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Abstract

Nowadays, Machine learning is employed in many different everyday problems,
especially in the form of Neural Networks. However, the raising computational
load and the heavy resource requirements of these structures have led to solutions
based on cloud-based services. Moreover, to improve the efficiency and the power
consumption of the models’ calculations, it has been introduced a new generation of
neural networks called Spiking Neural Network which aims to overcome the previous
limitations by imitating the human brain behavior. Its sparse, dynamic, and event-
driven analytic capabilities improve meaningfully the performances reducing overall
costs.

In the last few years, however, what has been considered concerning about
this type of service is related to the privacy preservation of the confidential data
evaluated by the networks held by servers. To solve the issue several strategies
have been proposed, but one of the most promising is Homomorphic Encryption, a
particular scheme based on a special method to encrypt information that allows
some kinds of computations directly on the encrypted data without decrypting
it. Performing this type of Encryption can overcome privacy concerns while using
Machine Learning in cloud platforms letting the client employ a network model
owned by another party by sending the encrypted data in complete safety.

The project is about the application of this security strategy on 2 different
generations of neural networks, the artificial and the spiking ones. Hence, the
main features of the neural networks have been collected and the homomorphic
encryption strategy chosen, the Brakerski/Fan-Vercauteren, has been discussed as
background research. Then it has been selected a simple convolutional architecture
(LeNet5) as a model to build a spiking version of the same structure, to perform
the classification of images from MNIST, FashionMNIST, and CIFAR10 datasets.
After the training phases, the performances of the 2 obtained networks have been
compared when a hypothetical client requires encrypted computations.

The simulations have been fulfilled using PyTorch, useful to deal with tensors
and networks, and the libraries NORSE and Pyfhel. The first provides the spiking
functions while the latter, based especially on SEAL, has been used to deal with
the encryption.

More specifically, the Homomorphic Encryption scheme has been employed to
encrypt the input images and to encode all the layers of the 2 architectures that are
characterized by linear operations, making the networks able to manage encrypted
inputs. In addition, a multi-party computation pattern has been used to execute
the non-linear operations, needed by the models to learn, without approximating
the activation functions which characterize the 2 networks.



The experimental results portrayed a better performance, in terms of accuracy
and of the errors made, of the SNN when the homomorphic encryption scheme is
used. On the other hand, SNN requires a huge amount of time with respect to
CNN since the necessary initial time encoding makes the execution as slower as
the observation sequence grows.

In conclusion, this project has underlined the necessity of better strategies
to merge the non-linearity of neural networks with the constraints of Homomor-
phic Encryption, better SNN training methods, and better configuration of the
homomorphic scheme.
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Chapter 1

Introduction

In the last few decades research in Machine Learning has spread to the point that
it has found a large range of applications in different contests: Finance, Diagnosys,
security, robotics, Autonomous systems, etc. Its diffusion has made it so pervasive
that nowadays a lot of information is collected constantly and automatically while
providing a certain service.

Machine Learning concepts can be exploited by neural network models, sets of
layers made of nodes that perform easy jobs that together solve difficult problems
aiming at the human brain functionalities emulation. These architectures, during
the years, have been through an evolution process that has led to the formation of
several generations of them with different aspects. The most common type is the
Convolutional Neural Network (CNN) which works fine though its behavior is far
away from the realistic biological one of the neuron, the human brain node. Since
the latter is way more efficient, a new generation has been built to reproduce more
closely the functionality of the human neuron, the Spiking Neural Network(SNN)
which relies on spikes to compute its operations and to deal with communication
between nodes, saving power, making the elaborations more efficient and simplifying
the Hardware requirements.

Essentially, technological improvements, new platforms and strategies for storage,
and new increasing computational possibilities algorithms have led to efficient
predictive models able to elaborate huge amounts of data which in most cases, it is
desired to preserve. Privacy has become one of the most concerning subjects since
clearly, machine learning has shown a lot of previously unknown vulnerabilities
in everyday used software. Not only the user data could be stolen, but even the
model can be stolen.

This project has as its focus the application of a security measure to the machine
learning model in order to protect the data of a hypothetical client when employing
a neural network owned by a server to solve a classification problem. This security
measure is Homomorphic Encryption. It is a particular form of encryption that
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Introduction

uses polynomial features to enable the elaboration of data while still encrypted.
Basically, it allows the client to employ the server network for a task sending its
sensitive information obscured by this encryption scheme with some fundamental
parameters useful to make the model in the cloud able to apply the operation
required on the encrypted inputs. At the end of the computation, the server can
send back the outcomes still encrypted, and once received, only the client is able
to decrypt them gaining the plain results.

Executing the evaluations in this secure way is possible due to the main charac-
teristics of the encryption scheme which needs to be homomorphic which means
that it is able to preserve the algebraic structures of a system if certain conditions
are valid making possible the addition and multiplication operations on encrypted
variables. Even though in theory it existed before, Homomorphic encryption caught
massive interest only after the publication of Gentry resources.

In conclusion, this project aims at comparing 2 different generations of Networks,
the convolutional and the spiking ones, when dealing with a computation char-
acterized by a Homomorphic Encryption scheme, the Brakerski/Fan-Vercauteren.
Thus, the following chapter discusses the main concepts of Neural Networks, in
particular, describes the basic features of CNN and its layers, and introduces the
fundamental peculiarities of SNN. The third chapter exposes the definitions and
the functionalities of Homomorphic Encryption, its limitations, and classifications,
before portraying the encryption scheme used in the implementation. The fourth
chapter is about the framework and the relative choices made: the datasets used for
the comparison, the 2 architectures employed based on the LENET5, the training
phase required by both, the inference and scheme details, and the protocol used
to overcome the encryption limitations. The fifth and last chapter regards the
obtained results, the conclusions that can be deduced from the comparison between
the 2 neural structures analyzed, and a discussion on the areas of improvement and
possible future work.
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Chapter 2

Neural Networks

2.1 Convolutional Neural Networks
Seen as a part of artificial intelligence, Machine learning (ML) is a field that aims
to understand and create methods that ’learn’, more specifically methods that can
influence data to improve performance on a particular task. It collects methods
developed in the last decades of the twentieth century and its algorithms are based
on acquiring sample data, the training data, in order to update itself and become
able to make predictions or decisions without being explicitly programmed to do
so[1].

Machine learning is used in many applications, such as medicine, email filtering,
speech recognition, and computer vision. ML methods can be unsupervised and
supervised and in particular, Artificial Neural Networks are mathematical patterns,
a subset of supervised ones.

During the training step, input from the trainset is given to the model to be
analyzed. The output obtained is compared with the desired one to adjust the
model by updating some tunable parameters called hyperparameters. During this
phase, a loss function is used to minimize the error between the two outcomes.
This learning behavior is obtained without explicit instructions[2].

Essentially, the aim of Artificial neural networks is to emulate the analytic
attitude of biological brains, to predict and solve tasks reaching more or less the
same performances and results. To achieve this purpose, it is fundamental to
understand how the animal brain works.

It is based on particular units (neurons) that react to electrical and chemical
stimuli. These units are interconnected employing synapses to create a neural
pathway able to send information from one section of the brain to another. In
this way, a neural circuit able to fulfill some simple specific function is obtained.
Obviously, with more interconnected neural circuits, it can be derived a large-scale
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brain network, able to perform more complex functions [3].

Figure 2.1: Neuron from [4]

Since the basic operations of the complex functions performed by the network
are computed by the neurons, it is fundamental to determine their model. The
neuron model characterizes the single unit utilizing an activation function that
defines the output depending on the input received.

Neurons are usually organized in groups called layers and several layers form a
neural network. There are different kinds of layers since each one needs to execute
a specific step of the computation. Layers inside the network can be divided in:

• Input layer that receives an input from the user;

• Hidden layer that elaborates the information received from the previous one;

• Output layer: that returns the results of the evaluation.

Obviously, the network can be enlarged by including more layers and using
more complex layers. As the neural networks became popular, the model used to
characterize the neurons went through a process of evolution that made them more
complicated so that three generations of networks could be defined [5].
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Figure 2.2: DNN from [4]

The first generation of ANNs, the perceptron, is called also threshold-gates and
they are based on the McCulloch–Pitts model:

f(x) =

1 if h = q
#neurons xiwi>u

0 otherwise
(2.1)

where f(x) is the outcome evaluated by the neuron that can result in activation,
if it is equal to 1, or not if it is 0; h is the state of the neuron; wi is the synaptic
weight; xi is the input of the neuron which is the output from the previous layer
and u is the threshold. The latter can be set to 0 or to a specific value by means
of bias. Using bias makes the network more flexible.

To perform the training step, it is used the Hebb1 theory due to the binary
nature of this kind of network. Essentially, the theory claims that if a pre-synaptic
neuron (whose output acts as input) causes the activation of the post-synaptic
neuron (that receives the input stimulus), the synaptic weight is enhanced [6].
However, the first generation of neural networks does not behave properly with
continuous data.

An evolution of the first generation is represented by the second one which is
based on a model that provides a neuron with a continuous activation function g
according to the following equation:

f(x) = g

 Ø
#neurons

xiwi − b

 (2.2)
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where g is usually a sigmoid function and b is the bias.
In order to perform the training step for a network of the second generation the

rule of Hebb is not used anymore. Indeed, there have been employed new types of
algorithms such as gradient descent. This technique aims to modify the weights in
the last layer exploiting the error between the predicted result and the expected
one. In this case, it is fundamental the back-propagation step because it is essential
to go through the network from the final layers back to the first ones to propagate
the error to the hidden layers. In this way, even a network with many hidden layers
can be trained (deep learning)[6].

Figure 2.3: Neural unit from [4]

Even though the second generation of ANNs can simulate all the boolean func-
tions with fewer neurons with respect to the first generation and can approximate
any continuous functions with just one hidden layer the third generation of ANNs
is even more efficient.

Indeed, this last generation is able to reproduce the spiking dynamics of the
biological neurons. They are called Spiking Neural Networks due to their behavior
which is modeled by means of an Ordinary Differential Equation (ODE). To reach
the spiking behavior the information needs to be encoded over time. This step can
be obtained using the firing rate or the period of time between two consequent
spikes [7].

2.1.1 CNNs and Layers
Overall, Machine Learning is a method of computation based on automatized
analysis of large datasets and an efficient way of building analytical models. There
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are three different types of Machine Learning tasks:
• Reinforcement Learning, where the algorithm receives rewards or penalties

during its interaction with an environment [1]. Learning is obtained by the
maximization of the reward.

• Unsupervised Learning, where the model simply looks for patterns in the given
data, but it does not have any information about the inputs [8].

• Supervised Learning, where samples of the data with their corresponding
output labels are used to perform a mapping between the input and the
output.

As previously clarified, Neural Networks are models able to fulfill complex
functions by means of layers of simple processing units that communicate due to
weighted interconnections [9].

Since each layer has its own goal and its own characteristics and since they
essentially build the model, it is fundamental to define the problem to solve and to
understand how the layers work and how they are useful to accomplish the specific
task the network is built for.

The project discussed in this thesis is about supervised learning of classification
in the case of spiking neural networks. Several datasets have been used but all of
them have an output that must be classified into ten classes, from 0 to 9.

For what concerns the layers of the analyzed network, in the case of the MNIST
dataset, the input image has a dimension of 28*28 pixels with 1 channel so the
input layer would be made of 28*28 input nodes. Since the aim is to classify the
incoming image, the final layer consists of 10 nodes, and their values determine
the winner digit. To solve the problem of image recognition with high accuracy,
Convolutional Neural Networks (CNN)s represent a solid solution.

Figure 2.4: Architecture of CNN from [10]

Inspired by the biological processing capabilities of the animal visual cortex,
CNNs have proven their effectiveness in image classification problems due to their
mastery in capturing the spatial topology with respect to standard networks.

7
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Convolution Layer

The Convolution Layer is the one that determines the extraction of the input
features evaluating a convolution between the input and a filter, named kernel. In
this way, a feature map is produced. The kernel is a matrix composed of weights
that slides over the input with a step determined by the stride.

So at each step, matrix multiplication is computed and the outcomes are
summed onto the feature map. During this step is fundamental the padding
process that ensures that the output has the correct dimension. Usually, it is used
the zero-padding which contemplates the addiction of pixels, each with zero as a
value, around the input. This layer is commonly the most computationally heavy
since numerous matrix multiplications are expected. Overall, the characteristics,
Hyperparameters, of the layer are:

• Kernel size

• Filter count

• Stride

• Padding

Figure 2.5: Convolutional layer from [11]

Fully connected Layer

The convolutional layer is the first one of the network and it is what the input
encounter, while the last layer of the model is the fully connected one. Exactly like
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the first one, even this layer provides only linear calculation performing a weighted
sum of the inputs and the bias addiction. As specified by the layer name, all the
nodes from the previous one are connected with the current ones. Moreover, since
it is the final step, it maps the visual features obtained during the evaluation to
the outcomes [9].

Figure 2.6: Fully connected layer

Activation Layer

Between the analyzed steps, which are characterized by completely linear calcula-
tions, there is a non-linear layer that simply contemplates the application of an
activation function on the received input. The most common ones are the sigmoid,
the hyperbolic tangent (tanh), and the Rectified linear operation(ReLu). This type
of layer is essential to build effective models.

Pooling Layer

It is useful to include in the model some pooling layers that decrease the size of
the feature maps. Thus, the number of parameters used in the matrix calculations
in the linear layers is reduced, simplifying the learning step, and, since further
operations are executed on summarized features, making the network more robust
to the input characteristics positions changes. There are two widespread types of
pooling:

• Max-Pooling, which takes into account only the higher value of the window,
collecting the most prominent features of the previous feature map.
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• Average-Pooling, which evaluates the mean value of the window, granting the
average of features present in a patch [12].

Figure 2.7: Pooling layer

Softmax

At the end of the fully connected layer, it is used the softmax step in the case of
classification problems with discrete class labels to obtain as output a probability per
each class. More specifically, the sum of these probabilities is 1 and the association
with each class is performed with a standard exponential function. Thus, the
output with the higher value has a higher probability too and it is considered the
most likely class for the input. A variation of this layer is represented by the Log
Softmax which has advantages over Softmax for what concerns numerical stability,
optimization, and heavy penalization for highly incorrect classes.

Loss Function

Once the outcome is obtained, a loss function is used to verify the effectiveness
of the network. It is essential to compare the results of the computation with the
required outcome and to measure their divergences. If the loss function is high,
weights and biases need to be adjusted in order to minimize it. There are a lot of
loss functions like Mean Squared Error, Mean Absolute Error, Cross Entropy, and
Negative Log Likelihood and they are used with the backpropagation to understand
how to update the parameters of the model [13].
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Backpropagation

Backpropagation is the most important step during the training phase. It is used
the analyze the network in the backward direction and to change the weights and
the biases of the model using the loss function as the main information. The
most used algorithm, named Stochastic gradient descent (SGD), is based on the
evaluation of the gradient of the last layer with the partial derivatives of the loss
function with respect to the weights and on the calculation of the local gradients
of the inner layers that depend on the outputs of the next layers. Thus, there is a
backward flow of propagation in which the gradient is used to adjust the weights
of the previous layer [14].

Optimization

The training step can be a lot of time-consuming depending on the model parameters,
the model dimensions, the dataset complexity, and the specific task the system is
aimed at. Moreover, the learning rate parameter can affect the efficiency of the
training step since the size of the adjustment the weights receive depends on it.
Essentially, a too big value of the learning rate can lead to a high oscillation of the
variation making it difficult to reach the minimum of the cost function. A too much
low learning rate, instead, can slow down a lot the operations needed to achieve
the optimum situation [15]. Hence, it is fundamental to update the learning rate
during the process, reducing the parameter as the weights get closer to the desired
values. There are several types of optimization: SGD with momentum, Adagrad,
Adam, etc.

2.2 Spiking Neural Networks
According to recent research, ANN ML requires so many resources in terms of
energy, time, and memory consumption during training and inference phases that
questioning about the technology accessibility has become fundamental. Indeed, the
human brain is able to solve more general and sophisticated problems with a fraction
of the power and time needed by ANNs. This is the reason why neuromorphic
computing has the goal of reproducing the operations of the brain obtaining a huge
improvement (orders of magnitude) in terms of energy efficiency and requirements.

Biological neurons are essentially complex systems with analog dynamics that
communicate through the timing of digital spikes. These connections are charac-
terized by large fan-out, feedback, and recurrent signaling paths in a different way
with respect to feedforward or recurrent structures of ANNs. Moreover, the sparse,
dynamic, and event-driven operations of biological neurons are perfectly capable of
realizing complex online adaptation and learning mechanisms with few resources.
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Overall, it appears clear how a huge improvement a network with these qualities,
the SNN, can represent.

More specifically, SNNs are trainable dynamic systems that use the temporal
dimension to encode data, in this way the information is evaluated as asynchronous
and sparse spike trains that go through interneuron communications and intraneu-
ronal computing.

Obviously, all these specifications have led to the development of prototype
neuromorphic hardware platforms able to deal with time-encoded data like IBM’s
TrueNorth and SpiNNaker. Hence, to process the encoded inputs, systems based on
hybrid digital-analog circuitry and in-memory computing are usually implemented,
since it has been demonstrated to perform a remarkable energy-saving execution of
complex behaviors [16].

As previously described, biological neural systems consume orders of magnitude
less energy than ANNs and are much more flexible and robust, adaptive, and
efficient due to their way of operating in a massively parallel way rather than
time-multiplexed computing units. Furthermore, neurons of the brain follow
continuous-time dynamics in real, physical time instead of operating on a discrete
dimension that is an abstraction of real-time.

In addition, conventional computers use Boolean logic, bit-precise digital repre-
sentations, and time-multiplexed and clocked operations, that burn extra power,
while nervous systems use inherently noisy analog units in the continuous time
domain in an event-driven and massively parallel way [17].

2.2.1 Neuron models

There are several ways to represent the biological behavior of the neuron which is
based on the firing characteristic. Essentially, the unit processes the data received
and sends the spike trains ahead. The chances to verify a spike depend on the
membrane potential that needs to be higher than a threshold to make the neuron
fire [18].

After the firing phenomenon, the neuron goes through a refractory period during
which it would not be possible to fire again. More specifically, when the threshold
is reached, depolarization occurs and the action potential rises. Subsequently, there
is the repolarization phase which leads the neuron to a voltage value below the
resting state causing the absolute refractory period. The resting state is obtained
only after the hyperpolarization during which the neuron can fire though it is highly
unlikely(relative refractory period).

This biological behavior is represented with high accuracy in the Hodgkin-Huxley
model though there are other fundamental models which are less precise but less
complex.
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Figure 2.8: Action potential from [19]

Overall, the most important models are:

• Hodgkin-Huxley model

• Spike response model

• Izhikevich neuron model

• Leaky integrate-and-fire model

The Hodgkin-Huxley is the model that shows higher affinity with the biological
neuron but its complexity makes it impossible to build huge spiking neural networks
using it.

The Spike response model is an approximation of the original functionality
and its main characteristic is that it does not depend on the voltage but on the
difference between the current instant and the time of the last spike produced.
Furthermore, its describing equation is of integral type:

um(t) = η(t− t̂k) +
Ø
j

wjk

Ø
f

Ôjk(t− t̂k, s) +
Ú ∞

0
κ(t− t̂k, s)iext(t− s)ds(2.3) (2.3)

where um(t) is the membrane potential and Ôjk(s) is the trend of post-synaptic
potential since j is the pre-synaptic neuron and k is the actual neuron. The number
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of spikes is described by f, s = t − tfj , κ(t − t̂k, s) represents the response to the
current iext and η(t− t̂k) is the behavior the potential when the threshold is reached.
In conclusion, the threshold is defined by the time of the last spike: θ = θ(t− t̂k)
[20].

Izhikevich is probably the best model due to its affinity with brain functionality
obtained at an affordable computational cost. It is essentially a simplification of
the Hodgkin-Huxley model and it is based on two differential equations:

dv

dt
= 0.04v2 + 5v + 140− u (2.4)

du

dt
= a(bv − u) (2.5)

ifv ≥ θthen

I
v ← c

u← u + d
(2.6)

where v is the membrane potential, u is a recovery variable, θ is the threshold
and a, b and c are dimensionless parameters [21].

The last approximation is the Leaky integrate-and-fire model based on an RC
circuit to represent the membrane potential. Thus, after this potential exceeds the
threshold, neurons fire, and the membrane is set to urest. It is possible to define an
absolute refractory period and a relative membrane value [22].

Figure 2.9: LIF circuit
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Clearly, the LIF model is the easiest one to implement, but it is not able to re-
produce properly all the biological neuron features. Depending on the requirements
the most effective solution can be chosen though, usually, LIF and Izhikevich are
preferred due to their moderate computational cost [22].
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Chapter 3

Homomorphic Encryption

Nowadays deep learning is used in a lot of applications such as research, content
filtering, labeling recommendation, and e-commerce systems due to its capability to
reproduce the way humans fulfill their tasks. Based on complex models, needed to
capture the main input data features, Deep Learning is a complicated technology
that requires proficiency in several disciplines like neurology and computer science.
Since the production of the required models can be inaccessible, it has become
fundamental to use clouds since they represent a perfect platform to host pre-
learned models at cheap costs and high computational capability following the
philosophy of Deep Learning as a Service [17].

Thus, functionality is provided affordably and reasonably even though there
can be observed some other kind of disadvantages. The most concerning ones are
related to data privacy since cloud platforms are used. In fact, the cloud receives
the data from users and, after the computations, it sends back the results executed
by the model, but, as the process goes on, the information can be compromised.
Therefore, it is essential to guarantee a secure and non-interactive method to
perform the computation required respecting the privacy of the data.

A possible solution is represented by Homomorphic Encryption, a special kind of
cryptography based on the idea of performing all the computations over encrypted
inputs without decryption [23].

The main feature of this technique is to protect both the data and the model
of the server. The first is guarded with the encryption and the latter is obscured
to the client that receives the encrypted outcomes. Usually, this approach allows
a non-interactive procedure between the client and the server. In conclusion, the
main drawback of this strategy is the computational overhead that the encryption
causes.

Homomorphic Encryption has been first studied by Rivest, Adleman, and
Dertouzos as a method useful for third parties to work with encrypted data [24].
In the following decades, there have been many attempts to design similar systems
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and several solutions have been considered, thus leading to different types of
Homomorphic Encryption schemes:

• Partially Homomorphic Encryption (PHE)

• Somewhat Homomorphic Encryption (SWHE)

• Fully Homomorphic Encryption (FHE)

Partial Homomorphic Encryption Schemes

The earliest HE schemes were of Partial Homomorphic Encryption type. Paillier,
Goldwasser and Micali, and El Gamal are some of the most famous methods of this
kind. The main feature of PHE strategies is that it is possible to perform either
addition and multiplication but not both making them useful for a limited number
of applications. Despite the restricted qualities of these schemes, Paillier one is still
used nowadays where the main operation required is addiction. A solution that
could guarantee the use of both operations has been looked for since the birth of
this technique, for example, Boneh et al’s scheme allows unlimited additions but
only a single multiplication [25].

Somewhat Homomorphic Encryption Schemes

Many Homomorphic Encryption strategies have been proposed in the last decades,
Polly Cracker, for example, proposed the first scheme able to perform additions
and multiplications simultaneously though it has been considered not exploitable
due to the growing size of cipher texts. Essentially, Somewhat Homomorphic
Encryption techniques allow the computation of polynomials but only the ones of
lower degrees. Thus, SWHE has been considered useless in terms of providing a
solution to practical and real problems. Something changed when Machine Learning
and Cloud Computing spread and the relative privacy issues became concerning
[26].

Fully Homomorphic Encryption Schemes

A turning point for the Homomorphic Encryption evolution has been Gentry’s
seminal work which led to a solution capable of both additions and multiplications
without the limitations of previous strategies. Gentry proposed a Fully Homomor-
phic Encryption scheme and a framework to build it and since privacy needed to be
ensured in the new applications, many other schemes have been designed following
his work. The main features of Gentry’s FHE scheme are based on ideal lattices and
gave birth to the first generation of FHE schemes called over integers (Van Dijk).
The second generation of FHE techniques is based on (Ring) Learning With Errors
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problem (Brareski-Vaikuntanathan, and Fan-Vercauteren are the most relevant
works), while the last of these families is defined by the NTRU-like schemes [27].

3.1 Homomorphic Encryption: basic idea
Homomorphic Encryption is essentially a transformation that preserves the initial
structure. It is defined considering the function ϕ : Z → Zq where ϕ(z) =
zmodq. The map ϕ is called a ring homomorphism between the rings Z and Zq

if it preserves the additive and multiplicative structure of the integers so that
ϕ(z1 + z2) = ϕ(z1) ⊕ ϕ(z2) and ϕ(z1 × z2) = ϕ(z1) ⊗ ϕ(z2) ∀z1, z2 ∈ Z where
⊕ and ⊗ are addition and multiplication modulo q (in Zq). So the idea behind
homomorphic encryption is to preserve the structures between the rings of the
plain texts and cipher texts while applying encryption and decryption:

Decsk(f(Encpk(a), Encpk(b))) = f(a, b) (3.1)

Decsk(f(Encpk(a), b)) = f(a, b) (3.2)

Obviously, though the HE allows the performing of some computations on the
encrypted data, it is necessary to guarantee that the effectiveness of the security
level of this kind of cryptography is equal to the non Homomorphic ones.

Overall, in order to perform all the needed computations in the encrypted
domain, it is essential to support the operations of Key generation, Encryption,
Decryption, and Evaluate. It is considered homomorphic for a function ∈ FM
applied on messages, a scheme where it is possible to define another function ∈ FC
like:

Decsk(Encpk(m1) � Encpk(m2)) = m1 ◦m2∀m1, m2 ∈M (3.3)

So FM is the set of functions that can be evaluated according to the HE scheme
through functions in FM and FC that do not necessarily correspond. In fact, the
Paillier algorithm is characterized by the transformation: FM = {+}, FC = {×}.

To homomorphically evaluate every function, it is needed to be able to compute
polynomials requiring unlimited homomorphic additions and multiplications and
making possible the approximation of any suitably smooth function. Since multipli-
cation corresponds to an AND operation and additions to an XOR one for a single
bit, it is possible to obtain a Fully homomorphic encryption "if it can encrypt 0
and 1, and ADD and MULTIPLY encrypted data".

However, it is difficult to build a scheme like the one described due to the
growing noise, added with the aim of turning the computation non-deterministic.
In fact, this noise term grows exponentially with the protracted homomorphic
calculations (especially multiplications). Thus, at the end of the calculations, the
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decrypted result will not match the expected one because of the corruption of the
message due to this growing noise.

A strategy with this limitation is of the SWHE type since it can still work
if the degree of polynomials is kept low enough. Clearly, a Fully homomorphic
encryption scheme can be obtained by a somewhat homomorphic encryption one if
it is possible to reduce the noise level during the process.

Essentially Gentry proposed the first feasible FHE algorithm based on lattice
cryptography, starting with a somewhat homomorphic one where the noise in cipher
texts has been taken under control with two additive operations: squashing and
bootstrapping [28]. Squashing is the step in which the decryption function is manip-
ulated and simplified in order to make the scheme bootstrappable. Bootstrapping
is the process of refreshing a ciphertext in order to produce a new ciphertext of the
same message, but with a lower level of noise so that more homomorphic operations
can be performed on it. Basically, it is like decrypting the ciphertext with an
encryption of the secret key (the bootstrapping key) and then re-encrypting the
message to proceed with the encrypted calculations.

In conclusion, this has been the turning point for the spread of a practical form
of homomorphic encryption and for the beginning of new research that led to new
variants of the original algorithm.

3.1.1 The Brakerski/Fan-Vercauteren HE Scheme
The encryption scheme chosen for this project is the Brakerski/FanVercauteren
(BFV) version that is based on the Ring learning with errors problem. Learning
with errors was introduced by Regev (2009), and has become one of the most
important and hard problems in lattice-based cryptography since it has been used to
construct several cryptosystems. Based on the LWE problem, the LWE encryption
is characterized by two positive integers, n, and q, and an error distribution χ over
Z, normally a discrete Gaussian of width αq, with 0 < α < 1.

Definition 3.1.1 (LWE distribution) Given a secret vector s ∈ Zn
q , the LWE

distribution LW Es,χ over Zn
q ×Zq is sampled by picking −→a ← Zn

q , an error e← χ,
and returning (−→a , b = é−→s , Cê+ e) [29].

So, for n, q, t ∈ N∗ with t|q and a message m ∈ Zt ⊂ Zq, the encryption with
the key −→s ← χkey(Zn

q ) of m is defined as:

LWEq,−→s (m) := (−→a , b) = (−→a , é−→a ,−→s ê+ m̃ + e) ∈ Zn+1
q (3.4)

where −→a ← Zn
q , error e← χerror(Zq) and m̃ = mq/t. While the decryption of a

ciphertext (−→a , b) of m is

LWE−1
C (−→a , b) := çt/q(b− é−→a ,−→s ê)æ ∈ Zq (3.5)
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If ErrLWE((−→a , b), m) = t/q(b− éa, sê)−m = et/q and if |e t/q| ∈ [0, 1/2] then
LWE−1(−→a , b) = m, making the decryption correct. It is clearly fundamental to
keep the function ErrLWEs small in order to obtain a perfectly working decryption.
In conclusion, every time a homomorphic addiction is computed, noise is accumu-
lated and it is essential to be able to reduce it (for example using bootstrap) to
obtain the correct decrypted result.

RLWE encryption was introduced [30] and is the encryption based on the LWE
problem on a suitably defined polynomial quotient ring [31].

Definition 3.1.2 (Decision-RLWE) For λ, the security parameter, let f(x) be
a cyclotomic polynomial Φm(x) with deg(f) = ϕ(m) depending on λ and set
R = Z[x]/(f(x)) and the integer q = q(λ) > 2. For a random element s ∈ Rq

and a distribution χ = χ(λ) over R, denote with A(q)
s,χ the distribution obtained

by choosing a uniformly random element a ← Rq and a noise term e ← χ and
outputting (a, [a · s + e]q). The Decision − RLWEd,q,χ problem is to distinguish
between the distribution A(q)

s,χ and the uniform distribution U(R2
q) [29].

It is possible to restrict s to be sampled from χ instead of taken uniformly in
Rq without modifying any security aspects. Moreover, the hardness of the problem
does not depend on the precise shape of q which does not need to be prime and
can be chosen as a power of 2 [32].

Based on this decision problem, it is possible to define the following encryption
scheme.

The plaintext space is taken as Rt for some integer t > 1. If Ñ = åq/tå and
rt(q) = qmodt then q = Ñ · t + rt(q). It is fundamental to clarify that q nor t have
to prime and that t and q do not need to be coprime. The main operations are:

• SecretKeyGen(1λ): sample s ← χ and output sk = s

• PublicKeyGen(sk): set s = sk, sample a ← Rq, e ← χ and output
pk = ([−(a · s + e)]q, a).

• Encrypt(pk, m): to encrypt a message m ∈ Rt, let p0 = pk[0], p1 = pk[1],

sample u, e1, e2 ← χ and return ct =
A

[p0 · u + e1 +Ñ ·m]q, [p− 1 · u + e2]q
B

• Decrypt(sk, ct): set s = sk, c0 = ct[0], c1 = ct[1] and compute
CE

t·[c0+c1·s]q
q

HD
t

• Add(ct1, ct2) := ([ct1[0] + ct2[0]]q, [ct1[1] + ct2[1]]q). Where the noise grows
additively by a maximum of t since ||r|| ≤ 1.

• Homomorphic multiplication is a quite complex operation since it consists of
two steps: the first is basically the multiplication of polynomials ct1(x) and
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ct2(x) scaled by t/q, and the second is “relinearisation” needed because at the
end of the first computation it is obtained a ciphertext consisting of 3 ring
elements instead of 2.

3.2 Multi-party Computation
Homomorphic encryption (HE) is a fundamental strategy to build a privacy-
preserving neural network but there is also another algorithm used to achieve it
called secure multi-party computation (SMC) and, usually, a combination of both
is performed. The first to propose a privacy-preserving neural network classification
algorithm based on both methods has been Barni et al in 2006 [33]. Neural networks
are described as a succession of scalar products secured by means of homomorphic
encryption and activation functions protected with protocols based on secure multi-
party computation. Essentially, the client encrypts each component of its data with
Paillier’s homomorphic encryption and sends them to the server which evaluates
homomorphically the encryption of the scalar product [34]. Then the server sends
back the encrypted result to the client who finally decrypts it in the plaintext
domain.

Since homomorphic encryption has been used, it is impossible for the server
to learn features about the client’s data. For what concerns the complexity of
communication, it is equal to O(Nn2) with N number of components per vector, and
n the RSA-modulus for the Paillier cryptosystem. The evaluation of each threshold
activation function processing is obtained with Yao’s solution to the millionaire’s
problem [35]. It is fundamental to observe that the values of all intermediate
neurons which are the outputs of scalar products and activation functions are
revealed to the client making the protocol inefficient and imperfect since it does
not fulfill the privacy requirement.

An enhancement of the protocol has been evaluated in Orlandi et al [36] where
it is proposed a solution that does not reveal intermediate results to the client. The
most relevant improvements are the use of the cryptosystem version by Damgard
and Jurik [37] in place of the original Paillier’s and a security measure to guarantee
that the client does not learn anything about the intermediate neurons. Essentially
the server information is protected by the use of a random value inserted in the
computation before sending the encrypted partial results to the client. Though
this solution does represent an improvement it has been still considered inefficient.

The methods that followed have the aim of reducing the communication com-
plexity by avoiding the interaction between client and server. The idea is to have
a client that sends the data encrypted with an FHE scheme and a server that
processes a version of the classification algorithm adapted to operate on encrypted
data without decrypting them and only at the end of all the calculations the
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results are sent back to the client for the decryption. Though privacy is ensured
and communication complexity is highly reduced, the procedure has an important
increase in processing complexity due to the algebraic nature of the classification
algorithm and its multiplicative depth. The most concerning step to execute this
procedure is to adapt the classification algorithm to make it compatible with
homomorphic encryption without modifying its behavior. One of the most used
solutions is to replace the activation function with the squared function which has
multiplicative depth 1. Due to the low degree polynomial activation function, the
multiplicative depth of the neural network is maintained acceptable during the
calculations making the YASHE encryption scheme efficient enough [38].

However, the squared function has an unbounded derivate so that a strange
behavior during the training phase can be verified making this protocol suitable
only for small neural networks. Moreover, the accuracy for neural networks with
more than 2 non-linear layers is very low. Even though there are the described
limitations, it has to be taken into account that in nowadays applications small
neural networks are still the most common [39].

3.3 Related works
Using a Homomorphic Encryption scheme to preserve the privacy of data during
the computation is a strategy introduced in [24]. While the first methods thought
allowed only additions and in a few cases, only multiplications, in [23] has proposed
a solution able to manage both operations. In the following years, many other
important schemes have been created such as Brakerski-Gentry-Vaikuntanathan
(BGV) [31], Cheon-Kim-Kim-Song (CKKS), and the Brakerski/Fan-Vercauteren
(BFV) [29] used in this project.

For what concerns the HE in machine learning, [40] is based on Cryptonets,
neural networks that can be applied to encrypted data and, since it is impossible to
apply HE for non-linear calculations, it introduces several tactics to approximate
these types of fundamental layers. The framework proposed in the next chapter is
similar to Cryptonets in terms of intention though it uses a different HE scheme,
the Brakerski/Fan-Vercauteren (BFV) instead of the YASHE [38], and a different
strategy to deal with the non-linearity.

Works related to this thesis are [41] and [42] that, exactly as in the [40], make
use of HE to guarantee the privacy of an eventual client data while going through
the layers of the neural network owned by a server. Obviously, neither of these
works deals with Spiking Neural Networks but focuses only on classical CNNs and
on how to merge them with these security measures. In addition, another main
difference here is the insertion of a Multi-party computation approach to avoid the
approximation of activation functions that characterize the models used, especially
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the spiking one. This solution drastically reduces the security measure effectiveness
to leave unaffected the behavior of the spiking networks.

For what concerns SNNs, due to the energy advantages that they imply, they
have been analyzed in many works as [43], [44], [45], especially in image recognition
tasks ([46], [47]). The main issue explored in the majority of the papers and
articles regarding SNNs is the training phase and the troubles it causes due to the
non-differentiability of the spiking activation functions, which makes the gradient
descent techniques, typically used for traditional ANNs, unusable.

One of the most successful training algorithms is the ANN-SNN conversion due
to its high performance. Essentially, ANNs are pre-trained and then converted to
SNNs replacing their activation function (ReLU) with the Leaky- Integrate-and-Fire
(LIF) activation by means of weight or threshold balancing ([48]).

The algorithm proposed in [48] has been employed in [49] to study another side
of the privacy-preserving problem while using SNNs. In fact, conversion is usually
obtained considering the chance to access the whole training dataset which however
may contain sensitive information that enterprises would not be disposable to share.
A second issue regards the leakage of the classes features since it is possible to
obtain a representative class image from network parameters by utilizing gradient
backpropagation allowing an attacker to find blind spots in neural structures,
generate strong adversarial perturbations, and disguise a system in the real-world.
The first problem is defined as data leakage while the second is called class leakage
and in [49] both are addressed to build a secure neural system.

The conversion method is based on copying the weight parameters of the ANN
model previously trained to an SNN and computing the maximum activation
across all time steps for every layer to finally set the firing threshold to that value.
Thus, data leakage is solved with a strategy of Data-Free Conversion which is the
generation of synthetic images without accessing the actual data but simply from a
pretrained ANN. Due to the conversion algorithm used, false images are obtained
considering the class relationships from the weights of the last fully-connected
layer. Once the synthetic dataset is fulfilled the system is data leakage free but
still vulnerable to class leakage. It is possible, indeed, to recover the original ANN
by accessing the weights of the SNN and turning the LIF activation function back
to the ReLU. As a security measure, [49] proposed the Encryption of the SNN by
means of temporal spike-based learning rule, with a small number of time steps to
avoid resource consumption and guarantee a certain level of energy efficiency. What
has been gained in this way is some data that is really hard to be interpreted in the
spatial domain, encoded using a Poisson spike generator without huge information
loss that can be used to perform the training phase with a spike-based learning
method.

Lastly, it is used a distillation technique to avoid the overfitting of the network
and consequentially the performance degradation caused by the reduced number
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of training samples. In fact, in [50] it has been proved that distillation of the
knowledge from ANNs to SNNs improves the generalization ability of the network
solving the troubles of using a small number of data samples.

Furthermore, [49] presented 2 types of attacks to verify the effectiveness of the
privacy-preserving structure built against class leakage. The first scenario is based
on the chance of recovering the original ANN taking the weights of the SNN and
so reconstructing class representation by backpropagation. The second scenario
is a direct attack on the SNN, specifically, the backpropagation of gradients to
reconstruct class representation. In this case, it is necessary to follow a proper
procedure based on approximated gradient functions for LIF neurons due to the
fact that it and the Poisson spike generator are non-differentiable. Overall, the
first attack is managed by the post-conversion encryption training since it makes
the weight of SNN encrypted in the spatial domain while the second one showed
that SNNs are robust to gradient-based security attacks due to the discrepancy
between real gradients and approximated gradients.

To sum up, the privacy-preserving method in [49] is built by the 3 strategies
described: Data-free Conversion, Encryption Training, and Distillation, and no
significant performance drop across all datasets is verified.

Moreover, the results show that PrivateSNN is more efficient from the energy
consumption point of view than both ANN and standard converted SNN.

This work has not dealt with SNN training problems or its security vulnerabilities
because the Norse library used manages it by means of the Superspike algorithm.
It is a derivation of the surrogate gradient approach, based on the approximation
of the partial derivative of the hidden unit results as the product of the filtered
presynaptic spike train and a nonlinear function of the postsynaptic voltage instead
of the postsynaptic spike train [51].
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Chapter 4

Encryption Framework
Design

This section introduces a possible solution to the problem of maintaining the privacy
of data while computed by a convolutional neural network. It has been thought a
protocol that relies on a predictive model held by a server employed by a client
without revealing any information about the client’s data. Essentially, this project
aims to compare a convolutional neural network and a spiking neural network in
terms of reliability and efficiency while working on encrypted data. The models in
the cloud need to be trained first on unencrypted datasets to obtain the optimized
parameters, weights, and biases, and then adapted to make possible the encrypted
calculations. To handle the task, it has been used Python 3, more precisely Pytorch
[52], to deal with the neural networks, NORSE [53], for the spiking models, and
Pyfhel [54], which relies on SEAL [55], for the encryption functions [41]. The
comparison between the two generations of networks is performed through three
datasets: MNIST, FashionMNIST, and CIFAR10.

4.1 Network model
Due to the complexity of the encrypted calculations, it has been chosen as a
network model one of the simplest and shortest architectures, the LeNet5, in order
to maintain the simulation’s time and computational cost reasonable.

4.1.1 Datasets
To understand how the structure of the model has been built, it is fundamental to
notice the main features of the used datasets.
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The first one, MNIST, is a database of handwritten digits, so 10 classes, and
has a training set of 60,000 examples, and a test set of 10,000 examples. Known as
a subset of a larger set from NIST, it is one of the easiest to deal with since it does
not need a lot of preprocessing and formatting. In fact, MNIST is often the first
dataset researchers try. Its images contain grey levels and are centered in a 28x28
image [56].

Fashion-MNIST is a dataset of Zalando’s article images. More precisely, it is
made of a training set of 60,000 examples and a test set of 10,000 examples and,
exactly like in MNIST, each example is a 28x28 grayscale image for a total of 10
classes. Each of the 784 pixels has a value associated with it, an integer between
0 and 255, useful to evaluate the brightness of the pixel. Each training and test
example is assigned to one of the following labels: T-shirt/top, trousers, Pullover,
Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle boot [57].

CIFAR-10 is the hardest dataset used in this project since it is composed of
60000 32x32 color images in 10 classes, with 6000 images per class. Since it is
not based on grayscale images, it needs three channels to describe the RGB color,
instead of the one used for the previous datasets. The training set consists of
50000 images while there are 10000 images for the test set. Overall, the 60000
images are divided into 6 batches of 10000 samples, 5 for the training phase and 1
containing 1000 randomly-selected images from each class for the test phase. Only
the training batches may contain more images from one class than another but in
total, they contain exactly 5000 images from each class. The 10 classes are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck; and are completely
mutually exclusive with no chances of overlap [58].

4.1.2 LENET5

The features of the dataset to analyze are fundamental to determining the character-
istics of some layers of the network. Indeed, there are a few differences between the
LENET5 architecture for MNIST and FashionMNIST datasets, which are similar,
and the one suitable for CIFAR-10.

Considering the first two datasets, the input of the network is a tensor of one
channel, 28×28 matrix of pixels, where each pixel has its own gray level (0-255),
and the label which describes the class of the image with an array of 10 values in
one hot format.

Thus, the first layer of the network, the Convolution layer needs to have 1 input
channel for the 28×28 matrix, and perform the convolution using a kernel of size
(5, 5) and a stride of (1, 1) obtaining 6 output channels with the shape 24x24 as
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described by the following equations:

Hout =
E

Hin + 2× padding[0]− dilation[0]× (kernel_size[0]− 1)− 1
stride[0] + 1

F
(4.1)

Wout =
E

Win + 2× padding[1]− dilation[1]× (kernel_size[1]− 1)− 1
stride[1] + 1

F
(4.2)

where H and W are the height and weight of the matrix, padding has a default
value of 0 and the dilatation, which controls the spacing between the kernel points,
has a default value of 1.

What comes after is the Activation layer to apply non-linearity to the network.
It has been chosen the ReLU activation function which applies the rectified linear
unit function element-wise:

ReLU(x) = (x)+ = max(0, x) (4.3)

Figure 4.1: ReLU activation function

The output has the same shape as the input.
The Average pooling layer performs a 2D average pooling over an input signal

with a window characterized by a kernel size of (2,2) a stride of (2,2) and a 0
padding. The shape after this layer is determined by:

Hout =
E

Hin + 2× padding[0]− (kernel_size[0])
stride[0] + 1

F
(4.4)

Wout =
E

Win + 2× padding[1]− (kernel_size[1])
stride[1] + 1

F
(4.5)
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Hence the output has dimensions of 12×12. It has been selected this type of pooling
because the Max pooling layer is incompatible with homomorphic encryption
computation.

Here the network has a second convolution layer with the same parameters as
the first one, a kernel of size (5, 5) and a stride of (1, 1). Thus, the 6 input channels
become 16 output channels of shape 8x8.

A new ReLU activation function followed by an average pooling layer is performed
exactly as before, giving the output the shape of 4x4.

After the flatten layer, the matrix is flattened into an array of length 256
(4x4x16).

At the end of a fully connected layer, the array has 120 nodes.
In conclusion, there is a sequence of ReLU, a Linear to turn the vector a

dimension of 84, another ReLU, and a final linear layer that reduces the tensor to
10 output nodes, each one corresponding to one of the 10 classes.

Once the input has passed through all the model layers, it is applied on the 10
output nodes a Log Softmax function that simply represents the logarithm of the
softmax function. Essentially, the evaluation of log probabilities means representing
probabilities on a logarithmic scale, instead of the standard [0,1] interval. Thus,
each node has an associated value, the highest of which represents the selected
prediction.

Figure 4.2: LeNet5 Architecture for MNIST and FashionMNIST dataset

The described network needs some modifications if the input images are from
the CIFAR-10 dataset. In fact, as previously described, these data are in the form
of a tensor with 3 channels and a matrix of 32x32 pixels. So the first layer needs
to deal with the initial 3 channels as input and it shows 6 outputs of 28x28 nodes.
The first pooling layer has as output a tensor with a matrix of 14x14 while at the
end of the second convolution the tensor has the dimensions of 16 outputs of 10x10.
Following the rest of the architecture, the tensor has a matrix of 5x5 after the
second mean pooling and a flattened dimension of 400 (5x5x16) after the flatten
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layer. The rest of the execution is exactly as already discussed for the MNIST and
FashionMNIST model.

Figure 4.3: LeNet5 Architecture for CIFAR10 dataset

4.1.3 SNN version of LENET5
In the previous section, it has been described a LENET5 structure, one of the
smallest, characterized by the ReLU activation function. In the following, it is
built the same architecture, with the same dimensions and complexity, but with
the spiking activation function turning the classical and convolutional LENET5
into a Neural Network of the third generation: SNN. Since the aim is to obtain
a good comparison between the convolutional model and the spiking model, it is
fundamental to maintain the same structure dimensions and the same characteristics
of each layer (pooling, linear, and the others with the same kernel size and stride) so
that the only changes are represented by the activation function used, represented by
the module LIFCell, and the last linear layer which is substituted by LILinaerCell,
both from Norse library.

Neuron Model

To define the spiking activation function it is necessary to clarify which of the
possible neuron model to use. As briefly summarized in the first chapter, the
model that best emulates the human brain is the Hodgkin-Huxley but it has been
ignored due to its complexity. It is necessary to consider that the homomorphic
encryption evaluations are managed at a heavy computational cost and consume a
huge amount of time, making the simpler neuron model the best solution. Among
the remaining models, Izhikevich and Leaky integrate-and-fire are the most feasible,
and the latter, probably the most popular, has been chosen to fulfill the simulations.

LIF works by combining the Norse leaky-Integrator model with spike thresholds
to produce events (spikes). The Leaky integrator unit evaluates a leaky neuron
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membrane that integrates incoming currents over time without dealing with spiking
phenomena. Thus, the neuron adds up incoming input current, losing a bit of
it at every timestep. Its behavior is modeled by means of the 2 following ODE
equations:

v̇ = 1/τmem(vleak − v + i) (4.6)

which illustrates how the membrane voltage varies over time with the addition of
the current (i) and the leakage of the constant amount vleak;

i̇ = −1/τsyni (4.7)

which describes the way the current flows into the neuron in every timestep.
The time constant present in both equations controls how fast the voltage and

the current change, in fact, when it is large there are small variations of these
quantities. However, in Norse, the inverse of this time constant is portrayed for
convenience which means that a large inverse time constant implies rapid variations
while a small inverse time constant implies slow variations. LIF model adds to
the LI one the firing event. In fact, if the neuron voltage increases over a defined
threshold(vth), the firing phenomenon occurs.

z = Θ(v − vth) (4.8)

To sum up, the used module, the LIFCell, computes a single euler-integration
step of a LIF model without recurrence implementing one integration step of the
described ODE (equations 4.6 and 4.7) with the jump condition portrayed by the
equation 4.8 and the transition:

v = (1− z)v + zvreset (4.9)

The behavior of this activation function can be defined by means of a method,
usually the Superspike which synthesizes a gradient approach through the Heaviside
step function:

H[n] =
I

0, n <= 0
1, n > 0 (4.10)

Overall, this type of network operates on spikes combined by linear transforma-
tions and integrated by neuron circuit models obtaining an architecture that needs
to work on temporal data. More specifically, it can be seen as a recurrent neural
network (RNN) where time is identified with the sequence dimension explicitly and
only binary values are exchanged between layers at each timestep.

It has been described an activation function able to reproduce approximately the
behavior of a biological brain but neurons need another variable to work perfectly.
The membrane state is indeed fundamental to lead the neuron to spike if the
voltage is above a threshold because it keeps track of membrane voltage as long as
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timesteps succeed. Without this state, the membrane potential can not be updated
and the neuron would never produce any spikes.

In conclusion, since it is necessary to notice the evolution of timesteps, which is
portrayed explicitly by a sequence of a defined length (how many milliseconds the
analysis is desired to last), it is clear that the spiking neural networks need encoded
input tensors with an additional dimension that reports this observation length.

LIF Parameters

Analyzing the LIFCell module, It has been illustrated how the Leaky integrate-and-
fire neuron behaves through some features called LIF-Parameters. These values are
indispensable requirements to describe the neuron unit since they give an indication
of its biological qualities and of the way it responds to stimuli. The Norse default
parameters are:

• τsyn_inv : torch.Tensor = torch.as_tensor(1.0/5e− 3)

• τmem_inv : torch.Tensor = torch.as_tensor(1.0/1e− 2)

• vleak : torch.Tensor = torch.as_tensor(0.0)

• vth : torch.Tensor = torch.as_tensor(1.0)

• vreset : torch.Tensor = torch.as_tensor(0.0)

• method : str = ”super”

• alpha : float = torch.as_tensor(100.0)

where alpha and method are relevant hyperparameters for surrogate gradient
computations. These parameters are clearly a simplification of the real biological
neuron parameters that are evaluated as follows:

• τsyn_inv : torch.Tensor = torch.as_tensor((1/0.5)

• τmem_inv : torch.Tensor = torch.as_tensor(1/20.0)

• vleak : torch.Tensor = torch.as_tensor(−65.0)

• vth : torch.Tensor = torch.as_tensor(−50.0)

• vreset : torch.Tensor = torch.as_tensor(−65.0)

To optimize the calculations for what concerns the observation length, it has been
chosen to employ the default parameters reducing only the threshold voltage to
make the neuron fire more easily:
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• τsyn_inv : torch.Tensor = torch.as_tensor(1.0/5e− 3)

• τmem_inv : torch.Tensor = torch.as_tensor(1.0/1e− 2)

• vleak : torch.Tensor = torch.as_tensor(0.0)

• vth : torch.Tensor = torch.as_tensor(0.5)

• vreset : torch.Tensor = torch.as_tensor(0.0)

Spiking encoding

As previously illustrated, the most evident new feature of spiking neural networks is
the way they work on temporal data encoded as spikes. Since, in machine learning,
the most common datasets do not contemplate any encoding, to provide the required
additional temporal dimension it is indispensable to include an encoding step. In
fact, SNN expects to operate on input spikes seen simply as a sequence of tensors
containing binary values. Norse deals with encoding providing several encoding
possibilities.

ConstantCurrentLIFEncoder - Input currents are turned into constant voltage
currents and a simulation of the spikes that occur during a selected window of
timesteps (seq_length) is performed.

PoissonEncoder - Inputs are assumed in the range [0,1] and are turned onto a
tensor of one dimension higher of binary values (spikes).

PoissonEncoderStep - Inputs are considered built as values in the range [0,1]
and encoded in a tensor of binary values (spikes).

PopulationEncoder - Inputs are seen as population codes where each value is
depicted with a list of numbers, evaluated by a radial basis kernel. Lists are
characterized by a length equal to out_features and an activity that increases
if a number gets close to its “receptive field”.

SignedPoissonEncoder - Inputs are assumed in the range [-1,1] and encoded
into a tensor of one dimension higher of values in -1,0,1, representing signed
spikes.

SpikeLatencyEncoder - Inputs are encoded measuring the time needed for a
neuron to perform the first spike

SpikeLatencyLIFEncoder - Inputs are encoded by the time the first spike
occurs. Its behavior looks like the ConstantCurrentLIFEncoder where the LIF
is considered with an infinite refractory period.
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Most of these encoding strategies do not produce spike patterns that are necessarily
biologically realistic. This result can be obtained by employing cells with varying
thresholds and a finer integration time step.

Decoding

After the encoding and the evaluation fulfilled by the network, what is achieved is
a tensor of 10 membrane voltage traces. Usually, those values are decoded into a
probability distribution by determining the maximum along the time dimension
before computing the softmax. Other ways of decoding the final results are to
consider the average membrane voltage in a selected window of timesteps or to use
a LIF neuron output layer and consider the time to the first spike or to consider
only the membrane trace at the last measured time step.

4.2 Training phase
Every network needs to be trained to update weights and biases and to be able
to perform the classification or other kinds of tasks. Though training is an in-
dispensable step, it can be even an interesting first way to compare the classical
convolutional LENET5 and the spiking version of that structure. Moreover, it is
required to pick an encoding method between all the strategies previously presented
to perform the simulations. Thus, it has been chosen to execute the training step
for the SNN LENET5 with 3 different encoding algorithms provided by Norse:
ConstantCurrentLIFEncoder, PoissonEncoder, and SpikeLatencyLIFEncoder. The
training has been obviously performed for all the 3 datasets discussed before, while
the comparison between encoding functions has been fulfilled using MNIST.

4.2.1 Training hyperparameters
The parameters used for this phase are the Optimization algorithm, the loss function,
and the number of epochs the training needs to last.

As optimization algorithm, it has been selected the Adam optimizer because it
is usually considered the best solution. It essentially determines one single learning
rate for each parameter and it adapts each rate independently. In this case, it has
been applied a learning rate of 0.001.

For what concerns the loss function, it has been used the negative log-likelihood
loss (NLLLoss) that is useful to train a model in case of a classification problem.
Furthermore, there can be used some optional arguments to deal more efficiently
with unbalanced training sets.

The input of this function is expected to be in the form of log probabilities for
each of the C classes. In fact, input has to be a Tensor of size either (minibatch, C)
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Algorithm 1 Adam optimizer algorithm. All operations are element-wise, even
powers. Good values for the constants are α = 0.001, β1 = 0.9, β2 = 0.999, Ô = 10−8.
Ô is needed to guarantee numerical stability.

1: procedure Adam(α, β1, β2, f, θ0)
2: ó α is the stepsize
3: ó β1, β2 ∈ [0, 1) are the exponential decay rates for the moment estimates
4: ó f (θ) is the objective function to optimize
5: ó θ0 is the initial vector of parameters which will be optimized
6: ó Initialization
7: m0 ← 0 ó First moment estimate vector set to 0
8: v0 ← 0 ó Second moment estimate vector set to 0
9: t← 0 ó Timestep set to 0

10: ó Execution
11: while θt not converged do
12: t← t + 1 ó Update timestep
13: ó Gradients are computed w.r.t the parameters to optimize
14: ó using the value of the objective function
15: ó at the previous timestep
16: gt ← ∇θf (θt−1)
17: ó Update of first-moment and second-moment estimates using
18: ó previous value and new gradients, biased
19: mt ← β1 ·mt−1 + (1− β1) · gt
20: vt ← β2 · vt−1 + (1− β2) · g2

t

21: ó Bias-correction of estimates
22: m̂t ←

mt

1− βt1
23: v̂t ←

vt
1− βt2

24: θt ← θt−1 − α · m̂t√
v̂t + Ô

ó Update parameters
25: end while
26: return θt ó Optimized parameters are returned
27: end procedure

or (minibatch, C, d1, d2, ..., dK) with K ≥ 1 for the K-dimensional case. Log
probabilities are a result of the application of the LogSoftmax layer at the end
of the network computation so to use this loss function is mandatory to add this
processing step. However, another solution might be to avoid the LogSoftmax using
directly the CrossEntropyLoss function which instead works on raw, unnormalized
scores for each class. The expected target is a class index in the range [0, C − 1],
while the loss depends on the argument called reduction.
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4.2.2 Confrontations between encoders
The training environment described has been used for both LENET5 and SNN
LENET5 models, but for the latter, as previously portrayed, it is necessary to
define the length of the timesteps sequence to be analyzed. This sequence length
has been set to 30 milliseconds.

Thus, with the aim of comparing the effects of the encoders on the accuracy of
the spiking model, it has been firstly executed the training phase for the SNN with
ConstantCurrentLIFEncoder for the MNIST dataset. The following table portrays
the training features when a constant current is used to produce input spikes:

Figure 4.4: Spike pattern
ConstantCurrentLIFEncoder

MNIST - ConstantCurrentLIFEncoder
Optimizer Adam

LOSS Function NLLLoss
Learning rate 0.001

Epochs 10
Results:

Accuracy 98.38%
Required time 255,7 sec

The results in the case it is used the PoissonEncoder, which encodes the in-
puts into Poisson spike trains building a more biologically plausible condition, is
illustrated in the table below. The conditions are exactly the same as before.

Figure 4.5: Spike pattern
PoissonEncoder

MNIST - PoissonEncoder
Optimizer Adam

LOSS Function NLLLoss
Learning rate 0.001

Epochs 10
Results:

Accuracy 96.3%
Required time 701,68 sec
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Lastly, the SpikeLatencyLIFEncoder makes each input neuron spike only the
first time the threshold is exceeded. The results obtained again with an observation
of 30ms are illustrated below.

Figure 4.6: Spike pattern
SpikeLatencyLIFEncoder

MNIST - SpikeLatencyLIFEncoder
Optimizer Adam

LOSS Function NLLLoss
Learning rate 0.001

Epochs 10
Results:

Accuracy 98,18%
Required time 272,39 sec

The values of the final tensor achieved by the network have been decoded in
each of the cases into a probability distribution by determining the maximum along
the time dimension before computing the softmax.

It appears evident from the tables that the encoding strategy that gives the best
accuracy ad that takes less time is the ConstantCurrentLIFEncoder and for this
reason, it has been used for all the following simulations.

However, as with any machine-learning approach, it can be difficult to find the
combination of network features, hyperparameters, decoding, and encoding scheme
to achieve the highest performances. Though most of the time it is not clear at
first what might be the best choices, it is predictable that the PoissonEncoder does
give the worst results since the encoded inputs converge with 1/

√
Timesteps. So,

due to the low number of timesteps, only 30ms, the performance of this encoder is
the poorest.

To sum up, the differences in the efficiency of the design and the training of arti-
ficial neural network classifiers are related to hyperparameters, the dimensionality
of the classification layer, and weight initialization. There are many uncertainties
about their interplay for spiking neural network architectures.

Furthermore, in the case of SNN, it has to be considered even the addition of
the decoding and encoding schemes and the number of integration timesteps that
are proper characteristics of this new generation of networks. Overall, it is still
unclear how to efficiently choose these features.
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4.2.3 Trained Models
Once the hyperparameters and the model features have been set the training
step can be performed. The following tables report the accuracy obtained for the
LENET5 architecture for each dataset. Since MNIST is the easiest dataset to learn,
it is achieved an accuracy of over 98% with only 10 Epochs of training.

MNIST - LENET5
Optimizer Adam

LOSS Function Negative log-likelihood loss
Learning rate 0.001

Epochs 10
Results:

Accuracy 98,58%
Required time 123,5 sec

Table 4.1: Training CNN - MNIST

FashionMNIST has similar features with respect to MNIST but it is a little bit
harder to work on. Thus, the process requires more epochs and reaches a lower
accuracy.

FashionMNIST - LENET5
Optimizer Adam

LOSS Function Negative log-likelihood loss
Learning rate 0.001

Epochs 30
Results:

Accuracy 89,63%
Required time 366.71 sec

Table 4.2: Training CNN - FashionMNIST

CIFAR10 is clearly the most troublesome of the 3 and though its processing has
lasted for 100 epochs, it still gives the worst results in terms of accuracy.

Below there are the tables (4.4, 4.5, 4.6) describing the training effects for
the spiking version of the LENET5 in the same conditions as the convolutional
model. As illustrated in the previous section, it has been chosen the ConstantCur-
rentLIFEncoder scheme for the encoding task with an observation length of 30ms.
The decoding strategy used is the Log-softmax function applied over the maximum
along the time dimension.
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CIFAR10 - LENET5
Optimizer Adam

LOSS Function Negative log-likelihood loss
Learning rate 0.001

Epochs 100
Results:

Accuracy 57.14%
Required time 1241.09 sec

Table 4.3: Training CNN - CIFAR10

The MNIST is the only dataset that makes the SNN behave almost like the
original LENET5 with an accuracy slightly lower.

MNIST - SNN LENET5 - ConstantCurrentLIFEncoder
Optimizer Adam

LOSS Function Negative log-likelihood loss
Learning rate 0.001

Epochs 10
Results:

Accuracy 98.38%
Required time 255,7 sec

Table 4.4: Training SNN - MNIST

For FashionMNIST, the computation presents a lower accuracy but is still similar
to the LENET5 model.

For what concerns CIFAR10, the proposed SNN has shown some difficulties,
and the accuracy after an extended training phase has reached a particularly low
value.

It is important to notice that CIFAR10 is the slowest to be computed and the
most difficult to learn since its inputs have 3 channels and a 32x32 pixels matrix
instead of 1 channel and a 28x28 pixel matrix typical of the first 2 datasets.

Though the epochs and the structure of the models are the same for the 2
networks, it appears evident that the CNN achieves the best outcomes in terms of
accuracy and time required. The reason why SNN is slower is due to its need to
analyze the sequence of 30 timesteps.

Overall, on a small supervised learning task, it is relatively easy to define a
spiking neural network that behaves similarly to a non-spiking artificial network.
Essentially, the SNN architecture used corresponds to the one of an artificial neural
network that might be involved with the non-linearities replaced by spiking units.
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FashionMNIST - SNN LENET5 - ConstantCurrentLIFEncoder
Optimizer Adam

LOSS Function Negative log-likelihood loss
Learning rate 0.001

Epochs 30
Results:

Accuracy 83,92%
Required time 767,41 sec

Table 4.5: Training SNN - FashionMNIST

CIFAR10 - SNN LENET5 - ConstantCurrentLIFEncoder
Optimizer Adam

LOSS Function Negative log-likelihood loss
Learning rate 0.001

Epochs 100
Results:

Accuracy 42,66%
Required time 2388,52 sec

Table 4.6: Training SNN - CIFAR10

4.3 Inference and HE parameters
Once the training step is completed, it is possible to implement the inference phase
which has the aim of keeping the privacy of a client’s information untouched. It
operates in an encrypted environment and is based on computations over encrypted
data. There are some limitations in the types of calculations that can be fulfilled
and there are some constraints, due to the noise added as a security measure, on
the number of encrypted operations that can be executed without corrupting the
cipher text.

Thus, the Brakerski/Fan-Vercauteren (BFV) scheme is used to perform additions
and multiplications on cipher texts and polynomials. Due to the mathematical
limitation of HE, it is not possible to use the exactly same network as the one in
the training phase. In fact, Softmax operation can not be performed on encrypted
data, due to its non-linearity so it can not be used with this type of encryption.
However, since it is a monotonically increasing function, it can be avoided as the
cipher texts of the outcomes of the last network layer can be evaluated to give the
prediction.

Moreover, it is fundamental to notice that the complexity of the calculations
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in the encrypted domain is a lot higher than before making it essential the focus
on keeping limited the number of multiplications. In this case, a multi-party
computation strategy has been used, mostly because of the non-linearity of the
activation functions, solving the issue of the raising noise and obtaining similar
results with respect to the plain text version.

4.3.1 HE setting
As portrayed in chapter 2, the homomorphic encryption scheme used is the
Brakerski/Fan-Vercauteren (BFV) one. Like the other methods, it relies on an
encryption function E, and on its decryption function, D, that if applied on a
function f it has to be possible to find a function g such that f(x) = D(g(E(x))).
Moreover, this encryption strategy depends on the context built by means of 3
important parameters:

• m, the Polynomial modulus degree, which requires to be set as a positive
integer power of 2 since it is the degree of the cyclotomic polynomial;

• t, the Plaintext modulus, set as a positive integer, it is the module of the
coefficients of the polynomial ring;

• q, the Ciphertext coefficient modulus, set as a large positive integer, is the
product of distinct prime numbers representing the modulo of the coefficients
of the polynomial ring.

These 3 fundamental parameters characterize the encryption scheme by making
it possible to generate the keys that allow encryption and decryption. The are
several keys that can be used in an encryption-based computation, but the most
important ones are the public key used especially for the encryption step, and the
secret key responsible for the decryption.

Furthermore, the scheme is based on a quantity, called Noise Budget, measured
in bits, which gives an indication, in each stage, of how many operations in the
ciphertext domain can be performed without compromising the truthfulness of the
outcomes once decrypted. In fact, when encryption is applied, some noise is added
to the ciphertext in order to create from the same value, 2 different corresponding
ciphertexts using always the same public key. Thus, Noise Budget (NB) is the
amount of noise affordable by the system and it is partially consumed every time an
operation is fulfilled on a ciphertext. Not all the types of calculations are equal for
what concerns NB, in fact, additions and multiplications between ciphertext and
plaintext dissipate a small dose of NB, while multiplications between ciphertexts,
instead, require a huge amount of NB. Overall, it is clear that if NB reaches 0,
decrypting the obtained result of encrypted evaluations generates an incorrect
outcome.
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To sum up, the strategy that relies on the application of Homomorphic encryption
on the client data when computed by a neural network model owned by a server
depends on encryption, decryption, and public and secret key generation.

Figure 4.7: Secure Cloud Computing

It is fundamental to notice that the neural network evaluations are executed in the
cloud due to its typically huge demand in terms of computational cost and memory
occupation. Moreover, due to the privacy-preserving algorithm requirements, the
model needs to be approximated by using only addition and multiplication to
process the ciphertext. Once approximated, the model requires an additional
step of encoding according to the encryption scheme selected and set through the
parameters described. The encoding step is essential to make the model able to
compute the ciphertext by means of the conversion of the plain parameters of the
model.

Framework

The interest of this project is to analyze the results of a classification problem of
input images, solved with the two types of described networks, the convolutional
and the spiking one. The client’s data, in this case in the form of images from the
discussed datasets, are encrypted following the HE scheme exposed in chapter 2
set by means of the 3 selected encryption parameters. Thus, the plain image is
encrypted through the function E and the generated public key. The client is even
responsible for and the only entity able to perform the decryption of the encrypted
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output received from the server, obtaining the plain classification label by means
of the generated secret key.

For what concerns the server, the neural network models are mostly composed of
additions and multiplications such that their structures are naturally fitting to HE
methods. However, they can not compute operations on encrypted data without a
suitable approximation. In fact, since only additions and multiplications are allowed
in the HE scheme, only polynomial functions can be performed straightforwardly,
making it necessary either to adapt every type of non-polynomials operations,
turning them into a polynomial function, or to substitute them with other kinds of
calculations.

The neural architectures described above show, for instance, the use of the mean
pooling layer and not the max pooling one since the first can be converted to an
addition and a division, which is essentially a multiplication by 1/pooling_size
which is a fixed value, while the latter is a non-polynomial evaluation.

Unfortunately, activation functions are fundamental for both the networks
presented. In the LENET5 there is the Rectified linear operation (ReLU) while
the SNN version is based on the spiking activation function, the Leaky integrator
and fire one (LIF).

The most common strategy, when it is necessary to deal with ReLU, that is
non-polynomial, is to approximate the model by means of another function used in
its place, like the square function. The latter is a polynomial function and has a
non-linear behavior as required to maintain the learning capabilities of the networks.
However, it has a not negligible drawback, in fact, its derivative is unbounded, which
can cause some strange behavior during the training phase while running gradient
descent. Using this alternative layer in place of the ReLU activation function
requires, clearly, to execute the training step of the new approximated network due
to the fact that the weights of the original model can not be considered consistent
after the replacement of activation functions or other layers. So, the training
algorithm has to be performed again in the same conditions, hyperparameters,
settings and for all the datasets as in the original case. The new accuracy obtained
can obviously be different from the one originally achieved.

Changing the activation function is possible for the LENET5 model but it is
impossible to replace the spiking activation of the SNN since it is the model’s
main characteristic. It has been chosen to use a Multi-party computation (MPC)
approach to solve this issue. Once the layers of the models are determined, they
can be encoded according to the HE scheme.

Figure 4.8 shows how a multiparty-like approach has been chosen to deal with
the activation functions. More specifically, the client builds the encryption context
by choosing the relative parameters of the HE scheme and the security level. Then
the image is encrypted by means of the public key generated through the HE
method and its parameters. The encrypted image is then sent to the server for
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Figure 4.8: Client and Server dynamic approach

classification together with the HE scheme features in order to perform the encoding
of the polynomial layer of the network and to obtain a model able to evaluate the
encrypted calculations.

Once it is necessary to apply the activation function, ReLU or LIF, the server
sends the results of the internal neurons back to the client which is responsible
for the decryption and the execution of the non-linear operations. At the end of
the process, the client encrypts the outcomes of the activation functions again and
sends the data to the cloud in order to go through the rest of the network.

In this way the server can perform the estimation of the convolution, the flatten,
the mean pooling, and the linear layers once their parameters have been properly
encoded, while the client has to perform the activation functions and the decryption,
using the secret key, of the partial and the final results to gain the transparent
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classification. As described in the second chapter this approach has its limitations
and its security vulnerabilities, especially for what concerns the server side.

4.3.2 Encryption parameters Selection
As anticipated above, choosing the encryption parameters means building a context
for ciphertext and plaintext operations and determining the correctness of results.
There are two main factors in deciding the parameters, the noise growth evaluation,
and the efficiency.

In fact, a particular set of these values determines the initial amount of Noise
Budget, the way it gets consumed by each calculation and so the number of
operations executable without issues, the security level of the encrypted evaluation,
the computational and memory cost of the overall process, and the accuracy of the
decrypted outcomes.

Polynomial modulus

The parameter m, the Polynomial modulus, is directly responsible for the quantity
of NB disposable at the beginning of the calculations, for the memory occupation,
and for the computational load. More specifically, higher values of m lead to a
high initial NB, but also higher consumption for what concerns memory and costs
because a higher polynomial modulus also means bigger cipher text sizes making
the operations slower, and inefficient.

Furthermore, combined with the Ciphertext coefficient modulus, it affects the
security level of the scheme, which increases with higher values of m. Usually, the
range of possible values for this parameter, which needs to be a power of 2, includes
1024, 2048, 4096, 8192, 16384, and 32768. Choosing it lower than 1024 makes
the scheme insecure while exceeding 32768 is avoided due to the large number of
computations in the network. In this project, only the first 2 values of the range
are taken into account due to the limitation described.

• m: 1024, 2048

Plaintext modulus

The plaintext modulus t is probably the most interesting since it determines the
size of the plaintexts and the truthfulness of the outcome. In fact, with higher
values of t, it can be reached a more precise encrypted computation such that the
decrypted results are much similar to the expected one achieved without the use of
encryption.

However, increasing this value implies a reduction of the NB. Moreover, the plain
modulus also affects the consumption of noise budget in homomorphic operations.
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One of the aims of this project is to observe how the accuracy of the encryption
changes in the 2 neural network models proposed as this modulus increases, so the
following array of t has been set.

• t: 10, 25, 35, 50, 75, 100, 150, 200, 300, 400, 650, 1500, 65537

Ciphertext coefficient modulus

The parameter q, the Ciphertext coefficient modulus, is fundamental because it is
involved in the definition of the initial NB and of the security level of the encryption.
In fact, it can be evaluated as any integer, as long as it is not too large to cause
vulnerability problems. Overall, a high value of q increases the NB but decreases
the security level, once the other 2 parameters are fixed. For this reason, when
it is required to raise q it is necessary to increase m too, in order to make the
computation secure again but at the cost of the reduction of efficiency.

For what concerns the choice of q, the SEAL library provides the generation
of the suitable Ciphertext coefficient modulus when the polynomial modulus and
the required AES-equivalent security level are fixed by means of predetermined
functions. Hence, the choice of this parameter does not depend on the user but it
is automatically determined directly by the polynomial modulus according to the
following table [59].

m Bit-length of default q
128-bit security 192-bit security 256-bit security

1024 27 19 14
2048 54 37 29
4096 109 75 58
8192 218 152 118
16384 438 300 237
32768 881 600 476

Table 4.7: SEAL library: q parameter selection

In this case, the security level has been set to 128 bits.
In conclusion, the main focus in the selection of the parameters is the multi-

plicative depth of the arithmetic circuit the ciphertexts have to go through along
the layers since if the NB reaches 0 the noise overruns into the bits containing the
message, corrupting the useful information and making it impossible to recover the
correct data after decryption. Clearly, picking these 3 parameters is a trade-off
between accuracy, performance, and security, making it essential to analyze the
complexity of the computations to perform and the disposable resources.

45



Chapter 5

Results

This chapter reports the results of the simulations performed in the condition
described before. Every computation takes into account a dataset, 1 of the network
model, and a couple of encryption parameters (m, t). The aim is to compare
the outcomes of these 2 architectures and the effects obtained as the parameters
change.

5.1 Effects of Polynomial modulus m variations
The consequences of changing the polynomial modulus and its relation with the
ciphertext coefficient modulus have been exposed in the previous section. The
following tables illustrate the time needed to encrypt an image and the time taken
by each model to fulfill the computation in each condition. The first 2 tables,5.1 and
5.2, report the classification of 1 image from the MNIST dataset when performed
by the LENET5 and the spiking model. Exactly as observed in the training phase,

LENET5 m Time required for encryption HE Classification

MNIST 1024 0,91 seconds 35/37 seconds
2048 1.82 seconds 77/80 seconds

Table 5.1: Encryption time required - MNIST - CNN

SNN m Time required for encryption HE Classification

MNIST 1024 24/25 seconds 945/1150 seconds
2048 55 seconds 2400 seconds

Table 5.2: Encryption time required - MNIST - SNN
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it is clear how the SNN is slower than the Convolutional model due to the sequence
length of its encoding scheme (30ms).

For what concerns the FashionMNIST dataset, the time required for each step
is similar to the MNIST case since the model structure and the input tensors are
the same.

LENET5 m Time required for encryption HE Classification

FashionMNIST 1024 0,91 seconds 35/37 seconds
2048 1.82 seconds 77/80 seconds

Table 5.3: Encryption time required - FashionMNIST - CNN

SNN m Time required for encryption HE Classification

FashionMNIST 1024 24/25 seconds 945/1150 seconds
2048 55 seconds 2400 seconds

Table 5.4: Encryption time required - FashionMNIST - SNN

The CIFAR10 dataset is more complicated and requires a slightly different
structure to be computed and for this reason, the relative tables show the worst
outcomes.

LENET5 m Time required for encryption HE Classification

CIFAR10 1024 0,91 seconds 35/37 seconds
2048 1.82 seconds 77/80 seconds

Table 5.5: Encryption time required - CIFAR10 - CNN

SNN m Time required for encryption HE Classification

CIFAR10 1024 103/110 seconds 2380 seconds
2048 210 seconds 4900 seconds

Table 5.6: Encryption time required - CIFAR10 - SNN

It is important to notice that the execution time for 1 image without any
encryption measure, in any case, and for every dataset, never exceeds 0.09 seconds.
Thus, it has been illustrated how computationally heavy can the encryption be
and the amount of time that requires with respect to the classical and insecure
classification. As expected, the time required by the network increases as the
polynomial modulus gets higher.
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Furthermore, it is interesting to verify how the Polynomial modulus does not
interfere with the calculation results. In fact, repeating the classification for 1
image from the MNIST dataset which has a target label of 7, with a fixed value of
t = 150, and changing m does not give different results.

Dataset m Resulting tensor

MNIST m=1024 -1.5756e+1, -9.5055, -9.2050, -8.2560, -1.0068e+1,
-1.4172e+1, -1.9151e+1, -8.5591e 4, -1.2715e+1, -7.8896

target=7 m=2048 -1.5756e+1, -9.5055, -9.2050, -8.2560, -1.0068e+1,
-1.4172e+1, -1.9151e+1, -8.5591e 4, -1.2715e+1, -7.8896

Table 5.7: CNN - MNIST - Resulting tensors

The same behavior is obtained for the other 2 datasets:

Dataset m Resulting tensor

FashionMNIST m=1024 -5.8703, -6.4715, -2.9943, -4.5461, -0.5762,
-9.2192, -0.9901, -9.8227, -6.8643, -8.5474

target=4 m=2048 -5.8703, -6.4715, -2.9943, -4.5461, -0.5762,
-9.2192, -0.9901, -9.8227, -6.8643, -8.5474

Table 5.8: CNN - FashionMNIST - Resulting tensors

Dataset m Resulting tensor

CIFAR10 m=1024 -5.0038, -4.4079, -2.9772, -1.6931, -1.2493,
-1.8964, -2.5618, -1.8934, -4.6872, -2.6248

target=5 m=2048 -5.0038, -4.4079, -2.9772, -1.6931, -1.2493,
-1.8964, -2.5618, -1.8934, -4.6872, -2.6248

Table 5.9: CNN - CIFAR10 - Resulting tensors

The same outcome is achieved in the case of the spiking network.
Paying attention to the CIFAR10 case, it can be noticed that the resulting

tensor gives as a classification result the label 4 which is wrong. In fact, the error
rate for this dataset is not low due to the not-so-high accuracy reached during
the training step. However, the final tensor gained is equal and the same error is
verified with an increasing m proving that this parameter is not involved in the
accuracy of the encryption computation.

48



Results

5.2 Effects of Plaintext modulus t variations

In this paragraph instead, it is reported the evolution of the simulation when
changing the t parameter. Again, the aim is to compare the 2 network model
behavior using 650 images from each of the 3 datasets. The following plots describe
essentially how the accuracy of the encryption computation increases as the value
of t gets higher.

5.2.1 MNIST

For what concerns the MNIST dataset, the first figure shows the match rate of
the 2 architectures. For match rate, it is intended how many times the normal
execution and the encrypted computation give the same final classification label
during the simulation of 650 images.

Figure 5.1: MNIST MATCH LeNet5 vs SNN

As explained in the previous chapter it has been set the array of possible values
for the parameter t: 10, 25, 35, 50, 75, 100, 150, 200, 300, 400, 650, 1500, 65537. From
figure 5.1, it is evident that the SNN gets better results in terms of truthfulness for
lower values of t with respect to the classic LENET5.

Figure 5.2 illustrates the average error of the 2 networks obtained by comparing
the final tensors of the normal, insecure execution with the one at the end of the
encrypted process.
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Figure 5.2: MNIST Average errors LeNet5 vs SNN

According to the 5.1, 5.2 shows that SNN gets better outcomes than LENET5
for what concers the errors made.

The following 3 figures 5.3, 5.4, and 5.5, instead, have as focus the mean mismatch
observed after each layer for 3 different values of t: 50, 150, 650. Essentially the
internal tensor computed after every single layer in the encrypted computation has
been compared with its respective one when the encryption is not applied.

Figure 5.3: MNIST (Mean error/layer) t = 50 LeNet5 vs SNN
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Figure 5.4: MNIST (Mean error/layer) t = 150 LeNet5 vs SNN

Figure 5.5: MNIST (Mean error/layer) t = 650 LeNet5 vs SNN

Clearly, as t grows the mean errors always decrease as expected, and again the
spiking version shows better results with respect to LENET5. What is interesting
to notice is that the most troublesome layers are the linear and the convolutional
ones since they are the most complicated ones.
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5.2.2 FashionMNIST

The figures below regard the simulations computed for the FashionMNIST dataset
computed by the 2 models. The exact same kind of information collected for
MNIST is reported.

Figure 5.6: FashionMNIST MATCH LeNet5 vs SNN

Again the spiking version shows a better match with the normal execution of
the classification along the 650 images processed.

Though it has to be noticed that figure 5.6 illustrates how this dataset is slightly
more complicated than MNIST and the difference between SNN and LENET5 is
less evident. More precisely, at the initial point of the graph, for t = 10, it seems
that CNN acts better than SNN but it is due to the extremely low value of the t
parameter which leads to huge errors and almost random outcomes. Probably, by
analyzing a lot more images, SNN would have reached a better result with respect
to CNN even for that low value of t.

Figure 5.7 is pretty similar to 5.2 in fact, the average error has the same behavior
when using these 2 datasets.
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Figure 5.7: FashionMNIST Average errors LeNet5 vs SNN

The last 3 figures 5.8, 5.9, and 5.10 report the mean error made after each layer
when t is fixed respectively to 50, 150, 650.

According to what has been observed before, the layers which cause the error to
rise the most are the linear and the convolutional ones and as the value of t grows
the benefit of using the spiking functions becomes less conspicuous.

Figure 5.8: FashionMNIST (Mean error/layer) t = 50 LeNet5 vs SNN
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Figure 5.9: FashionMNIST (Mean error/layer) t = 150 LeNet5 vs SNN

Figure 5.10: FashionMNIST (Mean error/layer) t = 650 LeNet5 vs SNN

5.2.3 CIFAR10

The following figures describe what happens when the images processed are from
CIFAR10.
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Figure 5.11: CIFAR10 MATCH LeNet5 vs SNN

Figure 5.11 illustrates a smoother trend with respect to previous cases which
means that the accuracy of the encryption computation is lower than before for
low values of t and acceptable accuracies are reached with more strict requirements
with respect to previous datasets evaluations. In this case, the behavior of the 2
structures is almost the same.

Figure 5.12 illustrates the average error.

Figure 5.12: CIFAR10 Average errors LeNet5 vs SNN

It has the same course as the other 2 datasets but with higher values for the
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CNN execution, as expected due to the higher complexity of the input data. For
the SNN instead, lower errors have been found.

Using CIFAR10, it is necessary to use a higher t to get the maximum match
between the normal and the encrypted execution. Hence, it is clear that in this
case more mistakes than before are made, as a consequence of reduced accuracy
achieved during the training phase.

The last 3 figures 5.13, 5.14, 5.15 regard, again, the mean error at each layer.

Figure 5.13: CIFAR10 (Mean error/layer) t = 50 LeNet5 vs SNN

Figure 5.14: CIFAR10 (Mean error/layer) t = 150 LeNet5 vs SNN
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Figure 5.15: CIFAR10 (Mean error/layer) t = 650 LeNet5 vs SNN

Even in this case, SNN performs usually better than LENET5 though the mean
of the errors extracted after the second convolutional layer is higher for the first
architecture.

To sum up, observing all the figures regarding the mean error after each layer,
it appears clear how the flatten layer is not involved in the error since it is only a
geometrical manipulation of the tensor. Moreover, the error is slightly reduced after
the pooling layer because it performs an average making the error more smooth.

The reason why the SNN is better is that it is based on the encoding scheme
and LIF activation function and both turn their input tensors into a set of 0 and
1 while in the LENET5 computations the numbers to deal with are usually more
difficult to process and easily create mistakes. For higher values of t, the averages
of errors committed are so low that the 2 models become comparable.

5.3 Noise Budget

Noise budget is a fundamental quantity when it is necessary to use an encryption
scheme because as long as operations are evaluated on the ciphertexts, the noise
budget gets continuously consumed. Its importance and the way it depends on the
3 parameters have been already discussed in the previous chapters. Considering
the analyzed values of the Polynomial modulus m and the Plaintext modulus t, the
initial noise budgets for the simulations performed are reported in the following
table.
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m t Noise Budget

1024

10 14
25 12
35 12
50 12
75 11
100 10
150 10
200 9
300 9
400 8
650 8

2048 1500 33
65537 28

Table 5.10: Initial Noise Budget

Since m is not involved in the effectiveness of the encrypted computations but it
influences the RAM consumed and the time required for the execution it has been
used the lowest value, 1024, as much as possible. Fortunately, using the multi-party
and dynamic strategy proposed in the third chapter, the simulations do not require
a relevant amount of initial budget because the client decrypts the internal outputs
every time there is an activation function to perform, restoring the original quantity
of Noise budget. However, when t is too high, the initial Noise Budget becomes
too low to fulfill the calculation without mistakes. For this reason, when t is set to
1500 or 65537, it has been necessary to increase m to 2048 to obtain a higher noise
budget slowing down a lot the computations and increasing the required resources.

Thus, Noise Budget shows once again how SNNs can be useful since they achieve
better results for lower t which means that they can perform encrypted calculations
for lower values of m.

5.4 Conclusions
This project has as its focus a comparison between two different generations of
neural networks, the convolutional and the spiking ones, while dealing with a
classification problem. Convolutional models already provide optimum results in
solving this type of issue though the spiking architectures aim mainly to reduce the
energy consumption of the computation without making the performance worse.
The main feature of the SNNs is the realistic behavior of their nodes which are
pretty similar to the biological neuron. Indeed, the human brain relies on spikes
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to fulfill the computation and the transmission of information. Reproducing this
conduct makes the SNNs more hardware friendly and more efficient than ANNs in
general.

More precisely, the 2 structures have been compared while operating with
encrypted data. In fact, it is possible, lately always more often, that predictions
and other machine learning services need to be executed on sensitive data. Thus,
it has become fundamental to achieve systems able to provide those services while
keeping intact the privacy of the client information. In the last few decades,
many research works have been conducted to build such kinds of systems based
on privacy-preserving algorithms and architectures. For what concerns neural
networks, the most relevant steps are the training and the inference phases which
need to be evaluated in different ways when dealing with security. In particular,
training is mostly related to differential privacy. Essentially, it is possible to train
the model on encrypted data by performing the procedure using only additions
and multiplications, though this kind of strategy still needs to be implemented and
leads to an efficiency drop in the computations.

The aim of this thesis has been the comparison of the 2 models, and their
requirements, in the usual training phase and in the encrypted execution of the
inference phase using as security measures a homomorphic encryption scheme and
a multi-party computation strategy. The first has been employed to encrypt the
images of 3 datasets and to fulfill the classification task by encoding all the layers of
the 2 architectures that are characterized by linear operations, making the networks
able to manage encrypted inputs. The Homomorphic Encryption scheme used
is the Brakerski/Fan-Vercauteren one and like all these types of schemes, it is
computationally heavy and requires a lot of time to complete the evaluations. For
these reasons, LeNet5 has been chosen as the neural architecture since it is one of
the simplest and shortest, in order to keep control of the execution cost. In addition,
a simple multi-party computation pattern has been used in order to execute the
non-linear operations, needed by the models to learn, without approximating the
activation functions which characterize the 2 networks.

However, even though this strategy leads to a more accurate execution of the
calculations, it makes the framework less effective from the server privacy-preserving
goal point of view. In fact, the client does need to dynamically interact with the
server as the classification is performed. As a consequence of this intermediate
exchange of outcomes, the server is more vulnerable to leakage of its model
information and the client has to carry out, in addition to the encryption and
decryption operations, the activation function and, in the case of the spiking neural
network, the initial time encoding of the input. The security of the client data,
instead, is still guaranteed.

Overall, the experimental results obtained by means of simulations in Python
on the Google Colab platform portrayed a better performance, in terms of accuracy
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and of the errors made, of the SNN when the homomorphic encryption scheme is
used.

On the other hand, SNN requires a huge amount of time with respect to CNN
since the necessary initial time encoding makes the execution as slower as the
observation sequence grows. The higher precision of the SNNs is an interesting
result since it allows to perform the encrypted calculations with lower values of the
Plaintext modulus t which essentially leads to lower values for Polynomial modulus
m, reducing the computation time and the resources consumption, though in the
cases examined, the advantages are lost due to the necessary time encoding.

To sum up there are a lot of limitations while using HE and a lot of improvements
are required for simpler management of the SNNs since their implementation is
still troublesome, especially for what concerns the training phase, due to the lack
of frameworks, and studies. Furthermore, SNNs still represents an important
innovation in the machine learning field, thus it has not been studied yet a solution
that merges a HE scheme with them without drastically changing the behavior of
the spiking activation functions.

In conclusion, future works can lead to better encoding schemes that may use
better polynomials or noise budgets, reducing their computational load, or to a
better configuration and selection of the encryption parameters. In particular, this
project has underlined the necessity of better strategies to merge the non-linearity
of the neural networks with the constraints of Homomorphic Encryption. Usually,
this issue is avoided by means of the approximation of the activation functions,
but, for what concerns the SNNs, these methods have not been examined yet.
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