POLITECNICO DI TORINO

Master degree course in Software Engineering

Master Degree Thesis

Web Testing Fragility

A Study on Open-Source Web Applications

Supervisors Candidate
prof. Luca Ardito Mehrnoosh RIGI
dipl. ing. Riccardo Coppola registration: S236436

ACADEMIC YEAR 2019-2020

This work is subject to the Creative Commons Licence

Summary

Web Testing Fragility

A Study on Open-Source Web Applications

Due to the vast majority of web applications, the quality of produced code is
very important to make sure the system works as expected. Web applications
consist of a client-server model. Which client in this case is a browser that
asks for the services from the server through the API. correct functionality
of the system can be guaranteed as testing. Testing can be done manually
or automatically. Manual tests are done by a quality insurance team or a
person. It is based on box approaches. Namely: black box testing, white
box testing, and gray box testing. Black box testing focus on the external
expectation of the behavior of the system and the internal working of the
application is not required to be known, the tester views the program as a
black box and is just concerned about the input and output of the program
while the white box tests require full knowledge of the internal working of
the application and focus in the code, the internal structure of the program
the logic and the inner working. It’s suitable for algorithm testing. Instead,
gray box testing is a mixed feature of black box and white box testing. The
tester can leverage the application’s internal working, studies the require-
ments specifications, and communicates with the developer to understand
the system’s internal structure.

Automatically testing is faster with fewer errors of human in comparison
with manual testing. It is faster and cheaper. makes assurance of different
levels from unit test to end to end tests of the quality of software. We can
consider the level of testing as a pyramid which in this case the speed of the
test is very important. The vast majority and base of the pyramid should
be dedicated to unit tests or functional tests because it is the fastest way of
testing. The best case for writing a unit test is TDD, which is an acronym
for Test Development Driven and means write the test first then produce the
code. it’s famous as well with red, green, and red. Red means the test fails

3

because the code is still not delivered, Green means the test passed after the
development of the code and red again means each update in the code should
be at the update on the test.

Another testing level is end-to-end tests which take more time but widely
help for regression tests and nightly running tests. End-to-end tests some-
times contain also integration tests. Because it tests user interaction through
the browser, which can also make API requests. but from another side in-
tegration tests are more important for working along services inside the web
application. There are many other testing methodologies like stress tests,
security tests, database tests and etc. but the focus of this study is just
based on scripted tests.

The development of the project can be done by many methodologies such as
waterfall, agile, and so on. But in this study just coding with help of scripted
testing tools is considered despite the development methodology. Develop-
ing software with high quality based on the new changes needs high effort
for the tester or the developer to update each test plan and redirect to a
high-quality direction so it increases the cost of development. Furthermore,
maybe it’s just not related to updating the old test, maybe it turns to inno-
vate some ideas to add a new test to improve the quality. Even if we consider
software testing as a continuous improvement process, in parallel with the
development, verifying the consistency between the test and developed code
is necessary. In automated testing, especially in scripted type, the challenge
of testing refers to three areas:

Creating the test, Processing, And Quality aspect of the test case specification.[11]
which any of them is impacted by updated code. Setting up automatically
running the test in a DevOps environment is very important for regression
tests.

the two most important tools related to the Application Under Test(AUT)
are considered in this study. Namely selenium, Cypress. The aim of this
study is fragility measurement testing scripted tools among the developed
code. The term Fragility refers to the tests that fail or they need mainte-
nance due to the development process. Refactoring the tests shows that the
tests are also updated based on any update inside the code. Adding new fea-
tures needs effort for adding new tests or change requests (CR) of a feature
that needs any update on the written tests. The modification of tests due
to the life cycle of coding is very important. With growing the tests manag-
ing and modifying tests gets difficult. So maintenance of the test especially
for huge projects increases the cost. This study is continuous work of the
study of Mobile GUI Testing Fragility: A Study on Open-Source Android

4

Applications[4]. the purpose of the mentioned study was to estimate the
influence of changes in the code and besides inducing the changes in the test
code and quantifying the fraction of them based on the used metrics in the
study.

The first research question is:

How many open-source web applications projects, use the automation frame-
works, and how much of the test code coverage for the new feature of the
project?

Basically in this study based on a query of the API of the Github repositories,
web application repositories that contain at least two tag releases and used
the considered testing framework was used. The query was taken with aim
of the javascript and saved in a JSON file as a result file. The open-source
applications from the year 2016 and later were studied.

Four metrics are calculated for this question:

TD: Tool Diffusion: The adoption size of the tool in the projects.

NTR: Number of tag releases: With help of python script and usage of com-
mand the number of tag releases for each repository was taken.

TTL: the python code also takes the Total Tool LOC(Lines Of Code) for
each repository in the latest tag release with help of the CLOC command.
TLR: Test Lines of code Ratio was calculated for each test file and file which
imported those test files and the summation of them in every tag release.
The second research question is:

How much the test codes are getting aligned with the new update and new
modifications in releases of the project?

To respond to this question four metrics have been calculated:

MTLR: Modified Test Lines of code Ratio. Which is the division of tag dif-
ferences of the test file with the previous tag and the total number of lines
of code with the previous tag. This metric lies between 0 and 1. Which 1
means the number of updates on tests was significantly high.

MRTL: Modified Relative Tool LOC. this metric was computed for each tag
release the division of tag differences of each test file by the total production
LOC.

TMR: Tool Modification Relative Ratio. Is for the current tag the division
of MRTL by the TLR previous tag.

MMR: Modified Release Ratio. computed as the ratio between the number
of tagged releases in which at least a file associated with a specific testing
tool has been modified, and the total amount of tagged releases featuring the
file associated with that tool.

All metrics were computed by the python implementation and saved in a
JSON file to extract the final result and graphs. So far the huge amount of
0 number for the calculation means the fragility of test files is higher than
expected.

Acknowledgements

I candidati ringraziano vivamente il Granduca di Toscana per i mezzi messi
loro a disposizione, ed il signor Von Braun, assistente del prof. Albert Ein-
stein, per le informazioni riservate che egli ha gentilmente fornito loro, e per
le utili discussioni che hanno permesso ai candidati di evitare di riscoprire
I’acqua calda.

Contents

Web Testing Fragility

List of Tables

List of Figures

I

1

First Part

Introduction
1.1 Testing web applications

Review and Background

2.1 Web Applications
2.2 Testing web applications
2.3 Software Development Methodology And Testing
2.4 Challenge for testing web applications
2.5 Fragility measurement L.

Methods and Study Design

3.1 Metric definition
3.1.1 Diffusion and Size(RQ1)
3.1.2 Test Suite Evolution(RQ2)

3.2 Selected Testing Tools
3.2.1 Inmstrument

3.3 Applied Procedure
3.3.1 Context Definition and Test Code Search (RQ1)
3.3.2 Test LOCs Analysis (RQ2)

3.4 Result And Discussions
3.4.1 RQI: Adoption
3.4.2 RQ2-Evolution

10

11

3.5 THREATS TO VALIDITY

3.6 CONCLUSIONS

Bibliography

List of Tables

3.1
3.2
3.3
3.4

3.5
3.6

3.7
3.8

Metrics Definitiono 32
Characteristics of the selected Testing Frameworks 37
Characteristics of the selected Testing Frameworks 44
NTR, NTC, TTL, TLR per testing tool: average and median

(in parentheses) values for master 44
Metrics pertaining RQ1 45
Measures of RQ2 - the evolution of test code (averages on the

sets of repositories) 50
Metrics pertaining RQ2 L. 50
Percentage of projects without modifications in test files . . . 51

10

List of Figures

1.1
2.1
2.2
3.1
3.2
3.3

Pyramid of testing levels 16
Spiral model, Boehm 1988 23
An overview of software test code engineering (STCE) 28
Test LOC Ratio (TLR) A7
Distribution of MRR 0oL 48
Ascending MRR Measure for the whole context of Web Ap-

plication projectso 52

11

12

Part 1

First Part

13

Chapter 1

Introduction

1.1 Testing web applications

With intensive usage of online platforms and their significant impact caused
accomplished reliable and secure applications which will be working as ex-
pected, consequently, many works are substituted by human beings. How-
ever, for controlling the quality, the application must be tested and evaluated
to detect the defects and then correct them. [1]

A web application is consist of a client which takes some services from
servers through the API. API stands for Application Program Interface,
which acts as a middle ware between components of software and provides
protocols and tools to allow components to interact between themselves. The
quality of correct working components should be guaranteed in order to make
sure that the system is working as expected.

Testing the system and software as a web could be done at any level,
from unit testing till the end to end testing. The levels of testing are like a
pyramid. Let’s say the unit testing should have a bigger surface in compar-
ison with other levels. because it’s faster and also tests the granularity and
functionality of services. which will be explained in detail.

For the sake of delivering high-quality tools and declining costs, automa-
tion tests would be required. Also, because software, usually may be carried
out far from the customer’s needs, it will guarantee the regression of test
cases. However, it’s essential in order to ensure the high quality of software,
the test should compose well written to be error-prone and find the errors
and bugs. Generally, Software testing consumes 30 to 60 percent of all life
cycle costs, depending on the product’s criticality and complexity.[2]

15

1 — Introduction

,,/"'Com'ponent / Contract Tests
v b

Unit Tests

Figure 1.1. Pyramid of testing levels

More attention should be paid to web application testing efficiency, usabil-
ity, and comprehensiveness.[3] Accordingly, the fragility of written test cases
is also vital. Based on that the amount of updating the test codes along-
side the software development life cycle, tracking the modifications that were
needed by test classes to be executable on different releases. [4] is also im-
portant. The coordination of test codes with the software development is
considered to compute the fragility of test scripts with the developed appli-
cation.

16

Chapter 2

Review and Background

2.1 Web Applications

The Internet is no longer just a static page, it requires active user interaction
to improve the functionality of the requested pages on the internet. We
can say that a web application is just like a normal application but on the
internet and also without the cost of installation. we use it at home for
private reasons, and we use it at work for professional reasons; we use it for
fun (e.g., gaming) and for serious interactions (e.g., home banking), via fixed
stations and mobile devices and these are just a few of the motivations for
and the contexts in which we exploit such a powerful medium. The first Web
site, created by Tim Berners-Lee and Robert Cailliau at CERN (European
Nuclear Research Center), consisted of a collection of documents with static
content, encoded in the HyperText Markup Language (HTML).[?]

Traditionally web applications are divided into two parts: The server side
and client side, have their own programming languages that interconnect
themselves to transfer data and requests. It means that the client sends
requests through methods that based on the request are common:

o GET: The request sends in order to get some information about the
specific URI(Uniform Resource Locator) to retrieve or view the file or
program or even a simple HT'TP page.

o POST: The POST method contains the body, which sends data from
the body to the server, for example, login user, sending the encrypted
credential through the safe channel to the server.

e PUT: When the method of PUT is used, it means the client already
17

2 — Review and Background

knows some necessary information. The mentioned information depends
on the necessary data for the server, like the token of the user that al-
ready is authenticated. For example, the request is updating the authen-
ticated user profile, the updated information sends through the body to
the server with the token generated already for the user after login. it
means updating the database for this user.

« DELETE: It’s a request to remove data on the URIL.

Or even a noun request like Head or Option. The requests are sent through
the header followed by the body. The header is divided into several groups:

o General Headers: There is no relation between request and response and
it applies to both request and responses.

e Request Headers: It has more information about the resource.

e Response Headers: It has additional information about the response
which sends.

o Entity Headers: These contain information about the body of the re-
source.

The Body, Is followed by the header when the request needs to send data,
but the request that fetches data or resources doesn’t need to have the body.
The body can contain one part or multiple parts.

The response to the request also contains a header and body. Also, it
contains the status of the request, The status code means the situation of
response, For example, 200 is OK, 400 means Bad requests, and so on. The
header and body are like the sending request.

But it’s necessary to mention that, with an improvement in technology
and some problems in security like code injection, multiple server-side and
client-side dynamic contents are significantly get considered.

With increasingly massive and broad applications of Cloud-based develop-
ment, many diversified APIs ! are emerging. Web APIs for Internet software,
provide a natural way to wrap and deliver software functions as self-contained
services that can be accessed through standard protocols. By serving as

! Application Programming Interface

18

2.2 — Testing web applications

the contracts between service providers and service users, APIs can effec-
tively shield heterogeneity as well as enforce decoupling. However, the in-
herent open, collaborative, and dynamic characteristics of Web APIs raise
new threats to the quality of systems developed by composing services. API
testing is thus gaining more and more attention. Due to their wide impact,
any flaw in the cloud APIs may lead to serious consequences. API testing
is thus necessary to ensure the availability, reliability, and stability of cloud
services. [5].

2.2 Testing web applications

Software quality assurance: The degree to which a software product meets
established requirements and includes software testing, quality control, and
software configuration management; however, quality depends upon the de-
gree to which established requirements accurately represent stakeholder needs,
wants, and expectations.

Software quality control:

e A set of activities designed to evaluate the quality of a developed or
manufactured product. Contrast with software quality assurance.

o The process of verifying one’s own work or that of coworker. [6]
Testing the software includes many levels. namely:

o Unit testing: Unit testing refers to small testing which is done mostly
by developers to guarantee the functionality of written sections. for
example, testing the function returns as expected with each type of
input.

o Integration testing: In comparison with unit testing, integration testing
is in larger aggregate. it tests the integrity of all services that work
together correctly.

e End to End testing: This type of testing is purposed to check from
starting until the end, data and information are passed between various
system components and services as expected.

o System testing: This level of testing assured that the completed system
meets the specified requirements.

19

2 — Review and Background

e Acceptance testing: Also known as "definition of done" refers to testing
the user story based on the predefined requirements of the task or feature
of the done story.

And the testing methods of software includes:

o Static testing: Refers to executing before compilation (it’s time-independent),
it’s less expensive and it’s for preventing defects, however, it requires
loads of meetings.

e Dynamic testing: Is done by executing the program and after the com-
pilation, it tries to find and fix the defects it’s more expensive, but it
requires fewer meetings (time-dependent).

e Box approach:

1. Black box testing: In black box testing the internal working of the
application is not required to be known. Testing is based on ex-
ternal expectations. It’s based on the bases of programs and sys-
tem functionality, the tester just observes the input and output
of the program. The tester focuses on testing the functionality of
the program against the specification. Black box testing focuses on
testing the program’s functionality against the specification. With
black-box testing, the tester views the program as a black box and
is completely unconcerned with the internal structure of the pro-
gram or system. Some examples in this category include decision
tables, equivalence partitioning, range testing, boundary value test-
ing, database integrity testing, cause-effect graphing, orthogonal ar-
ray testing, array, and table testing, exception testing, limit testing,
and random testing.[7]. Black box testing is not appropriate for al-
gorithm testing, and the test is based on trial and error methods
and is testing what the program or software suppose to do.

2. White box testing: It requires full knowledge of the internal working
of the application, and its structural testing and it focuses on pro-
duced code, so the data domains is better tested. It’s appropriate
for algorithm testing. The tester examines the internal structure of
the program or system. Test data is driven by examining the logic
of the program or system, without concern for the program or sys-
tem requirements. The tester knows the internal program structure
and logic, just as a car mechanic knows the inner workings of an

20

2.3 — Software Development Methodology And Testing

automobile. Specific examples in this category include basis path
analysis, statement coverage, branch coverage, condition coverage,
and branch/condition coverage. [7].

3. Grey box testing: It contains mixed features of black box testing and
white box testing (functional and structural testing). The tester has
to limit knowledge of the application’s internal workings, study the
requirements specifications, and communicate with the developer to
understand the system’s internal structure. The motivation is to
clear up ambiguous specifications and “read between the lines” to
design implied tests. [7]. The testing is at the base of a high-level
data flow diagram.

e Manual and Automated Testing: Manual testing is done without the help
of tools while automation testing is written as a scripted code. Manual
testing is less accurate because of human being errors while it can fetch
hidden information. On contrary the automatic testing can do regression
tests and it’s faster and cheaper and decline the costs. However, they
are many possible classifications of software testing which are not just
divided into mentioned methods. [7]. The taxonomy of software testing
is not summarised just in the mentioned methodology. they are extended
more than 40 techniques based on the requirements those techniques
are used in software development testing quality, like security testing,
acceptance testing, stress testing, database testing and etc. Based on
the subject, we mention here the automated scripted testing of tests.

2.3 Software Development Methodology And
Testing

Also known as Software Development Life Cycle (SDLC), is the process of
dividing the development of software into distinct phases to improve the
project and product management and also the design and development of
the software. The most important and used developing methodologies are
divided as follows:

1. Waterfall Methodology: The traditional method of development was the
waterfall method. in the waterfall method, the lifestyle of development
is divided into units and each phase started after the previous phase is
finished. in the waterfall method the phase of Plan, Do, and Check, could

21

2 — Review and Background

also be applied in the testing and quality and it’s typically considered
as a separate approach. Theoretically during the development, after one
phase is finished, going back and checking the previous phases should
not have happened. The phases are containing:

(a) User requirements: In this phase, the requirements are checked and
analyzed by the user and as a consequence, for the next step a doc-
ument is prepared by the user.

(b) Logical design: In this phase Entity relation diagrams, Process de-
composition diagrams and data follow diagrams are designed to pro-
vide better view of data and the functional progress for managing
them.

(c) Physical design: The output of logical design is used in this phase
to provide the design of physical units like database schema.

(d) Program unit design: According to the output of physical design, the
programmers develop the system and structure to enter the coding
phase.

(e) Coding: In this phase, the coding, writing unit testing, integration
testing, end to end testing is done.

(f) Operation and maintenance: The product is delivered to the user
and the acceptance testing is done, also maybe some new features
adding or even some change requests will come to maintain the soft-
ware.

In the waterfall methodology is the whole effort to completely separate
the testing process and development process. that’s because of the sep-
arated phases in a waterfall, the testing methodology uses the designed
documentation of the first phase(User requirements) to design and plan
the test cases. as a consequence, the programmer does not test their
own code by their view and it’s tested by the tester. because finding the
defects from the programmer’s point of view is very difficult. Hence we
consider the testing and application development as concurrent working
and we expect the testing phase starts early, in the user requirements
phase, the tester verifies acceptance testing, in the logical design, verifies
system testing, in the physical design, verifies integration testing, in the
program unit design the unit testing is verified. the mentioned phases
by themselves are going as a continuous improvement process. for each
phase the steps contain:

22

2.3 — Software Development Methodology And Testing

(a) Planning

(b) Overview

(c) Preparation

(d) Inspection

(e) Rework

(f) Follow-up [7]

A problem that might have an effect on testing is that sometimes some
phases of waterfall methodology are skipped for example designing the
requirements, then immediately the phase of coding is started. This

might increase the risk of changing code meanwhile development and
then the test also should be changed in order to be compatible.

2. Spiral Methodology:

A Cumulative cost

1.Determine Progress 2. Identify and
objectives /——ﬂ resolve risks

Review

Implementation

4. Plan the Release
next iteration 3. Development
and Test

Figure 2.1. Spiral model, Boehm 1988

[13]

In the spiral methodology, products, as it’s shown, it’s like waterfall
methodology that develops in sequential phases. The common problem
of waterfall methodology is that the elapsed time for the development
of software, can be affected by the user at the very beginning or very

23

2 — Review and Background

end of development, and consequently, the delivered developed software
is not exactly same as the what is requested. In spiral methodology,
a small part and functional part of the requested system is developed
and delivered, and it’s iterated over the all development process. as a
result, the user receives a part of the software more in advance and can
send feedback to the developers and developing and testing are going
dynamically. As can be seen from figure 2.1, cycles or spirals are in
period of time and phases inside cycles are repeated subsequently.

Testing in the spiral methodology requires that the tester enter inside the
spiral and must be very close to the programmers. another necessary
test due to the iteration inside the spiral is the automated regression
test, which needs sufficient time and resources by itself. Spiral testing
is initiated from the base and growing incrementally concurrently in
the developing software. as soon as the test will be completed and the
functionality of the application will be verified, testing of all systems
and acceptance criteria will start. [7]

. Prototyping: As it’s obvious by its name, in this methodology, a proto-
type version like a trial version of the software is developed and delivered,
but there isn’t any idea about the developed software in a real domain.
this version allows making decisions for stakeholders to continue and
complete the final version.[7] The testing phase in a prototype is af-
ter building the software model and before needing the reworking the
acceptable prototype.

. Agile: Managing large projects in waterfall methodology is very diffi-
cult because it rarely happens that each phase is isolated and closed
before other phases. in reality there are always circular loops to back to
previous or earlier projects to adjust and maintain the phase. In large
distributing teams there is a problem with communication and central-
izing the management of the project and as a consequence reaching the
final test phase. The tester finds more bugs and the cost of fixing them
increases due to the capacity of developers for handling the coding and
meanwhile fixing bugs. With mentioned difficulty, a new methodology
appeared as an agile name, but it’s important to mention that agile
methodology is not just a single or group of rules that should be obeyed
in the life cycle of development, instead, it makes up lightweight man-
agement, engineering development techniques by the on hand tools. the
agile process doesn’t use a dedicated way for the process of development,

24

2.4 — Challenge for testing web applications

instead, it shapes by the team and improving constantly by the devel-
oped code. growing the development process may cause complexity, so
simplicity is necessary to make the process flexible. In agile we have a
storage full of thoughts of team members so there are many practices
that can be changed in every process, which means there isn’t any fixed
practice that we use for all processes. As we mentioned in agile the
management is lightweight, which means instead of managing in a top-
down approach, the management goes in reverse a bottom-up. It means
the organization is team-based that cause filling the gaps between the
processes and reflects the functionality to the team members.[8]

. Scrum: Scrum is introduced to simplify the project manager and it’s a
proposal for repetitive development. scrum consists of three roles which
are:

(a) Team members: Includes the developers and testers.

(b) Scrum master: Responsible for organization of the process of devel-
opment and the efficiency of team members that verifies problems
get resolved and the job is done in high quality.

(¢) Product owner: includes stakeholders. The product owner is respon-
sible to represent and clarify the requested result of stakeholders.

There is a backlog in the process of development that contains all re-
quirements and their priority. The level of development is divided into
timetables which are known as Sprint. In sprint tasks and user, stories
are defined, which at the end of the sprint they should be tested and de-
livered. Fach sprint consists of a couple of meeting like Sprint planning,
in which in this meeting the story point and timing for the development
and testing are defined. Every day there is Daily scrum which a brief of
work that is done is exchanged between teams. Then at the end of the
sprint, there is Retrospective meeting in order to have feedback on the
sprint between the team and scrum master for the purpose of increasing
and improving the efficiency.

2.4 Challenge for testing web applications

Testing by itself is a difficult effort because it needs to find and defect as
much as possible all problems and errors of the developed parts. The tester
needs to think from another point of view(as a real user or even as a 3rd

25

2 — Review and Background

party), in order to find out all possibilities and detect the defects of all paths
and directions of the software.

In the life cycle of development especially in the agile method, the feature
or task of development becomes a change request by the stakeholders and
this caused changing the feature and dealing with short delivery times. As a
consequence, systems are delivered without being tested or without updat-
ing the old tests, because developing the software with quality based on the
new changes needs high effort for the tester or the developer to update each
test plan and redirect to a high-quality direction so it increases the cost of
development. Furthermore, maybe it’s just not related to updating the old
test, maybe it turns to innovate some ideas to add a new test to improve the
quality. Even if we consider software testing as a continuous improvement
process, in parallel with development, verifying the consistency between the
test and developed code is necessary. Hence the test should be simple, com-
plete, and fully functional coverage, without bugs on one hand and in another
hand be compatible and updated to the developed code. Sometimes the ex-
pectation of customers is very vague, even the customers don’t know what
is do they need. this causes difficulty in testing as a high quality and as an
expectation and understanding the business environment. In the process of
testing, with time slots of developing, testing, and delivering, management
of skipping or not getting into specifics of some task, on its own is another
challenge of testing. [?]

Exclusively, in web applications, usually with the existence of third par-
ties, the structure of the domain, different execution platforms, and so on,
extra knowledge is required. especially for the manual tester, having tech-
nical knowledge in order to have a better understanding and consequently
keep updating the tests with new development is vital to achieving the wide
coverage of testing.

In automated testing, especially in scripted type, the challenge of testing
refers to three areas: Creating the test, Processing and Quality aspect of test
case specification.[10] which any of them is impacted by updated code.

When the automation test is running inside the DevOps environment,
Setting up automatically the automation test environment is vital for effec-
tive consequences. Resetting means that goes to the initial state of the test
otherwise it could influence to the result of another test when the execution
is in order.[11] In testing GUI? web applications, Capture and Relay, is one

2Graphical User Interface

26

2.5 — Fragility measurement

trend that the tester provides a beset assumption and path and record to
make the script for automated testing. The flow path contains navigation,
mouse click, button pressing, or in general all events of the user interaction
for delivering a script of test cases to automated test. CR support automatic
regression testing. Programming web testing, As it’s mentioned, it’s based
on script testing of manual testing. It contains test cases that are written
by developers and can be automated. Maintaining the programming is much
more expensive but it’s easier in comparison with CR.[12]

2.5 Fragility measurement

The terms of Fragility refers to the tests that fail or they need maintenance
due to the development process. Hence refactoring the scripted test is nec-
essary to make the test adoptive with maintenance. it’s supposed that the
test is modified due to modification of code, or the test is added due to
the new functionality which is added to the code.[4] Adding the new tests
cause growing the tests and as a consequence managing and modifying gets

difficult.

The CR? trend in web application testing, is much more fragile in com-
parison with programming. because it’s based on the record, a minor change
in the codes tends to break previously recorded testing. When the code has
been updated, the test case may be broken. it needs modifying. Especially
when it’s related to functionality the effort of updating is much more than
structural or layout testing. [12]

3Capture and Relay
27

2 — Review and Background

Quality improvement

Software
under test

(SuT)

Development of Quality Maintenance of
production code assessment production code

Used for TTriggers

Development of Quality Comaintenance
test code assessment of test code

Automated
test suite

Quality improvement

Figure 2.2. An overview of software test code engineering (STCE)

Software Test Code Engineering [1 4]

When a test needs to be updated, to prevent the fragility of the test, the
test case needs really analyzed for checking if it really detected the defects
or if it’s just a false positive. maintenance of the tests especially for huge
projects with continuous delivery increase the cost.[14]

From another perspective, in the continuous delivery, when the environ-
ments? are different in developing process and writing new tests of the de-
veloped code, increasing the complexity in the management of test cases,
furthermore when those have their own languages, it causes the cost of mod-
ifying and maintenance double or triple. So as a consequence, the fragility of
tests also in all environments and possible languages for the project, is some-
thing that happens regularly. In this case, engineering the test case in order
to make them simple and efficient, with high possible coverage, meanwhile
of the development process, is very vital for the maintenance and life cycle
of code development and test codes.

Also could be effective to mention, besides the fragility of tests, to maintain

4environments refer to development, production, stage and ...

28

2.5 — Fragility measurement

the tests, for better management, writing beautifully has many effects in time
of updating the code. For example, when iterated works of testing define a
function, and use it in all parts, changing that function is easier in comparison
with changing all parts of the code.

29

30

Chapter 3

Methods and Study
Design

This study is designed in order to continue the work of Mobile GUI Testing
Fragility: A Study on Open-Source Android Applications|[4]. The purpose of
the mentioned study was to estimate the influence of changes in the code and
induce the changes in the test code and quantify the fraction of them based
on user metrics in the study. but the current research is done in Web appli-
cation software. Same as working of Mobile GUI Testing Fragility: A Study
on Open-Source Android Applications[4], in accordance with the mentioned
article and its acquirement the following questions will be answered by this
research:

1. RQ1 Diffusion: How many open-source web applications projects, use
the automation scripted frameworks, and how much of the test code has
coverage for the new feature of the project?

2. RQ2 Evolution: How much the test codes are getting aligned with the
new update and new modifications in releases of the project?

The first step is the estimation of the diffusion of web application scripted
automation frameworks. The first step was taking the open source real web
application projects from the GitHub repositories, which is done by taking the
query from the mentioned API and searching the repositories that they used
our considered testing frameworks in order to sanitize the search repositories.
Then studied the number of changes of the application codes and test codes
through the releases history. the study was done by the comparison of the
file by file in the repository. In the end, with the aid of Python, I tracked

31

3 — Methods and Study Design

the modification of each test file and test methods to compute the set of
changes which it helps with the computation of metrics that we considered
as an indicator for the research.

Finally, the test codes that have been modified, are extracted, in order to
be manually got examined to construct a taxonomy of modification reasons
and compute the frequency of occurrence of individual causes.

3.1 Metric definition

As the metrics were defined in the previous work in Mobile GUI Testing
Fragility: A Study on Open-Source Android Applications[4], 1 reuse those
metrics again for the study of the fragility of tests methods and test cases
in the web application open-source projects. Those metrics are divided into
the following groups:

1. Diffusion and Size Metrics: The Diffusion defines the amount of test
code while the Metrics define the size of the tested project.

2. Test Evolution Metrics: It defines the evolution of test code during
the process of growing the web application project.

The following table depicts the metrics and a short description of the
acronyms and immediately after the table, the metrics are explained in detail.

Group Name Explanation
Diffusion And Size (RQ1) | TD Tool Diffusion
NTR Number of Tagged Releases
TTL Total Test LOCs
TLR Test LOCs Ratio

Test Evolution (RQ2) | MTLR Modified Test LOCs Ratio
MRTL Modified Relative Test LOCs
TMR | Test Modification Relevance Ratio
MRR Modified Release Ratio

Table 3.1. Metrics Definition

[4]

32

3.1 — Metric definition

3.1.1 Diffusion and Size(RQ1)

For defining the amount of test code and the size of the tested project, the
following metrics were used:

1. TD (Tool Diffusion): The percentage of Web application projects that
use the considered testing tool.

2. NTR (Number of Tagged Releases): is the number of tagged releases of
each Web project (i.e., the ones that are listed by using the command
git tag on the GIT repository). This metric can be used to understand
what is the nature of the applications that are more likely tested using
GUI Automation Frameworks.

3. TTL (Total Test LOCs) is the total number of lines of code that can be
attributed to a specific scripted automation framework in a release of a
web application project.

4. TLR (Test LOCs Ratio) defined as:
TLR; =TTL;/Plocs;

J

The Plocsi is the total amount of Project LOCs, LOC!, contains the
project code and also the test codes. This metric is in the range between
0 and 1. [0,1]. This interval defines, the amount of testing code to a
considered scripted automation framework.

3.1.2 Test Suite Evolution(RQ2)

Test suit evolution moves forward to compute the development of test suite
codes with the development of web applications projects. This computation
is on each pair of consecutive tag releases.

1. MTLR (Modified Tool LOCs Ratio) defined as:
MTLR; =Tdif f;/TLOC;_4

where Tdiff is the amount of added, deleted or modified LOCs that
can be associated with a specific tool, between tagged releases i - 1

ine Of Codes
33

3 — Methods and Study Design

and i. This quantifies the number of changes performed on existing
LOCGCs that can be associated with a given tool, for a specific release of a
project. A value higher than 1 of the metric means that more lines are
added, modified, or removed in test files in the transition between two
consecutive tagged releases, than the number of lines already featured
by them.

. MRTL (Modified Relative Tool LOCs) defined as:

MRTL; =Tdif f;/Pdif f;

where Tdiffi and Pdiffi are respectively the amount of added, deleted, or
modified tool and production LOCs, in the transition between release i
- 1 and i. It is computed only for releases featuring code associated with
a given testing tool

(z'.e., TRL; > 0)

This metric lies in the [0, 1] range, and values close to 1 imply that a
significant portion of the total code churn during the evolution of the
application is needed to keep the test files written with a specific tool
up to date.

. TMR (Tool Modification Relevance Ratio) defined as:

TMR; = MRTL;/TLR;_,

This ratio can be used as an indicator of the portion of code churn needed
to adapt files relative to a given testing tool during the evolution of the
application. It is computed only when

TLR;_1 >0

We consider a value greater than 1 of this metric as an index of greater
effort needed in modifying the test code than the actual relevance of
testing code, with respect to the modification of application code. On
the other hand, we consider lower values of this indicator as evidence of

easier adaptability of code associated with a given testing tool to changes
in the AUT.

34

3.1 — Metric definition

4. MRR (Modified Releases Ratio)

computed as the ratio between the number of tagged releases in which
at least a file associated with a specific testing tool has been modified,
and the total amount of tagged releases featuring file associated with
that tool. This metric lies in the range [0,1] and bigger values indicate
minor adaptability of the test files (i.e., the set of test classes associated
with a given testing tool) to changes in the AUT.

35

3 — Methods and Study Design

3.2 Selected Testing Tools

Since our objective was to document the evolution of testing code of web
open-source applications, we focused our study on two Automation frame-
works, that allow writing any tests through hand-written code. Automation
frameworks typically identify the elements of the web through their proper-
ties or the definition of the screens of the app (e.g., the Layout files) and
offer to the developers a set of functions that allow performing actions on
any components, in addition to assertion statements to verify the current
state of the app. I selected two automation frameworks that have been cited
in the available literature. A selection criterion for the tools was the abil-
ity to produce test scripts in web applications since our metrics considered
code comparison with the production code of apps. Since the adaptation of
Selenium is a very widely used testing framework for web applications, The
most important tool for us is Selenium then Cypress. The two selected tools
cover together the principal peculiarities that can be attributed to scripted
Automation frameworks, hence the results and discussion about each of them
can be representative of other Automation Frameworks with similar charac-
teristics.

Table 3.2 summarizes the features provided by the selected tools. These
characteristics partly reflect the ones listed by [15], in their description of
scripted testing frameworks, to which we added the support to image recog-
nition. In the table, the columns are dedicated respectively to: the nature
(black box, or white box) of test scripts produced; the ability to exercise web
apps; the possibility of writing test cases spanning multiple metrics, however,
we are still unable to discriminate what is the reason behind the modifica-
tions to be performed on the test file. The higher MRTL values for the sets of
projects featuring Cypress can be justified by the small size of the sets, and
by the nature of the projects examined. While the projects featuring code
associated with Selenium and Cypress exhibit close average MTLR values,
the average MTLR on the set of projects featuring Cypress is way bigger
than Selenium. In general, a higher MRTL should mean minor adaptability
of a testing tool to modifications performed on the production code, with
more changes needed by the test code as a consequence of changes in the
production code. [4]

article

e Selenium: provides extensions to emulate user interaction with browsers.

36

3.2 — Selected Testing Tools

Table 3.2. Characteristics of the selected Testing Frameworks
Characteristics of Selected Testing Framework
Framework | Black Box | Multi App | C and R | Multi-OS Level
Selenium Yes Yes - Yes Unit-level, end-to-end level
Cypress Yes Yes - Yes Unit-level, end-to-end level
4]

lets to write interchangeable code for all major web browsers. Selenium
brings together browser vendors, engineers, and enthusiasts to further
an open discussion around the automation of the web platform. At the
core of Selenium is WebDriver, an interface to write instruction sets
that can be run interchangeably in many browsers. Once everything is
installed everything, only a few lines of code get you inside a browser.
WebDriver uses browser automation APIs provided by browser vendors
to control the browser and run tests. This is as if a real user is operating
the browser. Since WebDriver does not require its API to be compiled
with application code; It is not intrusive. Hence, you are testing the
same application which you push live.

Cypress: Cypress is a next-generation front-end testing tool built for
the modern web. We address the key pain points developers and QA
engineers face when testing modern applications. Cypress is most of-
ten compared to Selenium; however, Cypress is both fundamentally and
architecturally different. Cypress is not constrained by the same restric-
tions as Selenium. This enables you to write faster, easier, and more
reliable tests. Cypress helps to write end-to-end, component, integra-
tion, and unit tests. Cypress can test anything that runs in a browser.

3.2.1 Instrument

This section describes the tools and scripts that have been used to extract
the set of projects on which we conducted our study, and to collect statistics

about them.

1. Data extraction from Github: The procedure for searching on the API

Github was with the help of the JavaScript language based on the
queries. Since the API query result of Github is limited, searching was
based on the dates and ranges then the result is paginated and sorted

37

3 — Methods and Study Design

sequentially. so inside of the query, repositories that were created from
January 2016 until September 2020 with the keyword "Web" in the repos-
itories were extracted and saved based on the dates as a JSON file. the
number of results was 142830 repositories for all repositories with the
keyword Web in their description or readme files.

2. Git Code Search: The GitHub Code Search API allows searching for

particular keywords inside a given project. The search can be parame-
terized using the “filename” parameter, which constrains the search only
in files named as indicated (if the parameter is omitted, the keyword is
searched in all the files of the repository). The “filename” parameter can
also be leveraged to search for the presence of files named in a specific
way inside a repository, regardless of the code they contain. The “repo”
parameter is used to specify the repository in which the search has to
be performed.
Some limitations apply to the GitHub Code Search API, as explained in
the Git Documentation: (i) only the default branch (in most cases the
master branch) is considered for the code search; thus, if tests are present
in older releases but are removed in the master branch, the project will
not be extracted; (ii) only files smaller than 384kb are searchable; (iii)
only repositories with fewer than 500,000 files are searchable. The second
and third issues may be not very relevant in our context since the size of
projects and files considered is typically not so big (with the exception
of projects containing whole firm wares).

3. Count of lines of code: We used the open-source cloc tool to count the
total lines of code inside a repository (or, in general, a set of files). To
compute the number of modifications performed to files of a GitHub
project, the git diff command is used, to obtain all the modified, added,
and removed lines of code between the two releases considered. By
default, the diff command shows the modifications performed to the
whole repository; as an alternative, it is possible to specify the full paths
of a file for both releases, to obtain the modifications that were performed
only on it. The git diff command takes into account also blank lines and
rows of comments inside files. [4]

3.3 Applied Procedure

In the following paragraphs, the procedure of research is explained in detail.

38

3.3 — Applied Procedure

3.3.1 Context Definition and Test Code Search (RQ1)

The first operation performed to conduct our study was a definition of our
context, i.e. the set of projects that were used for the subsequent investiga-
tions. We performed three different steps to extract the set of projects used
as our context, the first one being a search for the word “Web Application”
or "Web" in descriptions, readme files hosted on GitHub. GitHub Search API
has been leveraged for this purpose, using the following search string with
aid of Javascript programming:

const fetch = require(’node-fetch’);
const fs = require(’fs’);

const requestOptions = {

method: ’GET’,
headers: {
"Authorization": "Basic ***x"
},
redirect: ’follow’
}s
let finalJson = [];
const callApi = async O => {

for (let i = 1; i <= 30; i++) {
const res = await fetch(’https://api.github.com/search/repo
const json = await res.json();
if (json.items) {
finalJson = [...finalJson, ...json.items];
}
}
}

callApi () .then(() => {

fs.writeFile(’September-first-web-apps.json’, JSON.stringif
if (err) return console.log(’Failed to save file’);
console.log(’File saved’);

1)

3

39

3 — Methods and Study Design

This way, we gathered a total of 142,830 GitHub repositories. We then
applied a filter to cut out from the context all the projects that have no
tagged releases. This is done because the aim of the study is to track the
evolution of the considered projects, and — as it is detailed later — differences
between tagged releases are computed. Considering that, projects without at
least one tagged release (which allows for a single comparison, made between
itself and the master release) are not of interest. To find how many tagged
releases are featured by a project, the git tag command is used. This way, we
obtained a set of 139 repositories for selenium and 59 repositories for cypress
projects with a history of tagged releases.

Looking only for the keyword “web” would have included in the results also
libraries, utilities, and applications for other systems that are engineered to
interact with Web counterparts. Therefore, a method was needed to filter
out those spurious results from the selected context.

The next step of filtering was cutting out all projects without tag releases.
As it just required the repositories with at least one tag release, in order to
make comparisons and calculations with the master branch, therefore, in the
previous result repositories that don’t contain tag releases should be pulled
off. so the calculation metrics are between the tag releases of a developing
project in its life cycle.

For removing the repositories without tag releases the script of Git Tag list
should be used in the cloned repositories and if it’s not empty we keep it
for the next filter. But since cloning all repositories was impossible, with
the first search result that was just based on the web applications, there is
a keyword with the name "tags-url" in the JSON files. again with the help
of JavaScript language if the result of the Github API query for that key
contains length, the repository has been saved in another file. And it was
repeated for all web results.

About 1813 repositories that contain tag releases were held for the next step.
The final filtering was for extracting repositories that use at least one of the
considered testing frameworks inside them. To search for any of the testing
tools considered, a GIT Code Search has been performed on the repositories
that are part of the context. The names of the tools themselves are evidence
of their usage since they are part of include statements that are needed to
make them work. Projects were then divided into two sets, according to the
tools they featured. For each of the tools, its adoption has been estimated
by computing the TA (Tool Adoption) metric. Sets of projects featuring
different tools are not necessarily disjoint: it is possible that a repository
features more than just one scripted testing tool. [4] listings

40

3.3 — Applied Procedure

const fetch = require(’node-fetch’);
const fs = require(’fs’);

const requestOptions = {
method: ’GET’,
headers: {

"Authorization": "Basic **x"
T,
redirect: ’follow’
I
fs.readFile(’./results/2- with-tags/2019/December-first-repo
if (err) {
console.log("File read failed:", err)
return
}

const repos = JSON.parse(jsonString);
let finalJson = [];

await Promise.all(repos.map(async ($repo) => {
try{

const res = await fetch(‘${$repo.html _url}/searc

const text = await res.text();

const htmlRes = JSON.stringify(text);

const counter = htmlRes.substring(htmlRes.indexO0:

if (parseInt(counter) > 0) {
finalJson.push($repo)

}

Ycatch (err) {
console.log(err);

}

return finalJson;

})) .then((finalJson) => {
if (finalJson.length){
const sanitized = finalJson.reduce((acc, curr) =
const x = acc.find(item => item.id === curr.
return x ? acc : [...acc, currl;

41

3 — Methods and Study Design

D

console.log(sanitized[0])

fs.writeFile(’./results/Ranorex/2019/December-fi.
if (err) return console.log(’Failed to save :
console.log(’File saved’);

P

1)
3

For each test file the lines of code are counted with the use of the cloc

bash tool and contribute to the computation of the Size metrics defined to
answer RQ1. TTL (Total Tool LOCs) has been computed for each project,
on the master release. As discussed earlier, the use of the git tag command
also allows obtaining the NTR (Number of Tagged Releases) metric for any
of the considered projects.
Finally, to see which of the considered projects were modified recently, the
GitHub Stats API has been used. In particular, the request “GET /re-
pos/:owner/:repo/stats /commit activity” returns the commit activity of last
year, giving the number of total commits per week; summing the values over
the year gives as result the total number of commits performed during last
year (different time intervals could also be considered by taking into account
only the values for a number of most recent weeks). Thus, projects with a
value different from 0 were tagged as part of the subsets of “alive” projects.
The data extraction procedure from GitHub has been completed between
September and December 2018.

3.3.2 Test LOCs Analysis (RQ2)

In the exploration of the history of Web application repositories, the ver-
sions that have been considered for tracking the evolution of test files are the
tagged points of release histories. In addition to those, that can be extracted
using the git tag command, the current master branches of projects have
been considered, as the last updates of the repositories with which the last
code comparisons are performed. The work through RQ2, was dependent
on each tagged release. The total amount of modified LOCs for all projects
in their master branch was computed. After that also the total amount of
modified LOCs for each test tool was computed. The command for checking
all differences between each tag is git diff. [4]

42

3.4 — Result And Discussions

To answer RQ)2, for each pair of consecutive versions of the selected projects,
the git diff command has been executed on the whole repository to obtain the
total amount of LOCs changed with respect to the previous release. Then,
the git diff command has been used again to obtain the number of LOCs
added, removed, or modified for each. The values extracted this way allowed
us to compute TLR (Tool LOCs Ratio), MTLR (Modified Tool LOCs Ratio),
MRTL (Modified Relative Tool LOCs) and TMR (Tool Modification Rele-
vance Ratio) for each test tagged release of any project. [4]

Then, global average values have been computed on the whole lifespans of the
projects, using the formulas

TLR = Avg{TLR;},
MTLR = Avgi{ MTLR;},
MRTL = Avg;{ M RTL;},

TMR = Avg{TMR;} [4] with i C <[1, NTR] being NTR the number of
tagged releases featured by the project.

The preceding step helped for computation of TLR, MTLR and MRTL.
At the end of the exploration of project history, global averages of all metrics
were computed:

NTR is the number of tagged releases featured by the project. [4]

3.4 Result And Discussions

In the following paragraphs, the results which obtained by applying the de-
scribed procedure are reported. Fach of the following subsections concerns
one of the two research questions we defined. The results measured for the
metrics defined in the section are detailed, along with the conclusions we can
base on them.

The detailed measurements extracted for all the examined projects have
been published as a data set 100 hosted on FigShare. For each testing tool,
we have created two different JSON files, one pertaining to all releases of each
project (containing their amount of production code, test code, and modified
lines, files, and methods) and one pertaining to all files of each project, and
their evolution throughout the release history. The average values that are
computed — as explained in the Procedure section — are based on this raw
data.

43

3 — Methods and Study Design

Table 3.3. Characteristics of the selected Testing Frameworks

Number of projects and TA per testing tool.

Tool Total | Releases TA
Web apps | 142829 - - [4]
Selenium 150 32444 0.10502%
Cypress 49 37143 0.03430%

Table 3.4. NTR, NTC, TTL, TLR per testing tool: average and median (in
parentheses) values for master

NTR, TTL, TLR per testing tool: average and median (in parentheses) values for master

Tool NTR TTL TLR
Selenium | 85 (67) | 208 (550) 13.537%
Cypress | 112 (381) | 10372 (118468) 2.6%
Average 98 5290 8.09%

[4]

3.4.1 RQ1: Adoption

initially are gathered a total of 142829 GitHub repositories featuring the
term Web or Web Application in their names, descriptions, or readme files.
Then, a significant amount of projects were pruned because of their lack of
tagged releases (so they had no history to be investigated). A final set of 199
Web app projects was obtained from 2016 to September 2020 which contain
Selenium and Cypress.

in tables 3.3 and 3.4 the measures answering the metrics pertaining to RQ)1
are shown. A summary of the definitions of the metrics is given in table
3.5. The columns of table 3.4 show, respectively: the total number of projects
featuring each of the two tools considered; the number of projects featuring
at least one tagged release; the Tool Adoption (i.e., TA) metric, computed
for each of the selected testing frameworks. Table 3.4 shows the average and
median values for the Number of Tagged Releases (NTR), Total Tool LOCSs
(TTL), and Tool LOCs Ratio (TLR), computed on the sets of projects fea-
turing each testing tool, for their master release. The last row in table 3.4
shows average values for all the considered projects, weighted by the number
of projects for each set. [}]

Considering the overestimation due to possible overlaps (since a single project

44

3.4 — Result And Discussions

Table 3.5. Metrics pertaining RQ1

Metrics pertaining RQ1

Name Explanation

TA Tool Adoption [4]
NTR | Number of Tagged Release
TTL Total Tool LOCs

can feature multiple testing tools, hence the sets for the individual tools are
not necessarily disjoint) about 0.139% of the projects feature tests belonging
to one of the two selected tools. None of the testing frameworks reached by
itself an important level of adoption in the considered set of Web Application
open-source projects.

FEven though the total number of Web application projects extracted can take
into account some projects that are not likely to feature test tools (e.g. exper-
iments, duplicates, exercises, prototypes, and projects that are abandoned at
very early stages) the measures computed for the metric TA give evidence of
the lack of extensive usage of scripted automated testing on open-source Web
app projects. Anyhow, it is worth highlighting that the study we performed
s limited to the testing tools we considered, i.e. it is possible that different
scripted testing tools are used by some other projects of the context. [4]

The average and a median number of test files in the sets of projects can be
quite small.

Considering the overestimation due to possible overlaps (since a single project
can feature multiple testing tools, hence the sets for the individual tools are
not necessarily disjoint) of the project’s feature tests belonging to one of the
two selected tools. None of the testing frameworks reached by itself an im-
portant level of adoption in the considered set of Web application open-source
projects. [4]

In particular, the absolute number of projects featuring Selenium and Cypress
test cases, respectively 140 and 59, is practically irrelevant. Also, other tools
like Ranorex, Sikuli, and Watir were considered but no open-source projects
have been found on GitHub.

FEven though the total number of Web App projects extracted can take into
account some projects that are not likely to feature test files (e.g. experi-
ments, duplicates, exercises, prototypes, and projects that are abandoned at
very early stages) the measures computed for the metric TA give evidence of
the lack of extensive usage of scripted automated testing on open-source Web

45

3 — Methods and Study Design

App projects. Anyhow, it is worth highlighting that the study we performed
s limited to the testing tools we considered, i.e. it is possible that different
scripted testing tools are used by some other projects of the context. [4]

The average and a median number of test files in the sets of projects can be
quite zero (e.g., for Watir, Ranorez, and Sikuli tools), in which — usually —
one test file is written specifically for each Activity featured by the applica-
tion. In most applications, this is particularly true in the case of small and
even experimental open-source projects. [4]

Average TTL and TLR values are very large for the sets of projects featuring
both Selenium and Cypress; however, such result is heavily influenced by the
small size of the sets (respectively, 23 and 20 projects) and by the presence
of the full Selenium framework for Web applications, counting 172,126 tool
LOCs of Selenium and counting 490,948 tool LOCs for Cypress. The influ-
ence of those individual projects on the average values is confirmed by the
largely smaller corresponding median values. [4]

The fact that the set of projects featuring Selenium has the lowest average
TTL can be explained by the following reasons: (i) using a white-box testing
technique allows to exercise of the functionalities of the application with little
coding effort; (ii) the framework is not accessible even for non-experienced
developers, and its usage is encouraged by Web applications, leading it to be
used also in very small projects, in tryouts, and even for experimental and
partial coverage of applications use cases. [4]

The different size of the projects in which Selenium and Cypress are typi-
cally used is confirmed by the close average TLR wvalues the sets of projects
have, while the respective average TTL wvalues are very different (with the
TTL computed for Cypress nearly two times as big as the one computed for
Selenium). Slightly bigger test files.

3.4.2 RQ2 - Evolution

Table 3.6 shows the statistics collected about the average evolution of test
code, for the two selected testing frameworks. A summary of the definitions
of the metrics is given in table 3.7. For every set, TLR, MTLR, MRTL,
TMR, and MMR have been averaged on all the projects. The values in the
last row are obtained as averages of the two values above, weighted by the size
of the two sets. [4}]

The wvalues reported for the average Tool LOCs Ratio (TLR) show that —
when present — the amount of testing code associated with the selected testing
frameworks can be an important portion of the project during its life-cycle if

46

3.4 — Result And Discussions

compared to the number of LOCs of production code. The box plots in Figure
3.1 show the distribution of TLR wvalues for the two sets of projects. The
average values range from about 10% (for the set of Selenium projects) to
3% (for the set of Cypress projects). The TLR averaged over the releases of
applications is typically smaller than the TLR computed for master releases
(see table 3.3): this may be attributable to the gradual of construction of test
suites, which may be very small or absent in initial releases. [4]

Average Modified Tool LOCs Ratio (MTLR) measures show that typically
around 314 of 23 repositories for Selenium and 696 of 20 repositories for
Cypress of lines of test code are modified between consecutive releases of
the projects featuring the two analyzed automation frameworks. Very small
MTLR wvalues were obtained for the projects featuring Cypress. In general,
this should be a consequence of bigger test suites, in terms of absolute LOCS,
with respect to the ones written with other testing frameworks.

Test LOC Ratio (TLR)

40%

35%
30%
25%
20%
15%

10% 3¢

5%
0%

Cypress Selenium

Figure 3.1. Test LOC Ratio (TLR)

[4]

Hence, the influence of a similar amount of absolute modified LOCs would
result in a lower MTLR value. The highest value was found for the set of

47

3 — Methods and Study Design

4%

3%

3%

2%

2%

1%

1%

0%

Distribution of MRR

Cypress Selenium

Figure 3.2. Distribution of MRR

[4]

48

3.4 — Result And Discussions

projects featuring Selenium: this can be explained with the very high percent-
age of total LOCs in files associated with Selenium for these repositories.
However, the set of projects featuring Cypress, which also was characterized
by a high average TLR, did not exhibit the same trend, having a lower MTLR:
this should mean that, even though the important ratio of testing code above
project code, few modifications (in both production and test code) were made
between subsequent releases on test code associated with Cypress'. [4]

The measures about Modified Relative Tool LOCs (MRTL) show that, on av-
erage, when the two selected testing frameworks are used, the 57% and 51%
of the modified LOCs belong to test files containing code associated with re-
spectively Selenium and Cypress frameworks. With this metric, however, we
are still unable to discriminate what is the reason behind the modifications to
be performed on test files. The higher MRTL values for the sets of projects
featuring Selenium can be justified by the small size of the two sets, and by
the nature of the projects examined. For instance, the Selenium framework,
on GitHub, is subject to heavy modifications, but in this particular case files
that are actually the code of the testing tool should be mistakenly recognized
as test code. While the one set of projects featuring code associated with Cy-
press exhibit close average MTLR values. In general, a higher MRTL should
mean minor adaptability of a testing tool to modifications performed on the
production code, with more changes needed by the test code as a consequence
of changes in the production code. [}]

The mean values of Tool Modification Relevance Ratio (TMR) stayed in the
range between 0 and 420591 for big-sized sets of projects, with lower values
for the sets featuring both Selenium and Cypress. In general, those values
imply that the amount of churn needed for the code associated with a specific
testing framework is not linear with the relative amount (with respect to total
production LOCs) of such code inside the application: in our case, on aver-
age, the ratio between the intervention on test code and the intervention on
all production code is about 3/4 of the ratio between test and all production
code. The higher TMR value for Selenium is due to some projects in which
TLR s rather small, and where in some releases all modified LOCs belong
to test files (thus leading to MRTL values very close to 1). [4]

The Modified Releases Ratio (MRR) metric gives an indication of how
often the developers had to modify any of the files associated with the con-
sidered testing frameworks when they published new releases of their projects.
Box plots in figure 3.2 show the distribution of MRR for the projects of the
considered context. On average, 2.549% of releases needed modifications in

49

3 — Methods and Study Design

Table 3.6. Measures of RQ2 - the evolution of test code (averages on
the sets of repositories)

Tool TLR | MTLR | MRTL |TMR | MRR
Selenium | 36.53 | 18.16 10.25 4.3 | 3.265
Cypress | 9.42 29.01 | 133.39 5 1.833
Average | 22.975 | 23.585 | T71.82 4.65 | 2.549

[4]

Table 3.7. Metrics pertaining RQ2

Name Explanation

TLR Tool LOCs Ratio
MTLR Modified Tool LOCs Ratio f
MRTL Modified Relative LOCs Ratio
TMR | Tool Modification Relevance Ratio
MRR Modified Releases Ratio

any of the test files (with a mazimum of 3.265% for the set of projects fea-
turing Selenium, and a minimum of 1.833% for the set of projects featuring
Cypress). Since releases may be frequent and numerous for GitHub projects,
this result explains that the need for updating test files is frequent for Web
developers that are leveraging the analyzed testing frameworks. [4]

It is however worth underlining that those two comparison metrics cannot
serve as a precise estimation of the relative importance and needed effort
for different typologies of testing: as discussed in more detail in the Threats
to Validity section, an exact comparison between two testing frameworks is
never possible even if they are based on the same coding language. [4]

We computed a set of evolution metrics on different subsets of the full context
of applications. [4]

Projects with at least 1000 LOCs of code associated with Cypress tend to
have a smaller TLR value with respect to the full set of projects. This can
be evidence of the fact that there is no linear link between the total amount
of production and test code, meaning that test suites tend to be smaller, if
compared to production code, for larger projects. This trend is confirmed by
all the other sets of projects. Furthermore, low TLR values may suggest that
the testing code in the selected projects provides only partial coverage of the
production code: in such case, it is reasonable that there is not an exact map-
ping between the amount of production code and test code, with a divergence

50

3.5 - THREATS TO VALIDITY

that becomes bigger with the size of the application. No relevant differences
are found for the other evolution metrics (with the obvious exception of TMR,
which depends on the TLR value). [4]

In general, we suppose that every testing framework brings a constant over-
head of LOCSs, which makes the TLR metric bigger for small projects.

Table 3.8. Percentage of projects without modifications in test files

Tool Unmodified File
Selenium 45% [4]
Cypress 56.52%

It must also be considered that the averages reported are heavily lowered by
those projects in which files associated with the analyzed testing frameworks
are inserted — at the beginning or at some point in their history — but are
never modified later. [4]

In table 3.8 we show: the percentage of projects whose test files associated
with a given testing framework are never modified; the percentage of projects
with no modifications in files associated with a given testing framework (i.e.,
only additions and modifications of test classes are performed). For instance,
in the case of the set of projects featuring Selenium, 55% out of the 23 projects
have modified test files between consecutive tagged releases. [4] The graph in
fig. 3.3 shows, the ascending MRR measure for all the projects of the context
(regardless of the specific testing tools they feature). It is evident from the
graph that almost half of the test files are never modified during the lifespan
of the project they belong to; this supports our assumptions that test files are
often not utilized or abandoned. These results may suggest that the test code
associated with the studied testing frameworks is subject to a certain level
of aging.[16] With the static analysis of code that we have performed in this
work, however, we cannot discriminate between test files that are not modified
because they do not need to and those that are not modified because they are
no longer utilized by the developers, but are not removed from the project. [4]

3.5 THREATS TO VALIDITY

Threats to internal validity. We have identified the following threats to the
validity of our conclusions:

e The test file identification process is based on some keywords specific to

o1

3 — Methods and Study Design

Ascending MRR Measure for the
whole context of Web Application
projects

20.000
15.000
10.000

5.000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Figure 3.3. Ascending MRR Measure for the whole context of Web
Application projects

[4]

52

3.5 - THREATS TO VALIDITY

each testing tool: any file containing one of such keywords is considered
as a test file without further inspection. This procedure may miss some
test classes, or consider a file as a test file mistakenly.

The number of tagged releases is used as a criterion to identify a project
as worthy to be considered for our investigations; it is not assured that
this check is the most dependable one for pruning negligible projects.

The metrics we defined have not been tested outside the scope of this
study, hence we can not ensure the correctness of the assumptions we
based on them.

Structure provided coverage, and the quality of the developed test cases
have not been controlled and taken into account by the automated pro-
cedure for computing the metrics. Hence, the effects that low-quality
tests have on maintenance efforts are not taken into consideration in
the discussion we provide.

The performed study was purely static, i.e. test files were not executed
to understand whether they were actually working even though they were
not subject to modifications. This threat may add biases to the number
of test files that we provided as results since they do not consider test
code that should be modified because of changes in the AUT or its code
but is abandoned by developers. Threats to external validity. We identify
the following threats to the generalized of our work:

Testing tools and techniques adopted by relevant industrial practitioners
may vary stgnificantly from the ones discussed in this work, and by the
related ones discussed in earlier sections. It is not assured that our
findings, based on a very large repository of open-source projects, can be
applicable to the development of commercial projects.

Our findings are based only on the GitHub open-source project repository.
FEven though it is a very large repository, it is not assured that such
findings can be generalized to closed-source Web applications, or to those
taken from different repositories.

We have collected measures for just two scripted automated testing tools.
It is not certain that such a selection of tools is representative of other
categories of testing tools or even different tools of the same category,
which may exhibit different trends throughout the history of their AUT.

[4]
53

3 — Methods and Study Design

3.6 CONCLUSIONS

In this work, we aimed at taking a snapshot of the usage of automated testing
frameworks among Web application open-source projects. We quantified the
use of a set of two tools that can be used for testing and that are cited in
available literature — Selenium and Cypress — in the projects hosted by the
GitHub portal. [4]

We found that the level of adoption of the considered testing frameworks
among Web application projects hosted on GitHub is very high. The whole
adoption of all the two testing tools considered is about 1.26% of all projects
that have a release history. For what concerns individual projects. [/]
Concerning the evolution of test code, on average nearly 8.9% of the total
changed lines, between consecutive releases of the same project, belong to the
code associated with the selected test frameworks. Such a percentage is quite
low if it is considered that code churn is inevitable during the evolution of
an application, and tests must adapt to changing requirements or any kind
of change in the AUT. However, the average amount of changed lines may
also reflect a relatively small coverage provided by test files developed with
the studied tools, as it may be suggested by the average relevance of testing
code among total production code. Albeit a linear correlation between code
churn and man hours in updating code is difficult to proven, this ratio can be
considered as a preliminary indication of the amount of effort that develop-
ers must spend to keep their test files up to date with modifications that are
performed on production code. [4]

In addition to that, when test code associated with two testing frameworks is
present, most of the time more code churn is needed in keeping up to date
with the latter (with a ratio of even 5 to 1 for the considered tools). A higher
maintenance cost for code related to testing was expected: testing frameworks
allow to perform system-level testing to interact with the AUT from the level
of abstraction presented to the user and are affected by modifications per-
formed on any level of abstraction of the application functionalities. Hence,
it is reasonable that tests require more maintenance during the normal evolu-
tion of a web application, which is — by nature — typically subject to the rapid
evolution of its testing. [4]

These results, however, confirm that — as it is deduced by existing surveys
among open-source developers[15]— maintaining a test file is a rather com-
plex and time-consuming task, that can make open-source developers neglect

54

3.6 — CONCLUSIONS

to test at all, or abandon test code — without making it evolve with the appli-
cation — after it has been written. []]

Further empirical studies in this field may directly observe open-source as
well as industry practitioners, in order to quantitatively measure their effort
in keeping test code aligned with the evolution of the apps and their tests, e.q.
in terms of man-hours per release. Furthermore, dynamic evaluations can be
performed to quantify the amount of non-working test code kept by develop-
ers in their project without performing maintenance on it and to evaluate the
way developers cope with aging test code. [4]

95

o6

Bibliography

[1] Monika Sharma, Rigzin Angmo, Web based Automation Testing and
Tools, International Journal of Computer Science and Information Tech-
nologies, 2014.

[2] Macario Polo, Pedro Reales, Mario Piattini. Computing Test Automation,
IEEE Software, VOL. 30, NO. 1, January, 2013.

[3] Fei Wang, Wencai Du, A Test Automation Framework Based on WEB,
IEEE/ACIS 11th International Conference on Computer and Information
Science, 2012.

[4] R. Coppola, M. Morisio and M. Torchiano, "Mobile GUI Testing
Fragility: A Study on Open-Source Android Applications," in IEEE
Transactions on Reliability, vol. 68, no. 1, pp. 67-90, March 2019, doi:
10.1109/TR.2018.2869227.

[5] Junyi Wang, Xiaoying Bai, Haoran Ma, Linyi Li, Zhicheng, Cloud API
Testing, 10th IEEE International Conference on Software Testing, 2017.

[6] Galin, Daniel, John Wiley Sons. Software Quality - Concepts and Practic,
2018.

[7] William E. Lewis, Software Testing and Continuous Quality Improvement,
ISBN 0-8493-2524-2 (alk. paper)

[8] Thomas Stober, Uwe Hansmann, Best Practices for Large Software De-
velopment Projects, Springer Heidelberg Dordrecht London New York,
2010

[9] . P. Seth, O. Taipale and K. Smolander, "Organizational and customer
related challenges of software testing: An empirical study in 11 soft-
ware companies," 2014 IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS), Marrakech, 2014, pp. 1-12, doi:
10.1109/RCIS.2014.6861031.

[10] , J. Katharina, T. Matthias, and F. Houdek, "Poster: Challenges
57

Bibliography

with Automotive Test Case Specifications," 2018 IEEE/ACM 40th In-
ternational Conference on Software Engineering: Companion (ICSE-
Companion), Gothenburg, 2018, pp. 131-132.

[11] , R. Ramler and J. Gmeiner, "Practical Challenges in Test Environment
Management," 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation Workshops, Cleveland, OH, 2014, pp.
358-359, doi: 10.1109/ICSTW.2014.41.

[12] , M. Leotta, D. Clerissi, F. Ricca and P. Tonella, "Capture-replay vs.
programmable web testing: An empirical assessment during test case evo-
lution," 2013 20th Working Conference on Reverse Engineering (WCRE),
Koblenz, 2013, pp. 272-281, doi: 10.1109/WCRE.2013.6671302.

[13] , B. W. Boehm, "A spiral model of software development and en-
hancement," in Computer, vol. 21, no. 5, pp. 61-72, May 1988, doi:
10.1109/2.59.

[14] , V. Garousi and M. Felderer, "Developing, Verifying, and Maintaining
High-Quality Automated Test Scripts," in IEEE Software, vol. 33, no. 3,
pp. 68-75, May-June 2016, doi: 10.1109/MS.2016.30.

[15] , M. Linares-Va squez, K. Moran, and D. Felderer, Poshyvanyk, “Con-
tinuous, evolutionary and large-scale: A new per- spective for automated
mobile app testing,” in Software Maintenance and Evolution (ICSME),
2017 IEEE Inter- national Conference on. IEEE, 2017, pp. 399-410.

[16] , R. Feldt, “Do system test cases grow old?” in Software Testing, Verifica-
tion, and Validation (ICST), 2014 IEEE Seventh International Conference
on. IEEE, 2014, pp. 343-352.

o8

	Web Testing Fragility
	List of Tables
	List of Figures
	I First Part
	Introduction
	Testing web applications

	Review and Background
	Web Applications
	Testing web applications
	Software Development Methodology And Testing
	Challenge for testing web applications
	Fragility measurement

	Methods and Study Design
	Metric definition
	Diffusion and Size(RQ1)
	Test Suite Evolution(RQ2)

	Selected Testing Tools
	Instrument

	Applied Procedure
	Context Definition and Test Code Search (RQ1)
	Test LOCs Analysis (RQ2)

	Result And Discussions
	RQ1: Adoption
	RQ2 - Evolution

	THREATS TO VALIDITY
	CONCLUSIONS

	Bibliography

