two functions OnCollisionEnter and
OnCollisionExit so that seat frames can be tracked in real time. Some lights have
then been added to the scene: a directional one to simulate overhead illumination
and two point ones, moving back and forth across the belt, to make motors subject
to variations as much as possible. This step is necessary to provide the network var-
iegated images when it comes to training. Light modifications, such as translations,
rotations, etc., are possible thanks to the built-in animator tool available.

A script called SetEnvironment.cs has been attached to an empty object and
employed as the source for the entire environment initialization. The 3D model, in
the form of a prefab, has been put in a public variable so that several copies of it
can be generated with the Instantiate method. It is also responsible of constantly
checking, at each video frame, whether the number of images generated has reached
the quantity prefixed or not yet. The three motors are children objects of the whole
frame, and they are been randomly colored through the Color struct fields. The
network should be learn to detect motor shapes independently from their color.

Five cameras have been placed in the scene to have a comprehensive view of
the belt with the moving frames on it. Their positions have been decided so that
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Figure 3.1: Unity simulated environment for synthetic image generation.

each of them can provide screenshots from distinct viewpoints, on par with the
classic guidelines to train neural networks. To have a view, a Unity camera exploits
a render texture, a texture that varies at runtime. Textures are 2D or 3D surfaces
used in computer graphics to give elements a realistic 'feelable" aspect. In Unity,
each camera can employ its own render texture as a canvas on which to paint the
scene at a given moment. It is quite easy to understand that such functionality
enables the possibility of saving video frames as screenshots, as wanted for the
purpose of this work.
When the targetTexture attribute of a camera object is set to None, it is intended
that rendering will be available directly on the computer screen in game mode. A
custom one must be provided to make such camera capable of taking screenshots:
in this project, one with size 560x315 and RGBA color format has been adopted.
For closing, a wide and high box called has been put in the scene to encapsulate
a section of the conveyor belt and detecting the passage of objects inside, acting like
a photocell. Its mesh renderer component has been deactivated to make it invisible,
with the attribute isTrigger turned on in order to allow collision detection with
subsequent triggered actions. Collisions are managed in the ManageTrigger.cs
script, which contains the essential code to effectively generate images and annotate
them, as will be clearer in the next section. Beyond the mandatory functions to
handle collisions such as OnTriggerEnter and OnTriggerExit, it includes a series
of custom methods thought to randomize the whole process as much as possible
so that several trials can be done by adjusting the parameters every time, that is,
by simply changing some variables in the code, in accordance to what it is said
in [96]. For example, CamCapture is for screenshots, while Get2DBoundingBox is
for automatic annotations of motors. Anyway, their explanation is postponed to
the next part because of their purpose. To have a real-time generation of samples,
simultaneously depending on the video, the two functions mentioned, with more
stuff, have been enclosed in the built-in Unity one for real-time updating, namely
Update, called every frame making everything inside in synchrony with the video.
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" @ [ i

(a) From Dataset 1 (b) From Dataset 2

Figure 3.2: Example of real and synthetic samples from the relative datasets.
The seat frame is blurred in both images for copyright reasons.

3.3 Images and annotations

By pressing play, the whole environment is started, with all the scripts being ex-
ecuted: in this way, an evenly spaced set of chassis is generated and the conveyor
belt allows their transport at a given constant speed. Every time one of them hits
the entering surface of the transparent box, it is added to a list of colliders.? At this
point, the considered object is more or less in the field of view of all the cameras,
so that each one can take a screenshot of what it sees, with the subsequent call to
the annotation function and the resulting bounding box to be written to a text file
according to the YOLOV5 labeling rules previously discussed. Clearly, at the exit,
the object is removed from the list, while those behind are still inside the box or
entering it. This emphasizes the dynamic behavior of the list, the size of which can
vary in time depending on the location of the frames.

It should be clear now that the main core of this automatic procedure for gener-
ating and annotating images is the acquisition of the image and the corresponding
computation of one or more bounding boxes inside it. As far as the first step is
concerned, each camera exploits a texture for visual information rendering: in par-
ticular, a blank one is provided to each of them when the environment is initialized
and this acts as the digital surface where all the pixels of the screen will be written.
The texture is then converted to a byte array which represents the corresponding
PNG file so that the final image can be stored somewhere on disk.

At the same time, the script responsible for generation and labeling can get the

2C# lists are dynamic and flexible data structures with unknown size at compile-time and
variable at runtime. Colliders can be added and removed from their relative list making the
trigger box act like a photocell.
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bounding boxes using a simple but effective algorithm like this:

1. The upper-left corner (Zin, Ymin) and the lower-right corner (Z,az, Ymaz) Of
the bounding box to be determined are initialized to (0, 0) and (MAX, MAX)
respectively, being MAX the maximum float number storable to memory;

2. All the vertices of the object lying in the photocell are read and stored in a
Vector3;

3. A for loop is run over all such vertices so that at each iteration a 3D one can be
converted into the corresponding 2D screen point in the form of a Vector2, then
compared to the current (Zin, Ymin) a0d (Tpmaz, Ymaez) to eventually update
them if a new minimum or a new maximum is found;

4. At the end of the loop, a new Rect is created based on the final (0, Ymin)
and (Zymaz, Ymaz) POINts, hence the four box values required by YOLOv5, which
are Z., Y., w, and h, can be retrieved and normalized to be in (0, 1), hence
ready to be stored in text form to annotation file.

The simultaneous computation of multiple boxes in case of more motors in the
same image results in multiple entries in the associated text file, complying with
the general conventions for object detection data labeling. Finally, it is noted that
a small offset has then been added to have not-too-tight boxes, which might have
been too challenging for the network. With this method, 3610 images have been
generated, split as 80%-10%-10%, corresponding to 2888 training samples, 361 val-
idation samples, and 361 test samples.

Furthermore, at a later time in the development, there has been the possibility
of extracting a few real images as screenshots from 16 real video footages, which
nevertheless represent just a fraction of all the feasible environment configurations:
it is enough to think that the camera is always placed in the same position, namely
on top. One video has been discarded and further used as a case study for inference.
205 real images have been collected, split as 70%-15%-15%, resulting in 143 training
samples, 31 validation samples, and 31 test samples, all of them manually annotated
in the YOLOv5 format with Roboflow Annotate (no paper available, visit here), a
free online tool which allows users to draw boxes around objects and download the
generated labeled images with annotations in the desired format.

Data type Total size #Training | #Validation #Test
samples samples samples
1 | Synthetic 3610 2888 (80%) 361 (10%) 361 (10%)
Real 205 143 (70%) 31 (15%) 31 (15%)

Table 3.2: Summary of the two datasets used in this work. Transfer Learning has
been performed from 1 to 2, as will be seen later.
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Chapter 4

Materials and methods for
object recognition

4.1 Python and libraries

Most of the code of this project has been written in Python 3 [97], an interpreted
object-oriented language largely employed in today’s ML applications and, here,
specifically used for color detection and YOLO customization; among its numerous
libraries, the most relevant to object and color detection have been:

o NumPy [98], an open source library meant for scientific and engineering com-
puting with functions for handling multidimensional arrays;

« Matplotlib [99], a low-level cross-platform library for 2D and 3D plots;

o scikit-learn [100], a robust library for Machine Learning and Data Analytics
that provides a collection of supervised and unsupervised algorithms;

o Pillow (no paper, visit here), a user-friendly Python Imaging Library fork (now
deprecated) for basic image processing operations;

« OpenCV [101], an open source cross-platform library, originally developed by
Intel, for the most diverse artificial vision applications, including support for
image processing and related transformations too;

o PyTorch [102], a Torch-based open source framework, originally developed by
Meta AI, which offers the possibility of building, training, and using deep
neural network models for artificial vision or language processing;
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« Pandas [103], a powerful open source data analysis tool to manipulate data in
the form of dataframes,’

4.2 YOLOV5 overview

YOLOVS, in its last February release [104], has been the adopted CNN model to
detect motors, in a way that will be clearer later. It has been chosen for its speed and
user-friendliness, besides the fact that its code has been developed on the PyTorch
framework, one of the most popular today in the ML community, to the extent
that, according to some, it is shaping the future of artificial vision.

At this point, an outline of YOLOV5 is given, with details about its structure,
model variants, functioning principles, and more. The theory of CNNs for object
detection and, more in general, the basic notions of ML and ANNs (everything
discussed in 1.4.3) come in handy to better understand the following presentation.

4.2.1 Architecture

The YOLOvV5 architecture (see Figure 4.1) can be organized into three major parts,
each of them containing modules of different nature, on par with all the modern
detectors. The list below specifies how they have been realized, that is, which ar-
chitectural elements have been selected for each part:

« Backbone: an alternate series of convolutional and C3 blocks, these last in-
spired by those introduced in CPS-Darknet53 [105], together with a final SPP
block, derived from SPP-Net [106], in a modified faster version;

« Neck: a PANet-like structure [107] that also includes C3 blocks;

o Head: three prediction layers at different resolution, as done for the FPN out-
put stage [108].

Still referring to the architecture, the idea of network scaling [58] [109] has been
exploited for creating a YOLOvV) family with the possibility of choosing one among
five possible models over increasing complexity: YOLOv5n, YOLOv5s, YOLOvHm,
YOLOv5I], and YOLOv)5x, which stand for nano, small, medium, large, and extra-
large respectively. In this connection, Figure 4.2 shows basic specifications for each
of them: storage size, speed, and state-of-the-art performance on COCO. As is
guessable, smaller models are lighter and faster at the cost of mAP as compared to
larger ones. Furthermore, Table 4.1 reports the scaling multiples sgeptn, and Syiden
that are required to obtain each of the aforementioned models, together with the

1A Pandas dataframe is a 2D table-like data structure, with data arranged in rows. Its columns
can potentially contain data of different nature.
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Figure 4.1: YOLOvV) baseline architecture, derived from the yolov5l.yaml
model file. Image from Author.

o> > X OB

Nano Small Medium Large XLarge
YOLOvSn  YOLOvS5s  YOLOvS5m YOLOvSI YOLOv5x
4 MBFP16 14 MBFP16 41 MBFP16 89 MBFFHB 166 MBFP16
6.3ms,, 6.4 ms, 8.2ms,, 10.1ms, o 121 ms,,
284 mAP_ . 37.2mAP_ ., 452 mAP_ ., 48.8 MAP 50.7 mAP_ .

Figure 4.2: YOLOv5 models of different size. Source: [link].

complexity meant as the total number of network parameters (expressed in mil-
lions). Sgeptn and Syian can be adjusted in order to increase or decrease both the
network depth and the relative width. Since reducing the depth means to lower
the number of layers, fewer convolutional blocks appear in the new downscaled ar-
chitecture. Complementarily, a deeper structure will have more. The width refers
to the number of channels of convolution outputs instead, thus, how many filters
are employed. Narrower models use fewer filters, wider models use more. This has
an impact on the total number of feature maps, so on how much information the
network is able to capture about input images.
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Model | Sgepth | Swidth | #Params
Nano 0.33 0.25 1.9M
Small 0.33 0.50 7.2M
Medium | 0.67 0.75 21.2M
Large 1.00 1.00 46.5M
XLarge 1.33 1.25 86.7TM

Table 4.1: YOLOv5 model scaling. YOLOv5I is the baseline architecture since
the related Sgeptn, and syq, are both set to 1.

4.2.2 Learning

YOLOV5 learns to detect objects by calculating a loss function L every epoch, based
on a cycle-decreasing learning rate scheduling policy, and accordingly backpropa-
gating error to update parameters on par with all the modern ANN architectures.
Such loss is the weighted sum of three distinct components:

L= /\1Lcl5 + /\2Lobj + /\SLbox (41)

The first two are BCE functions as that used for binary classification, here needed to
meet the requirements of correctly predicting labels and not missing present objects
respectively. Since only one label is considered in this work (‘0" — ‘motor’), L
is zero-constant during training. The last one is a Complete IoU loss [110], which
takes into account the discrepancy between true and predicted boxes, namely by
and by,.q, based on IoU:

d<btrue ) bpred)

Lciou = 1 —1oU + 5 + av (4.2)
c

where d is the Euclidean distance between by and by,eq, ¢ is the diagonal length
of the smallest box covering both of them, « is a trade-off parameter, and v is a
measure of the aspect ratio consistency.

Going back to learning rate, YOLOvH scheduler allows to have one non-constant
over epochs, decreasing linearly or cosinely up to become almost 0, then restart
repeating the cycle. This guarantees optimal training thanks to the slowing descent
of the gradient. Moreover, scheduling begins after a few warmup epochs, during
which learning rate can slightly change starting from some initial value and ending
in a specific set point.

With regard to bounding boxes, they are computed and expressed in the ccwh
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form similarly to the YOLOvV2 proposed approach [111]:

by =20(t;) — 0.5+ ¢,
by, = 26(t,) — 0.5+ ¢,
b = Puw(20(t,))?
bn = pr(20(tn))?

(4.3)

where by, by, by, and by, are the center (z, y), the width w, and the height h of box
respectively. What is more, it is possible to use the AutoAnchor algorithm [112] to
find the best anchors for training when the built-in ones are found not to be good
for the dataset. It is an interesting method that exploits K-Means, involving all the
boxes in training set, to retrieve an initial guess for anchors that are to be selected
once training starts. This helps to achieve better results especially when dealing
with custom data.

Data augmentation is available thanks to NumPy and OpenCV, which enable
typical operations to augment images such as translation, rotation, shearing, scal-
ing, and many others.

At the end of each epoch, a measure of how well the model performs, called
fitness, is calculated exploiting precision, recall, and mAP:

Fitness = w; X Prec + wsy X Rec 4+ wy x mAPY + wy x mAP%50-% (4.4)

It is nothing but a weighted sum of the four metrics typically used in training neural
networks for object detection. By default, w; = ws = 0, w3 = 0.1, and wy = 0.9.
This choice has most likely been made in order to give more importance to the
mAP with varying IoU thresholds, which is probably the most impactful metric
in applications of this kind. Although it is always possible to use custom weights,
default values have been kept unchanged in this work.

Every time a better value is obtained compared to the current one, the current best
model is updated with the new weights providing greater fitness. If the best fitness
is recorded at the last epoch, the best model coincides with the last one, thus only
the latter is available when training is done.

4.2.3 Code structure

YOLOV5 code is open source and available at this link. It is organized in different
folders and subfolders containing Python scripts and configuration files, all placed
in a main starting directory named yolovb, whose structure can slightly change
depending on the release. Among all, files to perform training, validation, and
inference are present, together with a text file for installing all the required packages
at the start. Three important yolovs subfolders are:
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data, which contains configuration files relative to COCO and other datasets
for object detection, together with a subfolder named hyps containing config-
uration files for hyper-parameter setup and data augmentation;

models, which contains configuration files describing the architectures of all
the YOLOv) models available;

utils, which contains classes and functions designed for preprocessing, aug-
mentation, loss and metrics computation, plots, and other stuff.

At the first run, regardless of whether it is training, validation, or inference, a new
folder named runs is created at the same hierarchical level of the others. Inside
it, different subfolders, whose name depends on the mode, are created. Each of
them serves to collect all the results relative to a specific run. For example, after 50
consecutive training trials are done, 50 different folders denominated in ascending
order, from exp to exp50, are available at yolov6/runs/train/ path.

Training can be performed by launching train.py, either locally or in the cloud,
specifying the options desired in the command line input arguments. They are very
many, and some of them are for:

Choosing the model to be used among those of the YOLOv5 family with the
initial weights, that is, random or from COCO pretraining (in this respect,
YOLOv5s with COCO weights is the default setting);

Providing information about data such as the location of training, validation,
and test set folders together with the classes included (clearly, all the default
specifications refer to COCO);

Specifying the hyperparameters, including those for data augmentation, as
well as the number of epochs (with the patience for early stopping, set to 100
by default), the batch size, and the optimizer for learning (SGD or Adam);

Setting the input image size (640x640 by default);

Deciding whether to use the AutoAnchor algorithm for an optimal search of
anchor boxes or not;

Deciding whether to move images in RAM from disk with the aim of speeding
up the entire training procedure;

Specifying the device to be used for calculations: GPU or CPU (if a GPU is
present, it is automatically taken);

Specifying the number of layers to be frozen in the case of Transfer Learning.
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Additional options for other configuration aspects are available but they have not
been discussed here not having been relevant to this work.

Another file, called val.py, is to validate (or rather test) a YOLOvV5 pretrained
model on a test set, including options for:

Choosing the model to be used: one trained on COCO, thus already available,
or one trained on any other dataset (as in the training case, YOLOv5s with
COCO weights is the default setting);

Providing information about data, as already specified above;

Specifying the batch size, that is 32 by default, differently from the training
case where it is 16;

Setting the input size, that is 640x640 by default, as in the training case;
Performing image augmentation during testing, namely TTA;
Halving floating point precision (16-bit instead of the standard 32-bit);

Setting thresholds for confidence and IoU respectively;

Similarly, inference is done by running the detect.py file, with options for:

Choosing the model to be used: one trained on COCO, thus already available,
or one trained on any other dataset (as in the training case, YOLOv5s with
COCO weights is the default setting);

Providing information about data, as already specified above;

Specifying the source, i.e., the origin of images, videos, or streams on which
YOLO must perform detections (it can be a number identifying a camera, a
path referring to a local image/video, a link of a web video, and so on);

Setting the input size, that is 640x640 by default, as in the training case;
Specifying the device to be used, as already discussed before;

Performing TTA (computationally expensive at inference);

Halving floating point precision (16-bit instead of the standard 32-bit);

Setting thresholds for confidence and [oU respectively;

As for the training file, further options are present in the other two but they have
not been reported since they have not been explored in this work (default values
have been kept unchanged for them).

On the basis of object detection theory, it can be said that the threshold choice
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to be made when using val.py or detect.py, both for confidence and IoU, is
fundamental to provide decent results, especially at inference time. Hence, they
must be chosen properly when the detection file is launched. A trial and error
procedure is suggested to find the optimal values, by repeatedly running YOLO
with distinct thresholds and seeing how it behaves accordingly. By default, they
are set to 0.25 and 0.45 respectively.

4.3 Color-based recognition

Before going into detail with the methodology adopted, it is noted that all the trials
of this work, expect YOLO training that will be detailed later, have been conducted
locally with the aid of Visual Studio Code (no paper available, visit here) as editor
for fast Python coding.

Since the motors are marked with one among three possible colors, it stands to

reason that recognition could be performed by the only color search in the image
as long as those of interest (red, yellow, and white) do not appear elsewhere in the
shot. This strict condition may guarantee that the located red pixels correspond to
the red motors, and the same goes for yellow and white ones.
With this premise, OpenCV provides built-in functions which enable thresholding
operations similar to those introduced in 1.3.1, one above all inRange, that takes
three NumPy arrays as input arguments and checks if the elements of the first lie
between those of the other two, so that a 255 entry is correspondingly placed in the
output array when a match occurs, 0 otherwise. The result, as in the binarization
case, is a pure black-and-white image that can be treated as a mask. As is guessable,
this goes well with the color detection task, since each triplet can be enclosed in
a range with specified extremes. Global thresholding (with ¢ = 127) can be traced
back to an inRange-based confrontation indeed:

141 78 144 255 0 255
is in [127, 255]?

13 100 240 ———— | 0O 0 255

231 127 81 255 255 0

where the matrix on the left represents a 3x3 grayscale image and [127, 255] is the
range within pixels must fall to be mapped to 255. In the case of single-channel
images like this, the arrays used for comparison are monodimensional but, applying
to the generic 3-channel scenario, two triplets must be provided as the lower and
upper bound respectively, thus proper arrays.

Before going into more detail, a clarification about the color model to be used is
necessary: in fact, since possible light variations must be taken into account, HSV is
probably more suitable than RGB for this application. In fact, it is more robust to
external conditions and, being closer to the human perception of colors, it is easier
to tune the related ranges. Precisely in relation to tuning, minimum and maximum
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hue values for tracking a color of interest can be acquired by the wheel shown in
Figure 4.3. Normally, hue varies between 0° and 360° but, as anticipated in 1.2.2,
OpenCV uses an 8-bit representation on par with that employed for saturation and
value, resulting in a halved interval which goes from 0° to 179°, as displayed.

45

% )}
et

Figure 4.3: OpenCV color wheel. Image from Author.

An awkward situation is the one where there is a color having hue varying from a
negative to a positive angle, resulting in a range of the type [—a, ], being a > 0
and 8 > 0. Such case must be handled by providing two ranges: in fact, since
negative angles are positive angles seen counterclockwise, the first hue range goes
from 180° — « to 179°, while the second one goes from 0° to $. The remaining
saturation and value are the same for both of them. When this occurs, two masks
are obtained for the same single color, but only one is needed for detection. It is
enough to perform a bitwise OR (through the OpenCV function exactly named
bitwise_or) between the two masks to have a unique one ready for use. The
OR logical operator acts as an adder, and the resulting mask can be accordingly
considered as the sum, or rather the union, of the other two. Please, consider the
following example:

255 0 0 255 255 O 255 255 0
0 255 0 |V |25 0 O =25 255 O
0 0 255 0 0 0 0 0 255

Those on the left are the two initial masks, while the one on the right is the final
mask obtained by disjunction.

With regard to saturation and value, they should be tuned through trial and error
too, although there is not a reference like the color wheel for them. At this point,
the functioning of inRange applied to 3-channel HSV images is clear: given a pixel,
each one among H, S, and V must lie in [Hpin, Himax)s [Smins Smax)s and [Viin, Vinax)
respectively. If just one does not match, the corresponding pixel is set to 0 in the
output mask, which always happens to be a single-channel binary image having 0
and 255 throughout its matrix.

56



4 — Materials and methods for object recognition

Read/receive Bitwise AND with
image as BGR —— Convertto HSV — inRange > dilate —> mask to extract
or RGB colored regions

Annotate

. «— boundingRect [+—— contourArea «—— findContours
detected regions

Figure 4.4: Diagram of OpenCV-based color detection. Image from Author.

After this introduction about the potentials offered by OpenCV, the method first
tried in this work for recognizing colors, or rather recognizing objects based on their
color, is comprehensively described. The idea comes from [113] and is schematized
in Figure 4.4. As can be seen, the initial step consists of taking the input image
(or video frame) as an array. This can be done through imread in the case of a
single image, or VideoCapture when a video is to be processed and colors are to
be identified in real-time at each frame. Both read the input as a NumPy array
in the BGR format, but the conversion to RGB is always eligible. The possibility
of encompassing the whole detection procedure in a function is also considered:
in such a way, one can pass the array as input in one format or other. At this
point, once the image is obtained in the array form, the conversion from BGR (or
RGB) to HSV can be performed, enabling the successive masking operation with
the pretuned HSV ranges provided, exactly as discussed above. OpenCV has built-
in methods for such conversions: COLOR_BGR2HSV and COLOR_RGB2HSV. The masks
obtained, one for each color, can be dilated: this is not a mandatory step, but it can
help to improve the identification by making them larger. A 5x5 all-ones matrix is
used for doing that, in accordance with what has been said in 1.3.4. Here, the chart
shown in the figure branches into two flows: one of them consists of a bitwise AND
operation that involves the input image and the masks. In this respect, the method
bitwise_and allows to isolate a region of the source image given a reference shape:
in this context, such shape is determined by the mask, that serves to extract each
time the region tinted with the corresponding color from the full image.

Going in the other direction, OpenCV also provides two fundamental functions to
determine the contours of the retrieved colored regions and then calculate the area
inside: findContours and contourArea, respectively. In simple words, identifying
the contours of something means to join all the points that act as its vertexes:
this explains why the only color detection could be employed to recognize objects
without the aid of an intelligent machine. Returning to the two functions, the former
exploits the approach suggested by Suzuki and Abe [114] to find the contours of
each mask, taken as input, and return them as a NumPy array in the case of a
single dense area, or a tuple of arrays when multiple separated regions are found
to contain the same related color. What is more, the contours can be organized in
a hierarchy to deal with those instances where some shapes are inside other ones,
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and perhaps belong to the same object. findContours provides a second input
argument for that and, among the hierarchy modes available in OpenCV, the tree-
like structure is the one adopted for the color detection algorithm of this work. The
third and last argument of the function, when different from none, serves not to
return all the contours retrieved but only a subset with the aim of saving memory
and increasing speed.
The other function, contourArea, is able to calculate the area enclosed by the given
contours: this is a measure of how much color has been detected in a certain region.
At this point, the process ends with annotating all the colored regions by placing
rectangles, equivalent to bounding boxes, in the corresponding positions together
with the color labels, just like object detectors do. This is not a necessary step but
helps to visually understand how the algorithm is working. The information about
bounding boxes, i.e., their coordinates, is obtained by calling the boundingRect
method, which takes a set of contours as input and returns ,,in, Ymin, w, and h of
the associated box. They are what rectangle and putText need in order to draw
and label such boxes.

Everything said so far has been overall implemented as a custom Python function
named detect_by_mask that takes as input arguments:

o A NumPy array representing the input image or frame;
« A string list containing the names of the colors to be searched;

o A list of lists, where each one contains two NumPy arrays relative to the
HSVin and HSV . extremes for one color;

« A flag indicating whether the passed array is BGR or RGB-formatted (BGR =
False by default);

« A flag indicating whether dilation on masks is enabled or not (dilate = True
by default);

 An integer expressing the size of the filter for dilation (n = 5 by default);

In the case of real-time color detection to be performed on a video, the function is
enclosed in an infinite loop so that each frame can be taken by VideoCapture as
a BGR NumPy array and passed to detect_by_mask as the first input argument.
The same image is returned with the boxes and the labels drawn, hence it can be
displayed in a window on the screen. The loop is broken when the video finishes,
or when an exit command (for example, the shortcut Ctrl+C) is invoked from
keyboard. In the main file, called detect.py, a parser has been included to let
users run the program from the command line, with two options, -——source and
--color-detect, to specify where the current frame comes from (a webcam, a
camera, a local video, a local image, etc.) and the colors one wants to search. They
can be encoded in the form of a CSV file with the following columns:
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color,R,G,B,Hmin,Smin,Vmin Hmax,Smax,Vmax

As suggested by their names, each entry must have its string-formatted color name
on the first column, its RGB triplet between the second and the fourth column, and
its tuned HSV extremes going from the fifth to the seventh and from the eighth to
the last column respectively.

The possibility of using a text file instead of CSV has also been considered, with
the same column order. The difference is that columns are not labeled and values
are separated by white spaces, not commas.

The numbers provided must be coherent with what they represent: R, G, and B must
be between 0 and 255, as well as Smin, Smax, Vmin, Vmax, additionaly constrained
to Smin < Smax and Vmin < Vmax. Hmin and Hmax can be positive or negative,
ranging from 0 to 180 or from -180 to -1, on condition that Hmin < Hmax. Both 180
and -180 are mapped to 0, while negative values grater than -180 are converted into
their positive additional counterpart by adding 180. One entry with negative Hmin
and positive Hmax is split into two in the same way discussed before, resulting in a
color with double range.

The custom function read_colors_from_file is responsible of reading the CSV
or text file, checking whether it meets the requirements discussed through another
custom method called check_color_format, and extracting its content returning:
a list of the color names, a list of the RGB triplets encoded as tuples, and a list of
lists with each one wrapping the two NumPy arrays that form the HSV range for
one color.

4.4 YOLO and colors

Due to the limitations in recognizing objects by color through the only algorithm
of color detection introduced before (as will be evident in the next chapter), the
idea was born to combine YOLO with an algorithm that could search colors inside
the bounding boxes rather than in the full image. The points made on the use of
HSV ranges also apply to all the methods that will be presented soon.

Each of them has been implemented as a Python function and inserted in a custom
library called colors.py placed in yolov5/utils. To extend YOLO with color
detection at inference, the same new option --color-detect discussed in 4.3 has
been added to the parser of detect.py, giving the opportunity of passing a custom
color file whose entries are checked before effectively starting avoiding runtime
errors, as in the pure color detection scenario. Accordingly, new code lines have
been included in the detection file so that, at each frame, the network locates the
motors through bounding boxes, and the algorithm for color search is subsequently
run to determine those inside.
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4.4.1 YOLO-based recognition

Before discussing methods for real-time color identification associated with object
detection, a few lines are necessary to describe the training of YOLO for recogniz-
ing motors, that is the fundamental and the most challenging task prior to that
about colors. Due to the high computational power requested by neural networks
for training, YOLO included, the platform chosen for this part has been Google
Colab [115], an online Jupyter-like notebook that provides a cloud-based virtual
machine environment with GPU acceleration. In particular, Tesla T4 is the simu-
lated graphics card usable to significantly speed up calculations. In this connection,
Table 4.2 compares the hardware specifics of both the Colab environment used for
training and the local machine used for the rest of this work.

Laptop Colab
CPU | Intel(R) Core(TM) @ 2.30GHz | Intel(R) Xeon(R) @ 2.20GHz
GPU | NVIDIA GeForce 920MX (2 GB) Tesla T4 (16 GB)
RAM 8 GB ~12 GB
Disk 446 GB ~40 GB

Table 4.2: Hardware differences between laptop and Colab free tier.

Going back to the procedure, the virtual images obtained from Unity have been
put in a folder named train_data_base, organized as follows:

train _data_base
/images
/train
/val
/test
/labels
/train
/val
/test

It has then been included in yolov5/datasets, where datasets is an ad-hoc folder
created and added to the original YOLOvV5 directory. In this way, training, vali-
dation, and test set images together with their label files can be retrieved by the
model on its own by consulting the custom_data.yaml file placed in yolov5/data,
which exactly serves to provide the path of each training data subset.

It should be noted that bounding boxes with negative coordinates may appear in
the annotation files coming from Unity due to the flawed procedure adopted for
generation. To simplify things, they are removed together with their relative im-
ages, not taking part in the dataset effectively used anymore. Likely, they are a
small portion of the full set.
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Multiple trials have been done to get a final tuned model able to capture the motor
features, thus providing decent detection results in relation to the metrics typi-
cally employed in applications of this kind. Based on the parser options previously
mentioned, all such experiments have been conducted by repeatedly running the
training.py file from command line with different parameter configurations each
time. A consistent use of image augmentation has been done exploiting the built-
in YOLOvV5 hyperparamter file hyp.scratch-high, located in yolov5/data/hyps,
which includes settable numbers for random translations, rotations, etc. Interme-
diate and final results, including losses, metrics, and so on, have been collected in
primis to make a first assessment on the goodness of the model, then to storage
such information to a cloud database complying with a modern data processing
architecture that will be explained in the next chapter. This secondary step is very
useful to keep track of all the trials performed and rapidly compare with each other,
inferring which model, among all those trained, is the most suitable for the intended
purpose.

Each new model trained on the virtual dataset has been evaluated both on
the virtual test set mentioned before and the small one containing the manually
annotated screenshots of real videos discussed at the beginning of Chapter 3. The
val.py file has been used for that. Further evaluations have been also done at
inference through detect.py, collecting results with a statistical analysis method,
not included by default in the file above, that will be presented in 4.5. In such a
case, typical metrics used in object detection performance assessment such as mAP
can not be employed, thus a different strategy was to be thought to have continuous
updating, frame by frame, on how well the model works in real time. Information
about color has been also considered here, not gauged at training and validation
time instead.

As will be seen in Chapter 6, models trained on virtual data have provided excel-
lent results on equally virtual images, but performance had dropped when run on
real samples. This has been the reason of a new subsequent training phase, involv-
ing the few available real data, to obtain a fine-tuned network capable of providing
better results according to the TL approach discussed in 1.4.5. The relative folder,
having the same structure as that of virtual data, has been called train_data_tl
in this case.

4.4.2 In-box color detection
K-Means pixel clustering

It is interesting to note that K-Means goes well with color quantization: in fact, it
can group pixels so that the centroids of the final clusters can be used to form a new
palette of k colors [20]. Furthermore, the colors obtained can be also considered as
the dominant ones of the input image [116]. Therefore, the possibility of using it
for implementing color detection inside the bounding boxes has been explored in
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this work. In this connection, the scikit-learn package offers built-in functions for
K-Means and Mini-Batch K-Means that, when applied, return a classifier object
provided with methods for fitting, predicting, and finally recovering centroids once
clustering is done. Since bounding boxes are reasonably small, standard K-Means
can be used instead of its Mini-Batch variant.

An interesting aspect of this procedure is that the NumPy arrays representing boxes
are to be reshaped from 3-channel tensors to 2D matrices by multiplicating the first
dimension by the second one, thus arranging red, green, and blue channels over the
three columns obtained. As a result, all the RGB triplets are on the rows, and the
matrix is nothing but a dataset of m samples, being m the total number of pixels.

(246, 52, 53)

(87, 95,98) (0, 201, 246) | Red match
(98, 32, 98)

to HSV

— + (107, 56,64)

(0,199,173) Red match

(165, 13, 38)

- RGB cluster
—_—

Input {56%35)
(38, 36, 37)
(50, 56, 64)

(173, 38, 39)

Figure 4.5: In-box color detection by K-Means clustering with & = 5. Once the
final centroids are defined, the matching function determines whether one of the
colors of interest is present. Image from Author.

Once the final clusters are available, its centroids can be picked as the dominant
colors and, at this point, a matching function comes into play to check if one of
them falls within one of the HSV ranges among red, yellow, and white. Clearly, to
make it possible, the RGB triplets returned by the algorithm must be converted to
HSV beforehand. The whole method, as explained so far, is reported in Figure 4.5.

With regard to the choice of k, the elbow method has been used in the same
way as discussed in 1.4.1 by running K-Means on a predefined set of small motor
images, equivalent to their bounding boxes, and calculating the mean inertia over
them to vary the number of clusters each time.

Median Cut color quantization

The possibility of intending K-Means as a color quantization algorithm has been
just discussed. With greater reason, Median Cut can be employed for the same
purpose having been designed precisely for that. The procedure is quite trivial in
this case as against the K-Means approach described before: once quantization is
performed, a reduced palette of n colors is available for being given as input of
the matching function considering that everything said about HSV matches in the
previous part is still valid here. With regard to the Python implementation, the
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Figure 4.6: In-box color detection by Median Cut quantization with n = 8. Once
the new palette is defined, the matching function determines whether one of the
colors of interest is present. Image from Author

library Pillow provides an object called Image that enables, through its methods,
color reduction in three consecutive steps: the NumPy input array is reconverted to
a viewable image, the quantization is done directly on it, and the resulting image
is transformed again to be an array.

Similarly to the K-Means case, the number of colors n is a hyperparameter to
be tuned. A trial and error procedure on a set of motor bounding boxes has been
likewise performed to get an optimal value for it.

Pixel masking

The approach of pixel masking with the help of OpenCV functions, explained in
4.3, is still valid when taken inside bounding boxes rather than in entire images.
The procedure is mostly the same, with the difference that images are smaller
resulting in fewer pixels to check and mask. This has a beneficial impact on the
computational complexity, therefore, it implies a faster algorithm.

One source of inspiration has been the enhancement of YOLOv2 for traffic light
status identification, namely detecting semaphores and understanding which light
is on [117]. In that work, information about color is obtained by calculating red and
green ratios in the located boxes, and not in the image area, as the quantity of red
and green pixels over the totality of pixels in the box. Then, the use of a threshold
is suggested to determine whether the semaphore displays one color or the other:
a red ratio above it implies the presence of red, and the same goes for green. It is
noted that the yellow case is not covered there.

Well, the full technique presented in 4.3, which aims to search colors in the entire
image, can be reconsidered and accordingly modified to make it compliant with this
new scenario. In this sense, the scheme of Figure 4.4 roughly remains unchanged,
with some differences (see Figure 4.7). For one thing, the last two stages are removed
since bounding boxes and their annotations are now provided by YOLO, while the
pixel masking algorithm is limited to pass the information retrieved about colors
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Figure 4.7: In-box color detection by pixel masking. The same procedure applies
to yellow and white searches. The area providing the greatest over-threshold pixel
ratio of the three determines the predicted color. The bitwise AND step has not
been included in the implementation, thus it is not displayed. Image from Author.

as input to the built-in YOLOvV5 labeling method, namely box_label from the
Annotator class (available at yolovbs/utils/plots.py). Given a detected object,
the steps just discussed are replaced with new instructions meant to calculate the
pixel ratio for each color, as done in the traffic light problem previously mentioned,
to return the corresponding predicted color: none or one among those of interest.
Once the area is obtained, the ratio can be calculated by dividing it by the total
number of pixels contained in the box, in turn, obtainable as the multiplication
between the width and the height. By the way, everything said is viewable in the
figure above. Since each mask has an area that provides a certain pixel ratio, the
predicted color is the one having the greatest ratio. To make sure that it actually
refers to a red, yellow, or white motor, a threshold can be set to decide whether
the prediction is honest or not. In fact, there could be cases of grey motors (that
is their factory color) mistakenly identified as white due to a positive white pixel
ratio, but perhaps small; or even one color assigned to a neutral motor just because
some red, yellow, or white pixels have been found in the box in a percentage that is
extremely low in relation to the entire rectangle. The introduction of a threshold is
thus useful to avoid such mispredictions. It is also true, however, that it could cause
false negatives: the algorithm might miss colored motors (red, yellow, or white) in
critical light conditions in which colors are altered and at risk of being detected
with an under-threshold ratio. That is why it is crucial to assign the most suitable
HSV range (or ranges) to each color, as wide as possible to cover all the variations.

One last remark: being the bitwise AND stage independent from the others, it
would be better to suppress it in favor of a higher computational speed. In fact,
since the algorithm is intended to be run in real time, it is fundamental to include
only the instructions necessary to get the final prediction as quickly as possible at
each frame, with a time negligible when compared to that taken by YOLO for the
object detection part.

4.5 Statistical analysis on video frames

Since inference is performed on video footages in real time, a statistical evaluation
to be performed at intervals of N frames has been designed, where N is a user-
defined parameter. As done for color detection, an option has been included in the
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parser of detect.py to deal with this new feature: --do-stats, which accepts as
argument the number N just mentioned indicating how frequently the statistical
analysis is to be made. The approach that is going to be described can be compu-
tationally expensive, thus it is suggested not to down N too much. By default, it
is set to 30, which means that statistical information is retrieved every second in
an ideal situation where the input video is processed at 30 FPS.

Having said this, the method proposed for this project is now presented, consider-
ing that the major changes have been effected in the code of detect.py and the
functions implemented especially for this have been gathered in the relative custom
library called stats.py and placed in yolov5/utils, as precisely done for the color
detection addition to the original YOLOvV5 project.

If --do-stats is enabled, together with ——color-detect, a Pandas dataframe is
created with the following columns even before images, in the form of arrays, are
preprocessed and fed into the model at inference:

frame class box conf color

Clearly, doing statistics without the color recognition activated is also possible: in
that case, results are the ones obtainable with a pure object detector that is unaware
of colors. Back to the dataframe, it must be noted that the instruction responsible of
adding a new entry is positioned inside the for loop which iterates all the bounding
boxes, confidences, and class labels at a single frame. As a consequence, if more than
one object is found, multiple entries having the same frame number are inserted into
the dataframe. It has not been said yet, but the columns reported above respectively
contain the frame number, the class label, the bounding box coordinates in the usual
YOLOvV) format, the confidence score, and the name of the predicted color.

Once the mentioned loop is over, the dataframe is found to have several entries,
as many as the detections. As the video is processed, such dataframe grows in size
with the new information added each time. This raises a question: it has been said
before that N is suggested not to be small since performing statistical operations
very frequently could considerably slow down the entire real-time process; but it
is also true that a greater N may imply a substantial number of dataframe entries
which engrave on memory, besides being computational heavy for the statistical
functions when invoked. The right trade off must be struck.

The actual analysis, schematized in Figure 4.8, starts involving a series of ad-hoc
custom methods from the stats.py library no earlier than z. is retrieved from
each list of bounding box coordinates, going to generate a new list containing the
only center coordinates for each motor box at that frame. This decision stems from
the fact that, from the camera perspective, motors move vertically up and down,
resulting in an almost constant z position in contrast to a varying y position. On
the other hand, if the camera sees motors in a horizontal right-to-left movement, x
is the one that changes, while y is pretty much steady. To deal with both of these
possibilities, a flag indicating the operating mode, that can be vertical or horizontal,
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Figure 4.8: Diagram of real-time statistical analysis on video frames.
Image from Author.

has been added to --do-stats at a later date. More complex motor paths have not
been considered in this work: when it comes to solving CV problems of this kind,
the approach should be to put the camera in the most suitable position to facilitate
detections indeed.

Going back to the analysis, the list of coordinates obtained is fed into a function
named groupby_tol, which groups them on the basis of a given tolerance, set to
10~2 by default, returning a list of lists. This serves to consider those that differ
within the tolerance as related to the same object, in accordance to what has
been previously said about motor movement. For instance, one respectively having
z. = 0.501, . = 0.503, and z. = 0.508 at three distinct frames is basically the same
motor. The default tolerance is this low because the bounding box coordinates are
ordinarily normalized, but either way they must be coherent with the format: in
fact, when non-normalized coordinates are used, it is reasonable to use a value in
the order of units: 1 or 2, for example. Anyway, it is always good to proceed by trial
and error when such delicate parameters are to be tuned, as repeatedly pointed out
so far.

After the manipulated list is returned, it is given as input to the get_stats function,
which calculates three new custom metrics for each sublist:

» Appearance frequency, that is the number of frames in which an object has
been found compared to the number of frames elapsed;

» Average confidence, that is the standard object detection confidence averaged
over all the frames elapsed;

« Color correctness, that is the most frequent predicted color until then, reported
together with the percentage frequency value;

Inside each sublist, the mean coordinate is computed over all the elements included,
and the obtained compacted results are stored in the form of a Python dictionary
where the mean coordinates are exactly the keys, while all the related information
composes the values. This is done by the save curr_stats function, nested in
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get_stats. It is important to note that when appearance frequency exceeds a
threshold 9, set to 0.5 by default, it can quite surely be said that a motor has been
found in the corresponding position. Such information about effectively detected
objects is printable in terminal or directly on the dashboard depending on whether
YOLO is launched as a stand-alone framework or a web-like app, as will be detailed
later. This step is possible thanks to another get_stats-nested function, namely
get_found_objs.

Example

At this point, the following simple example is intended to make the functioning
principles of this method clearer: consider statistical analysis enabled with N = 3
and, at frame 3, which is the first trigger frame, the dataframe is populated as

follows:
frame class box conf color

1 0 0.442 0.89  red

1 0 0.508 0.85 yellow
1 0 0.700 0.81 white
1 0 0.736  0.90 white
2 0 0.503 0.92 yellow
2 0 0.702 0.94 white
3 0 0.100 0.86  red

3 0 0.445 0.81  red

3 0 0.501 0.80 white
3 0 0.700 0.83 white

For simplicity, only the x. coordinate is reported in the box column, but do not
forget that all the four z., y., w, and h values are stored as a list in the dataframe.
With such data, the output of groupby_tol is:

[[(0.1, 0.86, "red")]

[(0.442, 0.89, "red"), (0.445, 0.81, "red")]

[(0.501, 0.8, "white"), (0.503, 0.92, "yellow"), (0.508, 0.85, "yellow")]
(0.7, 0.81, "white"), (0.7, 0.83, "white"), (0.702, 0.94, "white")]
[(0.736, 0.9, "white")]]

with each row representing a sublist of elements grouped within a 1% tolerance.
This list of lists is then passed to the get_stats function, which produces:

[((0.1, 0.33), 0.86, ("red’, 1.0)),
((0.4435, 0.67), 0.85, ("red’, 1.0)),
((0.504, 1.0), 0.86, ("yellow", 0.67)),
((0.7007, 1.0), 0.86, ("white", 1.0)),
((0.736, 0.33), 0.9, ("white’, 1.0)),
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These statistical information is saved into an ad-hoc Python dictionary through
save_curr_stats, as already said before, and will further used for the next trigger
frames, making the analysis cumulative. The effect of the get_found_objs function
on such list of tuples is the following, being ¢ = 0.5:

((0.4435, 0.67), 0.85, ("red’, 1.0)),
((0.504, 1.0), 0.86, ("yellow", 0.67)),
((0.7007, 1.0), 0.86, ("white", 1.0)),

It can be quite surely said that:

o There is a red motor in x, = 0.4435 with appearance frequency = 0.67, average
confidence = 0.85, and color correctness = 1.0;

o There is a yellow motor in . = 0.504 with appearance frequency = 1.0, average
confidence = 0.86, and color correctness = 0.67;

o There is a white motor in z. = 0.7007 with appearance frequency = 1.0,
average confidence = (.86, and color correctness = 1.0.
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Chapter 5

ETL architecture

This work has been developed according to the modern paradigm of ETL architec-
tures [118], whose acronym stands for Extract, Transform, Load. It is the process
of taking data from a certain source, manipulating them with operations such as
cleaning, aggregating, separating, or format changing, and then uploading such pro-
cessed data (or inherent results) to an output destination: a database, in general.
The main software items used for realizing that, including the dashboard for infer-
ence, have been:

» Dropbox (no paper, visit here) for storing synthetic and real data in the form of
zipped folders, thus importing and unzipping in yolovs/datasets, still usable
to extract the color file at inference too;

« Python language, already cited in Chapter 5, with specific instructions to check
the conformity of annotation files so that those containing negative bounding
box coordinates are discarded for training,! but also to manipulate eventual
color ranges of the type |-, (], as discussed in 4.3;

e MongoDB (no paper, visit here), one of the most popular document-oriented
NoSQL databases (as will be clear soon), used in its cloud version Atlas for
storage of intermediate and complete training results such as losses, metrics,
and other stuff, together with PyMongo (no paper, visit here), a Python ex-
tension to enable MongoDB and Python to communicate with each other;

e Streamlit (no paper, visit here), an open source framework for Machine Learn-
ing and Data Science web apps, namely dashboards for visualizing data and
results, adopted for the real-time visualization of detection results via dash-
board;

I Clearly, the relative images are also discarded to avoid inconsistent training.
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Figure 5.1: ETL architecture of the proposed work.

The two following sections give a description of how data are treated through-
out the distinct activities of training, testing, and inference in this project. More
precisely, 5.1 refers to the plain ETL structure adopted, while 5.2 focuses on the
real-time visualization of detection results and other relevant information at infer-
ence by means of a web-like dashboard.

5.1 Data path

Figure 5.1 outlines the architecture adopted for this project. Firstly, it can be seen
that data, which are the PNG images with their text annotations, are stored in
a Dropbox zipped folder. From here, they are extracted and brought to an on-
line notebook, editor, or IDE, like Google Colab which has been the one used for
training in this case. Clearly, several trials have been done to get the most suitable
network configuration, i.e., the one able to provide decent results from a pure ML
perspective. The various losses and metrics, together with the model and metadata
such as timestamps, have been saved to a non-relational database from epoch to
epoch; this has helped to keep track of the network behavior at each trial, hence
a posteriori analysis is always possible and further improvements are feasible. The
database selected for that has been MongoDB in its cloud version known as Atlas.
Nowadays, non-relational databases are preferable to the classic relational ones in
several applications thanks to their flexibility, scalability, and possibility of storing
unstructured data such as multimedia files, logs, sensor data, etc. While information
is organized in tables in relational databases, thus arranged in rows and columns,
it is document-oriented in MongoDB, in the sense that each new entry is not a
row of a table having the attributes on columns but it is a JSON-like object con-
taining pairs of fields and values, similarly to Python dictionaries. It follows that
it no longer makes sense to speak of tables, but entries, which are documents in
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the non-relational context, are grouped in collections. Please, consider this sim-
ple example: an epoch, numbered as 1, with only two values recorded, that is,
train_loss = 0.44 and val_loss = 0.67. In a relational database, the correspond-
ing entry would be a row having 1, 0.44, 0.67 on the first, second, and third column
respectively, and maybe epoch is the primary key of such table. On the other
hand, MongoDB would store this information as {'_id': 4f0b2{55096{7622f6000000,
'epoch': 1, 'train_loss': 0.44, 'val_loss': 0.67}. It can be seen that a numeric
hexadecimal extra field, called _id, is automatically added at the beginning to
guarantee the unique identification of the document. This is more or less the same
concept as primary key for relational databases, with the difference that primary
keys are not mandatory and designers choose which attribute shall be such among
those available.

The use of MongoDB has then permitted the storage of the entire PyTorch model
at the end of training trials in the form of a byte sequence. This has been possible
thanks to the built-in methods for conversion offered by the Python pickle module.
For this work, beyond the model, the fields stored at each trial have been the various
losses and metrics, which are those provided by YOLOv5, and also metadata such
as the starting time of the procedure and the ending time, thus the execution time
intended as the total training duration. Information can be retrieved from here to
generate reports, which allows not to lose track of everything done.

5.2 Data visualization

Data visualization refers to the representation of data in the form of text, graphs,
tables, etc., helping to visualize complex information through a simple understand-
able interface [119]. This can help to have a quick overview of the results provided
by the adopted tool, which can be an algorithm, a program, or an app designed
for a specific task. More specifically, Video Analytics has become a field of interest
in the recent years along with the widespread use of intelligent systems to assist
humans in monitoring real-life scenarios, with the ultimate goal of getting useful
insights [120]. Typical examples of that are applications meant for surveillance and
detection. Hence, the idea was born to create a dashboard, namely a graphical con-
trol panel for visualization, for the representation of object and color recognition
results in real time, taking inspiration from the traffic monitoring tool proposed by
Chachra [121]. In that work, Streamlit has been employed to provide an intuitive
interface capable of collecting YOLOvV5 inference detection results such as the ob-
jects found in the current frame, a summary of all the detections done until then,
an estimation about the speed of video processing in terms of average FPS, and
some interesting hardware information such as memory and GPU usage. Everything
is computed and shown in real time as the input video is run and YOLO locates
objects in frames. In order to do that, the detect.py file must be accordingly mod-
ified, not including a parser anymore since the command line input serves to launch
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the Streamlit app this time, not the YOLO inference procedure. In fact, the func-
tion run responsible of starting YOLO detection is called in the main app.py with
the input parameters chosen by the user through ad-hoc buttons and menus on the
dashboard. These configurable values include the source, the confidence threshold,
the color file to be uploaded, and others. In a stand-alone YOLO environment,
all of them are specified through the command prompt, but now they are settable
directly on the dashboard before detection starts, enabling easier configuration and
quick infographic view.

Configuration
Select source

Local video

Dashboard

Inference stats

Class confidence threshold

.ee

@ Color detection Frame rate Detected objects in this frame Total detected objects

14.8FPS i “q

"motor" : "motor™ :

Select inputvideo

Dra; 4 i

System Stats

Browse files
Memory usage CPU Usage GPU Memery Usage

] e 92.5% 94.7% 719 MB

111.0B
& Statistical analysis
Frame interval

10

Figure 5.2: Example of Streamlit-based dashboard with YOLO integration.
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Chapter 6

Experiments and results

6.1 Color ranges tuning

As stated in Section 4.3, the HSV model is used to perform color detection, with
the requirement to provide a range HSV ,,;,-HSV .. for each one among those of
interest. Several trials have been done on some real videos by adopting the OpenCV-
based identification method introduced in the same part. The final tuned ranges,
collected in Table 6.1, have been obtained from a simple qualitative analysis of
the visual performance of recognition. Values were adjusted whenever only a few
detections, or too many mispredictions, were visualized. Then, the resulting HSV
triplets, both lower and upper bounds, have also been used to identify red, yellow,
and white with all three of the techniques presented in 4.4.2.

Color RGB HSVin HSV nax
Red 255, 0, 0 15,87, 111 | 15, 255, 255
Yellow 255, 255, 0 16, 87, 111 | 42, 255, 255
White 255, 255, 255 0, 0, 168 179, 25, 255

Table 6.1: Tuned HSV ranges for color detection.

It can be seen that red has negative H,,;, in the face of positive Hy,.,. Based on the
color wheel of Figure 4.3, the purest red tonality appears to have H = 0, thus the use
of an interval of the type [—a, ] is unavoidable. It is also true that a reduced range
could be used, covering angles from 165° to 179°, focusing on the darker red and
ignoring the one towards orange, but the more complete interval [-15, 15] ensures
greater performance and stability, with robustness to light variations. According to
the rules about color ranging established in 4.3, all the intervals enclosing 0 are
changed so that two separated ones are obtained, both containing positive angles:
in this case, [-15, 15] is split into [165, 179] and [0, 15]. A bitwise OR operation
is consequently needed to combine the two relative masks into one when the pixel
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masking algorithm is selected.

Since color detection is not performed through ML, its performance can not

be rigorously evaluated as in the case of neural network employment for tasks.
Moreover, identifying colors is usually a more trivial task as compared to the YOLO-
based object detection: it is true that variable light conditions could distort color
perception, but classifying and localizing motors in video frames is quite more
challenging. Not for nothing, algorithms for color detection are simpler to develop
compared to neural networks and other ML solutions.
From some observations, it has been found that red and yellow are always correctly
tracked, while the white color is more problematic, essentially for two reasons:
the environment contains a lot of gray, starting with the seat frame itself and
ending with the bench; then, the only real component that can be tuned for white
identification is the value V, given that S is enclosed in a very small range and H
does not affect the coloring, consequently. When S = 0, there is no saturation in
the image, which means that everything inside is white, regardless of H. In this
situation, one can vary V on a grayscale level going from 255, which is pure white,
down to 0, which is pure black, obtaining an optimal value for V, as far as possible.
Theoretically, S could be constantly maintained to 0, but a small variation has been
taken into account in setting the interval [Syin, Smax] to also consider white regions
slightly altered by other colors, even though this is a borderline case that should
not occur frequently. Another thing to be aware of is that, besides mispredicting
frame and bench parts as white, a too low V could generate a white area greater
than those relative to red and yellow motors, resulting in wrong estimations even in
those boxes that should not be an issue. Clearly, a different color such as green or
blue would fix this matter. This sheds light on how color detection may be sensitive
to environmental conditions and, perhaps more importantly, to the choices made
to set up the environment itself.

6.2 YOLO performance

Among the YOLOv5 models available (see Figure 4.2 and Table 4.1 for a recap),
YOLOvV5s has been the one immediately adopted for motor detection because of its
balance between speed and performance. Various training experiments have been
conducted in the virtual Google Colab online notebook, chosen for the powerful
GPU acceleration provided, to get a definitive model capable of ensuring decent re-
sults in terms of precision, recall, and mAP regarding the pure object detection part.
Specifically, the first base training with synthetic data has given the best results for
30 epochs with random initial weights, batch size = 32, and SGD optimizer hav-
ing initial learning rate = 0.01. Image augmentation (translations, rotations, flips,
etc.) and weight decay have been included to prevent overfitting. As can be seen in
Table 6.2, the synthetic-data-trained model has suffered a performance drop when
validated on real data against the excellent results obtained on synthetic test set
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Name /description Base training TL training
hyp.scracth-high.yaml hyp.VOC.yaml

Initial weights Random Base training
Freeze - 10
Image size 640 640
Batch size 32 16
Epochs 30 50
Warmup 3 3.3835
SGD momentum 0.937 0.74832
Initial learning rate 0.01 0.00334
Weight decay 0.0005 0.00025
Loy; gain 0.7 0.51728
Ly, gain 0.05 0.02

IoU threshold 0.2 0.2

Table 6.2: YOLOv5s hyperparameter configuration for training.

before. This justifies the launch of a second training phase involving the reduced
real dataset, doing transfer learning. This time, optimal results have been achieved
for 50 epochs, obviously starting from the weights of the previous synthetic-data-
trained model instead of random ones. The network backbone, consisting of the
first 10 blocks, has been kept frozen during training, and SGD has been selected
with batch size = 16 and smaller learning rate = 0.00334. Augmentation and weight
decay have been still performed, but less aggressively. Table 6.2 shows how transfer
learning has allowed to bring back performance to those of the ideal case of the
synthetic-trained-model validated on equally synthetic data.

Table 6.2 above reports a more comprehensive collection of hyperparamter set-
ting both for base and transfer learning training. hyp.scratch-high.yaml has
been the configuration file for the first training phase, while hyp.V0C.yaml the one
adopted for transfer learning, originally thought for transfer from COCO to VOC.

Figure 6.1 shows the training results over epochs both for base training and
transfer learning, highlighting how the second training has guaranteed excellent
performance on par with the first case. It can be seen, moreover, that no overfitting
problems have occurred.

6.3 Case study

The final fine-tuned model has then been locally tested at inference on a real video,
namely the file called FILE0020.M0V, picked from the set of 16 footages available, as
anticipated at the end of Section 3. Laptop has been used, with the hardware spec-
ifications reported in Table 4.2. The dashboard has also been run together with the
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Training Test Prec Rec mAP! mAP?
1.1 | Synthetic | Synthetic 0.988 0.988 0.994 0.901
1.2 | Synthetic Real 0.746 0.665 0.654 0.132
2 Real Real 0.986 0.946 0.982 0.659

Table 6.3: YOLOv5s validation results with synthetic and real dataset. Rows 1.1
and 1.2 refer to the synthetic-data-trained model validated on real data, while 2

to the real-data-trained model validated on real data, which is the real scenario.
mAP! is mAP%%, while mAP? is mAP%%%9,

YOLO-system integrated enabling further evaluations. Moreover, such case study
has served to have an idea of how color detection is performed by the three different
methods proposed, thus to make a comparison and a subsequent choice. Actually,
K-Means pixel clustering, Median Cut color quantization, and pixel masking all
provide excellent results in the present scenario, shifting the attention to the real-
time computational speed in terms of ms, which affects the FPS capacity of video
processing. Pixel masking has revealed to be significantly faster than the other two:
1.1 ms per image against 23.4 of Median Cut and 334.1 of K-Means. Beyond that,
the speed proper to YOLOv5s has been also monitored to assess the real time fea-
sibility in general, bearing in mind that the environment and the operational mode
of the camera produce a quite static scene which does not require high frame rate.
There are not significant changes between one frame and the other when the seat
frame moves along the base, thus capturing images at less than 30 FPS does not
mean losing much information, likely. Nevertheless, it has been noted that YOLO
runs at approximately 15 FPS, which is an acceptable result, when launched sep-
arately from the dashboard, namely on different windows or even on two different
screens if more monitors are available, while the rate drops to 3 FPS about when is
is integrated directly with the dashboard. Probably, the remote server connection
puts a strain on the showing of consecutive annotated video frames through the
Streamlit st.image method against the faster OpenCV cv2.imshow run separately
on its on window. This remains an open problem.

Having said this, Figure 6.2 reports a visual example of what the network "sees"
at inference, while Table 6.4 shows how good the model is also in terms of average
appearance frequency, average object confidence, and average color correctness,
which is in turn a form of confidence. These results have been retrieved by the
statistical analysis performed on video frames with interval N = 10.
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Figure 6.2: Snapshot of real-time object and color detection.

The seat frame is blurred for copyright reasons.

Motor Lc,avg f'req confobj,avg con.fcolor,avg
1 (white) 0.518359 0.91 0.83 0.9996

2 (red) 0.560938 0.95 0.96 1

3 (yellow) 0.491016 0.93 0.87 1

Table 6.4: Statistical analysis results on a real video.
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Conclusions

This work has highlighted the possibility of using a PyTorch-based CNN;, specifically
YOLOV), to recognize seat frame motors in an industrial environment, with the
extra feature of identifying colors inside detected bounding boxes from a set of three
predefined tints.

The difficulty of collecting a suitable number of variegated photos has given rise
to the need of generating a synthetic dataset for YOLO training. This has been
one of the most challenging tasks of the project because it is not easy to faithfully
recreate the real scenario by means of a 3D simulated environment. Performance
degradation recorded in validating the synthetic-data-trained model on real samples
has been the proof.

Fortunately, the availability of few video footages has allowed to extract screenshots
and use them as an additional smaller dataset for transfer learning, one of the most
popular methods to adapt the behavior of a neural network to a different task
to date. Thanks to this passage, surprising results have been achieved in terms of
precision, recall, and mAP on real data, on par with those previously obtained with
the synthetic-data-trained model validated on equally synthetic data.

With regard to color detection, pixel masking has turned out to be the best
technique among the three proposed, not so much in accuracy since all of them
are very precise, but in terms of real-time computational speed. The average time
required by pixel masking to detect colors inside boxes has been importantly smaller
than the one taken by K-Means pixel clustering and Median Cut color quantization.
Anyway, these last two methods are still usable in object detection tools based on
single images instead of video streams.

The adoption of an ETL-like architecture has then allowed to keep track of
all the training trials done during the development of the present work, beyond
visualizing data in real time through a user-friendly dashboard when the entire
recognition framework is run at inference. As already said before, this can help
human operators to rapidly check information on screen while YOLO works.

Due to the exhaustive results discussed in Chapter 6, multiple future develop-
ments are still possible for this work such as correcting the sensitivity of the color
detection algorithms to the environmental conditions, especially in relation to light
variations and object colors which also appear in the background. The HSV ranges
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for detection are not that easy to tune, thus a significant improvement may be given
by the use of tints opposing each other in the color wheel: for example, red, green,
and blue, which would allow to select wider intervals.

In relation to the pure object detection part, an interesting option is to migrate the
entire framework proposed to the newbie YOLOvT7 [122] and see what happens in
terms of metrics but especially FPS rate in real-time video processing. In fact, this
brand new version of YOLO promises to be even faster than its predecessors. Such
a network can most likely enable the real-time visualization of annotated detected
frames directly in the dashboard at inference, solving the problem of low process-
ing speed when YOLO is integrated instead of been run separately on a dedicated
window or secondary monitor. Such a result should also be obtainable by means of
a more powerful hardware package: in other words, more computational resources
which guarantee higher speed.

What is more, the fact of detecting other seat frame components might be in-
vestigated, resulting in a more complete fine-tuned model capable of recognizing
multiple classes, not only a single one, on par with the majority of modern de-
tectors. Clearly, with the increasing of identifiable classes, the complexity of the
task is greater, requiring a closer inspection of the whole training process, from the
preliminary data collection/generation to the hyperparameter configuration.

One last aspect, surely less important for the purpose of recognition, is the reporting
activity that can be done on the basis of information stored in MongoDB. Similarly
to the dashboard implementation, ad-hoc tools could be adopted to convert all the
numeric results uploaded to the database every epoch into an easy infographic. A
powerful solution is PowerBI Desktop (no paper available, visit here), a free scal-
able platform, able to communicate with MongoDB, precisely designed for data
and analytics reporting and visualization stuff.
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