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Summary

In recent decades there has been an increasing shift to prototyping objects digitally
using Computer Aided Design (CAD). While this software is great for rapid
prototyping and is adopted in many contexts, turning the digital object into a
real object has been an open problem for several years. Before the advent of 3D
printers, the main technique used was Subtractive Manufacturing (SM), which
consists of modeling a 3D object starting from a large block and removing material
until it reaches the final shape. While this technique works, it is highly inefficient,
for several reasons. Lately, the situation has changed with 3D printers becoming
mainstream. Modern 3D printers use a technique, called Additive Manufacturing
(AM), to create a physical object, starting from the digital counterpart. This process
works by dividing the digital design into multiple layers and printing the physical
object layer by layer, extruding new material from time to time (usually ABS or
PLA). The whole procedure typically takes a long time and is not uncommon for
the printing process to give an unsatisfactory result. Specifically, it may happen
that, for various reasons, the final printed product contains one or more anomalies.
When this happens, depending on the type of anomaly that has occurred and the
context of use of the final product, the object could be discarded, leading to a
considerable loss in terms of time and cost. Therefore, the faster the anomaly is
detected, the better.

Carrying out monitoring of a 3D printing process is a very tedious and time-
consuming task, which makes manual handling in large contexts, with multiple
machines, impractical. Starting from these considerations, the aim of the thesis is
to identify an innovative solution to perform the anomaly detection task for a 3D
printing process, with the aim of identifying the occurrences of printing defects in
near real time. The proposed solution receives a real-time video stream of the 3D
printing process from a webcam and uses Computer Vision (CV) techniques for
image analysis. The video stream is received as input to the Anomaly Detection
model using the Real Time Stream Protocol (RTSP) and each frame is analyzed
individually using a specific pipeline: first, a detection task is performed to identify
the nozzle of the 3D printer and the area underneath, then the detected area is
analyzed using a classification task, which results in the presence or absence of
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anomaly for that frame. Both steps of the pipeline have been implemented using
Machine Learning libraries specifically adapted and trained for this use case. The
Detection of the 3D printer nozzle is performed using You Only Look Once v5
(YOLOv5), which is a Machine Learning framework that employs convolutional
neural networks (CNNs) to provide real-time object detection. The output of this
first step is the identification of the Area Below the Nozzle (ABN) containing the
portion of the 3D object currently being printed. The ABN is then passed to the
second step which consists of a classification task implemented using TensorFlow-
Lite library and EfficientNet-Lite as the backbone network. The output of this
step is a binary classification label which holds the information ’Anomaly’ or ’No
Anomaly’ for the frame analyzed. The obtained anomaly detection model can
find several types of 3D printing defects like First Layers issues, Stringing, Layer
Shifting, Under Extrusion, Over Extrusion and Detach. Since the thesis project
has been performed in collaboration with Machine Learning Reply and a Dutch
multinational lighting corporation, both steps have been trained using data coming
from the lighting company production process of 3D printed lamps. Furthermore,
the system has been optimized to work in tiny arm edge-devices like the Raspberry
Pi.

In conclusion, the proposed solution can perform near-real time anomaly detec-
tion of a RTSP video stream showing a 3D printing process. With this strategy,
if an anomaly is detected the printing process can be stopped before completion,
thus resulting in a save of printing time and material for the company.
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Chapter 1

Introduction

While Computer Aided Design (CAD) software has been used for decades for rapid
prototyping, turning the resulting digital object into a real one has always been a
challenge. However, this has changed with the advent of 3D Printing technology,
which is still rapidly evolving today. The first commercialized 3D Printing process
was released by Charles Hull in the 1980s [1], whose main functioning consisted
in building up the object layer by layer, using a UV light to cure and bond a
photopolymer resin. Nowadays, thanks to its versatility and continuous innovation,
3D printing technology is used by companies to improve manufacturing productivity
and it is applied in many fields such as agriculture, healthcare, automotive industries
and many others, to build any kind of open source design [2].

Modern 3D Printers use a technique called Additive Manufacturing (AM) in
order to create a physical object, starting from the digital counterpart. In 2021,
the International Organization for Standardization (ISO) created the standard
ISO/ASTM 52900, containing terms definition in the field of AM. According to [3],
AM can be defined as:

"[The] process of joining materials to make parts from 3D model
data, usually layer upon layer, as opposed to subtractive manufac-
turing and formative manufacturing methodologies."

This means that, differently from other technologies such as Subtractive Manu-
facturing (SM) (see Chapter 2), 3D printing proceeds, starting from the CAD
drawing, by dividing the digital design into several layers and printing the physical
object layer by layer, depositing new material each time. Some of the advantages
of 3D Printing, with respect to traditional manufacturing methods include: the
possibility to create complex designs; the ability to create objects within hours
(depending on the object design and complexity), together with the possibility to
obtain fast design thanks to CAD files; the little wastage of material, compared
to other methods such as SM. Despite the advantages mentioned above, overall
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Introduction

the 3D Printing process requires a certain amount of time (which varies depending
on the design complexity), during which problems may occur. Specifically, it can
happen due to several factors, that the object is printed with one or more defects
(or anomalies) in it (see Section 2.2). Depending on the context of use of the
object and the severity of the anomalies it contains, the final product could be
rejected, resulting in a loss in terms of production time and printed material. If
an irremediable defect occurs in the first printing layers and it is not identified
as soon as possible by the 3D machine operator, waste increases as the process
continues unnecessarily. Therefore, to reduce the damage it is important to carry
out continuous monitoring of the process of print and to act as soon as possible.
However, this manual monitoring is a very laborious and time consuming procedure,
as well as being unfeasible in large scale settings, with many machines.

In order to alleviate the problems described above, deriving from the introduction
of defects during the 3D Printing process, the thesis focuses on creating an auto-
mated system for detecting defects using Machine Learning (ML) techniques, with
the aim to provide, as main feedback to the machine operator, a textual warning
as soon as the introduction of an anomaly in the object being printed happens. All
the thesis work has been done in partnership with Machine Learning Reply [4] and
a Dutch multinational lighting corporation. ML Reply is the Reply group company
specialized in ML & AI solutions and mainly devoted to enhance existing processes
or introducing new AI based applications, supporting its customers in a end-to-end
development. The project developed, for the 3D Printing Anomaly Detection, falls
under the scope of the European Institute of Innovation and Technology (EIT)
Digital [5] program, whose mission is to increase competitiveness in the digital
sector in Europe, valuing the cooperation between leading business organisations,
education and research institutes, as well as promoting digital innovation and
entrepreneurship by creating suitable environments for the development of creative
and innovative proposals.

Given the introduction above about the high level context and main objective
of the thesis, the remaining chapters contain all the details on the thesis work and
are divided as follows:

• Chapter 2: This chapter first covers the main concepts about 3D Printing
technology, also known as Additive Manufacturing (AM), as well as briefly
describing the main differences from Subtractive Manufacturing (SM) technol-
ogy. Next, it introduces the concepts of Print Quality and Quality Control, in
the context of 3D printing, as important aspects to take into consideration
during the production of a 3D printed object, together with the concept of
Anomaly, which is responsible for the print quality degradation. Lastly, the
chapter presents a brief overview about the most frequent types of anomalies
in 3D printing processes, together with some examples of Computer Vision

2



Introduction

approaches available in literature, as regards detection and classification of
anomalies in 3D Printing context.

• Chapter 3: This chapter presents and analyses the main concepts about Com-
puter Vision, paying particular attention to the problem of Visual Anomaly
Detection and its use case concerning Defects Detection, applied to the in-
dustrial sector. As regards Visual Anomaly Detection, both supervised and
unsupervised approaches are highlighted, with more emphasis to the super-
vised setting which is the one chosen for the case of study under analysis. The
last two sections named YOLO (see Sec. 3.3) and EfficientNet (see Sec. 3.4),
contain the basic principles about the two Deep Learning strategies, which are
the ones used to create the ML system for 3D Printing Anomaly Detection.

• Chapter 4: This chapter introduces the 3D Printing Anomaly Detection Model
proposed for the thesis work, explaining the high level pipeline implemented
to perform anomaly detection at inference time. Each pipeline component
is described in more detail in a dedicated section, as follows: the Input (see
Sec. 4.2) refers to the video stream showing the 3D printing process; the
Detection task (see Sec. 4.3) is devoted to the identification of the nozzle for
each frame in the video stream; the Classification task (see Sec. 4.4) is devoted
to the classification of the Area Below the Nozzle (ABN) into "anomaly" or
"no anomaly"; the Output (see Sec. 4.5) gives the warning if an anomaly is
found for the frame being analyzed.

• Chapter 5: This chapter describes from a technical point of view the imple-
mentation of the 3D Printing Anomaly Detection Model and its application
to the 3D printing processes of the lighting company. Specifically, the Data
Acquisition and Preparation and the DL Model Training phases are presented
both for Nozzle Detection (see Sec. 5.1) and ABN Classification (see Sec. 5.2),
the outputs of which consist of two trained models to be used for inference
on new data. Lastly, Section 5.3 explains, at a lower level with respect to
Chapter 4, how Nozzle Detection and ABN Classification phases are applied
in cascade to perform anomaly detection at inference time.

• Chapter 6: This chapter discusses the performance results obtained for
the 3D Printing Anomaly Detection Model. The evaluation is split in two
phases: one related to Nozzle Detection (see Sec. 6.1), which uses the metrics
most common in the context of object detection and one related to ABN
Classification (see Sec. 6.2), which employs the metrics for binary classification,
taking into account the imbalance problem among the class "anomaly" and "no
anomaly". Section 6.3 includes some optimization techniques that are applied
to optimize the model performance in terms of latency, allowing to obtain a
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ML system able to accomplish the anomaly detection task in near real time,
when a 30 FPS video stream is provided as input.

• Chapter 7: The last chapter contains a synthesis of all the thesis work,
starting from the objective of the thesis and continuing with the results
obtained for the solution, implemented with the aim to alleviate the problems
highlighted in Chapter 2. Then, some of the limits of the proposed approach
are presented, together with possible future additions to improve the actual
ML system.
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Chapter 2

3D printers

This chapter introduces the main concepts about 3D printers, together with some
of the most common anomalies that can happen during the 3D printing process.
The last part is devoted to a brief description of the applications that can be found
in literature for automated detection and classification of defects, in the context of
3D printing.

2.1 Overview
Over the years, two kind of manufacturing technologies have drastically transformed
the way products, parts and prototypes are produced: Additive Manufacturing (AM)
and Subtractive Manufacturing (SM). Traditionally, Subtractive Manufacturing
has been used in order to bring a 3D object to life. This method builds the
final model starting from a large initial solid block and removing parts from time
to time. SM process can be fulfilled by hand or, more commonly, by using a
computer numeric control. Today, the most common SM process is Computer
Numerical Control (CNC) machining. The other technology that has taken hold
is Additive Manufacturing, which is widely known as 3D Printing. Differently
from SM, AM process consists in building an item, under automated control, by
depositing repeated layers of solidifying material, until the final shape is assembled.
The term AM reflects the fact that new material is added layer by layer and joined
to create a 3D envelope. Although AM and SM use different approaches, they have
an overlapping range of applications. In fact, they are often used side by side to
optimize production, choosing the specific type of process based, for example, on
production volume or stage of development. Below some of the differences between
the two technologies are summarized:

• Available materials: SM uses a great range of materials such as stone, wood,
glass, foam, plastics and (soft/hard) metals. AM instead works mainly with
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plastics, plastic derivates, resins and some metals.

• Design complexity: AM is more suitable to build small intricated and
complex shapes with respect to SM, which instead is used especially for
manufacturing voluminous objects.

• Accuracy: SM reaches a higher accuracy level with respect to AM which
often needs to perform surface machining after printing, for the parts that
need high accuracy characteristics.

• Surface finishing: Due to the layering process, products obtained with AM
may contain small pores and this can also lead to structural fragility in the
final item. For this reason, they often need an additional phase of cleaning and
finishing to obtain better product characteristics and aspect. On the other
hand, SM allows to obtain more robust results with a better finish, including
a great variety of surface finishing such as smooth, mottled and stepped.

• Waste material: AM produces less "waste material" (meaning the parts of
material that are removed from the final product) with respect to SM, since it
constructs the object from scratch.

• Speed: AM is often slower in production when dealing with large objects.

The thesis work focuses on the Additive Manufacturing process, since the
objective is to perform anomaly detection in the context of a 3D Printing process.
A Three-Dimensional (3D) Printer is a type of material design machine, which

Figure 2.1: The image illustrates the main players in the 3D printing process.
Input: The digital representation of the object to be 3D printed. 3D Printer:
The device used for 3D printing. Output: The physical object obtained.

allows to create physical 3D objects, starting from a 3D digital model. Similarly
to a traditional two-dimensional (2D) printer, it receives a digital design as Input.
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However, it differs in the Output since, while a 2D printer reproduces the digital
prototype on paper, typically using ink, the 3D printer instead generates a three-
dimensional product using a specific type of material (see Figure 2.1).

2.2 Printing Anomalies
In the context of 3D printers, Print Quality is a key aspect to consider. It refers to
the goodness of the final product, which can be affected by various external factors
that must be taken into consideration during a 3D Printing process.

Newer 3D printers, based on Fused Filament Fabrication (FFF), usually imple-
ment sensors that are capable to monitor different parameters in order to guarantee
a better quality of the final product. However, these checks generally are limited
to parameters such as nozzle temperature and build platform and are not capable
of performing an exhaustive defects detection. This means that, in many cases,
if the process leads to the formation of defects, printing is not interrupted until
the operator intervenes, leading to wasted material, effective machine operation
time, power, as well as potential generation of malfunctions in machine parts (e.g.,
nozzle clogging). Since 3D printing is subject to multiple production errors, from
small inaccuracies to complete build failures, a skilled employee is necessary to
recognise a failure and react accordingly to the type of error. This process is human
error prone and requires each worker to constantly supervise the process. In large
settings, where several printers operate simultaneously, it is unfeasible to perform
a continuous monitoring by means of an operator, since each employee can be
assigned to several machines. Furthermore, due to safety concerns that arise from
particles and volatile organic compounds (VOC) emitted by the FFF 3D printers,
it is mandatory to minimize the physical presence of humans near the printers. In
this setting, remote supervision using cameras feeds of the printing process can be
used to alleviate the safety problem during the quality monitoring.

One of the main problem is how to determine when a 3D printed product is
considered "acceptable". The concept of "acceptable" is not easily standardized
as it strongly depends on the product itself and also on its context of use. Since
quality is very flexible, Quality Control is not easy to fully automate; despite that,
some degree of automation could be very useful to speed up the production and
save material, time and personnel.

A 3D object can be affected by anomalies, which lead to a degradation in
the Print Quality of the final product. An Anomaly indicates the presence of an
element in the form of an irregularity that cannot be traced back to the desired
prototype, the triggering cause of which can be multiple. Many different anomalies
can be detected during the 3D printing process, in different stages of the operation.
The type of anomalies mainly depends on the nozzle system (type of object to be
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obtained, nozzle and material) and each of them has different characteristics that
can lead to a different reaction by the operator/system. Nevertheless, it is possible
to identify a list of the most common anomalies that can be found during a 3D
printing process [6]. The list is presented below, together with Figure 2.2 showing
a graphical example for each of the indicated anomalies:

1. Stringing And Oozing: This type of defect, also known as "hairy prints",
consists in small strings of filament left on a printed model. It can be seen as
a line of filament that connects different parts of the object to be built and
that forms when the nozzle moves but the filament continues to flow from it.
Usually it is due to very high printing temperatures and/or the application of
an incorrect setting for the retraction mechanism. A stringing defect can be
removed manually quite easily, without altering the structure of the object,
once its creation is finished. For this reason, it often does not require the stop
of the printing process as reaction from the operator/system, but a notification
is sufficient.

2. Spaghetti: Its name derives from its resemblance to spaghetti food. It
occurs when the filament starts to extrude creating a nonsensical pile of
product instead of the desired object. Sometimes the print can be saved as
the subsequent operations after the point of defect occur correctly and the
excess material can be removed at the end of the print.

3. Nozzle blob: Nozzle blobs, meaning mass of plastic accumulated around
the hotend, often start with a poor initial layer that detaches and starts to
spaghetti. Since the hot filament starts to spaghetti so close to the bed, it
starts to ball up and become a blob that can even get big enough to cover the
nozzle and some of its inner and surrounding areas.

4. Under Extrusion/Over Extrusion: In both cases, the resulting print
structure resembles the desired model, but the surface has an undesirable
texture. Concerning over extrusion the result is to give a melted or uneven
finish to the surface. Differently, under extrusion can cause holes, meaning
that the material is missing in some print layers. Objects subjected to under
extrusion tend to be fragile and are prone to break ups. There can be several
factors that lead to under extrusion issue. To mitigate this problem good
practices include:

• Calibrating the first layer;
• Setting up the slicer to determine the temperature, speed, and how much

filament the 3D printer should extrude;
• Reinstalling correctly the nozzle, when it is replaced, to avoid clogging

and leaks;

8



3D printers

• Checking for any traces of dirt in the extruder gears that may obstruct
the passage of the filament;

• Checking the filament "melt-zone" to avoid it melting too far away from
the nozzle.

5. First Layer Issues: it is one of the most common 3D printing problems
and one of the first you come across. The first layer is essential, as it is the
first one you encounter and a mistake on this can easily lead to problems in
subsequent layers. However, an object with a poor initial layer, depending on
the context of use, could be considered acceptable if the irregularity is slight,
if it does not create damage in subsequent layers and if the final product is
placed in a context such that the irregularity is not easily visible. Depending
on the issue that caused the defect and the shape object being built, a bad
first layer can look very different, but in general, the layer looks uneven with
possible small pieces of "spaghetti" mixed in.

6. Layer Shifting: This issue causes the layers to be shifted with respect to
their intended position. It consists in an unexpected movement along the X
and/or Y axis that leads the printer to randomly start printing all of its new
layers some distance away from the prior layers. The parts of the object above
and below the shift point look structurally compatible, but shifted over either
right, left, forwards or backwards. Layer shifts are mainly due to incorrect
tension of the printer belts or pulleys that are not safe. This kind of anomaly
can be considered of high priority since it leads to a result that can hardly be
fixed in post production. In this case it is advisable to identify the problem as
soon as possible and abort the printing process to avoid wasting resources.

7. Warping: Sometimes, especially on large objects, the corners can lift off the
bed. This is usually due to a sudden difference that occurs between the nozzle
melting temperature and the ambient temperature, which causes shrinkage
that lifts and deforms the layers.

8. Poor Bridging: The term bridging refers to the printing of layers over the
air, without the use of any physical support. In some cases it can be avoided
if the model is oriented in a specific way, otherwise gradual overhangs must be
created to deal with this situation. Often, these supportless overhangs cause
poor bridges with sagging or dropping filaments.

9. Detach: This issue happens when a major portion or even the entire print
come loose from the surface of the build plate. This can lead to other failures
as the part moves around too much for the filament to be accurately positioned
for future layers. When the object suffers from this error it is no longer easily
recoverable and therefore printing should be interrupted.
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Figure 2.2: Image references: [6], [7]

The vulnerability to errors to which 3D printing is subject has led to the search
for new strategies to monitor these processes in a automated way. Thanks to the
expansion of Computer Vision in industry applications, some of those approaches
have been applied for automated detection and classification of anomalies, also in
the context of 3D Printing. In literature, some camera-based approaches can be
found such as [8], which basically consists in an algorithmic implementation of error
detection, made up of a single camera mounted before the 3D printer together with
traditional computer vision and image preprocessing techniques, able to detect three
classes of errors (detachment from print bed, discontinuous material flow from nozzle
and printed object deformation). Another example [9], proposes a shallow learning
image-based classification method to diagnose specific defects, being integrated
with a feedback quality control mechanism for automatic machine parameters
adjustment. This strategy requires handcraft feature extraction techniques which
are hardly able to generalise to different printing conditions, material and setups.
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Always in the context of shallow learning, [10] creates a supervised ML method
using Support Vector Machines to categorize the printed parts into either ‘good’ or
‘defective’, requiring an already successful print to provide comparisons for failure
detection.

Next, Deep Learning methods come in allowing to obtain a set of features
learned directly from observations of the input images, using a general-purpose
learning procedure. This approach is based on expressing complex representations
by means of other simpler representations. Some works in the context of Additive
Manufacturing have been applied using Deep Learning techniques, such as [11],
which presents a real time monitoring system, with a deep learning model (ResNet
50 backbone) able to classify three classes (Under-extrusion, Good-quality, and
Over-extrusion) and a feedback loop to modify 3D Printing parameters. Another
use case is introduced by [12] which proposes a system made up of one moving
camera, together with an adaptive shooting position planning algorithm and a
CNN-based model to accomplish efficient defect classification. Other works are
available in literature such as [13] which develops a warping detection system
using Convolutional Neural Networks (CNN) and [14] which deploys a deep neural
network for the recognition of the stringing defect. Another approach is done by
[15] which creates a 3D printing error detection and correction system, training
a multi-head neural network with image labels constructed in terms of deviation
from optimal printing parameters. This study allows to create real-time extrusion
AM error detection and correction, being generalisable to several parts, geometries,
materials, printers and extrusion methods.

From these considerations, the thesis work proposes an alternative camera-based
strategy, based on deep learning techniques, to perform defects detection as soon
as possible, during the 3D Printing process. In this case, the camera is fixed and
the algorithm takes care of detecting the area of interest below the nozzle for each
frame, which will be the only area taken into consideration for the search for any
anomalies. The high level overview of the solution is presented in Chapter 4, while
the implementation details are specified in Chapter 5. The next chapter introduces
a brief recap on Computer Vision and Deep Learning techniques that were used
for the development of the anomaly detection model.
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Chapter 3

Computer Vision

This chapter presents an introduction to the field of Computer Vision, with a brief
review of some of the main tasks solved by applying Machine Learning techniques.
In Section 3.2 the Visual Anomaly Detection problem is described, together with
several approaches that can be applied to solve it. Lastly, Section 3.3 and 3.4
introduce the two Machine Learning models that have been used in the thesis work
to create an "intelligent" system able to perform defects detection in 3D printing
processes.

3.1 Background
As described in the book "Computer Vision: Models, Learning, and Inference" by
Simon J.D. Prince [16]:

"The goal of computer vision is to extract useful information from
images. This has proved a surprisingly challenging task; it has
occupied thousands of intelligent and creative minds over the last
four decades, and despite this we are still far from being able to
build a general-purpose “seeing machine.”"

In other words, Computer Vision (CV) can be defined as the field of study that
aims to develop techniques to help computers and systems understand the content
of digital visual inputs, deriving relevant characteristics from different types of
sources such as images and videos and taking actions depending on the obtained
information. Typically, these methods consist of developing strategies that seek
to reproduce the capabilities of human vision. However, while understanding the
content of digital images is a trivial task for humans, it still remains an open
challenge for machines today.

Technically speaking, it is possible to make a distinction between traditional
Computer Vision methodologies, in which both the features and the algorithm are
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handcrafted, classic Machine Learning algorithms ("shallow learning"), which take
extracted features and use Machine Learning to build a model, and Deep Learning
networks, which build an end-to-end pipeline, starting from the training data, as
pixels, to the output (see Figure 3.1).

Figure 3.1: Image reference: [17](2022, Figure 5.2).

In recent years, thanks to the considerable availability of images on the Internet,
together with the progress in computational efficiency, a large variety of Com-
puter Vision applications have been solved by ML techniques, which require an
important unbiased representative training data to obtain good results on real-life
inputs. Specifically, deep convolutional architectures have undergone a dramatic
acceleration over the past decade, becoming the primary choice for many tasks.

In general, Machine Learning algorithms can be categorized as either supervised,
where each instance, belonging to a collection of input data {xi}, is paired with
the corresponding target label from {ti}, or unsupervised, in which data come
without labels. Another possible setting is semi-supervised learning, in which the
target labels are provided only for a small subset of data. As regards unsupervised
learning, the main goal is to find interesting patterns, regularities, subgroups among
the observations, without any supervision in the learning process. Differently, in
supervised learning the pair training inputs and outputs is given as input to the
learning algorithm, to estimate the best model parameters in terms of prediction
ability (training phase). Once the model is trained, the best parameters previously
learned are frozen and new unseen inputs are fed to the model to generate a
prediction with a corresponding output value (inference phase). The output can
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be either a discrete label for classification tasks, where the aim is to predict the
class membership from a set of possible classes, or a scalar/vector real value, for
regression tasks. The whole supervised learning procedure explained above is
illustrated in Figure 3.2.

Figure 3.2: Image reference: [18](2021, Figure 1.3).

Among the various Computer Vision topics, Visual Recognition has had a great
development in the last decade, thanks to the availability of large quantities of
labeled images and to the step forwards obtained in the field of Deep Learning;
this has meant that many modern techniques in this field are nothing more than
natural applications of deep neural networks. Visual Recognition includes different
tasks such as:

• Class Recognition: also known as Image Classification, which consists in
categorizing each input image into the appropriate class. In literature both
classic handcrafted feature-based approaches (with optional ML to perform
the final classification) and modern deep neural networks systems have been
applied.

• Object Detection: whose main objective is to locate and classify several
categories of objects in an image, delimiting them with bounding boxes. In
this task images can contain multiple objects, with different sizes and positions,
which eventually overlap.

• Semantic Segmentation: which consists in delineating the objects at the level of
pixels, meaning that each pixel is assigned to a class (per-pixel class labeling).
This task includes some variants such as Instance Segmentation, where different
labels are given for pixels being part of different instances of the same object
type, Panoptic Segmentation and Pose Estimation.

By combining two or more of the tasks introduced above, it is possible to define
ML pipelines that can be helpful for solving different industrialization problems
like the Visual Anomaly Detection of the final product during the production stage.
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The next sections give a general overview of this application in the context of
Computer Vision, together with the two deep learning strategies that have been
applied in the thesis work to solve the main problem proposed.

3.2 Visual Anomaly Detection
Anomaly Detection is a well-known problem that still presents many challenges
in the area of Machine Learning applications. It generally refers to distinguish
among abnormal patterns (anomaly) that deviate from the common behavior and
normal samples that represent the norm in the data. When dealing with images,
the problem in literature is framed as Visual Anomaly Detection or Image Anomaly
Detection [19].

Concerning Visual Anomaly Detection a large variety of methods can be devel-
oped to solve practical use cases, an example of which regards Defects Detection,
applied to the manufacturing sector. Depending on whether supervised information,
including both normal and abnormal samples, is available or not, it is possible
to divide the Visual Anomaly Detection in two different approaches: supervised,
where sufficient availability is required of both normal and defective annotated
samples, and unsupervised, where models are usually trained using only normal
images. Another possible distinction refers to the labels granularity, that can be
at image-level or pixel-level. Specifically, in image-level detection the objective is
to identify if the entire image is normal or not, while in pixel-level detection the
model tries to localize inside each image specific abnormal regions.

More in detail, Supervised Visual Anomaly Detection requires a large amount of
annotated examples, especially when Deep Learning approaches are used. When
dealing with large-scale industrial applications, a good amount of data is often
available; however, a problem still remains, due to the nature of the task in question,
consisting in the fact that the amount of data relating to samples with defects
is considerably less than that without defects, which leads to a class imbalance
situation. In literature, some supervised examples, applied to industrial anomaly
detection, include: Lin et al. [20], which propose a multi-scale cascade CNN to
perform surface defect detection, with a two stage augmentation method and a
asymmetric loss function to mitigate the imbalance between positive and negative
samples; Huguan et al. [21], which develop a compact CNN, consisting of a
lightweight bottleneck and a decoder, for surface defect inspection on low-frequency
CPUs; Božič et al. [22] which present an end to end training scheme for a two stage
deep learning architecture, with a dynamically balanced loss between segmentation
and classification networks, as well as a gradient flow adjustment. Other possible
industrial applications include: [23] and [24], which create two different methods
for defects detection, by considering only image-level labels during the learning
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process; Božič et al. [25] which, again in the context of surface-defect detection,
propose a deep learning technique using mixed supervision to alleviate the cost
of labelling, present in fully supervised settings. Looking in more detail, this
solution is obtained by implementing two subnetworks trained simultaneously
using respectively pixel-level annotations in the first and image-level annotations
in the latter. Another work, this time concerning cracks detection in aircraft
structures, is presented by [26], which basically consists in a lightweight version
of YOLOv3, named YOLOv3-lite, which allows fast and accurate crack detection.
A last example is the one presented by [27], where a defect detection system is
build as a three stage cascaded architecture, including two detectors, with the aim
of sequentially localize the cantilever joints and the associated fasteners, and a
classifier for fasteners defects diagnosis.

Differently, Unsupervised Visual Anomaly Detection helps in reducing the need
for a large amount of labelled data, since the model is trained using only defect-free
images, but it does not take advantage of the information about defective samples
during training if available. This setting is very useful when anomalous items are
very rare, variable in patterns and difficult to collect.

Since the thesis work aims to create a camera-based "intelligent" system, helping
in Defects Detection during a 3D printing process, the main target in this case is
expressed in terms of visual data, presented as video frames. Considering the fact
that the 3D printing process takes place in a controlled environment, where it is
possible to identify a certain type of systematic errors and that a good amount of
both types of data (normal and defective) will be available once the camera-based
system will be mounted, the design choice fell on a image-level supervised setting,
consisting of two deep learning strategies applied in cascade, the main aspects of
which are introduced in the following two sections.

3.3 YOLO
Current mainstream object detection frameworks can be categorized in two different
types, two stage and single stage object detectors, both of which are based on
deep learning strategies. Two stage solutions follow a Region Proposal based
approach, which consists in generating the Regions of Interest (RoIs) at first and
then classifying each proposal into a category, by applying a location refinement
on the previously generated RoIs. Some examples include: R-CNN, Fast R-CNN,
Faster R-CNN, Cascade R-CNN and FPN. These methods usually outperform
single stage object detectors in terms of detection accuracy, but their complex
architecture, made up of different components, may become a bottleneck in terms
of inference time for real time applications. One stage solutions help reducing the
time needed for computation, framing object detection as a regression/classification
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problem, mapping directly from image pixels to bounding boxes coordinates and
class probabilities. Main examples in this setting include: You Only Look Once
(YOLO) [28] and Single Shot MultiBox Detector (SSD).

As regards the thesis work, a one-stage detector is preferable as one of the
requirements is the model to be able to identify anomalies in near real time,
processing frames from a streaming video. Therefore, the choice fell on YOLO,
which is a popular real-time one-stage object detection system, consisting of a
single CNN trained on full images to simultaneously predict multiple bounding
boxes and class probabilities for those boxes. More in detail, YOLO constructs a
detection pipeline by applying a single network, which reasons globally about the
entire visual input and all the included objects, to make a prediction. The basic
idea behind the method is the following:

• The input image is split into a SxS grid of cells, where each cell is responsible
for predicting an object, if the center of the object falls within the cell.

• Each grid cell predicts B bounding boxes, with the corresponding confidence
scores. Formally, the bounding box confidence score is defined as Pr(Object)∗
IoU truth

pred where, Pr(Object) ≥ 0 reflects how likely the box contains an object
(objectness) and IoU truth

pred is the Intersection over Union, between the predicted
box and the ground truth, which indicates how accurate is the bounding box
prediction. If no object is present in the cell, the confidence should be set to 0.

• Each bounding box prediction involves: (x, y) coordinates representing the
center of the box, computed as offsets to the corresponding cell; width and
height of the box, normalized by image width and height; bounding box
confidence.

• A class prediction is also based on each cell. The conditional class probability
(Pr(Classi|Object)) is the probability that the detected object belongs to a
particular class where, Classi identifies the specific class of interest among all
the C classes.

• At test time, the class-specific confidence score is computed multiplying the
conditional class probability and the box confidence as follows:

Pr(Classi|Object) ∗ Pr(Object) ∗ IoU truth
pred = Pr(Classi) ∗ IoU truth

pred

This gives a measure, for each box, of the confidence on both classification and
localization. The final predictions are encoded as a SxSx(B ∗ 5 + C) tensor.

To measure the accuracy of each bounding box, YOLO uses the Intersection over
Union (IoU), also known as Jaccard index or Jaccard similarity coefficient, which
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is the most common metric for comparing the similarity between two arbitrary
shapes. Formally, the IoU is calculated considering the predicted (Bpr) and the
ground truth (Bgt) bounding boxes for an object and computing the ratio between
their area of intersection and their area of union:

IoU = Bpr∩Bgt

Bpr∪Bgt

Once the object detector has produced a fixed number of bounding boxes per image,
these regions are run through a Non-Maximum Suppression (NMS) step to remove
duplicates for the same object, which have a lower confidence. At high level the
algorithm can be explained with the following steps:

• First, all the boxes with a confidence score lower than a specified threshold
are discarded;

• Then, the bounding box with highest confidence score is selected as current
element and the overlap (IoU) between this box and the other bounding
boxes, of the same class object, is computed. At this point, all the boxes
with IoU ≥ IoU threshold are removed. This process is repeated with the
remaining bounding boxes, until there is no more reduction of boxes to perform.

During training, YOLO uses sum-squared error between the predictions and the
ground truth to calculate the loss, as shown in Figure 3.3. More in detail, the loss

Figure 3.3: Image reference: [28]. In blue: Localization loss, for bounding-box
coordinates. In green: Confidence loss, for bounding-box score prediction. In
red: Class loss, for class-score prediction.
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formulation shows that, for a certain cell i: (xi, yi) represents the center for the
box; (wi, hi) refers to width and height of the box; Ci is the confidence score; 1obj

j

is an identity function, set to 1 if object is present in cell i; 1obj
ij denotes that the

jth bounding box predictor "conduces" that prediction. In the original paper, the
loss terms are modulated by two scalar meta-parameters, λcoord and λnoobj, which
multiply the Localization loss and the object Confidence loss respectively. In detail,
these coefficients are set to λcoord = 5 and λnoobj = 0.5, to increase the weight for
bounding box coordinate predictions and to decrease the influence of no object
loss.
The original YOLO framework uses a custom network based on GoogLeNet [29] as
backbone, made up of 24 convolutional layers and 2 fully connected (FC) layers,
of which some convolution layers use 1 × 1 reduction layers followed by 3 x 3
convolutional layers. Later, new versions have been created by Joseph Redmon,
the main author: YOLOv2 [30] which proposes a new model named DarkNet-
19 and YOLOv3 [31] which introduces a larger version, named DarkNet-53, to
improve performances. Other newer versions include: YOLOv4 [32] by Alexey
Bochkovskiy, which uses CSPDarknet53 as backbone network, PANet neck for
feature aggregation, YOLOv3 head structure and it also introduces, among others,
mosaic data augmentation technique; YOLOv5 by Glenn Jocher, which uses a model
architecture close to YOLOv4, with some specific training procedures implemented
in Pytorch. Concerning the thesis work, the choice fell on YOLOv5 which provides
a framework for fast training and easy deploy.

3.4 EfficientNet
EfficientNet [33] is a family of CNN based models for image classification, released
by Google in 2019. These models result in better accuracy and efficiency, on both
ImageNet and other transfer learning datasets, with respect to other state of the art
solutions, such as GPipe and ResNet. More specifically, a new mobile-size baseline
network is designed, called EfficientNet-B0, together with an effective method for
performing model scaling to any target resource constraints, allowing to obtain
maximum accuracy gain, while maintaining model efficiency. The intuition for
the new scaling method derives from the fact that the authors have empirically
observed how the scaling dimensions are mutually dependent, suggesting the need
to coordinate and balance the different contributions. Previous studies have already
attempted to arbitrarily scale depth, width and image resolution, but this process
requires manual tuning and often leads to sub-optimal results in terms of accuracy
and efficiency. The new compound scaling method instead allows to uniformly
scale all these dimensions using a fixed set of coefficients, chosen applying a small
grid search on the baseline model. Figure 3.4 shows the different model scaling
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approaches, where (a) represents the baseline network, (b) to (d) indicate the
conventional methods that only consider one dimension of the network to scale
up and (e) which is the novel structured method based on compound coefficient.
The EfficientNet baseline is built performing a multi-objective neural architecture

Figure 3.4: Image reference: [33](2020, Figure 2).

search to obtain an efficient network architecture, optimizing both accuracy and
FLOPS (Floating Point Operations Per Second). The main network building block
consists in a mobile inverted bottleneck (MBConv), similar to MobileNetV2 [34]
and MnasNet [35], to which squeeze-and-excitation optimization is added. Starting
from this baseline, the scaling method is applied to scale up EfficientNet-B0 and
obtain the models from EfficientNet-B1 to B7.
To sum up, EfficientNet models, obtained as explained above, are able to surpass
state of the art methods in accuracy beyond reducing model parameters and FLOPS
by an order of magnitude. In addition, the adopted compound scaling method is
an effective strategy, that can be easily applied to other baseline ConvNets. As
regards the thesis work, the EfficientNet-lite model is adopted, which provides a
mobile/IoT device friendly solution.
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Chapter 4

3D Printing Anomaly
Detection model

This chapter is focused on presenting an overview of the solution proposed for
solving the main problem of the thesis work. Section 4.1 describes the high level
ML pipeline used by the system, while from Section 4.2 to 4.5 more details about
the components and how each of them interacts with the others are given.

4.1 Architecture

Figure 4.1: High level pipeline for Anomaly Detection (inference time)

The Machine Learning strategy proposed uses an object detection algorithm for
the detection of the 3D printer nozzle, together with a classification algorithm to
classify the area below the nozzle. The solution is based on the use of You Only
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Look Once (YOLO) as real-time object detection system and EfficientNet-Lite as
computer vision model for classification.

As shown in Figure 4.1, the Anomaly Detection Model is made up of two main
phases, Nozzle Detection (1) and ABN Classification (2), which are performed
sequentially at inference time. The Input to the model is a video stream, while the
high level Output is simply a flag, for each stream frame, indicating the absence or
presence of an anomaly. Concerning the Nozzle Detection, the input coincides with
that of the model, while the output includes a bounding box surrounding the nozzle,
together with an image crop below it. The bounding box is simply a rectangle,
which is used in the context of object detection to describe the spatial location
of the object to detect; in this case it refers to the position of the nozzle inside
the single video frame the model is processing. Once the position of the nozzle is
detected for the specific frame, a square image crop is generated, which identifies
the Area Below the Nozzle (ABN) where the algorithm will focus in looking for
possible printing anomalies. This means that, for each frame, the solution proposed
only focuses in a specific area, thus any other possible anomaly that is visible in
other locations of the frame is not considered at that time. This is not a limit
but simply a design choice as the goal is to detect an anomaly that occurs in that
precise moment or in any case in that specific position, but maybe in some previous
layer (not critical anomaly). Then, the ABN identified in the first phase is taken
as input by the ABN Classification phase, which takes care of classifying it. The
output of this second phase, which also coincides with the output of the model, is
one of two possible labels: anomaly or no anomaly.

Figure 4.2: Visual Anomaly Detection output for two different frames.
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In Figure 4.2 it is possible to observe a real example of visual output which takes
into account two different frames of the video stream and shows the output related
to both ML phases. Two sub-images are displayed having a yellow bounding box
that delimits the nozzle, together with the associated confidence level. More in
detail, as regards the image on the left, this indicates the presence of an anomaly
(detach) delimited by a blue square, while the one on the right refers to normal
behavior, which is localized by a square outlined in green.

To sum up, starting from two separated phases ((1) and (2)), which mainly
consist of two well defined tasks in machine learning (respectively Detection and
Classification), their integration, obtained following the steps described above,
allows to create an Anomaly Detection Model to perform near Real-Time Defects
Detection during a 3D printing process.

4.2 Input
The Input consists in a Video Stream showing a specified 3D printing process.
Technically speaking, a video can be considered as a succession of still images
(frames) displayed as a rapid sequence (see Figure 4.3). If the frequency is high
enough, the images are perceived as moving and no longer as a chain of still pictures.
A stream is a "channel" that allows the flow of a potentially unlimited sequence of

Figure 4.3: Video as a sequence of frames, showing a 3D printing process. Each
frame is expressed as a grid of pixels (width x height), with the units in pixels.
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data elements between the source and the destination. Video streaming involves
sending video content in a continuous flow of compressed data over the network,
showing the result to the client as soon as it arrives. One of the main characteristics
of a video stream is the frame rate, expressed in frames per second (fps), which
indicates the frequency at which successive still images are displayed.

The concept of video as sequence of frames is important since the proposed
Anomaly Detection Model computes the anomaly prediction frame by frame, mean-
ing that a nozzle bounding box and an output label (anomaly/no anomaly) are
generated individually for each frame of the input video stream. The model can
handle streams with different fps, but the ability to detect an anomaly in real time
highly depends on how fast the underlying hardware is able to process a single
frame. The supported protocols to handle a stream are the following:

• Real Time Streaming Protocol (RTSP) [36]: is an application layer
network protocol that provides an extensible framework for transport control
of multimedia data streams (such as audio and video) over an appropriate
transport protocol. RTSP controlled streams can use the Real-time Transport
Protocol (RTP) protocol, together with the Real-time Control Protocol (RTCP)
protocol, for the media stream delivery, but the RTSP functioning does not
depend on the specific transport mechanism used for the multimedia data.

• Real Time Messaging Protocol (RTMP) [37]: is a Transmission Control
Protocol (TCP) [38] based protocol, originally developed as proprietary, which
maintains persistent connections and helps provide a smooth low-latency
streaming communication.

• Hypertext Transfer Protocol (HTTP) [39]: is a stateless application
level protocol which requires a reliable network transport communication to
exchange data between a client and a server. Usually, the communication
takes place over TCP/IP connections, but this does not prevent HTTP from
being implemented on top of other protocols on the Internet, or on different
networks.

• Hypertext Transfer Protocol Secure (HTTPS): is an extension of HTTP
which provides secure communication using SSL, or its successor TLS.

4.3 Detection Task
The Nozzle Detection phase consists in a Detection Task which aims to identify,
sequentially for each frame of the input stream, where the nozzle is located. The
solution uses YOLOv5 [40] (release 6.1 [41]) as nozzle detector, which is a specific
version of YOLO, implemented by Glenn Jocher. YOLOv5 is based on the Pytorch
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framework [42] and is made up of a family of compound-scaled object detection
models pretrained on the Microsoft Common Objects in Context (MS COCO)
dataset [43]. It includes, among others, functionalities such as model ensembling,
hyperparameter evolution and allows different export formats (ONNX, CoreML,
TFLite).

MS COCO is composed of several large-scale datasets created in different years,
each one focused on a different computer vision task such as: Object Detection,
Keypoint Detection, Panoptic Segmentation and Dense Pose. The annotations
file, for the Object Detection Task, contains coordinates of bounding boxes and
full segmentation masks for 80 categories of objects found in everyday life in their
natural environments and depicted in varied viewpoints.

YOLOv5 is available in five main versions: nano (YOLOv5n), small (YOLOv5s),
medium (YOLOv5m), large (YOLOv5l), xlarge (YOLOv5x). The larger the model
is, the more, in most cases, it produces better results, but also requires more
parameters and therefore more CUDA memory [44] to train and is slower during
inference phase.

The specific model used for the thesis is YOLOv5n [45], which is the smallest
(4 MB) and faster pretrained model among the available versions and consists of
about 1.9M parameters, considering weights and biases. With respect to YOLOv5s,
nano models maintain a depth multiple of 0.33 but reduce the width multiple from
0.50 to 0.25, resulting in about 75% fewer parameters, from 7.5M to 1.9M, which
is ideal for mobile and CPU solutions.

4.4 Classification task
The ABN Classification phase consists in a Classification Task which aims to
categorize the Area Below the Nozzle (ABN), distinguishing between anomaly and
no anomaly image crops. The task in question is a binary classification, as the
objective is to predict a qualitative response variable for each new observation, thus
dividing the data into two groups. The solution is based on EfficientNet-Lite [46],
which is a set of image classification models suitable for mobile, microcontrollers,
IoT and other types of edge devices. EfficientNet-Lite runs on Tensorflow Lite [47]
and is designed to bring the performance of EfficientNet, allowing fast inference to
small devices (CPU, GPU and EdgeTPU).

With respect to EfficientNet, the Lite version presents some architectural changes,
mainly implemented to address the hardware heterogeneity on the edge devices.
The changes are the following:

• The removal of Squeeze-and-Excite (SE) networks [48], that are not well
supported for certain mobile accelerators;
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• The replacing of all swish activations [49] with RELU6 [50], which notably
increases the quality of post training quantization;

• The fix of the stem and head while scaling models up to reduce the size and
computation and to obtain smaller and faster scaled models.

EfficientNet-Lite is available in five variants, efficientnet-lite[0...4], in which the
numerical index grows as the size (and latency) of the model increases, as well as
the accuracy. The version chosen as backbone is EfficientNet-Lite0, that is the
smallest model (4.7M parameters) and allows low inference time latency.

Transfer Learning technique [51] is used to adapt the classification model,
pretrained on the large ImageNet [52] dataset, to the 3D Printing Defects dataset.
This is useful since the training dataset, available for the task in question, is too
small to train a full-scale model from scratch. Generally speaking, the Transfer
Learning paradigm is based on preserving and applying previous knowledge learned
from one or multiple existing sources, to improve learning on a new target domain.
The use of Transfer Learning in the context of Deep Learning mainly consists in
taking the feature maps, typically learned on a large-scale image classification task,
and leveraging them on a new alike problem. The intuition behind is that the
features extracted from a large and general enough dataset, give a good starting
point for the new task to learn. The high-level Transfer Learning pipeline, in the
context of Deep Learning, is the following:

1. Take the pretrained model as backbone, removing the classification head and
freezing all the layers in it, in order to keep the information previously learned.
This is also called base model and contains meaningful features that can be
generically useful for different tasks.

2. Add a new classification head on top of the base model, made up of some
trainable layers, randomly initialized. The architectural choice made for the
head model is the following:

• A Global Average Pooling Layer [53] for spatial data, to convert the block
of features extracted from the base model into a single element vector per
image.

• A Dropout Layer [54], which is used as a regularization technique to
prevent overfitting the training data.

• A Dense Layer with two output units, also called Fully-Connected Layer,
that converts the input features into a single prediction per image. Softmax
[55] is used as activation function for the output layer of the classification
network, since it allows to interpret the result as a probability distribution.
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3. Train the entire model by keeping the convolutional layers frozen (use the
base model as feature extractor) and update the new classification head layers
on the target dataset. This process is also called feature extraction.

4. Perform Fine-Tuning, which involves unfreezing all the convolutional layers (or
some of them) and retraining them together with the new head, by applying a
very low learning rate. Typically, the unfrozen layers are the ones on top of the
base model, since they are associated to higher-level feature representations
which are more relevant to the specific task, while low level features are more
general and can be "reused" as they are, without being updated.

Figure 4.4: In blue: The EfficientNet-Lite backbone. In orange: The classifica-
tion head.

Figure 4.4 shows the Transfer Learning workflow explained above, applied
to the ABN Classification task. Specifically, the upper part a) is related to
the EfficientNet-Lite architecture comprising of backbone and classification head,
while the lower part b) corresponds to the architecture modified for the task
under analysis. In particular, sub-figure b) describes the fine tuning phase, where
the "BACKPROPAGATION" arrow visually explains the layers weights that are
updated during training procedure, while the "frozen weights" label refers to those
that remain frozen during this process. The same sub-figure also highlights how
the frozen layers correspond to the first ones in the architecture structure, which is
the typical approach used for the reasons explained before in this section. Looking
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at the two sub-figures a) and b), another aspect to remark is the difference in the
inputs given to the model and in the outputs produced. Referring to the naming
convention commonly applied in the context of Transfer Learning, "source data"
relates to the ImageNet data on which the model has been previously trained,
while "target data" represents the 3D Printing Defect dataset, created specifically
for the objective of the thesis. The details about the construction of this dataset,
together with the labelling process are explained in Section 5.2.1. As for the output,
the difference is that in b) the task is a binary classification that provides two
categorical labels ("target labels"), while in a) the pre-trained network, including
the head, is capable of classifying any image that falls into any of the 1000 available
categories ("source labels") in ImageNet. All the technical specifications about
the training procedure and the application of the Transfer Learning technique are
available in Section 5.2.2.

4.5 Output
The main Output of the Anomaly Detection Model is simply the label predicted by
the Classification Task. A class label is associated to each frame of the input video
stream, among the two available classes: anomaly or no anomaly.

A single run of the algorithm corresponds to an input pair (Video Stream ID,
timestamp) together with an output, which consists in a Comma-Separated Values
(CSV) file containing all the results for that run. A CSV is a text file format, where
each line (or record) is subdivided in a well defined number of fields, divided by a
special separator character (e.g. comma). While the Anomaly Detection program
is running, a line is written, in append, each time a prediction on a new frame is
computed. Aside the classification labels, additional useful information are added
to the CSV file:

• Timestamp: is a string indicating date and time related data, which help
identify when a certain event took place. In this case, it is associated to
the prediction of a single frame, meaning that each time a new classification
label is issued, a new line, identified by the timestamp, is added to the file.
Timestamp follows the ISO8601 standard [56]:

YYYY-MM-DDTHH:MM:SS.mmm

where,

– YYYY-MM-DD is the date expressed in Year (YYYY) as four-digit format,
Months (MM) and Days (DD).

– T is the default separator character put between the date and time fields.
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– HH:MM:SS.mmm is the time expressed in hours (HH), minutes (MM),
seconds (SS) and milliseconds (mmm).

• Prediction label: is the classification label expressed as string, having two
possible different values: anomaly or no anomaly.

• Prediction: is the classification label expressed as number, having two
possible different values: 1 (for anomaly) or 0 for (no anomaly).

• Nozzle prediction: is related to the Detection Task and indicates the
class-specific confidence score, per bounding box. This gives a confidence
score for each class, for each bounding box. Since in this case of study the
model is trained for only one class, the Nozzle class, the classification loss is
not calculated during training and is set to 0. This translates into the fact
that the final confidence score is equal to the box confidence score, without
considering the conditional class probability that the detected object belongs
to a particular class.

• Anomaly prediction: is related to the Classification Task and indicates the
confidence score for a single image crop. The last layer of the classification head
outputs two numbers which correspond to the scores of each class, namely 0
and 1. The softmax activation function converts those scores into a probability
distribution. The one with the highest value is taken as final confidence score.

• Bounding box nozzle: refers to the coordinates of the bounding box sur-
rounding the nozzle, expressed in the YOLO format (see Section 5.1.1).

• Bounding box anomaly/no anomaly: refers to the coordinates of the
Area Below the Nozzle (ABN) where the algorithm focuses in searching for
anomalies.

Whenever an anomaly is detected by the algorithm, a warning is generated and
the operator, assigned to the 3D printing machine, reacts accordingly. Depending
on the type and severity of the anomaly, the printing process may or may not be
interrupted. Since the concept of quality is flexible in the context of 3D printing
(see Section 2.2), full automation is not easy to implement, at least at this early
stage of the project. For this reason, the final choice is currently left to the operator,
who will decide whether to continue printing or stop the process. The Anomaly
Detection Model, in this first draft, helps to speed up the error detection phase
compared to a manual control and therefore to save product and time.
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Chapter 5

Implementation

This chapter focuses on describing the implementation of the Anomaly Detection
Model, introduced at a high level in Chapter 4, and its application to printing ma-
chines that produce 3D lamps. Sections 5.1 and 5.2 illustrate the Machine Learning
pipelines, respectively for the Nozzle Detection and for the ABN Classification
phases, both described at a high level in Chapter 4. All the training processes are
performed on hardware belonging to Google Colab (Pro plan). The CPU model is
a Intel Xeon, supported by a 32 GB RAM, while the GPU is a Tesla T4 instance,
with a 16 GB dedicated RAM. Section 5.3 presents the application of the Anomaly
Detection Model in its entirety, during inference phase.

5.1 Nozzle Detection

The main objective of the Machine Learning (ML) pipeline, related to Nozzle
Detection, is that of creating an object detection ML algorithm with the aim to
identify the nozzle during a 3D printing process in the lighting company plants.
To achieve this goal, two distinct phases are carried out sequentially: the Training
Phase of the detection model and the Inference Phase, where the model is put into
action on new data. In Figure 5.1 it is possible to observe the complete flow for
the Nozzle Detection - ML Pipeline.

The Nozzle Detection - Training Phase consists of two main parts. The first
one is devoted to the Data Acquisition and Preparation, which shows how the
dataset, related to the lighting company’s nozzle systems, is created. The second
one instead focuses on the implementation of the DL Model Training, which is
applied on this specific task.
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Figure 5.1: Nozzle Detection - ML Pipeline: the part relating to the Nozzle
Detection (training + inference) is highlighted in blue.

5.1.1 Training Phase - Data Acquisition and Preparation

Since no datasets, for the activity in question, were made available by the lighting
company, it has been necessary to include a preliminary phase of data acquisition
and preparation, aimed at creating an ad hoc dataset for the printers available in
their plants. The data used to train the object detection model consist of MP4
files showing the 3D printing process of different kind of lamps, produced by the
company. Each file consists in a video, which can be seen as a single task, containing
a specific nozzle and type of lamp to be printed. The video tasks provided do not
present the entire process but only a portion: some show the first print layers where
the printed product is minimal, while others contain frames with already many
layers previously deposited. Figure 5.2 shows the two main types of nozzles that
have been identified by manually inspecting the videos provided by the lighting
company.

Every object detection algorithm needs a dataset appropriately labelled, in the
form of bounding boxes. As regards the thesis work, the annotation phase consists
in creating bounding boxes surrounding the nozzle for each frame of the analysed
video. This is done considering two different alternative strategies, which can be
seen graphically in Figure 5.3.
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Figure 5.2: The two types of nozzles identified in the lighting company’s 3D
printing processes.

Figure 5.3: The solution (on the left) shows a bounding box in yellow enclosing
the nozzle plus a portion above it. This first try leads to bad detections concerning
the nozzle of type 2. The second solution (on the right) is able to better detect both
types of nozzles and for this reason this is the one chosen in the final implementation.

Before performing the labelling, the videos are pre-processed to remove the
frames in which the nozzle is not present and excluding one frame out of three to
avoid overfitting during model training. Furthermore, the videos are trimmed in
such a way that only one complete turn is considered if no anomalies occur in the
following neighbouring turns.

To obtain those type of annotations, Computer Vision Annotation Tool (CVAT)
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[57] is used, which is a free, open source, web-based image and video annotation
tool, used for labelling data for computer vision. The output of this annotation
step consists in a folder for each video task, which follows the naming convention
described below:

task_<video_id>_<YYYY-MM-DD>

where,

• task: is a common keyword to indicate that the folder contains information
about a video task.

• video_id: is the video identifier which should be unique and representative
of the printing process.

• YYYY-MM-DD: is the date expressed in Year (YYYY) as four-digit format,
Months (MM) and Days (DD), in which the annotation was made.

Each task follows the CVAT annotation format and contains within it a folder
named “images”, with all the frames using the PNG extension, and a XML file,
with all the annotations. Below the directory tree structure obtained is presented.

/
raw

task_<video_id>_<YYYY-MM-DD>
images

frame_<frame_number>.PNG
<...>

annotations.xml
<...>

In this structure, the name of a frame is given by a 6-digit number indicated by
the label frame_number and prefixed by the keyword frame.

A script is then used to convert the bounding box labels into the format
compatible with the object detection model chosen, which is YOLOv5. For each
frame, the YOLO format uses two files with the same name but different extensions.
One file is a PNG image file and the other is a TXT text file, where information
about the labels within the image is stored. The number of rows indicates the
number of objects present in the image. In this case, each TXT file has only one
row, since each frame contains only one interesting object, that is the nozzle.
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A single row is structured by five parameters, written in the exact order indicated
below:

<class_id> <x_center> <y_center> <width> <height>

where,

• class_id: is the numerical index of the object class. An index corresponds
to each class and the indexing starts from 0. In this case the class is unique
(nozzle class) and refers to index 0.

• (x_center, y_center): are the coordinates that represent the center of
bounding box.

• (width x height): are respectively the width and height of the bounding box.

The box coordinates are normalized between zero and one as percentage of image
dimensions, in such a way to obtain bounding boxes expressed in the normalized
xywh format.

The next step is to partition the data into two folders, one containing the training
data and the other containing the data to validate the model. This separation is
done manually at the task level, so that each task belongs to one and only one of
the two groups. From the set of videos provided, twelve tasks are obtained for the
training set and five for the validation. An additional test folder contains 4 tasks,
not available during the training phase, that are used to test the algorithm on new
instances. Table 5.1 shows some statistics on the data folders:

Dataset #Tasks #Frames Frame Res.

Training 12 4773 (1280 x 720) or
(720 x1280)

Validation 5 1119 (1280 x 720) or
(720 x1280)

Test 4 1242 (1280 x 720) or
(720 x1280)

Table 5.1: Nozzle Detection dataset: split in Training, Validation and Test.
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The final dataset structure is the following:

/
dataset_yolo

train
images

<task_number>_frame_<frame_number>.PNG
<...>

labels
<task_number>_frame_<frame_number>.txt
<...>

val
images
labels

test
images
labels

where, the frame is identified by a 6-digit number prefixed by the keyword frame,
in turn prefixed to the task_number, which indicates the task to which it belongs.
The task_number is a numerical index greater than or equal to 0 which is assigned
progressively to each task inserted in the dataset. The correspondence between the
numerical index and the identifier of the task (video_id), is maintained inside a
dictionary saved in TXT format.

The last point concerning the Data Acquisition and Preparation phase is to
create a data configuration YAML file, containing details about the dataset used to
train the model. The parameters to be defined in this file are the paths to which to
retrieve training, validation and testing data, the number of classes and the names
of the classes memorized as a dictionary. The dictionary contains for each class a
mapping, in terms of key-value pairs, between the index (key) and the class (value).
In this case the class is unique, meaning that the number of classes is put to 1 and
there is a single mapping that is between the "nozzle" class and the zero index.

5.1.2 Training Phase - DL Model Training
As already explained in Section 4.3, the model used for the thesis work is a specific
version of YOLOv5. The choice fell on YOLOv5n, which is the lighter version and
allows the shortest inference time. The reason relies in the fact that one of the
requirements for the Anomaly Detection Model is to run on edge devices, which
have limited computational and memory resources.

YOLOv5 is available for all model sizes (small/medium/large/extra-large) in
two types of architectures: P5 and P6. YOLOv5-P6 models contain an additional
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output layer P6, beyond the three output layers P3, P4, P5 available in the
YOLOv5-P5 versions. P6 models help in the detection of extra-large objects, and
benefit especially from training at higher resolution (e.g. 1280 pixels). The nano
model from the P5 architecture has been chosen, as the P6 versions are a bit slower
and larger than the P5, which is not good in this case of study, where the goal is
to optimize the performance in terms of inference time and also to have a model
that has low memory occupation.

Transfer learning technique is taken into consideration to retrain the model on
the new data, starting by considering the pretrained weights from a well-known
large-scale dataset, without having to retrain the entire network from scratch.
Freezing a number of initial layers speeds up the training phase, but can also lead
to a reduction in the accuracy of the final model. The YOLOv5 library suggests
three alternative strategies [58]:

• Freeze the backbone: all the layers from 0 to 9, which correspond to the
model backbone, are frozen. This is obtained by setting their gradients to
zero before starting training.

• Freeze all the layers: a freeze list of layers (from 0 to 23) is created,
containing the full model, except the final output convolution layers.

• No freeze: all layers are retrained (no layers are frozen).

The choice is to perform training starting by considering the pretrained weights of
Yolov5nP5 model on the COCO Dataset [43] (with an image size equal to 640) and
then retraining all the layers on the new task. The training procedure is performed
for 300 epochs, with a batch size equal to 16. Since for best results at inference time
the library suggests testing at the same or lower resolution used during training,
an empirical choice is made by varying the image training size following the grid
below:

Image training size 1280 (original resolution) 640 320 128 96

and searching for the minimum resolution that allows the fastest training and infer-
ence time, while maintaining good performance in terms of detection capabilities.
The final choice fell on a size equal to 128 which gives satisfactory results despite
the low resolution. This is probably due to the fact that the task being analyzed
is quite simple, as the detection of a single object, the nozzle, is carried out by
keeping a fixed camera frame and a distance such as to allow a sufficiently close
view (extra small objects are not present). Images are resized to 128 on the long
side, while the short side is handled consequentially, preserving the original aspect
ratio. Grey padding technique is applied to fullfill stride constraints.

To overcome instabilities in the early training, a warmup phase [59] is added,
which allows to slowly ramp up model changes. The number of warmup epochs is
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set to 3, while the corresponding warmup momentum and warmup bias lr, which
are the ones that ramp to the default values over the warmup epochs, are set
respectively to 0.8 and 0.1.

YOLOv5 loss is a compound loss, which consists of three parts: classes loss
(Lcls), objectness loss (Lobj), which use the BCE loss [60] and location loss (Lloc),
which uses the CIoU loss (see Figure 5.4). Loss gains are applied to scale and
balance loss contributions:

Loss = 0.3 ∗ Lcls + 0.7 ∗ Lobj + 0.05 ∗ Lloc

where, the objectness loss is weighted differently on the three prediction layers (P3,
P4, P5):

Lobj = 4.0 ∗ Lsmall
obj + 1.0 ∗ Lmedium

obj + 0.4 ∗ Llarge
obj

Figure 5.4: YOLOv5 loss contributions. The contribution of Lcls is 0 since the
model is one class (Nozzle class).The red circles highlight the epoch from which
some degree of overfitting starts occurring.

The optimizer chosen for stochastic optimization is Stochastic Gradient Descent
(SGD) [61], with Nesterov Momentum (momentum factor = 0.937). The model
is regularized by adding a penalty, called regularizer, to the cost function. The
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parameter norm penalty applied is the L2 norm, commonly known as weight decay,
which is set to the value of 0.0005. Three parameter groups are created and passed
to the optimizer of the model. In this way, different hyperparameters can be
applied to different parts of the model. In detail, Batch Normalization (BN) layers
are separated into an independent parameter group to remove weight decay from
applying to them, while Bias layers are added to an independent parameter group
to apply higher learning rate during warmup. The instantiation of three parameters
groups leads to the generation of the three learning rates shown on Figure 5.5.

Figure 5.5: Learning rates. In red is highlighted the warmup phase.

The learning rate scheduler is designed to fall to a minimum value on the final
epoch for best training results. The learning rate of each parameter group is set at
each epoch to the initial lr0, times a given function, which computes a multiplicative
factor given an integer parameter epoch. The equations describing this procedure
are the following:

lambda_function = (1 − x/epochs) ∗ (1.0 − lrf) + lrf (5.1)
lr_epoch = lr0 ∗ lambda_function(x) (5.2)

where x is the given epoch, epochs is the number of total training epochs, lr0 and
lrf are the learning rates, set respectively to the values of 0.01 and 0.1.

Since it is impossible to capture all possible real-world scenarios that a model
can understand, it can be extremely useful to create alterations in the training
data in order to help the model better generalize: this is the concept of Data
Augmentation, which is a technique widely applied in computer vision, especially
when dealing with small datasets that are easily prone to overfit. In practice, Data
Augmentation is applied to make transformations to the original training data, in
such a way to create synthetic images, that allow to expose the model to a greater
extend of semantic variation than the training set in isolation. Within each training
batch, YOLOv5 passes training data through a data loader, which augments data
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online. The data loader makes use of three main types of augmentations: color
space adjustments, scaling and mosaic data augmentation.

Figure 5.6: Mosaics data augmentation.

The values of the hyperparameters used for data augmentation are listed below:

• fliplr: 0.5, flip image left and right randomly (probability).

• flipud: 0.0, flip image up and down randomly (probability).

• hsv_h: 0.015, image HSV-Hue augmentation (fraction) to randomly alter
the colour channels of an input image. This technique is useful to ensure the
model is not memorizing a given object or scene colours, helping to consider
the edges and shape of objects rather than only the colours.

• hsv_s: 0.7, image HSV-Saturation augmentation (fraction). Adjusting the
saturation level of an image can help the model to obtain better performances
when colors in the wild change (e.g. different white-balance or different lighting
setting). In this case of study, the model runs in a controlled environment,
where there should be no major changes in color and light effects.

• hsv_v: 0.4, image HSV-Value augmentation (fraction).

• mixup: 0.1, image mixup (probability), which consists in superimposing an
image over another one.
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• mosaic: 1.0, image mosaic (probability). It is used to increase model accuracy
by creating a new image from combination of multiple images, and then use
the new created image for training (see Figure 5.6). Specifically, four images
are combined into four patches of a random ratio. This technique helps in
solving the "small object problem" (meaning the difficulty in detecting small
objects with respect to the large ones), identifying objects at a smaller scale
than usual.

• perspective: 0.0, image perspective (+/- fraction), range 0-0.001.

• scale: 0.9, image scale (+/- gain).

• shear: 0.0, image shear (+/- deg).

• translate: 0.1, image translation (+/- fraction).

• degrees: 0.0, image rotation (+/- deg).

This phase produces as output the trained Nozzle Detection model (see Figure
5.1), which consists in a checkpoint for inference containing the best weights found
at a certain epoch during the training process. Concerning the name extension,
the file is saved using the PyTorch convention ".pt".

5.2 ABN classification
The main objective of the Machine Learning (ML) pipeline, related to ABN
Classification, is to classify for each frame the area below the nozzle, in such a way
to determine, as soon as possible, if a defect is occurring during the printing of
a 3D lamp. As well as for Nozzle Detection, also in this case two distinct phases
are realized sequentially: the Training Phase of the classification model and the
Inference Phase, where the model is fed with new data to test. Figure 5.7 gives an
overview of the complete flow for the ABN Classification - ML Pipeline.

The ABN Classification - Training Phase is divided in two main parts which
are executed sequentially. The first part is dedicated to Data Acquisition and
Preparation, showing how the lighting company’s 3D Printing Defects dataset is
created. The second part focuses instead on the implementation of the DL Model
Training, which is applied on this specific task.
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Figure 5.7: ABN Classification - ML Pipeline: the part relating to ABN
Classification (training + inference) is highlighted in blue.

5.2.1 Training Phase - Data acquisition and Preparation
As well as for Nozzle Detection, also the ABN Classification requires a preliminary
phase, in order to create the 3D Printing Defects dataset, which consists of square
image crops showing possible defects in the production of lamps. Since the com-
pany’s availability of printing processes videos was difficult to obtain, as a video
surveillance process was not fully automated in their plants at the time of model
development, in order to create a good representative set of anomalies, a set of
pictures of printed lamps was given, from which interesting defects were extracted.
In practice, the data used to train the model consist of:

• Video files of 3D printing processes: which coincide with the ones used
to build the dataset for the detection of the nozzles (see Section 5.1). This
time, starting from the 21 tasks received by the lighting company, 15 are used
for training, 2 for validation and 4 for testing. The video frames, from this set
of MP4 files, are extracted and processed in such a way to generate for each
of them a crop by cutting a portion below the nozzle, as shown in Figure 5.8.
The choice is to keep a small part of the nozzle in the crop, to better frame
anomalies such as nozzle blobs.
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Figure 5.8: Examples of image crops (ABN) generated.

This process includes two automatic steps, one for the crops extraction and
one for the elimination of those too similar to each other. The elimination step
is carried out to avoid overfitting during the training process, by specifying as
an input parameter to the script the step to which discarding is performed.
All the generated crops are squared and with a resolution of 224 x 224 pixels.

• Pictures of printed lamps which contain defects: which are a source
of data in addition to videos. From this set of images, 173 are used for the
training set, while 68 for the validation set. All the crops deriving from a
specific picture of lamp are inserted in one and only one of the two data splits.
It is important to highlight that those pictures do not include all those type
of anomalies that are strictly related to the printing process (e.g. nozzle blob,
first layer issues) and therefore cannot be used as the sole source of data.
Figure 5.9 shows pictures of lamps, some of which containing defects.
The main technical steps for the crops generation include:

– The automatic generation of a grid of crops (224 x 224 pixels) for each
image showing a lamp.

– A manual step to remove “not useful” crops generated.
– A manual step to crop any anomaly not detected in the automatic step,

plus an “intelligent” automatic resizing to 224 x 224 pixels. The script,
to perform the resizing, brings the height to 224 (if height <= width)
keeping the aspect ratio and then performs a crop on the width to bring
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Figure 5.9: Examples of printed lamps images and generated crops.

the image to the desired dimension. If width > height the same operation
is performed considering the inverted dimensions.

The following pseudocode reports the main steps to implement the automatic
crop generation and the "intelligent" resize:

# ===== Script_1 : Crop Images

target_dim = 224
width = 0
he ight = 0

whi le he ight + target_dim <= image_height :
whi l e width + target_dim <= image_width :

or ig ina l_image . cropAndSave ( width ,
height ,
width + target_dim ,
he ight + target_dim )

width += target_dim

#Get l a s t crop from current row
i f width − target_dim < image_width :

width = image_width − target_dim
or ig ina l_image . cropAndSave ( width ,

height ,
target_dim ,
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target_dim )
width = 0
he ight += target_dim

#Get l a s t crops from current he ight
i f he ight−target_dim < image_height :

he ight = image_height − target_dim
whi l e width+target_dim <= image_width :

or ig ina l_image . cropAndSave ( width ,
height ,
target_dim ,
target_dim )

width += target_dim

i f width − target_dim < image_width :
width = image_width − target_dim
or ig ina l_image . cropAndSave ( width ,

height ,
target_dim ,
target_dim )

# ===== Script_2 : I n t e l l i g e n t Res i ze

target_dim = 224

f o r image in frames_dir :

i f image_height <= image_width :
image_res ized = image . r e s i z e ( he ight = target_dim )
image_cropped = image_res ized . crop ( s i z e = target_dim )

e l s e :
image_res ized = image . r e s i z e ( width = target_dim )
image_cropped = image_res ized . crop ( s i z e = target_dim )

image_cropped . save_to_disk ( res i zed_frames_dir )

Once the image crops from both sources of data are generated, a manual step
is required to divide them into two folders: "anomaly" and "no_anomaly". Each
image crop follows the naming convention:

<task_name/image_name>_<crop_number>
where,

• task_name/image_name: indicates if the crop is coming from a video frame
or from a picture of lamp.

• crop_number: is simply an identifier of the crop, used to distinguish different
crops belonging to the same video task/picture of lamp.
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Below is the directory structure where the final dataset is stored, ready to be used
for training the deep learning model:

/
class_dataset

train
anomaly
no_anomaly

<task_name/image_name>_<crop_number>.JPG
<...>

val
test

From Table 5.2 it is possible to observe some statistics on the two obtained data
folders. The #Crops column underlines how the distribution of data is skewed

Dataset Class #Crops Crop resolution

Training no_anomaly 2298 (224x224)
Training anomaly 763 (224x224)

Validation no_anomaly 504 (224x224)
Validation anomaly 180 (224x224)

Test no_anomaly 409 (224x224)
Test anomaly 55 (224x224)

Table 5.2: 3D Printing Defect dataset: split in Training, Validation and Test.

towards the "no_anomaly" class, for both training, validation and test sets. This
may result in ML models with poor predictive performance, specifically for the
minority class, since the model may tend to classify points as belonging to the
majority class. In the next section some strategies will be adopted to deal with the
data imbalance problem.

5.2.2 Training Phase - DL Model Training
To choose the most appropriate image classifier for the task being analyzed, some
of the most popular models in literature have been tested. As already introduced
in Section 4.4, the final decision fell on EfficientNet-Lite0, which is the smallest
Lite version from EfficientNet, suitable for mobile and edge devices like Raspberry
Pi. The machine learning library adopted for this phase is Tensorflow [62] and in
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particular the Keras trainable API [63], which allows to easily implement transfer
learning and fine-tuning workflows.

The transfer learning strategy applied follows the main steps highlighted in
Section 4.4, where the base model is instantiated and the pretrained weights from
ImageNet are loaded, by excluding the model head that is instead recreated for the
new task. In practice, two training phases are performed sequentially: a Feature
Extraction phase, where previous knowledge is used to extract significant features
from new data samples and a Fine Tuning phase, which is used to fine-tune the
high-level features in the base model to the specific task.

Both phases, depicted above, adopt the following choices in training design:
Stochastic Gradient Descent (SGD) is used as stochastic optimization technique,
with a momentum equal to 0.98. The Categorical Cross Entropy loss is chosen
as target function to minimize. A dropout rate equal to 0.2 is applied to avoid
overfitting the training data. An L2 regularization term is added in the last
fully connected layer of the network, applying it to the weights and setting the
regularization factor to 0.0001. Since the dataset is imbalanced, class weights
strategy is applied during training to weight the loss function in such a way to
pay more attention to the class that is less representative, which in this case is
the "anomaly" class. The mapping between the class indices and the weights is the
following:

weight_0 = (1/neg) ∗ (total/2.0)
weight_1 = (1/pos) ∗ (total/2.0)

where, total is the total number of training samples , neg/pos is the amount of
negative/positive samples and labels 0/1 indicate the positive ("anomaly")/negative
class ("no_anomaly"). The choice is to use a batch size of 128, to increase the
possibility of having positive samples in a batch, compared to the case in which the
default value of 32 is used. An empirical search is performed to find the smallest
image size that allows for the fastest inference time, while still maintaining good
classification ability. The following grid shows the different values tested:

Image size 224 (original resolution) 128 96 32

The final choice fell on a image size equal to 96 which gives satisfactory results
despite the low resolution.

The parameters that differ for the two phases are listed below:

• Feature extraction phase: training is performed for 100 epochs, by keeping
all the backbone layers frozen. The learning rate is set to 2 ∗ 10−3.

• Fine tuning phase: to further improve performance, the best weights found
on the previous phase are loaded and new training is performed just for 15
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epochs. This time, a part of the backbone is unfrozen, which consists in the last
top 10 layers and re-training is performed with a very low learning rate equal
to 1 ∗ 10−7. It is important to note that when the base model is unfrozen for
fine-tuning, Batch Normalization layers are kept in inference mode, to avoid
destroying the mean and variance statistics that the model had previously
learned.

The DL Training phase produces as output the trained ABN Classification model
(see Figure 5.7), which consists in the best model found to use for inference, saved
in the TensorFlow SavedModel format. SavedModel is the default file format used
in TF2.x to save an entire model. This method is useful for deploying (e.g. with
TFLite), since it does not require the original model building code to execute.

5.3 Anomaly detection model
This section explains, at a lower level with respect to Chapter 4, how the Nozzle
Detection (1) and the ABN Classification (2) are integrated at inference time
to create a unique pipeline that performs anomaly detection (see Figure 4.1).
Technically speaking, the main contribution to this phase consists in a modification
to the "detect.py" script available in the YOLOv5 repository, in such a way to add
a second stage classifier after the detection stage. All the code is written in Python
v3.10.2 and the main python libraries used are: OpenCV-Python and Pillow for
image processing, Pytorch and Tensorflow for machine learning application.

The base directory tree structure of the Anomaly Detection project is the
following:

/
package

aida
classifier

classifier.py
detector

yolov5
detect.py

detector.py
image_preprocessing

class_image.py
models
resources
utils.py

anomaly_detection.py
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Starting from the bottom of the project structure it is possible to observe
the "anomaly_detection.py" script. This file corresponds to the main program
which basically takes care of loading the configuration file for that specific run
and instantiating the two classes: Detector and Classifier, whose definitions can
be found respectively in "detector.py" and "classifier.py". Its last action is to
"activate" the anomaly detection by invoking the detect method on the detector
object previously instantiated, as following:

de t e c t o r . de t e c t ( c l a s s i f i e r , c o n f i g s )

where, the parameters are the classifier object and the configuration values passed
as python dictionary. The detect method of the Detector class is nothing more
than a wrapper which invokes the "detect.py" script, passing the proper parameters
for that run as described below:

• class_model: the classifier object, whose task is to manage the ABN classifi-
cation during inference phase.

• imgsz: the inference input image size (height, width) for the nozzle detection
phase.

• source: the data source. YOLOv5 can deal with different types of sources.
For this application a video stream (RTSP format) is required, but different
inputs have been tried for debugging purposes: video/image formats and
webcam.

• weights: the path to the nozzle detection model weights.

• save_crop: boolean indicating if the image crops (ABN), showing the pres-
ence or absence of anomalies, are saved on disk or not.

• view_img: boolean indicating if the results are shown on video while per-
forming anomaly detection or not.

• class_below_nozzle: boolean which allows to decide if ABN Classification
is performed or not (add or discard the second stage classifier).

• nosave: boolean indicating if the Anomaly Detection results (images/videos)
are saved on disk or not.

• project: the path to the directory where the results are stored.

• name: the run name, which corresponds to the couple (Video Stream ID,
timestamp).
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• max_det: the maximum number of detections per image. In this case it is
set to 1 since for each image there is always a single instance of the nozzle,
which is the one the algorithm is trying to detect.

• save_csv: boolean indicating if the Anomaly Detection results are saved or
not in a CSV file. Section 4.5 describes in detail all the fields that are stored
in it.

The main integration in "detect.py" consists in adding inside the main loop, devoted
to slide through the dataset entries (e.g. frames in case of a video stream), a
portion of code specific to ABN classification.

Specifically, for each data entry, a inference run is computed to detect the nozzle
inside the input image. Given the bounding box (bb) prediction obtained by YOLO,
a method is invoked to retrieve the image crop bb coordinates associated to the
area below the nozzle (ABN). The pseudocode of the method is the following:

de f get_image_crop_bb_below_nozzle ( xyxy ,
gain ,
pad ) :

b=xyxy2xywh ( xyxy ) # boxes

sb = xyxy . c l one ( )
sb [ : , 0]=b [ : , 0 ] # x cente r
sb [ : , 1]=b [ : , 1 ] + (b [ : , 3 ] / 2 ) + 10 # y cente r
sb [ : , 2]=b [ : , 2 ] # width
sb [ : , 3]=b [ : , 2 ] # he ight

sb [ : , 2 : ]= sb [ : , 2 : ] ∗ gain + pad # box wh ∗ gain + pad
xyxy=xywh2xyxy ( sb ) . long ( )

f o r element in xyxy :
xyxy_ . append ( torch . t enso r ( element ) )

re turn xyxy_ , xyxy

where, xyxy are the bb coordinates surrounding the nozzle and detected by the
detection algorithm. The image crop bb coordinates, returned by the method, are
computed as follows: the width and height coincide with the width of the nozzle
bb, the x coordinate of the center is the same as that of the nozzle bb, while the
y coordinate is translated downwards with respect to that of the nozzle bb by
a factor chosen experimentally (y_center_image_crop = y_center_bb/2 + 10),
which allows to frame a possible anomaly under the nozzle, keeping a small portion
end of the nozzle inside the cropped image.
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At this point, the method get_image_below_nozzle is invoked to extract the
associated crop, as a cv2 image:

de f get_image_below_nozzle ( xyxy ,
im ,
BGR=False ) :

c l ip_coords ( xyxy , im . shape )
crop=im [ i n t ( xyxy [ 0 , 1 ] ) : i n t ( xyxy [ 0 , 3 ] ) ,

i n t ( xyxy [ 0 , 0 ] ) : i n t ( xyxy [ 0 , 2 ] ) ,
: : ( 1 i f BGR e l s e −1) ]

cv2_crop=cv2 . cvtColor ( crop , cv2 .COLOR_BGR2RGB)
return cv2_crop

where, xyxy is a variable containing the image crop bb coordinates computed in
the previous step and im is the entire input image.

Given the cv2_crop, a CLImage object, from the ClassImage class, is created.
ClassImage is a wrapper class for cv2 images, containing utility functions such as
an "intelligent" image resizing, which allows to obtain the desired dimension as
input to the classification model. The desired dimension indicates the image size
with which the classification model was trained. This information is contained in
the class_model object from the Classifier class, which was instantiated at the
beginning in the main program and passed as parameter to the "detect.py".

The Classifier class takes care of managing the inference part related to ABN
classification. Once the image crop is retrieved and properly resized, a method
from this class, devoted to classification evaluation, is invoked on the class_model
object:

preds , pred i c ted_labe l , softmax_value = class_model . evaluate_image (
cropped_img )

The method simply computes the classification inference run on the image crop
passed as parameter (cropped_img) and returns the results of this prediction as a
triplet: confidence scores for each class (preds), softmax_value with the highest
value and its associated predicted_label (0/1). The Rolling Prediction Average
technique is applied to mitigate the so-called "prediction flickering" problem, which
consists in a frequent label changing among classes during prediction. Flickering
occurs because a simple image classification algorithm is used, which does not
take into account the semantic correlation between frames, to solve the video
classification problem. Rolling Averaging is generally used on time series data to
decrease fluctuations in the output and its principle can be used to help reducing the
flickering effect in video classification. In this case, the technique is applied in such
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a way to maintain a queue of the last q_size=30 predictions, compute the average
on them and then choose as predicted label the one with largest corresponding
probability.

At this point, the Anomaly Detection prediction on a single data entry is
completed and the results as bounding boxes and confidences scores are annotated
on the original input image, by invoking the following method from the YOLOv5
Annotator class:

de f box_label ( s e l f ,
box ,
s_box = [ ] ,
l a b e l=’ ’ ,
s_ labe l=’ ’ ,
color_bb =(128 , 128 , 128) ,
color_img_crop =(128 , 128 , 128) ,
txt_co lor =(255 , 255 , 255) , show_crop=False ) :

# Add one xyxy nozz l e box to image with l a b e l
. . .

i f show_crop :
s_p1 , s_p2=( i n t ( s_box [ 0 ] ) , i n t ( s_box [ 1 ] ) ) ,

( i n t ( s_box [ 2 ] ) , i n t ( s_box [ 3 ] ) )

cv2 . r e c t a n g l e ( s e l f . im , s_p1 , s_p2 ,
color_img_crop ,
t h i c k n e s s=s e l f . lw ,
l ineType=cv2 .LINE_AA)

i f s_labe l :
t f=max( s e l f . lw − 1 , 1) # font t h i c k n e s s

# text width , he ight
s_w, s_h=cv2 . getTextS ize ( s_label ,

0 ,
f o n t S c a l e=s e l f . lw /3 , t h i c k n e s s=t f ) [ 0 ]

ou t s id e=s_p1 [1] −s_h−3 >= 0 # l a b e l f i t s ou t s i d e box
s_p2=s_p1 [0 ]+s_w, s_p1 [1] −s_h−3 i f ou t s id e e l s e s_p1 [1 ]+s_h+3

cv2 . r e c t a n g l e ( s e l f . im ,
s_p1 ,
s_p2 ,

color_img_crop ,
−1,
cv2 .LINE_AA) # f i l l e d
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cv2 . putText ( s e l f . im ,
s_label ,
( s_p1 [ 0 ] , s_p1 [1] −2 i f ou t s i d e e l s e s_p1 [1 ]+s_h+2) ,
0 ,
s e l f . lw / 3 ,
txt_color ,
t h i c k n e s s=t f ,
l ineType=cv2 .LINE_AA)

The method is modified with respect to the original to add the annotations for
the image crop. More in detail, the box/label and s_box/s_label parameters are
respectively the nozzle bb/label and the ABN bb/label, while color_bb is the color
associated to the nozzle bb and color_img_crop is the color for the ABN box, that
differs according to the classification predicted label. The parameter show_crop
indicates if the ABN box is shown on the output image or not.

Lastly, the Anomaly Detection results, for the input data entry, are saved in
a CSV file, as a single line, following the output format described in Section 4.5.
The whole procedure, added inside the main loop, is repeated for each data entry,
until all the input source is processed. The pseudocode containing all the steps
explained above for performing Anomaly Detection on a single video frame is the
following:

# ====== I n t e g r a t i o n i n s i d e " de t e c t . py " by YOLOv5
# ====== Second s tage c l a s s i f i e r : c l a s s i f y Area Below Nozzle (ABN)
. . .
q_size=30
Q = deque ( maxlen=q_size )
anomaly_dict ={" 0 " : " no anomaly " , " 1 " : " anomaly " }
i f save_csv :

csv_f i l e_path = s t r ( save_dir / ’ r e s u l t s . csv ’ )
f_csv = open ( csv_fi le_path , ’w ’ , 1 , newl ine=’ ’ )
wr i t e r = csv . w r i t e r ( f_csv )

. . .

f o r path , im , im0s , vid_cap , s in datase t :
. . .
pred = model ( im , augment=augment , v i s u a l i z e=v i s u a l i z e )
. . .
pred = non_max_suppression ( pred ,

conf_thres ,
iou_thres ,
c l a s s e s ,
agnostic_nms ,
max_det=max_det )

. . .
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f o r i , det in enumerate ( pred ) : # per image
. . .

# Write r e s u l t s
f o r ∗xyxy , conf , c l s in r eve r s ed ( det ) :

. . .
i f c lass_below_nozzle :

s_xyxy_ , s_xyxy=get_image_crop_bb_below_nozzle ( xyxy )
cv2_crop=get_image_below_nozzle ( s_xyxy , imc )
CLImage=ClassImage ( cv2_crop , " crop " )
t a r g e t_s i z e=class_model . img_size

# Apply " i n t e l l i g e n t " r e s i z e
i f (CLImage . he ight < CLImage . width ) :

r e s i z e d=CLImage . image_res ize ( he ight=ta rg e t_s i z e )
cropped_img=r e s i z e d . crop ( target_img_size=ta rg e t_s i z e )

e l i f (CLImage . he ight > CLImage . width ) :
r e s i z e d=CLImage . image_res ize ( width = ta rg e t_s i z e )
cropped_img=r e s i z e d . crop ( target_img_size=ta rg e t_s i z e )

e l s e :
cropped_img=CLImage . image_res ize ( he ight=targe t_s i ze ,

width=ta rg e t_s i z e )

i f show_crop :
preds , pred i c ted_labe l , softmax_value=class_model .

evaluate_image (
cropped_img )

Q. append ( preds )
r e s u l t s=np . array (Q) . mean( ax i s =0)
softmax_value=np . max( r e s u l t s )
p r ed i c t ed_labe l=np . argmax ( r e s u l t s )

s_labe l = "%s %.2 f " % ( anomaly_dict [ s t r ( p r ed i c t ed_labe l ) ] ,
softmax_value )

c la s s_co lor s_v = [ ( 0 , 2 5 5 , 0 ) , ( 255 ,0 , 0 ) ]
i f save_img or view_img :

annotator . box_label ( box=xyxy ,
s_box=s_xyxy_ ,
l a b e l=labe l ,
s_ labe l=s_label ,
color_bb =(63 ,202 ,233) ,
color_img_crop=
c las s_co lor s_v [ p r ed i c t ed_labe l ] ,
show_crop=show_crop )

. . .
# Write to f i l e
i f save_csv :
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# normal ized xywh
xywh=(xyxy2xywh ( torch . t enso r ( xyxy ) . view (1 , 4) ) /gn )

. view (−1) . t o l i s t ( )
now=datet ime . now ( )
date_time=now . i so f o rmat ( t imespec=" m i l l i s e c o n d s " )

i f c lass_below_nozzle :
# normal ized xywh
s_xyxy_=(xyxy2xywh ( torch . t enso r ( s_xyxy_) . view (1 , 4) ) /gn )

. view (−1) . t o l i s t ( )
# l a b e l format
data=[date_time ,

anomaly_dict [ s t r ( p r ed i c t ed_labe l ) ] ,
i n t ( p r ed i c t ed_labe l ) ,
round ( f l o a t ( conf ) , 2 ) ,
round ( f l o a t ( softmax_value ) ,2 ) ,
s t r ({∗xywh}) ,
s t r ({∗ s_xyxy_}) ]

w r i t e r . writerow ( data )
. . .

i f save_csv :
f_csv . c l o s e ( )

. . .
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Chapter 6

Results

This chapter describes the performance evaluation for the Nozzle Detection and ABN
Classification models respectively, which were trained using data from a lighting
company, following the data acquisition/preparation steps and the training process
explained in Chapter 5. Sections 6.1 and 6.2 are dedicated to the evaluation phase
for the two tasks, in which the specific metrics used to estimate the performance
of the model are underlined. Section 6.3 shows the performances of the trained
models in terms of inference time and how they can be optimized to run on very
low power edge devices.

6.1 Evaluation - Nozzle Detection

Concerning Nozzle Detection, a validation set composed by 1119 frames is used
to monitor the model performance during the training phase and to decide which
one to choose as the best model. Next, a test set with 1242 frames is applied to
provide an unbiased sense of model effectiveness, seeing how the model behaves
on new data. Both datasets contain real case frames, depicting the nozzle during
the printing process to produce a lamp and their specifications can be retrieved in
Table 5.1.

6.1.1 Metrics definition

The metrics used to validate the model are the ones commonly applied on object
detections tasks [64]. The subsections below report a synthetic definition for each
computed metric on the task under analysis.
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Precision and Recall

In the context of object detection, the concepts of True Positives (TP), False
Positives (FP) and False Negatives (FN) can be described as:

• True Positive: a correct detection, meaning a IoU ≥ threshold;

• False Positive: a wrong detection, meaning a IoU < threshold;

• False Negative: a ground truth that the model was not able to detect;

where, IoU is the Intersection over the Union of the bounding box for the ground
truth and the predicted bounding box (see Section 3.3) and threshold is a value for
the IoU which determines if the object detection is valid or not. IoU ranges between
0 and 1, where 0 means no overlap and 1 refers to a perfect match. Changing the
IoU threshold changes whether a prediction is considered a TP or FP. When the
threshold is near to 1 the metric is more restrictive as it needs practically perfect
detections, when the threshold is set near to 0 the metric is more flexible instead,
as it considers detections even boxes with small overlaps. Common values for the
IoU threshold are 0.50 and 0.75.

Precision and Recall are the first two metrics used to evaluate an object detection
model and are computed using TP, FP, FN as defined above. Precision indicates the
model ability in identifying only the relevant objects. In other words, considering
the elements predicted as a positive, it counts the percentage that is correct as
follows:

Precision = T P
T P +F P

= T P
All detections

Recall instead measures the ability of a model in finding all the relevant cases.
It can be interpreted as the percentage of actually positive elements the model
succeeds to find, among all relevant ground truths and its formulation is given by:

Recall = T P
T P +F N

= T P
T otal ground truth

Basically, having defined the two metrics above, an object detection algorithm,
to be considered good, should be able to detect all ground truth objects (FN = 0
= high Recall), while finding only relevant objects (FP = 0 = high Precision).

Average Precision

Average Precision (AP) refers to the Area Under the Precision-Recall Curve (AUC-
PR) and is one of the main metric used to estimate an object detection model. The
PR curve shows the tradeoff between Precision and Recall for different confidence
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score thresholds, where the confidence score is a measure of how confident the
detector is about the prediction. A high area under the curve indicates a good
model as both precision and recall are high, meaning that the model manages to
return many of the positive results, as well as returning accurate results. The AP
is calculated at a given α IoU threshold and can be formally defined as follows:

AP@α =
s 1

0 p(r)dr

where, the values of AP range between 0 and 1. Since PR curves are often zigzag, a
preprocessing step is performed to remove this behaviour, in such a way to obtain
a monotonic trend. Mathematically, the precision value for recall r is replaced with
the maximum precision for any recall ≥ r as follows:

pinterp(r) = max
r̃≥r

p(r̃)

To compute the Riemann integral of the PR curve, two main approaches in
terms of interpolation can be applied:

• N-point interpolation: AP is computed by averaging the precision at a set
of N reference recall values equally spaced in the interval [0,1]:

AP@α = 1
N

q
r∈{0,0.1,...1.0}

pinterp(r)

Common values are N=101 which is used in the COCO Detection Challenge
(Bounding Box) competition and N=11 which was used in the Pascal Visual
Object Classes Challenge before being changed in all-point interpolation
method.

• All-point interpolation: in this case interpolation is done for all the recall
values, computed considering all the confidence levels:

AP@α = q
i

(ri+1 − ri) pinterp(ri+1)

Mean Average Precision

Independently from the interpolation method used, AP is obtained separately
for each class. Mean Average Precision (mAP) provides a unique metric able to
indicate the exactness of the detections across all classes. The computation is
simply obtained by averaging the AP values among all the C classes:

mAP@α = 1
C

qC
i=1 APi
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6.1.2 Evaluation phase
Considering the DL Model Training phase for Nozzle Detection (see Section 5.1.2),
the best model found is at epoch 137 and is chosen by considering the fitness as
criterion, which is computed as the weighted sum of the object detection metrics:

fitness = ω1 ∗ P + ω2 ∗ R + ω3 ∗ mAP@0.5 + ω4 ∗ mAP@0.5 : 0.95

In this case, the weights ωi=1,2,3,4 have the following values: ω1 = 0.0, ω2 = 0.0,
ω3 = 0.1 and ω4 = 0.9; this means that the greatest weight is given to mAP@0.5 :
0.95, while P and R do not affect in the model choice. In detail, the metrics used
in the fitness formulation refer to:

• P and R: the Precision and Recall associated to the maximum F1 confidence
threshold, which should give a good balance between the two metrics;

• mAP@0.5: the Mean Average Precision with IoU Threshold = 0.50;

• mAP@0.5:0.95: the average among all the mAP results, which are calculated
over a range of 10 IoU thresholds (t=[0.5,0.55,...,0.95]);

where, for AP a 101-point interpolated definition is used in the calculation.
Table 6.1 shows the values for the object detection metrics, which refer to the

best model found and which are computed on the validation and test datasets
respectively. In general, all metrics show good results and remain stable in their
values when calculated on new test data not used during the training phase. This
means that the model is able to accomplish the task under analysis and can
generalize to unseen data. Concerning Precision (P) the result on the test set is

Data P R mAP
@0.5

mAP
@0.5:0.95

Validation 0.933 0.988 0.958 0.549
Test 0.969 0.935 0.976 0.514

Table 6.1

0.969. This indicates that the model is very "pure": out of all positive predictions
(TP+FP), it finds a good number of TPs, meaning correct nozzle detections,
minimizing FPs. As regards Recall (R) the result obtained on the test set is equal
to 0.935, which means that the model is able to find a good percentage of TPs,
among all given ground truths (TP+FN). P and R are chosen considering the
maximum score for the metric F1, which is computed as the harmonic mean of
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the two, giving both the same importance (see Section 6.2.1). Figure 6.1 shows
the F1 curves constructed by considering different scores, each one evaluated on a
different confidence value. For the test set, the confidence value that optimizes P
and R is 0.48, to which the maximum value for F1 (0.95) corresponds. Note that
in this case the label "all classes" is equal to the single class label "nozzle", since the
detection model is trained to detect only one class. Both P and R are important

Figure 6.1: Nozzle Detection - F1 curves. Right: F1 curve generated from
the Validation set. Left: F1 curve generated from the Test set.

to determine the goodness of the model, indeed if a model has high P but low R it
means that it is able to predict samples as positive in a accurate way, but only few
of them (high FN), conversely a model with high R and low P classifies correctly
a high amount of positive samples, but makes a lot of incorrect predictions on
the negative ones (high FP). Average Precision (AP) summarizes the PR curve,
incorporating the trade-off between P and R for different thresholds, into a single
metric and therefore is commonly used as standard metric in object detection
to analyze the model "accuracy". The most challenging metric is mAP@0.5:0.95,
which is computed by thresholding the bounding boxes at different IoUs. The result
of this metric for this task remains stationary at a value approximately equal to
0.5 for both datasets, where the letter "m" within the acronym mAP indicates that
its value is obtained by averaging over all object classes; it should be noted that in
this case the mean is not calculated since this is a one-class problem. In the end,
the table shows the mAP@0.5 with a fixed IoU threshold of 0.5. This is the main
metric used in the Pascal VOC competition and in this case it obtains a good result
on the test set equal to about 0.976. In Figure 6.2 the associated Precision-Recall
curves can be seen, evaluated at 0.5 mAP. In particular, the one referring to the
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test set is shown on the left. As with the F1 curves, also in this case the labels "all
classes" and "nozzle" coincide, since there is only one class to be detected. Similar
considerations concerning the metrics results can be done, looking at Table 6.1, for
the row which highlights the results obtained on the validation set.

Figure 6.2: Nozzle Detection - PR curves. Right: PR curve generated from
the Validation set. Left: PR curve generated from the Test set.

6.2 Evaluation - ABN Classification
As regards ABN Classification, a validation set composed by 684 image crops is
used to monitor the model performance during the training phase and to choose
the model with the best weights. Then, a test set with 464 unseen data is applied
to provide an unbiased estimate of the model skill. Table 5.2 reports the details for
these two datasets. As already explained in detail in Section 5.2.1, the 3D Printing
Defects dataset is composed of images depicting the presence or absence of an
anomaly. Some crops are generated extracting from a video frame the area below
the nozzle, some others are obtained from already printed lamps. This second
source of data is added to increase the variety of data (in shape, color, material)
and to increase examples showing defects.

6.2.1 Metrics definition
In the context of classification, one of the most common metric to evaluate a model
is the Accuracy, which can be described as the number of correct predictions over
the total number of predictions. The classification task under analysis consists
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in a binary classification, aiming at distinguish between the class "anomaly", also
referred as the positive class and the class "no_anomaly", also referred as the
negative class. In binary classification, the Accuracy metric can be expressed in
terms of positives and negatives as follows:

Accuracy = T P +T N
T P +T N+F P +F N

where, TP = True Positives, TN = True Negatives, FP = False Positives and FN
= False Negatives.

However, since in this case of study the dataset is biased towards the "no
anomaly" class, Accuracy is not a good choice as it can lead to misleading high
results, even if the model performs poorly on the minority class, by simply assigning
all the samples to the majority class. For this reason, the F1 score, which takes
into account not only the number of prediction errors but also the type of errors
that are made, is considered as the main metric in the model evaluation and in
the choosing of the best model. This metric is defined as the harmomic mean of
Precision and Recall, where a score reaches its best value at 1 and worst at 0 and
its formulation is given by:

F1 = 2 ∗ P recision∗Recall
P recision+Recall

F1 score gives the same weight to Precision (measure of exactness) and Recall
(measure of completeness) and its value is high when both metrics are high.

6.2.2 Evaluation phase
As concerns the DL Model Training phase for ABN Classification, two consecutive
phases are carried out as described in detail in Section 5.2.2: Feature Extraction
and Fine Tuning. They are part of the entire Transfer Learning process to adapt
the pretrained model to the 3D Printing Defects task and both consider the F1
score as measure to monitor the best model choice.

Table 6.2 shows, both for feature extraction and for fine tuning, the results
obtained on the validation set, using the best model found at a certain epoch. As
for the feature extraction phase, in which the backbone is kept frozen, the 42nd
training epoch out of 100 provides the best model in terms of F1-score. In general,
the metrics give promising results, bearing in mind the difficulty of the task. More
in detail, the Accuracy of the model takes on a value equal to 0.89. This metric
measures the ratio of the number of correct classifications (TP+TN) to the total
population (TP+TN+FP+FN), considering both "anomaly" (positive) and "no
anomaly" (negative) instances. As mentioned in the previous section, Accuracy
can be misleading when dealing with imbalanced datasets, which is why other
metrics are also considered in the evaluation. The aim is to build a model which is
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Training
Phase

Epoch Accuracy F1-score Precision Recall

Feature
Extraction 42 0.89 0.80 0.78 0.82

Fine Tuning 13 0.90 0.81 0.87 0.76

Table 6.2: Results on Validation set.

particularly skilled in detecting defects and therefore more sensitive to errors for
the minority class than for the other class. For this reason, the following metrics
are computed on the "anomaly" class, that is the one for which the model wants
to optimize its predictive performances. Concerning Precision (P), it can be seen
as the "accuracy" of minority class predictions. In other words, in this context it
is computed as the ratio of correctly predicted anomalies (TP), divided by the
total amount of samples predicted as anomalies (TP+FP) and it reaches on the
validation set a value equal to 0.78. As regards Recall (R), it refers to the model
ability to cover all positive cases, meaning that it quantifies the number of correct
anomaly predictions (TP) made out of all anomaly samples in the data (TP+FN).
The value obtained in this case for the metric is 0.82. Given the imbalanced data
setting, both P and R are relevant in the sense that the goal is to maximize R
(minimize FN), without damaging P too much. For this reason, F1 metric is used
since it helps in combining P and R into a unique measure, in such a way to balance
both contributions (see Section 6.2.1). In particular, for this task F1 obtains a score
equal to 0.80 on the validation set. This is quite a good value, which reflects the
good results obtained both on P and R. Similar considerations about the metrics
can be done for the fine tuning phase, which is performed to "finetune" the higher
level convolutional layers of the base model to the new task. The best model for
this phase corresponds to the 13th epoch out of 15 in total and the results obtained
on the validation set, using the best model, are overall slightly improved compared
to the feature extraction phase, apart from the Recall which drops from 0.82 to
0.76.

At this point, the best model obtained at epoch 13, during the fine tuning
phase, is used to assess the skill of the model on the test set, which results can be
retrieved in Table 6.3. Also in this case, the metrics F1, P and R are computed on
the minority class, corresponding to the label "anomaly". Compared to the values
obtained on the validation, the final model obtains on the test set a similar F1
score, equal to 0.80, but with inverted contributions concerning P and R: indeed,
while the P drops from 0.87 to 0.79, the R rises from 0.76 to 0.82. The confusion
matrices in Figure 6.3 explain more in detail the individual scores for TP, FP, FN
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Accuracy F1-score Precision Recall

0.95 0.80 0.79 0.82

Table 6.3: Results on Test set.

and TN. In particular, the sub-figure on the right shows that out of 55 anomalies
in the test set, 45 are correctly classified (TP) while the remaining 10 are FNs,
meaning that the model wrongly categorizes them as normal behaviour. For this
task it is important to minimize the FNs, since the objective is to be able to find
all the anomalies without ideally losing any. The model can instead tolerate some
FPs, which indicate a normal pattern for the printing process that is erroneously
classified as an anomaly. In fact, when this happens, the model issues an incorrect
warning that can simply be ignored by the 3D printing machine operator. The
confusion matrix shows that, for the test set, out of 409 "normal" samples, 12 are
incorrectly categorized as defects (FP). Similar considerations can be done for the
confusion matrix generated from the validation set, taking into account that the
overall model results more precise (higher P), but less complete in finding the
relevant cases (lower R), than when evaluated on the test set.

Figure 6.3: ABN Classification - Confusion matrices. Left: Confusion
matrix generated from the Validation set. Right: Confusion matrix generated
from the Test set.

From the results obtained and explained above, it is important to underline
some aspects concerning the difficulty of the task. First of all, the cardinality
of the data, for both training and validation/test phases, is not huge and fully
representative of all the possible input designs and type of anomalies. Thus, to
increase both the model ability in dealing with different inputs and to get a more
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precise estimate of its goodness on new data, it would be advisable to have more
data with different lamp designs, colours and defects. Secondly, the imbalance
problem poses a challenge for the predictive performances, as it is harder for the
model, with respect to a balanced data context, to learn the characteristics of
samples from the minority class, due to their minor contribution in the learning
process and thus it is harder to learn to differentiate well among "anomaly" and "no
anomaly" examples. Given these difficulties, the model obtains promising results
that in the future can hopefully be improved by providing more data.

6.3 Optimization for edge devices
The specifications from the lighting company require each 3D printer to be equipped
with a Rasperry Pi [65] device on which the Machine Learning model is deployed
and a Camera that takes care of streaming the printing process and providing this
input to the edge device (see Figure 6.4). This means that an important requirement

Figure 6.4: The image illustrates the main components to perform Anomaly
Detection through the proposed ML system, during inference time. 3D Printer:
The device used for 3D printing. Camera: The video camera used to digitize, as
input stream, the printing process. Raspberry Pi: The device used to run the
Anomaly Detection ML algorithm for that specific printing process.

for the Anomaly Detection model is to be able to run on tiny edge-arm devices like
the Raspberry Pi, while maintaining good response time in prediction. To allow
this, some optimizations are performed separately on the trained models for Nozzle
Detection and ABN Classification respectively. To compare the performance of
the Anomaly Detection model in terms of inference time, according to the model
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optimization strategy chosen, a Raspberry Pi 4B [66] device is used, whose main
technical specifications consist in a Quad core Cortex-A72 (ARM v8) 64-bit System
on Chip (SoC) @ 1.5GHz and a 8GB LPDDR4-3200 SDRAM.

Concerning the Nozzle Detection task, benchmarks for CPU inference are per-
formed on the PyTorch trained model obtained in Section 5.1.2, considering Open
Neural Network Exchange (ONNX) [67] and Tensorflow Lite [47] export formats
by YOLOv5. Benchmarking is computed by selecting as data input the validation
set from the Nozzle Detection dataset, which is made up of 1119 video frames
(see Table 5.1). Table 6.4 reports the results obtained on the Raspberry Pi 4B,
in terms of export model format and mean inference time per image. The model
export is performed, for each type of format, considering an image size for the
inference equal to 96, which is a lower resolution than the one used during the
training but which still provides good results in terms of detection capabilities.
Among the three tested formats, ONNX is the one which gives best results in

Format Inference time (ms)

PyTorch 45.9
ONNX 19.2

TensorFlow Lite 21.7

Table 6.4: Nozzle Detection - Benchmarks results for CPU inference on
Raspberry Pi 4B.

terms of mean inference time per image, obtaining a value equal to 19.2 ms, which
consists in about 2.4x CPU inference speedup, with respect to the native Pytorch
format. ONNX is an open source format for ML models, which provides great
interoperability between multiple platforms and hardware and allows some opti-
mization to accelerate inference. It gives the possibility to convert models and then
use the ONNX Runtime as inference engine, which basically applies a variety of
optimization and partitions on the model graph, thus acting as a cross-platform
machine-learning model accelerator. Concerning the thesis work, given the Pytorch
model, obtained as output from the Nozzle Detection training phase, the Pytorch
documentation directly provides some methods to convert it to ONNX format and
then run it on the associated ONNX Runtime.

As regards the ABN Classification task, the model trained in Section 5.2.2
and saved as TensorFlow SavedModel is converted into a TensorFlow Lite model.
Tensorflow Lite is a Machine Learning library which helps running models on
embedded devices, being optimized for on-device machine learning. To ensure
minimum load and reduce execution latency, it uses an Interpreter with a static
graph ordering and a custom memory allocator. Various optimization techniques can
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be applied to reduce the size of the model and the latency (amount of computation
required to perform the inference), at the expense of a potential loss in accuracy.
Among the types of optimizations supported by the library, quantization is one of
them. Quantization technique is the process of approximating a neural network
that is obtained by reducing the precision of the computations and of the numbers
representing the model parameters. In detail, it consists in converting 32-bit floating
point numbers, which is the default, to a smaller precision, like 8-bit integer values,
in such a way to obtain model compression and latency reduction. Two main types
of quantization are available in TFLite:

• Post-training quantization: is a post-training conversion technique that
can be applied to an already trained Tensorflow model when converting it
to TFLite, using the TensorFlow Lite Converter [68]. Several options can be
chosen such as:

– Dynamic range quantization: is the simplest form, providing static quan-
tization only for the model weights, from floating point to integer. It does
not require a representative dataset for calibration.

– Full integer quantization: in this case all the model math is fully integer
quantized. This provides further improvements, with respect to dynamic
range quantization, in terms of latency reduction and memory usage peaks.
In addition, this technique allows compatibility with integer only hardware
devices and accelerators. To obtain a full integer quantized model, it is
necessary to perform a calibration phase, including a calibration dataset,
to estimate the range of values for all the variable floating point tensors
contained in the model.

– Float16 quantization: allows to decrease the size of a floating point model
applying a quantization to the weights to obtain 16-bit floating point
numbers, following the float16 IEEE standard. This strategy reduces the
weights by a half, generating a minimal loss in accuracy, but the decrease
in latency is not as relevant as in quantization techniques to fixed point
math.

• Quantization-aware training: is a training-time technique to improve the
accuracy of quantized models by introducing some inference-time quantization
error as noise, which is accumulated in the total loss, so that the optimizer
learns parameters, more robust to quantization, around that loss.

The choice fell on the post-training integer quantization technique, which is applied
during the model exporting phase. The calibration dataset is chosen as a subset
of 100 samples from the validation set defined in Table 5.2. Table 6.5 shows the
comparison between the results obtained on the Raspberry Pi 4B, with and without
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quantization. Results are computed in terms of mean inference time per image,
considering as data input the validation set from the 3D Printing Defects dataset,
which is made up of 684 image crops. Looking at the values obtained, the final

Format Inference time (ms)

Tensorflow Lite 35.2
Tensorflow Lite (Full integer

quantization) 22.7

Table 6.5: ABN Classification - Benchmarks results for CPU inference on
Raspberry Pi 4B.

model chosen for the classification task is the post-training integer quantized version,
which allows about 1.5x CPU inference speedup, with respect to the unquantized
version, without loosing too much its classification abilities.

Overall, the Anomaly Detection model takes about 42 ms to execute the task on
a single image, where 19.2 ms is the time needed for the nozzle detection and 22.7
ms is the time required for the classification of the area below the nozzle (ABN).
When a 30 FPS stream is given in input to the model, the algorithm is able to
manage the video stream, by outputting the "anomaly" or "no anomaly" label in
near real time. It should be noted that for this type of application it would be
sufficient to detect defects with a much lower frequency than that provided by a
30 FPS stream. For example, it has been tested that for not missing important
frames, it is sufficient to analyze about 10 FPS depending on the speed of the
nozzle. For the purposes of the thesis, however, it has been tried to create a model
that is as performing as possible in terms of both inference time and ability to
detect anomalies, being able to detect a possible defect with low latency, looking
at every frame received from a 30 FPS stream.
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Chapter 7

Conclusions and future
improvements

The thesis work presented a Machine Learning solution, optimized to run on low-
powered devices such as the Raspberry-Pi4, being capable of detecting in near
real time defects that can occur during the 3D printing process, and therefore
helping to save print time and material. Thanks to this study, each 3D printer can
be equipped with an automated "intelligent" system for continuous monitoring of
the printing process, considerably reducing the manual work. This is particularly
useful in large-scale contexts where manual monitoring is extremely difficult as an
operator is assigned to multiple machines, as well as being an important aspect
from the point of view of worker safety to avoid prolonged contact with particles
harmful to health.

As described in Chapters 4 and 5, from a technical point of view, the thesis work
proposed a multi-step Deep Learning pipeline to help in alleviating the critical issues
highlighted above: the first step consists in the detection of the 3D Printer Nozzle
and the Area Below the Nozzle (ABN), implemented using YOLOv5 (5.1); the
second step, takes as input the ABN obtained before and performs a classification
with EfficientNet-Lite as backbone network, giving as high level result the target
label "anomaly" or "no anomaly" (5.2). This is a first Proof of Concept (PoC)
for the problem under analysis, which has been specifically trained and tested
considering the data received from a multinational Dutch lighting corporation.

Overall, the solution presented fulfilled the goal posed by the thesis, both in
terms of the ability of the model to detect defects during a 3D printing process
(6.1 - 6.2) and in terms of ability to perform single detection with limited latency,
when a 30 FPS stream input is provided (6.3). More specifically, the 3D Printing
Anomaly Detection Model was validated on a test dataset kept aside with respect
to the training process and containing real data coming from the lighting company,
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which were previously annotated with the support of a domain expert, in particular
as regards the classification of anomalies. Since the algorithm is composed of
two models used in cascade at inference time, two separate validation phases
were carried out, one relating to Nozzle Detection (6.1) and one relating to ABN
Classification (6.2).

Concerning the detection phase, as explained in the Data Acquisition and
Preparation phase (5.1.1), two types of nozzles were identified by inspecting the
material provided and both of them were correctly detected by the model in a high
percentage of frames. Specifically, the results for this first step were satisfactory in
terms of metrics for the object detection task, since the model evaluated on the
test set has obtained a mAP@0.5 equal to 0.976, which is one of the main metric
used to assess the robustness of an object detection model.

With regard to the classification phase, its focus is on the Visual Anomaly Detec-
tion task, whose practical use case concerns Defects Detection in the manufacturing
sector, particularly in the industrial process of a 3D printer, which corresponds to
the main challenge of the thesis work. Looking at the literature and analyzing the
data received by the company, it was possible to define various printing defects that
occur repeatedly in 3D printing processes, categorizing them into defined groups
(2.2). This consideration, also given the fact that the process takes place in a con-
trolled environment, suggested that in the context under analysis the anomalies are
not completely unpredictable, but on the contrary they have their own specificity
due to certain triggering factors. That said, the design choice was to treat the
problem in a supervised fashion as a binary classification task, also considering that
a sufficient amount of data samples was available for the "anomaly" class and that
many other real data could be gained in the future from the 3D printing industrial
processes (3.2). Taking into account the imbalancing between the two classes, which
is a direct consequence of the nature of the problem, the benchmark metric used
was the F1 score computed with respect to the minority class ("anomaly"), which
takes into consideration both Precision (measure of quality) and Recall (measure
of quantity) in its formulation. By evaluating the classification model on the test
set, a F1 score equal to 0.80 has been obtained. This is a promising result, bearing
in mind that it is difficult for a supervised Machine Learning system to handle
imbalanced data cases and in particular, with regards to Deep Learning models,
a large amount of data is required to learn how to extract the most relevant features.

Future improvements. Even if the presented solution satisfied the ob-
jective posed at the beginning of the thesis, some improvements can be done to
increase the performance of the final ML system, especially as regards the ABN
Classification phase which is the most critical one due to the intrinsic difficulty of
the task. One restraint concerns the limited amount of data samples received at the
moment of model design, both in terms of quantity and in terms of variety. More
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data containing different lamps designs, colours and materials would be useful,
together with a more representative set of anomalies for all of them. This is mainly
due to the fact that, in order to have higher performance, this type of algorithm
requires a large and diversified amount of data and that without this some complex
lamp designs, with a particular finish, could be misdetected if not well represented
in the set of training. A limitation, specific to the supervised setting, is that a good
set of representative data is necessary not only for the normal behaviour but also
for the defective cases, which is difficult and sometimes unfeasible to obtain. That
said, given that the defects in this application can be grouped in main "clusters"
and considering the industrial context which allows to setup a dedicated camera
system to obtain a continuous flow of data, an interesting future development
could be to have a retraining process for the ML algorithm that is triggered every
time a new nozzle or anomaly type is available. This will create a system which
semi-automatically enhances its performance. In addition, with more data available

Figure 7.1: Improved 3D Printing Anomaly Detection system.

concerning the anomalies, it could be interesting to create a multi-class ABN
classification model. This will allow the complete 3D Printing Anomaly Detection
system to have a near real-time feedback about which anomaly has happened
and therefore implement an automatic reaction for certain type of anomalies. For
example, if a severe anomaly is detected (like "Layer shifting"), which leads to an
object that will be hardly recoverable after production, the 3D printing process
could be automatically stopped. In contrast, if a less severe anomaly is detected
(like "Stringing"), only a warning is sent to the operator, which can perform a
manual check and decide if the 3D Printing process needs to be stopped. Figure 7.1
shows the main actors in the process of 3D Printing Anomaly Detection, consisting
in the 3D Printer, the Camera and the Raspberry Pi on which the ML model is
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deployed. The ML Training System is a new actor, in this improved version, which
receives as input new data to perform a new training and produces as output the
updated model to be deployed on the Raspberry Pi. Concerning the anomalies,
the output of the model is differentiated between "warning" and "critical anomaly".
This enables to treat differently the two outcomes, implementing an automatic
reaction to stop the process only for those anomalies that are for sure unrecoverable.

Overall it was a very interesting learning experience that allowed me to make
new experiences, such as visiting a 3D printer industrial setting, acquiring new
knowledge and applying what I learned in my course of study, bringing my personal
contribution on a practical use case in an industrial context. In conclusion, I think
that my thesis work could be useful, with the aim of reducing waste of resources,
in other contexts besides that of 3D printing of lamps, given that 3D printers are
used nowadays for many different types of applications and their use is increasing
more and more.
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