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Summary

Cancer detection is one of the leading research topics in medical science. Whether
it is breast, lung, brain, or prostate cancer, progress is being made to improve the
accuracy and timing of detection. Prostate cancer is the second most common
cancer in men and the sixth leading cause of cancer death among men in the world.
Many prostate cancers are indolent and do not result in cancer mortality, even
without treatment. However, a significant percentage of prostate cancer patients
have aggressive cancers that rapidly progress to metastatic disease and are often
dangerous. The current diagnostic pathway is based on serum Prostate-Specific
Antigen (PSA) levels. Although PSA screening reduces the spread and death from
cancer, it overdiagnoses some low-risk cancers that may not have caused damage,
leading to unnecessary invasive examinations, such as biopsies.
Several methods have been proposed in the past, such as studying the evolution
of prostate antigen over time using different velocity formulas, which have often
led to inconsistent results. Furthermore, the available datasets were small as they
contained at most a few thousand patients.
In this thesis, some Deep Learning methods have been applied to time series to
predict prostate cancer risk. The main objectives are early diagnosis and reduction
of the number of unnecessary biopsies. The dataset I worked on is unique because
it contains information on more than one million patients who underwent PSA
testing in Norwegian clinics. Several approaches were proposed to deal with the
irregularity of the time series, one of the most recurrent problems in clinical data.
The first technique was based on regularizing the time series, while the second
added new features, such as the time distance between visits. The results were
compared using different metrics such as Specificity, Sensitivity and F1score and
finally, the best model was selected. The performance obtained suggests that the
proposed methods are promising and can be a helpful tool to support clinical
decision-making.
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Chapter 1

Introduction

1.1 Motivation
The prostate is a part of the male reproductive system. It is located on the pelvic
floor and surrounds the bladder’s neck and the urethra as shown in Figure 1.1. The
prostate gland’s main function is to store part of the seminal fluid and facilitate
ejaculation during sexual activity [1]. One of the main constituents of prostate
secretion is prostate-specific antigen (PSA), together with citrate (18.7 mg/ml),
zinc (488 µg/ml), spermine (243 mg/ml) and cholesterol (78 mg/ml). PSA is a
glycoprotein produced by the acinar cells of the prostate and it is specific for the
prostate gland. The function of PSA is to dissolve the seminal clot after ejaculation
to facilitate the transport of spermatozoa along the female reproductive tract [1].

Figure 1.1: Inferior view of the structures in the male reproductive system [2].

Prostate cancer is one of the most frequent cancers in the world, with approxi-
mately 1.414.000 new cases and 375.304 deaths in 2020. The risk of the disease
varies depending on several factors such as race, family medical records and diet [3].
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However, the family medical record is still very important because if a relative has
prostate cancer, it doubles his future chances of being affected. Prostate cancer
incidence increases with age, and the median age of prostate cancer diagnosis in
Norway is 74 years. Many men die with prostate cancer, and not from prostate
cancer.
Prostate cancers are usually located in the back-part of the prostate, often slow-
growing and symptoms may not appear for many years [1]. Compression of the
urethra may appear, but frequently the tumor has reached an advanced stage
before any symptoms. End-stage prostate cancer is often characterized by tumor
spreading to bone marrow or other organs, resulting in pain and a reduced quality
of life.
Although prostate cancer is responsible for many deaths every year, it does not
have a high mortality rate, especially if it is detected early [4]. Therefore, early
detection could reduce cancer mortality and ensure less complicated treatment. In
contrast, cancers diagnosed at an advanced stage significantly impact quality of
life and treatment costs are very high [1]. In addition, about one-third of prostate
cancers are estimated to grow aggressively and benefit from early diagnosis. On
the other hand, the others grow more slowly and, in many cases, do not affect a
man’s life [3].
Prostate cancer diagnostics is usually performed by the general practitioner as
a combination of a digital rectal examination and a PSA measurement [5]. It
may be part of a screening program, or outside a screening program and/or as
a part of a visit for other conditions (sometimes named opportunistic screening).
Results are usually reported as nanograms of PSA per milliliter (ng/mL) of blood
plasma. The blood level of PSA is elevated in people with prostate cancer, but
it does not necessarily mean that a man has the disease [3]. Therefore, it does
not guarantee the presence of cancer, as even benign prostate enlargement can be
responsible for an increased PSA [5]. The second screening technique is digital rectal
exploration (DRE), which consists of inserting a finger into the rectum to directly
sense abnormalities in the prostate [6]. A good screening test should be sensitive,
safe, inexpensive, and used for diseases where early diagnosis improves prognosis.
However, these tests are controversial among the scientific community; for example,
PSA has a high sensitivity but poorly discriminates between low and high-risk
tumors, and thus overdiagnosis and overtreatment. DRE has a low sensitivity, and
depends on the experience of the investigator. Currently, a percentage of men are
at risk of developing infections, such as loss of sexual function and blood in the
urine [3].
Since screening is not accurate enough, these methods are often used as a procedure
to decide whether or not to perform a biopsy. High PSA values require a biopsy,
which consists of directly taking prostate samples with a needle. The process
carries certain risks for the patient due to the procedure’s invasiveness, such as
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urosepsis [3]. Therefore, since the mid-1980s, biopsies have been taken using a
radiological guidance such as ultrasound or MRI, to minimize side effects, and
increase the chance of the needle hitting the tumor. However, they cannot correctly
detect prostate cancer because they have poor resolution compared to biopsies.
It is therefore essential to have additional strategies, such as further testing after
screening and risk stratification, to determine whether it may be helpful to continue
screening at an older age [7]. For example, Heijnsdijk et al. [8] demonstrated that
stopping screening for men at the age of 60 with a PSA level < 1ng/ml significantly
reduce the amount of screening compared to continuing to offer the test to all men
with a similar number of detected prostate diseases.

1.2 Problem definition
These concerns have accentuated the need for doctors to rely on data experts
and machine-learning algorithms. Indeed, the acceleration of Big Data and the
exponential growth of computer power has changed the nature of medical care.
Thus, there is a growing development of the application of ML in the medical sector,
which can gather information from numerous sources and aid the decision-making
process of highly skilled professionals [9]. Figure 1.2 shows in detail the process
of interaction between data, machine learning and clinical decision-making. A
machine learning model can thus learn the patterns of health trajectories of a large
number of patients. This tool can help clinicians predict future events by drawing
on information that goes far beyond the practical experience of the individual
doctor [10]. However, the algorithm cannot replace the medical practitioner, but
provides useful suggestions in scenarios where high-risk misdiagnoses are common
(e.g. childbirth) or when doctors are uncertain. Early research on prostate cancer
diagnosis involved statistical approaches, such as establishing formulas for PSA
velocity [11]. However, statistics deals with simpler things and it would not be easy
to make predictions when the context is more complex. The implementation of
ML can therefore help to predict things more accurately and achieve better results.
Some of these tasks have led to challenges and competitions to motivate research
on these topics [10].

1.3 Contribution
In this context, the thesis is developed to reduce overtreatment and provide early
diagnosis for high-risk patients using Deep Learning techniques. In the past, re-
searchers have been unable to obtain satisfactory and reliable mathematical or
machine-learning models because (1) the existing datasets were too small, from
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Figure 1.2: A schematic representation of a deep-learning healthcare system is
shown [10].

hundreds to thousands of patients, and (2) they tried to extract velocity functions
in a ’handcrafted’ way that led to very inconsistent results.
In this thesis, the main task is classifying irregular time series for prostate cancer
risk prediction. This constitutes a fundamental challenge for classical machine
learning models mainly due to non-uniform intervals between observations.

Thus, the main contributions are:

• The f-function: the use of deep learning algorithms allows the automatic
approximation of the best function representing the evolution of the PSA.
This makes it possible to overcome the limitations of velocity formulas defined
in the past.

• Handling data irregularity: irregular data are pervasive in clinical time
series, where the time intervals between visits vary, leading to difficulties in
modeling the entire time series. However, these irregular intervals may contain
valuable hidden information. For example, short time intervals may imply
more frequent examinations, indicating a worsening patient’s condition. Deep
learning can capture this effect; thus, two different approaches have been
proposed. The first is the regularization of time series, while the second is the
introduction of new features, such as delta time δT between two visits.

• The unique PSA dataset: the Norwegian health system has provided a
real-world dataset containing information on more than one million men. ML
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models can therefore obtain more promising results than in the past because
the algorithm has a larger sample of patients.

• Scalable algorithm: neural networks are highly performing, but training
times are often high because the number of hyper-parameters to be defined is
large. Therefore, we compared the performance of Rocket, a simple and scalable
model [12], with that of deep learning models. The significant advantage is
that Rocket can obtain a prediction in just a few minutes.

In conclusion, this work is structured as follows: Chapter 2 explores the theory
of time series and deep learning algorithms, while Chapter 3 analyses in detail
the state-of-the-art of time series irregularity and classification. The dataset and
related statistics are further explored in Chapter 4. Three approaches for cancer
risk prediction are proposed and discussed in detail in Chapter 5. The parameters
of the experiments, the libraries, and the development environment are described in
Chapter 6. Finally, the results obtained and future work are discussed in Chapters
7 and 8.

5



Chapter 2

Background theory

2.1 Time series classification
The time series classification (TSC) problem has been studied in many real-world
applications ranging from electronic health records [13] and human activity recog-
nition [14] to acoustic scene classification [15] and cyber-security [16]. This section
introduces the necessary background for this type of problem.

2.1.1 Definitions
Before presenting the different types of neural networks, we go through some formal
definitions for TSC.

Definition 1. (TS) A time series X is a series of time-ordered values, X =
[x(1), x(2), ...., x(T )], where xt ∈ Rd, T is the length of time series and d is the
dimension of the feature vector that describes each point [17].
Definition 2. (UTS) A univariate time series X = [x1, x2, ...., xT ] is an ordered
set of real values. The length of X is equal to the number of T values [17].
Definition 3. (MTS) A M-dimensional time series, X = [X1, X2, ..., XM ] consists
of M different univariate time series with X i ∈ RT [17].
Definition 4. (TSC) A dataset D = {(X1, Y1), (X2, Y2), ..., (XN , YN)} is a collec-
tion of pairs (Xi, Yi) where Xi could be a univariate or multivariate time series
with Yi as its corresponding label [17].

2.1.2 Deep learning models
A neural network is a graph of computing units, called neurons, structured in layers.
Each neuron receives signals from other neurons and outputs a single value [18]. In
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general, a neuron applies a nonlinearity function on a linear combination of input
values, and the output of a specific neuron can be defined as:

output = f(ωτ x + b) (2.1)

where x = (x1, x2, ...., xd) is the d-dimensional input vector of the neuron, ω =
(ω1, ω2, ...., ωd) the neuron weights, b the bias, (∗)τ the transpose operation, and f
the non linear activation function. The number of neurons and the number of layers
could be considered hyperparameters. By combining neurons with non-linearities,
the neural networks have a great capacity to form complex functions and their
architecture depends on how the combination is made. Note that the vector of
weights in equation 2.1 must be learned automatically through an optimisation
algorithm that minimises a cost function [19]. The cost function computes the
distance between the current and expected output using the weights. The usual loss
function is the multiclass categorical cross entropy (CCE), defined in the following
equation:

L(X) = −
KØ

i=1
yi log (ŷi) (2.2)

where L represents the cost when classifying the input time series X and ŷi the
probability of the input having the class y equal to class i out of K classes [19].
Thus, the average loss of the entire dataset is defined as follows:

J =
qN

j=1 L(Xj)
N

(2.3)

where N represents the number of samples.
The loss function is then minimized to learn the weights in W (it denotes the set of
weights to be learned by the network) using a gradient descent method which is
defined as:

ω = ω − α
∂J

∂ω
|∀ω ∈ Ω (2.4)

where α is the learning rate of the optimization algorithm [17].

Although there exist many types of DNNs, in this section, we focus on three
main neural network architectures used for the TSC task: multilayer perceptron,
convolutional neural networks, and recurrent neural networks. These architectures
were chosen because they are adopted for deep learning models for the classification
of time series.
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Multilayer perceptron

A multilayer perceptron (MLP) is one of the most traditional architectures for
deep learning models. It consists of at least three layers (an input, an output
layer, and one or more hidden layers) of nonlinearly-activating nodes. Since MLPs
are fully connected, each node in one layer connects with a certain weight ωij to
every node in the following layer [20]. In addition, most deep learning approaches
employ a softmax layer corresponding to a FC layer with softmax as an activation
function and a number of neurons equal to the number of classes in the dataset.
The softmax function calculates the probability that the input time series belongs
to the class j:

fi(x⃗) = exiqJ
j=1 exj

i = 1, ..., J (2.5)

where all the xi values are the elements of the input vector and J represents the
number of classes.
In recent years, researchers have decided to use these neural networks for the
analysis of time series as shown in Figure 2.1. However, the MLP is unsuitable
for time series data because it has no spatial invariance: each date and time has
its weight, and temporal information is lost [17]. Another obstacle of the MLP is
that the length of the first layer of the network is fixed, so it is unsuitable for time
series with inputs of different lengths.

Figure 2.1: Multilayer perceptron for time series classification [17].

Convolutional Neural Networks

MLPs with too many layers can become impractical to train. By contrast, convo-
lutional neural networks (CNN) can successfully capture an image’s spatial and
temporal dependencies by applying relevant filters [21]: they reduce the number of
parameters to be learnt by using fewer connections of the hidden layer [22].
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They can have five types of layers, which are:

• The input layer: it is the input of the entire CNN. For example, in an
image-processing neural network, the pixel matrix represents the input.

• The convolutional layer: it contains a set of filters (or kernels) where the
size of each filter is usually smaller than the image. Each filter convolves with
the image through the convolution operation: it is a linear calculation of the
scalar product between the weights and the region connected to the input
volume. As the filter is applied multiple times to the input array, the result is
a two-dimensional array of output values representing filtering of the input,
called feature map [23].

• The nonlinearity activation layer: each value of the feature map passes
through a nonlinearity function.

• The pooling layer: it simply performs downsampling along the spatial di-
mensionality of the given input, further summarizing the number of parameters
detected in the input [23].

• The fully-connected layer: it produces class scores after the activation
function.

In general, CNN outperforms other neural networks in various applications, such
as image recognition problems [24], natural language processing [25], or the input
of audio signals [26]. Researchers have also started to use them for time series
analysis in recent years, motivated by the success of these architectures [17].

Figure 2.2: Fully Convolutional Neural Network architecture [17].

The convolution operation explained above is used slightly differently in time
series tasks as shown in Figure 2.2: instead of extracting spatial information,
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one-dimensional convolution is applied to learn patterns within the time window
[17]. The result of a filter on a univariate time series X is another univariate
time series; whereas applying several filters to the same time series X results in a
multivariate time series whose size is equal to the number of filters used.

It is essential to clarify that the convolutional layer applied to a multivariate
time series no longer has only one dimension (time) but also another equal to the
number of input features. In addition, local pooling can be applied to reduce the
time series length, e.g., the global pooling operation aggregates the time series over
the entire time dimension resulting in a single value. The final layer could be fully
connected, but it can also be replaced by global mean pooling, which allows the
Class Activation Map (CAM) to be used to explain model decisions [27]. In other
words, CAM makes it possible to highlight which parts of the time series input time
series that contributed most to class prediction, producing ’visual explanations’ of
how a CNN model based its classification as shown in Figure 2.3 [17].

Figure 2.3: Left: CAM on class 1, right: CAM on class 2. The trends in each
graph show the results of each CAM time series. The color indicates the time
segment’s contribution to the class (if predicted as class 1 or 2) [17].

Recurrent Neural Networks

Recurrent neural networks (RNNs) model sequential data of varying lengths, achiev-
ing state-of-the-art results for time series and data problems involving sequences
such as natural language processing [28], image captioning [29] and handwriting
recognition [30].
The RNN is a neural network that repeats itself over time because it maintains
information about past knowledge using a particular type of ring architecture.
These ring networks are called recurrent because they perform the same operations
and calculations for each element of an input data sequence as shown in Figure
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2.4. In addition, RNNs have the concept of ’memory’ that helps them store the
states or information of previous inputs to generate the next sequence output,
thus capturing longer dependencies [31]. Some sequence models, such as Markov
models, conditional random fields, and Kalman filters, can also handle sequential
data but cannot learn long-range dependencies. In contrast, neural networks learn
representations and can automatically discover unexpected structures.

Figure 2.4: (Left) A typical Recurrent Neural Network and (Right) an RNN
unfolded in time [31].

Like feedforward and convolutional neural networks, recurrent neural networks
use training data to learn. However, many experiments have shown that gradient-
based learning algorithms encounter difficulties when training RNNs: the gradient
of some of the weights becomes too small or too large if the network is deployed
for too many time steps [32]. This is the vanishing gradient problem: long-term
dependencies in long input sequences lead to gradients disappearing or exploding.
Many approaches have been proposed to solve this problem, such as lossy units,
non-linear autoregressive models with eXogenous (NARX), and short-term memory
(LSTM). However, LSTM has proven to be the most effective for handling long
sequences [33].

LSTM Layer

An LSTM functions similarly to an RNN: it processes data by transmitting informa-
tion as it propagates forward. The difference between these two neural networks is
the operations within the cell [34]. These operations allow the LSTM to learn what
is to be remembered, what is to be forgotten, and what is to be used immediately.
The presence of four fundamental components enables this functionality [35]:

• Forget gate: the forgetting gate decides which information is to be thrown
away or kept. Information from the current input X(t) and the hidden state
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h(t − 1) passes through the sigmoid function as shown in Figure 2.5. The
sigmoid generates values between 0 and 1; the closer to 0 means forget, and
the closer to 1 means keep. The cell will later use this value of f(t) for
point-by-point multiplication [36].

Figure 2.5: Forget gate [37].

• Input gate: the current state X(t) and the previously hidden state h(t − 1)
are passed into the second sigmoid function. That decides which values
will be updated by transforming the values between 0 (unimportant) and 1
(important). Then the hidden state and current input pass into the tanh
function as shown in Figure 2.6. To adjust the network, the tanh operator
generates a vector (C (t)) with all possible values between -1 and 1. The output
values generated by the activation functions are then used for point-by-point
multiplication.

Figure 2.6: Input gate [37].
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• Cell state: now the network has sufficient information from the forgetting
and input gates. The next step is to decide and store the new state information
in the cell state as shown in Figure 2.7. First, the cell state C(t − 1) gets
pointwise multiplied by the forget vector f(t): it has a possibility of dropping
values in the cell state if it gets multiplied by values close to 0. Next, the
network takes the output value of the input vector i(t) and performs a point-
by-point addition, which updates the cell state with the new values considered
important by the neural network. That gives us the new cell state C(t).

Figure 2.7: Cell state [37].

• Output gate: the output gate decides the next hidden state; this state
contains information about the previous inputs. First, the values of the
current state and the previous hidden state are passed into a sigmoid function.
Then, the modified cell state passes into the tanh function. Finally, both
outputs are multiplied point by point. The network decides which information
the hidden state should contain based on the final value. The new cell state
and the new hidden are then carried over to the next step as shown in Figure
2.8.

GRU Layer

GRU is the new generation of RNNs that implement a gating mechanism: the
main differences between them are a smaller number of parameters and the lack
of cell status [38]. Unlike LSTM, GRU has only two gates, an update gate and a
reset gate. The first gate decides which information to throw away and which to
add, and the second gate decides how much past information is to be forgotten.
Training should be faster because there are fewer tensor operations. Generally,
GRUs should work better with shorter sequences, whereas LSTMs with longer
sequences due to the presence of the cell state.
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Figure 2.8: Output gate [37].

Bidirectional Layer

Unlike the standard LSTM, BiLSTM adds an LSTM layer that allows the input
to flow in both directions, thus utilizing information from both sides as shown in
Figure 2.9. In other words, this bidirectional architecture aims to divide neurons
into two groups, one communicating positively and the other negatively [39]; it can
produce a more meaningful output by combining LSTM layers from both directions.

Figure 2.9: BiLSTM cells: the output layer receives information from past and
future states simultaneously [40].
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Chapter 3

State of the art

3.1 Irregular time series
Despite the obvious evolution of time series modelling from simple linear models
to deep learning networks, most of these models are only concerned with regular
time series data. Due to the many types of sensing devices or recording practices
that generate the data, it is rare for raw data to be provided with all input
variables sampled with constant timestamps [41]. Irregularly sampled time series
are characterised by non-uniform time intervals between successive measurements
and they are often characterised by sparsity, i.e. the percentage of missing data from
a dataset. In time series there is a large difference between the degree of irregularity
of data belonging to different domains. For example, data collected from intensive
care units (ICUs) can often contain 80% missing data in the multivariate feature
space [41].
Such data are present in many scientific and industrial domains and they are also
an important feature of certain types of data in healthcare. For example, in clinical
data, the health status of an individual patient can only be recorded at irregular
intervals: vital signs and other measurements are recorded irregularly because they
depend on the health status of the patient and the availability of clinical staff [42].
Irregular data and missing values strongly influence and limit the ability to analyse
and model data for classification and prediction tasks. Often standard methods
used to handle time series data introduce distortions and make strong assumptions
about the underlying data generation process, which can lead to low-performing
model predictions. Nowadays, irregularly sampled time series data represent a key
challenge for leading machine learning models. The main challenges in modelling
such data are [43]:

• Irregular intervals: the distance between two-time points varies by days,
months, or years.
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• The different number of observations: the total number of observations
between dimensions can be different: for example, given two variables, A and
B, there may be 3 measurements for variable A and 10 for variable B.

• Lack of alignment: multiple dimensions of a multivariate time series may
be observed across different time points. The collection of observation times
between dimensions may also differ for different data cases.

Thus, these features of irregularly sampled time series invalidate the assumption
of a coherent fixed-dimensional feature space; most supervised and unsupervised
learning models, including support vector machines, K nearest neighbors, logistic
regression and others are based on this assumption [43]. It is therefore evident that
classical machine learning methods are compromised by these characteristics and
fail to model temporal irregularity.
However, in the last decade, clear progress has been made in developing models
capable of handling irregular time series; they can produce predictive models close
to those handling regular data. These methods belong into several categories,
including approaches based on temporal discretization, similarity, interpolation,
attention, recurrence, and structural invariance, as shown in Figure 3.1 [43]. Some
of them can be applied to multiple tasks, while others cannot: it is therefore
essential to understand to which type of problems a given approach can be applied.
For simplicity, the mentioned approaches can be grouped into two macro areas [41]:

• The use of imputation strategies to produce a resulting time series without
missing values.

• The development of a predictive model capable of handling irregular time
series with minimal data preprocessing.

3.1.1 Imputation and data generation models

Many approaches have focused on a discretization and data generation phase to
construct a regular time series. This method allows the series to be included in
any regression or classification task.
Time discretization is the first step used to convert irregularly sampled time series
data into regular time series, as shown in Figure 3.2.
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Figure 3.1: The figure illustrates a taxonomy of methods based on the five high-level
modeling primitives including discretization, interpolation, recurrence, attention
and structural invariance [43].

Figure 3.2: The figure illustrates the discretization approach [43].
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The period represents the discretization window, and then time is discretized
into fixed intervals. The value of a variable for each interval is the average of
all measurements taken during the chosen interval. This is a standard procedure
for dimensionality reduction, described as Piecewise Aggregate Approximation
(PAA) by Keogh et al. [44]. The discretization method solves the three challenges
mentioned above using fixed intervals, the same number of observations, and
alignment between the different features. However, discretization introduces two
further challenges: firstly, if the time series becomes too short due to a large
discretization window, some essential information may be lost; thus, the sampling
period is a hyperparameter chosen carefully [11]. Moreover, now regularly sampled
time series may contain missing data: several recent approaches have addressed
this problem using probabilistic models and imputation.

Probabilistic models

The probabilistic model is a possible approach to deal with missing values, particu-
larly to mitigate the effects of temporal sparsity in electronic medical record data.
Marlin et al. hypothesise that the missing data obtained after discretization are
missing at random and apply probabilistic models to deal with missing data due to
this assumption [45]. However, this condition is not a real property of the data
but helps define the models that can be used. It is therefore essential to clarify
that these values are usually not missing at random but reflect decisions made
by clinicians: for example, if a doctor prescribes visits with a high frequency, he
might suspect a disease. Given this condition, well-known clustering methods,
such as K-means and hierarchical clustering, cannot be chosen because distance
metrics cannot handle missing measures in data vectors. In contrast, probabilistic
clustering models, also called Mixture Models, can efficiently handle missing data
under certain conditions. These models use an empirical prior to mitigate the
inherent sparsity of physiological data extracted from real data. The prior is
constructed using a similarity kernel that encourages the average parameters of
each cluster to be smooth with respect to time.
Researchers have shown that clusters can discover distinct physiological patterns
with prognostic meaning [45].

Imputation

The basic imputation approaches are forward-filling and zero imputation. Missing
values are replaced with zeros in the zero-imputation strategy as shown in Figure
3.3 - Top Left. By contrast, in the forward-filling strategy, xt

i is imputed as follows
(Figure 3.3 - Bottom Left):

• xt
i := xt

i

′ if there is a previously recorded measure of the variable i at a time
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t
′ < t.

• The median over all measurements in the dataset is calculated if no previously
recorded measurement exists.

The RNN should learn to distinguish between imputed and real values. For
example, the RNN could learn to recognize exact repeats with forward-filling. For
the zero-filling technique, the RNN should understand that zero values correspond
to missing values.
Lipton et al. apply the imputation strategies by adding a missing data indicator:
this method consists of augmenting the inputs with binary variables, as shown in
Figure 3.3 (Right). They include as input both the observed and imputed values of
the time series and the values of the response indicator vector [46]. Recurrent neural
networks should learn arbitrary functions of past observations and missing patterns
using these indicators. However, given the same data, linear models can only learn
strict substitution rules. For this reason, Lipton et al. add hand-engineered features
derived from the indicator vector, such as the mean and the standard deviation of
the indicator variables [46].

Figure 3.3: (top left) zero-filling and no indicators, (bottom left) forward-filling
and no indicators, (top right) indicators and zero-filling, (bottom right) indicators
and forward-filling. Time flows from left to right [46].

Shukla and Marlin proposed an alternative framework called Interpolation-
Prediction Network (IPNet) [47]. The network is based on the use of several
semi-parametric interpolation layers to produce multiple interpolants given as input
to an irregularly sampled multivariate time series, as shown in Figure 3.4. The
first layer of the network takes as input the dimensions of the time series and
transforms them separately, creating several intermediate interpolants. The second
interpolation layer merges the information on all dimensions at each time point,
considering the correlations learned on the dimensions. Finally, the prediction
network takes the output of the interpolation network as input and produces
a prediction [47]. Any standard neural network, such as GRU, can be used in
the prediction network and this approach can be applied to both regression and
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classification problems. The parameters of the interpolation and prediction networks
are learnt through an objective function consisting of supervised and unsupervised
components.

Figure 3.4: The figure illustrates the Interpolation-Prediction Network [47].

3.2 Classification for time series
The classification of time series (TSC) is an important task and has attracted great
interest due to the large amount of data, from meteorological data, financial data,
physiological signals to industrial observations. However, this is a challenging task
due to the nature of the data: high dimensionality, large data size, and continuous
updating [48].

3.2.1 Time series transformations approaches
One of the most traditional TSC approaches is the k-nearest neighbors classifier
coupled with the dynamic time warping (DTW), that measures the similarity
between two-time sequences [49]. On the other hand, some approaches rely on
feature extraction to generate local or global patterns from time series. These
methods transform the starting time series into a composition of transformed
time series and then apply a conventional classification algorithm. It is important
to note that the series can be transformed into other series, such as the Fourier
transform, or into primitive values (mean, standard deviation, and more). However,
the performance of these algorithms is highly dependent on the type of features, as
the feature extraction mechanism is varied and complex. For example, TSBF is a
framework that classifies time series based on a bag-of-features representation [50].
Sub-sequences of different lengths are randomly selected from the time series and
then divided into shorter intervals to capture patterns. The extracted patterns are
inserted into a feature vector, and each time series represents a bag. The vectors
are then used as input to train a random forest classifier. On the other hand,
BOSS is a dictionary-based classifier: a sliding window is applied to the series by
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transforming the numerical series relative to that window into a word [51]. The
classification is then based on the distribution of the extracted words.
Ensemble-based approaches instead combine several classifiers to achieve greater
accuracy; the most common are Shapelet [52] and COTE [53]. For example, COTE
combines 35 different classifiers into ensemble structures. HIVE-COTE has instead
outperformed COTE using a new hierarchical structure with probabilistic voting
[54]; this model includes two additional ensemble classifiers built into existing feature
spaces and additional modules to represent two new transformation domains. To
reach its accuracy, the model becomes computationally intensive and impractical
to run on a large dataset; in some cases, the approach is unfeasible to train
because it requires the training of 37 classifiers and the cross-validation of each
hyperparameter.

3.2.2 Deep learning approaches
After describing the current state of the art of nondeep models, we examine
the success of some deep learning approaches that have been adopted to solve
classification tasks. Different approaches can be defined, but generally they can
be divided into two subgroups: (1) deep learning models with feature engineering
and (2) end-to-end deep learning models [17]. One of the most common feature
extraction technique is inspired by computer vision problems: the transformation
of time series into images [55]. However, unlike feature engineering, end-to-end
learning aims to incorporate the feature learning approach while fine-tuning the
classifier.
For instance, Zhicheng Cui adopted Multi-Scale Convolutional Neural Networks
(MCNN) to classify univariate time series [56]. This approach led to state-of-the-art
results, but the data preprocessing (e.g., downsampling and skip sampling) and
the large number of selected hyperparameters make the model poorly scalable.
Instead, Wang and his team tried to solve the problem of preprocessing and feature
engineering by using directly the raw data [48]. The performance analyzed by the
team using MLP, CNN, and ResNet have similar or better results than MCNN and
COTE. Furthermore, the average pooling in the convolutional model allows the
use of the class activation map (CAM) to identify the region that contributes most
to the prediction. ResNet, on the other hand, is a state-of-the-art deep-structure
neural network because each residual block has a shortcut connection that allows
the gradient flow to pass directly through the hidden layers. Instead, Zhao et al.
proposed a novel network, Time-CNN, for univariate and multivariate time series
[57]. This is a CNN with a few differences: the use of the mean square error (MSE)
instead of the standard cross-entropy categorical loss function, the use of a local
average pooling operation instead of the local maximum, and the final layer is a
FC layer with a sigmoid activation function; therefore, for Time-CNN, the sum of
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the probabilities of the output classes is not guaranteed to be equal to one. They
showed that this model has comparable classification performance to the networks
described above.
In general, several new models have been developed in recent years, such as Time
Le-Net [58], Multi Channel Deep Convolutional Neural Network (MCDCNN) [59],
and Time Warping Invariant Echo State Network (TWIESN) [60]; the performance
of all these networks has been compared using the UCR Time Series Archive as
shown in Figure 3.5.

Figure 3.5: The diagram shows the statistical comparison of nine classifiers on
the UCR/UEA univariate time series classification archive [17].

One of the possible limitations of neural networks is the risk of overfitting because
it uses a large number of parameters; however, many generalization techniques,
such as dropout, batch normalization, data augmentation and average pooling can
significantly reduce the number of parameters [48]. Therefore, it is reasonable to
conclude that deep learning models can perform well in time series classification
tasks.

3.2.3 More scalable methods
The models mentioned above are often characterized by high computational com-
plexity and therefore require significant training time despite the use of the GPU.
Therefore, researchers have developed more scalable methods such as Proximity
Forest [61], TS-CHIEF [62], and InceptionTime [63].
The success of convolutional neural networks in time series, such as ResNet and
InceptionTime, demonstrates that convolutional kernels are a powerful tool to
capture basic patterns or shapes. Additionally, the combination of multiple kernels
can capture more complex patterns. The feature maps produced by convolution
reflect the measure to which the pattern represented by the kernel is present in the
time series. Dempster et al. developed a new algorithm, ROCKET (for RandOm
Convolutional KErnel Transform), which achieves state-of-the-art performance
[12]. Rocket uses convolutional kernels to transform time series and the obtained
features represent the input for a linear classifier. In other words, the algorithm
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transforms time series using a large number of random convolutional kernels, i.e.
kernels with random dilation, length, bias, weights and padding. The obtained
features are then used as input to train a linear classifier (Ridge Regression or
Logistic Regression classifier). The four main elements that distinguish Rocket
from classical Convolutional Networks are:

• Rocket uses many kernels because there is only a single "layer" of kernels, and
kernel weights do not have to be learned. Hence, the computational cost of
computing convolutions is low.

• Each kernel has length, padding, dilation, bias, and random weights.

• Rocket extracts two real values from each feature map: the maximum value
(equivalent to the global maximum pooling) and the proportion of positive
values.

• The only hyperparameter is the kernel number, k. The k value should be a
trade-off between classification accuracy and computational time. However,
even with an extremely large number of kernels (default 10,000), Rocket is
fast.

To summarize, each kernel is applied to each input time series, producing a feature
map. For example, if k = 10,000 kernels, Rocket produces 20,000 features for each
time series.
The Figure 3.6 shows the Accuracy and the Time vs Dataset Size for Rocket,
Proximity Forest, and TS-CHIEF. With 10,000 kernels, Rocket achieves similar
classification accuracy as the other two algorithms. However, with 100 kernels,
Rocket takes less than a minute to learn from more than 1 million time series while
having lower accuracy. In addition, Rocket is an order of magnitude faster than
Proximity Forest, even with a considerable number of kernels, 10,000.

Figure 3.6: (Left) Accuracy and (Right) Training Time versus Training Dataset
Size [12].
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In conclusion, ROCKET is able to achieve approximately the same level of
accuracy in a fraction of the time as competing SOTA algorithms.

3.3 Application on PSA
Since prostate cancer is a slowly evolving process, attention should be paid to
the evolution of the PSA level over time rather than its absolute value [11]. The
variation of PSA over time is represented by the concepts of PSA velocity and PSA
doubling time, which are taken together as PSA kinetics. PSA velocity is expressed
in ng/ml/year and can be considered a prediction: for example, a patient with a
PSA of 2 ng/ml and a PSA velocity of 1.0 ng/ml/year should have a PSA of 3.0
ng/ml after one year. Instead, the PSA doubling time is the number of months it
takes for the PSA to increase by a factor of two [11].

3.3.1 PSA velocity techniques
It is not uncommon for researchers to look at 5 or 10 distinct PSA kinetics criteria
in a research study [64] [65]. For example, in [66] the authors found no fewer than
22 alternative PSA velocity and doubling time definitions. The method frequently
employed in clinical practice simply subtracts the initial value from the final value
ignoring the middle values, then divides by time. Consider for example two patients
with annual PSA values of 1, 1.9, 2.0, and 2.1 vs. 1, 1.3, 1.7, and 2.1. This would
result in a PSA velocity for both patients of 0.37 ng/ml/year, which does not appear
to represent their divergent PSA histories. A good alternative would be to conduct
a line of best fit, also known as Ordinary Least Squares Regression. As a result, the
PSA velocities for the above example are 0.34 and 0.37 ng/ml/year, which seems
to reflect a clinical intuition that the second man is more likely to have a higher
PSA value in a year. However, remember that a regression requires a demanding
mathematical calculation, making it difficult to perform in daily practice.
It should be clear that it is possible to create a variety of definitions of PSA kinetics,
each with a different method of calculation and eligible PSAs (how many, over
what period of time, with what minimum period of time between measurements)
[11]. It would seem useful to have a criterion for the period of time over which
PSA is measured, excluding PSA measures taken many years ago. One possibility
is that PSAs measured closely together create statistical "noise", and as a result,
a specific minimum interval between PSA measurements is necessary. Consider a
patient with just two PSA values—1.8 and 2.1—taken six months apart. Claiming
the patient’s PSA velocity is 0.6 ng/ml/year could be illogical. Therefore, another
essential condition might be that at least three PSAs are required over a minimum
total length of time.
Over the last decade, several ’hand-crafted’ methods have been developed taking
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these parameters into account: for example, the MSKCC approach calculates a
regression slope including all PSA values; the Thompson definition log transforms
PSA before calculating the slope and it only includes PSAs within 3 years [67];
the Sengupta method is based on raw PSAs within 2 years, but also specifies that
PSA measures have to be at least 3 months apart; the Smith approach applies
log transformation and involves the specification that at least three PSAs have to
be taken at least 4 months apart [66]. However, O’Brien emphasized how PSA
kinetics values can change significantly between methods: for example, one patient
has PSA velocities of 0.27, 0.76, 1.47, 2.64 and 32.0 ng/ml/year for each of five
different calculation techniques [66].
Furthermore, Vickers and Brewster show another drawback of these approaches:
PSA kinetics play no role in the diagnosis of prostate cancer in men before treatment
because the proposed techniques are better at understanding prognosis in advanced
or relapsed prostate cancer [11]. Consider for example a situation where doctors
have a PSA level of an untreated man: should they make a decision based on the
absolute PSA value or consider past PSAs and then extract a velocity? Vickers’
team determined the added value of PSA velocity using data from the Malmo
cohort. First, they found that PSA predicts the long-term risk of prostate cancer
with a concordance index of 0.771. They then created a new model that also
included PSA velocity. Although PSA velocity is a statistically significant predictor
of prostate cancer risk, it did not add anything to the predictivity of PSA; indeed,
the concordance index of the second model was identical [11].
It is therefore clear that these techniques cannot bring the doctor a unique and
satisfactory conclusion because, on the one hand, they are not effective for untreated
men and, on the other hand, the different calculation methods lead to different
results.

3.3.2 Machine learning models

To overcome the previous obstacles, constructing an adequate model using sev-
eral predictive variables is a promising approach. To this end, machine learning
techniques have been widely used in clinical medicine, especially for constructing
predictive models. Nitta and the team decided to use as input not only PSA-based
parameters but also data on continuous changes in the PSA level over the past
2 years [68]. Thus, the set of input variables includes patients’ age, PSA level
(maximum, minimum, median, mean, and level of variance), prostate volumes, and
white blood cell count in urinalysis, while the biopsy result is used for prostate
cancer prediction. It is challenging to have all this information for a large number
of people, so the final sample size is relatively small and unbalanced as shown in
the Table 3.7.
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Figure 3.7: Statistics extracted from the dataset used by Nitta [68]

According to 3.7, there are some statistics on PSA values, and it is clear that
patients with cancer have about twice as high a PSA value as healthy patients.
Three different types of supervised machine learning algorithms (artificial neural
networks, random forest, and support vector machine) were compared with the
PSA-based parameters methods: PSA level (cutoff of 4 ng/ml), PSA density (cutoff
of 0.20 ng/ml/cc) and PSA velocity (cutoff of 0.75 ng/ml/year) [68]. As shown
in Figure 3.8, machine learning models could predict a diagnosis of PCA with
significantly better AUCs than PSA density, PSA velocity and PSA level; thus,
these algorithms, despite being more complex, lead to a marked improvement in
performance.

Figure 3.8: ROC curves for prediction of prostate cancer [68]

Instead, Cosma and his team decided to use statistical models with a fea-
ture set that combines the phenotypic profile of peripheral blood with PSA lev-
els [69]. They showed the value of computational intelligence-based approaches
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for interrogating immunophenotyping datasets, improving accuracy compared to
the model using only the PSA value. They were the first to successfully devise
a combinatorial feature selection method to identify a unique phenotypic pro-
file of peripheral blood immune cells, consisting of five phenotypic features of
T and B cells [70]. The extracted features were: CD8+CD45RA-CD27-CD28-,
CD4+CD45RA-CD27-CD28-, CD4+CD45RA+CD27-CD28-, CD3-CD19+ (B cells)
and CD3+CD56+CD8+CD4+ (NKT cells). Furthermore, they showed that there
are no strong positive or negative correlations between the different features that
will be used to build an interpretable machine-learning model.
This study demonstrates that machine learning approaches based on peripheral
blood phenotyping profiles can distinguish between benign prostate disease and
prostate cancer; it can also predict the clinical risk in asymptomatic men with ele-
vated PSA levels using two biLSTMs. The LSTM model is more complex than the
techniques described by Nitta [68] because it learns long-term bidirectional depen-
dencies in the sequence data. A biLSTM model takes as input immunophenotypic
characteristics and clinical data and it is trained to detect the presence of cancer.
The second model takes as input a set of biomarkers, including immunophenotypic
features and clinical data (PSA level and age), and it is trained to predict the
clinical risk when cancer has been identified. The Figure 3.9 shows how prediction
models to detect the presence of prostate cancer and the associated clinical risk can
be used to aid clinical diagnosis, especially when dealing with high-risk cancers.

Figure 3.9: Flow chart illustrating the process to detect the presence of prostate
cancer and its clinical significance [69].

The experimental results described above found that age is a feature that provides
greater predictive accuracy when combined with immunophenotypic features than
when used alone (86.79% vs. 66% on the test set).
In conclusion, machine learning techniques overcome previous drawbacks by also
adding new features such as immunophenotypic or clinical data. As a result, they are
promising models to predict the prostate cancer risk and to reduce overdiagnosis.
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Chapter 4

Dataset and Data
Exploration

4.1 Introduction
The Norwegian Prostate Cancer Consortium (NPCC) has collected an extensive
database that includes Cancer Registry data, Population Registry records and
causes-of-death, together with PSA test results obtained from Norwegian laboratory
information systems from 1990 to 2022. We have been granted access to anonymized
data on the tsd security platform, run by the University of Oslo. The main purpose
of the NPCC is to use data records to make suggestions to improve the diagnostics
and treatment of prostate cancer.
THE DATASET. The data set has restricted access and contains approximately
8,785,147 laboratory results on 1,306,003 unique patients, of which 105317 have a
prostate cancer diagnosis.
It is a relational database and we have mainly used three tables:

• psa results: the numerical PSA value, the day of the visit and the anonymized
project patient identifier.

• cancer registry: it contains data from the Cancer Registry, complete for all men
diagnosed with prostate cancer. The features used here are the anonymized
project patient identifier, the date of diagnosis and NPCC prostate cancer
classification (risk factors).

• ss numbers: it contains information about the the anonymized project patient
identifier and date of birth (anonymized to the 15th of the month).

The Cancer Registry does only have rights to store information from subjects
having cancer, thus a positive biopsy indicating cancer is included in data, but a
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negative biopsy is not stored. Thus, men not in the cancer registry did not undergo
biopsy or had a negative outcome. There are several reasons why patients did not
undergo biopsy:

• The doctor does not consider it necessary.

• The patient is waiting for the biopsy result; therefore, the table has not yet
been updated.

• The man does not want to do a biopsy.

• Due to age and/or comorbid diseases, the risks of a biopsy outweighs the
benefits.

More generally, with over 1 million patients, patients with undetected cancer should
be a minority.

Figure 4.1 shows some examples of how the data for patients with cancer can
appear. On the x-axis, there is the time and on the vertical axis, the PSA value.
In each time series, after n visits, the outcome of the biopsy is shown (the colored
dot in each time series). Therefore, it is essential to define the degree of cancer
to understand how to treat the clinical case. The cancer grade is calculated by
statisticians using various parameters such as the Gleason score, PSA value, and
cTNM (clinical examination of cancer).

Figure 4.1: PSA evolution

The main risk categories are:
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• Low risk: the cancer grows very slowly or not at all. Therefore, a therapeutic
approach known as ’active surveillance’ can be considered as a viable alternative
to radiotherapy or surgery. In this case, the cancer is monitored regularly and
treated with radiotherapy or surgery only if it grows [71].

• Intermediate risk: it consists of a heterogeneous patient group, so it is
impossible to provide uniform treatment recommendations for men in this
group: treatment options may be active surveillance, partial gland ablation,
radical prostatectomy, and others [72].

• High risk: it is the potential to progress to a lethal phenotype that can
be fatal, in marked contrast to low-risk cancer deemed suitable for active
surveillance [73].

• Metastatic risk: in some cases, cancer cells spread to nearby lymph nodes,
often the first destination for cancer spread. Men with metastatic prostate
cancer often do not undergo treatment such as surgery or radiotherapy but
start hormone therapy [72].

• Missing risk: it was not possible to define the risk category due to the lack
of certain parameters.

In addition, all data after the biopsy were removed because it is difficult to
classify the cancer after that date: in some cases, the cancer has been treated and
therefore the risk may decrease, while in others, different decisions have been made,
but there is no updated risk category.

4.2 Data exploration
In order to be able to extract the most important features from the dataset and
subsequently create a prediction model, it is essential to have a good understanding
of the data:

• Data size: the amount of data is important in deciding which machine
learning model can be efficient.

• Types of data: it is essential to know the type of data you have because
most machine learning models receive numerical data as input, so in the case
of categorical variables (race, gender, age group, and level of education), data
preprocessing is required.

• Missing data: they are handled by evaluating the most appropriate technique
(mean, median, elimination, interpolation, and others).
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• Handling of outliers: anomalous observations that distort the distribution
of data must be dealt with by removing or changing their value.

Therefore, the data will be analyzed in statistical terms using count, mean, standard
deviation, minimum, 25th percentile, median, 75th percentile, and maximum.
Before starting an in-depth analysis, it is essential to emphasize that for each
patient with cancer, only one time series is associated with a risk category. If a
patient has undergone multiple biopsies, the outcomes of the biopsies following the
first one are not recorded. It is also important to remember that all data in cancer
patients do not consider time series points after biopsy (for the reasons explained
above). Instead, for the remaining men, the entire time series is considered.
First of all, it is interesting to understand the distribution of the time series by
risk categories because it is expected that they are pretty unbalanced. However,
as the Graph 4.2 shows, more than 50% of people with cancer fall into the high
and intermediate risk categories; this is an unexpected result as I supposed the
category with the most patients to be ’low risk.’ As the doctors pointed out, it is
also good to realize that it is essential to recognize medium and high-risk patients
because immediate action must be taken. On the other hand, low-risk patients
need to be continuously monitored, but they are not a concern for clinicians. On
the other hand, patients with metastatic risk represent a small percentage, which
is good because they are the men most at risk.

Figure 4.2: Risk categories distribution for patients with cancer.

Another interesting aspect is understanding the age distribution at the time of
the first PSA test. The health institutes recommend starting PSA testing from 50
unless there is a family history where the man is considered to be at risk. It is also
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recommended to have one test per year to monitor the PSA value, as the risk of
prostate cancer increases with age. The Graph 4.3 represents the number of patients
who underwent the PSA test for the first time divided by age group. It can be seen
that most men started undergoing the test between the ages of 50 and 60, but a
large number of patients started at a younger age. In the latter case, it is likely
that the patient had a family history of prostate cancer or had suspicious symptoms.

Figure 4.3: The age distribution at first PSA test.

Furthermore, to build a good model, it is necessary to understand the permissible
PSA values and how the distribution of values varies between patients with cancer
and patients without a biopsy or with a negative biopsy. Since the PSA value is
the first alarm bell for detecting prostate cancer, one would expect a significant
difference in PSA distributions. In fact, the two Graphs 4.4 and 4.5 show clear
differences: in patients without a biopsy or with a negative biopsy most PSA values
are below 4; there are also some very high values (>10), and in these cases, it may
be that the test result is wrong, that the patient has inflammation or that the
result is unexplained. On the other hand, the distribution is completely different in
cancer patients because most men have a PSA value between 4 and 10. This range
is the parameter taken into account by doctors in order to proceed with further
examinations. It should also be noted that the number of examinations with a
PSA < 4 is high, and this is because some cancer patients started undergoing
examinations when cancer had probably not yet manifested itself.
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Figure 4.4: PSA distribution for patients without a biopsy or with negative biopsy.

Figure 4.5: PSA distribution for patients with cancer.

Another crucial aspect is to understand the length of the time series. If each
patient underwent only one or two visits, it would be challenging to consider the
input as a time sequence. However, as the Tables 4.6 and 4.7 show, the average
length for patients without cancer is 5, while for cancer patients, it is 7. These
statistics make sense because patients diagnosed with cancer have more visits since
the doctor suspected a problem. The maximum numbers of visits are 153 and 76,
respectively; these values are excessively high, but it could mean that some men
start having PSA tests at a young age and finish at an old age.
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Figure 4.6: Time series length for patients without cancer.

Figure 4.7: Time series length for patients with cancer.

Finally, as mentioned in the previous Chapters, one of the main objectives of
this thesis is handling time series irregularity. The aim is to assess how much time
δt can elapse between two successive visits. As shown in the Tables 4.8 and 4.9,
the statistics show that δt is extremely variable. It can therefore be days or many
years. This factor cannot be overlooked because if the doctor decides to prescribe
frequent visits, it means that the clinician must constantly monitor the situation.
For cancer patients, the average frequency is about one year, while for other men,
it is almost two years; this result is consistent because if PSA values are normal, it
is unnecessary to undergo new tests too frequently.
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Figure 4.8: ∆t between visits for patients without cancer.

Figure 4.9: ∆t between visits for patients with cancer.

4.3 Type of problem
After thoroughly analyzing and understanding the data, the following considera-
tions were made.

FEATURES. The best set of features must be selected to build a good machine-
learning algorithm, and this is not always an easy task. Indeed, adding redundant
variables compromises the model’s generalization ability and final accuracy. There-
fore, the features considered most important for the study of PSA evolution are:

• AGE: age of the patient at the time of the visit.

• DATE: date when the patient did the visit.

• PSA value: numeric value of the PSA.

• RISK FACTOR: type of cancer risk.
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DATA CLEANING. As a first step, patients older than 100 years were dropped
as they are unlikely to undergo biopsy, being dangerous for elderly patients. Then
patients aged between 30 and 100 years were selected. Next, time series points
considered "duplicate" were eliminated: a doctor can prescribe two PSA visits
within a few days because the clinician is unsure of the first result. So, if two
visits were less than nine days apart in the time series, the least recent one was
eliminated. Finally, time series with a minimum number of points equal to 5 were
considered: a machine learning model needs a sufficient number of points to learn
distributions from the input data, and, based on statistics, the selected minimum
length may be a good choice.

SUPERVISED LEARNING. Supervised learning uses a set to train mod-
els to produce the expected output. The training data includes the inputs and
targets, which allow the model to learn over time. Finally, the algorithm estimates
its accuracy through the loss function, adjusting until the error has been well
minimized. Since this is the first time the dataset has been analyzed with machine
learning techniques, a binary classification problem was chosen to test whether a
model can easily identify people with cancer. Therefore, the target label 0 means
patient without a biopsy or with a negative biopsy, while 1 means patient with
cancer.

BALANCING TECHNIQUE. The dataset has an uneven distribution of
observations because about 90% of patients did not undergo a biopsy or had nega-
tive biopsy results. Therefore, one possible way to proceed is to balance the data:
there are several techniques, such as resampling (Oversampling and Undersampling).
In this case, the best method is undersampling, where rows are randomly removed
from the majority class to match the minority one. However, this technique was
applied only to the training set, while the test set must be able to represent the
actual clinical situation.

36



Chapter 5

Methods

5.1 Baseline models
As explained in Chapter 3, in the past, researchers have tried to extract velocity
formulas using the PSA value or they have tried to combine other features such
as age [68]. Currently, doctors decide whether to prescribe a biopsy based on
certain thresholds: e.g., if the patient is young (∼40 years old) and has a very
high PSA (»4 ng/ml), a biopsy is highly recommended; on the other hand, if the
patient is old and he has a high PSA, the doctor has to weigh up the risks and
benefits of the biopsy; thus, the way clinicians make a decision can be compared to
a simple decision tree model. It is, therefore, clear that machine learning can be
used to create more elaborate decision tree models by varying the parameters of
the architecture, e.g., the maximum height of the tree. Thus, the first approach
used is extracting and creating certain features and using specific machine learning
models that come close to the way doctors reason.

5.1.1 Preprocessing
As a first step, we tried to understand the performance by using only the PSA
value and the associated age as input and then adding another information: the
velocity. For the first type of input, we decided to use the penultimate value in
the time of PSA and age because the last value would have been too indicative
(it is important to remember that the values taken into account are prior to the
biopsy, if there is). Instead, for the second input, the velocity formula is extracted
using the penultimate value over time and its previous. The Figure 5.1 shows in
details a time series for a patient with cancer: age and PSA values are extracted
from time t2 and the velocity formula is calculated as follows:

velocity = PSA2 − PSA1

t2 − t1
(5.1)
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Figure 5.1: Example of time series for a patient with cancer: the yellow point at
time td represents the biopsy.

Next, we tried to understand how much the temporal distance between two
successive visits have informative power: it is essential to emphasize that in contrast
to the probabilistic model proposed by Marlin [45], missing values cannot be said to
be randomly missing. Thus, the aim is to create a model where the input consists
only of features relating to the time between two consecutive visits; the following
∆T statistics were extracted from the dataset: mean, median, mode, and quantile.
The objective is to understand whether using only temporal features as input is
sufficient to achieve a non-random prediction; in that case, it means that the time
between two visits can be used as a valid indicator of the patient’s state of health:
∆T is, therefore, a feature to be taken into account.

5.1.2 Models
As mentioned earlier, we decided to use simple models to better approximate the
medical reasoning, so the algorithms chosen are:

• Decision Tree is a supervised learning method used for classification. The
goal is to create a model that predicts the value of a target variable by learning
decision rules inferred from the dataset [74].

• Random Forest is a meta-estimator that fits certain decision trees on various
subsamples of the dataset and uses the average to improve predictive accuracy
and manage overfitting [75].

• Ada Boost is a distributed gradient boosting library designed to be efficient
and portable [76].
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It should be noted that Support Vector Machine is considered a good model for
this type of task, but the computational cost is too high, so it was decided not to
use it.

5.2 From Baselines to Deep Learning approaches
Now we want to create more sophisticated models as the results obtained in the
past were not particularly satisfactory: on the one hand, researchers did not have
sufficiently large datasets and, on the other hand, they tried to extract velocity
formulas in a ’handcrafted’ way that gave very different results. Thus, by using a
deep learning model, it is possible to automatically derive an f-function that better
approximates the evolution of PSA over time. As shown in the Figure 5.2, the
idea is to have as input a set of raw features and as output the prediction; in the
middle, there is a black box, i.e., a set of layers with a given number of neurons
that, through the data learns the best weights to derive the PSA evolution formula.
In this scenario, doctors may be more sceptical because it is hard to control what
happens inside a black box and to understand why a prediction is made.

Figure 5.2: Deep Neural Network

Since it is crucial to deal with the problem of time series irregularity, there are
two possible approaches:

• regularization of the time series.

• irregular time series with the addition of certain features.
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5.2.1 Regularized time series
Time series regularization is one of the most frequently used approaches when there
are time series with many missing values [42][47]. Therefore, it was decided to use
the techniques of zero imputation and interpolation combined with missing value
indicators proposed by Lipton [46].

Preprocessing

In the preprocessing phase, PSA values and corresponding age were extracted for
each patient as shown in the Table 5.1.

AGE 30 32 32 33 34 59 70
PSA 5 6 7 7.1 7.2 21 24

Table 5.1: Initial input: example of patient’s time series.

The input was processed according to the following steps:

• Equal length The time series are irregular both in the number of points and
in the distance between points; thus, the objective is to have time series with
the same length and a PSA value every few months/years.
In order to proceed, a common minimum and maximum point is set for all
patients: the selected patients are aged between 30 and 100 years, so the
minimum and maximum points will be 30 and 100, respectively for each man.
As shown in 5.2, the minimum age is already present while the maximum
must be added with the corresponding PSA value (it is a missing value).

AGE 30 32 32 33 34 59 70 90
PSA 5 6 7 7.1 7.2 21 24 NaN

Table 5.2: Insertion of minimum and/or maximum in the time series.

• Discretization The period represents the discretization window and then age
is discretized into fixed intervals. The value of a variable for each interval is
the average of all measurements taken during the chosen interval. For example,
the Table 5.3 shows the new input after this operation with a ten-year period.
The period is an essential hyperparameter: if the time series becomes too
short due to too large a discretization window, some essential information
may be lost; on the other hand, if the time series becomes too long, there are
too many missing values.
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AGE 30 40 50 60 70 80 90
PSA 6.5 NaN 21 NaN 24 NaN NaN

Table 5.3: The discretization technique is applied to the time series.

• Handling of missing values There are multiple possibilities for dealing
with missing values; two different techniques were chosen in this context: zero-
imputation and interpolation. Zero imputation means replacing the missing
value with 0, but in this case, zero is an admissible value, so the value -1 will
be used, as shown in the Table 5.4.

AGE 30 40 50 60 70 80 90
PSA 6.5 -1 21 -1 24 -1 -1

Table 5.4: Zero imputation is applied to the time series.

Instead, the Pandas library’s interpolate() technique allows NaN values to
be replaced by an interpolation method; in this context, the linear method
has been chosen. It is also essential to select the direction of interpolation
between ’forward,’ ’backward,’ or ’both’: in this case, ’both’ seems to be the
most appropriate in order to be able to consider both forward and backward
values as shown in the Table 5.5.

AGE 30 40 50 60 70 80 90
PSA 6.5 13.75 21 22.5 24 24 24

Table 5.5: Linear inteporpolation is applied to the time series.

• Missing value indicators Now a binary vector can be added to the resulting
input: for each point, it indicates whether the value is real or has been handled
with the missing value technique. The example 5.6 shows the PSA values with
the zero-filling technique and the corresponding binary vector where 0 means
’real ’value and 1 ’generated’ value.

PSA 6.5 -1 21 -1 24 -1 -1
VECTOR 0 1 0 1 0 1 1

Table 5.6: Missing value indicators are added to the input.

This method proposed by Lipton [46] can further help the neural network to
distinguish real from generated values.
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In conclusion, the time series regularization technique can help to handle the
problem of missing values when there are not too many values to be generated.
However, there is a non-negligible limitation: let us consider, for example, a patient
who has undergone ten examinations for two years as shown in the Table 5.7.

AGE 41 41 41 41 42 42 42 42 42 42
PSA 5 5 5 6 6 6.2 7 6.9 7 8

Table 5.7: Example of a patient who has undergone ten examinations for two
years.

Therefore, if we consider the discretization window to be ten years, after dis-
cretization, we will have only one point (corresponding to the average of the 10
points) and the remaining ones are missing. Then the series has a constant trend
after applying interpolation, as shown in the Table 5.8.

AGE 30 40 50 60 70 80 90
PSA 6.2 6.2 6.2 6.2 6.2 6.2 6.2

Table 5.8: The time series after discretization and interpolation.

This case is a limiting example, but it shows how some time series after prepro-
cessing can begin with a constant trend because the patient started to undergo
visits at a late age. On the other side, it is also possible that the time series ends
with a constant trend in the case that the man stopped undergoing visits at a
young age. So, the neural network can make false assumptions by learning from
time series with constant trends.
Therefore, four different inputs (shown in the Table 5.9) are analyzed to compare
them and see whether it is better to use the zero-filling technique rather than
interpolation and whether the missing value indicators methods can improve the
performance.

Input Type of preprocessing
Input 1 Zero-Filling
Input 2 Interpolation
Input 3 Zero-Filling + Binary Vector
Input 4 Interpolation + Binary Vector

Table 5.9: The four different types of input.
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Models

One of the most advanced models for classifying time series is the Recurrent Neural
Networks. The RNN cell adds long-term memory because it maintains the memory
of inputs; as a result, the RNNs provide good classification performance and allow
the user to efficiently assess the degree of reliability of classification results. Three
different RNN types are analyzed:

• vanilla RNN [33]

• long short-term memory (LSTM) [34]

• gated recurrent units (GRU) [77]

5.2.2 Irregular time series
In this approach, it was decided to avoid the regularization of time series and to
switch directly to the use of irregular series, but with some additional features. As
mentioned in the article [11], using the PSA value alone as input may sometimes
not be sufficient; therefore, some researchers used other characteristics such as
family history, age, ethnicity, or blood phenotypes. For example, age has been
found to be strongly correlated with PSA evolution, which is considered one of
the most important features to use with the PSA value. Moreover, doctors believe
that it is not the absolute value of PSA that needs to be assessed directly but
how it varies over time. For this reason, researchers have always tried to derive
some velocity formulas; unfortunately, they have extracted very different velocity
formulas, which have often led to inconsistent results.
In this context, we want to include information on how PSA varies over time; the
formula that best describes the evolution of PSA will be learned directly from
the neural network. This point represents a significant step forward compared to
’hand-crafted’ velocity formulas.

Preprocessing

Let us now consider the features that will be considered for this approach, starting
with an example of a time series (for simplicity’s sake, in this case, the date consists
of year and month only)

DATE 01-2000 05-2001 01-2002 12-2003
AGE 30 31 32 33
PSA 5 6 7 7.1
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The resulting input will consist of the following features:

• The PSA value

• Age

• ∆T: the difference calculated in months between the date and the previous
date.

• ∆PSA: the difference between the PSA measured at visit n and the PSA at
visit n-1.

The processed input is shown in the Table 5.10 and the first values at time t0 are
removed as they contain null fields.

time t0 t1 t2 t3
age 30 31 32 33
PSA 5 6 7 7.1
δT NaN 16 8 23

δPSA NaN 1 1 0.1

Table 5.10: The resulting input.

In addition, the doctors have defined PSA ranges with the corresponding risk
category to define the patient’s medical history as shown in the Figure 5.3.

Figure 5.3: The decision table is used directly by doctors in Norway to classify
patients with cancer.

However, it is crucial to emphasize that a higher-than-expected PSA for people
of different ages does not mean the same thing: in the case of a young person, it
is necessary to do thorough checks, whereas, in the case of an older man, it may
be expected as the PSA increases with age. So risk categories must be associated
with age categories. These types of information can be added to the initial input:
the continuous values of age and PSA are thus transformed into categorical values
as shown in the Table 5.11.
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Age range PSA range
30-40 years < 4 ng/ml
40-50 years 4-10 ng/ml
50-60 years >10 ng/ml
60-70 years -
70-80 years -
80-100 years -

Table 5.11: Categorical features.

The neural network should then have extra support in its classification task
thanks to some knowledge injection.
Therefore, four different inputs were analysed to compare them and to see whether
it is better to use categorical features or not as shown in the Figure 5.12.

Input Feature extraction
Input 1 PSA + age
Input 2 PSA + age + δt + δPSA
Input 3 Categorical(PSA, age)
Input 4 Categorical(PSA, age) + δt + δPSA

Table 5.12: The four different types of input.

Models

There are more extracted features in this approach than in the time series regulariza-
tion method. Furthermore, in the case of input with categorical age and PSA, these
are transformed using the One-Hot Encoding technique, so the input size increases
considerably. For these reasons, it is not only essential to capture the long-term
dependencies using, e.g., RNNs but also other neural networks such as MLP and
CNN can be applied. For example, CNN can capture temporal dependencies, while
MLP loses the temporal information because the input is not considered as an
ordered sequence. The other models are Rocket (explained in Chapter 3), which is
a very scalable algorithm for classifying time series, and the Multi-Kernel Learning
approach (MKL). The MKL technique can increase the discrimination power and
improve the performance of classifiers [78]. The idea is to optimally combine kernel
matrices computed from the feature types with some kernel functions as shown in
Figure 5.4. Therefore, it is expected to perform better than CNN.
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Figure 5.4: Multi-Kernel Learning approach: example of a possible configuration.

46



Chapter 6

Experimental setting

6.1 Hyperparameter tuning
In machine learning, there is a distinction between model parameters, configuration
variables internal to the model and whose values can be estimated from the data
provided, and hyperparameters, which are external to the model because the model
cannot change its values during learning/training [79]. In other words, they are used
by the algorithm during learning, but they are not part of the resulting model. The
choice of hyper-parameters is crucial for obtaining a good model, but choosing the
best combination is not a trivial procedure. The process is called hyperparameters
tuning and in this thesis, it has been performed on different input and models
(LSTM, CNN, and more). The most critical hyperparameters in a deep learning
model are:

• Batch size: the training set is divided into several subsets, called batches, to
improve the speed of the learning process [79].

• Learning rate: it controls how much the model must change in response to
the estimated error each time the model weights are updated. Selecting the
optimized learning rate is challenging because if the learning rate is too low,
it could slow down the training process. In contrast, if the learning rate is too
high, the model may not be optimal [80].

• Number of Layers: a neural network consists of vertically arranged compo-
nents called layers; the layers are the input, output, and hidden layers that
can range from 1 to n [79].

• Number of Hidden Neurons: the number of neurons required for the
hidden layers depends on the amount and complexity of the data, the amount
of outliers and the type of activation functions selected. In general, the number
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of hidden neurons can be between the size of the input layer and the output
layer [79].

• Activation function: it decides whether a neuron should be activated: the
activation function decides whether or not the neuron’s input is important in
the prediction process using simple mathematical operations [81].

• Dropout: dropout ignores some randomly selected neurons during the training
phase; therefore, these units are not considered during a particular step forward
or backward. This technique is often used to avoid overfitting [82].

• Number of Epochs: an epoch can be defined as the complete training cycle
of the machine learning model. Usually, the number of epochs is greater than
1, and the validation error is used to determine the correct number of epochs.
Therefore, the number of epochs is increased until there is a reduction in
the validation error. If there is no improvement in the reduction error for
consecutive epochs, the number of epochs stops rising [83].

6.1.1 Hyperparameter optimization method

The traditional algorithms for optimizing hyperparameters are Grid Search
(exhaustive search in a predefined subset) [84] and Random Search (randomly
selected from a predefined subset) [85]. However, as the amount of data
and the space of hyperparameters increase, these algorithms are not efficient
because they take too long to find the minimum or fail to reach it.
Optuna software allows users to adopt state-of-the-art algorithms for sampling
hyperparameters and eliminating unpromising trials [86]. Optuna can be
implemented with several state-of-the-art optimization methods (Sampling
and Pruning strategies) to perform hyperparameter optimization quickly.
Optuna implements a Bayesian optimization algorithm (Tree-structured Parzen
Estimator - TPE) by default. In each trial, for each parameter, TPE fits a
Gaussian mixture model (GMM) l(x) to the set of parameter values associated
with the best target values and another GMM g(x) to the remaining parameter
values. It chooses the parameter value x that maximises the ratio l(x)/g(x)
[87].
In this thesis, it was therefore decided to use Optuna for Deep Learning models
by setting optuna.pruners.MedianPruner() as the pruner (it uses the median
stop rule) and optuna.samplers.TPESampler() as the sampler.
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6.2 Loss Function
A fundamental neural network component is the loss function, which compares
predicted and target output values to measure how well the neural network models
the training data. During training, the goal is to minimize the loss between the
predicted and target output values [88]. In machine learning, the performance
of a classification algorithm in terms of accuracy depends on the choice of a loss
function. In a binary classification problem, the typical loss function is binary cross
entropy where there are only two possible output values: 0,1. The real value is
compared with the probability that the input aligns to that category as shown in
6.1:

CELoss = −
qN

i=1 ŷi log (pi) + (1 − ŷi) log (1 − (pi))
N

(6.1)

where ŷi is the real target, pi is the probability that the class is 1, 1 - pi is the
probability that the category is 0 and N is the number of points.

6.3 Evaluation metrics
The most crucial task in building any machine learning model is to evaluate its
performance. Therefore, the main point is to measure the success of a machine
learning model. Cancer events lead to an unbalanced dataset in which few people
have cancer, so we have to choose the right evaluation metrics to account for this
property. Consider, for example, the case of an unbalanced dataset with a class
imbalance of 1:100, where the evaluation metric is the classification accuracy. In
this problem, each example of the minority class (class 1 - abnormal class) will
have 100 corresponding examples for the majority class (class 0 - regular class).
Considering a user preference towards the examples of the minority class (positive),
the accuracy is not adequate because the impact of the less represented but more
important examples is reduced compared to that of the majority class. In this
problem, a model that predicts class 0 (majority class) for all examples in the
test set will have a classification accuracy of 99%, reflecting the distribution of
major and minor examples predicted on average in the test set [89]. It is clear that
accuracy fails in unbalanced classification because it is easy to achieve high accuracy
without making valuable predictions. Therefore, accuracy as an evaluation metric
only makes sense if the class labels are evenly distributed.
The metrics that best fit problems with unbalanced classes are: specificity, sensitiv-
ity, precision, recall, and f1 score. The range of these metrics is between 0 and 1,
where 1 represents the ideal case. The confusion matrix is a popular measure for
classification problems, which best describes the metrics used for this thesis. For
binary classification, the confusion matrix scheme is described in Figure 6.1.
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Figure 6.1: Confusion matrix for binary classification problem.

It represents TP values correctly classified, FP values in the relevant class while
they should be in another class, FN values in another class while they should be in
the relevant class, and TN values correctly classified in the other class [90]. Based
on this table, precision, recall, specificity and sensitivity can be described as follows:

• Precision: it explains how many correctly predicted cases turned out to be
positive. Precision is helpful in cases where false positives are more worrying
than false negatives.

Precision = TP

TP + FP
(6.2)

• Recall or Sensitivity: it explains how many actual positive cases we could
predict correctly with our model. It is very useful when false negatives are
more worrying than positives. It is therefore essential in this task, where it
does not matter if a false alarm is generated, but positive cases must not go
unnoticed.

Recall = Sensitivity = TP

TP + FN
(6.3)

• F1 Score: Precision and Recall are combined through an harmonic mean.

F1Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(6.4)

• Specificity: it measures the proportion of actual negatives correctly identified
as such, i.e., the extent to which actual negatives are classified as such (i.e.,
there are few false positives).

Specificity = TN

TN + FP
(6.5)
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In this scenario, the most essential metrics are sensitivity and specificity since:

• Sensitivity is the percentage of sick people correctly identified as having the
disease: it is important to avoid undiagnosing sick people.

• Specificity is the percentage of healthy people correctly identified as not having
the disease: it is therefore necessary to avoid a redundant number of biopsies
that harm patients.

In the previous metrics, the two classes are distinguished using the threshold of
0.5: if the probability is less than 0.5, the class is assumed to be 0; otherwise, 1. In
contrast, the ROC curve is a graph that illustrates the diagnostic capability of a
system as the threshold varies [91]. For example, does it belong to the positive class
if it is greater than 0.5 or 0.8? The curve plots the false positive rate (x-axis) against
the true positive rate (y-axis) for different candidate threshold values between 0.0
and 1.0, as shown in Figure 6.2. A threshold can then be chosen that gives a
balance between false positives and false negatives.

Figure 6.2: ROC curve for binary classification problem. The diagonal shows
the performance of a random classifier. Three classifiers (blue, orange, green) are
shown [92]

6.4 Services for sensitive data
As anticipated in Chapter 4, the dataset contains highly sensitive and private data;
therefore, it is necessary to work in a specific platform for this type of data. The
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project members had access through MinID to TSD, a service for sensitive data.
The TSD is an IT platform operated by the University of Oslo for the storage and
analysis of private data in compliance with privacy legislation [93]. It includes
primary and general services and the development of new and tailored solutions to
meet special needs in the user community. In the modern age of digital data, it
is no longer possible to conduct research on sensitive data in local facilities, with
limited capacity and no possibility of sharing results with colleagues. Research
environments in universities and teaching hospitals have expressed the need for
ample storage space for sensitive research data to be managed, such as clinical
data, high-resolution MRI images, and patient video recordings.
In addition, an external service, Colossus, is available to use GPU nodes within
TSD [94]. It is a cluster designed to handle multiple concurrent jobs and it is
offered in collaboration with the University of Oslo. The cluster profile is suitable
for parallel applications with high memory demands: it consists of 57 compute
nodes, 4 extended memory nodes, and 6 GPU-accelerated nodes.

6.4.1 GPU for Deep Learning
For any neural network, the training phase of the deep learning model is the
most resource-intensive activity because it processes input through hidden layers
by updating the weights each time. Furthermore, these operations consist of
multiplications between matrices: a computer can support these operations when
you have thousands of parameters; if the neural network, on the other hand, has
more than 10 billion parameters, a processor would take years to train these kinds of
systems using the traditional approach. Thus, in order to solve this problem, GPUs
were adopted. Graphics processing units (GPUs) are processing cores to speed up
computational processes. These cores were initially designed to process images
and visual data. Nowadays, GPUs have been adopted to improve computational
processes because they can be used in parallel for huge distributed computational
processes. Deep learning models, therefore, can be trained faster by performing all
operations simultaneously instead of one after another.

6.5 Libraries
The main libraries used to perform the analysis are:

• Pandas: it is an open-source data analysis tool built on top of the Python
programming language [95].

• NumPy: it offers comprehensive mathematical functions, random number
generators and linear algebra routines [96].

52



Experimental setting

• Matplotlib: it is a library for creating static or interactive visualizations in
Python. Matplotlib makes easy things easy and hard things possible [97].

• Optuna: it is an automatic hyperparameter optimization software framework,
particularly designed for machine learning [87].

• Pytorch Lightning: it is a high-level python framework built on top of Pytorch.
It was created for researchers, specifically for running deep learning models
which involved research scaling, multi-GPU training and TPU [98].

6.6 Configuration
For each approach described, the dataset was randomly divided into two parts:
one for model definition and the other for testing part. The two proportions are,
respectively, 80%-20% of the total. The first set is then subdivided into training and
validation sets with a proportion of 80:20 as shown in Figure 6.3. The validation set
is the dataset that provides an unbiased evaluation of the model fit on the training
set when modifying the model hyperparameters [99]. So naturally, the evaluation
becomes more biased when the skill on the validation dataset is incorporated into
the model setup.

Figure 6.3: Training, Validation and Test set.

For each type of input and machine learning model described in Chapter 5, the
hyperparameters are defined using the training and validation set. The model is
then created using the same data set by setting the following rules:

• The number of epochs: it is set to 100, but the epochs are stopped before
if there is no improvement.
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• Early Stopping: it is a callback that can be used to monitor the validation
loss [100]. The patience parameter counting the number of validation checks
without any improvement is set to 15.

• Learning Rate Monitor: it monitors and logs the learning rate for learning
rate schedulers during the training phase [101].

• Optimizer: the Pytorch Lightning library automatically selects it [102].

• GPU support: PyTorch’s CUDA library is a parallel processing platform
and programming model developed by Nvidia that focuses on general GPU
processing [103]. It keeps track of which GPU is being used and all tensors
are automatically allocated to that device.

Finally, the best-performing model is evaluated against the test division in terms
of accuracy, precision, recall, specificity, and F1-score.
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Chapter 7

Results and Discussion

This section shows the results obtained from the input and the respective models
described in Chapter 5.
First of all, the final dataset consists of 85.000 patients after data cleaning operations,
where:

• The training set has 67.998 time series and it is fully balanced between the
two classes.

• The test set has 17.002 time series and it is unbalanced for the reasons
explained in the Section 4.3.

It is also important to note that in the test set, the percentage of patients with
cancer is no longer 10% of the total, but about 36%. This is due to data cleaning
operations: the time series of people without biopsy or with negative biopsy have
an average length of 5. They often have ’duplicate’ values that were removed: thus,
many time series did not meet the minimum length and were discarded.

7.1 Baseline models
The first approach uses the most simple machine learning models, as the goal is to
use select algorithm that can reflect the medical way of thinking.
As a first step, we want to compare the model with PSA and age as input and then
the same input with the addition of velocity. First, we analyze the correlation of
the extracted features with risk. The matrix 7.1 shows that the features age, PSA
and velocity are not correlated with risk; a higher correlation was expected but
probably considering only absolute PSA values and age at the second-to-last visit
does not create a linear association with the risk.
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Figure 7.1: Correlation matrix. The features are: psa, age and velocity.

The Table 7.1 then shows the results using three different models, Decision Tree,
Random Forest and Ada Boost, with the two input types.

Baselines
Different Decision Tree Random Forest Ada Boost

input types Acc Sen Spe Acc Sen Spe Acc Sen Spe
psa+age 0.824 0.894 0.785 0.847 0.870 0.835 0.824 0.892 0.786

psa+age+veloc 0.820 0.892 0.779 0.834 0.885 0.806 0.822 0.890 0.783

Table 7.1: The results are the average of 6 iterations. Bold represents the best
performing configuration using different evaluation metrics. Acc, Sen, Spe are
respectively the Accuracy, Sensitivity and Specificity.

Let us now consider the performance with the first input (age and PSA): the
random forest algorithm has better accuracy, probably because the other two
algorithms are more prone to overfitting. On the one hand, decision trees are
inclined to overfitting, especially when the tree is deep. On the other hand, Ada
Boost, while providing more accurate predictions, is more susceptible to overfitting
than Random Forest. The results obtained are generally better than expected as
the preprocessing is very simple. Decision Tree, however, has a very high Sensitivity
value, about 90%, so if we consider a set of 100 sick patients, only 10 are not
detected. This is a good result, because we used a straightforward machine-learning
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model. In contrast, the best Specificity is achieved by Random Forest. In general,
the best model with this type of preprocessing is Random Forest.
Let us now consider the second input, where the velocity parameter is added
to the previous input. In this case, better performance is expected because the
variation in PSA is considered. Instead, this model adds no information, thus, no
better results are obtained; probably, the extracted velocity formula is too trivial
and it is not enough to consider only two PSA values over time. Perhaps other
complex calculation methods, such as Ordinary Least Squares Regression, should
be considered.
Another way to assess the relevance of features in the model is by using the
permutation of feature importance. This procedure breaks the relationship between
the feature and the target, so the decrease in accuracy indicates the model’s
dependence on the feature. Thus, a feature is ’important’ if mixing its values
increases the model’s error because in this case, the model relied on the feature
for prediction. This technique has the advantage of being model agnostic and it is
applied to the Test Set as shown in Figure 7.2.

Figure 7.2: The permutation of feature importance. Feature0, feature1 and
feature2 are respectively age, PSA and velocity.

The graph, therefore, shows that the most important features are:

• feature0 that is the age and the accuracy decreases by 30% when this feature
is removed.

• feature1 that is the PSA value.

Surprisingly, age seems to be more important than PSA: in general, we realised
that PSA and age are two relevant features in the prediction task. Furthermore,
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the graph shows that when feature2, the velocity, is removed, the accuracy does
not change, as expected.
Finally, we tried to understand the predictive power of features based only on
δtime. The main reason is that strong irregularities in time characterize the treated
time series; this is due to the doctor that decides the date of the next visit based
on the patient’s state of health. As the Matrix 7.3 shows, there is a correlation,
although low, between the extracted features and the risk; if the time between
visits increases, the risk decreases, and this assumption agrees with the medical
opinion. It is therefore expected that the algorithm can learn patterns using only
time features such as mean, median and mode of the distance between two visits.

Figure 7.3: The correlation matrix for ∆T features. The features are: mean,
median, standard deviation and quantile.
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Model with Time Features
Decision Tree Random Forest Ada Boost

Acc Sen Spe Acc Sen Spe Acc Sen Spe
∆T 0.681 0.712 0.664 0.681 0.699 0.678 0.686 0.711 0.664

Table 7.2: The results are the average of 6 iterations. Bold represents the best
performing configuration using different evaluation metrics. Acc, Sen, Spe are
respectively the Accuracy, Sensitivity and Specificity.

The Table 7.2 shows the results using the machine learning methods; the
classification is not random, as accuracy of almost 70% is achieved. Thus, the
irregularity of the time series cannot be ignored and especially unlike Marlin’s
assumptions [45], missing values are not missing at random.

7.2 Regularized time series

After evaluating the baselines, the analysis continued with implementing Deep
Learning methods for time series.
In this case, it was decided to take into account the irregularity of the time series
by working on the input; the series were therefore transformed from irregular to
regular, as explained in Section 5.2.1. As shown in the Table 7.3, there are four
different types of input where either the interpolation or zero-filling method was
applied. In addition, BinVec represents the missing value indicators technique. First,
during the hyperparameter tuning process, an essential parameter was selected:
the discretization window. The permissible values were one year, two years, three
years, and five years; it was impossible to select a smaller window such as six
months, otherwise, the number of values in the time series would have become 142
and the training phase would have taken too long. In general, it is important to
have a window so that, on the one hand, no information is lost and on the other
hand not too many missing or interpolated values are inserted. Analyzing the
statistics, on average, each man undergoes one PSA examination per year and in
fact, the best window was found to be one year. This is probably due to fewer
’fake’ values. The following Boxplots show the performance (evaluation metric = F1
Score) for each type of input using four different windows size; WND1Y, WND2Y,
WND3Y and WND5Y mean respectively one years, two years, three years and
five years. Each input confirms that the best model uses a one-year-window-size.
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Figure 7.4: Input1: interpolation
Figure 7.5: Input2: interpolation
+ binary missing indicators

Figure 7.6: Input3: discretization
Figure 7.7: Input4: discretization
+ binary missing indicators

So let us now analyze the results using one year as the discretization window.
The main difference to Baselines is that in this approach, the input is not just a
few features such as age and PSA but rather a time series. In this case, the deep
learning models are Recurrent Neural Networks; a higher performance is therefore
expected as the network should have a memory of past states and the ability to
learn from long-time sequences. Furthermore, adding the binary vector of missing
values should help the network distinguish between real and generated values with
a consequent increase in accuracy.

As the Table 7.3 shows, the accuracy, approximated to two decimal places, is
about the same across all four input types; however, it is not a reliable metric
for unbalanced datasets. So let us now analyze the other two metrics: the linear
interpolation technique appears to be better than zero-filling in both Specificity
and Sensitivity measures; moreover, the addition of the binary vector makes the
model perform slightly better in Sensitivity calculations. In general, however, the
missing value indicators did not add any information for a marked performance
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Approach 1: Regularization
Different RNNs

input types Accuracy Sensitivity Specificity
Interpolation 0.871 0.862 0.877

Interpolation + BinVec 0.866 0.879 0.854
Zero-filling 0.868 0.872 0.863

Zero-filling + BinVec 0.871 0.871 0.870

Table 7.3: The results are the average of 6 iterations. Bold represents the
best performing configuration using different evaluation metrics. The following
techniques are applied: interpolation and zero-filling.

improvement. In addition, no significant differences in performance can be found
between the interpolation technique and zero-filling, so this means that (1) -1
is recognized by the network as a missing value and (2) the linear interpolation
technique did not create too many "outliers" in the handling of null values.
In conclusion, this approach is significantly better than the previous one, as it
goes from accuracy of 0.847 to 0.871. However, the limitations of time series
regularization mentioned in Section 5.2.1, must also be taken into account: the
generation of time series with constant false trends could reduce significantly the
performance.

7.3 Irregular time series with the addition of new
features

Finally, a different approach was proposed after analyzing the possible limitations
of the time series regularization technique. In this case, the problem of time series
irregularity is treated without modifying the input; instead, new features can help
the neural network estimate the best PSA evolution formula. As described in
Section 5.2.2, the four selected input types are compared with the following Deep
Learning models: RNN, LSTM, CNN, MKL and ROCKET. It is expected that the
model that performs best will be different depending on the input type. In general,
this approach uses raw features and thus should not generate fake assumptions in
the Preprocessing Phase.
As shown in the Tables 7.4 and 7.5, we can see that there are input-model combi-
nations that give promising results, around 90% of accuracy. Furthermore, in the
previous models, Specificity never reached results higher than 0.90, whereas in this
case, we have a value of about 0.92; this allows us to say that out of 100 healthy
patients, only 8 will undergo unnecessary biopsies. One of this thesis’ goals is to
reduce overtreatment, which can often damage the patient’s quality of life. Thus,
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although Sensitivity is considered more important in the medical field, in this case,
Specificity is also relevant; the result obtained is therefore satisfactory.

Approach 2: No Regularization
Different LSTM CNN MKL

input types Acc Sen Spe Acc Sen Spe Acc Sen Spe
age+psa 0.887 0.860 0.895 0.437 0.999 0.507 0.817 0.899 0.767

age+psa+others* 0.889 0.878 0.900 0.867 0.887 0.864 0.863 0.886 0.848
categ(age+psa)* 0.863 0.849 0.881 0.866 0.876 0.866 0.865 0.884 0.859

categ(age+psa)+others* 0.889 0.852 0.915 0.884 0.864 0.889 0.887 0.878 0.901

Table 7.4: The results are the average of 6 iterations. Bold represents the best
performing configuration using different evaluation metrics.

* age+psa+others means that the features are age, psa, δT and δPSA while categ(age+psa)
represents the categorical features of PSA and age.

Approach 2: No Regularization
Different MLP ROCKET

input types Acc Sen Spec Acc Sen Spec
age+psa 0.861 0.889 0.849 0.522 0.467 0.552

age+psa+others* 0.875 0.863 0.876 0.524 0.469 0.554
categ(age+psa)* 0.858 0.887 0.844 0.844 0.829 0.852

categ(age+psa)+others* 0.867 0.846 0.878 0.867 0.845 0.879

Table 7.5: The results are the average of 6 iterations. Bold represents the best
performing configuration using different evaluation metrics.

* age+psa+others means that the features are age, psa, δT and δPSA while categ(age+psa)
represents the categorical features of PSA and age.

In general, the mentioned results show that adding new features is better than
introducing new values to regularize the time series. However, it must be noted
that given a certain input, some models do not perform well. Thus, it is necessary
to understand which input is best for each model. In order to compare the results
more easily, it was decided to use a single metric, the F1 score.

LSTM is the model expected to perform best because, compared to other neural
networks, it can remember historical states; in prostate cancer prediction, it is
essential to consider past PSA values because the most important factor is how
PSA varies over time. The Boxplots below show that LSTM performs well and
the standard deviation is low even when the input includes only PSA and age. In
contrast, with categorical input, there is a significant reduction in performance; the
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two possible explanations are (1) the categories for PSA and age were not precisely
defined or (2) LSTM fails to efficiently extract patterns from categorical variables.
On the other hand, CNN shows a good performance in all cases except the input
with only PSA and age; moreover, the standard deviation is very high. This means
that the network, through an initial input corresponding to a 2 x time series length
matrix fails to efficiently extract temporal and spatial information.
In contrast, the MLK model shows improvements because it processes the same
input through different kernel sequences, thus, it can extract more information. But,
again, performance is lower for case 1. Instead, MLP shows that the performance
remains always low: the time series is no longer treated as a sequence but rather
as a set of features, so any temporal relationship is lost.

Figure 7.8: LSTM model Figure 7.9: CNN model

Figure 7.10: MKL model Figure 7.11: MLP model

Let us now analyze ROCKET [12]. It was decided to implement this algorithm
because the time for the training phase and the selection of hyperparameters is often
too long in neural networks. Instead, this algorithm has only one hyperparameter
(the number of kernels) and allows a prediction to be made in a few minutes.
First, ROCKET was developed as a model for univariate time series but it was
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later adapted for multivariate series. In fact, in this thesis, it was applied to
multivariate time series. Secondly, the performance obtained should be similar to
state-of-the-art algorithms for time series classification, such as LSTM [12]. In
reality, as the Table 7.6 shows, acceptable performance is obtained when PSA and
age are used as categorical variables. One possible explanation is that ROCKET
works on thousands of random kernels and it extracts the most essential features
from these; however, if only 2 x time series size matrices are provided as input,
the algorithm cannot extract enough spatial and temporal information. In general,
it is still an algorithm that is easy to understand, scalable and with acceptable
performance when several features are selected as input.

Rocket: the performance
INPUT F1 SCORE
Case1 0.41
Case2 0.41
Case3 0.79
Case4 0.82

Table 7.6: Bold represents the best performing configuration.

7.4 The best model
In conclusion, after analyzing all the proposed approaches, we have to choose the
best model, considering both Specificity and Sensitivity values. Thus, the best
model is the "unregularized time series" approach with features addition; the input
selected is age, PSA, ∆T and ∆PSA. The neural network is the RNN.
The main hyperparameters 7.7 are:

Hyperparameters
batch size 512
rnn type GRU

bidirectional True
hidden size 1024

number of layers 2
learning rate 0.002

Table 7.7
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The confusion matrix 7.12, therefore, shows the results of the model where label
0 indicates patients without biopsy or negative biopsy and 1 indicates patients
with cancer. Sensitivity and Specificity are respectively 0.89 and 0.88.

Figure 7.12: The confusion matrix.

Finally, the Figure 7.13 shows the ROC curve where on the x-axis the FPs are
shown and on the y-axis the TPs.

Figure 7.13: The ROC curve.
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7.5 The ability of AI to support medical decision
The use of AI to support doctors in patient care is auspicious [104]. From the rapid
identification of new drug candidates to aiding in the diagnosis of severe illnesses
to helping manage resources in hospitals, AI has proven its value. Artificial intelli-
gence is therefore intended to help doctors work more efficiently. However, current
AI-based software is limited to performing specific tasks to support the doctor’s
decision-making process. It cannot replace the doctor’s figure and, therefore, it
cannot handle difficult tasks such as making clinical decisions [104].
Thus, some information has been extracted from the best model to support medical
decisions. For example, a doctor might need to understand the number of visits
for each patient to have a good prediction; or the doctor might be interested in
understanding the age range for which the machine learning model can provide a
prediction with a certain accuracy. Finally, the doctors would like to detect the
most aggressive cancers because these are the ones that need early intervention.
Therefore, interesting information has been extracted for each type of cancer risk.

The Table 7.8 shows the predictive accuracy for each risk category in patients with
cancer. It is evident that the algorithm learns patterns more easily in patients
with advanced cancer; for example, PSA values may be particularly elevated, PSA
velocity is high and the frequency between visits is also high. The model, on the
other hand, learns with greater difficulty from the data of low-risk patients: in
this case, it is possible that patients have a PSA slightly higher than the cut-off
value and the doctor has decided to take a biopsy to better delineate the situation.
However, a slightly above-average PSA value is not an indicator of prostate cancer,
as healthy men can have PSAs higher than 4 ng/ml. The accuracy for the ’unknown
risk’ category is instead particularly low, and in order to understand why, it would
be necessary to learn more about which patients were included in this category. In
any case, these results show that the model can be sufficiently reliable for patients
with cancer that need to be treated immediately.

Cancer risk categories Accuracy
Low risk 0.780

Intermediate risk 0.922
High risk 0.954

Metastatic risk 0.938
Regional risk 0.951
Unknown risk 0.607

Table 7.8: The performance according to the risk categories. Bold represents the
best performing configuration.
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The Table 7.9 shows the model’s performance according to the time series length.
Contrary to expectation, the prediction has better accuracy if there are fewer points
in the time series. LSTM is generally suitable for learning from long sequences
by forgetting non-essential information and remembering important information.
However, in this case, "too old" PSA values could cause noise; this is only an
assumption and it would be necessary to implement interpretability models to
understand why it happens. It should also be noted that this is a favorable point
from a medical point of view: the doctor doesn’t need to have too many values to
have good prediction accuracy. So if a patient has collected 6/7 values in three or
four years, the algorithm can predict the risk accurately.

Number of visits Accuracy Sensitivity Specificity F1 score
Visits < 10 0.898 0.889 0.902 0.890

10 ≤ Visits < 20 0.877 0.902 0.861 0.871
20 ≤ Visits < 30 0.828 0.893 0.787 0.825
30 ≤ Visits < 40 0.821 0.880 0.797 0.804

Visits ≥ 40 0.848 0.875 0.824 0.828

Table 7.9: The performance according to the time series length. Bold represents
the best performing configuration.

The doctors also emphasized that it is essential to discover cancer in young
patients because it can be treated more effectively. When prostate cancer is diag-
nosed in elderly patients, the doctor may not necessarily decide to treat the cancer;
clinicians must weigh the risks and benefits of possible treatments/interventions
on patients of advanced age. Thus, when the patient is too old and suffering from
other diseases, doctors may decide not to intervene to compromise the patient’s
quality of life. The table 7.10 shows that patients who start PSA tests between the
ages of 30 and 45 and record their last visit between the ages of 55 and 65 have
an exceptionally high predictive accuracy, around 93%. This is a promising result
from a medical point of view, as the algorithm performs very well on non-elderly
patients. Furthermore, it can be seen that the performance decreases by keeping
the minimum age range of the first test fixed but increasing the age at which the
last visit was recorded. It should also be noted that by starting PSA tests between
the ages of 55 and 65, the predictive accuracy continues to be satisfactory, at
around 90%; this is an important result as most patients start checking their PSA
value around the age of 50.
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Age range Mean Length Accuracy Sensitivity Specificity F1 score
30≤min<45 55≤max< 65 11 0.931 0.899 0.937 0.855
30≤min<45 65≤max<75 13 0.866 1.0 0.846 0.791
30≤min<45 75≤max<85 - - - -
45≤min<55 55≤max<65 9 0.895 0.868 0.905 0.875
45≤min<55 65≤max<75 13 0.885 0.829 0.904 0.854
45≤min<55 75≤max< 85 19 0.878 0.833 0.891 0.834
55≤min<65 65≤max<75 11 0.894 0.915 0.878 0.891
55≤min<65 75≤max<85 15 0.879 0.823 0.899 0.849
65≤min<75 75≤max<85 11 0.853 0.887 0.827 0.852

Table 7.10: The performance according to the age. Bold represents the best
performing configuration.

In conclusion, the algorithm seems to perform best on young patients with an
average of about ten values; moreover, if a patient has cancer, the model detects
advanced stages of the disease more easily. These conditions represent doctors’
demands: diagnose aggressive cancers in young patients with a reasonable number
of PSA tests.

68



Chapter 8

Conclusion and Future
works

8.1 Conclusion
This research dealt with predicting prostate cancer risk based on PSA variation over
time. An attempt was made to overcome the limitations of "handcrafted" velocity
formulas using machine-learning algorithms. Therefore, this was a challenge that
required an in-depth analysis of the problem, preprocessing techniques, models and
hyperparameters. Overall, each approach was conducted with in-depth performance
analysis and the results were discussed. In addition, the time series irregularity
problem was handled by proposing two different approaches, regularization of the
time series and extraction of new features, such as the temporal distance between
visits. The problem of time series irregularity is a fundamental challenge in the
clinical field that cannot be ignored.
The dataset provided by the Norwegian health system is unique and was the result
of the effort of the doctors who collected and recorded all the data over the years.
A large number of recorded men made it possible to obtain robust models, mainly
avoiding the problem of overfitting or having a sample of patients with cancer
limited to a few hundred, as is often the case.
The proposed approaches and the baseline models were compared using different
metrics such as Sensitivity and Specificity. It was emphasized that, although Sensi-
tivity is fundamental from a medical point of view, Specificity cannot be ignored
because one of the objectives of this thesis is to reduce the number of biopsies,
considered an extremely invasive procedure for the patient. Therefore, the best
model was selected, emphasizing how new features such as temporal distance and
PSA variation between visits lead to better performance. Furthermore, the RNN
proved to be the best neural network as it is able to capture temporal dependencies.
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The performance of the selected model shows satisfactory results with an accuracy
of 89%, Specificity of 90%, and Sensitivity of 88%.
In addition, a scalable algorithm, ROCKET [12], was proposed to reduce training
time exponentially. However, contrary to expectation, ROCKET’s performance
was highly input-dependent, and in some cases, its prediction was random with
50% of accuracy.
The results produced by this thesis suggest that the proposed methods and the use
of Deep Learning for prostate cancer risk prediction are promising and can be an
excellent tool to support clinical decision-making.

However, it is now necessary to analyze how the models developed by machine
learning experts can be used by doctors and the possible limits of AI. In recent
years, it has been shown that deep learning is suitable for medical data as it can
identify patterns in sparse and noisy data with minimal feature engineering [105].
Current successes have shown that ML models outperform experienced doctors;
many health conditions present heterogeneously, making it difficult to establish
an accurate diagnosis over time [104]. A deep-learning healthcare system would
allow all doctors to work with the same level of expertise as a group of top doctors.
Indeed, a fundamental difference between human and machine learning is that
humans can learn to make general associations from small amounts of data. In
contrast, a machine learning model can be trained using tens of millions of medical
records containing billions of data points without any lapse of attention. It would
be challenging for a doctor to see more than a few tens of thousands of patient
data points in an entire career [105].
Another key aspect is that deep learning models can be shared between hospitals
through the transmission of patients data; thus, a new system of precision medicine
could be created by learning from the decisions and outcomes of different doctors
treating different patients [105]. Contrary to what many think, introducing artificial
intelligence into medicine will not sideline doctors but enhance their strengths.
Doctors will be able to focus on uniquely human elements, such as asking accurate
questions to the patient to uncover more nuanced symptoms and building trust
through personal relationships to guide the implementation of computerized diag-
noses and treatment plans [104].
Moreover, doctors cannot constantly interact individually with all patients who may
need treatment. In the future, however, machine learning may extend the reach of
clinicians to provide expert-level medical assessments without personal involvement.
For example, patients with new rashes could get a diagnosis by sending a photo
taken with their smartphone, thus avoiding unnecessary emergency visits. The
model could then identify doctors with the most relevant expertise and availability.
At the same time, comfort would increase and costs would be reduced [104].
Although there are large volumes of clinical data from which meaningful information
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could be extracted, it is still not used to improve medical practice. Today, many
industries use previous actions and results from data to enable smarter choices.
For example, Amazon recommends products to a user based on their previous
research. However, the obstacles to bringing medicine into the era of Big Data
are operational and cultural. In addition, there are still strong doubts about how
reliable AI models can be and public privacy concerns [104]. The problem is that
artificial intelligence could base its recommendations on false assumptions in the
data, leading to misdiagnoses. It is therefore necessary to understand which AI
application is reliable to improve the treatment of patients. In general, the people
and doctors have a certain mistrust of machine learning [106]. This is because its
inner functionalities are difficult to interpret and there is also a fear of how personal
data will be used. Indeed, a key issue is compliance with privacy requirements, as
clinical data must only be used in a secure and patient-friendly manner. People fear
that their data could be used to discriminate against them. For this reason, certain
types of information, such as genetic conditions, require anonymization procedures.
Public concern for privacy influences people’s willingness to share data, which can
affect the accuracy of AI recommendations, as the model would use a dataset that
does not truly represent the population [106]. However, by being transparent and
demonstrating the steps taken to verify the reliability of the AI, researchers and
developers can help give confidence to people who want to provide their data.
In conclusion, it has been shown that using AI with its ML models to support
clinicians in patient care is very promising [106]. Problems only arise if the data
quality is not adequately verified and the reliability of the AI has not been tested.
In general, there is fear among people that robots will take people’s jobs away,
fear of data privacy, and fear of who is ultimately responsible if an AI decision
turns out to be wrong. But rather than throwing away innovative tools that can
improve people’s life expectancy, there is a need for more excellent knowledge and
awareness among people of this unknown science, AI.

8.2 Further Work
As explained before, AI suffers from people’s scepticism because an important
decision, such as predicting cancer, is entrusted to a machine [107]. Unfortunately,
recent deep learning models have millions of parameters and why they make a
particular decision have become obscure. Therefore, people can hardly trust the
model until they understand how the model works; people tend to trust a white box
rather than a black one. To interpret means ’to explain or present in understandable
terms’ and interpretability techniques make certain decisions made by machines
understandable by humans [108]. Furthermore, the interpretability of the model
offers other advantages, including finding biases in the dataset and debugging the
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model. Since biases can be easily detected in interpretable models, interpretable
models are more ethical and comply with the requirements of the General Data
Protection Regulation (GDPR) [109]. Finally, interpretability could help find
causality, such as ’smoking is one of the causes of lung cancer’. From the point
of view of interpretability, confidence does mean not only the ’performance’ of a
model but also the robustness the model has for real scenarios [107]. Without
interpretability, it is difficult to understand whether the learned characteristics make
sense; therefore, the model cannot be trusted. This definition of interpretability
corresponds to the one commonly used for Explainable Artificial Intelligence (XAI),
which is the research domain that provides insights into the behavior of complex
models learned by various machine learning algorithms [108].
For example, CAM and Grad-CAM are two methods used to explain the results of
time series classification. The idea is to highlight the discriminative regions of the
input time series to show feature importance using a heatmap [17]. The Figure 8.1
illustrates a CAM-based explanation for the ResNet and FCN classifiers: it can be
seen that the parts of the time series that contributed most to the prediction are
shown in red.

Figure 8.1: Highlighting with the class activation map of the contribution of time
series region for the two classes when using the FCN and ResNet classifiers. Red
corresponds to a high contribution and blue to almost no contribution to correct
class identification [17].
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Thus, in the context of the thesis, these methods could be used to understand
which period was most influential in cancer prediction. For example, it is expected
that for a patient with cancer, the period in which the velocity of change in PSA
increases rapidly is the most influential. Furthermore, one of the results where no
explanation could be given is: why do shorter time series perform better than long
time series? RNNs can handle long-term time dependencies, so it may be that PSA
values further apart in time only create noise. Thus, the only way to understand
these results is through interpretation methods. The thesis has therefore laid a
reasonable basis and raised good questions for further work with XAI methods.
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