
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Distributed Lidar-based Simultaneous
Localization and Mapping

Supervisor

Prof. Marina INDRI

Advisors

Dott. Gianluca PRATO

Dott. Enrico FERRERA

Candidate

Francesco AGLIECO

December 2022

Abstract

Simultaneous Localization and Mapping (SLAM) algorithms provide a robust
solution for mobile robots localization and map building of surrounding environment
even when most used positioning systems (GPS) are not available for autonomous
navigation, such as in indoor or subterranean locations. Being able to set a team
of robots to resolve this common task and enable it to collaborate, it is possible to
obtain better results in shorter time. In this thesis work, carried out in collaboration
with LINKS Foundation, a fully distributed collaborative SLAM system, based on
lidar sensor data processing, has been designed and partially developed exploiting
the ROS2 open-source framework. A distributed approach, where every robot is
implied on perception and optimization tasks, is selected according to robustness,
scalability and security requirements, facing with algorithm complexity. The
solution is modeled in five blocks following the typical structure characterising
implemented systems in recent research. The point clouds coming from sensors
are firstly processed by the Signal Processing module to provide odometry and a
downsampled representation of data, useful to ease successive elaborations. The
odometry gives ego-motion of a robot, here lidar-based algorithms are chosen
in order to exploit the better results regarding this first localization information
as compared to other sensor suites. In order to reduce estimation error caused
by odometry drift, robots must recognize whether a position is already crossed,
detecting the so-called Loop Closures. A robot within a team can perform the
detection during its navigation (Intra-Robot Loop Closure detection) or during
a rendezvous (Inter-Robot Loop Closure detection). In the latter case the robot
shares its estimations and compares visited locations with those of the neighbor.
Local and collaborative versions of modules are developed using Scan Contexts:
point cloud descriptors, compact and sufficiently representative, used to save
computational and communication resources. Errors on detection can occur due
to perceptual aliasing: the set of loops is filtered by the Outlier Rejection module.
Finally the resultant loops, together with odometry information, are processed by
the Distributed Mapper which optimizes trajectories and updates the maps of the
entire team, reaching consensus on final estimation.

i

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1

2 State of the Art analysis 3
2.1 SLAM Single Robot . 3

2.1.1 Problem definition . 3
2.1.2 Architecture . 4

2.2 Collaborative SLAM . 5
2.2.1 Problem definition . 6
2.2.2 Centralized, Decentralized and Distributed 6
2.2.3 Front End . 8
2.2.4 Back End . 10

2.3 Complete solutions . 12
2.3.1 LAMP: Large-Scale Autonomous Mapping and Positioning . 12
2.3.2 DOOR-SLAM: Distributed, Online, and Outlier Resilient

SLAM . 15

3 Distributed SLAM design 18
3.1 ROS2 overview . 18

3.1.1 Computational Graph . 19
3.1.2 Nav2 Project . 20

3.2 Model . 22
3.2.1 Signal Processing module 26
3.2.2 Intra-Robot Loop Closure detection module 38
3.2.3 Inter-Robot Loop Closure detection module 42
3.2.4 Outlier Rejection module . 44
3.2.5 Distributed Mapper module 48

ii

4 Development and Results 54
4.1 Dataset . 54

4.1.1 LidarSlam dataset . 55
4.2 Signal Processing . 55

4.2.1 Testing . 59
4.2.2 Feature extraction for future upgrades 61

4.3 Intra-Robot Loop Closure detection 64
4.3.1 Testing . 66
4.3.2 Future upgrades . 67

4.4 Inter-Robot Loop Closure detection 68
4.4.1 Testing . 71
4.4.2 Future upgrades . 72

5 Conclusion 73

Acknowledgements 74

Bibliography 75

iii

List of Tables

4.1 Signal Processing module results . 61
4.2 Intra-Robot Loop Closure detection module results. 66
4.3 Inter-Robot Loop Closure detection module results. 72

iv

List of Figures

1.1 Mobile robots in logistic application [3] 2
1.2 Mobile robots applied in the military [4] 2

2.1 Local SLAM architecture [5] . 5
2.2 Centralized Collaborative SLAM approach [5] 7
2.3 Decentralized Collaborative SLAM approach [5] 8
2.4 Loop Closure detection example [7] 9
2.5 LAMP architecture [8] . 13
2.6 DOOR-SLAM architecture [9] . 15
2.7 Inter-robot loop closure detection representation [9] 17

3.1 Software layers in a robot [10] . 19
3.2 Publisher node publish a message to a topic, received by Subscriber

node [12] . 20
3.3 Nav2 package software architecture [13] 21
3.4 Lidar-based Distributed Simultaneous Localization and Mapping

model . 23
3.5 Factor Graph representation [17] . 25
3.6 Factor Graph for SLAM . 26
3.7 Signal Processing module representation 26
3.8 Alignment resultant by Registration between couple of point clouds

(blue and green) [19] . 28
3.9 Correspondence rejection on multiple target points [19] 30
3.10 Correspondence rejection on boundary points 31
3.11 Point to Point and Point to Plane errors [19] 32
3.12 Error based on maximum number of similar iterations [19] 35
3.13 Error based on relative mean square [19] 36
3.14 NDT calculated on single scan [22] 36
3.15 Intra-Robot Loop Closure detection module 39
3.16 Polar coordinates bins division [16] 40
3.17 Scan Context representation [16] . 41

v

3.18 Scan Contexts of different view of same place revisited [16] 42
3.19 Inter-Robot loop closure detection module representation 43
3.20 Inter-Robot loop closure detection used in DOOR-SLAM [9] 43
3.21 Results without (left) and with (right) outlier rejection module [9] . 44
3.22 Outlier Rejection module representation 45
3.23 Two robots (a and b) pose-graph sub-sequences. Inter-robot mea-

surements in red. 46
3.24 Distributed Mapper module representation 48
3.25 Two robots (red and blue point clouds) after pose graph optimization

[28] . 49

4.1 Lidarslam dataset path representation [36] 55
4.2 Odometry estimation using resolution set to 5.0. 60
4.3 Odometry estimation using resolution set to 4.0. 60
4.4 Odometry estimation using resolution set to 2.0. 61
4.5 Raw KITTI dataset representation. 62
4.6 Surface features calculated. 63
4.7 Corner features calculated. 63
4.8 History point clouds preparation on target. Source is prepared using

raw data from left index in the couple evaluated by scan context
matching. 67

4.9 Two path considered in the testing process (blue is the reversed
trajectory). 71

vi

Chapter 1

Introduction

In recent years, an old research topic became relevant: algorithms working on
autonomous mobile robots are no longer unfeasible due to significant improvements
on hardware possibly mounted on board.
This interest is justified since robot-based algorithms can be easily converted to
work in many widely different areas from industry (particularly focused on logistics,
figure 1.1) to defense (exploration in hostile environments, figure 1.2) or can be
seen directly by users like in home cleaning applications.
The necessity of research in this field is supported by the market: 100.000 Auto-
mated Guided Vehicles (AGV) and Autonomous Mobile Robots (AMR) are shipped
only in 2021 [1].
In such context, Simultaneous Localization and Mapping (SLAM) is usually adopted
to resolve a well known problem: runtime localization of the robot and mapping
of the environments.
Regarding localization, a robot observes environments with respect to itself [2]
evaluating the so-called pose. The algorithm is performed without considering
any supplementary contributions usually used in this context, involving satellite
technologies like GPS. The independence from this source of information is a feature
of SLAM algorithms: the robot is able to move even in indoor or subterranean
environments where the signal is badly reached.
Later on, while computing his localization, the robot can combine its position with
environment objects captured by sensors, in a common global frame, providing a
map.
These two elements (pose and map) are essential to enable robust navigation since
they are involved in path planning and collision detection algorithms.
Leveraging a fleet of robot executing a SLAM task, the computational time required
to calculate final estimation can be significantly reduced.
Such collaboration can be enabled by exploiting a single centralized node of com-
putation, which merge information collected by the whole team, or by distributing

1

Introduction

the whole workload on the single components of the fleet. Although collaboration
has obvious advantages, it introduces many problems related to communication
between robots which complicates the entire analysis increasing parameters to be
chosen.
In this thesis work, a collaborative solution based mainly on lidar sensors elabora-

Figure 1.1: Mobile robots in
logistic application [3]

Figure 1.2: Mobile robots applied in the
military [4]

tion is designed. Then, a initial development is provided implementing the base
modules involved during the first cooperation phase.
The entire modeling and developing process is carried out in collaboration and
supervision with LINKS Foundation centre of research.
Thesis is structured as follows:

• Chapter 2: State of art analysis. Single robot and collaborative SLAM
problems are formulated and a brief overview of two complete solutions is
provided.

• Chapter 3: Distributed SLAM design. Sensor suite to be used is selected
and collaborative approach is chosen between centralized or decentralized.
Starting from these assumptions a complete model is structured by connected
modules. For each of these an algorithm overview is discussed, in order to be
evident how libraries are developed to ease development process of modules.

• Chapter 4: Development and Result. Three modules are implemented and
tested, referring to the first phase of collaboration during a rendezvous from
two robots.

2

Chapter 2

State of the Art analysis

Collaborative SLAM (C-SLAM) has become in recent years not only a research
topic but, thanks to the improvement on communication and computation resources,
a reality in actual industries. Many solutions are developed having different sensor
suites and algorithms elaborating them.
C-SLAM approaches derive directly from the stand-alone version, hence, many of
the concepts explained in the first part of the chapter, related to the single robot
SLAM, will be detailed while presenting the collaborative one.
In the second part, collaborative version are the main subject where architecture
and different approaches are explained and compared.
Most famous collaborative solutions are presented at the end of chapter.

2.1 SLAM Single Robot
SLAM algorithm’s objectives are the runtime joint estimation of the robot’s state
and a suitable representation of surrounding environment.
Robot state is generally represented by its pose (combination of position and
orientation) with respect to a coordinate system. The environment (where robots
are located) can be represented through maps made by landmarks generated using
perceptive sensors like cameras or lidars.
SLAM solutions are essential in contexts of mapping of unknown environments
and collision-avoidance where external source of informations usually involved in
localization (e.g. GPS) can not be reached.

2.1.1 Problem definition
The problem can be summarized through map and state maximization [5].
By considering a variable X summarizing state and map landmarks and variable Z

3

State of the Art analysis

as the data coming from sensors, the likelihood below is calculated at each step:

p(X|Z) (2.1)

Since the first estimation as result of (2.1) is not enough to give acceptable results,
robot states must be calculated through an optimization step.
It can be approached by two methodologies: estimation can be calculated every
time step (filtering) or through the entire robot’s route (smoothing). The latter
in recent years has become popular in research compared with the former.
In the smoothing formulation, the problem becomes a Maximum a Posteriori
(MAP) estimation, where a prior distribution (given by odometry) is introduced
and it is used to solve the maximization problem.
Giving single robot α, the solution of MAP estimation problem is finding X∗

α

X∗
α

.= arg max
Xα

p(Xα|Zα) (2.2)

Applying Bayes theorem:

X∗
α

.= arg max
Xα

p(Xα|Zα) = arg max
Xα

p(Zα|Xα)p(Xα) (2.3)

where:
• p(Zα|Xα): likelihood of finding Zα (measurements) giving a certain Xα

• p(Xα): prior distribution referred above, for example is referred to odometry
information.

So optimization must find the set of variables Xα that better reproduces Zα

measurements, giving a prior distribution.

2.1.2 Architecture
It is possible to underline two major sub-problems: one related to the elaboration
of sensor measurements and other about optimization. Although the division
is often blurry (mainly in code implementation, a tight separation may produce
redundancy), many solutions try to follow it calling Front-End the first task and
Back-End the latter.
Concept is shown in figure 2.1.

• Front End: elaboration of measurements. Perception-related tasks such as
feature extraction and data association: processing data in order to calculate
ego motion and loop closure detection

• Back End: solve optimization problem using front-end estimation. Algorithms
core are referred to graph and probability theory, robot trajectory is generated
as a graph of poses.

4

State of the Art analysis

Figure 2.1: Local SLAM architecture [5]

2.2 Collaborative SLAM
A single mobile robot may take long time to produce good results during mapping
and localization estimation. A fleet of robots can be configured to resolve a common
localization and mapping problem, in order to perform tasks efficiently saving useful
time to be employed in other operations.
Collaborative SLAM aim is to merge all data coming from robots in a single
global consistent result, so a robot can rely on the experience of the entire team.
This approach introduces challenges to be added to previous problems explained:
communication between robots become central in all possible solutions.
The problem is challenging and many design parameters can be chosen introducing
variety on solutions.
A first set of parameters is team-dependent:

• Size: as intuition may suggest, as the size of the robot team increases, the
results should be obtained faster. However, the choice of this parameter is
not so simple, team size determination depends also on other parameters such
as robotics characteristics (homogenous or heterogenous composition), robot
initial position knowledge or dynaminicity of ambient [6].

• Composition: all robots in a team are composed by the same (homogenous)
or different (heterogeneous) hardware suite.

• Team unit processing ability: collaborative algorithms are computationally
expensive, so decisions depend also on hardware of a single unit.

Other parameters are communication-dependent:
• Range: how many times two or more robots has the possibility to communi-

cate, depending on the communication protocol (e.g wifi, bluetooth,..) and its
mutual position.

5

State of the Art analysis

• Topology: how robots are distributed in the working area.

• Bandwidth: crucial in determining how much data two robots can exchange
on the channel.

2.2.1 Problem definition
The problem definition is a natural extension from the single-robot case.
In this context, considering a rendezvous from robot α and robot β, not only local
measurements must be considered (named by Zα and Zβ) but also inter-robot
measurements Zαβ.
Maximization final product is given by X∗

α and X∗
β

If the starting distribution is known, indicated by probability distribution p(Xα, Xβ)
It is possible to apply Bayes theorem likely to the local definition:

(X∗
α, X∗

β) .= arg max
XαXβ

p(Xα, Xβ|Zα, Zβ, Zαβ)

= arg max
XαXβ

p(Zα, Zβ, Zαβ|Xα, Xβ)p(Xα, Xβ)
(2.4)

If initial guess p(Xα, Xβ) is not available, the problem has not unique solutions
since infinite possibilities on initial guess can be considered.
In the latter case, the definition becomes more general and C-SLAM is formulated
as a Maximum Likelihood Estimation (MLE) problem:

(X∗
α, X∗

β) .= arg max
XαXβ

p(Zα, Zβ, Zαβ|Xα, Xβ) (2.5)

2.2.2 Centralized, Decentralized and Distributed
In general, in a multi-robot algorithm a distinction between a local and a global
perspective has to be considered:

• Local perspective: pose and landmarks of the map calculated in the robot
local coordinate system (during the path are different between each other).

• Global perspective: final estimation to give to the robots navigation tool,
referred to a global and common coordinate system.

Global view can be reached using different approaches: centralized and decen-
tralized.

6

State of the Art analysis

Centralized approach

In centralized solutions a single agent, high computationally equipped, called
estimator computes the results and share it to robots in the team. In order to
calculate consistent results, the estimator must have constant access to raw or
elaborated measurements of the entire team.
The figure 2.2 shows a centralized SLAM architecture.

Figure 2.2: Centralized Collaborative SLAM approach [5]

Choosing this approach in design, the benefits are:
• Algorithms complexity contained

• Single unit workload contained
And drawbacks:

• Security: in other contexts different to LAN, if the estimator is attached
from a malicious agent the robot does not have enough information to move
alone

• Bandwidth: network type and topology is constrained since single robots
information must be always available

• Scalability: centralized algorithms does not scale increasing number of robots
in team

• Single Point of failure: if the estimator breaks, since it should be expansive,
It is not easy to replace

Considering all drawbacks listed, recent research moves to decentralized solutions.

7

State of the Art analysis

Decentralized approach

In a decentralized approach, each robot in a team has access only in its local view,
during rendezvous neighbors share partial information in order to calculate common
global view. Using this approach, final estimation can not be reached for all robots
at once, but it is built iteratively until consensus.
This approach results to be more scalable on the number of robots, secure and
works even with low bandwidth but implies higher algorithm complexity.
The figure 2.3 shows decentralized architecture.

Figure 2.3: Decentralized Collaborative SLAM approach [5]

Besides decentralized and distributed are different concepts, they are often
confused as synonymoun.
Distributed refers to computation resource distribution where can be located on
different units. Using decentralized and distributed approach, a single unit must
hold heavy computation.
Collaborative SLAM architecture follows the structure proposed in the single robot
version with the division in Front End and Back End.

2.2.3 Front End
Front end role is to provide landmarks estimation, odometry measurements, and
perform loop detection.
It must recognize translation and rotation during robot movements (odometry):
processing inertial data, based on IMU sensors measuring wheel movements, match
consecutive images coming from cameras or laser scans captured from lidars. Results

8

State of the Art analysis

based on inertial sensors (e.g. IMU) are less accurate but computationally less
expensive, other based on perceptive sensors gives better results but in larger
processing time and does not work with all hardware compositions on board of
robots.
Front end is composed by a perception-based algorithms involving loop closure
detection based on place recognition. Loop closures are portions of path previously
visited by robots (figure 2.4), the detection is critical for optimization in order to
perform correction in the odometry already calculated. At the optimizer the loops
are given in the form of relative pose transformations between two poses.
Algorithm in the local version is called Intra-robot loop closure detection.

Figure 2.4: Loop Closure detection example [7]

Inter-robot loop closure detection is the collaborative version of the algorithm.
Using a decentralized approach, two robots, during rendezvous, must mutually
recognize if the neighbor already crossed its visited positions. Otherwise, in a
centralized approach, detection is done by a single unit.
Detection can be direct or indirect:

• Direct inter-loop closure detection: two robots use direct sensing when
they physically met in the same location. Loop closure detection is performed
and relative transformation is calculated and sent back.

• Indirect inter-loop closure detection: loop detection is done looking for
possible overlaps between the maps build by two distinct agents. This approach
is particularly challenging since a lot of complex data (e.g. 3D point clouds or
images) must be possibly exchanged by robots, so many improvements can
be done in order to reduce these exchanges and optimize detection of loops.

9

State of the Art analysis

Algorithms include a first part of place recognition: from raw complex data
is calculated a descriptor, then it is used to identify a set where loop can be
possibly found, denoted as candidate set. After place recognition, geometric
estimation filters set of real loops form the candidate and calculate relative
poses.

2.2.4 Back End

Back End takes as input Front End measurements and optimizes pose and map
during robot movement (similar to local single robot case) taking into account
inter-robot information calculated, ensuring consensus in the final estimation in
every robot composing the team.
Two main approaches in literature are briefly explained.

Filtering-based Estimation

Current pose of robot is calculated without considering all the previous estimations,
so the result depends only from data coming at time t−1 and the current observation
at time t.
From all the optimizers, those based on Extended Kalman Filter (EKT) are
the most used: complex optimization problem is reduced and solved using a local
linear approximation. The linearization leads to errors when noise is too large.
Other solutions are based on Rao-Blackwellized Particle Filters exploiting
Particle Filters concept: prediction of robot state is evaluated using a set of weighted
samples called particle. Those weights and sets of samples are updated in function
of successive predictions.

Smoothing-based Estimation

Optimization techniques where past measurements are considered, improving
accuracy and efficiency.
Considering two robots α and β, a pose-graph formulation is useful to explain
smoothing-based solutions and it is used as a starting point by different optimization
solutions.
In this common formulation, map landmarks are indicated by nodes of a graph,
each node is formed by a single odometry or loop closure measurements.
Assuming that noises in the measurements are uncorrelated (multiplication of all
uncorrelated probabilities is allowed), it is possible to rewrite the MLE formulation
in (2.5) as follows:

10

State of the Art analysis

(X∗
α, X∗

β) .= arg max
Xα,Xβ

p(Zα, Zβ, Zαβ|Xα, Xβ)

.= arg max
Xα,Xβ

((
lÙ

i=1
p(zi

α|X i
α)(

mÙ
j=1

p(zj
β|Xj

β)

(
nÙ

k=1
p(zk

αβ|Xk
α, Xk

β))

(2.6)

where:

• i,j: measurements number of robot α and β.

• p(zz
ω: likelihood of the zth measurements in the robot ω on a subset of variables

Xω.

• p(zk
αβ|Xk

α, Xk
β)): likelihood of the kth iter-robot measurements on a subset Xα

and Xβ.

Assuming that noise in measurements are distributed like a zero-mean Gaussian
noise with matrix Ω, each likelihood can be expressed:

p(zi
α|X i

α) ∝ exp(−1
2 ||hi

α(X i
α) − zi

α||2Ωi
α
) (2.7)

where hi
α maps state with measurements.

Final aim is to maximize the likelihood, that is equivalent to minimize the negative
log-likelihood. So maximization can be expressed like a nonlinear least squared
problem:

(X∗
α, X∗

β) .= arg min
Xα,Xβ

−log((
lÙ

i=1
p(zi

α|X i
α)(

mÙ
j=1

p(zj
β|Xj

β)

(
nÙ

k=1
p(zk

αβ|Xk
α, Xk

β))
(2.8)

Replacing (2.7) and rewriting the expression:

(X∗
α, X∗

β) .= arg min
Xα,Xβ

((
lØ

i=1
||hi

α(X i
α) − zi

α||2Ωi
α
) + (

mØ
j=1

||hj
β(Xj

β) − zj
β||2Ωj

β

)+

(
nØ

k=1
||hk

αβ(Xk
α, Xk

β) − zk
αβ||2Ωk

αβ
))

(2.9)

This formulation can be used both with centralized or decentralized approach.

11

State of the Art analysis

2.3 Complete solutions
In this final section a brief overview of most common solutions is presented. In
particular:

• LAMP: lidar-based centralized solution

• DOOR-SLAM: cameras-based decentralized solution

2.3.1 LAMP: Large-Scale Autonomous Mapping and Posi-
tioning

LAMP is a collaborative SLAM system equipped with a sensor suite mainly based
on lidar and cameras, enable it to work in complex and hostile subterranean envi-
ronments. Considering this requirement, inertial informations (e.g. IMU) can not
be exploited as main source for odometry computation, the uneven terrain makes
wheel movement elaboration noisy. [8].
In the sudden environment are distributed known objects called artifacts: an image
elaboration algorithm is involved in detection, then relative artifact positions with
respect to the robot are calculated in order to be used in the creation of pose-graph
structure.
The solution exploits a centralized approach: a base station elaborates final es-
timation of poses and map collecting all the robots measurements. Furthermore
an operator interface is implemented where it is possible to manually manage
pose-graph adding a loop closure or filtering noisy estimations.

Architecture

All robots are connected to a central station. If communication goes down, robot
performs a stand-alone version of SLAM, final optimization is done when commu-
nication is recovered.
Single robot front end and back end produce Gi as pose graph, Xi as poses and Pi

as a set of point clouds attached to every pose. During the communication phase
tuple (Gi, Xi, P : i) is sent to the base station.
Figure 2.5 shows architecture’s structure.

Front End

Front End algorithms calculate relative robots pose estimations and relative trans-
formation matrix regarding loop closure detected.

12

State of the Art analysis

Figure 2.5: LAMP architecture [8]

• Odometry: scan-to-scan and scan-to-map matching.
Scan-to-scan matching calculates ego motion of the robot, comparing the
current point clouds coming from the 3D lidar sensor with the precedent. In
order to evaluate relative position between the two poses of the robot, the point
clouds are involved in a Generalized Iterative Closed Point (GICP) algorithm
step: considering the two point clouds, it is iteratively searched the two closest
point and then it is provided relative transformation matrix. In order to
overcome bad efficiency in the results (due to environment characteristics),
odometry is matched against a submap (subset of point cloud nearly inserted)
performing a scan-to-map matching.

• Artifact detection: module detects artifacts and calculates relative position
against the robot. Image detection is performed using YOLO deep learning
algorithm on image, those underline an object with a 2D box. The relative
position is calculated using depth information on RGB-D camera with respect
to the center of the box.

• Loop Closure detection: in order to detect loops, current scan is compared
to scans on Pi within a range. GICP algorithm is performed and fitness score
is taken as reference: if this score is less than a threshold is considered as valid
and passed to optimization.

13

State of the Art analysis

Back End

Back end computes poses as result of optimization problem in graph-pose structure.
Before optimization, the graph is filtered by outliers using Incremental Consistency
Maximization algorithm.

• ICM: module checks quality of loop closures detected removing outliers. Here
an optimization is done in the standard Pairwise Consistency Measurement
(PCM) algorithm, in order to enable it to work online.
Incremental Consistency Measurement (ICM) is divided in steps:

– Odometry check: assuming a generic matrix transform T which repre-
sents relative pose measurements, when a loop closure is detected (T lc

ij)
a triangle can be indicated by the two poses (T odom

ji) and the candidate
loop. Considering the product of these matrices along the triangle, it
might produce an identity matrix otherwise the loop must be discarded.
Identity is assumed since the informations contained in both of matrices
must be the same. Taking into account non-ideal conditions and noise,
identity is a condition too restrictive, so a error matrix is calculated:

T err
ij

.= T lc
ij · T odom

ji (2.10)

where:
∗ T err

ij : matrix error.
∗ T lc

ij : candidate loop.
∗ T odom

ji : matrix obtained combining poses along the loop.
The check is passed and loop candidate is considered as valid only if
average error is less than a threshold.

– Paiwise consistency: check is done between couples of loops following
the same principles of the last explained.

T err
ij,kl

.= T lc
ij · T odom

jl · T lc
lk · T odom

ki (2.11)

First product is a generic loop candidate, the latter is a loop already
counted on as valid. Each couple is added to an adjacency matrix creating
a graph incrementally.

Generic PCM is performed in this adjacency matrix which is a maximum
clique search problem discussed in following chapters of this thesis.

• PGO: after initial pose graph structure is filtered by previous ICM step,
pose graph optimization is performed using GTSAM algorithm both in the

14

State of the Art analysis

local and collaborative versions. A new key-scan is added after odometry
displacement and It is added in the pose graph as well as loop closure detected.
In the base station, each graphs Gi are merged into a single one and, before
optimization, inter-robot loops are detected using the same methodologies of
the local version.

Human operator can interact in the node-graph creation, loop closure can be
added manually using a ROS1 service.

2.3.2 DOOR-SLAM: Distributed, Online, and Outlier Re-
silient SLAM

DOOR-SLAM is a fully distributed multi-robots SLAM solution. Exploiting
the system’s functionalities, full connectivity is not required since collaborative
algorithms are executed during a rendezvous. In the moment of no-connectivity
from other units of the team, the single robot performs a local SLAM algorithm.
The sensor suite is composed of stereo cameras builded in platform on board of
drones. The system is developed using Buzz, a scripting programming language
useful in multi-robots contexts. Exploiting its functionalities, communication details
between robots (dependent on the particular type or model) can be neglected in
order to focus the point only on SLAM algorithms. Buzz works on top of the ROS1
framework.

Figure 2.6: DOOR-SLAM architecture [9]

Architecture

System architecture is shown in figure 2.6.
In the solution only inter-robot loop closure detection is performed, so optimization
comes only during rendezvous of two robots. This limitation can be overcomed if
Stereo Visual Odometry is replaced with a complete single robot SLAM solution,
so the robot can improve its estimates exploiting even intra-robot loop closures.

15

State of the Art analysis

Images are collected by robots through stereo cameras, then odometry is calculated
using RTAB-MAP (since it is a well-known module the authors do not provide any
other supplement informations) and loop closures are detected.
In figure 2.6:

• Distributed Loop Closure detection (figure 2.7): it is formed by two
submodules. The first is place recognition submodule: NetVLAD descrip-
tors are calculated from images corresponding to each keyframe. During
rendezvous, robot α sends those descriptors to the neighboard β. Robot β
compares all the incoming descriptors with those collected during its move-
ment. Through this comparison, robot β calculates candidate loop closures,
where the Euclidean distance from the two indexes is below a given threshold.
It is important to underline that candidate loop closures indexes are evaluated
without exchanging raw images between robots and necessity to any pre-step
training phase.
The second is the geometric verification submodule: after candidate indexes
computation, robot β sends to α the corresponding visual features associated
to image indexed.
Those features are useful to robot α to perform geometric verification perform-
ing solvePnpRansac function (provided by OpenCV): this function gives back
a set of inlier features and relative pose transformation. Whether the number
of inlier features is large enough, the candidate loop closure is considered as
valid and the transformation matrix is passed to optimization.

• Distributed outlier rejection module: since the place recognition module
can be biased by perceptual aliasing, some inter-robot loop closures are consid-
ered as valid even if they must be considered as outliers. The module exploits
a distributed version of Pairwise Consistent Measurement Set Maximization
(PCM) algorithm to detect those outliers. Since the library is used in the
solution proposed in this work thesis, all the details are discussed in the
following chapter.

• Distributed PGO module: the module creates a pose-graph structure from
odometry and inlier inter-loop closures and performs a distributed optimization.
Details are discussed in the following chapter.

16

State of the Art analysis

Figure 2.7: Inter-robot loop closure detection representation [9]

17

Chapter 3

Distributed SLAM design

In this chapter, the design of the distributed SLAM solution is presented. The
design aspects are covered both with an extended discussion on deeper concepts
already implemented by libraries. This is used in the development process as a
starting point.
In the first part of the chapter, a ROS2 Overview is useful to highlight in which
framework the solution must run.
In the second part the subject is the conceptual model: all the modules are analyzed
pointing out relative inputs and outputs.

3.1 ROS2 overview
Robots, in order to accomplish tasks like navigation or mapping, need to be pro-
grammed. Not only its hardware components are important: without a software
involved to the processing of information from sensors, a robot is useless [10].
Programming a robot from scratch by a coder could be a complex task, since many
problems need to be solved: the robot operates into a dynamic and unpredictable
world, many sensors and types of actuator are involved (each of these needs drivers
to be integrated), etc.
In order to make the developing process easier, ROS2 (Robotic Operating System)

framework is used: it is a middleware from operating system and user applications
(figure 3.1), useful in the integration of software components. It provides drivers,
libraries, development and monitoring tools and a common development method-
ology. It is not the only middleware used in the robotic field during years, but
it grew up in popularity due to a wide developers community with open-source
propension. Now it is the most used by research, organization, and by companies
worldwide located.
ROS2 is the second version of the ROS1 framework of which shares many concepts.

18

Distributed SLAM design

Figure 3.1: Software layers in a robot [10]

A complete new version of the middleware is due to the necessity of essential missing
features (such as DDS standard for message definition and serialization), adding it
directly into ROS1 could make applications already implemented as unstable.
ROS2 respects real-time, safety, certification and security requirements which makes
it compatible with industrial applications [11].
Applications developed in ROS2 form a computational graph.

3.1.1 Computational Graph
A ROS2 computational graph is a network of elements which properly interacts
with each other using different communication paradigms, in order to split complex
tasks into simpler problems. It can be seen as what a robot software application
sees during its execution.
A computational graph is composed by nodes, each one is the primary execution
element in ROS2. A node follows object data structure and can be written in all of
the two standard languages supported: C++ and Python.
During node bootstrap [12], it advertises its presence to neighbors in the same
network (it is marked by ROS_DOMAIN_ID properly setted during installa-
tion). At the time when the other nodes respond to advertisement with its own
information, a connection can be established: now the nodes can communicate.
ROS2 nodes periodically advertise their presence and communicate when they go
offline.
Communication by nodes can happen only if the two entities have compatible

quality of service settings (QoS): QoS are policies useful to tune communication,
which can be reliable as TCP or fast like UDP.
All nodes use ROS2 client library (rclcpp in C++, rclpy in Python) to communi-
cate with other nodes through different communication methodologies:

• Publisher/Subscriber: asynchronous communication. Nodes create different
messages due to data type exchanged (message type format can be custom

19

Distributed SLAM design

Figure 3.2: Publisher node publish a message to a topic, received by Subscriber
node [12]

or standard, the latter is recommended since it can be easily used by the
community). Publisher nodes send messages through a communication channel
called topic (figure 3.2). Each topic is characterized by a name, necessary to
those subscribers who want to receive messages from the publisher. Multiple
nodes can be publisher or subscriber of a single topic.

• Services: synchronous communication. A node called client sends a request
of information/data, a node called server responds with the message resultant.

• Actions: asynchronous communication. They are similar to service servers:
a node client makes a request (similarly to services) to a server. This one can
not be fulfilled immediately since it requests some computational time, so the
server periodically sends back a feedback to the client with the process status
until the result is ready.

3.1.2 Nav2 Project
The nav2 project takes the heredity of the ROS1 navigation stack [13]. Nav2
includes useful tools to make robots move from a point A to a point B: those
tasks are accomplished by navigation, dynamic path planning, motor velocities
computation, obstacles avoidance and so on.

20

Distributed SLAM design

Nav2 is organized by several particular nodes: lifecycle nodes. In those action
servers are called to accomplish one of the tasks mentioned before. Lifecycle nodes
are organized in a tree-structure called behavior trees. In figure 3.3 it is shown a
representation of the package architecture.

Figure 3.3: Nav2 package software architecture [13]

Lifecycle Node

Type of unique nodes in ROS2. Using those nodes it is possible to manage the
life of a node like a state machine during phases like startup and shutdown. They
allows to:

• Force deterministic behavior during those two phases.

• Help to design better software structures, useful during the debugging process.

At the startup, the node is in an unconfigured state, the object enters into
constructors and no one of the parameters are read. The node switches to the
configuration stage whether the on_configure() method is triggered.
If the on_active() method is called the node is in the activation stage: here the
ROS2 network interface is activated and the task is ready to be accomplished.

21

Distributed SLAM design

When a node shutdown is triggered, the node switches in succession on deactiva-
tion, cleaning up, shutting down state.
In the community the usage of these nodes is recommended to overcome indeter-
ministic behaviors even if their design is quite recent.

Behavior trees

Behavior trees are a tree-structure of tasks to be accomplished, typically used in
complex robotics contexts.
It is a scalable and human-understandable framework useful in those contexts where
a classical finite state machine (FSM) is chosen as an alternative: this one is prone
to errors and it is hard to debug [14]. Since its modular structure of components,
it is possible to encourage code recycling.

Navigation Servers

Navigation task is accomplished by four different servers activated by robot dur-
ing a run calling the corresponding Behaviour Tree node: planner, controller,
smoother and recovery servers (this is used only to recover the robots in trouble
situations).

Planners Planner server computes a path considering some constraints: path
can be created to go in a given position (plant to a goal), to complete coverage
(occupy all the free space in the environment) or to compute path having sparse
pre-calculated routes.

Controllers Controllers server try to follow a given calculated path or complete
a local tasks. It has access to local representation of environment data to compute
a suitable update iteration to give at the actuators of the robots.

Smoothers Path planning can be further improved by successive refinements
based on optimization criteria: a path pre-calculated can cross near many obstacles,
a smoother can reduce the probability of collision. Smoothers can be useful also in
the presence of multiple planners, in order to combine all the output results.

3.2 Model
The solution modelled to resolve the Collaborative SLAM problem follows the
typical structure that can be found in the recent research. A graphical representation
is shown in figure 3.4.
The model is created following a concrete path of decisions. At first, centralized

22

Distributed SLAM design

Figure 3.4: Lidar-based Distributed Simultaneous Localization and Mapping
model

or distributed approach must be chosen according to what have been discussed in
Chapter 2. Even if centralized one could be a good choice due to low computational
resources tipically equipped in mobile robots, distributed approach is chosen based
on:

• better scalability in the number of robots.

• bandwidth constraint.

• security constraint.

• lack in lidar-based distributed solution.

The sensor suite is composed by lidar sensors and (optionally) IMU measurements.
Usually in Collaborative SLAM solutions already implemented different primary
sensors are used: vision stereo cameras are chosen rather than lidar sensors. Algo-
rithms based on image processing are commonly used since SLAM sub-processing

23

Distributed SLAM design

requests place recognition features, in this solution this task becomes challenging
since lidar feature extraction is a relatively new research topic.

In this solution, lidar data manipulation is stressed in order to:

• contribute with new algorithms to the C-SLAM problem

• try to give a compatibility with local SLAM tooblox, based on 2D lidar scan

• try to deal with less computation: image processing requests high computa-
tional unit.

IMU data processing is optionally used in order to calculate point cloud ad-
justment and a downsampled representation used to safe both computational and
bandwidth resources.

In model 3.4 two subgroup can be visualized:

• Front End: takes as input sensors raw data and performs early manipulations.

• Back End: considering data coming from front end, it performs optimiza-
tion in two phases: build of graph-poses structure to be given to optimizer,
optimization algorithm performed by it.

In the front-end, the modules:

• Signal Processing: raw data from lidar and imu is taken, odometry infor-
mation about the robot (ego-motion of the robot) is calculated using scan
matching algorithm from point clouds. Odometry evaluation is mainly imple-
mented exploiting variants of Iterative Closest Point algorithm developed in
the PCL library [15].
A downsample representation of point cloud is calculated based on corner and
surface features are developed useful for future updates of perception modules.

• Intra-Robot Loop Closure detection: Loop closures are portions of paths
previously visited by robots, the module proposes a detection algorithm fully
based on point clouds. Feature descriptors called Scan Context [16] are
calculated, the detection is then performed in two successive phases using the
current point cloud: scan contexts matching and scan matching.

In the back-end, the modules:

• Inter-Robot Loop Closure detection: during a rendezvous two robots
must detect mutual loop closures. Sharing scan context descriptors, it is
possible to develop a distributed version of the algorithm without stressing
the bandwidth constraint.

24

Distributed SLAM design

• Outlier Rejection: filtering step in order to overcome aliasing.

• Distributed Mapper: given odometry and loop closures, it estimates poses
corrected performing a distributed algorithm.

In the relative subsections all of these modules are analyzed, pointing out function-
alities offered by library used in implementation. In the chapter 4, the developed
modules and relative testing is presented.

Pose-Graph representation

Except from Distributed Mapper, all other modules aim is to create a pose-graph
representation where the relative poses of the robots are optimized and extracted.
This pose-graph, used as starting point in optimization, is in the form of Factor
Graph [17]. This representation is popular since it is used by one of the most
common optimizer in single-robot contexts called GTSAM [18].
Factor graph is a representation where unknown variables [X1, X2, . . .] are con-
nected to factors (figure 3.5), that mantein probabilistic information.
In the SLAM context:

Figure 3.5: Factor Graph representation [17]

• Variables are the poses of robots with progressive time instant.

• Factor between those poses is expressed through the matrix transformation
associated. Those matrices express consecutive pose expressions given by
odometry or loop closure factors detected referred to poses calculated in dif-
ferent time instant. The noise in the estimation of those matrices is suitably
modelled and inserted in the factor information.

25

Distributed SLAM design

Figure 3.6: Factor Graph for SLAM

Those concepts are showed in figure 3.6 where:

• f0(x1) = prior of x1, it is the initial value of pose. It is common to consider
null pose where a model of noise is applied.

• [x1, x2, . . .]: poses estimates during robots movement.

• fk(xk, xk+1: odometry estimates between poses at instant k and k + 1.

• f5(x3, x5): loop closure detected between poses x5 and x3

3.2.1 Signal Processing module
Signal Processing module elaborates raw data coming from lidar and IMU sensors.
It calculates odometry and a downsampled representation of point cloud based on
surface and corner features used in future upgrades of successive modules (figure
3.7).

Figure 3.7: Signal Processing module representation

26

Distributed SLAM design

The odometry is calculated performing scan matching algorithm using consecu-
tive point clouds. Those algorithm are referred to registration section of Point
Cloud Library, where algorithm based on Iterative Closest Point are provided.
In the implementation of the module, two version of scan matching (Generative
Closest Point and one based on Normal Distribution Transform) is imple-
mented and resultant information is compared using a score metrics as reference.
In the following, an insight of the two algorithms is presented.

Iterative Closest Point and Generalized Iterative Closest
Point (GICP)

Iterative Closest Point belongs to algorithms group based on Registration, properly
developed in Point Cloud library [15]. Point Cloud library is a massive open source
project with many useful tools for elaboration of 3D point clouds.
Registration is a technique that provides alignment between different point clouds
(figure 3.8) in the form of a transform matrix in a global reference coordinates [19].
Elaborating this result, It is possible to calculate relative pose between keyframes
where point clouds are captured by sensors.
Registration task is necessary not only referring to SLAM but also as pre-processing
of data in computer vision before segmentation or object recognition.

Problem formulation

A point cloud is a suitable representation of groups of multi-dimensional points p ∈
IRn; those points take information about a sampled surface: cartesian information
(n=3), about curvature or normal surface (n>3).
The registration problem finds correspondences between points in point cloud
source P and point cloud target Q, the first formed by points p ∈ P and the latter
by points q ∈ Q, forming couples (pi, qi).
Later on finding all correspondences, a transformation T is estimated between all
the pairs. Using this matrix T and applied to P, the point cloud resultant is similar
to Q as much as possible. Those correspondences are found during the registration
algorithm, usually they are not known.
Registration algorithms are divided in two classes:

• Feature-based registration: before performing alignment, geometric feature
descriptors are computed in order to find better set of correspondences.

• Iterative registration: it does not perform any previous computations, can-
didates correspondence is taken from the closest mutual points in P and in Q,
evaluated on cartesian space. Transformation T is computed by minimization

27

Distributed SLAM design

Figure 3.8: Alignment resultant by Registration between couple of point clouds
(blue and green) [19]

of distances between those pairs of closest points exploiting a least squares
approach. Final estimation is not reached at once, source point is expected to
be aligned to target iteratively until convergence.

The latter approach is used in ICP and it is discussed below with relative
variations.

Algorithm

The approach is iterative: correspondences between source and target points are
found without calculates feature descriptors. Since minimization of distances
between P and Q is a non-convex problem, the solution can collapse into a local
minima. The algorithm is divided in many steps, in order to overcome to non-
convexity and speed up the estimation.

1 INPUT:
2 - Point Cloud P (source) and Q (target).
3 - Initial transformation T_0
4 OUTPUT :
5 - Transformation T, which aligns A to B

28

Distributed SLAM design

6

7 while not_converged do
8 for i=1 to N do
9 m_i = FindClosestPointInS (T b_i);

10 if !! m_i - T b_i || <= d_max then
11 w_i = 1;
12 else
13 w_i = 0;
14 end
15 end
16

17 T = argmin { Optimization metric }
18 end

Algorithm 3.1: ICP or GICP algorithm

Selection Raw lidar data manipulation results to be quite computationally
expensive due to density of information: point clouds are a dense representation of
the environments. In order to properly estimate the relation between two point
clouds, much of this information is redundant. So source and destination point
clouds are sampled following a given distribution.

Matching In order to make connections between points pi in source point cloud
P and the closest points qi in Q, a matching algorithm is performed. At the end of
the step the couples (pi, qi) are formed.
Matching can be performed using an iterative approach: for each of points pi search
the closest in Q. Although this is the simplest solution, it is never used due to
long computational time. The alternative algorithm is based on supplement data
structures: kd-tree or octrees.
The algorithms complexity, later on an initialization phase O(NlogN), becomes
0(logN), where N is the number of points in P.
PCL library usually uses KD-tree implementation based on FLANN library [20].
This data structure is discussed later on of this work thesis, during implementation
of Loop Closure detection (chap 5).
Matching algorithm developed in PCL can be used by user as 3.2.

• source: point cloud in P

• target: point cloud in Q

• max_dist: can be imposed max distance, beyond this line all the other points
are discarded

• determineCorrespondences: API that calculates matching.

29

Distributed SLAM design

1 # include <pcl/ registration / correspondence_estimation .h>
2 // code initialization of source and target point clouds is not

presented
3

4 CorrespondencePtr corr (new Corresponcences);
5 CorrespondenceEstimation <PointXYZI , PointXYZI > est;
6

7 est. setInputSource (source);
8 est. setInputSource (target);
9 est. determineCorrespondences (*corr , max_dst);

Algorithm 3.2: Matching algorithm

Rejecting and Filtering Correspondences The rejection and filtering steps
are necessary in order to discard invalid correspondences to speed up the convergence
to the global minimum, since those spurious values can cause errors in the final
estimation.
There are many rejection methods: all of them can be combined to form a pipeline
structure, where the input of one rejector is the output of the precedent (Algorithm
3.3 shows typical use of a rejectors pipeline, where max distance and RANSAC
number of iterations are fixed values).
Here an overview of rejectors is presented, considering only those used in the
implementation or considered in the experiments.

Figure 3.9: Correspondence rejection on multiple target points [19]

• Correspondence rejection based on distance (CorrespondenceRejec-
tionDistance): Fixing a given distance threshold, point pairs are discarded
whether the distance calculated is larger than this limit value.

30

Distributed SLAM design

• Rejection based on median distance (CorrespondenceRejectorMedian-
Distance): Rather than using a static threshold, it is possible to calculate
all the distances and use the median of these values as a dynamic threshold.
Median operator is more robust to outliers with respect to use the medium of
distances.

• Rejecting pairs with duplicate target matches (CorrespondenceRejec-
torOneToOne): Correspondences are created from source points to target
points, it might happen that a target point is joint with multiple source points.
Listing all of these multiple correspondences {(pi, qj)}, only the one with the
minimum distance (pimin

, qj) is considered (figure 3.9).

• RANSAC-based rejection (CorrespondenceRejectorSampleConsensus): Ran-
dom Sample Consensus algorithm is applied to subsets of correspondences:
outliers are eliminated from the set calculating euclidean distances between
points after that previous transformation matrix evaluated is applied to source’s
points.

• Rejection based on normal compatibility (CorrespondenceRejectorSur-
faceNormal): 3D points can hold different information other than cartesian
coordinates, one of these is the normal vector. This rejector method exploits
the normal vector and reject the correspondence where it is not consistent.

• Rejection based on surface boundaries (CorrespondenceRejectorBound-
aryPoints): considering a surface represented by point clouds, the boundary
points introduces errors when these are considered as correspondence. The
rejector filters those values (figure 3.10).

Figure 3.10: Correspondence rejection on boundary points

31

Distributed SLAM design

1 # include <pcl/ registration / correspondence_rejection_distance .h>
2 // code initialization of source and target point clouds is not

presented
3

4 CorrespondenceRejectorDistance rej;
5 rej. setInputSource <PointXYZI , PointXYZI > (source);
6 rej. setInputTarget <PointXYZI , PointXYZI > (target);
7 rej. setInputCorrespondences (n_corresponds);
8 rej. setMaximumDistance (max_dst);
9 ref. setRANSACIteration (n_iterations);

10 rej. getCorrespondences (corresponds_filtered);

Algorithm 3.3: Pipeline Rejection Algorithm

• n_corresponds: max number of couples accepted

• max_dst: max distance considered

• n_iterations: max number of iterations of RANSAC algorithm

Alignment and Error metrics The aim of alignment problem is to find trans-
formation matrix T (pose and orientation) that minimizes alignment errors on
correspondences found in the previous steps.
Considering point pk in P, qk in Q and matrix T, alignment error can be classified
in two typologies: point-to-point and point-to-plane (figure 3.11).

Figure 3.11: Point to Point and Point to Plane errors [19]

Epoint−to−point(T) =
NØ

k=1
wk||Tpk − qk|| (3.1)

Epoint−to−plane(T) =
NØ

k=1
wk((Tpk − qk) · nqk

)2 (3.2)

32

Distributed SLAM design

many optimization algorithm can be performed by choosing one of these errors
(or both in the GICP case):

• Point-to-point error metric: based on (3.1), it is used in the first version
of ICP. PCL uses a solution based on singular value decomposition (SVD).

• Point-to-plane error metric: normal surface information is used improving
optimization performance [21]. With respect to the first, the optimization has
not a closed form. Considering small angles between points, a linearization
can be done (sinθ ∼ θ, cosθ ∼ 1) enabling the use of linear solvers. Otherwise
only non-linear solvers can be used.
A similar algorithm exploits weight wk in the algorithm. This variable can
improve convergence, considering less determinant those correspondences that
can make errors in the final result.

• Linear least squares point-to-plane: collect all correspondences in a
matrix A, poses and orientations are calculated solving least spare problem in
the classic form AtAv = Atb, where v = six-dimensional vector representing
(x, y, z) coordinates and angles (roll, pitch, yaw).
Similarly to point-to-plane error-base algorithms, also a least spares algorithm
variation can exploit weight wk to improve convergence in the final estimation.

• Generalized error metrics and Generalized ICP [21]: this approach
resolves optimization problem by using a probabilistic model to minimization
step of the algorithm 3.1, in order to create a general problem representation
where both point-to-point and point-to-plane metrics can be derived.
Starting from optimization step from 3.1, it is possible to consider two point
cloud A = {ai}i=1,...,N and B = {bi}i=1,...,N with correspondences couples
{(ai, bi)}. Those who does not pass ||mi − T · bi|| > dmax check (where dmax

is a fixed parameter) are discarded.
It is built probabilistic model where set point points Â = {âi} and B̂ = {b̂i}
are considered, where ai ∼ N (âi , C A

i) and bi ∼ N (b̂i , C B
i).

{CA
i } and {CB

i } are covariance matrices referred to measured points.
Considering perfect correspondences (couple of points are taken without errors
in the sampling and filtering steps) and correct transformation T∗:

b̂i = T∗âi (3.3)

For any T, it is possible to define the error as:

d
(T)
i = bi − Tai (3.4)

33

Distributed SLAM design

where d
(T∗)
i is contained. Using Maximum Likelihood Estimator (MLE) it is

possible to compute iteratively T as:

T = arg max
T

Ù
i

p(d(T)
i) = arg max

T

Ø
i

log(p(d(T)
i)) (3.5)

Since ai and bi are modelled as normal indipendent distributions, it is possible
to rewrite the expression above as:

T = arg min
T

Ø
i

d
(T)T

i (CB
i + TCA

i TT)−1d
(T)
i (3.6)

This equation represents the point of Generalize-ICP algorithm: point-to-point
or point-to-plane version can be reconstructed by changing covariance matrices
CA

i or CB
i . The algorithm also allows to tune other version of the matrices to

improve optimization performance.
As examples, here both of two representations (point-to-point and point-to-
plane) are derived from (3.6).
The ICP point-to-point can be calculated considering:

CB
i = I

CA
i = 0

(3.7)

The optimization algorithm can be rewritten as below, representing the update
step:

T = arg min
T

Ø
i

d
(T)T

i d
(T)
i = arg min

T

Ø
i

||d(T)
i ||2 (3.8)

The ICP point-to-plane can be calculated considering:
CB

i = P−1
i

CA
i = 0

(3.9)

where Pi is a matrix corresponding to projection onto the span of the surface
normals where bi belongs.
Equation (3.6) can be rewritten, finding update step of the optimization
algorithm:

T = arg min
T

{
Ø

i

||Pi · di||2} (3.10)

Since Pi is orthogonal,
||Pi · di||2 = dT

i · Pi · di (3.11)
So (3.10) can be rewritten as:

T = arg min
T

{
Ø

i

dT
i · Pi · di} (3.12)

which is the update step that minimized the distance T · ai, the distance from
the plane defined by bi.

34

Distributed SLAM design

Termination criteria Since the algorithm is iterative, a termination must be
defined in the refinement process of the final solution. PCL library offers many
termination criteria other than maximum number of iterations, these can be com-
bined using a common interface.

Figure 3.12: Error based on maximum number of similar iterations [19]

• Maximum number of iterations: if the number of iterations is over a given
threshold, the optimizer estimation is considered as diverged. This is possible
when the two point clouds are too different and registration process should
require more iterations to converge.

• Absolute transformation threshold: stopping criteria when absolute
current estimate is far away from initial transformation, particularly useful as
an early check to detect divergence.

• Relative transformation threshold: calculated the transformation dif-
ference from current and last estimation, if the value is small enough the
optimizer detects convergence criteria.

• Maximum number of similar iterations: similar to relative transformation
threshold but number of iterations are executed anyway. This is useful to
overcome situations where an algorithm converges to a local minima but it
can still reach a global one (figure 3.12).

• Relative mean square error: similar to last two metrics but, instead of
pose and rotation relative increment used to calculate the error, it is used
mean square error metric (figure 3.13).

• Absolute mean square error: algorithm converges when the error between
two clouds is below a threshold.

35

Distributed SLAM design

Figure 3.13: Error based on relative mean square [19]

Normal Distribution Transform (NDT)

A different approach for scan matching is based on Normal Distribution Trans-
form [22]. This algorithm, developed by many libraries like PCL, has become
famous in the research.
Here an overview is presented, focusing only on 2D Scan Matching.
Matching is performed by calculating Normal Distribution Transform of the source
range scan, a differentiable probability density. This is used to find the transforma-
tion matrix (alignment between source and target point clouds) by optimization of
the sum of a suitable score (figure 3.14).

Figure 3.14: NDT calculated on single scan [22]

NDT of 2D Scan

2D Scan, in order to calculate normal distribution density, is suitably manipulated.
In a pre-elaboration step, the area near by robot is subdivided into cells with fixed
size containing at least three points. For each cell:

36

Distributed SLAM design

• All 2D points xi=1..n in the cell are collected.

• The mean is calculated: q = 1
n

q
i xi

• The covariance matrix is calculated: Σ = 1
n

q
i(xi − q)(xi − q)T

Having this information about the single cell, a probability can be calculated
by a normal distribution N(q, Σ) whose probability density function is in equation
(3.13): it represents the probability of measuring a single sample for each position
within the cell. This probability density is used subsequently.

p(x) ∼ exp (−(xi − q)T Σ−1(xi − q)
2) (3.13)

Since 2D range scans are afflicted by discretization (only a noised shape of the
environment is often considered [23]), in order to save potentially useful information,
four overlapping grids are used where each one is shifted of a fixed length by the
other. All points belong to different cells with four different densities, the one used
later is calculated summing all the entries.
Noise introduced by lidar sensors can make the covariance matrix as singular, so it
is not invertible. In order to prevent singularity, a check on eigenvalue is done, if it
is not larger than a threshold it is set to this fixed value.
PLC library enables to set an important hyperparameter relevant to algorithm’s
general performance used in the testing phase: resolution parameter is referred
to voxel resolution of the grid structure where point cloud is located in the intern
development of the algorithm.

Algorithm

As the standard ICP, alignment produces transformation matrix T composed
by translation (x, y) and orientation θ, between two points collected in different
positions.
Having two scan (source and target):

1. It is build the NDT of the first scan.

2. The final estimation is initialized with zeros or odometry previously calculated.

3. Map each 2D point of the second scan into the coordinate frame of the first,
using the initial value.

4. Calculate the normal distributions for all the points.

5. Calculate the score of the parameters, which is evaluated summing the latest
value for all the points.

37

Distributed SLAM design

6. New parameter is estimated in order to optimize that score.

The algorithm is iterative, taking new points of the second scan, until convergence
in the final estimation.
The score is calculated by:

score(p) =
Ø

i

exp (−((x′
i − qi)TΣ-1

i (x′
i − qi))

2) (3.14)

where

• p: vector of parameters (translations and rotations).

• xi: points of the second scan into the coordinate frame of the second scan.

• x′
i: points xi into the coordinate frame of the first scan.

• Σi, qi: covariance matrix and mean of the NDT of x′
i.

The optimization (and the optimization step) is evaluated by Newton’s algorithm,
where the maximization is done by minimization of -score.
The algorithm, iteratively, solves the equation:

H∆p = −g (3.15)

Where:

• g: transposed gradient of -score(p).

• H: Hessian of -score(p)

The solution is built by adding an increment ∆p properly calculated.

3.2.2 Intra-Robot Loop Closure detection module

Robots in the team, during its movement, must detect an already crossed position.
Those positions are defined as loop closures. The module aim is to detect those
loops giving the point cloud raw (or an downsampled representation) and the
odometry calculated by Signal Processing module (figure 3.15).

38

Distributed SLAM design

Figure 3.15: Intra-Robot Loop Closure detection module

Algorithm

The problem is an application of place recognition algorithms. Here a version based
on Scan Context descriptors is presented. Those descriptor (in the form of a
matrix) are created from raw data and stored in a vector.
The algorithm is called at a given frequency, passing through these steps:

1. last index in the vector of point cloud is taken.

2. scan context matching is performed: the scan context corresponding to
last index is compared to the entries in the vector of descriptors.
This matching can be done using brutal force approach (comparing iteratively
all the entries) or exploiting particular data structure of support.
In this context the last approach is used, it is created a KD-tree dependent
on scan context collected until time k and a KD-tree search algorithm is
performed. This algorithm selects a subset of possible scan contexts next to
the query whose distances are calculated. The minimum of these values is
then compared to a threshold, if it is below the couple of index (current and
resultant of matching) is considered as a candidate loop closure.

3. scan matching algorithm: considering the resultant couple of index, an ICP
iteration is set: the source is the current scan, the target is the result of the
previous step. At first of setting parameters procedure, both point clouds are
aligned considering the odometry calculated at those time instant.
ICP score is then considered to be compared to a threshold, if it is below the
candidate loop closure is considered as valid and the transformation matrix is
stored to be passed at the optimizer.

Those steps are developed, the discussion is in Chapter 5.
In the following a description of scan context is presented. In particular, it is
explained:

• how to create a scan context descriptor from raw data.

• how to build a comparison metrics to evaluate distances between two scan
contexts.

39

Distributed SLAM design

Scan Context

Scan contexts [16] are lidar data descriptors, built on point cloud raw without
using any histogram formulation or pre-step training. They are particularly useful
in SLAM context since loop-closure detection is a place recognition task. Only
point clouds are used so the descriptor has to face with two problems: it must be
invariant to rotation with respect to viewpoint and it must be robust to noise as
much as possible.
In order to calculate Scan Context from a single 3D scan, a egocentric structure of
scan is used. This is divided into bins equally distributed following azimuthal and
radial axes (in polar coordinates) as shown in 3.16. Following the axes direction,
parameters Ns and Nr can be fixed as number of sectors and rings.

Figure 3.16: Polar coordinates bins division [16]

Whole 3D scan is partitioned into different point clouds overlapped, through

40

Distributed SLAM design

which any points belong to a bin. Calling Pij the set of points into a bin (bins are
indexed with respect to sector and ring numbers), the entire set of points can be
reconstructed as:

P =
Û

i∈Nr ,j∈Ns

Pij (3.16)

Choosing this polar structure, locations far from sensor are less represented by
bins, so sparsity of information about far points are not so much considered.
Later on this first part of partitioning, at any bin is associated a single real value:

ϕ : Pij → IR (3.17)

The choice of this metrics can be discussed, scan context uses bin encoding function
based on maximum height:

ϕ(Pij) = max
p∈Pij

z(p) (3.18)

Where z(·) is the function that returns the height of points contained to bin.
Empty bins return 0 as bin value.
Scan context can be summarized by a NrXNs matrix:

I = (aij) ∈ IRNrXNs , aij = ϕPij (3.19)

A descriptor representation of point clouds in figure 3.16 is shown in figure 3.17.

Figure 3.17: Scan Context representation [16]

A new data is created so must be defined a metric to compare two or many
descriptors. Considering Iq and Ic two different scan contexts, they are compared
following its columns:

d(Iq, Ic) = 1
Ns

NsØ
j=1

(1 −
cq

j · cc
j

||cq
j ||||cc

j||
) (3.20)

41

Distributed SLAM design

Where cq
j is the j-th column of q.

Since the same location can be represented by a different scan context which is
column shifted with respect to the first (due to the lidar sensor coordinate system
respect to global coordinate system, figure 3.18), final distance value is evaluated
as the minimum value of the distance calculated from different column-shifted
descriptor.

D(Iq, Ic) = min
n∈Ns

d(Iq, Ic
n) (3.21)

where Ic
n is the n-th shifted view of scan context Ic.

Figure 3.18: Scan Contexts of different view of same place revisited [16]

3.2.3 Inter-Robot Loop Closure detection module
In a collaborative context, each robot must consider the contribution of the team
in order to have better final pose and map estimation saving up time. Inter-robot
loop closure detection module is the first module called during an rendezvous of
two robots.
The aim of the module is to detect portions of environments crossed also by the
neighbors, called inter-robot loop closures, in order to calculate relative matrix

42

Distributed SLAM design

transformation to add in pose-graph structure. Similarly to the intra-robot case,
the module implies place recognition subtasks: in collaborative scenarios this is a
critical aspect since bad valuations on algorithms to be used can bring the solution
to be unworkable.
The module is fully distributed, exploiting compact representation of scan context
descriptors (figure 3.19).

Figure 3.19: Inter-Robot loop closure detection module representation

Algorithm

The algorithm is inspired by the DOOR-SLAM inter-robot loop closure detection
module (figure 3.20) where visual descriptors are used. In this solution, the idea is
to replace those descriptors with others based on point clouds. During development
it must be necessary to introduce differences mainly regarding the sharing process
of information by the two robots.

Figure 3.20: Inter-Robot loop closure detection used in DOOR-SLAM [9]

Considering robot α and β:
1. Robot α sends to robot β its vector of scan contexts.

2. Robot β performs an updated version of scan context matching algorithm:
KD-tree is created, for each entry of scan contexts vector of α is searched set

43

Distributed SLAM design

of near scan contexts of β. The minimum of this set is inserted in a vector of
couples of indexes representing all loop closure candidates.

3. Robot β sends this vector of couples of indexes to α. Later on reception, robot
α sends back set of Point Clouds given by candidate indexes.

4. For each of the entries of set of point clouds, robot β performs an ICP algorithm
to calculate ICP score. If that score is below a threshold, a loop is finally
detected.

5. Robot β sends back set of matrices transformations to robot α so it is possible
to update pose-graph structure used by optimizer.

Using scan context descriptors, it is not needed to share all point clouds collected
until time of rendezvous but only a subset.

3.2.4 Outlier Rejection module
Inter-robot loop closure detection module, which detects if robots revisit locations
crossed by others, is a perception-based task (such as the local version of loop
closure detection). A location may be seen as similar to others even if it is not true
causing perceptual aliasing.

Figure 3.21: Results without (left) and with (right) outlier rejection module [9]

In order to improve quality of results calculated by optimization module, these
spurious measurements must be filtered (as shown in figure 3.21 in DOOR-SLAM
[9], where is applied to a complete solution in the state of the art, this step can not
be neglected).

44

Distributed SLAM design

The outlier rejection modules takes all the computations done in previous modules
through pose-graph structures as input and suitable filters this graph from outliers
(figure 3.22).

In order to perform outlier rejection a distributed algorithm must be chosen.

Figure 3.22: Outlier Rejection module representation

In this model it is used a variation to classic version of Pairwise Consistency
Maximization (PCM) algorithm to be used in distributed contexts. Distributed
PCM has an open-source implementation in [9].
In the following classic PCM algorithm is presented to have an insight of modules
functionalities to be implemented in the future.

Pairwise Consistent Maximization (PCM)

The approach in PCM [24] does not classify directly inlier or outlier measurements
but converts the problem into finding the largest consistent set of inter-robot
measurements.
Giving a consistency metric C and a threshold γ, a set of measurements is pairwise
internally consistent, indicated by Z̃, if:

C(zi, zj) ≤ γ, ∀zi, zj ∈ Z̃ (3.22)

Since all-encompassing condition, all the measurements in the pair must be consis-
tent with each other.
Consistency metric C function can be expressed depending on inter-robot measure-
ments.

C(zab
ik , zab

jl) =
...(⊖zab

ik) ⊕ x̂a
ij ⊕ zab

jl ⊕ x̂b
lk

...
Σ

= ∥ϵikjl∥Σikjl
(3.23)

the elements on (3.23) are shown in figure 3.23.
In (3.23):

• zab
ik , zab

kl : inter-robot measurements.

• x̂a
ij, x̂b

lk: current pose estimates by robots a and b.

The operator ⊕ and ⊖ are commonly used to formulate spatial relationships
between poses in robotics contexts [25].

45

Distributed SLAM design

Figure 3.23: Two robots (a and b) pose-graph sub-sequences. Inter-robot mea-
surements in red.

In particular, ⊕ operator is called compounding and gives the resultant relation-
ship between two consecutive poses and it can be used to find the location of a
mobile robot.
Giving measurements xij and xjk in 2D context, x = [x, y, ϕ]T .
The compounding is defined as:

xik = xij ⊕ xjk =

xjk cos ϕik − yik sinϕij
+xij

xjk sin ϕik + yik cosϕij
+xij

ϕij + ϕjk

 (3.24)

Otherwise, ⊖ operator indicates inverse relationship.
Giving same measurements xij and xjk, it is defined as:

xji = ⊕xij =

−xij cosϕij
−yij sin ϕij

xij sin ϕij − yij cos ϕij

−ϕij

 (3.25)

In (3.23), the ∥·∥Σ is the Mahalanobis distance [26]. Considering a probability
distribution Q in IRn with mean µ = (µ1, µ2, . . . , µN) and covariance matrix Σ, the
Mahalonobis distance of two points x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN) is
defined as:

∥x, y∥Σ =
ñ

(x − y)T Σ−1(x − y) (3.26)

Now that pairwise internal consistent check is defined, PCM algorithm must be
discussed.

46

Distributed SLAM design

Algorithm The final goal of PCM is to find the largest consistent subset of
inter-robot measurements Zab, for simplicity called Z∗.
In order to do this, a particular problem formulation is built. A binary switch
variable su is considered, different for each of constraints in the set Zab, where
1 is taken if measure is contained, 0 if it is not. For simplicity notation zab

ij is
substituted by zu.
The problem is to find the max clique as:

S∗ = arg max
S∈0,1m

∥S∥0

s.t. ∥ϵuv∥Σuv
susv ≤ γ

(3.27)

where:
• m: number of measurements.

• ϵuv: error term in (3.23).

• Σuv: covariance matrix.
Later on finding S∗, the indices associated with su corresponds to measurements in
the maximum size set.
Resolving (3.27) can be a hard computational problem, since brutal force solutions
are O(n2) in complexity. A manipulation can be applied in order to ease a solution.
Considering that the first part of (3.23) can be calculated separately from this
problem, a consistency graph can be built from the matrix Q where the elements
correspond to consistent measurements zu and zu.
In this graph G = {V, E}, for each vertex V is associated a measurement and for
each edges E a relation of consistency between measurements.
The problem, in this form, is converted to find the maximum clique of the graph,
a well-known graph theory problem: the subject is to find its largest subset of
nodes. Since the amount of research in this field, even if the problem is NP-hard,
many well-optimized approaches can be used to find the solution.
Here a greedy one is used based on [27], where the search tree is pruned in order
to find maximum clique quickly in large graphs. This operation is done during
algorithm execution, in order to does not consider those vertices in the successive
step of the algorithm since the inclusion on the set does not imply a maximum
solution.
Considering max variable as size of current maximum clique found. Pruning is
done multiple times:

• Pruning 1: vertices having number of neighbors lower than max are filtered.

• Pruning 2: during the procedure of creation of a set of neighboard for
vertex vi, only its neighbors which are not already considered belonging into
maximum clique are considered.

47

Distributed SLAM design

• Pruning 3: vertices with degree less than current max value are pruned.

• Pruning 4: check even if all vertices in the neighbor set were added to get
the solution, the size does not exceed max current value.

The algorithm proposed in [27] has an open source implementation and it is
prone to concurrent implementations.

3.2.5 Distributed Mapper module
Distributed mapper module has as input intra- and inter-robot measurements given
by other modules and gives back the robots trajectory estimation by means of pose
graph optimization. Those corrected trajectory is necessary to deskew the point
clouds which build the map in any robots in the team.
The inputs are in the form of a filtered pose-graph structure given by Outlier
Rejection module (figure 3.24).

Figure 3.24: Distributed Mapper module representation

In this scenario, a distributed graph pose optimizer [28] is selected which is
implemented following bandwidth and privacy constraints: during a rendezvous
robots exchange the minimum information to find the final result. This feature
makes the module compatible to particular working conditions like in military
applications.
Even if computation is displaced into different computational units, convergence
constraint in the final estimation is always perceived: the resultant trajectory and
map is the same in all the components of the team (figure 3.25).

The mapper discussed is fully implemented in the open source library [29].

Problem definition

Giving a set of robots defined by Ω = {α, β, γ, . . .}. A robot α at time i has pose
xαi

∈ SE(3) where SE(3) is the Special Euclidean group of 3D rigid transformations.
A single robot pose xαi

can be indicated by (Rαi
, tαi

), where Rαi
∈ SO(3) is the

rotation matrix and tαi
∈ IR is the position. The entire robots trajectory is in the

48

Distributed SLAM design

Figure 3.25: Two robots (red and blue point clouds) after pose graph optimization
[28]

form of xα = [xα1 , xα2 , . . .].
Inter and intra-robot measurements can be summarized by:

x̄αi
βj

.= (R̄αi

βj
, t̄αi

βj
)

R̄αi

βj
= (Rαi

)T Rβj
Rϵ

t̄αi

βj
= (Rαi

)T (tβj
− tαi

) + tϵ

(3.28)

where:

• x̄αi
βj

: generic relative pose measurements, by changing α, β, i and j it is possible
to derive intra- and inter-robot formulation.

• R̄αi

βj
: generic relative rotation measurements, it describes rotation of Rβj

at
time i, with respect to coordinate frame of robot α. A matrix Rϵ is included
to take into account measurement noise.

• t̄αi

βj
: generic relative position measurements, it describes the pose of robot tβj

at time i, with respect to coordinate frame of robot α. Term of noise is added
as tϵ .

The set of the all robots intra-robot measurements is indicated by EI = t
α∈Ω Eα

I ,
where Eα

I is the measurements related to robot α. Similarly, ES = t
α∈Ω Eα

S is the

49

Distributed SLAM design

set of all robots inter-robot measurements.
The problem to be resolved is in the form of a Maximum Measurements Likelihood,
as discussed in the Front End sub-chapter of Chapter 2. Here a simplification of
notation is done.
The result is the set of poses x = [xα, xβ, xγ, . . .]. The estimate for x, considering
independent measurements, is defined as:

x∗ = arg max
x

=
Ù

(αi,βj)∈E

p(z̄α
βj

|x) (3.29)

The likelihood (3.29) can be manipulated imposing a suitable noise distributions
to the measurements [30], in the form of Rϵ and tϵ.
The translation noise is distributed as a zero-mean Gaussian tϵ ∼ gaussian(03, ω2

t 13).
The rotational noise is distributed as a Von Mises Rϵ ∼ vonMises(13, ω2

R).
Von Mises distribution is a continuous probability distribution on the circle, it is
used as a approximation of the wrapped normal distribution (normal distribution
around the unit circle) since the better tractability and mathematical simplicity
[31].
Following these noise assumption, expression (3.29) can be computed as:

min
tαi ∈IR3,Rαi ∈SO(3)

∀α∈Ω,∀i

Ø
(αi,βi)∈E

ω2
t

...tβj
− tαi

− Rαi
t̄αi

βj

...2
+ ω2

R

2
...Rβj

− Rαi
R̄αi

βj

...2

F
(3.30)

where
...Rβj

− Rαi
R̄αi

βj

...
F

is the Chordal distance (∥·∥F is the Frobenious matrix
norm, the sum of the squares of the all entries) used as distance metrics between
different rotational matrices.
The mapper must resolve (3.30) optimization. In order to explain distributed
solution a first centralized approach is analyzed, then the solution calculated is
evolved in distributed manner using concepts derived before.

Centralized Approach: Two-Stage Pose Graph optimization

The centralized solution works with the assumption that all measurements E of the
robots in the team are collected in a single unit operating all the computations.
The optimization problem (3.30) has quadratic form but Rαi

∈ SO(3) constraints
is non-convex. In fact, special orthogonal group SO(3) implies that all the matrices
belonging into it must be orthogonal with determinat equals to 1. SO(3) .= {R ∈
IR3×3 : RT R = 13, det(R) = 1} [32].
In order to solve optimization and consider non-convexity, the problem (3.30) is
solved in two stages: first a rotation matrix estimation Rαi

is evaluated (calculated
projecting a previous rotation estimated with a relaxed problem definition), then
full poses are estimated by a Gauss-Newton iteration (algorithm used non-linear
least square problems [33]) using previous result.

50

Distributed SLAM design

Rotation estimation The first rotation estimation is taken from the solution of
sub-problem of the left side of (3.30).

min
Rαi ∈SO(3)

∀α∈Ω,∀i

Ø
(αi,βj)∈E

ω2
R

...Rβj
− Rαi

R̄αi

βj

...2

F
(3.31)

which intends to estimate the result using only relative rotation measurements.
Since the problem 3.31 is non-convex, due to Rαi

∈ SO(3) constraints, first a
solution based on a relaxed version is calculated: the constraints on R is extended
to all matrix. Later, considering the set of solution, only those belonging into SO(3)
group must be taken: a projection step is performed.
The relaxed optimization problem is in the form:

min
Rαi

∀α∈Ω,∀i

Ø
(αi,βj)∈E

ω2
R

...Rβj
− Rαi

R̄αi

βj

...2

F
(3.32)

which is quadratic in the unknown Rαi
. It is possible to a non-linear least

squared form:
min

r
∥Arr − br∥2 (3.33)

where the unknown matrices (for all robots in Ω) are all stacked in a single r
vector and known matrix Ar and b are built. Solution of 3.33 can be found solving
the equation:

(AT
r Ar)r = AT

r br (3.34)

Solutions r̂ in vector form are then converted into matrices R̂αi
, ∀α ∈ Ω, ∀i.

As mentioned before R̂αi
solutions set includes matrices which are not into SO(3)

group. This set is projected to SO(3) performing an Singular Valure Decomposition
(SVD) for each rotations. The matrices found are indicated by R̃αi

, ∀α ∈ Ω, ∀i.

Full pose estimation Full problem 3.30 is considered to recover full pose. In
order to bring it into the form of a least squares problem, a manipulation is done:
it is considered that each rotation Rαi

depends on result previously calculated
(R̃αi

) and on a unknown perturbation modelled as the unknown θαi
:

Rαi
= R̃αi

Exp(θαi
) (3.35)

where Exp(·) is the exponential map for SO(3).
The exponential map applied to a element in SO(3) is equal to its matrix exponential
[34]:

Exp(X) =
+∞Ø
k=0

Xk

k! = 1 + X + X2

2 + X3

6 + . . . (3.36)

51

Distributed SLAM design

where X ∈ SO(3), 1 is the identity matrix.
Introducing this factor 3.30 can be rewritten:

min
tαi ∈IR3,θαi ∈IR3

∀α∈Ω,∀i

Ø
(αi,βi)∈E

î
ω2

t

...tβj
− tαi

− R̃αi
Exp(θαi

)t̄αi

βj

...2
+

ω2
R

2
...R̃βj

Exp(θβj
) − R̃αi

Exp(θαi
)R̄αi

βj

...2

F

ï (3.37)

Using θαi
parameter it is possible to drop constraints SO(3) on matrix and

moved the non-convexity condition on it.
Now an approximation can be done exploiting exponential map of the parameter:
the operator is non-linear in general (which brings the constraint to be non-convex),
here a first order approximation is used:

Exp(θαi
) ≃ 13 + S(θαi

) (3.38)

where S(θαi
) is a symmetric matrix depending on the parameter.

Applying this approximation into 3.37:

min
tαi ∈IR3,θαi ∈IR3

∀α∈Ω,∀i

î
ω2

t

...tβj
− tαi

− R̃αi
t̄αi

βj
− R̃αi

S(θαi
)t̄αi

βj

...2
+

ω2
R

2
...R̃βj

+ R̃βj
S(θαi

) − R̃αi
R̄αi

βj
− R̃αi

S(θαi
)R̄αi

βj

...2

F

ï (3.39)

the expression is finally in quadratic form. So it can be converted into a least-
squared problem (similarly to previous step), with solutions taken from the last
equation.

min
p

∥App − bp∥

(AT
p Ap)p = AT

p bp

(3.40)

where p is a single vector with the combined unknown tα, θα. The solution p is
then split into tαi

and θαi
. The last parameter can be used to correct rotation

matrix Rαi
.

Distributed approach

Considering the last results based on centralized approach, it can be shown that
the two least-squares problems (3.33) and (3.40), which gives the solutions of the
two steps, can be suitable re-written splitting the computation among the robots
in the team.
For example, considering vector r in (3.33) or p in (3.40), these can be split into

52

Distributed SLAM design

sub-vectors r = [rα, rα, . . .] and p = [pα, pα, . . .] where the single robot contribution
is isolated.
Considering known symmetric matrix H and vector g, merging all unknown variable
on y, these two least-squares problem can be written in general form:

H y = g ⇔


Hαα Hαβ . . .
Hβα Hββ . . .

...



yα

yβ
...

 =


gα

gβ
...

 (3.41)

In particular, the entries of matrix H are referred to values on single robot along
its diagonal or evaluated through communication between its neighbors in the other
entries.
In order to isolate single robot set of computation to find yα, equation 3.41 is
manipulated: Ø

δ∈Ω
Hαδyδ = gα ∀α ∈ Ω

Hααyα = −
Ø

δ∈Ω\α

Hαδyδ + gα ∀α ∈ Ω
(3.42)

In this form, each variable associated to the robot is shown. Starting from
(3.42), two different methods can be used to resolve the equation: Successive
Over-Relaxation (SOR) and Jacobi Over-Relaxation (JOR).
Since the open source library implementation [29] resolves (3.42) with the last of
the two methods cited, in the following only this method is explained.

Distributed Jacobi Over-Relaxation (JOR) Starting from an arbitrary initial
estimate y(0) = [y(0)

α , y(0)
β , . . .], linear system in 3.42 can be resolved iteratively

using at each step k:

y(k+1)
α = (1 − γ)y(k)

α + γH−1
αα

1
−

Ø
δ∈Ω\α

Hαδy(k)
δ + gα

2
, ∀α ∈ Ω (3.43)

where γ is called relaxation factor.
At each iteration, robot α computes its own estimation y(k+1)

α assuming neighbors
contribution y(k)

δ as constant.
After some iteration, this local estimate converge to system solution given by global
expression 3.41 and calculated if centralized approach would be used.
Convergence of estimation using JOR algorithm is properly demonstrated, experi-
mental results proposed by authors shown a convergence using γ ≤ 1.

53

Chapter 4

Development and Results

In the following chapter is presented implementation and relative testing of a subset
of modules deeply analyzed in the previous thesis work.
Development results covered the first part of collaborative algorithms, related to
creation of pose-graph ready to be filtered by Outlier Rejection module.
Looking at figure 3.4 modules, in future work the libraries related to Distributed
PCM and Distributed Mapper must be integrated in the solution to give the final
results as optimized poses and a map.
At first a general description about dataset used in the testing process is given.
The development subchapters are explained following a common structure: at first
the initialization process is analyzed (subscription to topics, publishing purpose of
messages, and so on), then a brief high-level code is presented.
As mentioned in Chapter 3, ROS2 Foxy framework is exploited to built the solution.
All the nodes are written in C++. Launch files useful to calls all those nodes in
one instance are developed in Python.
The solution can be seen in repository referred to link.

4.1 Dataset
The modules developed are tested exploiting different datasets provided by authors
with open source license.
Datasets are in the form of ROS1 bag file [35]. Bag file is a convenient file format
to store one or more topics messages collected during robot movements.
Since the framework used to develop this solution is ROS2, a conversion of bag
files is performed: message in ROS1 format are re-published in ROS2 topics, then
they are collected in a ROS2 bag file.
In ROS2 Foxy, a bag file is manipulated using the following commands:

• ros2 bag record <topic_name>: content of topics referred to the name is

54

https://github.com/Frsagco/LD-SLAM

Development and Results

collected in one binary file (it is possible to collect more than one topic at
once).

• ros2 bag play <bag_name>: messages are published in the topic referred to
the same name originally taken during recording phase.

4.1.1 LidarSlam dataset
The most used testing dataset is referred to [36]. The author of odometry source code
releases a dataset where a mobile robot, equipped with lidar sensors, circumnavigate
a position.
Since locations are crossed two times it is possible to test loop closure detection
both in the local and collaborative implementations. In the inter-robot loop closure
detection testing, the dataset is split in two parts and it is simulated that those
are collected from different robots.
The dataset is collected using a Velodyne VLP-32 sensor.
Path crossed by robot is represented in figure 4.1.

Figure 4.1: Lidarslam dataset path representation [36]

4.2 Signal Processing
Signal processing calculates odometry referred to raw lidar data coming at consecu-
tive time instants from sensor. Furthermore it evaluate corner and surface features

55

Development and Results

taken from a raw point clouds useful in future implementation. Whether IMU data
are supplied they are collected and used as a tentative adjustment of point clouds
before odometry computation.
The odometry implementation is inspired by code referred to [36] (a complete open-
source lidar-based local SLAM solution), where it is used an optimized multi-core
version of NDT-based scan matching for odometry, an already implemented library
in [37].
In this development the results from author are reconstructed and compared to
another scan matching algorithm based on GICP, which is given by the PCL library
[15].
The code structure is:

ld_slam/
include/

ld_slam/
odometry.h
lidar_undistortion.h

src/
odometry_node.cpp
odometry.cpp
imageProjection.cpp
featureExtraction.cpp

launch/
odometry_launch.py

In the /include/ld_slam/ subdirectory:

• odometry.h: odometry object and relative methods definition.

• lidar_undistortions.h: it contains reference to projectLaser API, lidar point
cloud is possibly adjusted involving IMU data.

In the src/ subdirectory:

• odometry_node.cpp: ROS2 note creation.

• odometry.cpp: odometry implementation.

• imageProjection.cpp: from a point cloud, using IMU data, a deskwed
representation is provided.

• featureExtraction.cpp: surface and corner features extraction from deskew
point cloud.

In the launch/ subdirectory is provided a launch file, with the proper ros2 launch
ld_slam odometry_launch.py command, the odometry node and relative parameters
is going in execution.

56

Development and Results

Initialization process

Only content referred to odometry.cpp is descripted.
In the initialization, the scan matcher is selected between GICP or NDT and
relative parameter are chosen like below. The object registration_ is a generic
matcher.

1 if (registration_method_ == "NDT ") {
2 NormalDistributionsTransform <PointXYZI , PointXYZI >:: Ptr
3 ndt(new NormalDistributionsTransform <PointXYZI , PointXYZI >()

);
4 ndt -> setResolution (ndt_resolution);
5 ndt -> setTransformationEpsilon (trans_eps);
6 ndt -> setNeighborhoodSearchMethod (pclomp :: DIRECT7);
7

8 registration_ = ndt;
9 } else {

10 GeneralizedIterativeClosestPoint <PointXYZI , PointXYZI >:: Ptr
gicp(new GeneralizedIterativeClosestPoint <PointXYZI , PointXYZI
>());

11 gicp -> setMaxCorrespondenceDistance (gicp_corr_dist_threshold);
12 gicp -> setTransformationEpsilon (trans_eps);
13 registration_ = gicp;
14 }

Algorithm 4.1: Matcher selection algorithm

Later on publishers and subscribers are initialed.
As every topic working in the solution, the names are preceded by the prefix
“/ld_slam/”. Considering the odometry node running on generic robot α, here it is
considered as “robot_0/”.
To summarize, every name of topics in nodes has the prefix “/robot_numRobot/ld_slam/.
Many subscription topics are used in solution:

• initial_pose_sub_:

– Name: prefix + “/initial_pose"
– Massage type: geometry_msgs::msg::PoseStamped.
– Callback functionalities: collects initial pose and updates current pose.

• imu_sub_:

– Name: prefix + “/imu"
– Massage type: sensor_msgs::msg::Imu.
– Callback functionalities: collects imu information, imu data are con-

verted into euler angles representation and lidar_undistortion_ object

57

Development and Results

is initialed (the object associated to lidar_undistortions.h library func-
tionalities.

• input_cloud_sub_:

– Name: prefix + “/point_cloud_raw"
– Massage type: sensor_msgs::msg::PointCloud2.
– Callback functionalities: core of the odometry algorithm, it is de-

scripted in the following subsection.

Information computed are shared using the publishers, here a subset is presented:

• pose_pub_

– Name: prefix + “/current_pose"
– Massage type: geometry_msgs::msg::PoseStamped.
– Message content: current pose estimates as output of odometry compu-

tation.

• map_pub_:

– Name: prefix + “/map"
– Massage type: sensor_msgs::msg::PointCloud2.
– Message content: the node evaluates a first version of the map exploiting

odometry information, the map is provided using this publisher.

• odom_pub_:

– Name: prefix + “/odom"
– Massage type: nav_msgs::msg::Odometry.
– Message content: odometry informations are converted in the message

format supported by nav2 stack, in order to perform navigation.

Main algorithm implementation

As mentioned before, input_cloud_sub associated callback is the location of
main algorithms implementation.
Having new lidar scan as input:

1. If it is acquired imu data, adjustDistortion method of the object lidar_undistortion_
is called, so in the lidar scan natural distortion is recovered.

58

Development and Results

2. Lidar scan is filtered by a voxel_grid-based filter, a downsample technique
necessary to reduce computational time [38] (during testing phase, it is shown
that this filtering can not be neglected otherwise computational time becomes
of time seconds order).

3. Source point clouds used in scan matching algorithms is set by downsampled
point cloud in the receiveCloud method, called later on a phase of initial-
ization of the target with the first point cloud coming from the sensor. The
next target will become the current source point cloud.
Before every source and target initialization, to the point cloud is previously
applied a transformation matrix referred to the last pose of the robot to
perform an alignment with current position.

4. Scan matching algorithm can perform since source and target are set. From
the results it is taken the transformation matrix, useful to extract updated
poses of the robot, and the fitnessScore used as debug and performance
result.

5. Updated map and pose are published calling publishMapAndPose method:
here the estimations are all published to the topics referred in the initialization
phase. In this method, at the final instance, the target point cloud is set ready
to the next scan matching step.

4.2.1 Testing

Signal Processing module is tested comparing results coming from the two types of
scan matching algorithms discussed in chapter 3: NDT and GICP.
Considering many different parameters, it is shown that the NDT approach per-
forms better than the other: the drift on estimations is contained, the algorithm
can be executed a long time giving a first consistent noisy localization estimation.
GICP-based odometry estimations must be passed through optimization algorithms
quickly so the noise model can be applied to robot poses between a point cloud
and the successive.
In this section only results coming from NDT-based odometry are presented. The
solution is tested using different resolution parameters showing not only the first
path of robot to be optimized, but also results in terms of mean ICP-score and
mean time to perform estimation.
The path is taken using RVIZ tool publishing Path messages.

59

Development and Results

Figure 4.2: Odometry estimation using resolution set to 5.0.

Figure 4.3: Odometry estimation using resolution set to 4.0.

60

Development and Results

Figure 4.4: Odometry estimation using resolution set to 2.0.

Table 4.1: Signal Processing module results

resolution mean score mean time (ms)
5.0 5.53 130
4.0 4.39 135
2.0 4.09 127

From the above table and figure 4.4, it is determined experimentally that lower
resolution produces better results in less time. Resolution can not be reduces less
than 0.8 since the algorithm performance decreases.

4.2.2 Feature extraction for future upgrades
Referring to successive modules discussed later in this work thesis many improve-
ments can be done, in order to save much more computational and communication
resources.

61

Development and Results

One of the most important is regarding point cloud representation, the idea is to
reduce intrinsic redundancy without suffering from low quality information. It is
important to underline that downsampling is already done in the actual solution
(it is necessary for ICP algorithm) but the method can be seen as “blind” since it
is not dependent on the environment.
Feature extraction formed by LIO-SAM odometry [39] can be a solution to the
problem: from a deskew version of point clouds (imageProjection node), it is
calculated surface and corner features (featureProjection node). Combining
these two results, it is possible to have a consistent representation of original raw
information.
The development of nodes are taken from open-source library referred to [40]. These
two nodes are tested exploiting KITTY dataset [41]. In the following, three images
of the same view are presented: the first is taken from raw dataset, the second and
the last is taken calculating surface and corner features.

Figure 4.5: Raw KITTI dataset representation.

62

Development and Results

Figure 4.6: Surface features calculated.

Figure 4.7: Corner features calculated.

63

Development and Results

4.3 Intra-Robot Loop Closure detection
Intra-robot loop closure detection exploits scan context descriptors to detect previ-
ously visited locations by robots.
The implementation is inspired by SC-LeGO-LOAM [42], a complete SLAM so-
lution developed in ROS1 where the loop closure module is scan-context dependent.
Here many changes are applied other than a porting of the code to ROS2.
The code shares the same structure with inter-robot loop closure detection module
since code separation would produce further message exchanges between topics.
The structure follows:

ld_slam/
include/

ld_slam/
loopClosureDetection.h
Scancontext.h

src/
loopClosureDetection.cpp
Scancontext.cpp

In the ld_slam/include/ subdirectory:

• loopClosureDetection.h: object loopClosureDetection with relative
support informations is declared.

• Scancontext.h: ScManager object declarations with relative scan context
creation and manipulation methods and parameters.

In the ld_slam/src/ subdirectory:

• loopClosureDetection.cpp: algorithms implementation locations. As men-
tioned before, it contains code for intra- and inter-robots versions.

• Scancontext.cpp: code about creation and manipulation of scan contexts
referred to scan context open source library [16] for the local version. Inter-
robot API are created following same patterns of the library authors. It is also
provided a debug API useful to enable to test the solution not in run-time.

Initialization process

Loop closure detection algorithm is called with fixed frequency, object in the ROS2
standard libray TimerBase are used in this context. At every frequency peak the
method performLoopClosure is called.
Other than timer, even publisher and subscribers must be initialed. Regarding the
prefix in the name of topics, it is referred what discussed in 4.2.
Many subscription topics are used in solution:

64

Development and Results

• cloud_raw_sub_:

– Name: prefix + “/point_cloud_raw"
– Massage type: sensor_msgs::msg::PointCloud2.
– Callback functionalities: the point cloud is collected into a vector

and makeAndSaveScancontext method of scManager is called: scan
context is created as discussed in 3.2.2 and saved inside the object into a
vector.

• odom_sub_:

– Name: prefix + “/odom"
– Massage type: geometry_msgs::msg::PoseStamped.
– Callback functionalities: odometry estimations are collected into a

vector. Robots poses are useful to align point cloud to prepare ICP-based
scan matching algorithm.

• input_cloud_sub_:

– Name: prefix + “/point_cloud_raw"
– Massage type: sensor_msgs::msg::PointCloud2.
– Callback functionalities: core of the odometry algorithm, it is de-

scripted in the following subsection.

Main algorithm implementation

As mentioned before, the starting point of algorithm is the method call at frequency
by TimerBase object. It is assumed that at least 20 measurements are collected
(both coming from raw clouds and odometry estimation) in order to proceed with
algorithms.
The implementation is splitted in two sub methods:

1. detectLoopClosure: a method of scManager, detectLoopClosureID, is
called. In this method, provided by the library, it is searched the nearest
descriptor from the last scan context inserted into the vector. Since scan
context is a heavy representation (matrix of double of dynamic dimension),
this algorithm is done in two phases: at first from the 2D dimension matrix is
extracted a single row vector, where the entries are the result of an encoding
function applied to the correspective row, called ring-key. The encoding
function is:

ϕ(ri) = ∥ri∥0
Ns

(4.1)

65

Development and Results

where ri is the entries of vector, ∥·∥ the norm and Ns the number of sectors.
Then this resultant vector is used to construct a KD tree to perform a
KD-tree search, in order to find the nearest descriptors to the query (the
last calculated). From all the descriptors, it is calculated the distances from
each one of the set of nearest and it is selected whose has minimum value.
The correspondent index is returned to the method’s caller.
Whether an index is returned (and it is different to -1), a couple of indexes
are formed called loop closure candidates.

2. Now the next part of the algorithm can be performed: using this couple of
indexes, it is extracted from the vector the relative point cloud entries and
those are used to set an ICP algorithm, in order to check if the two point
clouds are near enough. As always in the presence of an ICP step, the target
point cloud is aligned by applying the transformation matrix extracted from
odometry on the source entries.
The ICP step is performed and fitnessScore is compared to a threshold: lower
value means candidate loop as valid and relative transformation matrix can
be inserted into pose-graph structure.

4.3.1 Testing
Considering the path calculated by the Signal Processing module in figure 4.4, it is
shown that the robot retraces last routes to come back to the origin position. This
dataset characteristic can be exploited to test both intra- and inter- loop closure
algorithms.
In the testing of local version, no other additional debug methods are developed.
Results are summurized in the following table, where NDT and GICP scan matching
algorithm are compared both from mean ICP-scores and mean time of calculation.
In particular, time of calculation is referred to the second part of the algorithm
(where it is prepared and evaluated the scan matching algorithm) since the other
time referred to detectLoopClosureID can be neglected.
From the results, it is shown that NDT-based algorithm are preferred to perform

matching algorithm mean score mean time (s)
NDT 0.81 42
GICP 077 51

Table 4.2: Intra-Robot Loop Closure detection module results.

scan matching also in this module. Furthermore it is evident that matching of
two non-consequent point clouds is an computational expensive tasks using both

66

Development and Results

approaches. This is the real motivation to find better techniques to reduce point
cloud representation as described in (4.2).

4.3.2 Future upgrades

Future upgrades of modules involved the second step of the algorithm: at the
moment ICP-based algorithm preparation is done using raw data or downsampled
point clouds based on voxel-grid based filtering technique. The idea is to exploit
point cloud features of surface and corner to represent raw information, in order to
recover computational resources.
These features are used in the preparation phase of the ICP algorithm: later on
scan context matching a couple of indexes are calculated, one referred to source
point cloud and the other to the target. Since the single combination of descriptors
is not enough (information is not well descriptive), target point cloud must be
prepared creating an history point cloud starting from the target index: the idea is
to take not only the sum of corner and surface referred to it but also a subset of
neighbor point clouds.
The window length is fixed, in the solution is taken as 15 precedent indexes (figure
4.8).

Figure 4.8: History point clouds preparation on target. Source is prepared using
raw data from left index in the couple evaluated by scan context matching.

67

Development and Results

4.4 Inter-Robot Loop Closure detection
Inter-robot loop closure detection module is activated once two robots are in
communication range, so they are enabled to exchange information.
Performing an algorithm based on scan context descriptors it can be possible
to execute this critical module limiting amount of heavy data involved in the
communication.
The code structure follows the same locations of the local version so the files
contained into directories are not explained again.

Initialization process

Communication between robots is regulated by messages sharing through topics
exploiting an well-managed asynchronous approach.
The initialization process is fundamental to enable topic communication: during
the discovery of a new neighbor both robots must properly subscribe to a set of
topics referred with correct names, in order to visualize information intended to be
shared.
Since discovery was not the most important algorithm aspect of the module, the
development is done considering only two robots in the environment. In the case of
more robots involved, subscribers must be saved in proper structure referred with
robot id (vector of subscribers can be an idea).
Since the modules of intra- and inter- submodules are referred to same source file,
those data collected by local algorithm through topics discussed before are ready
to use: in particular, point cloud raw data and odometry calculated.
Consider being in robot α (topic name prefix "robot_0/") which have to communi-
cate with robot β (topic name prefix "robot_1/"), it subscribes to topics:

• sc_context_sub_:

– Name: "robot_1/ld_slam/loop_closure/sc_context"
– Massage type: std_msgs::msg::Float64MultiArray.
– Callback functionalities: scan context evaluated by robot β during its

movement are published, the subscriber takes the descriptors in the format
of a single vector and unpack it reconstructing the original matrix (this
operation is done using index parameters set by robot β before publishing
process) to be saved by scManager. In the library is added a method
saveOtherScancontextAndKeys that collects neighbor’s descriptors in
order to perform algorithm discussed later. Even this method is developed
to work only with two robots, future version must to overcome this
limitation: rather than collects one single vector of descriptors, these can
be stored into a map referred by robot id.

68

Development and Results

• loop_id_sub_:

– Name: "robot_1/ld_slam/loop_closure/loop_id"
– Massage type: std_msgs::msg::Int32MultiArray.
– Callback functionalities: robot β requests point clouds of robot α

to proceed with inter-loop detection. Those request is expressed by
indexes shared with this message. Whether the point clouds referred by
indexes entries are contained into correspondent vector, then those can
be published as message using a publisher.

• loop_cloud_sub_:

– Name: "robot_1/ld_slam/loop_closure/cloud"
– Massage type: sensor_msgs::msg::PointCloud2.
– Callback functionalities: it is inserted to the workflow associated with

loop_id_sub_, later on a request comes from indexes and successive
publishing of point clouds, this subscriber collects the results.

Otherwise the publisher are defined as:
• sc_context_pub_

– Name: "robot_0/ld_slam/loop_closure/sc_context"
– Massage type: std_msgs::msg::Float64MultiArray.
– Message content: in the case of an communication interface developed,

those descriptors are shared at rendezvous instant. Here descriptors are
published at fixed frequency calling publishScancontext method: all the
scan contexts are recovered from scManager using getScanContext API,
then each descriptor is packed in a single vector saving index information
to be used in the unpacking phase by robot β.

• loop_id_pub_

– Name: "robot_0/ld_slam/loop_closure/loop_id"
– Massage type: std_msgs::msg::Int32MultiArray.
– Message content: the robot α sends a point clouds request building

vector of indexes and packing into a messagge passing through this topic.

• loop_cloud_pub_

– Name: "robot_0/ld_slam/loop_closure/cloud"
– Massage type: sensor_msgs::msg::PointCloud2.
– Message content: This publisher is called during loop id callback, for

each of the indexes a point cloud is published through this topic.

69

Development and Results

Main algorithm implementation

Elaboration of information, previously given by the neighbor of a robot, is devel-
oped asynchronously: two timers (object of TimerBase) are instantiated during
initialization, the aim is to call a method at a fixed frequency whose execution is
regulated by flags.
The first method (performInterLoopClosure) execution proceeds only if two
condition are fulfilled:

• there was exchange of information (a flag is set when the robot receives scan
context into the topic)

• No other inter-loop detection is on execution at the moment.

If execution proceeds, it is called detectInterLoopClosureID method on scMan-
ager object. The method is implemented as an extension of the detectLoopClo-
sureID used in the local version of the algorithm.
Two vectors of descriptors are compared: the one referred to robot α and the
“other” referred to the neighbor. Later on KD-tree creation suitably updated after
that a fixed number of iteration is executed (this is done in order to not unbalance
KD-tree since tree structure may collapse into a linear vector, limiting the general
performance), for each of the other descriptors a KD-tree search is performed.
If the search gives back a result, the indexes (corresponding to other and robot α
vectors) are added into a vector of resultant indexes (candidate loops), previously
initialized with entries equal to -1, which is returned to the caller. The vector is
then filtered of those entries equal to -1 and the second step of the algorithm can
be prepared.
Exactly as the local version, a scan matching algorithm must be set with point
clouds corresponding to indexes previously found. A vector of point clouds source
is created by robot α point clouds, the target vector clouds is then created when
the robot β responds to a query formed by indexes corresponding to those point
clouds needed. The query is done using the corresponding topic. When robot β
receives the query it responds back with point clouds to the topic referred to last
subsection.
In the callback of subscriber of this topic a flag is plugged on enabling the execution
of the second method (performInterLoopClosure_callback) called at a given
frequency by TimerBase object. In the method vector of target point clouds is
formed so an ICP-based algorithm can be executed: corresponding robot α odome-
try estimation gives a transformation applied for each couple of sources and targets,
the target is downsampled with voxel-grid based approach, then scan-matching
algorithm can be performed.
If the ICP score is below a threshold then an inter-robot loop is detected, the
corresponding couple of index candidates gives a relative transformation matrix to

70

Development and Results

be added to pose-graph.
Then all the flags are unplugged to enable successive detections.

4.4.1 Testing
Since the communication interface is not developed yet, the module is not tested
at run time. The analysis is focussed only on the single module functionalities.
In the testing process, dataset characteristics are stressed identifying two subsets
in the path crossed by the robot: one regarding to the point clouds referred to the
first trajectory and the others referred to the inverse part (figure 4.9). Those two
subset of point clouds are published in different topics simulating classical behavior
of robots during an algorithm run.

In the topic’s callback referred to the second part of the trajectory, the point

Figure 4.9: Two path considered in the testing process (blue is the reversed
trajectory).

clouds are firstly stored into a vector and then passed to a method developed
only for debugging purpose: makeAndSaveOtherScancontextAndKeys is a

71

Development and Results

method of SCManager object, the main subject is to calculate and store scan
context associate descriptor.
Since the two elements provided to a robot by its neighbor during a possible
rendezvous are stored and calculated (vector of neighbor point clouds and scan
context into SCManager object), the inter-robot loop closure detection algorithm
can be performed.
The testing results are quite similar to the local version of the algorithm in terms of
mean scores and mean time for elaboration. The two matching algorithm considered
before are compared.
Exactly as discussed in the previous section, time of elaboration is taken considering

matching algorithm mean score mean time (s)
NDT 0.93 33
GICP 0.64 58

Table 4.3: Inter-Robot Loop Closure detection module results.

only the second part of the algorithm related to matching of two non-subsequent
point clouds since the other algorithm contribution (coming from communication
interface in the majority) can not be evaluated. Elaboration time is high as previous
results, the introduction of point clouds descriptors as corner and surface can be
an important improvement to overcome this problem.

4.4.2 Future upgrades
The natural upgrade is to create target point cloud not from raw information shared
by robot α but requesting an history point cloud created using surface and corner
descriptors, as discussed in the previous subchapter. The amount of informations
shared during communication decreases saving bandwidth.

72

Chapter 5

Conclusion

Collaborative Simultaneous Localization and Mapping (SLAM) problem is quite
hard to accomplish since many fields are involved: from point cloud elaboration of
information to communication challenges. By choosing one suite of sensors with
respect to another, many of these components might be reformulated, discouraging
modularity of solutions.
In this thesis work a possible distributed solution based on lidar sensing is designed,
the design is not provided only in terms of what is necessary to add but also giving
an theoretical overview where libraries rest.
Later on this documentation work, a first development of sensing modules is pro-
vided: Signal Processing module and both Intra- and Inter-robot Loop closure
detection modules. In particular, the Inter-robot Loop Closure detection module
reveals to be a possibly good approach to resolve computational and resource
constraints.
After that it is provided possible upgrade ideas all based on downsample feature-
based representation of raw data already provided in Signal Processing.

Future work

Complete solution must be developed, since only a first not-filtered pose graph
structure is created at the end of the work. Outlier Rejection and Distributed Map-
per modules must be implemented exploiting open-source libraries and theoretical
aspects referred into Chapter 3.
After that many improvements to the already modules implemented can be done
following suggestions discussed in the relative subchapters.

73

Acknowledgements

Sono alla fine di questo percorso e di questi anni, in questo piccolo spazio vorrei
riempirmi la bocca di doverosi grazie, poiché se sono qui oggi non è solo per mio
merito.
Il primo è rivolto alla professoressa Marina Indri, per i numerosi consigli e gli
incoraggiamenti che mi hanno accompagnato durante tutto il percorso di elabo-
razione e stesura di questo lavoro. Ringrazio Gianluca Prato, David Pangcheng
ed Enrico Ferrera per la pazienza di ascoltarmi a cadenza bi-settimanale in tutti
questi mesi, donandomi parte della risorsa che più di tutte è preziosa: il tempo. Mi
avete insegnato a individuare valore quando si è accecati e offuscati da aspettative.
Ringrazio Fondazione LINKS per avermi permesso, con questa opportunità, di
muovere i primi passi in un settore spesso elitario come la robotica.
Ringrazio la mia famiglia: mamma, papà, Serena e nonna Angela. Grazie per la
vostra vicinanza e perenne supporto.
Ringrazio Alessandro e Nikole, per avermi fatto sentire a casa anche fuori dal nido.
Ringrazio i miei amici tutti, vecchi e nuovi, per accettarmi per quello che sono,
senza filtri e maschere.

74

Bibliography

[1] Brianna Wessling. 100,000+ mobile robots shipped in 2021. Link (cit. on p. 1).
[2] U. Frese, Wagner, and R. Röfer. «A SLAM Overview from a User’s Perspec-

tive». In: 24 (2010), pp. 1–2 (cit. on p. 1).
[3] MHL Staff. Order Fulfillment Mobile Robots Start to Deliver. (cit. on p. 2).
[4] Robotics Online Marketing Team. Service Robots Improve Defense Industry’s

Safety Standards. (cit. on p. 2).
[5] Pierre-Yves Lajoie, Benjamin Ramtoula, Fang Wu, and Giovanni Beltrame.

«Towards Collaborative Simultaneous Localization and Mapping: a Survey
of the Current Research Landscape». In: Field Robotics 2.1 (Mar. 2022),
pp. 971–1000. doi: 10.55417/fr.2022032. url: https://doi.org/10.
55417%2Ffr.2022032 (cit. on pp. 3, 5, 7, 8).

[6] Zhi Yan, Luc Fabresse, Jannik Laval, and Noury Bouraqadi. «Team Size
Optimization for Multi-robot Exploration». In: Oct. 2014, pp. 438–449. isbn:
978-3-319-11899-4. doi: 10.1007/978-3-319-11900-7_37 (cit. on p. 5).

[7] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Rus
Daniela. «LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing
and Mapping». In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2020, pp. 5135–5142 (cit. on p. 9).

[8] Kamak Ebadi et al. LAMP: Large-Scale Autonomous Mapping and Positioning
for Exploration of Perceptually-Degraded Subterranean Environments. 2020.
doi: 10.48550/ARXIV.2003.01744. url: https://arxiv.org/abs/2003.
01744 (cit. on pp. 12, 13).

[9] P. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame. «DOOR-
SLAM: Distributed, Online, and Outlier Resilient SLAM for Robotic Teams».
In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 1656–1663 (cit. on
pp. 15, 17, 43–45).

[10] Francisco Martín Rico. A Concise Introduction to Robot Programming with
ROS2. CRC Press/Chapman Hall, 2022. isbn: 9781032267203; 1032267208;
9781032264653; 1032264659; 9781003289623; 1003289622 (cit. on pp. 18, 19).

75

https://www.therobotreport.com/100000-mobile-robots-shipped-in-2021/
https://www.mhlnews.com/warehousing/article/22055780/order-fulfillment-mobile-robots-start-to-deliver
https://www.automate.org/blogs/service-robots-improve-defense-industry-s-safety-standards
https://doi.org/10.55417/fr.2022032
https://doi.org/10.55417%2Ffr.2022032
https://doi.org/10.55417%2Ffr.2022032
https://doi.org/10.1007/978-3-319-11900-7_37
https://doi.org/10.48550/ARXIV.2003.01744
https://arxiv.org/abs/2003.01744
https://arxiv.org/abs/2003.01744

BIBLIOGRAPHY

[11] The Robotics Back-End. ROS1 vs ROS2, Practical Overview For ROS Devel-
opers. Link (cit. on p. 19).

[12] Open Robotics. ROS2 Foxy Documentation: Concepts. Link (cit. on pp. 19,
20).

[13] Steven Macenski, Francisco Martin, Ruffin White, and Jonatan Ginés Clavero.
«The Marathon 2: A Navigation System». In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2020 (cit. on pp. 20,
21).

[14] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and
AI. CRC Press, July 2018. doi: 10 . 1201 / 9780429489105. url: https :
//doi.org/10.1201%2F9780429489105 (cit. on p. 22).

[15] Radu Bogdan Rusu and Steve Cousins. «3D is here: Point Cloud Library
(PCL)». In: IEEE International Conference on Robotics and Automation
(ICRA). Shanghai, China: IEEE, May 2011 (cit. on pp. 24, 27, 56).

[16] Giseop Kim and Ayoung Kim. «Scan Context: Egocentric Spatial Descriptor
for Place Recognition Within 3D Point Cloud Map». In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2018,
pp. 4802–4809. doi: 10.1109/IROS.2018.8593953 (cit. on pp. 24, 40–42,
64).

[17] Open Robotics. Factor Graphs and GTSAM. Link (cit. on p. 25).
[18] Frank Dellaert et al. borglab/gtsam. Version 4.2a7. May 2022. doi: 10.5281/

zenodo.5794541. url: https://doi.org/10.5281/zenodo.5794541 (cit.
on p. 25).

[19] Dirk Holz, Alexandru E. Ichim, Federico Tombari, Radu B. Rusu, and Sven
Behnke. «Registration with the Point Cloud Library: A Modular Framework
for Aligning in 3-D». In: IEEE Robotics Automation Magazine 22.4 (2015),
pp. 110–124. doi: 10.1109/MRA.2015.2432331 (cit. on pp. 27, 28, 30, 32, 35,
36).

[20] Marius Muja and David G. Lowe. «Fast Approximate Nearest Neighbors
with Automatic Algorithm Configuration». In: International Conference on
Computer Vision Theory and Applications (VISAPP’09). 2009 (cit. on p. 29).

[21] Aleksandr Segal, Dirk Hähnel, and Sebastian Thrun. «Generalized-ICP». In:
June 2009. doi: 10.15607/RSS.2009.V.021 (cit. on p. 33).

[22] Peter Biber and Wolfgang Straßer. «The Normal Distributions Transform: A
New Approach to Laser Scan Matching». In: vol. 3. Nov. 2003, 2743–2748
vol.3. isbn: 0-7803-7860-1. doi: 10.1109/IROS.2003.1249285 (cit. on p. 36).

76

https://roboticsbackend.com/ros1-vs-ros2-practical-overview/##Why_ROS2_and_not_keep_ROS1
https://docs.ros.org/en/foxy/Concepts.html##nodes
https://doi.org/10.1201/9780429489105
https://doi.org/10.1201%2F9780429489105
https://doi.org/10.1201%2F9780429489105
https://doi.org/10.1109/IROS.2018.8593953
https://gtsam.org/tutorials/intro.html
https://doi.org/10.5281/zenodo.5794541
https://doi.org/10.5281/zenodo.5794541
https://doi.org/10.5281/zenodo.5794541
https://doi.org/10.1109/MRA.2015.2432331
https://doi.org/10.15607/RSS.2009.V.021
https://doi.org/10.1109/IROS.2003.1249285

BIBLIOGRAPHY

[23] Feng Lu and Milios. «Robot pose estimation in unknown environments by
matching 2D range scans». In: 1994 Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition. 1994, pp. 935–938. doi: 10.1109/
CVPR.1994.323928 (cit. on p. 37).

[24] Joshua G. Mangelson, Derrick Dominic, Ryan M. Eustice, and Ram Vasudevan.
«Pairwise Consistent Measurement Set Maximization for Robust Multi-Robot
Map Merging». In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). 2018, pp. 2916–2923. doi: 10.1109/ICRA.2018.8460217
(cit. on p. 45).

[25] Randall Smith, Matthew Self, and Peter C. Cheeseman. «Estimating Un-
certain Spatial Relationships in Robotics». In: CoRR abs/1304.3111 (2013).
arXiv: 1304.3111. url: http://arxiv.org/abs/1304.3111 (cit. on p. 45).

[26] Wikipedia. Mahalanobis distance. Link (cit. on p. 46).
[27] Bharath Pattabiraman, Md. Mostofa Ali Patwary, Assefaw Hadish Gebremed-

hin, Wei-keng Liao, and Alok N. Choudhary. «Fast Algorithms for the Maxi-
mum Clique Problem on Massive Graphs with Applications to Overlapping
Community Detection». In: CoRR abs/1411.7460 (2014). arXiv: 1411.7460.
url: http://arxiv.org/abs/1411.7460 (cit. on pp. 47, 48).

[28] Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik
I. Christensen, and Frank Dellaert. Distributed Mapping with Privacy and
Communication Constraints: Lightweight Algorithms and Object-based Models.
2017. doi: 10.48550/ARXIV.1702.03435. url: https://arxiv.org/abs/
1702.03435 (cit. on pp. 48, 49).

[29] Akash Sharma Siddharth Choudhary Antonella Wilby. Distributed-Mapper.
Link (cit. on pp. 48, 53).

[30] Luca Carlone, David Rosen, Giuseppe Calafiore, John Leonard, and Frank
Dellaert. Lagrangian Duality in 3D SLAM: Verification Techniques and Op-
timal Solutions. 2015. doi: 10.48550/ARXIV.1506.00746. url: https:
//arxiv.org/abs/1506.00746 (cit. on p. 50).

[31] Wikipedia. von Mises distribution. Link (cit. on p. 50).
[32] Luca Carlone, Roberto Tron, Kostas Daniilidis, and Frank Dellaert. «Ini-

tialization techniques for 3D SLAM: A survey on rotation estimation and
its use in pose graph optimization». In: 2015 IEEE International Con-
ference on Robotics and Automation (ICRA). 2015, pp. 4597–4604. doi:
10.1109/ICRA.2015.7139836 (cit. on p. 50).

[33] Rick Wicklin. Least-squares optimization and the Gauss-Newton method. Link
(cit. on p. 50).

[34] Wikipedia. Exponential map (Lie theory). Link (cit. on p. 51).

77

https://doi.org/10.1109/CVPR.1994.323928
https://doi.org/10.1109/CVPR.1994.323928
https://doi.org/10.1109/ICRA.2018.8460217
https://arxiv.org/abs/1304.3111
http://arxiv.org/abs/1304.3111
https://en.wikipedia.org/wiki/Mahalanobis_distance
https://arxiv.org/abs/1411.7460
http://arxiv.org/abs/1411.7460
https://doi.org/10.48550/ARXIV.1702.03435
https://arxiv.org/abs/1702.03435
https://arxiv.org/abs/1702.03435
https://github.com/CogRob/distributed-mapper
https://doi.org/10.48550/ARXIV.1506.00746
https://arxiv.org/abs/1506.00746
https://arxiv.org/abs/1506.00746
https://en.wikipedia.org/wiki/Von_Mises_distribution
https://doi.org/10.1109/ICRA.2015.7139836
https://blogs.sas.com/content/iml/2022/03/16/least-squares-gauss-newton.html
https://en.wikipedia.org/wiki/Exponential_map_(Lie_theory)

BIBLIOGRAPHY

[35] ROS Wiki. Bags. Link (cit. on p. 54).
[36] Ryohei Sasaki. lidarslamros2. Link (cit. on pp. 55, 56).
[37] koide3. ndtomp. Link (cit. on p. 56).
[38] PCL documentation. Downsampling a PointCloud using a VoxelGrid filter.

Link (cit. on p. 59).
[39] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and

Daniela Rus. «LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smooth-
ing and Mapping». In: 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). 2020, pp. 5135–5142. doi: 10.1109/
IROS45743.2020.9341176 (cit. on p. 62).

[40] Tixiao Shan. LIO-SAM. Link (cit. on p. 62).
[41] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. «Vision

meets Robotics: The KITTI Dataset». In: International Journal of Robotics
Research (IJRR) (2013) (cit. on p. 62).

[42] RPM Robotics Lab. SC-LeGO-LOAM. Link (cit. on p. 64).

78

http://wiki.ros.org/Bags
https://github.com/rsasaki0109/lidarslam_ros2
https://github.com/koide3/ndt_omp
https://pointclouds.org/documentation/tutorials/voxel_grid.html
https://doi.org/10.1109/IROS45743.2020.9341176
https://doi.org/10.1109/IROS45743.2020.9341176
 https://github.com/TixiaoShan/LIO-SAM
https://github.com/irapkaist/SC-LeGO-LOAM##sc-lego-loam

	List of Tables
	List of Figures
	Introduction
	State of the Art analysis
	SLAM Single Robot
	Problem definition
	Architecture

	Collaborative SLAM
	Problem definition
	Centralized, Decentralized and Distributed
	Front End
	Back End

	Complete solutions
	LAMP: Large-Scale Autonomous Mapping and Positioning
	DOOR-SLAM: Distributed, Online, and Outlier Resilient SLAM

	Distributed SLAM design
	ROS2 overview
	Computational Graph
	Nav2 Project

	Model
	Signal Processing module
	Intra-Robot Loop Closure detection module
	Inter-Robot Loop Closure detection module
	Outlier Rejection module
	Distributed Mapper module

	Development and Results
	Dataset
	LidarSlam dataset

	Signal Processing
	Testing
	Feature extraction for future upgrades

	Intra-Robot Loop Closure detection
	Testing
	Future upgrades

	Inter-Robot Loop Closure detection
	Testing
	Future upgrades

	Conclusion
	Acknowledgements
	Bibliography

